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Abstract. We prove an exponential inequality for the absolutely continuous invariant mea-
sure of a piecewise expanding map of the interval. As an immediate corollary we obtain a
concentration inequality. We apply these results to the estimation of the rate of convergence
of the empirical measure in various metrics and also to the efficiency of the shadowing by
sets of positive measure.

1. Introduction

Considerable progress has been made recently by Talagrand and others on the con-
centration properties in product spaces [T1,T2,T3], with striking applications to
various areas of Probability theory and Statistics. These results were subsequent-
ly developed by several authors ([Masl.,Mas2.], [Ril.], [Dem.] among others).
We refer to [Le.] for nice reviews and more references. The case of dependent
random variables has been investigated more recently. First for Markov chains in
[Mar1,Mar2] and then for more general processes in [Mar3.], [Sa.], [Ri2.]. Unfor-
tunately all these papers assume some properties of the correlations which are too
strong to be applied to the case of piecewise non Markov expanding maps of the in-
terval. In particular they are neither topologically Markov nor ® mixing. The main
reason is that the forward transition is of course deterministic while the backward
transitions are represented by atomic measures. On the other hand these maps have
correlations which can be controlled in a suitable topology and we will see below
that concentration can be also proven in this case with dynamical applications.
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From now on we will only consider the following situation although we expect
the results to be true in more general contexts. Let f be a piecewise regular ex-
panding map of the interval [0, 1] which is topologically mixing. More precisely,
we assume there exists a finite partition .A of [0, 1] by intervals where f is regular
and monotonous. Moreover, we assume there exists a number A > 0 and a number
o > 1 such that for any integer n

: n’/ n
Jnf |F0] = Ap"
It is well known that there is a unique ergodic absolutely continuous invariant prob-
ability measure dju = @dx ([L.Y.]). In the sequel, we will assume that the density
¢ of the invariant measure is bounded below away from zero. We refer to [B.G.R.],
appendix B of [Bu.] and [H.] for such statements.

We recall that the transfer operator £ associated to f is given by (see [H.K.]

and references therein)

(2)
Lgx) = Z g/ .
. fo @)

We recall that £ is the dual in L2([0, 1], dx) of the Koopman operator acting
on functions by composition with f. We will mostly use the operator L conjugated
to £ defined by

1 @(2)
Lgx)=—— > —=g().
o) = @)
L has the following spectral properties in the Banach space BV of functions of
bounded variation equipped with the norm

lull =Vu+/|u(x)|dx.

First of all 1 is a simple eigenvalue with eigenvector the constant function and left
eigenvector the invariant measure . Moreover, the rest of the spectrum is con-
tained in a closed disk of radius strictly smaller than one. In particular, there exists
aconstant K > 0 and aconstant 0 < £ < 1 such that for any function g of bounded
variation, we have for any integer n

L'g = / gdu+ gn
where the functions of bounded variation g, satisfies

Ven + llgnlloo < KE"(V g +lglloc) - .1

This estimate implies the decay of correlations for observables in a suitable func-
tion space. Namely there is a constant K’ > 0 such that for any integrable function
g1 and any function g, of bounded variation, we have for any integer k the decay
of correlations
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1 1 1
‘/0 dp)g1(f*(x))g2(x) —/O dM(X)gl(X)/O dpu(x)ga(x)

< K'e g1 (ver + llg2llh) (1.2)

where £ is the positive number smaller than one appearing in (I.1). We refer to
[H.K.] for the proof of these statements for the operator L. Since the operator of
multiplication by ¢ is bounded in BV together with its inverse (since ¢ is bounded
away from zero), we conclude that the same spectral results hold for L.

We will use later an extension of L (also denoted by L) mapping a function

u(x1, -+, x,) of n variables to a function of n — 1 variables and given by
1 @(2)

Lu(xi, -+ xp1) = —— Y ———u(z, X1, X1) -
o) = £ @)

It is immediate to verify that if the function of one variable v is given by

v(x) = u(x, f), -, 7)),

then
Lv(x) = (Lu)(x, f(x), -+, f"72(0)) -

Moreover, if u is a function of n variables and k < n, we have

Lku(xl, . xn—k)
_ ¢(2) e

A real valued function u on [0, 1]" will be said to be separately Lipschitz if the
Lipschitz constants defined for 1 </ < n by

Lip;(u) = sup sup
X1yt X[ =1 X1 X415 X0 Y FX]
|1/l(x1, ce sy X—1s X5 X[ 41, 0 :xn) - M(x], ey X—1s VI X[ 415 00 ’xn)|
lxi — yil

are all finite.
By abuse of notation, if  is a function of n variables, we will denote by w(u)
the number

p) = /u(x, fQ, - 17N @) dp)
Our first goal is to prove the following result.

Theorem L.1. There is a constant C > 0 such that for any integer n, for any
separately Lipschitz real valued function u of n variables, we have

1 n—1 n H 2
/ (T W) gy () < o0, €5 (Linw)
0
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Using Chebyshev inequality, we can easily derive the following concentration
result.

Corollary 1.2. Under the above hypothesis, we have for any t > 0

m ({x | M(x, f(x), e fn—l(x)) > M(M) +t}> < e—tz/(4cz7(LiP[(M))2) .

We will below use sometimes the combination of this estimate with the corre-
sponding one for the function —u which leads immediately to

iz ({x |u(x, fQ), -, 771 0) — n@w)| > t}) < 26_’2/(4CZ7(Lipl(”))2) i

Note in particular that in the above results the function u is a function of n
independent variables, and not only a function constant on the dynamical cylinders
of a finite partition. The above results can also be interpreted in terms of a (sequence
of) measures (u,) on [0, 1]" given by

dpn(xr, -+, x,) = dp(x1) H 7))

By a change of variables, this measure is also given by

dpn(xt, - o) = dule) Y nl/ H - f7@).
f""(z):x |f ()|

An easy consequence of Theorem 1.1 is now the following estimate (see [D.] for
the independent case)

Var,, (u) = / (1 — 1) dpan < 2€ Y (Lipy ()’

1

This follows at once by replacing u by Au in Theorem I.1, multiplying both sides of
the estimate by e ~**() subtracting 1 to both sides then dividing by A2, and letting
A tend to zero.

Another interesting consequence is an information inequality. If v; and v;
are two probability measures on [0, 1], we recall that their Kantorovich distance
«(vi, v2) is given by

k(vi, v) = irj}f/ X1 — x2ll dr (x1, x2)

where the infimum is over all couplings between v; and v,. The information diver-
gence of v with respect to v; is given by

D@ lIva) = /log <ZU )dv1 .



Exponential inequalities for dynamical measures of expanding maps 305

It then follows from Theorem 3.1 in [B.G.] and Theorem I.1 that for any probability

measure v on [0, 1]"
K(/Ln, v) < ,/2CnD(;L,,||v) .

Concentration results follow from this inequality (see [B.G.]).

The rest of this paper is organized as follows. The proof of Theorem I.1 is given
in section II. In section III, we apply the result to the estimation of the rate of con-
vergence of the empirical measure to the invariant measure p in different metrics.
We obtain estimates which are valid for finite samples, not only asymptotically. In
Section IV, we give applications to the shadowing by orbits of a given set. In the
appendix, a variant of our result is applied to study the rate of convergence of the
empirical measure in the Kolmogorov metric.

In the sequel we will sometimes use the same letter to denote different constants.

II. The exponential inequality

In this section we give a proof of Theorem I.1 in the spirit of the so called martin-
gale method of Azuma and Mac Diarmid (see [Dev.] for the case of independent
variables and references). We start by recalling the classical Hoeffding inequality
(see for example [Dev.]).

Lemma ILI.1. Ler v be a probability measure on a space Y, and let g be a real
valued bounded measurable function on Y. Then we have

/ =) gy (y) < (278
Y

where

osc(g) = sup (g(») —g().
y, y'eY

Note that we could apply directly this Lemma to try to prove Theorem I.1.
We get however a much worse estimate. To get a better estimate, we will use this
Lemma recursively through the following result.

Lemma IL.2. Ifu is a real valued measurable bounded function of n variables, we
have

/ 07 710) gy ) < ploi) / b 0 17720) gy
0 0

where

osci(u) = sup sup u(xp,x2, -, xp—1) — w(x], x2, LX)

X1 ,xi X2, Xp—1
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The proof of this Lemma follows easily from the previous result. We observe
that

Lo f @, @)
/ PUCIVACIRES X d,u(x)
0

_ /1 o (7 @1 171 0) =L, 20, 171 0) L (£ 2@ S @) gy )
0

_ /IL <eu(~,f(‘)w~,f""(~))Lu(f(‘)’f2(~),~~,f”“(‘))) () Ll T @2 W) g
0

where the last equality follows from the fact that L is the dual operator to the
composition with f with respect to the measure .

For a fixed x € [0, 1] we denote by Y the (finite) set of preimages of x (this set
depends of course on x). We now observe that (since L1 = 1) the sumovery € ¥
of the (non negative) numbers ¢(y)/(¢(x)| f'(y)|) is equal to one, and this defines
a probability measure v on Y (which depends on x). Therefore in the expression

I (eu(-,f<~>,~--,f"1(-))—Lu(f<~>,f2<-),---,f"1<~>)> (x)

3 PO (v, 77200) =L, £ 0,0, 172 0))
e 1Tl

<p(x)
we can apply Lemma II.1 to the function

g(y) = u(y7xv T f’l—z(x))
observing that
v(g) = Lu(x, f(x), -, f" () .
Lemma II.2 follows immediately.
If we apply iteratively n — 1 times this estimate we get

1
/ AT 0) gy < B (osen L)
0

1 n—1
fo oz ”)(x)d,u(x) IL1)

L1/9 _0(oscl(LJu)) L) /8) _0(oscl(LJu)) )

We have used in last inequalities that L”~! () depends only on one variable and we
have applied Lemma II.1 with ¥ = [0, 1], v = u, g = L"~!(u) and the equality
w(L" ) = p(u).

In order to prove Theorem I.1, we have to estimate each term on the right hand
side. The main tool will be the following Lemma.
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Lemma IL.3. There is a constant D > 0 and a constant 0 < o < 1 such that for
any integer n, for any separately Lipschitz real valued function u of n variables,
we have for any 0 <k <n

k+1
osci (LFw)) = DY o 1 ILip; (u) .
j=1

Moreover

osei (L") < DY _o"ILip;(u) .
j=1

Recall that from the definition of L we have

Lku(xh e xn—k)
_ ¢(2) o
- (p(Xl) z f%=x1 |fk(Z)/|u(Z, f(Z), ’ f (@), x1, ’x”_k) :

Assuming for the moment Lemma I1.3, we finish the proof of Theorem I.1. First
of all, we have using Schwartz inequality

2
n—1 n—1 [k+1
(ose1 (Lrw))* < D? > oD Vokti=ivekti=iLip; )
k=0 k=0 \ j=1

n—1 [ k+1 k+1 2

D S
DZZ Za’k+l J Zo’k—i-l J Llp](u)) < m;Llpj(u)z.

k=0 \j'=1

Theorem I.1 then follows using similarly the last part of Lemma II.3.

In order to prove Lemma I1.3, we will need the following result. Recall that .A
is a finite partition by intervals of [0, 1] such that f is regular on each atom of .A.
Denote by (A;) the sequence of partitions given by

1
A1=\/f_jA.
j=0

Lemma I1.4. There is a finite constant C > 0 such that for any integer | we have
! <
sup—— <
j vl 1)l
Proof. If I € A, there is a smallest integer g; < [ such that f9(I) N d.A # @,
and denote by Af the collections of atoms of A; with ¢g; = p. We have

2 s If’/(x)l B Z 2 s |f”(x>|

1eA; *€ p=01eA?
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Recall that from the distortion Lemma (see [L.Y.]), there is a constant C; > 1 such
that for any integer /, for any I € A, if a is a point in the boundary of 1, we have
for any x € I, and any integer k </

1 / ! !
C—1|f" @] < 1w < cilffal.

We now observe that since A is a partition of monotonicity for f, for any I € Alp
there exists z € 91 such that b = fP(z) € 9.A. Therefore for any x € I and
p <k <1l wehave

/ l / 1 _ ! /
| 00] = C—1|f" )] = C—1|(f" Py ®| | @) .

Since a preimage of order p of b € d.A is contained in the boundary of at most
two elements of A, we have

1
2 f”(x)l 2333 (/77 <b>|fZ TEE]]

TeA, "E p=0bed A P(7)=b

l
<Om )y o Y LPb)

p=0 bed A

where L is the usual transfer operator for the map f. It follows from the spectral
theory of L (see for example [H.K.]) that this quantity is bounded uniformly in /.
This finishes the proof of the Lemma.

Proof of Lemma II.3. We first estimate for each fixed (ri,---,r,—x—1) in
[0, 17"7%~! the quantity

sup (ur(y) — ux (")
vy

where
ue) = LYu(y, r1, -+ raeket) =

1 ¢(2) o
(p(y) Z sz(z):y }fk/(z)’u(z’ f(Z)s ) f (Z)y ry, N rn_k_l) .

We define for 1 <[ < k the sequence of functions of / variables

vf (x1, LX) =/u(X1w~',X1,s, FG), e f ) e rke)dps)
and fork > 0

Vg = /u(s, FG), e RO L k1) dp(s)
For convenience, we also introduce the notation

Ve (ers s xkt) = (X0, X X 1 1 Pkt
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‘We observe that
u(z, f@) - f5@ 1 k)

k
=+ 3 [ /@ FO) e @ )]
=0

and therefore since vlg is a constant (hence Lv0 = vo) we obtain the identity

(2)
oo T s

(4.)’(
[ (e F @0 1'@) = v (= @1 7 @) ]

We now define for0 </ <k

k 1 ¢(2)
0) = —— L
T . f%):y @)

o1 f@. o @) =2 (e @1 P )]

and using the chain rule, we get

so(x)

k
up(x) = vlé + Z (Lk_lwf) (x) . (I1.2)

=0

In order to be able to exploit the spectral properties of L, we have to estimate the
L norm of w;‘ and also its variation. We first observe that since w is an invariant
measure, we have

U (s x)

=/u(x1,~-~,m+1,s, L), NS e rkm1 ) (s)

- fu(xl,---,xm,f(s),fz(sx~-~,f’<—’<s>,r1,---,rnfkfl)du(s).
Therefore
(@ @) = v (e @)
= [ (a7 @ @£ P61 P i)

—u(z, o fTN@ s ) 26D, ) ~,rn_k_1))du<s>
and by the Lipschitz hypothesis the modulus of this quantity is bounded by

o @) G )

< Lip;{(u) sup / |s — fl(2)|dp(s) < Lip, ) (IL3)
z€[0,1]
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since  is a probability measure on [0, 1]. It follows immediately that
i oo = Lippsr @) -

We now come to the estimate on the variation. This estimate is reminiscent of the
estimate of Lasota and Yorke but there are some major differences. First of all we
have

vk

IA

1 . 1
\/(;)nwlum — v(wwn

ve |

||(Pw1 lloo + H H V(‘Pwl

By our previous bound and since ¢ is of bounded variation and bounded below, we
have
vwf < O()Lipy @) + O(1) v (pwf) .

Recall that

(2) k
o)k (x) = sz
l Z’];(Z:)ZX |fl (Z)i 1 2

where

SE@ = [thnle F@. - F1@) = of e f @, T @)]

Since f! is injective on each atom I of .4; we can introduce the inverse function
Yy from fI(I) to I. We have

Z <P(’>”I(X))Xfl(1)( Xx) gk

/ SF (Y1 () -
Py A VA CZ1EO)]

P wf(x) =

‘We now have
V(ewf) ST+ Ty + Ts + Ty

where
k
=S Vo) || [stow],.
1A £1(1) foviliea Lo
_ k
=Y lgovillixa \V <f,/ )HSI i,
I€A; fl( )
1 k
=Y lloovrliem Tou \/ (8fovi)
IeA L) g1y
p(a)
I, =2 Z N \ l( )|
acd A |f[ ( )|

The factor 2 in the last term comes from the fact that each boundary point of a
segment in A; appears twice, once as a left end point and another time as a right
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end point. We now control each term separately. Using the previous estimates we
have easily

T1 < O()Lip;y () Y Vie < O(1Lipyy () .
Ie A

We now come to the estimation of the term 7>. A classical estimate using dis-
tortion (see for example [L.Y.]) shows that

\/ (fi,) < O(1) sup

I xel

7
'l

Therefore

Ty < O(1)Lip;, () Y sup

7 < O()Lip; 1 (u)
ATl

by Lemma IL.4. In order to estimate the third term 73, it is enough to estimate the
variation of Ulk 1 (and of vf‘ but the argument is similar) on an interval /. This is
where our Lipschitz hypothesis is crucial. For an increasing sequence of points
ai, --,a,in I € A; we have

r—1

D [ @t f@cn, o flan) = vy @, @, @)

s=1
r—1 1

=22 )vz’;l(am fas), -, f77 N ay), flasen), I @), 5 flasn)

s=1 j=0

—vfyy(ag, flas). - fl(as), fTH ags), fI2as1) -, f’(am))\

I r—1 I
<Y Lipj ) Y [ ag) = f/(as)| <Y Lipj )] £/ ()| < O(1)

j=0 s=1 j=0
l .
ZLin-H (”)PiHl .
j=0
Using Lemma I1.4, the third term 73 is therefore bounded by

I+1

Ty < O(1) Y Lip;(u)p~"* .
j=1

The last term 74 is then bounded using again Lemma I1.4, namely
1

Ty < O(1)Lip; () sup ——— < O(1)Lip; ¢ (u) .
4 I+1 IEZAIXEI 0] I+1
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We now have proven the estimate

l

v <O(1) Y Lip;, (w)p ™t .
j=0

We can now come back to the expression

k
urp(x) = vlg + Z (Lk_lw;‘> (x) .

=0

From the spectral theory of L, using (I.1) we obtain

k l k+1
V() = O 3 &Y 7 p ™ Lip 4 ) < O) 30" Lip ()
1=0 j=0 j=1

where 0 = (1 4+ sup(&, p~1))/2 < 1. As a consequence, we obtain

k+1
sup (ux (y) — ur (")) < O(1) Yo"~ Lip; ) ,
¥y j=1

which is the first part of Lemma II.3. The second part follows in a similar way.
ITI. Rate of convergence of the empirical measure

We recall that the empirical measure of #n samples is the random measure defined
by

1 n—1
En0) =~ Z;%'(x)
]:

where 6 denotes the Dirac measure. Birkhoff’s ergodic theorem tells us that since
the measure w is ergodic, for almost every x this sequence of random probability
measures converges weakly when n tends to infinity to the (non random) probability
measure u. For statistical purposes it is important to know the speed of this con-
vergence. To do this we first have to select a metric between probability measures
(see [Ra.] for some examples). This leads to several famous statistical tests whose
asymptotic speed is well known for the case of sequences of independent samples
(see for example [Bo.]). Some results have recently been obtained in dependent
cases, see for example [Ri2.], and [Mae.] for results on fluctuations for maps of the
interval.

We will consider below some examples of distances which are Lipschitz func-
tions of the samples in order to apply our previous estimates. We first start with
a result on the Kantorovich distance x which for probability measures on the unit
interval is also given by

1
G v) = /O |Fu(s) — Fo(s)| ds .
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where Fj (s) = u([0, s]) is the distribution function of p. We refer to [Ra.] for
equivalent definitions of this distance.

Theorem IIL.1. There exists a number ty > 0 and a constant R > 0 such that for
anyt > to and any integer n,

w (| e, ) > m1P)) < ek

Note that this result is not just asymptotic, indeed we have an estimate valid for
any integer n. We also remark that from the results in [B.G.R.], [Bu.], [C.], [Li.],
[Mau.], [Sc.], it is possible to give constructive estimates for the above constants #y
and R in terms of quantities depending on f, namely estimates on the finite regular-
ity and information about topological mixing (this is unavoidable as already shown
by the case of Markov chains). In other words, one can give uniform estimates for
bounded sets of transformations in a suitable topology.

In order to apply the results of the previous section to prove Theorem III.1, we
will consider the sequence of functions of n variables

1
G v = [ IR G xn — Foldr
0
where F;, is the empirical distribution of the sequence x1, - - -, X, , namely
1
Fu(xi, -+ xp, ) = =Card ({1 <i <n|x <t}) .
n

We point out that when x is chosen with probability u, F,(x, - - -, f”_1 (x),1) is
the empirical distribution, namely &, (x)([0, t]).

We first have to show that u,, is Lipschitz and to estimate the Lipschitz con-
stants. For this purpose, we consider an index 1 < k < n and change the val-
ue of x; to x,’c. For definiteness we will assume x,’c > X, the other case being

similar. It is easy to verify from the definition that F,(xy, ---, Xk, - -+, X, t) and
F,(x1,---, x,’{, -, Xp, t)differonly forx;, <t < x,’{,and the difference is bounded
in modulus by 1/n. Therefore
!/
, |xx — xk|
Sup |un(-x11 "'1xk7"'7-xn) _un(-xl’ "'a-xks "'1xn)| <—-.
X],“-,)?k,-“,xn n

In other words |
sup Lip; < -—.
p LIp; (un) < 7

1<j<n
Before applying corollary 1.2, we give an estimate on the average y,(un) of u,. We
have by Schwartz inequality

1 1 1 n—1 )
(i) =/O so(X)dx/O dt ;Zx[o,,](ff(x)) —F@)
Jj=0
51/2
1 1 1 n—1 .
< /(; dt/o du(x) - ZX[O,:](fJ(X)) - F(@)
j=0
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Expanding the sum in the square and using the invariance of u, we get

2

1 1 n—1 ) 1 1
fo du@ | =Y xoa(f/m) = Fo | =+ /0 dn) (xon@ - F0)’
j=0
2 n—1 . 1 _
+= ;u -4 /0 dn) (xon@ = FO) (xo.n(f @) = FO).

We now observe that for each ¢ € [0, 1], F(¢) is the average of xjo,,j(f/(x)) with
respect to 1. We can now use the decay of correlations (I.2) and we obtain

2
! 1] . oa
/0 an 3 xon(F/@) - Fy | =
=0

n

It then follows at once that
u(un) <OMn~ %,

We now apply Corollary 1.2 to conclude the proof.

We now consider the convergence in total variation. However we have to use a
smoothed empirical measure. We fix once for all a non negative regular function v
definedon R, equal to one on [0, 1/4], vanishing on [1, 00), and with integral 1/2.
Note that all the above results also hold for the circle under the same hypothesis.
In order to avoid to treat boundary terms we will from now on consider maps of
the circle S'. Let (a,) be a positive sequence converging to zero. As usual (see
[Bo.]) we will assume that ne, tends to infinity with n. We consider the sequence
of regularized (random) empirical measures H,, (x) with densities (%,) defined by

1
no

hp(x,s) =

n
> w(ls = f1 )l an)
n .

j=1
where | | denotes the Riemaniann distance on the circle. This is also known as a

Parzen non parametric estimate of the density. The distance in total variation is the
(random) quantity

drv(Hn(x), ) = /SI |hn(x,5) —@(s)|ds .

Theorem IIL.2. There exists a constant R’ > 0 such that for any integer n, and
foranyt > oy + 1/ /noy, we have

1% ({x } dTV(Hn(X), /J,) > l}) < e—R’tznozg .



Exponential inequalities for dynamical measures of expanding maps 315

In order to prove this theorem, we define a sequence of functions (u,) of n
variables in S! by

1 n
un(mu-uxn,S):/s1 — > (s —xjl/an) —g(s)|ds
n ]:1

As before, our first goal is to prove that this function is separately Lipschitz and
to estimate the Lipschitz constant. For each integer k between 1 and n we have to
study the variation of the function with x;. We obtain

sup  [un (X1, Xk e Xn) = (X1 X X))
X1y Rps e X

= Jo [ (e s = xil) — ¥ (et Is — xp1) | ds -

We now distinguish two cases. We also assume «,, small since we are only inter-
ested in this situation. First if [x; — x;| > 4a,, then the above quantity is equal to
2 which is smaller than |x; — x;|/e,. On the other hand, if |xx — x;| < 4a, the
above quantity is bounded by

=

1 |xx — x|
=— ds 1Y lloo ||S—Xk|—|S—X//€||§O(1)n—k-

- 2
NGy Js—xi| <6a Un

Therefore forall 1 < j <n

In order to estimate the average of the total variation, it will be convenient to
replace ¢ by a regularized function 4, given by

ﬁn(s)=a;‘/ du(X)w<|x_s|> .
N Op

We now have to estimate the L! norm of the error. We have

/ ds
Sl

@(s) — hn(s)

sf ds a;lf ¥ (Iyle, )le(s) — o(s — y)ldy
Sl Sl

ko
< Y / ds a;I/ ¥ (Iyla, )lg(s) — o(s — y)ldy
1 E=Day st
1<k<a, +1
kot 1 |
< > V[(k—ﬂ)an,(k+ﬁ+1>an]¢/ ds o, fl v (Iyle, )y,
ka4 (k=Day S

where 8 denotes the diameter of the support of 1. By the normalization of 1, the
integral over y is equal to «y,. The intervals [(k — B)a,, (k + 1 + B)ay,] form a
covering of the circle with multiplicity smaller than 28 + 2, therefore

/1 ds [o(s) = hu(s)| = Oy v g
S
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We now observe that for «;, small enough

Vv (S5 <o,

while

n

sup/ dp Oy ("“ - S') < Oy .
K S1 o

Therefore using again the decay of correlations (I.2), we get for any s

s du(x)(a;lw(a;l |f7(x) —s]) — Ms)) <a;1w(a,:1 lx —s]) — ﬁnm)‘
<OME/ (e, +1).

This implies
~ 2 O(1
[ i) (s = o)) = 222
N noy
Therefore
Ssrdry (Ha(x), 1)dp(x) < fg du(x) [gids [ha(s) — o(s)

+ (Jyr Ao (e, ) - ﬁn(s))z)l/2 =0 (an + 7)) -

The result follows by a direct application of Corollary 1.2.

IV. Application to the shadowing

In this section we apply the results of section I to the shadowing properties of some
subsets of trajectories. The basic problem can be formulated as follows. Let A be
a set of initial conditions, if x is an initial condition not in A, how well can we ap-
proximate the trajectory of x by a trajectory from an element of A. This is in some
sense the analog of the well known consequence of concentration for independent
random variables which states that sets of measure one half are big. We first start
with a result about the average quality of shadowing.

Theorem IV.1. There are positive constants C1 and Co such that if A is a set of
positive measure, for any integer n the sequence (Z,) of functions defined by

)

n—1
1 ) .
Zy(x) =  inf ; 1) = fI)

satisfies for any t > 0

n({s

Zn(x) = C

Jlogn +L}) Ot
w(A)/n — Jn
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We remark that by restricting the infimum over a countable dense subset it is
easy to verify that Z, is measurable. Moreover, 0 < Z, < 1, and Z,(x) = 0 if
x € A. We now give a proof of this Theorem.

In order to apply Corollary 1.2, we define a sequence of functions (u,) by

n—1

1 .
) = inf Y | £/ (y) = xj41] -

€A
y =0

It is easy to verify that these functions are separately Lipschitz and moreover, for
any 1 <[ <n we have
Lip; (uy) <n~ ',
Applying Corollary 1.2, there is a constant C» > 0 such that for any A and any
t *CZTQ
Zn(x) = M(Zn) + — <e .

t > 0 we have
g <{x Jn

We now estimate @ (Zn) by the usual trick (see for example [T1]). For a fixed s > 0,
let

B, = {Zm) > u(Za) + i} .

Jn

We have

M(Zn)zfznduzf anu—l-/ an,u~|-/ Zpdu .
A A°NB¢ s

The first integral is equal to zero, the second integral is bounded by

S
an = Zn = AC ’
fAang w=< <M( ) + ﬁ) (A

and the third integral is estimated by w(By) using Z,, < 1. We obtain

'U’(Z") = (M(Zn) + %) 'u,(AC) + e—Czsz i

which implies
_ s oo
M(Zn) <A™ <E +e 2 > )

and the result follows by choosing s adequately.

We now derive a similar result for the number of mismatch at a given precision.
Again in order to avoid unessential complications at the boundary we assume we
are working on the circle. For a measurable set A of positive measure, we define
for any integer n and any € > 0

Z, (x) = %;relgCard{O <j<n|lfiy) - @l > el

This a measurable function of x because instead of taking the infimum over all
points in A, it is enough to take the infimum over a countable dense subset in A
containing also all the preimages (in A) of order up to n of the points of discontinuity

of f.
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Theorem IV.2. There are positive constants C1 and Co such that if A is a set of
positive measure, for any integer n, for any 0 < € < 1/2and anyt > 0

The new difficulty in applying Corollary 1.2 is that the Hamming function

logn te! 2
7 > Cretuayt 280 e ) _ o
ne(*) = Cre™ n(A) " NG <e

tne(xr,oxn) = —inf » (1= xp7i)—e pignrer®jtn)
=0

is not Lipschitz. We therefore replace the characteristic function of the complement
of the interval [—e, €] by a piecewise linear approximation. Let

[Isl/eifls| < e
8e(s) = { 1 otherwise.

We now define a sequence of functions

n—1

1. .
Une (X1, ) = Zylrelgzgé (fj(y) —xj+1) ’
j=0

These functions are separately Lipschitz with Lipschitz constants € ' /n and u,, <
v,. Let

Zne(x) = vpe(x, (), -, 7))

Since
1 n—1
Z,. ) = inf Z(j) (1= X1 roreaF () = Zye)
j:

we have using Corollary 1.2

(]
cu(

The result follows by an estimate of ,u(Z,,,E) as above.

~ t
Zn,e(x) = M(Zn,e) + ﬁ})

5 = t
Zpe(x) = u(Zne) + _}) <O

Jn
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Appendix

In this appendix we prove a variant of the above results for the case of the Kol-
mogorov metric. We recall that if v; and v, are two measures, the Kolmogorov
metric p(vy, v2) is defined by

p(v1,v2) = sup |Fo (1) = Fiy (0] -

As before, if £, denotes the empirical measure for n successive samples, and u the
invariant measure, we have

%Card({o <j<n—1]fl@x< t}) — F(@)

p(Ep(x), n) = Sl;p

The Kolmogorov metric can be compared to the Kantorovich metric. We have of
course the trivial inequality

Kk (En(x), ) < p(En(x), )

and since u has a bounded density ¢, we have also

P(En(x), 1) < V2010 llook (En(x), 1) -

However using this inequality together with Theorem III.1 gives only a poor esti-
mate for the rate of convergence of the Kolmogorov distance. We will derive below
a better estimate.

It will be useful to introduce the function of n + 1 variables defined on [0, 1]**!
by

U,(x1, -+, Xn, 1) :Card({l <j<n|xj< t}) —nF@).

Unfortunately the supremum over ¢ of the absolute value of this function is not
separately Lipschitz in x1, - - -, x,,, and we cannot apply Theorem I.1.
We will now prove the following result.

Theorem A.1. There is a constant C > 0 such that for any integer n, we have for

any s >0
—Cns?

mw{pEn ) > s+ ll@lleo/n}) < 2ne

‘We remark that except for the 2n prefactor, which can be absorbed by modifying
the constant C for s larger than O(1)+/logn/n, we have the same scaling as in the
well known Kolmogorov theorem which holds in the independent case (see [Bo.]).
As mentioned above, we observe that this result holds for any n. Moreover, C and
lelleo can eventually be explicitly estimated.

We first prove an exponential estimate with a bound uniform in ¢ where we use
the convenient notation

Np(x,1) :Card({O <j<n—1]fl@x< t}) .

Note that the expectation of N, (x, ¢) with respect to w is equal to n F (¢).
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Lemma A.2. There is a constant D' > 0 such that for any integer n, we have for
any real

sup /ek(Nn(x,t)—nF(t)) diu(x) SenD’Az
0<t<l

Proof. For a fixed ¢, we use recursively Lemma II.2 as in the proof of Theorem I.1
and we obtain

3 (N (o) = F (1)) (2/8) Y28 (oser LU, )2
/e i du(x) <e J=0 \DXE =)

Instead of using Lemma I1.3, we will estimate directly osc (Lj Un). We observe
that

n—1

Un(x1, -+, X0, 1) = Y xjo.(xj) = nF (1) .
j=0

Therefore for any integer 0 < k < n — 1 and fixed ¢, we have

k
LUy, 1y Fnie1) = $ %)_ |;0k(/2)| go (X[o,z] (f/(2) - F(t))
z, )=y J
n—k—1 k
+ (xt0.n(rj) = F0) =Y L' (xj0.1 = F(0)) ()
=1 1=0
n—k—1
+ (x10.1(rj) = F(©)) .
j=1

Using (I.1) and observing that the variation and L°° norms of x[o ;] are independent
of ¢, we conclude that there are two constants C” > 0 and 0 < o < 1 such that for
any t > 0

\/ L' (xj0,1 — F(1)) < C"a!
which implies
C//
-0

0SCq (LkUn> <

and the result follows.
By a simple application of Markov’s inequality, we obtain the following result.

Corollary A.3. There is a constant D" > 0 such that for any integer n, we have
foranys > 0

sup u <{|Nn(~,t) —nF(t)| > s}) < 2¢~D"s*/n

0<r<l1
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We now finish the proof of Theorem A.1. We first observe thatif t € [k/n, (k+
1)/n], with 0 < k < n — 1, we have for any x

Ny (x, k/”) < Ny(x,t) < Ny(x, (k+ 1)/")

and similarly
Fk/n) < F(t) < F((k+1)/n).

Therefore,
|Nu(x, 1) —nF (1)
< max {|N,(x, k/n) —nF((k+ 1)/n)
< max {|N,(x, k/n) —nF (k/n)
+lelloo -

. |Nu(x, (k+1)/n) —nF(k/n)|}
o NaCx, (k4 1)/n) —nF((k+1)/n)|}

In particular, if x is not a preimage of 0, taking also into account that N, (x, 0) =
F(@)=0and N,(x,1) =nF(1) =n, we get

sup |Ny(x,t) —=nF(®)| < sup |Ny(x,k/n) —nFk/n)|+ ¢l -

0<r<l1 O<k<n

Therefore, if
sup |Nu(x,t) —=nF@®)] = ¢l + sn

0<r<1

there is at least one integer 1 < k < n — 1 such that
|Nn(x, k/n) — nF(k/n)| > sn

and the result follows from Corollary A.3 since the countable set of preimages of
the origin is of measure zero.
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