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Abstract. New multiplicative and statistically self-similar measures µ are defined on R

as limits of measure-valued martingales. Those martingales are constructed by multiplying
random functions attached to the points of a statistically self-similar Poisson point pro-
cess defined in a strip of the plane. Several fundamental problems are solved, including the
non-degeneracy and the multifractal analysis of µ. On a bounded interval, the positive and
negative moments of ‖µ‖ diverge under broad conditions.

1. Introduction

This paper deals with a new class of random multifractal measures introduced in
[Ma6], to be called “multifractal products of cylindrical pulses” (MPCP). They
improve on the familiar “canonical cascade multifractals” (CCM) introduced in
[Ma3, Ma4].

As will be recalled, the construction of CCM involves a prescribed artificial
b-adic grid of intervals of [0, 1]. The basis b (integer ≥ 2) was introduced to
simplify the construction in [Ma1] and allow the conjectures in [Ma3, Ma4] to be
proven [KP]. This b-ary tree structure restricts the statistical self-similarity of CCM
to b-adic subintervals of [0, 1]. The CCM led to a considerable body of literature
(see [K2], [HoWa], [Mol], [B1], [B2] and references therein for extensions).

Let (�,B,P) be the probability space on which random variables are defined
in this paper. To construct CCM, let W be a non-negative random variable having
expectation 1, and let Wv , v ∈ ∪∞

n=1{0, . . . , b − 1}n, be a collection of random
variables i.i.d. with W . Consider the sequence of random measures µn, n ≥ 1, on
[0, 1], defined by

dµn

d�
(t) =

n∏
j=1

W(t1,...,tj ),
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where t = (t1, t2, . . . ), tj ∈ {0, . . . , b − 1}, is a b-ary expansion of t ∈ [0, 1], and
� denotes the Lebesgue measure. The CCM µ is the almost sure (a.s.) vague limit
of (µn)n≥1 (see [KP]).

The mass that µ assigns to the subinterval [
∑n
j=1 tj b

−j ,
∑n
j=1 tj b

−j + b−n]
is a product of two statistically independent factors: b−n∏n

j=1W(t1,...,tj ), and a
random variable Y∞(t1, . . . , tn) that is distributed as the total mass µ([0, 1]) (this
reflects the self-similarity).

The MPCP provide a continuous parameter extension of CCM. To relate CCM
and MPCP, the basic subintervals of the form [kb−j , (k+1)b−j ], k ∈ {0, 1, . . . , bj−
1}, should first be reparametrized as [s − λ, s + λ], where the location and scale

parameters s and λ are sk,j = k + 1/2

bj
and λk,j = 1

2bj
. This notation re-

states the density of µn as a product of random quantities associated, down to
a “resolution” εn = (2bn)−1, with the atoms of the “deterministic point process”
S = {(sk,j , λk,j ) : k = 0, . . . , bj − 1, j = 1, 2, . . . }. Specifically, for (s, λ) ∈ S
with 2λ = b−j , one defines the “cylindrical pulse” P(s,λ) by

t ∈ R �→ P(s,λ)(t) =
{
W(t1,...,tj ) if t ∈ [s − λ, s + λ];
1 otherwise.

Then µ is the a.s. vague limit (as ε → 0+) of the family of measures µε given by

dµε

d�
(t) =

∏
(s,λ)∈S, λ≥ε

P(s,λ)(t), with µε = µn if ε ∈]εn+1, εn].

Note that for a given t ∈ [0, 1], the number of (non-unit) factors in the previous
product is the number of points inS “under” t and is equivalent to (log b)−1 log 1/ε.
The factor 1/ log b can be viewed as a formal density for the point process S.

The step from this framework to MPCP consists in replacing the point process
S by a Poisson point process S = {(sj , λj )} on R × (0, 1], with intensity

�(dt dλ) = δ

2

dt dλ

λ2 (δ > 0).

The “cylindrical pulses” associated with S are a denumerable family of functions
Pj (t), such that each Pj is identically 1 outside the interval [sj − λj , sj + λj ], and
identically equal to a weightWj within [sj −λj , sj +λj ], so that theWj ’s are i.i.d.
withW , and independent of S.

The MPCP µ is the a.s. vague limit (as ε → 0+) of the family of measures µε
defined on R by

dµε

d�
(t) =

∏
(sj ,λj )∈S, λj≥ε

Pj (t).

For every t ∈ R, the expected number of (non-unit) factors in the previous product
is δ log(1/ε). The CCM formal density 1/ log b is now formally replaced by the
MPCP density δ.
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The first key virtue of the MPCP’s follows from the invariance properties of�:
these measures are statistically invariant under a continuous change of scale. They
involve no b-adic grid. Neither do the limit lognormal multifractals introduced in
[Ma1], nor the “fractal sums of pulses” in [Ma5], which inspired the present study.

A second key virtue concerns a deep change in the form of the familiar
multifractal function τ(q). For MPCP, the next sections will show that whenW > 0

τ(q) = −1 + q − δ(E(Wq)− 1).

For CCM, it is well known that

τ(q) = −1 + q − logb E(Wq).

The condition of divergence of high moments of µ continues to be that τ(q) < 0
for some q > 1. The restriction τ(q) < 0 imposes on W is clearly less for MPCP
than for CCM.

Section 2 tightens up the construction of the MPCP µ. When E(W) �= 1, the
natural normalization of the products of the pulses is formed, to give the density

dµε

d�
(t) = εδ(E(W)−1)

∏
(sj ,λj )∈S, λj≥ε

Pj (t).

Then the main results are stated and a self-similar property is described. Theorem 1
concerns the conditions under whichµ is non-degenerate, i.e., positive with positive
probability. Theorems 2 and 3 concern the existence of finite moments for pieces
of µ. Theorem 4 concerns the whole multifractal spectrum. Section 3 is devoted to
proofs of these theorems.

This paper incorporates, proves and much strengthens the conjectures in [Ma6].
In the absence of a grid, the geometrical properties of MPCP are subtler than those
of CCM, and serious mathematical complications arise. The reason why [Ma3,
Ma4] singled out CCM for study is that for CCM the massµ([0, 1]) = Y∞ satisfies
the now-classical functional equation

(E) : Y∞ = b−1
b−1∑
j=0

W(j)Y∞(j),

where the Y∞(j) are copies of Y∞, and these random variables are mutually
independent and independent of the W(j). By construction, b−1W(j)Y∞(j) =
µ([jb−1, (j + 1)b−1]) for each 0 ≤ j ≤ b − 1. The properties of µ are con-
trolled by (E) itself or its iterations. For a MPCP, Sect. 2.3 replaces (E) with the
far more difficult Eq. (3). The geometry of the Poisson point process S implies
that (3) no longer involves random variables having the same distribution as Y∞.
While copies exist, they are implicit in integral terms (by Theorem 5). Moreover,
the copies that concern intervals close to one another are correlated. Nevertheless,
several non-obvious reductions make it possible to adapt for MPCP some features
of the familiar approach developed for CCM.

Products of more general pulses are discussed in [BM].
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2. Definitions, results and self-similarity

2.1. Construction of the limit measure and main results

LetW be a positive integrable random variable and denote E(W) by V .
Let {Bk}k≥1 be a partition of R×]0, 1] such that for all k ≥ 1, 0 < �(Bk) < ∞.

For every k ≥ 1, let �|Bk denote the restriction of � to Bk and choose a sequence

(Mk,n)n≥1 of Bk-valued random variables with common distribution
�|Bk
�(Bk)

; denote
by Nk a Poisson variable with parameter �(Bk), and (Wk,n)n≥1 a sequence of
copies ofW .

Assume that all the random variablesMk,n,Nk andWk,n, k, n ≥ 1, are mutually
independent.
S = {Mk,n; 1 ≤ k, 1 ≤ n ≤ Nk} is a Poisson point process with intensity �.

For M = (tM, λM) = Mk,n ∈ S, define WM = Wk,n, IM = [tM − λM, tM + λM ],
and the cylindrical pulse PM : t ∈ R �→ WM 1IM (t)+ 1I cM (t).

For all ε ∈]0, 1] and t ∈ R, define the truncated cone Cε(t) = {(t ′, λ) ∈
R×]0, 1]; t − λ ≤ t ′ ≤ t + λ, ε ≤ λ < 1} and

QCε(t) =
∏

M∈S∩Cε(t)
WM .

For every 0 < ε ≤ 1, denote by µε the measure on R defined by

dµε

d�
(t) := Qε(t) = εδ(V−1)

∏
M∈S∩{λ≥ε}

PM(t) = εδ(V−1)QCε(t)

and define Fε = σ (M,WM, M ∈ S ∩ {λ ≥ ε}). In all the text, weak convergence
of measures on a locally compact Hausdorff set K means weak∗-convergence in
the dual of C(K), the space of real continuous functions on K .

The limit measure. By construction, for every t ∈ R, (Q1/s(t))s≥1 is a positive
right-continuous martingale with respect to (F1/s)s≥1, with expectation 1.Therefore
Kahane’s theory of T -martingales ([K1]) is applicable. That is, for every n ∈ Z and
with probability one, the restrictions of the measures µε to the compact [n, n+ 1]
converge weakly, as ε → 0, to a non-negative measure µ(n) on [n, n + 1]. It also
follows that the endpoints n and n+ 1 are not atoms of µ(n).

Consequently (with probability one) there exists a unique non-negative measure
µR on R whose restriction to [n, n+ 1] is µ(n) for every n ∈ Z.

By definition of�, the measureµR is statistically invariant by horizontal trans-
lations. The sequel will only consider the measure µ = µ(1).

Remark 1. The choice of (Bk,Nk, (Mk,n)n≥1)k≥1 and ((Wk,n)n≥1)k≥1 affects nei-
ther the probability distribution of the stochastic process (Qε(t))ε∈]0,1], t∈R, nor
those of the other random variables defined in this paper.

The function τ(q). Recall that µ denotes the restriction of µR to [0, 1]. Define
Y = ‖µ‖. For q ∈ R define

τ(q) = −1 + q (1 + δ(V − 1))− δ(E(Wq)− 1) ∈ R ∪ {−∞}.
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Thus τ is concave and finite on [0, 1].
Non-degeneracy of µ and the moments of ‖µ‖.

Theorem 1 (Non-degeneracy). (i) If τ ′(1−) > 0 then P(µ �= 0) = 1 and
E(Y ) = 1. (ii) If P(µ �= 0) > 0 then P(µ �= 0) = 1, E(Y ) = 1, and τ ′(1−) ≥ 0.
If, moreover, E((1 +W)| log W |2+γ ) < ∞ for some γ > 0, then τ ′(1−) > 0.

Theorem 2 (Moments of positive orders). Let h > 1.
(i) If τ(h) > 0 then 0 < E(Y h) < ∞. (ii) If 0 < E(Y h) < ∞ then τ(h) ≥ 0.

Remark 2. [Ma6] conjectures that µ is non-degenerate if and only if τ ′(1−) > 0,
and that ifµ is non-degenerate then for h > 1, E(Y h) < ∞ if and only if τ(h) > 0.

The necessary and sufficient conditions for non-degeneracy and finiteness of
moments of positive orders are similar for MPCP and CCM, but, by design, are
less restrictive for MPCP. The following proposition characterizes the divergence
of high moments.

Proposition 1 (Divergence of high moments for MPCP and CCM). (i)Assume
that µ is non-degenerate. There exists h > 1 such that E(Y h) = ∞ if and only if
P(W > 1) > 0 (this is independent of δ) or P(W ≤ 1) = 1 and E(W) < 1 − 1/δ.
(ii) Assume that E(W) = 1 and the CCM constructed with W is non-degener-
ate. There exists h > 1 such that E(Y h∞) = ∞ if and only if P(W > b) > 0 or
P(W = b) ≥ 1/b.

Theorem 3 (Moments of negative orders). Assume Y is non degenerate and fix
a > 0. Then E(Y−a) < ∞ holds if and only if E(W−a) < ∞.

Multifractal analysis of µ. New definitions are needed.
For a function f : R �→ R∪{−∞}, define f ∗ : α ∈ R �→ infq∈R(αq−f (q)).
For t ∈ [0, 1] and r > 0, denote [0, 1] ∩ [t − r

2 , t + r
2 ] by Ir (t), and for α > 0

define

Eα = {t ∈ [0, 1]; lim
r→0+

log µ(Ir(t))

log r
= α}.

The multifractal analysis of µ computes the mapping α �→ dimH Eα on an inter-
val as large as possible, where dimH stands for the Hausdorff dimension. Since the
geometry of µ does not depend on a particular b-ary tree, the logarithmic density
in the definition of the Eα’s is not expressed via b-adic intervals as for CCM, but
via centered intervals.

Theorem 4 (Multifractal analysis). Assume that τ is finite on an interval J
containing a neighborhood of [0, 1], and that τ ′(1) > 0. Define J ′ = {q ∈
Int(J ); τ ′(q)q − τ(q) > 0}, I ′ = {τ ′(q); q ∈ J ′}, αinf = inf(I ′) and αsup =
sup(I ′) ([0, 1] ⊂ J ′, I ′ ⊂]0,∞[, αinf > 0). With probability one:
(i) For all α ∈ I ′, dimH Eα = τ ∗(α).
(ii) If τ ∗(αinf) = 0 then for allα ∈]0, αinf [,Eα = ∅. Ifαsup < ∞ and τ ∗(αsup) = 0
then for all α ∈]αsup,∞[, Eα = ∅.
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2.2. Additional definitions and a principle of self-similarity

X ∼ X′ means that the two random variables X and X′ are identically distributed.
If B is a Borel subset of H = R×]0, 1] with �(B) < ∞, define

QB =
∏

M∈S∩B
WM.

If I is a compact subinterval of [0, 1], then |I | stands for its length and we
define

TI = {(t, λ) ∈ H ; 0 < λ < |I |, inf(I )− λ ≤ t ≤ sup(I )+ λ},
T I = {(t, λ) ∈ H ; |I | ≤ λ < 1, t ∈ [sup(I )− λ, inf(I )+ λ]},
BIγ = {(t, λ) ∈ H ; |I | ≤ λ < 1, t ∈ [inf(I )+ γ λ, sup(I )+ γ λ]}, γ ∈ {−1, 1},
BI = BI−1 ∪ BI1 .
Moreover, fI the affine transformation on R which maps inf(I ) onto 0 and sup(I )
onto 1.

Then for all 0 < ε ≤ 1 define µIε as the measure determined on I by

dµIε

d�
(t) = εδ(V−1)

∏
M∈S∩{ε|I |≤λ<|I |}

PM(t) = εδ(V−1) QCε|I |(t)\C|I |(t).

Theorem 5 examines the strong similarity between the µIε ’s and the µε’s (see
Sect. 2.1).

Theorem 5. For every non-trivial compact subinterval I of [0, 1] one has almost
surely for all 0 < ε ≤ |I |

µε(I) = |I |δ(V−1)
∫
I

QC|I |(t)µ
I
ε/|I |(dt)=|I |δ(V−1)QT I

∫
I

QBI∩C|I |(t) µ
I
ε/|I |(dt).

Here QT I and t �→ QBI∩C|I |(t) are independent of one another and of the µIε ’s,

and, as ε → 0, the family (µIε)0<ε≤1 converges a.s. weakly to a measure µI .

TI

T I

BI−1 BI1

inf(I ) sup(I )

|I |

0 t1

1
λ

Fig. 1. Illustration of the sets in H defined early
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Moreover, the following properties hold for all f ∈ C(I):
(i)

∫
I
f (t) µIε (dt) ∼ |I | ∫[0,1] f ◦ f−1

I (t) µε(dt) for all ε ∈]0, 1]. In particular

‖µIε‖ ∼ |I | ‖µε‖. (ii)
∫
I
f (t) µI (dt) ∼ |I | ∫[0,1] f ◦ f−1

I (t) µ(dt). In particular

‖µI‖ ∼ |I | ‖µ‖.

Proof. The equality µε(I) = |I |δ(V−1)
∫
I
QC|I |(t)µ

I
ε/|I |(dt) follows from the re-

spective definitions ofµε andµε/|I |. Because I ⊂ IM for allM ∈ S∩T I , it follows
that

∫
I
QC|I |(t)µ

I
ε/|I |(dt) = QT I

∫
I
QBI∩C|I |(t) µ

I
ε/|I |(dt).

The random variable QT I and the stochastic process t �→ QBI∩C|I |(t) are in-

dependent of one another and of the µIε ’s. Indeed they involve mutually disjoint
subsets of S, namely, S ∩ T I , S ∩ BI , and S ∩ TI .

The reason for a.s. weak convergence as ε → 0 is the same for the family
(µIε)0<ε≤1 as for (µε)0<ε≤1 restricted to any compact interval.
(i) Fix ε > 0. To show that

∫
I
f (t) µIε (dt) ∼ |I | ∫[0,1] f ◦f−1

I (t) µε(dt) for every
f ∈ C(I), it suffices to show that the same holds for the function f = 1J for
every subinterval J of I . Indeed, every f ∈ C(I) is the limit in ‖ ‖∞ norm of
piecewise constant functions. Fixing such a J reduces the problem to showing that
µIε(J ) ∼ |I |µε(fI (J )).
fI is the restriction to the real line R of the similarity f̃I = hI ◦ θI on the plane

R
2, where h|I | is the homothety with center (0, 0) and ratio |I |−1, and θI is the hori-

zontal translation by the vector (− inf(I ), 0). Inspired by [Ma2], we use the property
that for every subset F of H such that f̃I (F ) ⊂ H , �(F) = �(f̃I (F )). Together
with the equality f̃I (TI ∩{(t, λ) ∈ H ; λ ≥ ε|I |})) = T[0,1] ∩{(t, λ) ∈ H ; λ ≥ ε},
this property implies that the point process f̃I (S ∩ TI ∩ {(t, λ) ∈ H ; λ ≥ ε|I |})
has the same distribution as S ∩ T[0,1] ∩ {(t, λ) ∈ H ; λ ≥ ε}.

Consider the measure νε constructed on [0, 1] like the restriction ofµε to [0, 1],
but with the pairs (f̃I (M),WM), for M in S ∩ TI ∩ {(t, λ) ∈ H ; λ ≥ ε|I |}, in-
stead of the pairs (M,WM), for M in S ∩ T[0,1] ∩ {(t, λ) ∈ H ; λ ≥ ε}. We
see that νε(fI (J )) ∼ µε(fI (J )). Moreover, the change of variable t ′ = fI (t) in∫
I

1J (t) µIε (dt) yields µIε(J ) = |I | νε(fI (J )), since, by construction, for every
t ∈ I

dµIε

d�
(t) = dνε

d�
(fI (t)).

(ii) The measures µI and µ are, respectively, the weak limit of (µIε)0<ε≤1 and
(µε)0<ε≤1 as ε → 0. It follows that (ii) is deduced from (i) by letting ε tend to 0.

Now define Ys = ‖µ(1)1/s‖ for all s ≥ 1. By construction, (Ys, F1/s)s≥1 is a
right-continuous positive martingale with mean 1 that converges to Y .

If I is a non-trivial compact subinterval of [0, 1], define YI = 1
|I | ‖µI‖ and, for

all s ≥ 1, define Ys,I = 1
|I | ‖µI1/s‖.

The measure µ will be represented as the image of a measure on the boundary
of an homogeneous tree.
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2.3. Measure on a tree associated with µ

Given two integers b ≥ 2 andm ≥ 0, denote byAm the set of finite words of length
m on the alphabet {0, . . . , b − 1} (A0 = {ε}). Denote

⋃∞
m=0 Am by A. For a ∈ A,

the length of a and the closed b-adic subinterval of [0, 1] naturally encoded by a
are, respectively, denoted by |a| and Ia .

For n ≥ 1 and a = (a1, . . . , an) ∈ An, denote (a1, . . . , an−1) by a|(n− 1).
Define ∂A = {0, . . . , b − 1}N. The set A acts on the disjoint union of A and

∂A by the concatenation operation. For a ∈ A, let Ca denote a∂A, namely, the
cylinder generated by a. Denote by A the σ -field generated by the Ca’s in ∂A.

Denote by π the mapping t = (t1, . . . , ti , . . . ) ∈ ∂A �→ ∑
i≥1 ti/b

i ∈ [0, 1].

Denote by �̃ the measure on (∂A,A) such that for all a ∈ A, �̃(Ca) = b−|a|.
If ρ is a non-negative measure on (∂A,A), the measure Dn.ρ will be defined,

for n ≥ 1, by
d(Dn.ρ)

dρ
(t) = b−nδ(V−1)QCb−n (π(t)). The sequence (Dn.ρ)n≥1 con-

verges a.s. weakly to a non-negative random measureD.ρ. Moreover, by [K1], the
operator L : ρ �→ E(D.ρ) on non-negative measures on ∂A is a projection.

Define µ̃ = D.�̃ and µ̃n = Dn.�̃ for all n ≥ 1. By construction, µ = µ̃ ◦ π−1

and µb−n = µ̃n ◦ π−1 for n ≥ 1.
The following three relations, (1), (2), and (3), will prove to be fundamental.

By Theorem 5, for all n > m > 1

Ybn =
∑
a∈Am

µb−n(Ia) = b−mδ(V−1)
∑
a∈Am

QT Ia

∫
Ia

QBIa∩Cb−m(t) µ
Ia
bm−n(dt), (1)

µ̃(Ca) = b−mδ(V−1)QT Ia

∫
Ia

QBIa∩Cb−m(t) µ
Ia (dt) ∀ a ∈ Am. (2)

(Proof: µ̃(Ca) = limn→∞ µ̃n(Ca) since the space ∂A is totally disconnected; more-
over, µ̃n(Ca) = µb−n(Ia) for all n ≥ 1, and µIa ({tM ; M ∈ S, λM ≥ b−|a|}) = 0
a.s.)

Y =
∑
a∈Am

µ̃(Ca) = b−mδ(V−1)
∑
a∈Am

QT Ia

∫
Ia

QBIa∩Cb−m(t) µ
Ia (dt) ∀ m ≥ 1.

(3)

3. Proofs of the main results

3.1. Basic lemmas

Lemma 1. Fix B as a Borel subset of H such that �(B) < ∞, q ∈ R and β > 0.

(i) E(Q
q
B) = e�(B)(E(W

q)−1);
(ii) E(Q

q
B log QB) = �(B)E(Wq log W)e�(B)(E(W

q)−1) if E(Wq | log W |) <
∞;

(iii) E(Q
q
B | log QB |) ≤ �(B)E(Wq | log W |)e�(B)(E(Wq)−1);
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(iv) Denote by β̄ the integer such that β̄ ≤ β < β̄ + 1. There exists a constant
Cβ > 0, independent of B, such that

E(QB | log QB |β) ≤ Cβ(1 +�(B))β̄+2(1 + V )β̄+1
E(W | log W |β)e�(B)(V−1).

Proof. We begin by proving (iii) and (iv). Conditionally on #S ∩ B = k ≥ 1,
we have QB = ∏k

i=1Wi , where the Wi’s are i.i.d. with W and independent of S.
Hence, by using the subadditivity on R+ of the mapping x �→ xβ when 0 < β ≤ 1
and its convexity when β > 1, for every β > 0 and q ∈ R we get

E(Q
q
B | log QB |β |#S ∩ B = k) ≤ E(

k∏
i=1

W
q
i [

k∑
i=1

| log Wi |]β)

≤ k(max(1,β))
E(Wq | log W |β)V k−1

q ,

where Vq = E(Wq). Since P(#S ∩ B = k) = e−�(B) (�(B))
k

k! , taking the uncondi-
tional expectation yields

E(Q
q
B | log QB |β) ≤ E(Wq | log W |β)e−�(B)

∑
k≥1

(�(B))k

k!
k(max(1,β))V k−1

q ,

and in the particular case β = 1, we get (iii). To get (iv), put q = 1 and define
p = β̄ + 2 (p ≥ max(1, β)) and x = �(B)V . We have

E(QB | log QB |β) ≤ E(W | log W |β)e−�(B)�(B)
∑
k≥0

(k + 1)p

(k + 1)!
xk.

Define Cβ = max( sup
0≤k≤p−1

(k + 1)p

(k + 1)!
k!, sup

k≥p
(k + 1)p

(k + 1)k . . . (k + 2 − p)).

∑
k≥0

(k + 1)p

(k + 1)!
xk ≤ Cβ

p−1∑
k=0

xk

k!
+ Cβ

∑
k≥p

xk

(k + 1 − p)!

≤ Cβe
x + Cβxp−1

∑
k≥1

xk

k!
≤ Cβ(1 + x)p−1ex

(p − 1 ≥ 1). Since 1 + x ≤ (1 +�(B))(1 + V ), it follows that

E(QB | log QB |β) ≤ Cβ(1 +�(B))β̄+2(1 + V )β̄+1
E(W | log W |β)e�(B)(V−1).

Assertion (ii) follows from the fact that if k ≥ 1 then

E(Q
q
B log QB |#S ∩ B = k) = E(

k∏
i=1

W
q
i [

k∑
i=1

log Wi])

= kE(Wq log W)V k−1
q .

Then (i) follows by a similar computation or simply by integrating the equality
given in (ii).
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Lemma 2. Fix t ∈ R. For every s ≥ 1, �(C1/s(t)) = δ log s, and (Q1/s(t))s≥1
is a right continuous martingale with respect to (F1/s)s≥1, with expectation 1.

The verification, left to the reader, uses Lemma 1(i) with B = C1/s(t) and q = 1.
If B ⊂ H and I is a non-trivial compact subinterval of [0, 1] and q ∈ R, we

define

mB,I = inf
u∈I
QB∩C|I |(u), MB,I = sup

u∈I
QB∩C|I |(u),

γI (q) = 1{q<0}m
q

BI ,I
+ 1{q≥0}M

q

BI ,I
.

Lemma 3. Fix a non-trivial compact subinterval I of [0, 1].
(i)(a) �(T I ) = δ(log 1

|I | − 1
2 (1 − |I |)); (b) �(BI ) = δ(1 − |I |). (c) For every

t ∈ I , �(BI ∩ C|I |(t)) = �(BI )/2.
(ii) Fix β > 0. If E((1+W)| log W |β) < ∞ then there existsCβ > 0 independent

of I such that supt∈I E

(
Q|I |(t)

∣∣∣log |I |−1
∫
I
QBI∩C|I |(u)du

∣∣∣β) ≤ Cβ .

(iii) (a) E(MBI ,I ) ≤ eδ(E(max(1,W))−1);
(b) E(supq∈K γI (q)) ≤ eδ(E(max(1,W inf(K)+W sup(K)))−1) for every compact subinter-
val K of R.

Proof. (i) The computations are left to the reader.
(ii) Fix t ∈ I and define

T1 =
∣∣∣∣log |I |−1

∫
I

QBI∩C|I |(t)∩C|I |(u)Q(BI \C|I |(t))∩C|I |(u) du

∣∣∣∣
β

.

It follows from the definitions of mB,I andMB,I that

∏
ε∈{−1,1}

mBIε ∩C|I |(t),ImBIε \C|I |(t),I ≤|I |−1
∫
I

QBI∩C|I |(t)∩C|I |(u)Q(BI \C|I |(t))∩C|I |(u)du

≤
∏

ε∈{−1,1}
MBIε ∩C|I |(t),IMBIε \C|I |(t),I .

Hence, T1 ≤ 4β
∑
ε∈{−1,1}(T2,ε + T3,ε) with

{
T2,ε = | log mBIε ∩C|I |(t),I |β + | log MBIε ∩C|I |(t),I |β
T3,ε = | log mBIε \C|I |(t),I |β + | log MBIε \C|I |(t),I |β.

Therefore

T : = Q|I |(t)
∣∣∣∣log |I |−1

∫
I

QBI∩C|I |(u) du

∣∣∣∣
β

= |I |δ(V−1)QC|I |(t)T1

≤ T4 + T5
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with {
T4 = 4β |I |δ(V−1)QC|I |(t)\BI [QBI∩C|I |(t)(T2,−1 + T2,1)]

T5 = 4β |I |δ(V−1)QC|I |(t)(T3,−1 + T3,1).

Then the identity |I |δ(V−1)
E(QC|I |(t)\BI )E(QBI∩C|I |(t)) = 1, together with the

fact that the sets C|I |(t) \ BI and BI ∩ C|I |(t) are disjoint, as well as C|I |(t) and
BI \ C|I |(t), yield

E(T ) ≤ 4β [
1

E(QBI∩C|I |(t))
E(QBI∩C|I |(t)(T2,−1 + T2,1))+ E(T3,−1 + T3,1)],

where by (i)(c) and Lemma 1(i) (E(QBI∩C|I |(t)))
−1 = e−δ(1−|I |)(V−1)/2 is bound-

ed independently of I .
It remains to show that E(QBI∩C|I |(t)T2,ε) and E(T3,ε) are bounded indepen-

dently of I and t for ε ∈ {−1, 1}.
First, we estimate E(QBI∩C|I |(t)T2,−1). Conditionally on #S ∩ BI ∩ C|I |(t) =

k ≥ 1, we write S ∩ BI ∩ C|I |(t) = {N1, . . . , Nk}. Conditionally on #S ∩ BI−1 ∩
C|I |(t) = l ∈ [1, k] (if k or l = 0 then T2,−1 = 0), we can assume thatN1, . . . Nl ∈
BI−1 and tN1 + λN1 ≤ · · · ≤ tNl + λNl . Then, for every u ∈ I , we have

QBI−1∩C|I |(t)∩C|I |(u) ∈ {
l∏
i=j
WNi ; 1 ≤ j ≤ l } ∪ {1}

according to whether or not u ∈ ∩li=j INi for some 1 ≤ j ≤ l. This implies that

T2,−1 ≤ 2kmax(0,β−1)
k∑
i=1

| log WNi |β.

Consequently for ε ∈ {−1, 1} and k ≥ 1 we obtain

E(QBI∩C|I |(t)T2,ε|#S ∩ BI ∩ C|I |(t) = k) ≤ 2kmax(0,β−1)
E

×
( k∏
j=1

WNj

k∑
j=1

| log WNj |β
)

= 2kmax(1,β)
E(W | log W |β)V k−1.

Similarly we obtain

E(T3,ε|#S ∩ BI \ C|I |(t) = k)) ≤ 2kmax(1,β)
E(| log W |β).

Since �(BI ∩ C|I |(t)) and �(BI \ C|I |(t)) are bounded independently of I and t
(by (i)(b)), taking the unconditional expectations in the previous inequalities (as
in the proof of Lemma 1) yields the conclusion.

(iii)(a)One obtains E(MBI ,I ) ≤ (e�(B
I
−1)(E(max(1,W))−1))2 as follows. Use the in-

equalityMBI ,I ≤MBI−1,I
.MBI1 ,I

and the equality E(MBI−1,I
.MBI1 ,I

)=(E(MBI−1,I
))2
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(B−1 and B1 are disjoint, and orthogonally symmetric with respect to the line
{t = (inf(I ) + sup(I ))/2}). Then use computations very similar to those done
in (ii) to estimate E(QBI∩C|I |(t)T2,ε): conditionally on #S ∩ BI−1 = k ≥ 1 and

S ∩ BI−1 = {N1, . . . , Nk}

MBI−1,I
≤ sup
L⊂{1,...,k}

∏
i∈L
WNi ≤

k∏
i=1

max(WNi , 1).

This yields

E(MBI−1,I
|#S ∩ BI−1 = k) ≤ [E(max(W, 1))]k.

This estimate also holds if k = 0. Taking the unconditional expectation yields

E(MBI−1,I
) ≤ e�(B

I
−1)E(max(1,W))−1). As �(BI−1) ≤ δ/2 by (i)(b), we have the

conclusion.
(iii)(b) Notice that supq∈K γI (q) ≤ M̃BI ,I , where M̃BI ,I is defined as MBI ,I but

with W̃ = W inf(K) +W sup(K) instead ofW . Conclude by using (iii)(a).

Lemma 4. Fix b, an integer ≥ 2, and q ∈ R such that E(Wq) < ∞. There exists
Cq = Cq(W) > 0 such that for n > m ≥ 1 and a ∈ Am :
(i)(a) µ

q

b−n(Ia) ≤ wq(Ia)Y
q

bn−m,Ia with wq(Ia) = b−mq[1+δ(V−1)]Q
q

T Ia
γIa (q) and

E(wq(Ia)) ≤ Cqb
−m(τ(q)+1);

(b)
∑
a∈Am E(µ

q

b−n(Ia)) ≤ Cqb
−mτ(q)

E(Y
q

bn−m);
(c) if q ≥ 1 then E(Y

q
bn) ≥ b−mτ(q)e

δ
2 (1−b−m)(q(V−1)−(E(Wq)−1))

E(Y
q

bn−m).

(ii)(a) µ̃q(Ca) ≤ wq(Ia)Y
q
Ia

; (b)
∑
a∈Am E(µ̃q(Ca)) ≤ Cqb

−mτ(q)
E(Y q).

Proof. Fix n > m ≥ 1 and a ∈ Am.
(i)(a) By Theorem 5

µ
q

b−n(Ia) = b−mqδ(V−1)Q
q

T Ia

(∫
Ia

QBIa∩Cb−m(t) µ
Ia
bm−n(dt)

)q
.

Hence, µq
b−n(Ia) ≤ wq(Ia)Y

q

bn−m,Ia follows from the definitions of γIa (q) and
Ybn−m,Ia .

We have E(wq(Ia)) = b−mq[1+δ(V−1)]
E(Q

q

T Ia
)E(γIa (q)) since Qq

T Ia
and

γIa (q)) are independent. Moreover, by Lemma 3(i)(a) and Lemma 1(i) applied
with B = T Ia ,

E(Q
q

T Ia
) = bmδ(E(W

q)−1)e−
δ
2 (1−b−m)(E(Wq)−1), (4)

and by Lemma 3(iii)(b) applied with K = {q}, E(γIa (q)) ≤ eδ(E(max(1,2Wq))−1).
Therefore

E(wq(Ia))≤ e− δ
2 (1−b−m)(E(Wq)−1)eδ(E(max(1,2Wq))−1)b−m[q(1+δ(V−1))−δ(E(Wq)−1)]

≤ Cq b
−m(τ(q)+1)

where Cq = eδ(E(max(1,2Wq))−1) supm≥1 e
− δ

2 (1−b−m)(E(Wq)−1).
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(i)(b) Follows from (i)(a) and the independence between wq(Ia) and Ybn−m,Ia .
(i)(c) The super-additivity of x ≥ 0 �→ xq applied in (1) yields

E(Y
q
bn) ≥

∑
a∈Am

b−mqδ(V−1)
E(Q

q

T Ia
)E

([∫
Ia

QBIa∩Cb−m(t) µ
Ia
bm−n(dt)

]q)
. (5)

The Jensen inequality applied in T = E([
∫
Ia
QBIa∩Cb−m(t)µ

Ia
bm−n(dt)]q | ∪0<ε≤b−m

Fε) yields

T ≥
(∫

Ia

E(QBIa∩Cb−m(t)| ∪0<ε≤b−m Fε)µ
Ia
bm−n(dt)

)q

=
(∫

Ia

E(QBIa∩Cb−m(t))µ
Ia
bm−n(dt)

)q

=
(
e
δ
2 (1−b−m)(V−1)b−mYbn−m,Ia

)q
by Lemma 3(i)(c) and Lemma 1(i) applied with B = BIa ∩ Cb−m(t) and q = 1.
Then, by using (4) and the previous computation in (5), we get

E(Y
q
bn) ≥

∑
a∈Am

b−mqδ(V−1)bmδ(E(W
q)−1)e−

δ
2 (1−b−m)(E(Wq)−1)

× e δ2 (1−b−m)q(V−1)b−mq
E(Y

q

bn−m),

and the conclusion follows.
(ii)(a) and (ii)(b) are deduced from (i)(a) and (i)(b) by letting n tend to ∞.

The random function fa,n,m involved in Lemma 5 is defined in the proof of
Theorem 1(i) in Sect. 3.2.

Lemma 5. (i)E(f ′
a,n,m(1

−))=b−m (−m log (b) τ ′(1−)+ E(Ybn−m log Ybn−m)
)
.

(ii)
∑

a �=a′∈Am
E

(
µ

1
2
b−n(Ia)µ

1
2
b−n(Ia′)

)
≤ 5C + C bm (E(Y

1
2
bn−m))

2 for some C > 0

independent of m and n.

Proof. (i) Differentiate fa,n,m at 1− yields E(f ′
a,n,m(1

−)) = T1 + T2 + T3 with

T1 = −m log (b)[δ(V − 1)]E(fa,n,m(1)) = −b−mm log (b)δ(V − 1),

T2 = b−mδ(V−1)
E

(∫
Ia

E(QCb−m(t) log (QCb−m(t)))µbm−n,Ia (dt)

)
= b−mm log (b)δE(W log W),

T3 = b−mδ(V−1)
E

(
(log (Ybn−m,Ia )−m log (b))

∫
Ia

E(QCb−m(t))µbm−n,Ia (dt)

)
= b−m(E(Ybn−m log Ybn−m)−m log (b)),

by using Lemma 1(i) and (ii)withB = Cb−m(t) and q = 1. As τ ′(1) = 1+δ(V −
1)− δE(W log W), we have the conclusion.
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(ii)By the Cauchy–Schwarz inequality and Lemma 4(i)(a), for every (a, a′) ∈ A2
m

we have

E

((
µb−n(Ia)µb−n(Ia′)

) 1
2

)
≤ C1 b

−m
E(Y

1
2
bn−m,IaY

1
2
bn−m,Ia′

).

Moreover, Ybn−m,Ia and Ybn−m,Ia′ are independent when TIa ∩ TIa′ = ∅, otherwise

we have E(Y
1
2
bn−m,IaY

1
2
bn−m,Ia′

) ≤ 1 since E(Ybn−m) = 1.As #{a′ ∈ Am; TIa∩TIa′ �=
∅} ≤ 5 for every a ∈ Am, we get∑
a �=a′∈Am

E(µ
1
2
b−n(Ia)µ

1
2
b−n(Ia′)) ≤ 5 bm × C1 b

−m + b2m × C1 b
−m(E(Y

1
2
bn−m))

2.

The probability measures Pt involved in Lemma 6 are defined in the proof of
Theorem 1(ii) in Sect. 3.2.

Lemma 6. If τ ′(1−) = 0 and E((1 +W)| log W |2+γ ) < ∞ for some γ > 0 then
for every t ∈ [0, 1], Pt (lim supn→∞ Ybn = ∞) = 1.

Proof. Fix t ∈ [0, 1]. For n ≥ 1, denote by In(t) the b-adic subinterval of [0, 1]
of the nth generation which contains t . One has Ybn = ‖µb−n‖ ≥ µb−n(In(t)) so it
suffices to show that Pt (lim supn→∞ µb−n(In(t)) = ∞) = 1.

Define 

R1,n(t) = − log QCb−n (t)\T In(t)

R2,n(t) = log bn
∫
In(t)

QBIn(t)∩Cb−n (u)du.

We have

log µb−n(In(t)) = log Qb−n(t) − n log (b)+ R1,n(t)+ R2,n(t),

so the conclusion results from the two following properties:

(1) Pt (lim sup
n→∞

log Qb−n(t) − n log (b)

(n log log n)1/2
> 0) = 1: for every k ≥ 1 define the

random variable Xk = log (Qb−k (t)/Qb−(k−1) (t)) − log (b). By construction, the
Xk are i.i.d. with respect to Pt and by Lemma 1(i), (ii) and (iv)(q = 1, β = 2)
applied with B = Cb−1(t)

EPt
(Xk) = EPt

(X1) = E(Qb−1(t) log Qb−1(t))− log (b) = − log(b)τ ′(1−) = 0

and EPt
(X2
k ) < ∞. Moreover EPt

(X2
k ) > 0, otherwise P(QC

b−1 (t) =
b1+δ(V−1)) = 1, implying that W = 1 a.s. and τ ′(1−) = 0. One concludes
using the law of the iterated logarithm.

(2) Pt ( lim
n→∞

|R1,n(t)| + |R2,n(t)|
(n log log n)1/2

= 0) = 1: this holds if supi∈{1,2},n≥1 EPt

(|Ri,n(t)|2+γ ) is finite. We have

EPt
(|R1,n(t)|2+γ ) = E(Qb−n(t)| log QCb−n (t)\T In(t) |

2+γ )
= b−nδ(V−1)

E(QT In(t) )

×E(QCb−n (t)\T In(t) | log QCb−n (t)\T In(t) |
2+γ ),

and EPt
(|R2,n(t)|2+γ ) = E(Qb−n(t)| log bn

∫
In(t)

QBIn(t)∩Cb−n (u)du|2+γ ).
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These expectations are uniformly bounded over N
∗. This results from

Lemma 1(i) applied with B = T In(t) and q = 1 and Lemma 1(iv) applied with
B = Cb−n(t) \ T In(t) and β = 2 + γ , together with Lemma 3(ii) applied with
β = 2 + γ .

Now we consider the assumptions of Theorem 4. Fix an integer b ≥ 2. For
q ∈ J ′, let µ̃q be the measure on (∂A,A) obtained a.s. as the weak limit of

(µ̃q,n)n≥1, where
dµ̃q,n

d�̃
(t) = b−nδ(E(Wq)−1) Q

q

Cb−n (π(t))
. The total mass of µ̃q is

denoted by Yq and for every a ∈ A, Yq,Ia denotes b|a|‖µ̃Iaq ‖ and is a copy of Yq .

Lemma 7. With probability one
(i)For alla ∈ A, the sequence of functions (q �→ µ̃q,n(Ca))n≥1 converges uniform-
ly on the compact subsets of J ′ to q �→ µ̃q(Ca), which is positive. Consequently
the measures µ̃q , q ∈ J ′, are defined simultaneously and have ∂A as support.
(ii) For every q ∈ J ′, for µ̃q -almost every t = (t1, . . . , tn, . . . ) ∈ ∂A

lim
n→∞

log µ̃q(C(t1,...,tn))

−n log b
≥ τ ∗(τ ′(q)).

Proof of (i). The next few lines will assume the following property, (P), whose
validity will be proven momentarily. (P): there exists a deterministic complex
neighborhood of J ′, to be denoted by V , such that for every a ∈ A and n > |a|,
the mapping q ∈ J ′ �→ µ̃q,n(Ca) = ∑

a′∈An−m µ̃q,n(Caa′) possesses the analytic
extension

z ∈ V �→ ψ(a)n (z) =
∑

a′∈An−m
b−nδ(E(Wz)−1)

∫
Iaa′
QzCb−n (t)

dt.

Moreover, given a ∈ A, for every compact subinterval K of J ′, there exist three
constants h > 1, c < 0, C > 0 and a complex neighborhood U ofK , such that for
all n ≥ 1, supz∈U E(|ψ(a)n+1(z)− ψ(a)n (z)|h) ≤ Cb(n+1)c.

For every a ∈ A, the Cauchy formula applied as in [Bi] gives a.s. the uniform
convergence of (ψ(a)n )n>m on the compact subsets of a complex neighborhood
of J ′, and so the one of (q �→ µ̃q,n(Ca))n≥1, on the compact subsets of J ′, to
q �→ µ̃q(Ca). This happens almost surely simultaneously for all the a’s in A
because A is countable, so the measures µ̃q are defined simultaneously.

To see that q �→ µ̃q(Ca) is almost surely positive on J ′ for every a ∈ A, so
that the support of the µ̃q ’s is ∂A, adapt the proof of Corollary 5 (ii) (β) of [B2]
by using Theorem 5 and Eqs. (2) and (3).

Proof of (P). J ′ is an open subinterval of J . Consequently, there exists a deter-
ministic complex neighborhood V of J ′ so that the mapping z �→ E(Wz) is defined
and analytic on V . Moreover, for every n ≥ 1, the piecewise constant function
t ∈ [0, 1] �→ QzCb−n (t)

is almost surely defined for all z ∈ C and depends analyti-

cally on z. This implies that for every a ∈ A the ψ(a)n , n > |a|, are all defined and
analytic on V . The fact that µ̃q(Ca) = ψ

(a)
n (q) on J ′ follows from the definition

of µ̃q .
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Fix a ∈ A. For every z in V , ψ(a)n+1(z)− ψ(a)n (z)

=
∑

a′∈An−m

∫
Iaa′
b−nδ(E(Wz)−1)QzCb−n (t)

[b−δ(E(Wz)−1)QzC
b−(n+1) (t)\Cb−n (t) − 1] dt.

(6)

Let the b-adic intervals of the nth generation involved in the previous sum be
numbered from 0 to bn−m − 1 as they appear on the real line, and denoted by Jk’s,
0 ≤ k < bn−m.

For t ∈ ∪bn−m−1
k=0 Jk , define{
un(z, t) = b−nδ(E(Wz)−1)QzCb−n (t)

,

vn(z, t) = b−δ(E(Wz)−1)QzC
b−(n+1) (t)\Cb−n (t) − 1.

Then for i ∈ {0, 1, 2} and t ∈ J0 define

Ii(z, t) =
∑

0≤3k+i<bn−m
un(z, t + 3k + i

bn−m
) vn(z, t + 3k + i

bn−m
).

It follows from (6) and a Hölder inequality that for h > 1,

E(|ψ(a)n+1(z)− ψ(a)n (z)|h) ≤ 3h−1|J0|h−1
∫
J0

∑
i∈{0,1,2}

E(|Ii(z, t)|h) dt. (7)

For each t ∈ J0, in Ii(z, t), the vn(z, t + 3k+i
bn−m )’s are mutually independent since

the TJ3k+i ’s are pairwise disjoint. Moreover, they are by construction of mean 0 and
independent of the un(z, t + 3k+i

bn−m )’s. Then, it follows from Lemma 1 in [Bi] that

E

(
|Ii(z, t)|h

)
≤ 2h

∑
0≤3k+i<bn−m

E

(∣∣∣∣un
(
z, t + 3k + i

bn−m

)∣∣∣∣
h
)

× E

(∣∣∣∣vn
(
z, t + 3k + i

bn−m

)∣∣∣∣
h
) (8)

for every 1 < h ≤ 2. By using Lemma 1(i) with |Wz| instead of W and B ∈
{Cb−(n+1) (t) \ Cb−n(t), Cb−n(t)} we get

E(|un(z, t)|h)E(|vn(z, t)|h) ≤ 2hb(n+1)θ(z,h) (9)

independently of t , where θ(z, h) = −hδ[E(�(Wz))− 1] + δ[E(|Wz|h)− 1].
It follows from (7), (8), and (9) that (with Ch,m = 12hb−(m+1)(1−h))

E(|ψ(a)n+1(z)− ψ(a)n (z)|h) ≤ Ch,mb
(n+1)(1−h+θ(z,h)).

Finally, if K is a compact subinterval of J ′, a study of function using the def-
inition of J ′ yields h ∈ ]1, 2] and a complex neighborhood U of K such that
c = supz∈U 1 − h+ θ(z, h) < 0.
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Proof of (ii). Define Eq,n,ε = {t ∈ ∂A; log µ̃q(C(t1,...,tn))

−n log b
≤ τ ∗(τ ′(q)) − ε} for

q ∈ J ′, ε > 0 and n ≥ 1. It suffices to show that for every compact subinterval K
of J ′ and every ε > 0, a.s. for every q ∈ K ,

∑
n≥1 µ̃q(Eq,n,ε) < ∞.

Fix such a K and ε. For every η > 0 and n ≥ 1, by definition of Eq,n,ε and by
Lemma 4(ii)(a), we have

µ̃q(Eq,n,ε) ≤
∑
a∈An

µ̃1+η
q (Ca)b

nη(τ∗(τ ′(q))−ε) ≤ fn,η,ε(q)

with fn,η,ε(q) = bnη(τ
∗(τ ′(q))−ε) ∑

a∈An
[ sup
q ′∈K

γIa ((1 + η)q ′)] b−n(1+η)(1+δ(E(Wq)−1))

(Q
q

T Ia
Yq,Ia )

1+η.
Then, using Lemma 1(i)(ii) and Lemma 3(iii)(b) together with computations

patterned after those in the proof of Corollary 1 in [B2] lead to the following con-
clusion: for η small enough, there exist two positive constantsCK > 0 andC′

K > 0
such that

∀ n ≥ 1, sup
q∈K

E(fn,η,ε(q))+ sup
q∈K

E(| d
dq
fn,η,ε(q)|) ≤ CKnb

−nC′
K .

This implies that a.s. the series
∑
n≥1 fn,η,ε(q) < ∞ converges uniformly on K .

3.2. Proofs of the results in Sect. 2.1

Proof of Theorem 1(i). Fix an integer b ≥ 2.
Define c = E(Y ) (≤ 1). � being invariant by horizontal translations, the defini-
tion of µ̃ implies that, for every n ≥ 1, E(µ̃(Ca)) does not depend upon a ∈ An.
Consequently, (3) yields E(µ̃(Ca)) = cb−|a| = c�̃(Ca) for every a ∈ A. In the
notations of Sect. 2.3, this implies that L(�̃) = c�̃. Moreover, c2 = c since L is a
projection.

Moreover, as W > 0, by using (3) with b = 4 and m = 1 we see that {Y =
0} ⊂ {µI0 = 0, µI3 = 0}. By Theorem 5 this implies that {Y = 0} ⊂ {YI0 =
0, YI3 = 0}, where YI0 and YI3 are copies of Y , and YI0 and YI3 are independent
since TI0 ∩ TI3 = ∅. It follows that P(Y = 0) ≤ (P(Y = 0))2. Finally, all that
remains to prove is P(Y > 0) > 0.

Fix n > m > 1 two integers. By Lemma C of [KP], if h < 1 is large enough,
expression (1) yields

Yhbn ≥
∑
a∈Am

µh
b−n(Ia)− (1 − h)

∑
a �=a′∈Am

µ
h
2
b−n(Ia)µ

h
2
b−n(Ia′).

Moreover, Theorem 5 and the Jensen inequality yield µh
b−n(Ia) ≥ fa,n,m(h), with

fa,n,m(h) = b−mhδ(V−1)Y h−1
bn−m,Ia b

−m(h−1)
∫
Ia

QhCb−m(t)
µ
Ia
bm−n(dt).
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Write

E(Y hbn)−
∑
a∈Am E(fa,n,m(h))

h− 1
≤

∑
a �=a′∈Am

E(µ
h
2
b−n(Ia)µ

h
2
b−n(Ia′)).

By letting h tend to 0 and by using the fact that E(Ybn) = ∑
a∈Am E(fa,n,m(1)) = 1

and Lemma 5, we get C > 0 independent of m and n such that

m log (b) τ ′(1−)+ E(Ybn log Ybn) − E(Ybn−m logYbn−m)

≤ 5C + C bm (E(Y
1
2
bn−m))

2.

By the martingale nature of (Ybn)n≥1, E(Ybn log Ybn) − E(Ybn−m log Ybn−m) ≥ 0.

Hence,m log (b) τ ′(1−) ≤ 5C +C bm (E(Y
1
2
bn−m))

2. Moreover, as τ ′(1−) > 0, we

can choosem to havem log (b) τ ′(1−)−5C > 0. Consequently infn≥1 E(Y
1
2
bn) > 0.

We conclude as in the proof of Theorem 1 in [KP] for CCM.

Proof of Theorem 1(ii). (i) shows that P(µ �= 0) > 0 implies P(µ �= 0) = 1 =
E(Y ). Fix h ∈]0, 1[. For all m > 1, we have Yh ≤ ∑

a∈Am µ̃
h(Ca) by (3), and

by Lemma 4(ii) there exists C > 0 such that E(Y h) ≤ C.b−mτ(h)
E(Y h) for all

m > 1. So if Y is non-degenerate then τ(h) ≤ 0 near 1− and τ ′(1−) ≥ 0 since
τ(1) = 0.

Now assume that τ ′(1−) = 0 and E((1 + W)| log W |2+γ ) < ∞ for some
γ > 0. For every t ∈ [0, 1] and n ≥ 1, define the measure Pt,n on Fb−n by
dPt,n

dP
(ω) = Qb−n(t)(ω). By Lemma 2 (Qb−n(t), Fb−n)n≥1 is a martingale with

expectation one. So Pt , the Kolmogorov extension of (Pt,n)n≥1 to σ(Fb−n , n ≥ 1),
is defined, and Pt (lim supn→∞ Ybn = ∞) = 1 by Lemma 6. This yields P(Y =
0) = 1 by adapting the proof of Theorem 4.1(i) of [WaWi] for CCM.

Proof of Theorem 2(i). It suffices to show that (Y3n)n≥1 is bounded in Lh norm.
Number the intervals Ia , a ∈ Am (here b = 3) as they follow one another

from 0 on the real line, and write {Ia; a ∈ Am} = {Ji; 0 ≤ i < 3m}. Then, for
i ∈ {0, 1, 2} and n > m define

Zi,n =
∑

0≤3k+i<3m
µ3−n(J3k+i ).

By construction the Zi,n’s have the same distribution, so E(Y h3n) ≤ 3hE(Zh0,n).

Let h̃ be the integer such that h̃ < h ≤ h̃ + 1 and use the sub-additivity of

x �→ xh/(h̃+1) on R+ to write Zh0,n ≤ [
∑

0≤k<3m−1

µ
h/(h̃+1)
3−n (J3k)]

h̃+1 and obtain

E(Y h3n) ≤ 3h
∑

0≤k<3m−1

E(µh3−n(J3k))+ 3h
∑

αj0...j3m−1−1
E(

∏
0≤k<3m−1

µ
jk

h

h̃+1
3−n (J3k)),
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where in the last sum the ji’s are ≤ h̃, j0 + · · · + j3m−1−1 = h̃ + 1, ji ≥ 0 and∑
αj0...j3m−1−1

= 3(m−1)(h̃+1) − 3m−1.
On the one hand, given such a j0 . . . j3m−1−1 we have (with the notations of

Lemma 4)

∏
0≤k<3m−1

µ
jk

h

h̃+1
3−n (J3k) ≤

∏
0≤k<3m−1

(w1(J3k))
jk

h

h̃+1
∏

0≤k<3m−1

Y
jk

h

h̃+1
3n−m,J3k

,

where the Y3n−m,J3k ’s are i.i.d. (TJ3k ∩TJ3k′ = ∅ if k �= k′) and are also independent

of
∏

0≤k<3m−1(w1(J3k))
jk

h

h̃+1 . Then, Lemma 4(i)(a) and computations similar to
those made in the proof of Theorem 2 of [KP] yield a constantCh > 0 (independent
of m and n) such that

E


 ∏

0≤k<3m−1

µ
jk

h

h̃+1
3−n (J3k)


 ≤ Ch3−m(τ(h)+1)

E(Y h̃3n−m)
h/h̃.

On the other hand,

3h
∑

0≤k<3m−1

E(µh3−n(J3k)) ≤ 3h−1Ch3−mτ(h)
E(Y h3n)

by Lemma 4(i)(b) and the submartingale property of (Y h3n)n≥1. Since for a fixed
m large enough we have 3h−1Ch3−mτ(h) < 1 (τ(h) > 0), we conclude that
supn≥1 E(Y h3n) < ∞ by induction on h̃, as in the proof of Theorem 2 in [KP].

Proof of Theorem 2(ii). Fix an integer b ≥ 2. By letting n tend to ∞ in Lemma

4(i)(c) we get E(Y h) ≥ b−mτ(h)e
δ
2 (1−b−m)(h(V−1)−(E(Wh)−1))

E(Y h) for allm ≥ 1.
This yields τ(h) ≥ 0.

Proof of Proposition 1. (i) Due to Theorem 2 and the concavity of the function
τ , the divergence of high moments holds if and only if limh→∞ τ(h) = −∞. If
P(W > 1) > 0 it is immediate that limh→∞ τ(h) = −∞. If P(W ≤ 1) = 1
then δ(E(Wh) − 1) is bounded over R+ and limh→∞ τ(h) = −∞ if and only if
1 + δ(E(W)− 1) < 0.
(ii) See Theorem 3 in [KP].

Proof of Theorem 3. If E(W−a) < ∞ then E(Y−a) < ∞ : write (3) with b = 4 and
m = 1 and define Bi = 4−δ(V−1)−1QT Ii mBIi ,Ii for i ∈ {0, 3} (with the notations
preceding Lemma 3). We have

Y ≥ B0YI0 + B3YI3

where YI0 ∼ YI3 ∼ Y , and YI0 , YI3 and (B0, B3) are mutually independent. More-
over E(B−a

0 ) < ∞ (use Lemmas 1 and 3) andB0 ∼ B3. Consequently the approach
[Mol] uses for generalized CCM yields E(Y−a) < ∞.
Conversely, by using (3) with b = 2 and m = 1 we get

Y ≤ 2−δ(V−1)QT I0 ∩T I1 [QT I0 \T I1MBI0 ,I0
+QT I1\T I0MBI1 ,I1

](YI0 + YI1),
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the random variablesQT I0 ∩T I1 , [QT I0 \T I1MBI0 ,I0
+QT I1\T I0MBI1 ,I1

] andYI0 +YI1
being mutually independent. Hence, E(Y−a) < ∞ yields E[(QT I0 ∩T I1 )−a] < ∞
and as �(T I0 ∩ T I1) > 0, Lemma 1(i) gives the conclusion.

Proof of Theorem 4. Theorem 4 is a consequence of Proposition 2.2(a) of [F] and
the following Propositions 2–4.

For q ∈ J ′, let µq be the measure obtained as µ by replacing the WM ’s by the
W
q
M ’s.

Proposition 2. With probability one: (i) the measures µq , q ∈ J ′, are defined si-
multaneously and have [0, 1] as support; (ii) for every q ∈ J ′, forµq -almost every

t ∈ [0, 1], lim inf
r→0

log µq(Ir (t))

log r
≥ τ ∗(τ ′(q)) and lim

r→0

log µ(Ir(t))

log r
= τ ′(q).

Proof. (i) Direct consequence of Lemma 7(i) since µq = µ̃q ◦ π−1.

(ii) Result on lim infr→0
log µq(Ir (t))

log r : fix an integer b ≥ 2 and for ε > 0, q ∈ J ′
and n ≥ 1 define

Fq,n,ε = {t ∈ [0, 1]; log µq(Ib−n(t))

log b−n ≤ τ ∗(τ ′(q))− ε}.

It suffices to show the property (P ′): for every ε > 0, a.s. for every q ∈ J ′,∑
n≥1 µq(Fq,n,ε) < ∞.
From the covering

⋃
t∈Fq,n,ε Ib−n(t) of Fq,n,ε, we extract two finite unions of

intervals, namely
⋃
i Ji and

⋃
j J

′
j , so that two distinct Ji’s or J ′

j ’s have at most
one point in common, and Fq,n,ε ⊂ ⋃

i Ji ∪
⋃
j J

′
j .

Then, since 1 ≤ µ
η
q(I )b

nη(τ∗(τ ′(q))−ε) when I ∈ {Ji; J ′
j }, for η > 0 we have

µq(Fq,n,ε) ≤
∑
i

µ1+η
q (Ji)b

nη(τ∗(τ ′(q))−ε) +
∑
j

µ1+η
q (J ′

j )b
nη(τ∗(τ ′(q))−ε). (10)

Moreover for every I ∈ {Ji, J ′
j ; i, j} we have I ⊂ Ia ∪ Ia′ for some a and a′ ∈ An,

and consequently µ1+η
q (I ) ≤ 2η(µ1+η

q (Ia)+ µ1+η
q (Ia′)). So we deduce from (10)

that if η ≤ 1 then

µ(Fq,n,ε) ≤ 8
∑
a∈An

µ1+η
q (Ia)b

nη(τ∗(τ ′(q))−ε).

Since µq(Ia) = µ̃q(Ca) for every a ∈ A (µq = µ̃q ◦ π−1 and µ̃q has no atoms by
Lemma 7(ii)), (P ′) comes from the proof of Lemma 7(ii).

Result concerning limr→0
log µ(Ir (t))

log r : define



F

−1

q,n,ε = {t ∈ [0, 1]; log µ(Ib−n(t))

−n log b
≥ τ ′(q)+ ε}

F 1
q,n,ε = {t ∈ [0, 1]; log µ(Ib−n(t))

−n log b
≤ τ ′(q)− ε}.
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It suffices to show (P ′′): for every ε > 0 a. s. for every q ∈ J ′,
∑
n≥1 µq(F

−1
q,n,ε)

+µq(F 1
q,n,ε) < ∞.

The sets F−1
q,n,ε and F 1

q,n,ε admit the same kind of covering as the one used for
Fq,n,ε, and for η > 0 and γ ∈ {−1, 1}

µq(F
γ
q,n,ε) ≤

∑
i

µq(Ji)µ
γη(Ji)b

nγ η(τ ′(q)−γ ε)

+
∑
j

µq(J
′
j )µ

γη(J ′
j )b

nγ η(τ ′(q)−γ ε).

Therefore if η ∈ ]0, 1[ we get

µq(F

1
q,n,ε) ≤ 4bnη(τ

′(q)−ε) ∑
a∈An

µq(Ia)
∑

c∈An; Ia∩Ic �=∅
µη(Ic)

µq(F
−1
q,n,ε) ≤ 2b−nη(τ ′(q)+ε) ∑

ā∈An+1

µ−η(Iā)
∑

c∈An+1; Iā|n∩Ic|n �=∅
µq(Ic)

since, for every I in these coverings, we have Iā ⊂ I ⊂ Ia ∪ Ia′ for some
a, a′ ∈ An and ā ∈ An+1. Then (P ′′) comes from computations very similar
to those needed for the proof of Lemma 7(ii), by using the additional remark:

supa,c∈An; Ia∩Ic �=∅
�(T Ia )

�(T Ia∩T Ic ) tends to 1 as n tends to ∞.

Proposition 3. Let b be an integer ≥ 2. For (q, t) ∈ R
2, define

Cb(q, t) = lim supn→∞ Cb,n(q, t) = ∑
a∈An µ

q(Ia)|Ia|tand
C(q, t) = limδ→0 inf{∑i≥1 µ

q(Ii)|Ii |t ; [0, 1] ⊂ ⋃
i≥1 Iri (ti), ti ∈ [0, 1],

|ri | ≤ δ}.
(i) For all q ∈ R, ϕb(q) = inf{t ∈ R; Cb(q, t) = 0} and ϕ(q) = inf{t ∈
R; C(q, t) = 0} are defined, the function ϕb is convex and ϕ ≤ ϕb.
(ii) Fix α > 0. If (−ϕ)∗(α) ≥ 0 then dimH Eα ≤ (−ϕ)∗(α) else Eα = ∅.

This Proposition is deduced from [BMP] and [O].

Proposition 4. With probability one, (−ϕ)∗(α) ≤ τ ∗(α) for every α ∈ I ′.
Proof. It adapts the beginning of the proof of Theorem VI.A.a in [B1].

Fix q ∈ J ′. By using Lemma 4(ii)(b) with µ(Ia) instead of µ̃(Ca) (µ has no
atoms by Proposition 2) we get Cq > 0 such that for every n ≥ 1 and t ∈ R

E(Cb,n(q, t)) ≤ Cqb
−n(τ(q)+t)

E(Y q). (11)

Moreover E(Y q) < ∞ by Theorem 2 (resp. 3) if q ≥ 0 (resp. q < 0). It follows
from (11) that for every t > −τ(q), Cb(q, t) = 0 a.s., and by definition of ϕb(q)
we get ϕb(q) ≤ −τ(q) a.s.

Since τ is continuous on J ′ and ϕb is by definition almost surely continuous, we
obtained more: a.s. for every q ∈ J ′, ϕb(q) ≤ −τ(q), so by Proposition 3(i), a.s.
for every q ∈ J ′, −ϕ(q) ≥ τ(q). The conclusion follows by taking the Legendre
transforms (−ϕ)∗ and τ ∗ on the previous inequality.
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[K2] Kahane, J.-P.: Produits de poids aléatoires et indépendants et applications, in Frac-

tal Geometry and Analysis, J. Bélair, S. Dubuc (eds.) pp. 277–324 (1991)
[KP] Kahane, J.-P., Peyrière, J.: Sur certaines martingales de Benoı̂t Mandelbrot, Adv.

Math., 22, 131–145 (1976). Translation in [Ma7]
[Ma1] Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning

the distribution of energy in intermittent turbulence. Statistical Models and Turbu-
lence (La Jolla, California). Edited by M. Rosenblatt, C. Van Atta, Lectures Notes
in Physics, Vol. 12, Springer, New York (1972) pp. 333–351. Reprint in [Ma7]

[Ma2] Mandelbrot, B.B.: Renewal sets and random cutouts, Z. Wahrsch. Verw. Geb., 22,
145–157 (1972)

[Ma3] Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades: divergence of
high moments and dimension of the carrier, J. Fluid. Mech., 62, 331–358 (1974).
Reprint in [Ma7]

[Ma4] Mandelbrot, B.B.: Multiplications aléatoires itérées et distributions invariantes
par moyennes pondérées, C. R. Acad. Sci. Paris, 278, 289–292, 355–358 (1974).
Translation in [Ma7]

[Ma5] Mandelbrot, B.B.: Introduction to fractal sums of pulses. Lévy Flights and Related
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