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Abstract. We consider a heteroscedastic sequence space setup with polynomially increasing
variances of observations that allows to treat a number of inverse problems, in particular mul-
tivariate ones. We propose an adaptive estimator that attains simultaneously exact asymptotic
minimax constants on every ellipsoid of functions within a wide scale (that includes ellipoids
with polynomially and exponentially decreasing axes) and, at the same time, satisfies as-
ymptotically exact oracle inequalities within any class of linear estimates having monotone
non-increasing weights. The construction of the estimator is based on a properly penalized
blockwise Stein’s rule, with weakly geometically increasing blocks. As an application, we
construct sharp adaptive estimators in the problems of deconvolution and tomography.

1. Introduction

Let X be a separable Hilbert space with inner product (·, ·) and the norm ‖ · ‖.
Consider the operator equation g = Af where A is a known linear operator from
D ⊆ X into Range(A) ⊆ X. Inverse problem with random noise consists in sta-
tistical estimation of f from noisy observations of g. Symbolically, the statistical
model can be written in the form

Y = Af + εξ, (1.1)

where ξ is a random X-valued noise, 0 < ε < 1 is a small parameter (the noise
level) and Y is the observation. Often D = X = L2(T ) where T is an interval in
R

k , f : T → R and A is the integral operator defined by

Af (t) =
∫
T

K(t, x)f (x)dx, (1.2)
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where K(t, x) is a given kernel. If K(t, x) = K(t − x), we get a deconvolution
problem. If A is a compact operator the problem is ill-posed since the inverse of A
is not bounded.

In this paper ξ is gaussian, and the writing (1.1) is understood in the sense that
for any u ∈ X, the random variable

Y (u) = (Af, u) + εξ(u) (1.3)

is observable, where ξ(u) is a gaussian random variable on a probability space
(�,A,P), with mean 0 and variance ‖u‖2. We also assume that E{ξ(u)ξ(v)} =
(u, v), for any u, v ∈ X, where E is the expectation w.r.t. P.

The study of inverse problems with random noise was initiated in 1960-ies
[Sudakov and Khalfin (1964), Bakushinskii (1969)] and has been in the focus of
recent statistical literature. Several methods of statistical estimation were proposed:
the Tikhonov-Phillips type regularization techniques, recursive estimation proce-
dures in Hilbert space, projection (or Galerkin) methods [see Wahba (1977, 1990),
Vapnik (1982), O’Sullivan (1986), Vainikko and Veretennikov (1986), Johnstone
and Silverman (1990), Korostelev and Tsybakov (1993), Donoho (1995), Mair and
Ruymgaart (1996), Efromovich and Kolchinskii (1998), Johnstone (1999), Mathé
and Pereverzev (1999) and the references cited therein].

Here we deal with weighted projection methods. A natural way of projection
for ill-posed problems is associated with the singular value decomposition (SVD)
of A. Denote A∗ the adjoint of A and assume that A∗A is a compact operator on
X with eigenvalues {b2

k}, bk > 0, k = 1, 2, . . . , and with orthonormal system of
eigenfunctions {φk}. Clearly, ‖Aφk‖ = bk . Set

ψk = Aφk

‖Aφk‖ = b−1
k Aφk.

The system {ψk} is orthonormal. Furthermore,

Aφk = bkψk, A∗ψk = bkφk. (1.4)

We may also write, for any f in D,

Af =
∑
k

b−1
k (Af,ψk)Aφk =

∑
k

bk(f, φk)ψk, (1.5)

f =
∑
k

b−1
k (Af,ψk)φk + u, (1.6)

where u ∈ kerA and the series converge in ‖ · ‖. The relations (1.4) – (1.5) yield
the SVD of A.

Typically (1.6) holds with u = 0, due to boundary or periodicity conditions.
This is the case in the examples considered below, where we may write

f =
∑
k

b−1
k (Af,ψk)φk. (1.7)
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Then the projection (or Galerkin) estimator f̂ for f has the form of a truncated
series (1.7) where the unknown coefficient (Af,ψk) is replaced by the observed
value yk = Y (ψk):

f̂ =
n∑

k=1

b−1
k ykφk

andn is the number to be chosen. One may consider a more general class of weighted
projection estimates

f̂ =
∞∑
k=1

λkb
−1
k ykφk (1.8)

where λk are some weights, 0 ≤ λk ≤ 1. In particular, a typical version of the
Tikhonov-Phillips method corresponds to the weights

λk = 1

1 + Ckτ
(1.9)

where C > 0 and τ > 0. Optimizing over λk , in general, should produce estimators
with better quality than the simple projection or Tikhonov-Phillips techniques. The
quality of estimation is evaluated in terms of the mean squared risk w.r.t. the norm
in X. To define the risk in a convenient form, we need some notation.

Using (1.3) and (1.4) we may write

yk = bkθk + εξk, k = 1, 2, . . . , (1.10)

where ξk = ξ(ψk) are i.i.d. standard normal random variables and θk = (f, φk).
We call (1.10) the sequence space model corresponding to (1.1).

Thus, we have a correspondence between (1.1) and (1.10) if the bases {φj },
{ψj } arise from the SVD of A. Note, however, that the model (1.10) is not confined
to this case and it appears in many other situations. For example, some well-posed
inverse problems with noise can be reduced to (1.10) with bk → ∞ (rather than
bk → 0 characteristic for the ill-posed problems). Furthermore, the problems with
direct observations and dependent noise can be reduced to the same model, see
Johnstone (1999).

The mean squared risk of the linear estimator (1.8) is

R(f̂ , f ) = Ef ‖f̂ − f ‖2 = Eθ

(∑
k

(θ̂k − θk)
2

)
= Eθ‖θ̂ − θ‖2,

where θ̂ = {θ̂k}∞k=1, θ̂k = b−1
k λkyk , θ = {θk}∞k=1, and the notation ‖ · ‖ means the

#2-norm when applied to θ -vectors in the sequence space. Here and later Ef and
Eθ denote the expectations w.r.t. Y and y = (y1, y2, . . .) respectively for models
(1.1) and (1.10). Analyzing the risk R(f̂ , f ) of the estimator (1.8) for the model
(1.1) is equivalent, under our assumptions, to analyzing the risk Eθ‖θ̂ − θ‖2 for
the sequence space model (1.10).

The aim of this paper is twofold. First, given a class $ of weight sequences
{λk}, we propose adaptive estimators of f that mimic asymptotically the best linear
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oracle in $. The oracle inequalities are proved for an arbitrary subclass $ of the
class of all monotone non-increasing weights $mon or piecewise constant weights
$∗. Second, we consider the adaptive estimation of f in a minimax setting. We
assume that f belongs to one of the functional classes corresponding to ellipsoids
' in the space of coefficients {θk}:

' = '(a,Q) =
{
θ :

∞∑
k=1

a2
k θ

2
k ≤ Q

}
,

where a = {ak} is a non-negative sequence that tends to infinity, and Q > 0. Such
classes arise naturally in various inverse problems, they include as special cases the
(weighted) Sobolev classes and classes of analytic functions. We assume that the
statistician does not know the parameters (a,Q) of the “true” ellipsoid, and only a
general information on the possible values (a,Q) is available. This defines a scale
of ellipsoids. We show that the same method of estimation guarantees sharp mini-
max adaptation, i.e. it achieves the exact asymptotics of minimax risk, whatever
is the true ellipsoid in a given scale. The minimax results are obtained as a direct
consequence of the oracle inequalities.

Minimax estimation for statistical inverse problem (1.1) (or for its sequence
space analogue (1.10)) was discussed in a number of papers. Optimal rates of con-
vergence in this problem are obtained for the L2-risk [Johnstone and Silverman
(1990), Korostelev and Tsybakov (1989, 1991, 1993), Koo (1993), Donoho (1995),
Mair and Ruymgaart (1996)] and for the pointwise risk [Donoho and Low (1992),
Korostelev and Tsybakov (1991, 1993), Chow, Ibragimov and Khasminskii (1999)].
Exact asymptotics of the minimaxL2-risks are known in the deconvolution problem
with somewhat different setup [Ermakov (1989)], in the inverse Cauchy or Dirichlet
problems for partial differential equations [Golubev and Khasminskii (1999a, b)]
and in tomography, for minimax L2-risks among linear estimators [Johnstone and
Silverman (1990)]. Exact asymptotics for pointwise risks on the classes of analytic
functions in tomography are due to Cavalier (1998a, b).

Adaptive minimax estimation in (1.1) has been studied quite recently. Adaptive
rates of convergence under pointwise risk are analyzed by Goldenshluger (1998)
(deconvolution problem) and Cavalier (1998a) (tomography). Johnstone (1999)
studies adaptation in #2 by wavelet-vaguelette decomposition on the Besov scale
of classes and proposes an estimator that mimics the optimal soft thresholding rule.
Efromovich and Kolchinskii (1998) deal with adaptive rates for the L2-risk when
the operator A is not known and is estimated from an additional learning sample. A
result on minimax adaptation in (1.1) with exact asymptotical constant among all
estimators is due to Efromovich (1997) who considers the deconvolution problem
with logarithmic convergence rates and supersmooth kernels (which corresponds
to exponentially decreasing bk in (1.10) and polynomially increasing ak). Tsybakov
(2000) considers the problem where both ak and bk are exponential and shows that
the L2-adaptive rates in this case are logarithmically worse than the optimal rates.

Here we consider the general sequence space setup (1.10) with polynomially
decreasing bk that allows to treat as special cases a number of inverse problems, in
particular multivariate ones (deconvolution, tomography, inverse Cauchy problems
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for partial differential equations etc.). We propose an estimator that attains simulta-
neously exact asymptotic constants on every ellipsoid '(a,Q) within a wide scale
(including both polynomial and exponential {ak}) and, at the same time, satisfies
asymptotically exact oracle inequalities for every θ ∈ #2 and with any class of
estimates having monotone weights {λk}.

Our approach is designed for models that allow the sequence space representa-
tion (1.10). For ill-posed inverse problems it supposes the exact knowledge of the
eigenfunctions φk, ψk in the SVD (1.4) – (1.5) and of the singular values bk . This
is the case in many problems of mathematical physics. If the SVD is not available,
one can use a projection onto general Galerkin bases φk, ψk , which leads to the
model of linear regression with growing number of parameters. This happens, for
example, if the bases φk, ψk are imposed by the structure of a particular experiment
and cannot be chosen by the statistician [see Mathé and Pereverzev (1999), Gold-
enshluger and Pereverzev (1999) for further discussion and results on the rates of
convergence].

2. Linear minimax estimates in sequence space

Consider the sequence space model (1.10) where yk are the observations, ξk are
independent standard gaussian random variables, 0 < ε < 1, b = (b1, b2, . . .) is a
known sequence, bk > 0, k = 1, 2, . . . , and θ = (θ1, θ2, . . .) ∈ #2 is an unknown
parameter of interest.

Introduce the class of linear estimators :

θ̂ = θ̂ (h) = (θ̂1, θ̂2, . . .), θ̂k = hkyk, k = 1, 2, . . .

where h = (h1, h2, . . .) is an arbitrary sequence. Since θ̂ is uniquely determined
by h we will sometimes use the name “estimator” for the sequence h itself.

The mean squared risk of the linear estimator θ̂ (h) has the form

Rε(h, θ) = Eθ‖θ̂ (h) − θ‖2 =
∞∑
k=1

((1 − bkhk)
2θ2

k + ε2h2
k) (2.1)

if h is such that the right hand side is finite. For fixed θ ∈ #2 the minimum of
Rε(h, θ) is attained on the linear oracle hL = (hL

1 , h
L
2 , . . .) where

hL
k = bkθ

2
k

ε2 + b2
kθ

2
k

= b−1
k

θ2
k

ε2b−2
k + θ2

k

.

The oracle cannot be realized from the data since it depends on the unknown θ . We
write also hL = hL(θ).

The linear minimax risk rLε (') on the ellipsoid ' = '(a,Q) is defined by

rLε (') = inf
h

sup
θ∈'

Rε(h, θ),
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and the minimax risk rε(') is defined by

rε(') = inf
t̂

sup
θ∈'

Eθ ‖ t̂ − θ ‖2,

where inf t̂ denotes the infimum over all estimators.
The estimator θ̂ (h∗) is called linear minimax estimator on ' if it satisfies

sup
θ∈'

Rε(h
∗, θ) = inf

h
sup
θ∈'

Rε(h, θ).

Pinsker (1980) shows that linear minimax estimators on ellipsoids ' are as-
ymptotically minimax among all estimators. To define linear minimax estimators,
introduce some notation. Let wε be a solution of the equation

ε2
∞∑
k=1

b−2
k ak(1 − wεak)+ = cεQ, (2.2)

where x+ = max(0, x). If the sequence ak → ∞ is monotone non-decreasing, the
solution wε is unique and defined by

wε =
∑n

k=1 b−2
k ak

Qε−2 + ∑n
k=1 b−2

k a2
k

, (2.3)

where n = nε(') is finite integer:

n = max{k : ak ≤ w−1
ε } = max{l : ε2

l∑
k=1

b−2
k ak(al − ak) ≤ Q}. (2.4)

The following theorem is due to Pinsker (1980).

Theorem 1. Let {ak} be a sequence of non-negative numbers, ak → ∞, and let
bk > 0, k = 1, 2, . . .. Then the linear minimax estimator h∗ = {h∗

k} on '(a,Q)

is given by
h∗
k = b−1

k (1 − wεak)+, (2.5)

and the linear minimax risk is

rLε (') = ε2
∞∑
k=1

b−2
k (1 − wεak)+. (2.6)

Furthermore, if
maxk:ak<d b−2

k∑
k:ak<d b−2

k

= o(1), d → ∞, (2.7)

then
rε(') = rLε (')(1 + o(1)), (2.8)

as ε → 0.

Thus, under the condition (2.7), the linear minimax estimator given by (2.5)
is asymptotically minimax among all estimators. Also the weights of the linear
minimax estimator satisfy h∗

k = 0 for all k > nε(').
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3. The method of adaptation and oracle inequalities

An ideal goal of adaptation in the sequence space model (1.10) would be to find a
data-driven estimator θ̃ of θ that

(i) mimics asymptotically the risk of the linear oracle hL(θ) for almost all
θ ∈ #2 (“almost” means here that some θ should be obviously excluded, for exam-
ple, θ = 0),

and

(ii) attains asymptotically the minimax risk over any ellipsoid '.

We attain this goal only partly : we construct θ̃ satisfying (ii) for a large scale
of ellipsoids and satisfying slightly restricted versions of (i) where the linear oracle
hL(θ) is replaced by the linear monotone oracle or linear blockwise oracle with
rather general blocks.

Consider the class of monotone sequences

$mon = {λ = {λk} ∈ #2 : 1 ≥ λ1 ≥ . . . ≥ λk . . . ≥ 0}, (3.1)

and the class of weights

Hmon = {h = {hk} : hk = b−1
k λk, {λk} ∈ $mon}. (3.2)

The linear monotone oracle hmon = hmon(θ) is defined as a solution of

Rε(h
mon, θ) = inf

h∈Hmon

Rε(h, θ).

If the coefficients θk are monotone non-increasing, we have hL(θ) = hmon(θ).
The class Hmon contains most of interesting examples of weight sequences

{hk}. The projection weights hk = b−1
k I {k ≤ n}, where n is an integer, and the

Tikhonov-Phillips weights (1.9) belong to Hmon. Next, typically bk are monotone
non-increasing and ak in the definition of the ellipsoid are monotone non-decreas-
ing. Then the Pinsker weights (2.5) belong to Hmon. It can be shown that some
minimax solutions on other bodies in #2 than ellipsoids (e.g. hyperrectangles) are
also in Hmon.

We look for an adaptive estimator θ̃ = (θ̃1, θ̃2, . . .) of the form

θ̃k = h̃k yk, (3.3)

where h̃k = h̃k(y) are some data-driven weights.

A well-known idea of choosing h̃k is based on the unbiased estimation of the
risk (Mallows (1973), Akaike (1973) and Stein (1981)). In fact, the #2-error of the
linear estimator θ̂ is

‖ θ̂ (h) − θ ‖2=
∑
k

θ2
k +

∑
k

h2
ky

2
k − 2

∑
k

hkykθk.

Thus, for any fixed h, the function

J (h) =
∑
k

(h2
ky

2
k − 2hkb

−1
k (y2

k − ε2))
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satisfies

Eθ (J (h)) = Eθ‖θ̂ (h) − θ‖2 −
∑
k

θ2
k . (3.4)

In other words, the function J (h) is (up to the summand
∑

k θ
2
k independent of h)

an unbiased estimator of the risk Rε(h, θ).

Now, given a class H of sequences {hk} (not necessarily H = Hmon), we may
define the sequence of adaptive weight coefficients h̃(H) as follows

h̃(H) = argmin
h∈H

J (h). (3.5)

It is clear that h̃(H) depends on the data yk, k = 1, 2, . . . , and not on the unknown
parameter θ = {θk}. Denote hH = hH(θ) the oracle for the class H:

Rε(h
H, θ) = inf

h∈H
Rε(h, θ).

For the problems of “direct” estimation (where bk ≡ 1, k = 1, 2, . . .) it is
known that, under a proper choice of H, the adaptive estimator θ̃ defined by (3.3)
and (3.5) achieves the required behavior : it is asymptotically minimax on ellip-
soids ' and has the asymptotic risk at least as small as that of the linear monotone
oracle (Golubev (1987, 1990, 1992), Golubev and Nussbaum (1992), Oudshoorn
(1997)). Other methods of adaptive weighting in the “direct” case that achieve the
same properties are suggested by Efroimovich and Pinsker (1984) and Nemirovski
(2000). In particular, Nemirovski (2000) uses a randomized method. Results on
linear monotone oracles in the “direct” case for somewhat different setup can be
found in Beran and Dümbgen (1998).

We show that, for polynomial (or quasipolynomial) {bk} the estimator θ̃ defined
by (3.3) and (3.5) can be modified to have the same adaptivity properties as in the
direct case. Namely, we consider as H the class of coefficients with piecewise con-
stant λk = bkhk over suitably chosen blocks, and we apply a properly penalized
Stein’s rule in every block.

Define

H∗ = {h = {hk} : hk = b−1
k λk, {λk} ∈ $∗}, (3.6)

where $∗ is the set of piecewise constant sequences,

$∗ = {λ ∈ #2 : 0 ≤ λk ≤ 1, λk = λκj ,∀k ∈ [κj , κj+1 − 1],

j = 0, . . . , J − 1, λk = 0, k > N}, (3.7)

and J , N , κj , j = 0, . . . , J, are integers such that κ0 = 1, κJ = N +1, κj > κj−1.
Denote Ij = {k ∈ [κj−1, κj − 1]} and Tj = κj − κj−1 for j = 1, . . . , J .

Note that the solution h̃∗ of the minimization problem

J (h̃∗) = min
h∈H∗ J (h)



Sharp adaptation for inverse problems with random noise 331

is given by h̃∗ = (h̃∗
1, h̃

∗
2, . . .), where

h̃∗
k =


b−1

k

(
1 − σ 2

j

‖ȳ‖2
(j)

)
+
, k ∈ Ij , j = 1, . . . , J,

0, k > N,

, (3.8)

with x+ = max (0, x),

σ 2
j = ε2

∑
k∈Ij

b−2
k , ‖ȳ‖2

(j) =
∑
k∈Ij

ȳ2
k , (3.9)

ȳk = b−1
k yk = θk + ε b−1

k ξk, ȳ = {ȳk}, (3.10)

and

5j = maxk∈Ij b
−2
k∑

k∈Ij
b−2
k

. (3.11)

The weights (3.8) define a blockwise Stein’s rule. The blockwise Stein’s estimator
is θ̃∗ = (θ̃∗

1 , θ̃
∗
2 , . . .) where θ̃∗

k = h̃∗
kyk .

We now modify the weights h̃∗ and define h̃ = (h̃1, h̃2, . . .) by

h̃k =

b−1

k

(
1 − σ 2

j (1+ϕj )

‖ȳ‖2
(j)

)
+
, k ∈ Ij , j = 1, . . . , J,

0, k > N,

where ϕj > 0 is some penalty term.
Finally, the adaptive estimate that we propose has the form θ̃ = (θ̃1, θ̃2, . . .)

where

θ̃k =

 ȳk

(
1 − σ 2

j (1+ϕj )

‖ȳ‖2
(j)

)
+
, k ∈ Ij , j = 1, . . . , J,

0, k > N.

(3.12)

This estimator can be interpreted as a penalized blockwise Stein’s rule. The pe-
nalizing factor (1+ϕj ) forces the estimator to contain fewer nonzero coefficients θ̃k
than for the usual blockwise Stein’s rule (3.8): our estimator is more “sparse”. How-
ever, we consider the case where the values ϕj are small and max1≤j≤J ϕj → 0, as
ε → 0. Therefore, the difference from Stein’s rule is not very strong. The choice of
the penalty ϕj in the examples considered below is ϕj = 5

γ

j , where 0 < γ < 1/2.
The assumption γ < 1/2 is important, as shows an inspection of the proof:

γ = 1/2 already will not suffice to get the same order of remainder terms in oracle
inequalities. Intuitively, this effect is easy to explain. If bk decreases as a power
of k we have: standard deviation(Zj )/expectation(Zj ) ∼ 5

1/2
j where Zj is the

stochastic error term corresponding to j th block. Hence, to control the variability
of stochastic terms, one needs a penalty ϕj that is slightly larger than 5

1/2
j . The

choice ϕj = 5
γ

j , where 0 < γ < 1/2, is sufficient. Other choices are possible that
give similar first order asymptotics but with somewhat different remainder terms,

for example, the penalty ϕj = C
√
5j log 1

5j
, with C > 0 large enough (cf. Birgé

and Massart (2001) for the case bk ≡ 1).



332 L. Cavalier, A.B. Tsybakov

Assume that the sequence {bk}, the blocks I1, I2, . . . IJ and the penalties ϕj

satisfy the following conditions.

(A1) There exists a constant c1 > 0 independent of ε, such that

J∑
j=1

(
max
k∈Ij

b−2
k

)
exp

(
−

ϕ2
j

165j(1 + 2
√
ϕj )2

)
≤ c1.

(A2) For all j = 1, . . . J , we have

5j ≤ 1 − ϕj

4
.

Assumption (A1) is satisfied if bk are polynomially decreasing and the blocks
Ij are growing sufficiently fast as j grows. On the other hand, it does not hold if bk
are exponentially decreasing, since in this case 5j �→ 0 as j → ∞, ϕj are bounded
(in view of (A2)), and thus the sum in (A1) is not bounded as J = J (ε) → ∞.

A natural simplification of these assumptions would consist to suppose that the
bk are of the same order within a block Ij : maxIj b

−2
k /minIj b

−2
k ≤ C for a con-

stant C. Then instead of 5j we can substitute in the above formulas 1/Tj where Tj

is the size of the j th block. A motivation of the more general formulation involving
5j lies in multivariate applications. We will see in particular that in the context of
tomography (Section 5.2) we have maxIj b

−2
k /minIj b

−2
k → ∞ and nevertheless

the assumptions (A1) and (A2) hold.
The next proposition yields a first oracle inequality. It states that the adaptive

estimator (3.12) is at least as good as the blockwise constant oracle hH∗
(θ) (up to

small residual terms), for any θ ∈ #2.

Proposition 1. Let H∗ be the class of all piecewise constant rules (3.6) and let θ̃
be the estimator defined in (3.12). Assume (A1) and (A2). Then for any θ ∈ #2 and
any 0 < ε < 1 we have

Eθ‖θ̃ − θ‖2 ≤ (1 + ϕ(ε)) inf
h∈H∗ Rε(h, θ) + 8c1ε

2,

where ϕ(ε) = max1≤j≤J (2ϕj + 165j/ϕj ).

Remark that we choose ϕj → 0 as j → ∞ and J → ∞. Then, to satisfy (A1),
one needs that 5j = o(ϕ2

j ). Thus, (A2) holds automatically for j large enough,
and ϕ(ε) ≤ C max1≤j≤J ϕj for some C > 0.

Proposition 1 has the following asymptotic corollary.

Corollary 1. Let bk → 0 as k → ∞, and ϕ(ε) → 0 as ε → 0. Let the se-
quence θ ∈ #2 have the infinite number of non-zero coefficients θk . Then, under the
assumptions of Proposition 1,

Eθ‖θ̃ − θ‖2 ≤ (1 + o(1)) inf
h∈H∗ Rε(h, θ),

as ε → 0.
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Proof of Proposition 1 and Corollary 1 is given in Section 6.

Remark 1. Proposition 1 and Corollary 1 deal with general blocks Ij . For example,
these results apply to the wavelet setup considered by Johnstone (1999) where the
blocks are the resolution levels of size Tj = 2j , the coefficients bk are constant

within each block and decrease with j as a power of Tj : bk ≡ T
−β
j , ∀k ∈ Ij , with

some β > 0. In this case assumptions (A1) and (A2) are valid with ϕj = 5
γ

j , and
we get that the estimator (3.12) is asymptotically at least as good as the levelwise
constant wavelet oracle. Moreover, Proposition 1 allows to cover a more realistic
situation where C1T

−β
j ≤ bk ≤ C2T

−β
j for some C2 > C1 > 0.

The next step of our argument is to show that an oracle inequality similar to
that of Proposition 1 holds for θ̃ , but with Hmon in place of H∗. This is obtained as
a consequence of Proposition 1 and of Lemma 1 stated below.

The following additional assumption is needed.

(A3) There exists 0 < ηε < 1/2 such that

max
1≤j≤J−1

σ 2
j+1

σ 2
j

≤ 1 + ηε.

In the examples that we consider below ηε → 0 as ε → 0.

Lemma 1. Let r > 0, N ≥ max {m :
∑m

k=1 b−2
k ≤ r2ε−2η−2

ε }, and let (A3) hold.
If ‖θ‖ ≤ r then, for any 0 < ε < 1,

inf
h∈H∗ Rε(h, θ) ≤ (1 − ηε)

−2 inf
h∈Hmon

Rε(h, θ) + σ 2
1 . (3.13)

Furthermore, if h ∈ Hmon and θ ∈ #2 are such that Rε(h, θ) ≤ r2, then there
exists h̄ ∈ H∗ such that, for any 0 < ε < 1,

Rε(h̄, θ) ≤ (1 − ηε)
−2Rε(h, θ) + σ 2

1 . (3.14)

Proof of Lemma 1 is given in Section 6. It is inspired by the argument in
Nemirovskii (2000), Section 6.3.3.

We need that the term σ 2
1 were small enough w.r.t. the main term infh∈Hmon

Rε(h, θ). If this main term is O(εs), ε → 0, for some 0 < s < 2 and b−1
k =

O(kβ), k → ∞, for some β > 0, the asymptotic negligibility of σ 2
1 is easily

obtained by choosing T1 of logarithmic order.
Proposition 1 and Lemma 1 entail the following oracle inequalities.

Proposition 2. Let θ̃ be the estimator defined in (3.12). Assume (A1)–(A3), and let
r > 0, N ≥ max {m :

∑m
k=1 b−2

k ≤ r2ε−2η−2
ε }. Then :

(i) For any θ such that ‖θ‖ ≤ r and any 0 < ε < 1 we have

Eθ‖θ̃ − θ‖2 ≤ (1 + >ε) inf
h∈Hmon

Rε(h, θ) + c2(ε
2 + σ 2

1 ), (3.15)

where >ε = (2ηε + ϕ(ε))/(1 − 2ηε) and c2 > 0 does not depend on θ, ε.
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(ii) For h ∈ Hmon and θ ∈ #2 such that Rε(h, θ) ≤ r2 and any 0 < ε < 1 we have

Eθ‖θ̃ − θ‖2 ≤ (1 + >ε)Rε(h, θ) + c2(ε
2 + σ 2

1 ). (3.16)

We introduce now a construction of weakly geometrically increasing blocks Ij
where the conditions (A1) – (A3) are satisfied, provided bk decreases as a power of
k. In the next section we will show that with this construction the estimator (3.12)
is sharp minimax adaptive on a large scale of classes.

Let νε be an integer valued function of ε such that νε ≥ 2 and νε → ∞ as
ε → 0. A typical choice would be νε ∼ log(1/ε) or νε ∼ log log(1/ε). Let

ρε = 1

log νε
.

Clearly, ρε → 0 as ε → 0. Define the sequence {κj } by

κj =



1 j = 0,
νε j = 1,
κj−1 + �νερε(1 + ρε)

j−1� j = 2, 3, . . . ,
(3.17)

where �x� is the maximal integer that is strictly less than x. Let N∗ be any integer
satisfying

N∗ ≥ max {m :
m∑

k=1

b−2
k ≤ ε−2ρ−3

ε }. (3.18)

Then, for ε small enough, N∗ ≥ max {m :
∑m

k=1 b−2
k ≤ r2ε−2ρ−2

ε }, ∀r > 0. The
following assumptions will be used: (B1) The blocks are Ij = [κj−1, κj − 1], j =
1, . . . , J, such that the values κj satisfy (3.17), and J = min {j : κj > N∗} where
N∗ satisfies (3.18).

Clearly, N = kJ − 1 ≥ N∗ if (B1) holds.

(B2) The penalty is ϕj = 5
γ

j , where 0 < γ < 1/2.

We also assume that the values bk decrease as a power of k :

(B3) There exist β ≥ 0, bmax > 0, bmin > 0 such that bmink
−β ≤ bk ≤

bmaxk
−β, k = 1, 2, . . .

The next result follows from Proposition 1.

Corollary 2. Let H∗ be defined in (3.6) and θ̃ be the estimator defined in (3.12).
Assume (B1) – (B3). Then for any θ ∈ #2 and any 0 < ε < ε1 we have

Eθ‖θ̃ − θ‖2 ≤ (
1 + c3(ρενε)

−γ
)

inf
h∈H∗ Rε(h, θ) + c4ε

2,

where the constants 0 < ε1 < 1, c3 > 0 and c4 > 0 do not depend on θ, ε.
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Proof of Corollary 2 consists in checking the conditions (A1) and (A2) and it
is given in the Appendix.

Note that (B1) – (B3) do not imply (A3), and to get oracle inequalities over
Hmon, as in Proposition 2, we need a stronger condition on bk :

(B4) The coefficients bk are positive and there exist β ≥ 0, b∗ > 0 such that

bk = b∗k−β(1 + o(1)), k → ∞.

Corollary 3. Let θ̃ be the estimator defined in (3.12). Assume (B1),(B2) and (B4),
and let r > 0 be fixed. Then :

(i) For any θ such that ‖θ‖ ≤ r and any 0 < ε < ε2 we have

Eθ‖θ̃ − θ‖2 ≤ (1 + η̃ε) inf
h∈Hmon

Rε(h, θ) + c5ε
2ν2β+1

ε ,

where the constants 0 < ε2 < 1 and c5 > 0 do not depend on θ, ε, and η̃ε =
o(1), ε → 0, η̃ε does not depend on θ . (ii) For h ∈ Hmon and θ ∈ #2 such that
Rε(h, θ) ≤ r2 and any 0 < ε < ε2 we have

Eθ‖θ̃ − θ‖2 ≤ (1 + η̃ε)Rε(h, θ) + c5ε
2ν2β+1

ε .

Proof of this corollary is given in the Appendix.

Remark 3. Since ρενε → ∞ and η̃ε → 0, the oracle inequalities of Corollaries
2, 3 are asymptotically exact. Note also that Proposition 2 and Corollary 3 yield
asymptotically exact oracle inequalities on smaller classes than Hmon. In particular,
our estimator θ̃ is asymptotically at least as good as the optimal projection estima-
tor i.e. estimator in the class Hproj = {h : hk = b−1

k I (k ≤ n), n = 1, 2, . . .}
and the optimal Tikhonov-Phillips type estimator in the class HT P = {h : hk =

b−1
k

1+Ckτ
, τ > 0, C > 0}.

Remark 4. Beran and Dümbgen (1998) show that the estimator h̃(Hmon) for the
case where bk ≡ 1 can be computed numerically and has a piecewise-constant
structure on random blocks. We believe that this is also true for general bk and it is
possible to prove a result similar to Corollary 3 for this estimator (in the “direct”
case where bk ≡ 1 such a result is implicit in Golubev (1990)). Although, since the
values of h̃(Hmon) on the blocks are monotone decreasing, this estimator will not
mimic the blockwise constant oracle, unless θ has a special form, and thus it will
not be useful, for example, in the wavelet context.

Remark 5. After this paper has been submitted, the paper of Cai (1999) was pub-
lished that considers the estimator (3.12) for the “direct” case where bk ≡ 1. The
approach of Cai (1999) is different from ours: he suggests a fixed penalty ϕj for
all j and logarithmically small blocks (rather than weakly geometrically increas-
ing blocks as we do), and does not consider the oracle inequalities for monotone
oracles. He studies rates of convergence rather than exact asymptotics of the risks.
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4. Minimax sharp adaptation

In this section we apply the results of Section 3 to show that the estimator (3.12)
with weakly geometrically increasing blocks Ij is sharp adaptive in a minimax
sense on the classes of ellipsoids.

Theorem 2. Let ' = '(a,Q) be an ellipsoid with monotone non-decreasing
a = {ak}, ak → ∞ and Q > 0. Let the blocks Ij satisfy (B1), the penalties satisfy
(B2), and the coefficients bk satisfy (B4). Assume also that νε is chosen so that

ε2ν
2β+1
ε

rε(')
= o(1), ε → 0. (4.1)

Then the estimator θ̃ = {θ̃k} defined in (3.12) is asymptotically minimax on '

among all estimators, i.e.

sup
θ∈'

Eθ‖θ̃ − θ‖2 = rε(')(1 + o(1)), (4.2)

as ε → 0.

Proof . This is a simple consequence of Corollary 3 and Theorem 1. In fact, note
that under the assumptions of Theorem 2 the minimax sequence of weights h∗
defined in (2.5) satisfies h∗ ∈ Hmon. Next, since ak is monotone non-decreasing,
ak → ∞, and bk satisfies (B3), we have

lim
ε→0

rε(') = 0, (4.3)

by Theorem 2 of Pinsker (1980). Hence,

sup
θ∈'

Rε(h
∗, θ) = rLε (') = rε(')(1 + o(1)) = o(1),

as ε → 0 where we used (2.8) and (4.3). Thus, the assumptions of Corollary 3 (ii)
are satisfied for h = h∗, θ ∈ ' and r = 1 if ε is small enough, and we may write

sup
θ∈'

Eθ‖θ̃ − θ‖2 ≤ (1 + o(1)) sup
θ∈'

Rε(h
∗, θ) + c6ε

2ν2β+1
ε . (4.4)

This, together with (4.1), yields

sup
θ∈'

Eθ‖θ̃ − θ‖2 ≤ rLε (')(1 + o(1)),

which is equivalent to (4.2), in view of (2.8) and of the definition of rε('). ��
Note that Theorem 2 states a sharp adaptivity property of θ̃ : this estimator is

sharp asymptotically minimax on every ellipsoid ' = '(a,Q) satisfying (4.1),
while no prior knowledge about a and Q is required to define θ̃ . Moreover, no “el-
lipsoidal” structure appears in the definition of θ̃ . In fact, minimax results similar
to Theorem 2 can be formulated for other classes than ellipsoids (for example, for
hyperrectangles), provided the minimax solution h∗ belongs to Hmon.

Remark also that the condition (4.1) is quite weak. It suffices to choose νε
smaller than some iterated logarithm of 1/ε, in order to satisfy these conditions for
most of usual examples of ellipsoids '.
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Corollary 4. Let ' = '(a,Q) be any ellipsoid with monotone non-decreasing
a = {ak} such that kα0 ≤ ak ≤ exp(αkr), ∀k, for some α0 > 0, α > 0, r ≥
1,Q > 0. Assume (B1), (B2) and (B4) with νε = max(�log log 1/ε�, 2). Then the
estimator θ̃ defined in (3.12) satisfies (4.2).

Proof . The fastest convergence rate of the minimax risk rε(') to 0 is attained for

the ellipsoid ' with ak = exp(αkr), and this rate equals ε2
(
log 1

ε

) 2β+1
r . Therefore,

for any ellipsoid ' satisfying the assumptions of Corollary 4, we have

ε2
(

log
1

ε

) 2β+1
r

/rε(') = O(1), ε → 0.

This, together with the definition of νε, yields (4.1). ��
One can also get uniform results over certain scales of ellipsoids. We give now

such uniform results for the Sobolev scale (polynomially increasing ak) and the
scale of classes of analytic functions (exponentially increasing ak).

Theorem 3. (Sobolev scale of classes). Let 'α(Q) = '(a,Q) where a = {kα},
α > 0,Q > 0. Assume (B1), (B2) and (B4), with νε = max(�log log 1/ε�, 2). Then
the estimator θ̃ defined in (3.12) satisfies

lim
ε→0

sup
α∈[α1,α2],Q∈[Q1,Q2]

sup
θ∈'α(Q)

Eθ‖θ̃ − θ‖2

r∗
ε (α,Q)

= 1, (4.5)

for any 0<α1 <α2 <∞, 0<Q1 <Q2 <∞, where

r∗
ε (α,Q) = C(α,Q)ε

4α
2α+2β+1 ,

C(α,Q) = (2β + 1)−1(Q(2α + 2β + 1))
2β+1

2α+2β+1

(
αb−2∗

α + 2β + 1

) 2α
2α+2β+1

.

Proof . The fact that rLε ('(Q)) = r∗
ε (α,Q)(1 + o(1)) is shown in Belitser and

Levit (1995). It is easy to prove in the same way that somewhat stronger relation
holds :

sup
(α,Q)∈U

∣∣∣∣ rLε ('α(Q))

r∗
ε (α,Q)

− 1

∣∣∣∣ = o(1), ε → 0, (4.6)

where U = [α1, α2] × [Q1,Q2]. Moreover,

sup
(α,Q)∈U

ε2ν
2β+1
ε

r∗
ε (α,Q)

= o(1), ε → 0. (4.7)

Now, we apply the same argument as in the proof of Theorem 2, taking in (4.4)
the weights h∗ = h∗(α,Q) that are computed via (2.5) for 'α(Q). Using (4.6),
(4.7) and the fact that o(1) and c6 in (4.4) do not depend on α and Q, we find

sup
(α,Q)∈U

sup
θ∈'α(Q)

Eθ‖θ̃ − θ‖2

r∗
ε (α,Q)

≤ (1+o(1)) sup
(α,Q)∈U

rLε ('α(Q))

r∗
ε (α,Q)

+o(1) = 1+o(1),
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as ε → 0. On the other hand, using (2.8) for α = α1,Q = Q1 and (4.6), we obtain

sup
(α,Q)∈U

sup
θ∈'α(Q)

Eθ‖θ̃ − θ‖2

r∗
ε (α,Q)

≥ sup
θ∈'α1 (Q1)

Eθ‖θ̃ − θ‖2

r∗
ε (α1,Q1)

≥ rε('α1(Q1))

r∗
ε (α1,Q1)

= 1 + o(1), ε → 0. ��

We now consider the classes of analytical and supersmooth functions that cor-
respond to ellipsoids '(a,Q) with ak = exp (αkr), α > 0, r ≥ 1.

Theorem 4. Let 'α,r (Q) = '({exp (αkr)},Q), where α > 0, r ≥ 1,Q > 0.
Assume (B1), (B2) and (B4) with νε = max(�log log 1/ε�, 2). Then the estimator
θ̃ defined in (3.12) satisfies

lim
ε→0

sup
(α,r,Q)∈W

sup
θ∈'α,r (Q)

Eθ‖θ̃ − θ‖2

r∗
ε (α, r,Q)

= 1, (4.8)

where

r∗
ε (α, r,Q) = b−2∗

2β + 1
ε2

(
1

α
log

1

ε

) 2β+1
r

and the supremum in (4.8) is taken over (α, r,Q) in W = [α1, α2] × [r1, r2] ×
[Q1,Q2], where 0<α1 <α2 <∞, 1≤r1 <r2 <∞, 0<Q1 <Q2 <∞.

Proof . Direct calculations using (2.6) yield

sup
(α,r,Q)∈W

∣∣∣∣ rLε ('α,r (Q))

r∗
ε (α, r,Q)

− 1

∣∣∣∣ = o(1), ε → 0.

The rest of the proof follows the same lines as in Theorem 3, and we omit it. ��

5. Examples

5.1. Deconvolution and estimation of derivatives

The above results allow to construct sharp adaptive estimators for deconvolution
problem in Gausssian white noise. Optimal rates of convergence for this problem
were obtained in different settings by Ermakov (1989), Donoho and Low (1992),
Koo (1993), Korostelev and Tsybakov (1993), Donoho (1995), Johnstone (1999).
Sharp asymptotics of the minimax risk in the Pinsker type framework is calculated
by Ermakov (1989) and Efromovich (1997). Goldenshluger (1998) and Johnstone
(1999) propose rate adaptive estimation methods for deconvolution. Efromovich
(1997) shows that for the case of convolution kernels with exponentially decreasing
Fourier transforms the usual projection estimate is sharp adaptive. Here we con-
struct sharp adaptive estimators for deconvolution with polynomially decreasing
Fourier coefficients of a kernel.
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Consider the model

dY (t) = g ∗ f (t)dt + ε dW(t), t ∈ [0, 1], (5.1)

where we observe the process {Y (t), t ∈ [0, 1]}, g is a known 1-periodic filter in
L2([0, 1]) (convolution kernel), f is a 1-periodic signal in L2([0, 1]), 0 < ε < 1
is the level of the noise and W(t) is the standard Wiener process. Let {φk(t)} be the
usual trigonometric basis on [0, 1]:

φ1(t) ≡ 1, φ2k(t) =
√

2 cos(2πkt), φ2k+1(t) =
√

2 sin(2πkt), k = 1, 2, . . . .
(5.2)

The model (5.1) is equivalent to the sequence space model

yk = bk θk + ε ξk, k = 1, 2, . . . , (5.3)

where ξk = ∫ 1
0 φk(t)dW(t) are standard normal random variables and θk =∫ 1

0 f (t)φk(t)dt , bk = ∫ 1
0 g(t)φk(t)dt .

Assume that the filterg has the Fourier coefficientsbk that satisfy the assumption
(B3).

Introduce the Sobolev class of functions

W(α,Q) = {f =
∞∑
k=1

θkφk : θ ∈ '∗
α(Q)}

where '∗
α(Q) = '(a,Q) with the sequence a = {ak} such that

ak =
{
(k − 1)α for k odd,
kα for k even,

k = 1, 2, . . . ,

where α > 0, Q > 0. If α is an integer, W(α,Q) = {f :
∫ 1

0 (f (α)(t))2dt ≤ π2αQ}
where f (α) denotes the weak derivative of f of order α.

Consider also the classes of infinitely many times differentiable functions

A(α, r,Q) = {f =
∞∑
k=1

θkφk : θ ∈ 'α,r (Q)}

where α > 0, r ≥ 1, Q > 0. The case r = 1 corresponds to usual classes of
analytical functions.

The following result is a straightforward modification of Theorems 3, 4.

Theorem 5. Let the Fourier coefficients bk of the filter g satisfy (B4), the blocks Ij
satisfy (B1)and the penalty satisfies (B2), with νε = max(�log log 1/ε�, 2). Then
the estimator f̃ = ∑∞

k=1 θ̃kφk , where θ̃ is defined in (3.12) and {φk} is the trigo-
nometric basis (5.2), satisfies

lim
ε→0

sup
α∈[α1,α2],Q∈[Q1,Q2]

sup
f∈W(α,Q)

Eθ‖f̃ − f ‖2

r∗
ε (α,Q)

= 1,
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and

lim
ε→0

sup
(α,r,Q)∈W

sup
θ∈A(α,r,Q)

Eθ‖f̃ − f ‖2

r∗
ε (α, r,Q)

= 1,

for any 0<α1 <α2 <∞, 0<Q1 <Q2 <∞, where r∗
ε (α,Q), r∗

ε (α, r,Q), W are
as in Theorems 3 and 4.

Thus, f̃ is a sharp adaptive estimator in minimax sense simultaneously on Sobo-
lev classes, classes of analytical functions and classes of supersmooth functions.

A special case of Theorem 5 corresponds to the adaptive estimation of deriv-
atives. Assume that g in (5.1) is such that the derivative (g ∗ f )(β) = f , where
β < α is an integer. In view of the periodicity assumptions, this implies that the
Fourier coefficients of g ∗ f have the form bkθk with b1 = 0, and

bk =
{
(−1)β/2π−β(k − 1)−β for k odd,
(−1)β/2π−βk−β for k even,

k = 2, 3, . . . ,

if β is even (if β is odd, similar expression is obtained after some reordering of the
Fourier coefficients). Thus, (B4) is satisfied, and Theorem 5 applies in this partic-
ular case. Note that for this case and for the scale of Sobolev classes a different
method of minimax adaptive estimation is suggested by Efromovich (1998).

5.2. Tomography

The problem of tomography is to reconstruct a 2-dimensional function f from
observations of its integrals over lines. This problem appears in different fields,
for example, in radiology. For references see Deans (1983) and Natterer (1986).
Statistical aspects of the tomography problem have been studied by Johnstone and
Silverman (1990), Korostelev and Tsybakov (1989,1991,1993), Donoho and Low
(1992), Cavalier (1998a, b) among others. The main models analyzed in a statistical
context are positron emission tomography (a density estimation type model) and
X-ray tomography (a regression type model). Here we consider the X-ray tomogra-
phy problem that can be formulated as the problem of estimating f in (1.1) from
the noisy data Y where A is the Radon transform operator.

Let H = {x ∈ R : ‖x‖ ≤ 1} be the unit disk in R
2, and let µ denote the

Lebesgue measure in R
2. Consider the integrals of a function f : H → R over all

the lines that intersect H . We parametrize the lines by the length u ∈ [0, 1] of the
perpendicular from the origin to the line and by the orientation ϕ ∈ [0, 2π) of this
perpendicular.

Suppose that the function f (x1, x2) belongs to L1(H,µ) ∩ L2(H,µ). Define
the Radon transform Rf of the function f by

Rf (u, ϕ) = π

2(1 − u2)
1
2

∫ √
1−u2

−√
1−u2

f (u cosϕ − t sin ϕ, u sin ϕ + t cosϕ)dt,

(u, ϕ) ∈ S, (5.4)

where S = {(u, ϕ) : 0 ≤ u ≤ 1, 0 ≤ ϕ < 2π}. With this definition, the Radon
transform Rf (u, ϕ) is π times the average of f over the line segment (parametrized
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by (u, ϕ)) that intersects H . It is natural to consider Rf as an element of L2(S, µ0)

where µ0 is the measure defined by dµ0(u, ϕ) = 2π−1(1 − u2)
1
2 du dϕ.

The SVD of the Radon transform is well known (see Deans (1983) or John-
stone and Silverman (1990) for further references). To introduce it, define the set of
double indices > = {ν = (j, k) : j ≥ 0, k ≥ 0}. An orthonormal complex-valued
basis for L2(H,µ) is given by

φ̃ν(r, θ) = π− 1
2 (j+k+1)

1
2 Z

|j−k|
j+k (r)ei(j−k)θ , ν = (j, k) ∈ >, (r, θ) ∈ H, (5.5)

where Zb
a denotes the Zernike polynomial of degree a and order b. The correspond-

ing orthonormal functions in L2(S, µ0) are

ψ̃ν(u, ϕ) = π− 1
2 Uj+k(u)e

i(j−k)ϕ, ν = (j, k) ∈ >, (u, ϕ) ∈ S, (5.6)

where Um(cos θ) = sin((m + 1)θ)/ sin θ are the Chebyshev polynomials of the
second kind. We have Rφ̃ν = bνψ̃ν, with the singular values

bν = π−1(j + k + 1)−
1
2 , ν = (j, k) ∈ >. (5.7)

Since we work with real functions, we identify the complex bases (5.5) and (5.6)
with the equivalent real orthonormal bases {φν}, {ψν} in a standard way,

φν =



√
2Re(φ̃ν) if j > k,

φ̃ν if j = k,√
2Im(φ̃ν) if j < k.

(5.8)

Consider the statistical model (1.3) where A = R is the Radon transform op-
erator. Using the SVD (5.5) – (5.7), and arguing as in Section 1, we reduce (1.3) to
the sequence space model

yν = bνθν + ε ξν, ν = (j, k), j ≥ 0, k ≥ 0, (5.9)

where θν = (f, φν), and ξν are i.i.d. standard gausssian random variables.
Following Johnstone and Silverman (1990), consider the class of functions with

polynomially decreasing coefficients θν , i.e. the set

F(α,Q) =

f =

∑
ν∈>

θνφν :
∑
ν �=0

(j + 1)2α(k + 1)2αθ2
ν ≤ Q


 .

Johnstone and Silverman (1990) show that F(α,Q) can be identified with the
set of functions f which have 2α weak derivatives (provided 2α is an integer)
that are square integrable on H with respect to the modified dominating measure
dµ2α+1(x) = (1 − ‖x‖2)2αdµ(x). This is weaker than the square-integrability
with respect to µ assumed for the usual Sobolev spaces.

Define aν = (j + 1)α(k + 1)α , for ν = (j, k) ∈ >, j + k �= 0, and a0 = 0. To
obtain a non-decreasing sequence {aν} we order the set of indices > in the direction
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of increasing |ν| = (j + 1)(k + 1) (the multiple ν with the same value |ν| are
ordered in the direction of increasing first coordinate j ).

Define the blocks I# = {ν ∈ > : κ#−1 ≤ |ν| ≤ κ# − 1}, which satisfy (B1).
Let n = |G| where G ∈ > is given by G = max{η ∈ > :

∑
(η) b

−2
ν aν(aη − aν) ≤

Qε−2}, with (η) = {ν ∈ > : 0 ≤ ν ≤ η} and the inequality ν ≤ η for ν, η ∈ >

means the ordering as defined above.
The following lemma is an easy extension of Lemma 4.3 in Johnstone and

Silverman (1990).

Lemma 2. For r ≥ 0, as |η| → ∞, we have∑
(η)

(j + 1)r (k + 1)r = (r + 1)−1|η|r+1 log |η| + O(|η|r+1), (5.10)

∑
(η)

(j + k + 1)(j + 1)r (k + 1)r = π2

3
(r + 2)−1|η|r+2 + O(|η|r+1 log |η|),

(5.11)
and∑

(η)

(j + k + 1)2(j + 1)r (k + 1)r = c(r + 3)−1|η|r+3 + O(|η|r+2 log |η|),

(5.12)
where c is a positive constant.

Using Lemma 2 we obtain

∑
(G)

b−2
ν aν(aG − aν) = π4α

3(α + 2)(2α + 2)
|G|2α+2 + O(|G|2α+1 log |G|).

Therefore

n =
(

3(α + 2)(2α + 2)Q

π4α
ε−2

) 1
2α+2

(1 + o(1)),

and, according to (2.4),
wε = n−α(1 + o(1)).

Now, we compute the linear minimax risk rLε ('). From (2.6) and Lemma 2 we get

rLε (') = ε2
∑
(G)

b−2
ν (1 − wεaν) = rTε (α,Q)(1 + o(1))

where

rTε (α,Q) = 1

2

(
π4α

3(α + 2)

) 2α
2α+2

((2α + 2)Q)
2

2α+2 ε
4α

2α+2 .

These expressions coincide with those in Johnstone and Silverman (1990), up to
constant factors. However, the model that we consider here is different: it is a
regression type model, while Johnstone and Silverman (1990) study the positron
emission tomography (a density type model).
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Using Lemma 2 it is easy to check (2.7) and to conclude (by Theorem 1) that
the optimal linear estimator attains the minimax risk among all the estimators.

Note that we cannot use the results of Section 4 to prove that f̃ = ∑
ν θ̃νφν (with

θ̃ as in (3.12)) is a minimax adaptive estimator on the scale of classes F(α,Q). In
fact, the conditions (B3) or (B4) are not satisfied in this two-dimensional structure.
However, the conditions (A1) – (A3) hold and we can apply directly the oracle in-
equalities of Proposition 2. The details of this agrument are omitted: we use Lemma
2 and act as in the proof of Corollaries 2 and 3 to check (A1) – (A3). As a result,
the following analog of Theorem 3 is obtained.

Theorem 6. Let f̃ = ∑
ν∈> θ̃νφν be the estimator of the function f , where θ̃ is

defined in (3.12), {φk} is the basis (5.8) and bν is as in (5.7). Let the blocks Ij satisfy
(B1) with νε = max(�log log 1/ε�, 2). Then

lim
ε→0

sup
α∈[α1,α2],Q∈[Q1,Q2]

sup
f∈F(α,Q)

Ef ‖f̃ − f ‖2

rTε (α,Q)
= 1,

for any 0<α1 <α2 <∞, 0<Q1 <Q2 <∞.

6. Proofs

Proof of Proposition 1. We have

inf
h∈H∗ Rε(h, θ) ≥

J∑
j=1

min
tj


∑

k∈Ij

((1 − bktj )
2θ2

k + ε2t2
j )


 +

∑
k>N

θ2
k

=
J∑

j=1

σ 2
j ‖θ‖2

(j)

σ 2
j + ‖θ‖2

(j)

+
∑
k>N

θ2
k , (6.1)

where ‖θ‖2
(j) = ∑

k∈Ij
θ2
k . Also,

Eθ‖θ̃ − θ‖2 =
J∑

j=1

Eθ‖θ̃ − θ‖2
(j) +

∑
k>N

θ2
k . (6.2)

To prove Proposition 1 we bound the risks

Eθ‖θ̃ − θ‖2
(j) = Eθ

∑
k∈Ij

(θ̃k − θk)
2

by the respective summands in the last but one sum in (6.1), modulo small remain-
ders terms.

Fix j ∈ {1, . . . , J }. The risk Eθ‖θ̃ − θ‖2
(j) will be upper bounded differently

for the two following cases :

1◦. ‖θ‖2
(j) < ϕjσ

2
j /2,
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2◦. ‖θ‖2
(j) ≥ ϕjσ

2
j /2.

Bound on the risk under 1◦. If 1◦ holds, write using Lemma 6,

Eθ‖θ̃ − θ‖2
(j) ≤ ‖θ‖2

(j) + Eθ

(
W(‖ȳ‖2

(j))I (Āj )
)
, (6.3)

where

W(x) = −x + 2σ 2
j +

σ 4
j (45j(1 + ϕj ) − (1 − ϕ2

j ))

x
,

and
Aj = {‖ȳ‖2

(j) < σ 2
j (1 + ϕj )}.

It is easy to see that the derivative W ′(x) < 0 for all x > σ 2
j (1 + ϕj ) and also

W(σ 2
j (1 + ϕj )) = 45jσ

2
j . Thus,

Eθ

(
W(‖ȳ‖2

(j))I (Āj )
)

≤ 45jσ
2
j P (Āj ). (6.4)

On the other hand, under 1◦,

1 − ϕj/2 ≤
σ 2
j

σ 2
j + ‖θ‖2

(j)

. (6.5)

Substituting (6.4), (6.5) and the result of Lemma 4 (see the Appendix) into (6.3)
we obtain

Eθ‖θ̃ − θ‖2
(j) ≤ 1

1 − ϕj/2

‖θ‖2
(j)σ

2
j

σ 2
j + ‖θ‖2

(j)

+ 85jσ
2
j exp

(
−

ϕ2
j

165j(1 + 2
√
ϕj )2

)
,

(6.6)

Bound on the risk under 2◦. From Lemma 5 in the Appendix we get

Eθ‖θ̃ − θ‖2
(j) ≤ Eθ‖θ̄ − θ‖2

(j) =
∑
k∈Ij

Eθ (θ̄k − θk)
2,

where

θ̄k = ȳk

(
1 −

σ 2
j (1 + ϕj )

‖ȳ‖2
(j)

)
.

Next, using (A.6) in the Appendix we find

Eθ (θ̄k − θk)
2 = ε2b−2

k +2Eθ

(
(θk − ȳk)

ȳkσ
2
j (1 + ϕj )

‖ȳ‖2
(j)

)
+Eθ

(
ȳ2
k σ

4
j (1 + ϕj )

2

‖ȳ‖4
(j)

)

= ε2b−2
k + 2ε2b−2

k σ 2
j (1 + ϕj )Eθ

(
2ȳ2

k − ‖ȳ‖2
(j)

‖ȳ‖4
(j)

)
+ Eθ

(
ȳ2
k σ

4
j (1 + ϕj )

2

‖ȳ‖4
(j)

)
.



Sharp adaptation for inverse problems with random noise 345

Therefore,

Eθ‖θ̃ − θ‖2
(j)

≤ σ 2
j − (1 − ϕ2

j )σ
4
j Eθ

(
1

‖ȳ‖2
(j)

)
+ 4ε2σ 2

j (1 + ϕj )Eθ

(∑
k∈Ij

ȳ2
k b

−2
k

‖ȳ‖4
(j)

)

≤ σ 2
j − (1 − ϕ2

j )σ
4
j Eθ

(
1

‖ȳ‖2
(j)

)
+ 4ε2σ 2

j (1 + ϕj )max
k∈Ij

b−2
k Eθ

(
1

‖ȳ‖2
(j)

)

= σ 2
j − (1 − ϕ2

j − 45j(1 + ϕj ))σ
4
j Eθ

(
1

‖ȳ‖2
(j)

)
,

where the second term is negative in view of (A2). By Jensen’s inequality

Eθ

(
1

‖ȳ‖2
(j)

)
≥ 1

Eθ

(
‖ȳ‖2

(j)

) = 1

σ 2
j + ‖θ‖2

(j)

.

Thus, under 2◦ we have

Eθ‖θ̃ − θ‖2
(j) ≤

σ 2
j ‖θ‖2

(j)

σ 2
j + ‖θ‖2

(j)

(
σ 2
j + ‖θ‖2

(j)

‖θ‖2
(j)

−
σ 2
j

‖θ‖2
(j)

+
(ϕ2

j + 85j)σ
2
j

‖θ‖2
(j)

)

≤
σ 2
j ‖θ‖2

(j)

σ 2
j + ‖θ‖2

(j)

(
1 +

2(ϕ2
j + 85j)

ϕj

)
. (6.7)

Final bound on the risk. We have 0 < ϕj < 1, in view of (A2). Thus,

1

1 − ϕj/2
≤ 1 + ϕj ≤ 1 +

2(ϕ2
j + 85j)

ϕj

.

Using this remark and (6.6), (6.7), we obtain for any θ ∈ #2,

Eθ‖θ̃ − θ‖2
(j) ≤ (1 + 2ϕj + 165j/ϕj )

σ 2
j ‖θ‖2

(j)

σ 2
j + ‖θ‖2

(j)

+85jσ
2
j exp

(
−

ϕ2
j

165j(1 + 2
√
ϕj )2

)
.

Summing up over j and using (6.2), we find

Eθ‖θ̃ − θ‖2 ≤ (1 + ϕ(ε))

J∑
j=1

σ 2
j ‖θ‖2

(j)

σ 2
j + ‖θ‖2

(j)

+
∑
k>N

θ2
k + 8c1ε

2.

In view of (6.1), this proves Proposition 1. ��
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Proof of Corollary 1. Denote

k(ε) = max {k : θ2
k b

2
k ≥ ε2}.

Note that k(ε) → ∞, as ε → 0. In fact, assume that this is not true. Then, there ex-
ists a sequence εi → 0 (as i → ∞) and an integer M < ∞ (independent of i) such
that supi k(εi) ≤ M . We get θ2

k b
2
k ≤ ε2

i , ∀i, ∀k > M , and thus θk = 0, ∀k > M ,
since bk > 0. This contradicts the assumption that there exists the infinite number
of non-zero coefficients θk . Next,

inf
h∈H∗ Rε(h, θ) ≥ inf

h
Rε(h, θ) =

∑
k

ε2b−2
k θ2

k

ε2b−2
k + θ2

k

≥ε2
b−2
k(ε)

ε2b−2
k(ε)θ

−2
k(ε) + 1

≥
ε2b−2

k(ε)

2
.

Since bk → 0 as k → ∞ and ϕ(ε) → 0 as ε → 0, we get

(1 + ϕ(ε)) inf
h∈H∗ Rε(h, θ) + 8c1ε

2 ≤ (1 + ϕ(ε) + 16c1b
2
k(ε)) inf

h∈H∗ Rε(h, θ)

= (1 + o(1)) inf
h∈H∗ Rε(h, θ).

This, together with Proposition 1, proves the Corollary. ��
Proof of Lemma 1. Let h ∈ Hmon be given. This means that λ ∈ $mon is given
where λk = bkhk . Define

λ̄k =



1 k ∈ I1,

λκj−1 k ∈ Ij , j = 2, . . . , J,
0 k > N,

and h̄k = b−1
k λ̄k. It suffices to show (3.14) since for the proof of (3.13) we can con-

sider only the case where infh∈Hmon
Rε(h, θ) ≤ r2. Indeed, the sequence h0 = {h0

k}
such that h0

k = b−1
k I {k ∈ I1} satisfies Rε(h

0, θ) ≤ σ 2
1 + ‖θ‖2 ≤ σ 2

1 + r2, and
h0 ∈ H∗. Hence, if infh∈Hmon

Rε(h, θ) > r2, (3.13) is straightforward.
Thus, assume that h ∈ Hmon, θ ∈ #2 are such that Rε(h, θ) ≤ r2. Let us prove

that
(1 − λ̄k)

2 ≤ (1 − ηε)
−2(1 − λk)

2. (6.8)

We first show that λk < ηε for k > N . In fact, let M = max {k : λk ≥ ηε}. Then,

r2 ≥ Rε(h, θ) ≥ ε2
M∑
k=1

b−2
k λ2

k ≥ ε2η2
ε

M∑
k=1

b−2
k

which implies M ≤ max {m :
∑m

k=1 b−2
k ≤ r2ε−2η−2

ε } ≤ N. Thus, λk < ηε for
k > N . For k > N we have λ̄k = 0 and thus (6.8) holds since (1 − λ̄k)

2 = 1 ≤
(1 − ηε)

−2(1 − λk)
2.

Next, we have 0 ≤ λk ≤ λ̄k ≤ 1 for all k ≤ N . Hence (6.8) holds for k ≤ N .
Using (6.8) we get

∞∑
k=1

((1 − λ̄k)
2θ2

k + ε2h̄2
k) ≤ (1 − ηε)

−2
∞∑
k=1

(1 − λk)
2θ2

k + ε2
∞∑
k=1

h̄2
k. (6.9)
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It remains to show that

ε2
∞∑
k=1

h̄2
k ≤ (1 − ηε)

−2ε2
∞∑
k=1

h2
k + σ 2

1 . (6.10)

We have
N∑

k=1

h2
k ≤

∞∑
k=1

h2
k,

∞∑
k=1

h̄2
k =

N∑
k=1

h̄2
k.

Remark that

ε2
N∑

k=1

h̄2
k = ε2

N∑
k=1

b−2
k λ̄2

k = σ 2
1 +

J−1∑
j=1

λ̄2
κj
σ 2
j+1.

Under assumption (A3) this gives

ε2
N∑

k=1

h̄2
k ≤ (1 + ηε)

J−1∑
j=1

λ̄2
κj
σ 2
j + σ 2

1 ≤ (1 − ηε)
−2

J−1∑
j=1

λ̄2
κj
σ 2
j + σ 2

1 . (6.11)

Now, by monotonicity, λ2
k ≥ λ2

κj
= λ̄2

κj
, k ∈ Ij . Hence,

ε2
N∑

k=1

h2
k ≥

J−1∑
j=1

λ̄2
κj
σ 2
j . (6.12)

Using (6.11) and (6.12) we obtain (6.10). Finally, note that (6.9) and (6.10) entail
(3.14). ��

Appendix

Lemma 3. For any t > 0:

p1(t) = P


∑

k∈Ij

θkb
−1
k ξk ≥ t


 ≤ exp

(
− t2

2
∑

k∈Ij
θ2
k b

−2
k

)
, (A.1)

p2(t) = P


∑

k∈Ij

b−2
k (ξ2

k − 1) ≥ t


 ≤ exp

(
− t2

4(
∑

k∈Ij
b−4
k + t maxk∈Ij b

−2
k )

)
.

(A.2)

Proof . Inequality (A.1) is straightforward since
∑

k∈Ij
θkb

−1
k ξk is a gaussian ran-

dom variable with mean zero and variance
∑

k∈Ij
θ2
k b

−2
k . Inequality (A.2) is proved

by a standard argument using exponential Markov inequality (see e.g. Cavalier,
Golubev, Picard and Tsybakov (2000)). ��.
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Lemma 4. Under the assumptions of Proposition 1 and if 1◦ holds, we have

P(Āj ) ≤ 2 exp

(
−

ϕ2
j

165j(1 + 2
√
ϕj )2

)
, j = 1, . . . , J.

Proof . From the definition of ȳ in (3.10) we have

P(Āj ) = P
(
‖ȳ‖2

(j) ≥ σ 2
j (1 + ϕj )

)

= P


2ε

∑
k∈Ij

θkb
−1
k ξk + ε2

∑
k∈Ij

b−2
k (ξ2

k − 1) ≥ σ 2
j ϕj − ‖θ‖2

(j)


 .

Using 1◦, for any 0 < δ < 1 we get

P(Āj ) ≤ P


2ε

∑
k∈Ij

θkb
−1
k ξk + ε2

∑
k∈Ij

b−2
k (ξ2

k − 1) ≥
σ 2
j ϕj

2




≤ p1

(
δσ 2

j ϕj

4ε

)
+ p2

(
(1 − δ)σ 2

j ϕj

2ε2

)
. (A.3)

Applying (A.1) of Lemma 3 and 1◦ we find

p1

(
δσ 2

j ϕj

4ε

)
≤ exp

(
−

(δσ 2
j ϕj )

2

32ε2
∑

k∈Ij
θ2
k b

−2
k

)

≤ exp

(
−

δ2‖θ‖2
(j)σ

2
j ϕj

16ε2 maxk∈Ij b
−2
k ‖θ‖2

(j)

)
(A.4)

= exp

(
− δ2ϕj

165j

)
,

whenever ‖θ‖(j) �= 0. If ‖θ‖(j) = 0, (A.5) is obvious.
Next, (A.2) of Lemma 3 yields

p2

(
(1 − δ)σ 2

j ϕj

2ε2

)

≤ exp


−

(1 − δ)2ϕ2
j

(∑
k∈Ij

b−2
k

)2

16
(∑

k∈Ij
b−4
k + (1 − δ)ϕj

∑
k∈Ij

b−2
k maxk∈Ij b

−2
k /2

)

 (A.5)

≤ exp

(
−

(1 − δ)2ϕ2
j

165j(1 + ϕj/2)

)
.

Choose

δ =
√
ϕj

1 + 2
√
ϕj

.
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Then
(1 − δ)2

1 + ϕj/2
≥ 1

(1 + 2
√
ϕj )2 .

Using this inequality and (A.3) – (A.5) we obtain the lemma. ��
Lemma 5. Let

θ̄k = ȳk

(
1 − c

‖ȳ‖2
(j)

)
, θ̃k = ȳk

(
1 − c

‖ȳ‖2
(j)

)
+
, c > 0.

Then
Eθ‖θ̃ − θ‖2

(j) ≤ Eθ‖θ̄ − θ‖2
(j).

Proof of this lemma follows the same lines as the proof of Theorem 6.2 in
Lehmann (1983), where the case bk ≡ 1 is considered.

Lemma 6. We have

Eθ

(
(θk − ȳk)

ȳk

‖ȳ‖2
(j)

)
= ε2b−2

k Eθ

(
2ȳ2

k − ‖ȳ‖2
(j)

‖ȳ‖4
(j)

)
, (A.6)

and, for any j = 1, . . . , J ,

Eθ‖θ̃ − θ‖2
(j)

≤ ‖θ‖2
(j) + Eθ

[(
−‖ȳ‖2

(j) + 2σ 2
j +

σ 4
j (45j(1 + ϕj ) − (1 − ϕ2

j ))

‖ȳ‖2
(j)

)
I (Āj )

]
.

(A.7)

Proof . Equation (A.6) follows from integration by parts (cf. Stein (1981)). Next,
using Stein’s (1981) unbiased risk estimator for Eθ (θ̃k −θk)

2 and summing up over
k ∈ Ij we find after some algebra

Eθ‖θ̃ − θ‖2
(j) = σ 2

j + Eθ

[
(‖ȳ‖2

(j) − 2σ 2
j )I (Aj )

]

+Eθ

[(
4ε2σ 2

j (1 + ϕj )
∑

k∈Ij
b−2
k ȳ2

k

‖ȳ‖4
(j)

−
σ 4
j (1 − ϕ2

j )

‖ȳ‖2
(j)

)
I (Āj )

]
.

Since
ε2

∑
k∈Ij

b−2
k ȳ2

k ≤ ε2 max
k∈Ij

b−2
k ‖ȳ‖2

(j) = σ 2
j 5j‖ȳ‖2

(j),

and Eθ‖ȳ‖2
(j) = ‖θ‖2

(j) + σ 2
j , we obtain (A.7). ��

Proof of Corollary 2. Suppose w.l.o.g. that ε is small enough, so that 0 < ρε < 1.
Note that

�x� ≥ (1 − ρε)x, ∀x ≥ ρ−1
ε . (A.8)
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We first study the asymptotics of 5j when (B1)–(B3) hold. Clearly, as ε → 0,

51 = max1≤k≤νε b
−2
k∑νε

k=1 b−2
k

≤ b−2
min

b−2
max

ν
2β
ε∑νε

k=1 k2β
= O

(
1

νε

)
, (A.9)

Next, for j ≥ 2, assuming that κj − 1 > κj−1 (which is true for ε small enough),

∑
k∈Ij

b−2
k ≥ b−2

max

κj−1∑
k=κj−1

k2β ≥ κ
2β
j−1b

−2
max(κj − κj−1). (A.10)

Thus, for j ≥ 2,

5j = maxk∈Ij b
−2
k∑

k∈Ij
b−2
k

≤ b−2
min

b−2
max

(
κj

κj−1

)2β 1

κj − κj−1
. (A.11)

Using (A.8) we find

κj − κj−1 = �νερε(1 + ρε)
j−1� ≥ (1 − ρε)νερε(1 + ρε)

j−1, (A.12)

provided ε is small enough, so that νερε ≥ ρ−1
ε .

We now show that the ratio κj /κj−1 in (A.11) is bounded. By definition, for
j ≥ 2

κj = νε +
j∑

s=2

�νερε(1 + ρε)
s−1� ≤ νε


1 + ρε

j−1∑
s=1

(1 + ρε)
s


 = νε(1 + ρε)

j ,

(A.13)
and, using (A.8) (we suppose that ε is small enough, so that νερε ≥ ρ−1

ε ),

κj−1 = νε +
j−1∑
s=2

�νερε(1 + ρε)
s−1� ≥ νε(1 + ρε)

j

(
1 − ρε

1 + ρε

)
.

Thus, (
κj

κj−1

)2β

≤
(

1 + ρε

1 − ρε

)2β

= 1 + o(1), ε → 0. (A.14)

This, together with (A.11)–(A.12) yields max2≤j≤J 5j = O
(

1
ρενε

)
, ε → 0.Tak-

ing into account (A.9) and (B2), we find that (A2) is satisfied for ε small enough,
and

ϕ(ε) = max
1≤j≤J

(25γ

j + 1651−γ

j ) = O((ρενε)
−γ ), ε → 0. (A.15)

We now check that (A1) holds for ε small enough, whenever (B1)–(B3) hold.
Fix an arbitrary C > 0. For j = 1, using (A.9), we have maxk∈I1 b

−2
k

exp (−C5
2γ−1
1 ) ≤ b−2

minν
2β
ε exp (−C5

2γ−1
1 ) → 0, ε → 0, for any C > 0, 0 <

γ < 1/2. Now, if j ≥ 2, using (A.11), (A.12), and (A.14) we find, for ε small
enough,

5
2γ−1
j ≥ (νερε(1 + ρε)

j /d1)
1−2γ ,
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and, by (B3) and (A.13),

max
k∈Ij

b−2
k ≤ b−2

min(νε(1 + ρε)
j )2β = ρ−2β

ε b−2
min(νερε(1 + ρε)

j )2β,

where d1 > 0 is a constant. Thus, there exist constants d2 > 0 and ε0 ∈ (0, 1)
such that for all 0 < ε < ε0 we have maxk∈Ij b

−2
k exp (−C5

2γ−1
j ) ≤ ρ

−2β
ε

exp (−d25
2γ−1
j ), j ≥ 2, and

J∑
j=2

(
max
k∈Ij

b−2
k

)
exp(−C5

2γ−1
j )

≤ ρ−2β
ε

∞∑
j=1

exp
(
−d2(νερε(1 + ρε)

j /d1)
1−2γ

)
= o(1),

as ε → 0, since (1 + ρε)
j ≥ jρε and in view of the definition of ρε, νε. We see

that (A1) is satisfied, and even more: the sum in (A1) is o(1), as ε → 0.

Thus, we have shown that the assumptions of Proposition 1 are satisfied under
the assumptions of Corollary 2. Hence, the oracle inequality of Proposition 1 holds
with ϕ(ε) satisfying (A.15). This yields the inequality of Corollary 2. ��
Proof of Corollary 3. Using Proposition 2, it suffices to check the conditions (A1)
– (A3) and to show that

ηε = o(1), σ 2
1 = O(ε2ν2β+1

ε ), ε → 0. (A.16)

But (A1) and (A2) have already been checked in the previous proof, and the second
relation in (A.16) is straightforward. Thus, it remains to show that (A3) holds with
ηε = o(1).

First,

σ 2
2

σ 2
1

= O

(
κ

2β
2 (κ2 − κ1)

κ
2β+1
1

)
= O(ρε) = o(1), ε → 0. (A.17)

Now, in view of (B4) there exists α(ε) > 0, α(ε) → 0, independent of k, such that
|b−2

k − b−2∗ k2β | ≤ b−2∗ k2βα(ε) for all k ≥ νε. We assume that ε is small enough,
so that α(ε) < 1. If k ∈ Ij , j ≥ 2, we have k ≥ νε, and thus for j ≥ 2,

σ 2
j+1

σ 2
j

≤
(

1 + α(ε)

1 − α(ε)

) ∑
k∈Ij+1

k2β∑
k∈Ij

k2β ≤
κ

2β
j+1(κj+1 − κj )

κ
2β
j−1(κj − κj−1)

(1 + o(1)), ε → 0.

(A.18)
Using (A.12) and (A.14) we obtain(

κj+1

κj−1

)2β κj+1 − κj

κj − κj−1
≤

(
1 + ρε

1 − ρε

)4β

× νερε(1 + ρε)
j

(1 − ρε)νερε(1 + ρε)j−1 = 1 + o(1), ε → 0.

This and (A.17) – (A.18) entail (A3) with ηε = o(1). ��
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