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Abstract. Recent works by J.F. Le Gall and Y. Le Jan [15] have extended the genealogical
structure of Galton-Watson processes to continuous-state branching processes (CB). We are
here interested in processes with immigration (CBI).

The height process H which contains all the information about this genealogical struc-
ture is defined as a simple local time functional of a strong Markov process X�, called the
genealogy-coding process (GCP). We first show its existence using Itô’s synthesis theorem.
We then give a pathwise construction of X� based on a Lévy process X with no negative
jumps that does not drift to +∞ and whose Laplace exponent coincides with the branching
mechanism, and an independent subordinator Y whose Laplace exponent coincides with
the immigration mechanism. We conclude the construction with proving that the local time
process of H is a CBI-process.

As an application, we derive the analogue of the classical Ray–Knight–Williams theorem
for a general Lévy process with no negative jumps.

1. Introduction

A continuous-state branching process (CB) is a strong Markov process Z with val-
ues in [0,∞], 0 and ∞ being absorbing states. It is characterized by its branching
mechanism function ψ and enjoys the following branching property. The sum of
two independent CB(ψ) starting respectively from x and y, is a CB(ψ) starting
from x+ y. CB-processes are the analogue of (Galton-Watson) discrete-branching
processes (DB) in continuous time and continuous state-space. The very difference
between DB and CB-processes is that the definition of a DB-process is based on
a random tree (Zn is the number of particles at the n-th generation), whereas that
of a CB-process is intrinsic. In this direction, J.F. Le Gall and Y. Le Jan [15] have
defined a continuous genealogical structure via a non-Markovian process called the
height process. It is the continuous analogue of the process of successive heights in
the finite discrete tree explored in the lexicographical order. The motivation for the
study of the genealogical structure of CB-processes is to extend the construction of
superprocesses with quadratic branching to more general branching mechanisms.
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In the special case of quadratic branching mechanism, a natural construction of the
superprocess involves the path-valued process known as the Brownian snake, which
loosely speaking combines quadratic branching and Brownian spatial motion. Ex-
tending these results to other branching mechanisms requires detailed information
about the genealogical structure of the associated CB-process. For a deep under-
standing of this topic, see [16].

As in the discrete setting, the CB-process does not contain the information on
the genealogy. The height process is therefore only defined in law. Nevertheless,
a pathwise construction can be given from the paths of a spectrally positive (i.e.
with no negative jumps) Lévy process X whose Laplace exponent coincides with
the branching mechanism function ψ . Namely, for every t ≥ 0, Ht is defined by

Ht = lim
ε↓0

1

ε

∫ t

0
1{Xs−infs≤r≤t Xr<ε}ds. (1)

Roughly speaking, as Ht is the height in the tree of particle t , the total ‘time spent’
by H at level x ≥ 0 is the amount of population belonging to generation x. Indeed
the main theorem of [15] states that the local time process ofH as a function of the
space variable (Zx, x ≥ 0) is a CB(ψ).

Next consider a Galton-Watson tree and add independently from the tree at each
generation n a random number Yn of particles, where the Yi’s are i.i.d. Then the
process that associates to every integer n the number of particles of the n-th gener-
ation of the modified tree is called a discrete-branching process with immigration
(DBI). Adding at each generation n−1 a virtual father to the immigrating particles
allows us to keep up with the tree structure. The aim of the present paper is to find
out the continuous analogue of such a genealogy.

Indeed DBI-processes have a continuous analogue known as CBI-processes.
These are strong Markov processes valued in [0,∞], where 0 is no longer absorb-
ing. They are characterized by their branching mechanism function ψ and their
immigration mechanism function φ. The sum of a CBI(ψ , φ) started at x and an
independent CB(ψ) started at y is a CBI(ψ , φ) started at x + y. To give a path-
wise construction of the height process, we now need more than the information
contained in the paths of the spectrally positive Lévy process X. We thus have to
show the existence of a strong Markov process X� called the genealogy-coding
process (GCP) satisfying the next assertion. Applying an analogue of the local time
functional (1) to X� gives rise to a newly distributed height process H�, whose
local time process is a CBI(ψ , φ).

The GCP is defined by its excursion measure N� away from 0. Let Y denote a
subordinator with Laplace exponent φ, and X a Lévy process with Laplace expo-
nent ψ independent from Y . The measure N� is then defined in terms of the law of
X killed upon reaching 0 and the Lévy measure of jumps of Y . The existence of a
measure of probability P

� with excursion measure N� follows from Itô’s synthesis
theorem. A pathwise construction of X� is also given by

X�
t = Xt + Y (Y−1(− inf

s≤t Xs)).

This is completed by proving that the local time process of H� is as expected a
CBI(ψ , φ).
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The last section is devoted to the extension of the Ray–Knight–Williams the-
orem to general spectrally positive Lévy processes. For simplicity, assume that X
is a recurrent Lévy process with no negative jumps and Laplace exponent ψ . The
existence of a law P

↑ ofX conditioned to stay positive is well-known. Our theorem
identifies the Lévy process conditioned to stay positive and the genealogy-coding
process associated to a branching mechanism ψ , and an immigration mechanism
φ, where

φ(λ) = ψ(λ)

λ
, λ ≥ 0.

In the Brownian case, the height process under P
↑ is a Bessel process of dimension

3 (BES(3)). Our theorem thus reduces in this case to the Ray–Knight–Williams
theorem which ensures that the local time process of a BES(3) is a CBI(ψ , φ),
where ψ(λ) = λ2/2, φ(λ) = λ/2, that is a squared Bessel process of dimension 2
(see [25]).

The paper is organized as follows. In the next section, we set the main nota-
tions and recall some known facts about CBI-processes. We also give details in
the discrete setting concerning the height process and the genealogy-coding walk
(GCW). In section 3, we show the existence of the law of the GCP X� and give a
pathwise construction of X�. In section 4, we check that the height process derived
from the GCP has the requested law, that is its local time process as a function of
the space variable is a CBI-process. The last section deals with the extension of the
Ray–Knight–Williams theorem.

2. Preliminaries

Consider a finite rooted tree, using the coding of Neveu. A vertex u of the tree
which belongs to generation n ∈ N is denoted by a finite sequence of positive
integers u = (u0, . . . , un) defined recursively as follows. For any k = 0, . . . , n,
the unique ancestor (u0, . . . , uk−1) of u at generation k − 1 (i.e. the root if k = 0)
has a distinguishable offspring ordered from left to right. Then the ancestor of u
at generation k belongs to this offspring, and uk denotes its rank in this offspring.
Explore this tree according to the lexicographical order associated to this coding
(for example 1 < 11 < 12 < 121). To the n-th visited particle, associate Wn the
sum of the numbers of younger brothers of all its ancestors, including itself. Define
the height process Hn as the number of generation of the n-th particle. It can be
recovered from W by

Hn = card{j : 0 ≤ j < n,Wj = inf
j≤l≤n

Wl}.

We call H the exploration process, or height process. It is clear that this process
contains the whole information about the genealogy of the tree.

Let us introduce probability measures on trees. First consider f (s) =∑
k≥0 ν(k)s

k a probability generating function, and the probability measure as-
sociated to Galton-Watson trees with offspring distribution ν. The key idea of [15]
is that under this probability, W is a random walk on the integers with jump dis-
tribution ν̃(k) = ν(k + 1), k = −1, 0, 1, . . . killed at its hitting time of −1. The
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associated Galton-Watson process Z, or DB-process (discrete branching), is then
equal to

Zp =
∑
n≥0

1Hn=p, p ≥ 0.

It is clear that conversely one can start with a random walk with jump distribution
ν̃. The same method then applies to construct a Galton-Watson tree (thanks to the
knowledge of H ) and the associated DB-process.

As a second step, add some immigration. Let g(s) = ∑
k≥0 µ(k)s

k , be a proba-
bility generating function. We can still achieve the immigration procedure sticking
to a tree-like structure. We define this tree by giving a virtual father to the immi-
grating particles. Start with N + 1 particles, and mark the rightmost one.

1. each generation contains one and only one marked particle. Give it k chil-
dren with probability µ(k − 1), k = 1, 2, . . . Give independently to the other
particles an offspring with distribution ν.

2. at each generation, mark the rightmost particle.

The discrete-time branching process with branching mechanism ν and immigration
mechanism µ, denoted by DBI(f , g), is the process that associates to each integer
n ≥ 0 the number Zn of unmarked particles of the n-th generation. It is a Markov
chain on the nonnegative integers with transition matrix (Pij ) given by

Ei (s
Z1) =

∑
j≥0

Pij s
j = (f (s))ig(s), i ∈ N.

In particular, a DBI(f , 1) is a DB(f ) (a time-discrete branching process with
branching mechanism f ), and if uk(s) denotes the quantity E1(s

Zk ) when g ≡ 1
(uk is known to be the k-th iterate of f ), then for every DBI(f , g) starting from
i ∈ N,

Ei (s
Zn) = (un(s))

i
n−1∏
k=0

g(uk(s)), s ∈ [0, 1]. (2)

With this new probability measure on (marked) trees, we are able to state a more
general result. First set some notations. Let ε denote a generic path with finite du-
ration V (ε) ≥ 1, defined on {1, . . . , V (ε)}. Now for a sequence (εi)i≥1 of finite
paths, define recursively their concatenation [ε] = [εi]i≥1 as follows. [ε]0 = 0,
and

[ε]V (ε1)+···+V (εn)+k = εn+1(k), n ≥ 1, 1 ≤ k ≤ V (εn+1).

In the following statement, we are still interested in the total number of younger
unmarked brothers Wn of the ancestors of the n-th particle, and in its height in the
tree, but this tree now is distributed according to the branching mechanism ν and
immigration µ. We skip the proof for conciseness.

Proposition 1. Recall that ν̃(k) = ν(k + 1), k ≥ −1.
Set W� .= [W(i)]i≥1, where the W(i)’s are i.i.d. finite random paths such that

each W(i) is a random walk with initial distribution µ, with step distribution ν̃,
and killed at T0 + 1, where T0 = inf{n ≥ 1 : Wn = 0}. The process W� is called
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the GCW(f,g), or genealogy-coding walk associated to the probability generating
functions f and g. Define

H�
n = card {j : 0 ≤ j < n,W�

j = inf
j≤l≤n

W�
l }, n ≥ 0,

and

Z�p =
∑
n≥0

1H�
n=p, p ≥ 0.

Then (Z�p − 1, p ≥ 0) is a DBI(f , g).

We stress that by construction, Z�p is the total number of particles belonging to
generation p. We thus have to remove the marked particle at each generation to
recover the DBI-process.
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Fig. 1. Galton-Watson tree with immigration and associated GCP W� (W�
n is the total num-

ber of younger unmarked brothers of the ancestors of the n-th particle)
.
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In the tree semantics, H�
n is the height in the tree of the n-th visited particle. If

γn = sup{j ≤ n : W�
j = 0}, then

H�
n = card{0 ≤ j < γn : W�

j = 0} + card{γn ≤ j ≤ n : W�
j = inf

j≤l≤n
W�
l }.

The first term is the number of times when the GCW visits the rightmost branch of
the tree, that is the height of the last visited marked particle. Then the n-th particle
is a descendant of this marked particle, and the second term is its height in the
corresponding subtree.

Notice that two random walks (r.w.) underlie the discrete setting. The first is
a so-called left-continuous r.w. W with step distribution ν̃. The second is the re-
newal process Y with jump distribution µ that gives at time n the total number of
immigrants up until the n-th generation.

In [15], the tree is linked to a LIFO queue. Every (positive) incrementWn−Wn−1
is viewed as some service required by a customer arrived at time n. The task is over
as soon as W reaches Wn−1, and in the meanwhile, each new service is prioritary
(Last In First Out). The genealogy is built up by saying that each customer is the son
of who he interrupted. In the case with immigration, we suppose that extra service
is required every time the queue is empty. These services are i.i.d. and independent
of the rest of the queue (i.e. the increments of the renewal process Y ).

We now deal with the continuous setting. It is well-known that DBI-processes
have a continuous state-space time-continuous analogue, called CBI-processes. Let
ψ be the Laplace exponent of a spectrally positive Lévy process, andφ that of a sub-
ordinator (ψ is convex and φ is concave). They are specified by the Lévy-Khinchin
formula

ψ(λ) = αλ+ βλ2 +
∫ ∞

0
(e−λr − 1 + λr1r<1)*(dr), λ ≥ 0, (3)

where α ∈ R, β ≥ 0 denotes the Gaussian coefficient, and the Lévy measure * is
a measure on (0,∞) such that

∫ ∞
0 (r2 ∧ 1)*(dr) <∞. Similarly

φ(λ) = δλ+
∫ ∞

0
(1 − e−λr ),(dr), λ ≥ 0, (4)

where δ ≥ 0 is the drift coefficient and the Lévy measure , is a measure such that∫ ∞
0 (r ∧ 1),(dr) <∞.

A CBI-process with branching mechanism ψ and immigration mechanism φ

is denoted by CBI(ψ , φ). It is a Markov process Z taking values in [0,∞], whose
transition kernels are characterized by their Laplace transform

Ex(e
−λZt ) = E(e−λZt | Z0 = x)

= exp[−xut (λ)−
∫ t

0
φ(us(λ))ds], x ≥ 0, t ≥ 0,

where ut (λ) is the unique nonnegative solution of the integral equation

v(t)+
∫ t

0
ψ(v(s))ds = λ, λ ≥ 0, t ≥ 0. (5)

For existence and unicity of such a process Z, see [13, Theorem 1.1].
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Notice that a spectrally positive Lévy process is the continuous analogue of a
left-continuous r.w., and a subordinator that of a renewal process (the jumps of the
subordinator embody the arrival of immigrants). Compare the preceding equations
with (2), and see [19] for more details, and the references therein.

In particular, a CBI(ψ , 0) is a CB(ψ) that satisfies the following branching
property. The sum of two independent CB(ψ) starting respectively from x and y,
is a CB(ψ) starting from x+ y. In that case (φ ≡ 0), we give a brief account of the
continuous analogue results given in [14] and [15].

Consider a spectrally positive Lévy process X with Laplace exponent ψ , and
assume that ψ ′(0+) ≥ 0 (the process X does not drift to +∞). Define the height
process Ht as the local time at 0 at time t of S(t) −X(t), where

X(t)
s = Xt −X(t−s)−, 0 ≤ s ≤ t,

and S(t) its associated supremum process S(t)s = sup0≤r≤s X
(t)
r . The normalization

for this local time is such that

Ht = lim
ε↓0

1

ε

∫ t

0
1{S(t)s −X(t)

s <ε}ds = lim
ε↓0

1

ε

∫ t

0
1{Xs−infs≤r≤t Xr<ε}ds. (6)

Moreover, there is a lower semicontinuous version of the process (Ht , t ≥ 0) with
values in [0,∞]. Next let Ty denote the first hitting time of (−∞, y) byX (y ≤ 0).
The main theorem of [15] states that the random measure Zx on R+ defined by

< Zx, h >=
∫ T−x

0
h(Hs)ds,

has a density (Za, a ≥ 0) w.r.t. Lebesgue measure, that is a CB(ψ) started at x (Z
can be viewed as the local time process of H ).

When some immigration is added, we should like to find out an analogue of the
genealogy-coding process (W in the discrete setting, X in the continuous setting)
and then check that the same kind of construction gives rise to a branching process
with immigration.

We point out that there is an alternative way of defining the genealogy of a continu-
ous tree. Though, this definition does not seem appropriate for the study of snakes
and superprocesses. We could recall these results (see [6]), but it is as easy to give
straight away the (more general) analogue in the case with immigration.

We first emphasize the role of the initial value of the CBI-process and write
Zt = Z(t, a) for the value at time t of a CBI(ψ, φ) starting fromZ0 = a ∈ [0,∞).
The additive property for branching processes implies that ifZ′(·, b) is an indepen-
dent CBI(ψ, 0) (that is a CB(ψ)) starting from b, then Z(·, a) + Z′(·, b) has the
same law as Z(·, a+ b). Invoking Kolmogorov’s theorem, we can thus construct a
process (Z(t, a), t ≥ 0 and a ≥ 0) such that Z(·, 0) is a CBI(ψ, φ) starting from
0, and for every a, b ≥ 0, Z(·, a + b)− Z(·, a) is independent from the family of
processes (Z(·, c), 0 ≤ c ≤ a) and has the law of a CB(ψ) starting from b.
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In particular, for each fixed t ≥ 0, we will choose the right-continuous modifi-
cation of the process Z(t, ·), which is then a subordinator with Laplace exponent
ut (·) and initial value αt a positive r.v. with Laplace exponent

E(e−λαt ) = exp(−
∫ t

0
φ(us(λ)) ds), λ ≥ 0, t ≥ 0.

In the following statement, the positive real number S(s,t)(a) is to be interpreted
as the total progeny at time t of the amount of population [0, a] present at time
s, with branching-immigrating mechanism (ψ, φ). The proof of this statement is
easily adapted from [6, Proposition 1].

Proposition 2. On some probability space, there exists a process (S(s,t)(a), 0 ≤
s ≤ t and a ≥ 0) such that

(i) For every 0 ≤ s ≤ t , S(s,t) = (S(s,t)(a), a ≥ 0) is a subordinator with
Laplace exponent ut−s(·) starting from a r.v. S(s,t)(0) distributed as αt−s .

(ii) For every integer p ≥ 2, and 0 ≤ t1 ≤ · · · ≤ tp, the subordinators
S(t1,t2), . . . , S(tp−1,tp) are independent and

S(t1,tp)(a) = S(tp−1,tp) ◦ · · · ◦ S(t1,t2)(a), ∀a ≥ 0 a.s.

Finally, the processes (S(0,t)(a), t ≥ 0 and a ≥ 0) and (Z(t, a), t ≥ 0 and a ≥ 0)
have the same finite-dimensional marginals.

As in [6], this proposition enables us to make the following consistent definition
of genealogy. For every a, b ≥ 0, and 0 ≤ s ≤ t , we say that the individual a in
population at time t has ancestor at time s the individual b if b is a jump time of
S(s,t) and

S(s,t)(b−) < a < S(s,t)(b).

3. The genealogy-coding process X�

In this section, we introduce the continuous analogue of the genealogy-coding walk
defined in the last section. We will call it the genealogy-coding process (GCP) X�.
Roughly speaking, the GCP is a spectrally positive Lévy process reflected on the
range of an independent subordinator Y . In particular when Y is deterministic, the
GCP is the Lévy processX reflected at 0, that is,X� = X−I , where It = infs≤t Xs .
In the next section we will see the link between its paths and CBI-processes, in a
way similar to that of Proposition 1.

3.1. Itô’s synthesis

In the last section, the sample-paths of the GCW(f , g) could be viewed as the con-
catenation of a sequence of independent excursions away from 0, which started with
a jump of lawµ (immigration mechanism), and then proceeded as the random walk
with step distribution ν̃ (branching mechanism) killed upon hitting 0. Informally,
this suggests that we should define the GCP as the concatenation of a sequence of
independent excursions which start with the jump of a certain subordinator Y (with
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Laplace exponent φ for the immigration), and then evolve like a certain spectrally
positive Lévy process X (with Laplace exponent ψ for the branching mechanism)
killed upon reaching 0.

This fits the classical problem of recurrent extensions of Markov processes,
which goes back to Feller and Itô [11]. More precisely, given a Markov process X
killed upon hitting some given point x0 for the first time, the program is to char-
acterize all the recurrent Markov processes X′ having the same law as X when
killed at the first hitting time of x0. The killed Markov process X is called the
minimal process, and the possible X′ are the extensions of the minimal process. In
the Brownian case, the extensions are known as Feller Brownian motions (see [12,
p.186]).

The definitive treatment of this question was done in [23],[24], and a survey
can be found in [8]. See also [21] for an analytic counterpart.

The usual way of tackling the extension problem relies on excursion theory.
Roughly speaking, it uses Itô’s synthesis theorem which links i.i.d. excursions to-
gether in order to produce a Markov process. To apply this tool, we need to set
some notations and recall some facts about excursion theory.

We use the canonical representation. Let D = D([0,∞),R) be the space
of càdlàg functions, endowed with Skorohod’s topology and the natural filtration
(Ft )t≥0. Let E be the space of excursions ε in D (paths with finite lifetime V (ε)).
Now let M be a recurrent real-valued strong Markov process with càdlàg paths,
such that 0 is regular, that is

P0(inf{s > 0 : Ms = 0} = 0) = 1.

Then it is known that there exists a unique (up to a multiplicative constant) contin-
uous increasing process L adapted to the natural filtration of M , called local time
at level 0 of M , such that

1. The support of dL coincides with the closure of {t : Mt = 0} a.s.
2. L is an additive functional of M .

The inverse local time τ

τs = inf{t ≥ 0 : Lt > s}
is a subordinator whose jumps coincide exactly with the excursion intervals of M .
Specifically, we can index the excursions of M away from 0 by the jump times of
τ . For t > 0, set

et =
{
(Mτt−+s , 0 ≤ s < τt − τt−) if τt− < τt

ϒ otherwise,

where ϒ is an additional isolated point. A fundamental theorem by Itô asserts that
(et , t ≥ 0) is a Poisson point process in E ∪{ϒ}. Its characteristic measure is called
the excursion measure and is a (σ -finite) infinite measure on E . This measure has
the strong Markov property and its semigroup is that of M killed upon reaching 0.

Conversely, the program of Salisbury and Itô is to produce a Markov process
with given excursion measure. In our particular case, we work by analogy with
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the discrete setting. Recall that the excursion of the GCW(f , g) starts with some
immigration with lawµ and then proceeds as the random walk of jump distribution
ν̃ until it hits 0. Now in the continuous setting, the immigration is driven by some
subordinator Y and thus has two components, a linear immigration (due to the drift
part of the subordinator), and an immigration by jumps (the jump part of the subor-
dinator). We thus have to cope with two kinds of excursions, those starting with a
jump of Y that behave as the Lévy processX until it reaches 0, and those starting at
0 (infinitesimal immigration). Intuitively, the latter should have in some sense the
limiting distribution as x → 0+ of X started at x and killed upon reaching 0. We
will see that a good choice for this measure is the excursion measure ofX−I away
from 0, where I stands for the infimum process of X. Indeed, since 0 is regular for
(−∞, 0) w.r.t. X, it is regular for itself w.r.t. X − I , and it is known that X − I

is a strong Markov process (see Proposition VI.1 in [4]). We are therefore able to
define this measure up to a multiplicative constant. We shall take the associated
local time equal to −I , which forces the choice of the constant factor. We stress
that the semigroup of this measure is that of X killed upon reaching 0.

Consider the family of measures (Nr, r ≥ 0) defined on E as follows

• N0 stands for the excursion measure of X − I away from 0 under P0.
• For r > 0, Nr denotes the law of X started at r and killed upon reaching 0.

Now we can lay out the problem in proper terms. Let X = (Xt , t ≥ 0) and
Y = (Yt , t ≥ 0) be the first and second coordinate processes on ; = D × D.
Let (Px)x>0 be a family of probability measures on ; for which X is a spectral-
ly positive (i.e. with no negative jumps) Lévy process starting from x, and Y an
independent subordinator starting from 0. The Laplace exponents of X and Y are
those specified in the Preliminaries by (3) and (4). The paths of X are assumed
not to drift to +∞ and to have infinite variation, that is ψ ′(0+) ≥ 0 and either∫

0 r*(dr) = ∞ or β > 0. Analogously to the discrete setting, we have to find out a
Markov process X� (the genealogy-coding process) whose excursion measure N�

away from 0 can be described as follows

N� =
∫ ∞

0
,(dr)Nr + δN0,

where we remind that , and δ are defined in (4).
More precisely N� is the sum of two disjoint σ -finite measures on E . The first

has support {ε ∈ E : ε(0) > 0} and satisfies
(i) For x > 0, conditional on {ε(0) = x}, ε behaves as the process X started at

x and killed upon reaching 0,
(ii) The σ -finite distribution of ε(0) is

N�(ε(0) ∈ dr) = ,(dr) r > 0.

The second has support {ε ∈ E : ε(0) = 0} and is equal to δN0, where we recall
that N0 is the excursion measure of X − I away from 0.

We prove thanks to Itô’s synthesis theorem that there exists a unique Marko-
vian family of probability measures (P�x, x ≥ 0) on D such that 0 is instantaneous
(E�

0(
∫ ∞

0 1{Xt=0}dt) = 0) and



52 A. Lambert

(i) The excursion measure away from 0 under P
�
0 is N�.

(ii) For any nonnegative measurable F and G,

E
�
x(F (Xs, s ≤ T0)G(Xs+T0 , s ≥ 0)) = Ex(F (Xs, s ≤ T0))E

�
0(G(Xs, s ≥ 0)),

where T0 stands for the first hitting time of 0.

We call the canonical process under P
� the genealogy-coding process associat-

ed to the Laplace exponents ψ and φ, abbreviated GCP(ψ , φ). We shall always
assume in the sequel that Y is not a compound Poisson process, as otherwise our
results would merely reduce to those of [15].

Let us start with the uniqueness result for the family P
�. Since 0 is instantaneous,

it is known that

E
�
0(

∫ ∞

0
e−t g(Xt )dt) = N�(

∫ V

0
e−t g(εt )dt),

where g is any bounded measurable function. The definition of P
�
x then implies that

E
�
x(

∫ ∞

0
e−t g(Xt )dt) = Ex(

∫ T0

0
e−t g(Xt )dt)+ Ex(e

−T0)N�(

∫ V

0
e−t g(εt )dt),

hence the knowledge ofN� and that of (Px, x ≥ 0) determine that of the last quan-
tities for every x ≥ 0 and bounded measurable g. It follows from standard results
that the semigroup of (P�x, x ≥ 0) is then uniquely determined.

As for the existence of the family P
�, we apply Itô’s synthesis theorem to the

excursion measure N�. We check that the hypotheses of Theorem V.2.10 p.145 in
[8] hold in our special case. Specifically, required properties such as the Feller prop-
erty of the minimal process and technical properties about (Ex(e−λT0), λ, x ≥ 0)
are easily verified. We need only show that N� is compatible with the minimal
semigroup. Namely, for all s > 0,> ∈ Fs , and bounded measurable F ,

N�(F ◦ θs;> ∩ {V > s}) = N�(Nεs (F );> ∩ {V > s}).
This follows from the fact that the measures (Nr, r ≥ 0) have the same semigroup
as that of the killed Lévy process.

3.2. Pathwise construction of the GCP

Our aim is to give here a pathwise construction of a version of the GCP, still denoted
X�, based on the paths of X and Y . As Y is a.s. increasing, we can define its right
inverse Y−1 by

Y−1
s = inf{t : Yt > s}, s ≥ 0.

Set also
It = (inf

s≤t Xs) ∧ 0, t ≥ 0.

We can now state the
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Theorem 3. Define

X�
t
.= Xt + inf(R ∩ (−It ,∞)) = Xt + Y (Y−1(−It )),

where R stands for the range of Y . Under Px , the law of this process is equal to
P
�
x . More precisely, we may (and will) define the local time at 0 of X� by

L�t = Y−1(−It ),
and then the excursion measure of X� away from 0 is N�.

Proof. The first step is showing that L� as defined in the theorem is a local time
for X�. The second step uses the compensation formula for X and Y , to prove that
the excursion process of X� away from 0 is a Poisson point process with excursion
measure N�. Then the theorem will follow from the uniqueness of the family P

�

(in particular, X� as defined by this pathwise construction, is a Markov process).

First step. As X is spectrally positive, −I is continuous increasing a.s., and so
is Y−1 (for Y is not a compound Poisson process), thus by composition the same
holds for L�.

We prove that L� is an additive functional adapted to the natural filtration of
X�. When , = 0, L�t = −It /δ is known to be an adapted additive functional of
X − I = X�.

When , is finite, the number of excursions of X� away from 0 starting from
positive values and occurring before time t is finite. It then suffices to proceed as
in the previous case after discarding these excursions.

When , is infinite, a standard argument shows there is a sequence εn → 0 such
that with probability one for all t , Nεn(t)/,(εn,∞) converges to t , where

Nε(t) = Card{s ≤ t : @Ys > ε}.
Hence Nεn(Y

−1(−It ))/,(εn,∞) converges a.s. to L�t . Next notice that X�
s− = 0

iff Xs = Is and −Is ∈ R. Since a dual ladder time (i.e. an increase time for −I )
cannot be a jump time for X,

X�
s− = 0 and @X�

s > εn ⇔ Xs = Is and @Y(Y−1(−Is)) > εn,

and it follows that Nεn(Y
−1(−It )) is exactly equal to

Card{s ≤ t : X�
s− = 0,@X�

s > εn},
which is obviously measurable relative to σ {X�

s , s ≤ t}.

We get the fact that L� is a local time by proving that for all x ≥ 0,

supp(dL�) = {t : X�
t− = 0} Px − a.s.

Take two rationals a < b. If for all t ∈ (a, b) X�
t− > 0, then (−Ib,∞) ∩ R =

(−Ia,∞) ∩ R, that is (−Ib,−Ia) ∩ R = ∅, hence Y−1(−Ia) = Y−1(−Ib).
Consider

ζ = inf{s ≥ a : X�
s− = 0} ∈ (a,∞) a.s.
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Conditional on R, ζ is a stopping time relative to the natural filtration of X. Now a
spectrally positive Lévy process started at 0 immediately takes on negative values
and so by the strong Markov property applied at ζ , ζ is a right increase time for
−I . But Iζ ∈ R a.s., that is −Iζ is a right increase time for Y−1, hence ζ is a
right increase time for L�. We just proved that if there exists t ∈ (a, b) such that
X�
t− = 0, then L�a < L�b a.s. Then by continuity of L�, for all x ≥ 0,

Px(∀a < b, [∀t ∈ (a, b) X�
t− > 0 ⇔ L�a = L�b]) = 1.

Second step. As previously mentioned, we shall prove that the excursion process
of X� is a Poisson point process with excursion measure N�. Specifically, set τ �

the inverse local time

τ �s = inf{t : L�t > s} = T−Ys , s ≥ 0.

We recall that since ψ : [0,∞) → [0,∞) is strictly increasing, it has an inverse
ψ−1, which is known to be the Laplace exponent of the subordinator (T−x, x ≥ 0)
(until the end of the proof, we write T−x instead of T(−∞,−x)). Note then that τ �

is the composition in the sense of Bochner of two independent subordinators with
Laplace exponentsψ−1 and φ respectively, it is hence a subordinator with exponent
φ ◦ ψ−1. Then for s ≥ 0 set as usual in E

e�s =
{
(X�

τ�s−+t , 0 ≤ t < τ�s − τ �s−) if τ �s− < τ�s

ϒ otherwise.

We point out that as the set of jump times of Y is a.s. countable, with probability
one, for all s ≥ 0 @Ys > 0 ⇒ @T−Ys− = 0, so that one can a.s. describe the set of
jump times of τ � as

{s : @Ys > 0} ∪ {s : @Ys = 0,@T−Ys �= 0}.
Define the filtration (Ht )t≥0 by saying that> ∈ Ht if for every r ≥ 0,>∩{T−Yt ≤
r} is in σ {(Ys, s ≤ t); (Xs, s ≤ r)}. Then let F be a process predictable relative to
H, taking values in the nonnegative measurable functionals on E ∪ {ϒ} and such
that Ft(ϒ) = 0, for all t . We now apply the compensation formula to the process of
jumps of Y and to the excursion process of X− I away from 0. Taking predictable
projections successively w.r.t. σ {(Xs, s ≥ 0)} and σ {(Ys, s ≥ 0)}, we get

E(
∑
s≥0

Fs(e
�
s )) = E(

∑
s≥0,@Ys>0

Fs(X
�
t+T−Ys− , t ≤ T−Ys − T−Ys−))

+E(
∑

s≥0,@T−Ys >0

Fs(X
�
t+T(−Ys )− , t ≤ T−Ys − T(−Ys)−))

= E

∫ ∞

0
ds

∫ ∞

0
,(dr)Fs(X

�
t+T−Ys− , t ≤ T−Ys−+r − T−Ys−)

+E(
∑

u≥0,@T−u>0

1{u∈C} FY−1
u
(X�

t+T(−u)−), t ≤ T−u − T(−u)−)),

where C = {Ys; s ≥ 0,@Ys = 0},
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=
∫ ∞

0
ds

∫ ∞

0
,(dr)Er (Fs(Xt , t ≤ T0))+ E

∫ ∞

0
duN0(FY−1

u
)1u∈C

=
∫ ∞

0
ds

∫ ∞

0
Nr(Fs),(dr)+ E

∫ ∞

0
N0(Fs)1{@Ys=0} dYs

=
∫ ∞

0
ds (

∫ ∞

0
Nr(Fs),(dr)+ δN0(Fs))

=
∫ ∞

0
ds N�(Fs),

and the proof is complete. ��

The next section is devoted to the continuous analogue of Proposition 1, that is
to give a pathwise definition of the height process based on the GCP, and then
check that it is distributed as the height process linked to a CBI(ψ , φ).

4. The height process H�

4.1. Definitions and genealogy-decoding

Consider the GCP(ψ , φ) X� defined in the last section. This Markov process pro-
vides a handy way to code for the genealogy of the continuous analogue of a Gal-
ton-Watson tree with immigration. This continuous tree is well understood when
considering the successive heights of its individuals. If φ ≡ 0, we recall that this
so-called height process Ht can be recovered from the paths of X by measuring
the set Jt of times when X meets or crosses its future infimum on [0, t], thanks
to formula (6). When φ �≡ 0, denote by gt for each positive t , the last zero of X�

before time t , that is

gt = sup({s ≤ t : X�
s− = 0} ∪ {0}).

Then, for before time gt the future infimum on [0, t] is equal to 0 a.s., we set

Kt = {s < gt : X�
s− = 0},

Lt = {gt ≤ s ≤ t : X�
s− ≤ inf

s≤r≤t X
�
r },

which implies that Jt = {s ≤ t : X�
s− ≤ infs≤r≤t X�

r } is the disjoint union of Kt

and Lt . Analogously to the discrete setting, the first set can be considered as the
‘time spent’ when the exploration process hits the rightmost branch of the tree, that
is the height of the last visited immigrant. The measure of Kt is taken equal to the
local time L�t at level 0 at time t of X�.

Next the (incomplete) excursion (X�
s , gt ≤ s ≤ t) explores the standard de-

scendant tree starting from the last wave of immigration @X�
gt

, and thus it reduces
to the definition of the height process given in [14] when there is no immigration.
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Indeed, conditional on {X�
gt
= 0}, the finite path (X�

s , gt ≤ s ≤ t) is distributed as
(Xs − It ,Gt ≤ s ≤ t) under P0, where

Gt = sup{s ≤ t : Xs = It }.
And conditional on {X�

gt
= x, t − gt = r}, the finite path (X�

s , gt ≤ s ≤ t) is
distributed as (Xs, 0 ≤ s ≤ r) under Px(· | T0 > r). We will thus deal with the
measure of Lt given by (6), provided the paths of X� have infinite variation. In
conclusion, we can thus make the following

Definition 4. The height process H� is defined as a functional of X� by

H�
t = L�t + lim

ε↓0

1

ε

∫ t

gt

1{X�
s−infs≤r≤t X�

r<ε}ds.

Then H� is a progressively measurable process and we can define the random
measure Z� by

< Z�, h >=
∫ ∞

0
h(H�

s )ds,

where h is any nonnegative measurable function with compact support. Moreover,
Theorem 4.7 in [15] and the continuity of L� entail that H� is continuous a.s. if
and only if

∫ ∞
dλ/ψ(λ) <∞.

We can state the main theorem of this section. It shows that the local time
process of H�, as a function of the space variable, is a CBI(ψ , φ).

Theorem 5. Under P
�
x , the random measure Z� has a.s. a càdlàg density (Z�a, a ≥

0), w.r.t. Lebesgue measure on R+, and the processZ� is a CBI(ψ , φ) starting from
x.

We start with stating a lemma on CBI-processes, which proof is moved to the
appendix.

Lemma 6. If h denotes any nonnegative bounded measurable function with com-
pact support on R+, and if Z denotes a CBI(ψ , φ) started at x, then

Ex(exp[−
∫ ∞

0
h(a)Zada]) = exp[−xw(0)−

∫ ∞

0
φ(w(s))ds],

where (w(t), t ≥ 0) is the unique nonnegative solution of the integral equation

v(t)+
∫ ∞

t

ψ(v(s))ds =
∫ ∞

t

h(s)ds, t ≥ 0. (Eh)

We are now able to provide the

Proof of Theorem 5. We have to establish the equality

E
�
x(exp[−

∫ ∞

0
h(H�

s )ds]) = exp[−xw(0)−
∫ ∞

0
φ(w(s))ds],

where w is the nonnegative solution of (Eh).
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The choice we made for the definition ofH� allows us to use the following two
expressions computed in [14, p.141], where V stands for the lifetime of the generic
path

N0(1 − exp(−
∫ V

0
h(Hu + t)du)) = w(t), t ≥ 0,

and

Ny(exp[−
∫ V

0
h(Hu + t)du]) = exp(−yw(t)) t ≥ 0, y > 0.

We decompose the genealogy-coding process X� into its excursions away from 0.
Thanks to the two foregoing equations, and using the excursion measure N� that
defined the process X� in Section 3, we get

E
�
x(exp(−

∫ ∞

0
h(H�

s )ds))

= E
�
x(exp(−

∫ T0

0
h(H�

s )ds)E
�
0(exp−

∑
s≥0

∫ τ�s

τ �s−
h(H�

u)du)

= Ex(exp(−
∫ T0

0
h(H�

s )ds)) exp

(
−

∫ ∞

0
ds N�(1 − exp(−

∫ V

0
h(s +Hu)du))

)

= Nx(exp(−
∫ V

0
h(Hu)du)) . exp

(
−

∫ ∞

0
ds

[∫ ∞

0
,(dr)

×Nr(1 − exp(−
∫ V

0
h(s +Hu)du))

+δN0(1 − exp(−
∫ V

0
h(s +Hu)du))

])

= exp(−xw(0)) exp−
∫ ∞

0
ds [

∫ ∞

0
,(dr)(1 − e−rw(s))+ δw(s)]

= exp[−xw(0)−
∫ ∞

0
φ(w(s))ds],

which is the expected expression. ��

Remark. In the case when X is a standard Brownian motion, and Y = (δt, t ≥ 0),
with δ a positive real number, Theorem 5 reduces to a theorem by M. Yor and J.F.
Le Gall [17]. Writing ψ(λ) = λ2/2, φ(λ) = δλ, and referring to Theorem 3, the
GCP(ψ , φ) is the Feller Brownian motion X� = (Xt − It , t ≥ 0) with local time
at time t at level 0 equal to −It /δ.

For t ≥ 0, consider the finite path β = (X�
t − X�

t−s , 0 ≤ s ≤ t − gt ), with gt
the last zero of X� before time t , and let β be its supremum process. By definition
of the height process H� of X�,

H�
t = −It

δ
+ lim

ε↓0

1

ε

∫ t−gt

0
1{βs−βs<ε}ds.
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But β is a Brownian path started at 0 and killed upon reaching the positive real
number Xt − It , hence

H�
t = −It

δ
+ 2(Xt − It ).

By Lévy’s equivalence theorem, H� is distributed as 2 | X | +L0/δ, where L0

denotes the local time at level 0 of the Brownian motion X, and a theorem by J.F.
Le Gall and M. Yor states that

(La∞(2 |X | +L0/δ), a ≥ 0)
L= 4−1BESQ(4δ),

where the notation in the r.h.s. refers to a squared Bessel process of dimension 4δ
starting from 0.

In agreement with Theorem 5, a BESQ(4δ) is a CBI(ψ , φ) up to a multiplicative
factor 4, with ψ(λ) = λ2/2, φ(λ) = δλ.

5. An extension of a Ray–Knight–Williams theorem

We show how Lévy processes that drift to +∞ and Lévy processes conditioned to
stay positive code the genealogy of certain CBI-processes. In the Brownian case,
the genealogy related to the Bessel process of dimension 3 (BES(3)), which is
the Brownian motion conditioned to stay positive, is that of a squared Bessel pro-
cess of dimension 2 ((BESQ(2)), that is a CBI-process with branching mechanism
λ  → λ2/2, and immigration mechanism λ  → λ/2. This result is known as the
Ray–Knight–Williams theorem (see [25]).

5.1. Main result

We stick to the framework described in Section 3. Specifically, Px denotes the law
of a spectrally positive Lévy process X started at x ∈ R, with Laplace exponent
the convex function

ψ(λ) = αλ+ βλ2 +
∫ ∞

0
(e−λr − 1 + λr1r<1)*(dr), λ ≥ 0.

Denote by ξ the largest root of ψ . If ξ > 0, ψ has exactly two roots (0 and ξ ),
otherwise it has a unique root ξ = 0. According as ψ ′(0+) < 0, ψ ′(0+) = 0, or
ψ ′(0+) > 0, the paths of X a.s. drift to +∞, oscillate, or drift to −∞, and the
associated branching mechanism is supercritical, critical, or subcritical. We assume
throughout the rest of this section that ψ ′(0+) ≤ 0, and again that the paths of X
have a.s. infinite variation.

We introduce briefly two laws connected with P.

1. The probability measure P
↑
x is the law of the Lévy process started at x > 0

and conditioned to stay positive. When X drifts to +∞, the conditioning is
taken in the usual sense, sinceX stays positive with positive probability. When
X oscillates, as X reaches 0 continuously, the process (Xt1{t<T0}, t ≥ 0) is a
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martingale (T0 denotes the first hitting time of 0 by X). Then P
↑
x is defined by

local absolute continuity w.r.t. Px with density x−1Xt1{t<T0} on Ft (t ≥ 0).

It is known that the probability measures P
↑
x converge weakly as x → 0+ to

a Markovian law P
↑
0 . For more details, see [1], [9],[10].

2. The law P
E is that of the spectrally positive Lévy process with Laplace expo-

nent ψE : λ  → ψ(λ+ ξ). When ξ > 0, the path of X a.s. drifts to +∞, and if
I∞ denotes its overall infimum (Lemma VII.7(i) in [4]), then

lim
x→∞P(* | I∞ < −x) = P

E(*), * ∈ Ft , t > 0.

This process is thus called the Lévy process conditioned to drift to −∞, and
for every x ∈ R, P

E
x is defined by local absolute continuity w.r.t. Px with den-

sity exp(−ξ(Xt − x)) on Ft (t ≥ 0). In the sequel, it will be implicit that the
superscript E refers to P

E. For more details, see [1].

Recall that the definition (1) of the functionalH makes sense for any Lévy process
with no negative jumps. By local absolute continuity, H is still well defined under
P, and P

↑
x for every x > 0. We shall see in Lemma 8 that the same holds under P

↑
0 .

In [15], the main result asserts that, provided X does not drift to +∞ under Px , the
occupation measure Zx of H defined for any nonnegative h by

< Zx, h >=
∫ T−x

0
h(Hs)ds,

has a density (Za, a ≥ 0) w.r.t. Lebesgue measure, which is a CB-process started
at x. We now state the analogue under P

↑ and under P when X drifts to +∞.

Theorem 7. Define

φ(λ) = ψE(λ)

λ+ ξ
= ψ(λ+ ξ)

λ+ ξ
, λ ≥ 0.

Both P-a.s. and P
↑-a.s., the occupation measure ofH has a density w.r.t. Lebesgue

measure. We denote by (Za, a ≥ 0) the càdlàg version of this density.
(i) Let x ≥ 0. Under P

↑
x , Z is a CBI(ψE, φ) with initial distribution µx , where

1. The measure µ0 is the Dirac mass at 0.
2. For x > 0 and ξ = 0, µx is the uniform distribution on (0, x).
3. For x > 0 and ξ > 0,

µx(dy) = ξe−ξy

1 − e−ξx
dy, 0 < y < x.

(ii) Assume the branching mechanism is supercritical (ψ ′(0+) < 0). Then under
P, Z is a CBI(ψE, φ) with initial distribution the exponential distribution with
parameter ξ .
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The proof uses the following lemma, which shows the connection with the GCP.
When X drifts to +∞, we denote by X its future infimum

X
t
= inf

s≥t Xs, t ≥ 0.

Lemma 8. Under P
↑
0 , we may (and will) define the local time L at 0 for X−X by

L
t

P= lim
ε↓0

1

ε

∫ t

0
1{Xs−Xs

<ε}ds, t ≥ 0. (7)

Then with this normalization of local time,
(i) The process X −X is a version of the GCP(ψE, φ).
(ii) The functional H of X is well defined by (1) and is equal to the height

process H� of the GCP X −X.

Before proving the theorem, we establish the link with the Ray–Knight–Wil-
liams theorem. In the Brownian case, the law P

↑ is that of the Bessel process of
dimension 3 (BES(3)). Invoking Pitman’s theorem (see [20]), the bivariate process
(X,X) has the same law as (2S − B, S), where B stands for a standard Brownian
motion, and S for its supremum process. Hence by Lévy’s equivalence theorem,
2X is a local time at 0 for X −X. It is then easily checked referring to the remark
ending last section that

H�
t = 2X

t
+ 2(X −X)t = 2Xt, t ≥ 0,

and by Lemma 8(ii), the process H is again (up to a factor 4) a BES(3). Then the
Ray–Knight–Williams theorem states that the local time process of a BES(3) is a
squared Bessel process of dimension 2 starting from 0 (BESQ(2)), which is (up to
a factor 4) a CBI(ψ , φ), with ψ(λ) = λ2/2, and φ(λ) = λ/2 (see [25, Theorem 65
p.38]).

Proof of Theorem 7.
(i) When x = 0, the statement follows readily from Lemma 8 and Theorem 5.
Let x > 0. We have the following absolute continuity relationship (see [10])

P
↑
x (>) = Ex(

h(Xt )

h(x)
,>, t < T0), > ∈ Ft , x > 0, (8)

where h(y) = y when ξ = 0, and h(y) = ξ−1(1 − e−ξy) when ξ > 0. For any
0 ≤ y ≤ x, (8) yields

P
↑
x (I∞ ≤ y) = h(y)

h(x)
Px(Ty <∞) = h(y)

h(x)
e−ξ(x−y). (9)

Hence, with the notation in Theorem 7,

P
↑
x (x − I∞ ∈ dy) = µx(dy).

Now a theorem by L. Chaumont ([9, Théorème 2]) states that under P
↑
x , conditional

on I∞ = y, the pre-minimum process and the post-minimum process are indepen-
dent with respective lawsNE

x−y and P
↑
0 . Hence conditional on I∞ = y,X−X is the
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juxtaposition of the killed Lévy process under P
E
x−y and an independent GCP(ψE,

φ) started at 0, it is thus distributed as a GCP(ψE, φ) with initial distribution µx .
The equality between its height process H� and the functional H is again straight-
forward from Lemma 8 and an application of Theorem 5 completes the proof.

(ii) We work under P0. When ξ > 0, we know that −I∞ is exponential with
parameter ξ . The key is a result of P.W. Millar [18] and J. Bertoin [1, Théorème 2]
which states that conditional on −I∞ = y, the pre-minimum process and the post-
minimum process are independent with respective laws NE

y and P
↑
0 . We conclude

as previously. ��

5.2. Proof of Lemma 8

We first set some definitions and state a general result describing the excursion
measure of X − S away from 0 under P.

Recall that since X is a Lévy process with paths of infinite variation, the pro-
cesses X − I and X − S (I denotes the infimum process, and S the supremum
process) are strong Markov processes for which 0 is a regular point. Therefore,
one can associate to each an excursion measure away from 0, denoted by N0 and
n respectively, for the following normalization of local time. It is well-known that
the process −I provides a local time at 0 forX− I . The local time L at 0 forX−S

is defined (see [14, p.133]) by

Lt
P= lim

ε↓0

1

ε

∫ t

0
1{Ss−Xs<ε}ds, t ≥ 0. (10)

We start with the following lemma concerning n, and next use it in the proof of
Lemma 8. Its proof is moved to the appendix.

Lemma 9. We denote the reversed generic excursion by ε̂ = (−ε(V−t)−, 0 ≤ t ≤
V ). Then under n,

(i) n(ε̂0 ∈ dr) = *(r,∞)e−ξrdr , r > 0.
(ii) For r > 0, conditional on {ε̂0 = r}, ε̂ is distributed as X started at r and

killed upon reaching 0 under P
E.

(iii) n̂(·, ε0 = 0) is proportional to the excursion measure N0
E of X − I away

from 0 under P
E. More precisely, n̂(·, ε0 = 0) = βN0

E.
In other words, n̂ = N�, where we set

N� =
∫ ∞

0
dr e−ξr*(r,∞)NE

r + βN0
E.

We point out that when the Gaussian component β of the Laplace exponent of
X vanishes, (i) and (ii) are known results by L.C.G. Rogers [22, Theorem 1] and
J. Bertoin [2, Corollary 1], respectively. The previous lemma allows us to prove
Lemma 8.

Proof of Lemma 8. For every t ≥ 0, define g
t
= sup{s < t : Xs = Ss}, dt =

inf{s > t : Xs = Ss}, and introduce the process
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R(X − S)t =
{
(S −X)(dt+gt−t)− if dt > g

t

0 if dt = g
t
,

obtained by reversing each excursion of S − X. When X drifts to +∞ under P,
Lemme 4 in [1] states that under P0 the process (R(X − S)t , t ≥ 0) has the same
law as X − X under P

↑
0 . Let us give a short argument to prove that this still holds

when X oscillates. Let T be an independent exponential r.v. with parameter ε > 0,
and ρ = ρ(T ) the first time when X reaches its future infimum on [0, T ]

ρ = inf{s ≤ T : Xs = inf
s≤r≤T

Xr}.

The same arguments as those developed in the proof of [1, Lemme 4] show that
the processes (R(X − S)t , 0 ≤ t < g

T
) and ((X − X)ρ+t , 0 ≤ t ≤ T − ρ)

have the same law. The result then follows from [3, Corollary 3.2] according to
which the laws of (Xρ+t , 0 ≤ t ≤ T − ρ) converge to P

↑
0 as ε ↓ 0. Hence under

P0, the process (R(X − S)t , t ≥ 0) has the same law as X − X under P
↑
0 . As a

consequence, {t : Xt −X
t
= 0} is distributed under P0 as {t : Xt = St } under P0.

Recall that {t : Xt = St } is a regenerative set with local time L defined by (10),
that is

Lt = Lg
t
= lim

ε↓0

1

ε

∫ g
t

0
1{Ss−Xs<ε}ds = lim

ε↓0

1

ε

∫ g
t

0
1{R(S−X)s<ε}ds, t ≥ 0.

Hence {t : Xt − X
t
= 0} is a regenerative set and the functional L defined by

(7) is its local time. Furthermore, it follows also from this identity in law that the
associated excursion measure n of X −X away from 0 satisfies

n = n̂,

where n̂ still denotes the image of the excursion measure of S − X away from
0 (normalized by (10)) by the time-reversal map. Hence referring to Lemma 9,
n = N�, with

N� =
∫ ∞

0
dr e−ξr*(r,∞)NE

r + βN0
E.

Now notice that after elementary calculation

φ(λ) = βλ+
∫ ∞

0
dr e−ξr*(r,∞)(1 − e−λr ), λ ≥ 0, (11)

which ensures that φ is the Laplace exponent of a subordinator, and that N� is the
excursion measure of the GCP(ψE, φ). The zeros ofX−X are instantaneous, hence

the uniqueness of P
�
0 yields that X −X is a GCP(ψE, φ) started at 0.

It thus only remains to show that if H� denotes its height process as in Defini-
tion 4, then H� is equal to the r.h.s. in (1). For every positive t , split the interval
[0, t] into [0, g

t
) ∪ [g

t
, t], where

g
t
= sup{s ≤ t : Xs = X

s
}.
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Then by definition of H� and L,

H�
t = lim

ε↓0

1

ε

∫ g
t

0
1{Xs−Xs

<ε}ds + lim
ε↓0

1

ε

∫ t

g
t

1{(X−X)s−infs≤r≤t (X−X)r<ε}ds.

Note that for any s ≤ t , X
s
= min(X

t
, infs≤r≤t Xr). Then for any s ∈ [0, g

t
),

X
s
= infs≤r≤t Xr , and for any s ∈ [g

t
, t], X

s
= X

t
. Replacing in the previous

equality yields

H�
t = lim

ε↓0

1

ε

∫ g
t

0
1{Xs−infs≤r≤t Xr<ε}ds + lim

ε↓0

1

ε

∫ t

g
t

1{Xs−Xt
−infs≤r≤t (Xr−Xt

)<ε}ds,

which entails the existence of

Ht = lim
ε↓0

1

ε

∫ t

0
1{Xs−infs≤r≤t Xr<ε}ds,

and the identity H = H�. ��

Remark. An easy way of building a GCP is to erase the negative excursions of
X under P. We consider here that ψ ′(0+) = 0 (critical case). Set

A+
t =

∫ t

0
1{Xs>0}ds, t ≥ 0,

A−
t =

∫ t

0
1{Xs<0}ds, t ≥ 0,

and α+, α− their respective right-inverses. Referring to the remark p.1470 in [2],
the excursion ε ofX away from 0 and ε̂ are equally distributed. Hence the excursion
ε of X ◦ α+ is distributed as the reversed excursion ε̂ of X ◦ α−. But [2, Lemma
2] entails that X ◦ α− and X − S have the same law. In conclusion, the excursion
measure of X ◦ α+ away from 0 is equal to n̂, and X ◦ α+ is thus a GCP(ψ , φ),
where

φ(λ) = ψ(λ)

λ
, λ > 0.

6. Appendix

6.1. Proof of Lemma 6

Every solution v of (Eh) is continuous and has its support included in that of
h. Hence the range of v is compact and ψ is Lipschitz on this compact set. The
uniqueness of the solution then follows from Gronwall’s lemma.

Remember that t  → ut (λ) is the unique nonnegative solution of

v(t)+
∫ t

0
ψ(v(s))ds = λ, λ ≥ 0, t ≥ 0,
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and that

Ex(e
−λZt ) = exp[−xut (λ)−

∫ t

0
φ(us(λ))ds].

As a consequence, for any t1 ≥ 0, λ1 ≥ 0, t  → wt(λ1) = 1[0,t1](t)ut1−t (λ1) is the
unique nonnegative solution of

v(t)+
∫ ∞

t

ψ(v(s))ds = λ11[0,t1](t), t ≥ 0, (E′(λ1, t1))

and furthermore

Ex(e
−λ1Zt1 ) = exp[−xw0(λ1)−

∫ t1

0
φ(ws(λ1))ds].

More generally, we define for 0 ≤ t1 < · · · < tn, and λ1, . . . , λn ≥ 0 the integral
equation

v(t)+
∫ ∞

t

ψ(v(s))ds =
n∑

j=1

λj1[0,tj ](t), t ≥ 0. (E′(λ1, t1, . . . , λn, tn))

We argue by induction on n to show that the solution w of (E′(λ1, t1, . . . , λn, tn))

satisfies

Ex(exp−
n∑

j=1

λjZtj ) = exp[−xw(0)−
∫ tn

0
φ(w(s))ds].

The first step was just proved in the preceding lines. Now let n ≥ 2, and assume
that the result holds up to the order n− 1. By the Markov property at t1,

Ex(exp−
n∑

j=1

λjZtj ) = Ex(e
−λ1Zt1 EZt1

(exp−
n∑

j=2

λjZtj−t1))

= Ex(e
−λ1Zt1 exp[−Zt1w̃(0)−

∫ tn−t1

0
φ(w̃(s))ds]),

where w̃ is the nonnegative solution of (E′(λ2, t2 − t1, . . . , λn, tn − t1)).
Thanks to the first step (n = 1),

Ex(exp−
n∑

j=1

λjZtj ) = exp[−xw̄(0)−
∫ t1

0
φ(w̄(s))ds −

∫ tn−t1

0
φ(w̃(s))ds],

where w̄ is the nonnegative solution of (E′(λ1 + w̃(0), t1)). Hence

w(t) = 1[0,t1](t)w̄(t)+ 1(t1,∞)(t)w̃(t − t1)



The genealogy of continuous-state branching processes with immigration 65

is the nonnegative solution of (E′(λ1, t1, . . . , λn, tn)) and satisfies

Ex(exp−
n∑

j=1

λjZtj ) = exp[−xw̄(0)−
∫ t1

0
φ(w̄(s))ds −

∫ tn

t1

φ(w̃(s − t1))ds]

= exp[−xw(0)−
∫ tn

0
φ(w(s))ds].

Now go back to the general case with h some nonnegative bounded measurable
function with compact support. The mapping t  → ∫ ∞

t
h(s)ds is a continuous de-

creasing function that we may approximate by a pointwise increasing sequence of
step functions ϕn

ϕn(t) =
n∑

j=1

λnj1[0,tnj ](t) ↑
∫ ∞

t

h(s)ds, t ≥ 0.

Then it is clear that the associated differential equation (E′(λn1, t
n
1 , . . . , λ

n
n, t

n
n )) has

a unique nonnegative solution wn satisfying

0 ≤ wn(t) ≤
∫ ∞

t

h(s)ds, t ≥ 0.

In particular, the (wn, n ≥ 0) are uniformly bounded and have a common compact
support. Applying Gronwall’s lemma to the increments wn+p(t)−wn(t) for each
t ≥ 0, we deduce that the sequence (wn(t), n ≥ 0) has a limit, say w(t), as n →
∞. It follows from the dominated convergence theorem that

∫ ∞
t
ψ(wn(s))ds →∫ ∞

t
ψ(w(s))ds, that

∫ ∞
t
φ(wn(s))ds →

∫ ∞
t
φ(w(s))ds, and that

Ex(exp−
n∑

j=1

λnjZtnj
)→ Ex(exp−

∫ ∞

0
h(a)Zada), as n→ ∞.

Hence w satisfies (Eh), which provides a proof for the existence of solutions,
moreover

Ex(exp[−
∫ ∞

0
h(a)Zada]) = exp[−xw(0)−

∫ ∞

0
φ(w(s))ds],

and the proof is complete. ��

6.2. Proof of Lemma 9

We first give some further details about P, and state two preliminary lemmas.
The scale function is defined as the unique continuous function W : [0,∞)→

[0,∞) with Laplace transform∫ ∞

0
e−qxW(x)dx = 1

ψ(q)
, q > ξ.
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It satisfies for any 0 ≤ x ≤ y

Px(T0 < T[y,+∞)) = W(y − x)

W(y)
. (12)

We introduce also the positive increasing mappings W(λ) on (0,∞) specified by
their Laplace transforms∫ ∞

0
e−qxdW(λ)(x) = q

ψ(q)− λ
, ψ(q) > λ ≥ 0.

In particular, W(0) = W . Since when β > 0, ψ(q) ∼ βq2 as q → ∞, it follows
from a Tauberian theorem that for any λ ≥ 0,

W(λ)(x) ∼ β−1x, as x → 0+. (13)

We stress that n is normalized by (10). Set L−1 the right-inverse of L, and ψ−1 the
inverse of ψ|[ξ,∞) (ψ is strictly increasing on [ξ,∞) with ψ(ξ) = 0). Referring to
[14, p.133] and [7], ((L−1

t , S
L−1
t
), t ≥ 0) is a bivariate subordinator with Laplace

exponent κ satisfying

κ(λ, 0) = λ

ψ−1(λ)
, κ(0, λ) = ψ(λ)

λ− ξ
, λ ≥ 0.

Lemma 10. Let m(ε) stand for the supremum of the generic excursion ε. Then

n(m ≥ x) = 1

W(x)
, x > 0.

Proof. For every 0 < x ≤ y, it follows from the strong Markov property applied at
T−x under n that

n̂(m ≥ y)

n̂(m ≥ x)
= P−x(T−y < T[0,∞)).

Thanks to (12), there is some positive constant K such that

n(m ≥ x) = K

W(x)
, x > 0.

In order to compute K , we recall that for every λ > 0, if eλ is an independent
exponential r.v. with parameter λ, then

n(V > eλ) = κ(λ, 0) = λ

ψ−1(λ)
. (14)

But on the other hand,

n(V > eλ) = lim
ε↓0

n(m ≥ ε)P−ε(T[0,∞) > eλ)

= lim
ε↓0

K

W(ε)
P0(Seλ < ε).
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Referring for example to [5, p.158],

P0(Seλ ∈ dx) = λ

ψ−1(λ)
W(λ)(dx)− λW(λ)(x)dx.

Hence thanks to (13)

n(V > eλ) = lim
ε↓0

K

W(0)(ε)

λ

ψ−1(λ)
W(λ)(ε) = K

λ

ψ−1(λ)
,

and we conclude from (14) that K = 1. ��

Lemma 11. Let σε stand for the last passage time below ε

σε
.= sup{s ≥ 0 : Xs < ε}, ε > 0.

Then for any t > 0 and any bounded Ft -measurable >,

lim
ε↓0

1

ε
P
↑
0 (>, t < σε) = N0

E(>, t < V ).

Proof. Thanks to (9), we know that for any 0 ≤ ε ≤ x,

P
↑
x (I∞ ≤ ε) = h(ε)

h(x)
e−ξ(x−ε).

Since h(ε) ∼ ε as ε → 0+,

lim
ε↓0

1

ε
P
↑
0 (>, t < σε) = lim

ε↓0

1

ε
P
↑
0 (>, I∞ ◦ θt ≤ ε)

= lim
ε↓0

1

ε
P
↑
0 (>,

h(ε)

h(Xt )
e−ξ(Xt−ε))

= N0(>, t < V, e−ξXt ),

the last equality stemming from the following absolute continuity relationship (see
[10])

P
↑
0 (>) = N0(h(Xt ),>, t < V ), > ∈ Ft . (15)

According to Lemma VII.7(ii) in [4], the law ofX killed upon reaching−x (x > 0),
is the same under P

E
0 as under P0(· | T−x < ∞), and it is easy to deduce that

N0
E = N0(·, V < ∞). Hence we conclude as follows thanks to the Markov prop-

erty under N0

N0
E(>, t < V ) = N0(>, t < V,PXt (I∞ < 0))

= N0(>, t < V, e−ξXt ),

and the proof is complete. ��

We now are able to give the
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Proof of Lemma 9.
(i) According to Theorem 1 in [22], if eλ stands for some independent expo-

nential r.v. with parameter λ > 0, then

n(ε̂0 ∈ dr, V < eλ) = *(r,∞)
κ(λ, 0)

λ
P0(−Ieλ ∈ dr), r > 0.

But −Ieλ has an exponential distribution with parameter ψ−1(λ) under P0, thus
recalling that κ(λ, 0) = λ/ψ−1(λ), and ψ−1(0) = ξ , letting λ→ 0+ yields

n(ε̂0 ∈ dr) = *(r,∞)e−ξrdr, r > 0.

(ii) When β = 0, n̂(ε0 = 0) = 0 and Corollary 1 in [2] asserts that for any
positive r , under n̂(· | ε0 = r), ε has the law of X killed upon reaching 0 under
Pr (· | T0 < ∞). The result follows once again from Lemma VII.7(ii) in [4], that
is n̂(· | ε0 = r) = N

E
r . When β > 0, n̂(ε0 = 0) = ∞ but the arguments developed

in the prooves of Lemma 1 and Corollary 1 in [2] still apply. Hence we have

n̂(·, ε0 �= 0) =
∫
(0,∞)

n̂(ε0 ∈ dr)NE
r .

(iii) We have to prove that when β > 0, ν = βN0
E, where we wrote

ν = n̂(·, ε0 = 0).

According to Theorem 4.1 in [10], the law of (−X(T[0,∞)−t)−, t ≤ T[0,∞)) under

P−ε(· | XT[0,∞)
= 0) is P

↑
0 ◦ kσε , where k stands for the killing operator. Hence

thanks to Lemma 10,

ν(>, t < V ) = lim
ε↓0

n̂(>, t < V, ε0 = 0,m ≥ ε)

= lim
ε↓0

n̂(m ≥ ε)P
↑
0 ◦ kσε (>, t < V )P−ε(XT[0,∞)

= 0)

= lim
ε↓0

1

W(ε)
P
↑
0 (>, t < σε)P0(XT[ε,∞)

= ε).

Now
P0(XT[ε,∞)

= ε) = P0(∃t : S
L−1
t

= ε),

and (S
L−1
t
, t ≥ 0), is a subordinator with Laplace exponent λ  → κ(0, λ) =

ψ(λ)/(λ−ξ). Settingπ(dr) = ∫ ∞
0 dy e−ξy*(y+dr), an easy calculation provides

the identity

ψ(λ)

λ− ξ
= βλ+

∫ ∞

0
π(dr) (1 − e−λr ), λ > 0.

It is known that (such) a subordinator with positive drift hits a fixed point ε
with positive probability v(ε), and that limε↓0 v(ε) = 1 (see Theorem III.5 in [4]).
Hence we conclude thanks to Lemma 11 and the estimate (13). ��
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