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Abstract. Recent worksby J.F. Le Gall and Y. Le Jan [15] have extended the genealogical
structure of Galton-Watson processes to continuous-state branching processes (CB). We are
here interested in processes with immigration (CBI).

The height process H which contains all the information about this genealogical struc-
ture is defined as a simple local time functional of a strong Markov process X*, called the
geneal ogy-coding process (GCP). Wefirst show its existence using 1t8’'s synthesis theorem.
We then give a pathwise construction of X* based on a Lévy process X with no negative
jumps that does not drift to 4+oco and whose Laplace exponent coincides with the branching
mechanism, and an independent subordinator ¥ whose Laplace exponent coincides with
the immigration mechanism. We conclude the construction with proving that the local time
process of H isa CBI-process.

Asan application, wederivethe anal ogue of the classical Ray—K night—Williamstheorem
for ageneral Lévy process with no negative jumps.

1. Introduction

A continuous-state branching process (CB) isastrong Markov process Z with val-
uesin [0, oo], 0 and oo being absorbing states. It is characterized by its branching
mechanism function v and enjoys the following branching property. The sum of
two independent CB(y) starting respectively from x and y, is a CB(y) starting
fromx + y. CB-processes are the anal ogue of (Galton-Watson) discrete-branching
processes (DB) in continuous time and continuous state-space. The very difference
between DB and CB-processes is that the definition of a DB-process is based on
arandom tree (Z,, is the number of particles at the n-th generation), whereas that
of aCB-processisintrinsic. In thisdirection, JF. Le Gal and Y. Le Jan [15] have
defined a continuous geneal ogical structureviaanon-Markovian processcalled the
height process. It is the continuous anal ogue of the process of successive heightsin
thefinite discrete tree explored in the lexicographical order. The motivation for the
study of the genealogical structure of CB-processesisto extend the construction of
superprocesses with quadratic branching to more general branching mechanisms.
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In the special case of quadratic branching mechanism, anatural construction of the
superprocessinvolvesthe path-val ued processknown asthe Brownian snake, which
loosely speaking combines quadratic branching and Brownian spatial motion. Ex-
tending these results to other branching mechanisms requires detailed information
about the genealogical structure of the associated CB-process. For a deep under-
standing of thistopic, see[16].

Asin the discrete setting, the CB-process does not contain the information on
the genealogy. The height process is therefore only defined in law. Nevertheless,
a pathwise construction can be given from the paths of a spectrally positive (i.e.
with no negative jumps) Lévy process X whose Laplace exponent coincides with
the branching mechanism function . Namely, for every t > 0O, H, is defined by

1
H =lim = /O Lix,—infy<r< X, <e}ds- D

Roughly speaking, as H; isthe height in the tree of particle ¢, thetota ‘time spent’
by H at level x > 0istheamount of population belonging to generation x. Indeed
the main theorem of [15] statesthat the local time process of H asafunction of the
space variable (Z,, x > 0) isaCB(y).

Next consider aGalton-Watson tree and add independently from thetree at each
generation n a random number Y, of particles, where the Y;’s are i.i.d. Then the
process that associates to every integer n the number of particles of the n-th gener-
ation of the modified tree is called a discrete-branching process with immigration
(DBI). Adding at each generation n — 1 avirtual father to theimmigrating particles
allows us to keep up with the tree structure. The aim of the present paper isto find
out the continuous anal ogue of such a geneal ogy.

Indeed DBI-processes have a continuous analogue known as CBI-processes.
These are strong Markov processes valued in [0, co], where 0 is no longer absorb-
ing. They are characterized by their branching mechanism function  and their
immigration mechanism function ¢. The sum of a CBI(y , ¢) started at x and an
independent CB(v/) started at y isaCBI(y , ¢) started a x + y. To give a path-
wise construction of the height process, we now need more than the information
contained in the paths of the spectrally positive Lévy process X. We thus have to
show the existence of a strong Markov process X* called the genealogy-coding
process (GCP) satisfying the next assertion. Applying an anal ogue of thelocal time
functional (1) to X* gives rise to a newly distributed height process H*, whose
local time processisa CBI(yr, ¢).

The GCP is defined by its excursion measure N* away from 0. Let Y denote a
subordinator with Laplace exponent ¢, and X a Lévy process with Laplace expo-
nent vy independent from Y. The measure N* isthen defined in terms of the law of
X killed upon reaching 0 and the Lévy measure of jumps of Y. The existence of a
mesasure of probability P* with excursion measure N* follows from [t6’s synthesis
theorem. A pathwise construction of X* isalso given by

X=X, +vy - inf X,)).

This is completed by proving that the local time process of H* is as expected a
CBI(V, ).
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The last section is devoted to the extension of the Ray—K night-Williams the-
orem to general spectrally positive Lévy processes. For simplicity, assume that X
isarecurrent Lévy process with no negative jumps and Laplace exponent . The
existence of alaw P' of X conditioned to stay positive iswell-known. Our theorem
identifies the Lévy process conditioned to stay positive and the geneal ogy-coding
process associated to a branching mechanism v, and an immigration mechanism

¢, where

d(\) = @ A>0.

In the Brownian case, the height process under P" isaBessel process of dimension
3 (BES(3)). Our theorem thus reduces in this case to the Ray—Knight-Williams
theorem which ensures that the local time process of a BES(3) is a CBI(v/, ¢),
where v (1) = A2/2, ¢ (1) = /2, that is a squared Bessel process of dimension 2
(see[25]).

The paper is organized as follows. In the next section, we set the main nota-
tions and recall some known facts about CBI-processes. We also give details in
the discrete setting concerning the height process and the geneal ogy-coding walk
(GCW). In section 3, we show the existence of the law of the GCP X* and give a
pathwise construction of X*. In section 4, we check that the height process derived
from the GCP has the requested law, that is its local time process as a function of
the space variableisa CBI-process. Thelast section deal s with the extension of the
Ray—K night-Williams theorem.

2. Preliminaries

Consider a finite rooted tree, using the coding of Neveu. A vertex u of the tree
which belongs to generation n € N is denoted by a finite sequence of positive
integersu = (uo, ..., u,) defined recursively as follows. Forany k = 0, ..., n,
the unique ancestor (ug, ..., u;—1) of u at generation k — 1 (i.e. theroot if k = 0)
has a distinguishable offspring ordered from left to right. Then the ancestor of u
at generation k belongs to this offspring, and u; denotes its rank in this offspring.
Explore this tree according to the lexicographical order associated to this coding
(for example 1 < 11 < 12 < 121). To the n-th visited particle, associate W,, the
sum of the numbers of younger brothers of all itsancestors, including itself. Define
the height process H,, as the number of generation of the n-th particle. It can be
recovered from W by

H,=cad{(j:0<j<n W;= J|<r11f<n Wi}
We call H the exploration process, or height process. It is clear that this process
contains the whole information about the genealogy of the tree.

Let us introduce probability measures on trees. First consider f(s) =
> k>0 v(k)s* a probability generating function, and the probability measure as-
sociated to Galton-Watson trees with offspring distribution v. The key idea of [15]
is that under this probability, W is a random walk on the integers with jump dis-
tribution v(k) = v(k + 1),k = —1,0, 1, ... killed at its hitting time of —1. The
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associated Galton-Watson process Z, or DB-process (discrete branching), is then
equal to
ZP:Zj'Hn=P’ pZO.
n>0
Itisclear that conversely one can start with arandom walk with jump distribution
v. The same method then applies to construct a Galton-Watson tree (thanks to the
knowledge of H) and the associated DB-process.

Asasecond step, add someimmigration. Let g(s) = > ;¢ w(k)sk, beaproba-
bility generating function. We can still achieve the immigration procedure sticking
to atree-like structure. We define this tree by giving a virtual father to the immi-
grating particles. Start with N + 1 particles, and mark the rightmost one.

1. each generation contains one and only one marked particle. Give it k chil-
dren with probability u(k — 1), k = 1, 2, ... Give independently to the other
particles an offspring with distribution v.

2. at each generation, mark the rightmost particle.

Thediscrete-time branching process with branching mechanism v andimmigration
mechanism ., denoted by DBI( f, g), isthe process that associates to each integer
n > 0the number Z,, of unmarked particles of the n-th generation. It isaMarkov
chain on the nonnegative integers with transition matrix (P;;) given by

Eis”) =) Pys/ = (f(s)gs). ieN

j=0

In particular, a DBI(f, 1) is a DB(f) (a time-discrete branching process with
branching mechanism f), and if u; (s) denotes the quantity E1(s%*) when g = 1
(ux is known to be the k-th iterate of f), then for every DBI(f, g) starting from
i eN,
n—1
Ei(s™) = (un(s)' [ [ eua(s)), s €[0.1]. @)
k=0
With this new probability measure on (marked) trees, we are able to state a more
general result. First set some notations. Let € denote a generic path with finite du-
ration V(e) > 1, defined on {1, ..., V(e)}. Now for a sequence (¢;);>1 Of finite
paths, define recursively their concatenation [e] = [e;];>1 as follows. [e]o = O,
and
[elvien)+-+Ve)+k = €nt1r(k), n>11<k < V(eq1).

In the following statement, we are still interested in the total number of younger
unmarked brothers W,, of the ancestors of the n-th particle, and inits height in the
tree, but this tree now is distributed according to the branching mechanism v and
immigration w. We skip the proof for conciseness.

Proposition 1. Recall that v(k) = v(k + 1),k > —1.

Set W* = [W®];51, where the W ’s are i.i.d. finite random paths such that
each W@ is a random walk with initial distribution u, with step distribution ¥,
and killed at Tp + 1, where To = inf{n > 1 : W,, = 0}. The process W* is called
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the GCW(f,q), or geneal ogy-coding walk associated to the probability generating
functions f and g. Define

Hy=card{j:0<j<n W/ = inf WS} n >0,

Jj=<I=n

and

Z; = Z]-H;=pv D= 0.

n>0
Then (Z;, —1, p > 0)isaDBI(f, g).

We stress that by construction, Z* is the total number of particles belonging to
generation p. We thus have to remove the marked particle at each generation to
recover the DBI-process.

1
/N ;
11 12 13 21

221

Immigrating particles (® ) are given avirtual father (O ) and have independent
descendant trees with the same branching mechanism as ordinary branching
particles( ).

Y2
Zo
Y1 Y3

Fig. 1. Galton-Watson tree with immigration and associated GCP W* (W is the total num-
ber of younger unmarked brothers of the ancestors of the n-th particle)
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In the tree semantics, H,' isthe height in the tree of the n-th visited particle. If
Yo =9Sup{j <n: W;:O},then

Hr=cadl0<j<y,: W; =0} +cad{y, <j<n: W;-’ = ji<r[1f<” Wy,
Thefirst term isthe number of times when the GCW visits the rightmost branch of
thetree, that isthe height of the last visited marked particle. Then the n-th particle
is a descendant of this marked particle, and the second term is its height in the
corresponding subtree.

Notice that two random walks (r.w.) underlie the discrete setting. The first is
a so-caled left-continuous r.w. W with step distribution b. The second is the re-
newal process Y with jump distribution u that gives at time n the total number of
immigrants up until the n-th generation.

In[15], thetreeislinked toal |FO queue. Every (positive) increment W,, —W,,_1
isviewed as some service required by acustomer arrived at timern. Thetask isover
as soon as W reaches W,,_1, and in the meanwhile, each new service is prioritary
(Last InFirst Out). The genealogy isbuilt up by saying that each customer isthe son
of who heinterrupted. In the case with immigration, we suppose that extra service
isrequired every timethe queueis empty. These servicesarei.i.d. and independent
of the rest of the queue (i.e. the increments of the renewal processY).

We now deal with the continuous setting. It is well-known that DBI-processes
have a continuous state-space time-continuous anal ogue, called CBI-processes. L et
Y bethe Laplace exponent of aspectrally positive L évy process, and ¢ that of asub-
ordinator (v isconvex and ¢ isconcave). They are specified by the Lévy-Khinchin
formula

v(L) = ai + BAZ + /oo(e—“ — 1+ arl,~1)Adr), 1>0, (3
0

wherea € R, 8 > 0 denotes the Gaussian coefficient, and the Lévy measure A is
ameasure on (0, oo) suchthat [;°(r% A 1) A(dr) < oo. Similarly

(.¢]
d(L) = 82 +/ 1—-e*)r@dr), Ar=0, (4)
0
where § > 0isthedrift coefficient and the Lévy measure I' is a measure such that
Jo G ADT(dr) < oo.
A CBI-process with branching mechanism » and immigration mechanism ¢

is denoted by CBI(y/, ¢). It isaMarkov process Z taking valuesin [0, oco], whose
transition kernels are characterized by their Laplace transform

E.(e7") = E(™% | Zo = x)
= exp[—xu; (1) — /otcb(us()»))dS]» x>0,1>0,
where u,; (1) is the unique nonnegative solution of the integral equation
v(t) + /Ot Y (v(s))ds = A, A>0,¢>0. (5)

For existence and unicity of such aprocess Z, see [13, Theorem 1.1].
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Notice that a spectrally positive Lévy process is the continuous analogue of a
left-continuous r.w., and a subordinator that of arenewal process (the jumps of the
subordinator embody the arrival of immigrants). Compare the preceding equations
with (2), and see [19] for more details, and the references therein.

In particular, a CBI(y, 0) is a CB(y) that satisfies the following branching
property. The sum of two independent CB(y) starting respectively from x and y,
isaCB(vy) starting from x + y. Inthat case (¢ = 0), we give abrief account of the
continuous analogue results given in [14] and [15].

Consider a spectrally positive Lévy process X with Laplace exponent vy, and
assume that ¢/ (0+) > 0 (the process X does not drift to +00). Define the height
process H; asthelocal timeat O at timer of S — X® where

th):Xt—X(t,S),, 0<s<=it,

and S its associated supremum process S\” = supg_, -, X\". The normalization
for thislocal timeis such that

1t 1t
H, = Islf(} g/(; 1{S§”—X§U<8}ds = |8I£Q g/é l{Xs_meSrft X, <e)ds. (6)

Moreover, there is alower semicontinuous version of the process (H;, r > 0) with
valuesin[0, oo]. Next let T, denotethefirst hitting time of (—co, y) by X (y < 0).
The main theorem of [15] states that the random measure Z, on R defined by

T
< Z.h >=/ h(H,)ds,
0

hasadensity (Z,, a > 0) w.r.t. Lebesgue measure, that isa CB(y) started at x (Z
can be viewed as the local time process of H).

When someimmigration is added, we should like to find out an anal ogue of the
geneal ogy-coding process (W in the discrete setting, X in the continuous setting)
and then check that the same kind of construction givesrise to abranching process
with immigration.

We point out that there isan alternative way of defining the geneal ogy of a continu-
ous tree. Though, this definition does not seem appropriate for the study of snakes
and superprocesses. We could recall these results (see [6]), but it is as easy to give
straight away the (more general) analogue in the case with immigration.

We first emphasize the role of the initial value of the CBI-process and write
Z, = Z(t, a) for thevalueat timer of aCBI (v, ¢) startingfrom Zg = a € [0, 00).
The additive property for branching processesimpliesthat if Z’(-, b) isan indepen-
dent CBI (v, 0) (that is a CB(y)) starting from b, then Z(-, a) + Z'(-, b) has the
samelaw as Z (-, a 4+ b). Invoking Kolmogorov's theorem, we can thus construct a
process (Z(t,a),t > 0and a > 0) such that Z(-, 0) isa CBI(y, ¢) starting from
0, and forevery a,b > 0, Z(-,a + b) — Z(-, a) isindependent from the family of
processes (Z(-, ¢), 0 < ¢ < a) and hasthe law of aCB(yr) starting from b.
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In particular, for each fixed ¢+ > 0, we will choose the right-continuous modifi-
cation of the process Z(z, -), which is then a subordinator with Laplace exponent
u;(-) and initial value o, apositiver.v. with Laplace exponent

t
Ee ) — exp(— / () ds). 2= 0.120.
0

In the following statement, the positive real number S©-9) () is to be interpreted
as the total progeny at time ¢ of the amount of population [0, a] present at time
s, with branching-immigrating mechanism (v, ¢). The proof of this statement is
easily adapted from [6, Proposition 1].

Proposition 2. On some probability space, there exists a process (S¢" (a), 0 <
s < tanda > 0) such that

(i) For every 0 < s < 1, &9 = (§¢)(a),a > 0) is a subordinator with
Laplace exponent u;_(-) starting fromar.v. ¢ (0) distributed as or; ;.

ii) For every integer p > 2, and0 < 1, < --- < t,, the subordinators
p
St - §U-11) gre independent and
S([lvrp)(a) — S([p—l!tp) 0:-+0 S(tl’ZZ)(a)’ Va >0 a.s.

Finally, the processes (S (a),r > 0anda > 0) and (Z(¢, a),t > Oanda > 0)
have the same finite-dimensional marginals.

Asin [6], this proposition enables us to make the following consistent definition
of genealogy. For every a, b > 0,and 0 < s < ¢, we say that theindividua a in
population at time ¢ has ancestor at time s the individua b if b is ajump time of
S(s,t) and

SED b=y < a < S (b).

3. The genealogy-coding process X*

In this section, weintroduce the continuous anal ogue of the geneal ogy-coding walk
defined in the last section. We will call it the geneal ogy-coding process (GCP) X*.
Roughly speaking, the GCP is a spectrally positive Lévy process reflected on the
range of an independent subordinator Y. In particular when Y isdeterministic, the
GCPistheLévy process X reflected at O, thatis, X* = X —I,wherel; = inf;<, X;.
In the next section we will see the link between its paths and CBI-processes, in a
way similar to that of Proposition 1.

3.1. It&'ssynthesis

In the last section, the sample-paths of the GCW( f, g) could be viewed as the con-
catenation of aseguence of independent excursionsaway from O, which started with
ajump of law p (immigration mechanism), and then proceeded as the random walk
with step distribution v (branching mechanism) killed upon hitting 0. Informally,
this suggests that we should define the GCP as the concatenation of a sequence of
independent excursions which start with the jump of acertain subordinator Y (with
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Laplace exponent ¢ for the immigration), and then evolve like a certain spectrally
positive Lévy process X (with Laplace exponent v for the branching mechanism)
killed upon reaching 0.

This fits the classical problem of recurrent extensions of Markov processes,
which goes back to Feller and 1t6 [11]. More precisely, given a Markov process X
killed upon hitting some given point xq for the first time, the program is to char-
acterize al the recurrent Markov processes X’ having the same law as X when
killed at the first hitting time of xg. The killed Markov process X is called the
minimal process, and the possible X’ are the extensions of the minimal process. In
the Brownian case, the extensions are known as Feller Brownian motions (see[12,
p.186]).

The definitive treatment of this question was done in [23],[24], and a survey
can befoundin[8]. See also [21] for an analytic counterpart.

The usual way of tackling the extension problem relies on excursion theory.
Roughly speaking, it uses Itd’'s synthesis theorem which links i.i.d. excursions to-
gether in order to produce a Markov process. To apply this tool, we need to set
some notations and recall some facts about excursion theory.

We use the canonical representation. Let D = D([0, c0), R) be the space
of cadlag functions, endowed with Skorohod's topology and the natural filtration
(F)r=>0. Let &€ be the space of excursions e in D (paths with finite lifetime V (¢)).
Now let M be a recurrent real-valued strong Markov process with cadlag paths,
such that O isregular, that is

Po(inf{s >0: My =0} =0) = 1.

Then it isknown that there exists a unique (up to a multiplicative constant) contin-
uous increasing process L adapted to the natural filtration of M, called local time
at level 0 of M, such that

1. The support of dL coincides with the closure of {r : M, = 0} as.
2. L isan additive functiona of M.

Theinverseloca timet
g =Iinf{r >0:L; > s}

is a subordinator whose jumps coincide exactly with the excursion intervals of M.
Specifically, we can index the excursions of M away from 0 by the jump times of
t.For¢ > O, set

o — (M;,_4+5,0<s <t -5 )if - <7
a T otherwise,

where Y isan additiona isolated point. A fundamental theorem by 116 asserts that
(er, t > 0) isaPoisson point processin £ U{Y}. Itscharacteristic measureiscalled
the excursion measure and is a (o -finite) infinite measure on £. This measure has
the strong Markov property and its semigroup is that of M killed upon reaching O.

Conversely, the program of Salisbury and Itd is to produce a Markov process
with given excursion measure. In our particular case, we work by analogy with
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the discrete setting. Recall that the excursion of the GCW( f, g) starts with some
immigration with law p and then proceeds as the random walk of jump distribution
v until it hits 0. Now in the continuous setting, the immigration is driven by some
subordinator Y and thus has two components, alinear immigration (due to the drift
part of the subordinator), and an immigration by jumps (the jump part of the subor-
dinator). We thus have to cope with two kinds of excursions, those starting with a
jump of Y that behave asthe Lévy process X until it reaches 0, and those starting at
0 (infinitesimal immigration). Intuitively, the latter should have in some sense the
limiting distribution as x — 0+ of X started at x and killed upon reaching 0. We
will seethat agood choicefor thismeasureisthe excursion measure of X — I away
from O, where I standsfor the infimum process of X. Indeed, since O isregular for
(=00, 0) w.rt. X, itisregular for itself w.rt. X — I, and it is known that X — I
isastrong Markov process (see Proposition V1.1 in [4]). We are therefore able to
define this measure up to a multiplicative constant. We shall take the associated
local time equal to —1, which forces the choice of the constant factor. We stress
that the semigroup of this measure isthat of X killed upon reaching O.
Consider the family of measures (N,, r > 0) defined on £ asfollows

e Np stands for the excursion measure of X — I away from O under Po.
e Forr > 0, N, denotesthe law of X started at » and killed upon reaching O.

Now we can lay out the problem in proper terms. Let X = (X,,r > 0) and
Y = (Y;,t > 0) be the first and second coordinate processeson @ = D x D.
Let (P,)x0 be afamily of probability measures on 2 for which X is a spectral-
ly positive (i.e. with no negative jumps) Lévy process starting from x, and Y an
independent subordinator starting from 0. The Laplace exponents of X and Y are
those specified in the Preliminaries by (3) and (4). The paths of X are assumed
not to drift to +o0o and to have infinite variation, that is v'(0+) > 0 and either
JorA(dr) = coor B > 0. Analogously to the discrete setting, we haveto find out a
Markov process X* (the geneal ogy-coding process) whose excursion measure N*
away from O can be described as follows

o0
N* = f ['(dr)N, + 8No,
0

where we remind that T" and § are defined in (4).

More precisely N* isthe sum of two digoint o -finite measures on £. The first
has support {¢ € £ : €(0) > 0} and satisfies

(i) For x > 0, conditional on {¢(0) = x}, ¢ behaves asthe process X started at
x and killed upon reaching O,

(i) The o -finite distribution of €(0) is

N*(e(0) € dr) =T'(dr) r>0.
The second has support {€ € £ : €(0) = 0} and is equal to § No, where we recall
that No isthe excursion measure of X — I away from O.
We prove thanks to 1t6’s synthesis theorem that there exists a unique Marko-
vian family of probability measures (P, x > 0) on D such that O is instantaneous
(Es(fo" Lx,=0ydt) = 0) and
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(i) The excursion measure away from O under P is N*.
(i) For any nonnegative measurable F and G,

EX(F(Xs,s < T0)G(Xs115, 5 = 0)) = Eo (F(Xy, s < To)Eg(G(Xy, s > 0)),
where Tp stands for the first hitting time of 0.

We call the canonical process under P* the genealogy-coding process associat-
ed to the Laplace exponents ¥ and ¢, abbreviated GCP(yr, ¢). We shall always
assume in the sequel that Y is not a compound Poisson process, as otherwise our
results would merely reduce to those of [15].

Let us start with the uniqueness result for the family P*. Since 0 is instantaneous,
it is known that

e’} \%4
5(/0 e"g(xgdr):zv*(/o & g(e)dr),

where g isany bounded measurable function. The definition of P then impliesthat

e’} Tt \%
EX( / e g(X,)d1) = Ex( f Y& o (X)dt) + Ex (e T0)N*( / e g(e)dr),
0 0 0

hence the knowledge of N* and that of (P, x > 0) determinethat of the last quan-
tities for every x > 0 and bounded measurable g. It follows from standard results
that the semigroup of (P}, x > 0) is then uniquely determined.

As for the existence of the family P*, we apply 1t8’s synthesis theorem to the
excursion measure N*. We check that the hypotheses of Theorem V.2.10 p.145 in
[8] holdinour specia case. Specifically, required propertiessuch asthe Feller prop-
erty of the minimal process and technical properties about (E, (e7*70), A, x > 0)
are easily verified. We need only show that N* is compatible with the minimal
semigroup. Namely, for all s > 0, ® € F, and bounded measurable F,

N*(Fo0;©N{V >s}) = N*(Ne,(F); ©N{V > s}).

Thisfollows from the fact that the measures (N, r > 0) have the same semigroup
asthat of the killed Lévy process.

3.2. Pathwise construction of the GCP

Our aimisto give here a pathwise construction of aversion of the GCP, still denoted
X*, based on the paths of X and Y. AsY isas. increasing, we can defineits right
inverse Y~ by
Y;l =inf{t: Y, > s}, s > 0.
Set dso
I; = (iﬂft X)) A0, t>0.

We can now state the
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Theorem 3. Define
X} =X, +inf(RN (=1, 00) = X, + Y (Y 1 (= 1)),

where R stands for the range of Y. Under P, the law of this process is equal to
IPx. More precisely, we may (and will) define the local time at 0 of X* by

Ly =Y N =1,
and then the excursion measure of X* away from0Qis N*.

Proof. The first step is showing that L* as defined in the theorem is aloca time
for X*. The second step uses the compensation formulafor X and Y, to prove that
the excursion process of X* away from 0 is a Poisson point process with excursion
measure N*. Then the theorem will follow from the uniqueness of the family P*
(in particular, X* as defined by this pathwise construction, is a Markov process).

First step. As X is spectrally positive, —1 is continuous increasing a.s., and so
isY~1 (for Y is not a compound Poisson process), thus by composition the same
holdsfor L*.

We prove that L* is an additive functional adapted to the natural filtration of
X*.WhenT =0, L} = —1;/8 is known to be an adapted additive functional of
X—1=X"

When T is finite, the number of excursions of X* away from O starting from
positive values and occurring before time ¢ is finite. It then suffices to proceed as
in the previous case after discarding these excursions.

When T isinfinite, astandard argument showsthereisasequencee, — 0 such
that with probability onefor al ¢, N, (¢)/ T (e,, co) convergesto ¢, where

Ne(t) = Card{s <t : AY; > ¢}.

Hence Nsn(Y‘l(—It))/F(sn, 00) converges as. to Ly. Next noticethat X;_ =0
iff X, = Iy and —I; € R. Since adual ladder time (i.e. an increase time for —1)
cannot be ajump time for X,

X =0and AX! > ¢, & X, = Iy and AY (Y "H(=I)) > &,,
and it follows that N, (Y ~1(—1,)) is exactly equal to
Cad{s <t: X, =0,AX; > g},

which is obviousy measurable relativeto o { X}, s < t}.

We get the fact that L* isalocal time by proving that for all x > 0,
supp(dL*) ={t: X;_ =0} P, —as.

Teke two rationalsa < b. If forall t € (a,b) X;_ > 0, then (—I,0c0) N R =
(—1,,00) NR, thatis(—1p, —1,) "R = @, hence Y ~1(—1,) = Y~ 1(—1).
Consider
;(=inf{s >a:X;_ =0}e(a,00) as
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Conditional on R, ¢ isastopping timerelative to the natural filtration of X. Now a
spectrally positive Lévy process started at 0 immediately takes on negative values
and so by the strong Markov property applied at ¢, ¢ is aright increase time for
—I1.But I, € R as, that is —I, is aright increase time for Y1, hence ¢ isa
right increase time for L*. We just proved that if there exists ¢ € (a, b) such that
X;_ =0,then L} < L} as. Then by continuity of L*, for al x > 0,

P.(Va <b,[Vt€(a,b)X;_ >0 L, =L;]) =1

Second step. As previously mentioned, we shall prove that the excursion process
of X* is a Poisson point process with excursion measure N*. Specificaly, set t*
theinverselocal time

=inf{r: L} > s} =T_y,, s >0.

We recall that since ¢ : [0, co) — [0, 00) is strictly increasing, it has an inverse
v ~1, which isknown to be the L aplace exponent of the subordinator (7—,, x > 0)
(until the end of the proof, we write T_, instead of T(_, —x)). Note then that t*
is the composition in the sense of Bochner of two independent subordinators with
L aplace exponents v~ and ¢ respectively, itishenceasubordinator with exponent

¢ o1 Thenfors > Osetasusual in&
(X 0<t<t—1)if 17 <1}

T otherwise.

*

— T +t’
es =

We point out that as the set of jump times of Y is a.s. countable, with probability
ong forals > 0 AY; > 0= AT_y, = 0, sothat one can a.s. describe the set of
jumptimesof t* as

{s:AY;>0}U{s: AY; =0, AT_y, # 0}.

Definethefiltration (H;),>o by sayingthat ® € H; if forevery r > 0, @N{T_y, <
ryisino{(Ys,s <t); (X5, s <r)}. Thenlet F beaprocess predictable relative to
‘H, taking values in the nonnegative measurable functionals on £ U {Y'} and such
that F; (YY) = O, for all . We now apply the compensation formulato the process of
jumpsof Y and to the excursion process of X — I away from 0. Taking predictable
projections successively w.r.t. o {(X;, s > 0)} and o {(Y,, s > 0)}, we get

EQ F(@)=E( Y FXg, 0<Ty—Ty)

s>0 s>0,AY;>0
+EC Y F(Xfip,, 0= Toy, = Toy)-))
§>0,AT_y,>0
—E/ ds/ L@ Fs(Xfyg, 0 < Ty ir = Toy,)
Yo Lueey Fya(Xfyg 00t < Ty = Tio),
uZO,AT,u>O
whereC = {Y; s > 0, AY; = 0},
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[e¢]

- / ds / L (dr)E, (Fy (X1 < Tp)) + E / du No(Fy-1)1,ec
0 0 0 "

:/ ds/ N,(FS)F(dr)vLE/ No(Fs)1ay,=0; dY;
0 0 0

_ / ds ( / N, (F)T(dr) + SNo(Ey))
0 0

oo
:/ dSN*(FS)7
0

and the proof is complete. O

The next section is devoted to the continuous analogue of Proposition 1, that is
to give a pathwise definition of the height process based on the GCP, and then
check that it is distributed as the height process linked to a CBI (v, ¢).

4. Theheight processH*
4.1. Definitions and geneal ogy-decoding

Consider the GCP(yr, ¢) X* defined in the last section. This Markov process pro-
vides a handy way to code for the genealogy of the continuous analogue of a Gal-
ton-Watson tree with immigration. This continuous tree is well understood when
considering the successive heights of its individuals. If ¢ = 0, we recall that this
so-called height process H, can be recovered from the paths of X by measuring
the set 7; of times when X meets or crosses its future infimum on [0, ¢], thanks
to formula (6). When ¢ = 0, denote by g, for each positive ¢, the last zero of X*
beforetimer, that is

g =sup({s <t:X;_ =0}uU{0).
Then, for before time g, the future infimum on [0, ¢] isequal to 0 a.s., we set

Ki={s <g:X{_=0},

N

Li={g=s=t:X7 < inf X7},
which impliesthat 7; = {s <t : X]_ < inf;<,<; X} isthe digoint union of ;
and £;. Analogously to the discrete setting, the first set can be considered as the
‘time spent’ when the exploration process hits the rightmost branch of the tree, that
isthe height of the last visited immigrant. The measure of K, istaken equal to the
local time L} &t level O at timet of X*.
Next the (incomplete) excursion (X3, g; < s < t) explores the standard de-

scendant tree starting from the last wave of immigration AX% , and thusit reduces
to the definition of the height process given in [14] when there is no immigration.
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Indeed, conditional on {X; =0}, thefinite path (X7, g; < s < t) isdistributed as
(X5 — I, Gy < s < 1) under Py, where

Gy=sup{s <t:X; =1}

And conditional on Xy = x,t —g =r}, the finite path (X}, g, < s < 1)is

distributed as (X;,0 < s < r) under P, (- | Top > r). We will thus deal with the
measure of £, given by (6), provided the paths of X* have infinite variation. In
conclusion, we can thus make the following

Definition 4. The height process H* is defined as a functional of X* by

1 t
H*:L*—I—Iim—/l *_inf -, X*<g)dS.
t t £10 & o {X? Inf57,7, Xr<e}

Then H* is a progressively measurable process and we can define the random
measure Z* by

o0
< Z* h >:/ h(H})ds,
0

where & is any honnegative measurable function with compact support. Moreover,
Theorem 4.7 in [15] and the continuity of L* entail that H* is continuous a.s. if
and only if [ dr/y (L) < .

We can state the main theorem of this section. It shows that the local time
process of H*, as afunction of the space variable, isaCBI (v, ¢).

Theorem 5. Under P}, therandommeasure Z* hasa.s. acadlag density (2, a >
0), w.r.t. Lebesgue measureon R, and the process Z* isa CBI (v, ¢) starting from
X.

We start with stating alemma on CBI-processes, which proof is moved to the
appendix.

Lemma 6. If 4 denotes any nonnegative bounded measurable function with com-
pact support on R, and if Z denotes a CBI (v, ¢) started at x, then

o (0.¢]
Ex(e><|0[—/O h(a)Zada]) = exp[—xw(0) — /0 ¢ (w(s))ds],
where (w(z), r > 0) isthe unique nonnegative solution of the integral equation
o o
v(t) +/ Y (v(s))ds = / h(s)ds, t>0. (Ep)
1 t
We are now able to provide the

Proof of Theorem 5. We have to establish the equality

IE3;*c(e><I0[—/0 h(H{)ds]) = exp[—xw(0) _fo ¢ (w(s))ds],

where w is the nonnegative solution of (E},).
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The choice we made for the definition of H* allows usto use thefollowing two
expressions computed in [14, p.141], where V standsfor the lifetime of the generic
path

|4
No(L—ep(= [ h(H, +ndu) = ww). 120,
0
and
\%4
Ny(exp[—/ h(Hy + t)du]) = exp(—yw(®))  t=0,y>0.
0
We decompose the geneal ogy-coding process X* into its excursions away from 0.

Thanks to the two foregoing equations, and using the excursion measure N* that
defined the process X* in Section 3, we get

E? (exp(— fo h(H?ds)

To T;'
—Eiep— [ mHdEee- Y [ i

s>0"Y Ts—

Tt 00 Vv
= Ex(exp(—/ ’ h(H])ds)) exp <—/ ds N*(1— exp(—/ h(s + Hu)du))>
0 0 0

\4 00 00
= Nx(exp(—/ h(H,)du)) . exp (—/ ds [/ I'(dr)
0 0 0

\%4
XN, (1 — exp(— / h(s + Hy)du))
0
%4
+8No(1 — exp(—f h(s + Hu)du))D
0
= exp(—xw(0)) exp — /OO ds [/oo D(dr)(1—e ") + sw(s)]
0 0

o
= exp[—xw(0) — /0 ¢ (w(s))ds],
which is the expected expression. O

Remark. In the case when X is a standard Brownian motion, and Y = (8¢, ¢t > 0),
with § a positive real number, Theorem 5 reduces to a theorem by M. Yor and J.F.
Le Gall [17]. Writing ¥ (L) = 12/2, ¢ () = 84, and referring to Theorem 3, the
GCP(y, ¢) isthe Feller Brownian motion X* = (X; — I;,t > 0) with local time
attimer at level 0 equa to —1;/3.

For r > 0, consider the finite path 8 = (X; — X;_,,0<s <t — g/), with g,
the last zero of X* beforetimer, and let B beits supremum process. By definition
of the height process H* of X*,

T N
Hf = —’+||m-[ L5, _p. eyds.
O s s
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But 8 is a Brownian path started at 0 and killed upon reaching the positive real
number X; — I;, hence

—1
H' = Tt +2(X, — I).

By Lévy’s equivalence theorem, H* is distributed as 2 | X | +L%/8, where L9
denotes the local time at level 0 of the Brownian motion X, and atheorem by J.F.
LeGall and M. Yor states that

(LY. (2| X| +L°/6).a > 0) = 4" 1BESQ(49),

where the notation in ther.h.s. refers to a squared Bessel process of dimension 45
starting from O.

In agreement with Theorem 5, aBESQ(46) isaCBI (v, ¢) up toamultiplicative
factor 4, with ¥ (1) = 12/2, ¢ (1) = SA.

5. An extension of a Ray—K night-Williamstheorem

We show how Lévy processes that drift to +o0o and Lévy processes conditioned to
stay positive code the genealogy of certain CBI-processes. In the Brownian case,
the genealogy related to the Bessel process of dimension 3 (BES(3)), which is
the Brownian motion conditioned to stay positive, is that of a squared Bessel pro-
cess of dimension 2 ((BESQ(2)), that is a CBI-process with branching mechanism
A — A2/2, and immigration mechanism A — A/2. This result is known as the
Ray—K night-Williams theorem (see [25]).

5.1. Mainresult

We stick to the framework described in Section 3. Specifically, P, denotesthe law
of a spectraly positive Lévy process X started at x € R, with Laplace exponent
the convex function

o0
v (L) = ak + B2 +/ €M — 1+ arl,—1)Adr), A > 0.
0

Denote by & the largest root of . If & > 0, ¥ has exactly two roots (0 and &),
otherwise it has a unique root & = 0. According as ¢/(0+) < 0, ¥'(0+) = 0, or
¥’ (0+) > 0, the paths of X a.s. drift to +o0, oscillate, or drift to —oo, and the
associated branching mechanismis supercritical, critical, or subcritical. We assume
throughout the rest of this section that v/'(0+) < 0, and again that the paths of X
have a.s. infinite variation.

We introduce briefly two laws connected with PP.

1. The probability measure IP’AT is the law of the Lévy process started at x > 0
and conditioned to stay positive. When X drifts to +oo, the conditioning is
takenintheusual sense, since X stays positive with positive probability. When
X oscillates, as X reaches 0 continuously, the process (X; 1<y}, > 0) isa
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martingale (Tp denotes thefirst hitting time of 0 by X). Then IP’; is defined by
local absolute continuity w.r.t. P, with density x~1X, i<y onF; (r = 0).
It is known that the probability measures ]P’i converge weakly asx — 0+ to
aMarkovian law Pg. For more details, see[1], [9],[10].

2. Thelaw P isthat of the spectrally positive Lévy process with Laplace expo-
nent v’ : A > (A +&). When & > 0, the path of X as. driftsto 4+o0, and if
I, denotesits overal infimum (LemmaVI1.7(i) in [4]), then

lim P(A | Io < —x) = PY(A), AeF,t>0.
X—> 00

This process is thus called the Lévy process conditioned to drift to —oo, and
for every x € R, P! is defined by local absolute continuity w.r.t. P, with den-
sity exp(—&(X; — x)) on F; (¢t > 0). In the sequel, it will beimplicit that the
superscript i refers to P2, For more details, see [1].

Recall that the definition (1) of the functional H makes sense for any Lévy process
with no negative jumps. By local absolute continuity, H is still well defined under
P, and ]P’l for every x > 0. We shall seein Lemma8 that the same holds under IP’S.
In[15], the main result assertsthat, provided X does not drift to +oo under P, the
occupation measure Z, of H defined for any nonnegative i by

T
< Z,h >:/ h(Hy)ds,
0

has adensity (Z,, a > 0) w.r.t. Lebesgue measure, which is a CB-process started
at x. We now state the analogue under P* and under P when X drifts to +oo.

Theorem 7. Define

VI YO FE)

= , A>0.
A+ E A+ E

Pp) =

Both P-a.s. and P*-a.s., the occupation measure of H has a density w.r.t. Lebesgue
measure. We denote by (Z,,, a > 0) the cadlag version of this density.
(i) Let x > 0. Under P!, Z isa CBI(y!, ¢) with initial distribution /4., where

1. The measure o isthe Dirac massat 0.
2. For x > 0and ¢ = 0, u, istheuniformdistribution on (0, x).
3. Forx >0andé&¢ > 0,

g:e_gy

mdy, 0<y<x.

ux(dy) =
(ii) Assume the branching mechanism is supercritical ('(0+) < 0). Then under
P, Z is a CBI(y%, ¢) with initial distribution the exponential distribution with
parameter &.
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The proof uses the following lemma, which shows the connection with the GCP.
When X driftsto +oo, we denote by X its future infimum
X =inf X,, t > 0.

=t s>t

Lemma 8. Under }P’g, we may (and will) definethe local time L at O for X — X by

Lﬂlimlfl d t>0 @
= 210 g 0 {XS—£<8} s, - Y.
Then with this normalization of local time,

(i) The process X — X isaversion of the GCP(y/?, ¢).

(i) The functional A of X is well defined by (1) and is equal to the height
process H* of the GCP X — X.

Before proving the theorem, we establish the link with the Ray—K night—Wil-
liams theorem. In the Brownian case, the law P' is that of the Bessel process of
dimension 3 (BES(3)). Invoking Pitman’s theorem (see[20]), the bivariate process
(X, X) hasthe samelaw as (25 — B, S), where B stands for a standard Brownian
motion, and S for its supremum process. Hence by Lévy’s equivalence theorem,
2X isaloca timeat Ofor X — X. It isthen easily checked referring to the remark
ending last section that o

H} = Zét +2(X — é)t = 2X;, t >0,

and by Lemma 8(ii), the process H is again (up to afactor 4) a BES(3). Then the
Ray—Knight—-Williams theorem states that the local time process of aBES(3) isa
squared Bessel process of dimension 2 starting from 0 (BESQ(2)), whichis (up to
afactor 4) aCBI(v/, ¢), with ¥ (1) = 22/2, and ¢ () = /2 (see[25, Theorem 65
p.38]).

Proof of Theorem 7.
(i) When x = 0, the statement follows readily from Lemma 8 and Theorem 5.
Let x > 0. We have the following absolute continuity relationship (see [10])

h(X
Pl =B 0 1<1), ©cF. x>0 @®)
h(x)
where h(y) = y when & = 0, and h(y) = £~ 1(1 — e7%) when & > 0. For any
0<y<ux,(8)yidds
h(y) _ h(y) e_g(x_y).

Pl(lo <y) = W)Px(ry <o) =~ =

Hence, with the notation in Theorem 7,
Pl(x — I € dy) = 1 (dy).

Now atheorem by L. Chaumont ([9, Théoreme 2]) statesthat under P!, conditional
on I, = y, the pre-minimum process and the post-minimum process are indepen-
dent with respectiveIaNsN)E_y and IP’g. Hence conditional on Ic = y, X — X isthe

©)
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juxtaposition of the killed Lévy process under Pi_y and an independent GCP(v/”,
¢) started at 0, it is thus distributed as a GCP(v/%, ¢) with initial distribution ..
The equality between its height process H* and the functional H isagain straight-
forward from Lemma 8 and an application of Theorem 5 completes the proof.

(ii) We work under Pg. When & > 0, we know that — I, is exponential with
parameter £. The key isaresult of PW. Millar [18] and J. Bertoin [1, Théoréme 2]
which states that conditional on — I, = y, the pre-minimum process and the post-
minimum process are independent with respective laws Nf, and ]P’g. We conclude
as previougly. O

5.2. Proof of Lemma 8

We first set some definitions and state a general result describing the excursion
measure of X — S away from O under P.

Recall that since X is aLévy process with paths of infinite variation, the pro-
cesses X — I and X — S (I denotes the infimum process, and S the supremum
process) are strong Markov processes for which 0 is a regular point. Therefore,
one can associate to each an excursion measure away from 0, denoted by Ng and
n respectively, for the following normalization of local time. It iswell-known that
the process —I providesalocal timeat Ofor X — 7. Thelocal time L at Ofor X — S
is defined (see [14, p.133]) by

p. 1

L, =Ilim- Lis,—x,<s)ds, t>0. (10
el0 ¢ Jo

We start with the following lemma concerning #, and next use it in the proof of

Lemma 8. Its proof is moved to the appendix.

Lemma 9. We denote the reversed generic excursion by é = (—ewy—p—,0 <t <
V). Then under 7,

(i) n(éo € dr) = A(r, c0)e ¢ dr, r > 0.

(i) For r > 0, conditional on {€g = r}, € isdistributed as X started at » and
killed upon reaching O under P*.

(iii) n(-, €0 = 0) is proportional to the excursion measure No° of X — I away
from O under P*. More precisely, n(-, g = 0) = SNo".
In other words, 77 = N*, where we set

o0
N* =/ dr €57 A(r, o) N} + BNo".
0

We point out that when the Gaussian component 8 of the Laplace exponent of
X vanishes, (i) and (ii) are known results by L.C.G. Rogers [22, Theorem 1] and
J. Bertoin [2, Corollary 1], respectively. The previous lemma allows us to prove
Lemma 8.

Proof of Lemma 8. For every r > 0, definegt =sup{s <t Xs =8}, d, =
inf{s >t : X; = S}, and introduce the process
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_ S =X+, i d, > g,

== 0 it d, =g,

obtained by reversing each excursion of § — X. When X drifts to +oco under P,
Lemme 4 in [1] states that under P the process (R(X — S);, t > 0) has the same
law as X — X under IP’g. Let us give a short argument to prove that this still holds
when X oscillates. Let T be an independent exponential r.v. with parameter ¢ > 0,
and p = p(T) thefirst timewhen X reachesits future infimum on [0, T']

p=inf{s <T:X;= infTXr}.

The same arguments as those developed in the proof of [1, Lemme 4] show that
the processes (R(X — §);,0 <t < ) and (X — X)p+,,0 <t =<T-p
have the same law. The result then follows from [3, Corollary 3.2] according to
which the laws of (X,4,,0 <t < T — p) converge to IP’g ase | 0. Hence under

Po, the process (R(X S)s,t > 0) has the same law as X — X under IP’(T). Asa
consequence, {t : X = 0} isdistributed under Pg as {r : X; = S;} under Pg.

Recall that {r : X, =S |saregenerat|veset with local time L defined by (10),

that is

1

& 1 (&
L;=L, =lim- s ds =lim= Liris— ds, t > 0.
t 8, NOS/O {Ss—X;<e}dS SLOS,/(‘) (R(S—X); <e}dS >

Hence {¢ : X; — gl = 0} is aregenerative set and the functional L defined by
(7) isits local time. Furthermore, it follows also from this identity in law that the
associated excursion measure n of X — X away from O satisfies

=n,

1=

where 7 till denotes the image of the excursion measure of S — X away from
0 (normalized by (10)) by the time-reversal map. Hence referring to Lemma 9,
n = N*, with

o0
N* :/ dr € 5" A(r, c0)N* + BNo'.
0

Now notice that after elementary calculation
o
o (1) = BA +/ dr e " A(r, 00)(1 — &™), A>0, (12)
0

which ensures that ¢ is the Laplace exponent of a subordinator, and that N* isthe
excursion measure of the GCP(y?, ¢). Thezerosof X — X areinstantaneous, hence
the uniqueness of P yieldsthat X — X isa GCP(y/%, ¢) started at 0.

It thus only remains to show that if H* denotes its height process asin Defini-
tion 4, then H* is equal to ther.h.s. in (1). For every positive ¢, split the interval
[0, 7] into [0, g[) U [gt, t], where

§I=SUP{SSt:Xs=§s}.
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Then by definition of H* and L,

1 /8, 1!
H! =lim- Lix.— ds+|im—/ Lix—X),—infoe, =, (X—X), <s1dS.
£l0 & / {Xs §x<8} €10 & . {(X é)s |nfx7r7t(x é))<5}

Note that for any s < ¢, X = min(X infs<,<; X,). Then for any s € [0, g)
X =infs<< X,, and for any s € [g t], X =X. Replacing in the prevlous

=S

equality yields

Lo 1g 1!
HY =1lim- / Lix,—infyor X, <eyds +lim — / Lix,—X —infye<(X,—X )<e}ds,
0 el0 e Jg = =

=t
which entails the existence of

.1t
Ht = Ilm - / 1{Xs_infs§r§t Xr<8}ds’
el0 € Jo

and theidentity H = H*. ]

Remark. An easy way of building a GCP is to erase the negative excursions of
X under IP. We consider here that v/'(0+) = 0 (critical case). Set

t
0

t
Ar =/ lix,<oyds, t >0,
0

and o™, o~ their respective right-inverses. Referring to the remark p.1470in [2],
theexcursion € of X away from0and € areequally distributed. Hencetheexcursion
€ of X o o™ isdistributed as the reversed excursion € of X o «~. But [2, Lemma
2] entailsthat X o ¢~ and X — S have the same law. In conclusion, the excursion
measure of X o o™ away from O isequal to 77, and X o 't isthusa GCP(y, ¢),
where

wm

o(A) = A>0.

6. Appendix

6.1. Proof of Lemma 6

Every solution v of (Ej) is continuous and has its support included in that of
h. Hence the range of v is compact and v is Lipschitz on this compact set. The

uniqueness of the solution then follows from Gronwall’s lemma.
Remember that ¢ — u, (1) isthe unique nonnegative solution of

t
v(t) —l—/ Y(v(s))ds = A, A>0, t>0,
0
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and that
t
E.(e7%) = exp[—xus (1) — fo (s (0)ds].

Asaconsequence, forany 11 > 0,11 > 0, = w; (A1) = 1jg,,](Ouy (A1) iSthe
unique nonnegative solution of

u(t) + / Y ((s)ds = Mljon (), ¢ >0, (E' (A1, 1))
t
and furthermore
n
E.(e7"%1) = exp[—xwo(r1) — fo ¢ (ws (r1))ds].

More generally, wedefinefor0 < < --- < t,,and A1, ..., A, > Otheintegra
equation

v(t) +/ Y (v(s))ds = ijl[o,tj](t), t>0. (E'(M, 11, ..., Ans 1))
t

j=1

We argue by induction on » to show that the solution w of (E'(A1, 11, ..., An, )
satisfies

n I
Ex(exp—ZAjz,,)=exp[—xw<0>—/o b (w(s)ds].
j=1

The first step was just proved in the preceding lines. Now let n > 2, and assume
that the result holds up to the order n — 1. By the Markov property at #1,

n n
Ex(exp— Y AjZ;) = Ex(e M Ey, (&xp— Y A;Z; 1))
j=1 j=2

ty—t
= E. (€M% exp[—Z,w(0) — / ' ¢ (w(s))ds]),
0

where w isthe nonnegative solution of (E' (A2, 12 — 11, ..., An, 1y — 11)).
Thanks to thefirst step (n = 1),

n 2] th—11
Ec(ep—3 4Z,) = exp[—xi(0) — /0 B (B (s))ds — /O b (s))ds],
=1

where w is the nonnegative solution of (E’(A1 + w(0), £1)). Hence

w(t) = Lo, (OwE) + Ly,00) (DWW (T — 11)
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is the nonnegative solution of (E’(A1, 11, ..., Ay, t;)) and satisfies

n t1 In
Ex(exp— Z)»jzt,-) = exp[—xw(0) — /0 ¢ (w(s))ds — / (W (s — t1))ds]
1

j=1
In
= exp[—xw(O)—/O ¢ (w(s))ds].

Now go back to the general case with 2 some nonnegative bounded measurable
function with compact support. The mapping ¢ f,"o h(s)ds isacontinuous de-
creasing function that we may approximate by a pointwise increasing sequence of
step functions ¢,

n 00
on()) = 3" K0, (1) 1 f h(s)ds., 120,
j=1 !

Thenitisclear that the associated differential equation (E'(A], t1, ..., A}, 1)) has
a unique nonnegative solution w, satisfying

o
O0<w,@® < / h(s)ds, t>0.
t

In particular, the (w,, n > 0) are uniformly bounded and have a common compact
support. Applying Gronwall’s lemma to the increments wj, 1, (1) — wj, (¢) for each
t > 0, we deduce that the sequence (w, (), n > 0) hasalimit, say w(z), asn —
oo. It follows from the dominated convergence theorem that ftoo Y(wy(s))ds —
[ w(s)ds, that [ ¢ (wy(s))ds — [ ¢(w(s))ds, and that

n

o0
E.(exp— ijzt}z) - Ex(exp—/ h(a)Z,da), asn — oo.
- 0
j=1

Hence w satisfies (E,), which provides a proof for the existence of solutions,
moreover

Ex(exp[_/o h(a)Zda]) = exp[—xw(0) —/0 ¢ (w(s))ds],

and the proof is complete. O

6.2. Proof of Lemma 9

We first give some further details about IP, and state two preliminary lemmas.
The scale function is defined as the unique continuous function W : [0, oco) —
[0, 00) with Laplace transform

/00 e *Wx)dx = q > E&.
0

1
Vig)
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It satisfiesforany O <x <y
Wy —x)
W)

We introduce also the positive increasing mappings W™ on (0, co) specified by
their Laplace transforms

Py (To < Ty, +00)) = (12)

o
AW N () = — L (@) > %> 0.
A T ETSE A
In particular, W© = W. Sincewhen 8 > 0, ¥ (q) ~ Bg? asq — oo, it follows
from a Tauberian theorem that for any A > O,

W®(x) ~ g tx, asx — 0T, (13)

We stressthat 7z is normalized by (10). Set L~ theright-inverse of L, and v~ the
inverse of |z, o0) (¥ isstrictly increasing on [£, oo) with v (¢) = 0). Referring to
[14, p.133] and [7], ((L,‘l, §,-1),t > 0) isabivariate subordinator with Laplace
exponent « satisfying '

A V(%)
kA, 0) = ———, k(0,1) = ——, A>0.
(2,0 = 0, 2) -
Lemma 10. Let m(¢) stand for the supremum of the generic excursion €. Then
_ 1
nm=>x) = ——, x> 0.
W(x)

Proof. For every 0 < x < y, it followsfrom the strong Markov property applied at
T_, under 7 that

n(m > y)
EEE =P (T < Tioo)-
nim > x)

Thanksto (12), there is some positive constant K such that

nm=>x) = x > 0.

W(x)’
In order to compute K, we recall that for every A > 0, if g, is an independent
exponentia r.v. with parameter A, then

— A

But on the other hand,
nVv>e)= |iiﬁgﬁ(m > &)P_(Tjo,0) > €1)
£

. K
=lim
el0 W(e)

Po(Se, < &).
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Referring for exampleto [5, p.158],

Po(Se, € dx) = WH (dx) — AWM (x)dx.

=)
Hence thanksto (13)

AV >e) =lim LLWW@) K
M0 WO (e) y—1(h) v’

and we conclude from (14) that K = 1. |

Lemma1l. Let o, stand for the last passage time below ¢
o, =sup{s > 0: X < ¢}, e > 0.

Then for any r > 0 and any bounded ;-measurable G,
14
lim =Py (©,1 < 0p) = No*(©,1 < V).
el0 €&

Proof. Thanks to (9), we know that for any 0 < ¢ < x,

(&) —e—e)

Pl(leo <e) = )

Sinceh(e) ~ ¢ ase — O+,
R S B Y
lim-Py(®,t <o) =1lim-Py(0, Ioc 0, < &)
el0 & el0 &
1 h
=lim =P} (®, ) g s(Xime))
elo ¢ h(X;)
= No(®,1 < V, e 5%,
thelast equality stemming from the following absol ute continuity relationship (see

[10])
Pl(©) = No(h(X,),©,t < V), ©€cF. (15)

Accordingto LemmaV11.7(ii) in[4], thelaw of X killed upon reaching —x (x > 0),
is the same under IP’(”J asunder Po(- | T_x < o0), and it is easy to deduce that
No® = No(-, V < o0). Hence we conclude as follows thanks to the Markov prop-
erty under Ng

No*(®,1 < V) = No(®, 1 < V,Px,(Io < 0))
= No(®,1 < V,e %),

and the proof is complete. O

We now are able to give the
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Proof of Lemma 9.
(i) According to Theorem 1 in [22], if e, stands for some independent expo-
nential r.v. with parameter » > 0, then

o K (2, 0)
n(eg edr,V < &) = A(r,o0)

Po(—1g, € dr), r > 0.

But —7g, has an exponential distribution with parameter ¥ ~1(%) under Py, thus
recalling that « (x, 0) = »/¥~1(1), and v ~1(0) = &, letting » — O+ yields

(g € dr) = A(r, c0)e 5" dr, r>0.

(i) When 8 = 0, 7(ep = 0) = 0 and Corollary 1 in [2] asserts that for any
positive r, under n(- | €g = r), € has the law of X killed upon reaching O under
P.(- | To < o00). Theresult follows once again from Lemma VI1.7(ii) in [4], that
isi(- | eg = r) = N. When g > 0, 71(ep = 0) = oo but the arguments developed
in the prooves of Lemma 1 and Corollary 1in [2] still apply. Hence we have

n(-,e0#0) = / (eo € dr)Nrn.
(0,00)
(iii) We have to prove that when g > 0, v = BNg", where we wrote
v =n(, € = 0).

According to Theorem 4.1 in [10], the law of (=X (Tj0.00-0—+ T = T[0,00)) under
P_e( | X100y = 0) is IP(T) o ks, , where k stands for the killing operator. Hence
thanks to Lemma 10,
V@, < V)= |i£ﬁ(®,t <V,e0=0,m > ¢)
&

= Iiwﬁ(m > )P} 0 ko, (O, 1 < V)P_ (X7, = 0)
&

1
o 0 _
= lim S PG (O 1 < 0)Po(X o, = €).

Now
Po(X1j, o =€) =Po(@r 1 5,1 =¢),

and (S,-1,¢ > 0), is a subordinator with Laplace exponent A +— «(0,A) =

Y (L)/(A—§). Setting 7 (dr) = [;° dy €5 A(y+dr),aneasy calculation provides
the identity

4%
r—§
It is known that (such) a subordinator with positive drift hits a fixed point ¢

with positive probability v(e), and that lim, o v(e) = 1 (see Theorem I11.5in [4]).
Hence we conclude thanks to Lemma 11 and the estimate (13). ]

=m+[oon(dr)(1— A, x> 0.
0
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