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Abstract. For the signal in Gaussian white noise model we consider the problem of testing
the hypothesid, : f = 0, (the signalf is zero) against the nonparametric alternative
Hy: f e A, whereA, is a set of functions oR* of the formA, = {f : f € F, o(f) >

Cv.}. Here% is a Holder or Sobolev class of functiong( f) is either the sup-norm of

or the value off at a fixed pointC > 0 is a constanty, is the minimax rate of testing
ande — 0 is the asymptotic parameter of the model. We find exact separation constants
C* > 0 such that a test with the given summarized asymptotic errors of first and second type
is possible folC > C* and is not possible faf < C*. We propose asymptotically minimax

test statistics.

1. Introduction

Consider the stochastic procasg) defined on [01] and satisfying the stochastic
differential equation

dy () = f(@®)dt +edW(t) , Q)

whereW (¢) is the standard Wiener process on1l) f is an unknown real-valued
function and O< ¢ < 1.

Suppose thaif is defined on the whole real linel. Given the observation
{Y(¢), 0 <t < 1}, consider the problem of testing the simple hypothesis

Ho: f(t)=0, Vre]0,1],
against the nonparametric alternative
Hi:feA..
Here A, is a set of functions oR? of the form

Ae={f: feF, o(f) =Cy¥e},
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where% is some functional clasg(f) is a functional orgr (usually a distance
betweenf and the zero function); > 0 is a constant angr, is some positive
function ofe tending to 0 as tends to 0.

In words, the set of alternatives, is the set of functions separated from 0 by
theg-distanceC v, and belonging to some functional cl&&sThe setA . is defined
by four parametersF, ¢(-), C andy.. However, it can be shown that, givénand
¢(+), the constan€ and the functiony, cannot be chosen in an arbitrary way, if
one wants to have a statistically meaningful setup. This fact was first noticed by
Yuri Ingster who indicated the optimal choice 6fand . for different classes
% and functionalsy(-) (see the survey of Ingster (1993)). In such a choice only
the product valu€ v, is important. (Introducing the two parametérsandy, is
conventional and follows the tradition to consider separately the “rateind the
“constant”C.) It turns out that, ifCy, is too small, then it is not possible to test
the hypothesigHy againstH; with the given summarized errors of the first and
second type. On the other hand(if. is very large, such a testing is possible. The
problemis to find the smallest threshold valti¢, for which such a testing is still
possible, and to indicate the corresponding test. Let us give the precise definitions.

Let T, be a test statistic, i.e. an arbitrary function with zero-one values, being
measurable w.rfY (z), 0 < ¢ < 1}. The valueT, = 0 means that{y is accepted,
andT7, = 1 means thaH) is rejected.

We measure the error of the tdstby the summarized probability of errors of
first and second type

re(C, ¥, T;) = Po(Te = 1) + sup Pf(Te =0 ,
fehe

whereP/ is the probability measure generated{0)(r), 0 < ¢ < 1}, when the
signal in (1) isf. The error, depends o andy,, sinceA, does.

Fix a number O< y < 1. The functiony, is calledminimax rate of testing
(MRT) if the following two conditions hold:

there exists a constaqt, > 0 such that for ever¢' < C, we have

liminf inf rs(C, Ve, To) >y, (2
e—0 T

where infr, denotes infimum over all test statistics,
there exist a constadt* and a test statisti€, such that

lim supr, (C, ¥, ) <y 3
e—0
for eachC > C*.

Thus the MRTv, is such that a meaningful test éfy is impossible if the
distance between the null hypothesis and the alternative is smalle€thyanand
that such a test is possible if this distance is greaterafn.. The MRT, is not
unigue: it is defined up to an arbitrary positive scaling factor. In the following we
fix natural scaling factors for MRT (corresponding to the “minimal writing length”
of the expression fot/;), and thus avoid the non-uniqueness. Cleatly,> C,
and an interesting question is, whether in some cé@8es C,? If (2) and (3) are
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satisfied withC* = C,, thenC* is calledexact separation constan{ESC) and
T is calledasymptotically minimax test statistic

The study of MRT was initiated by Ingster (1982) who found such rates for the
case wherer is an ellipsoid inL [0, 1] and¢(-) is theL [0, 1] norm. Ermakov
(1990) obtained the ESC and the asymptotically minimax test for this setup. Ingster
(1987, 1993) derived the MRT for the setup with Sobolev clagsaadL ,[0, 1]
normse(-), 2 < p < oo. For the most complete survey on this subject as well as
for the similar problem of testing hypotheses on probability densities see Ingster
(1993). Except the cited example of ellipsoidsLip with the L >-norm ¢(-), the
ESC are obtained for a number of problems, where the éfemsd the normp(-)
are defined in a coordinate form (ellipsoidslin Ingster (1990, 1993), Suslina
(1993); coordinate Besov bodies: Ingster and Suslina (1995)). For the ctasses
defined in functional form (such as usuallder or Sobolev classes), and whar)
is thel , norm, much less is known about the exact asymptotics. To our knowledge,
such asymptotics is available only for the case ofdér classes with smoothness
parameter less than 1 and thg,-norme(-) (Lepski (1993)).

Here we consider the problem of nonparametric hypothesis testing #hsre
a Holder or Sobolev class of functions. Lgt> 0, L > 0, and 1< p < oo be
given. Denote

P={(B, p):eitherp=o0c0,8>0,0rl<p<oo,Be{l,2..},Bp>1} .

Consider the clas® = (8, L, p), (B, p) € ?, L > 0, defined as follows.
fl<p<oo, Be{l,2 ..}, Bp> 1, then

FB, L, p) = {f . f%~Yis absolutely continuous angr ? |, < L} .
If p =00, 8 > 0,then
F(B, L, p) = {f P = O < Lix =X Vx x e Rl} ,

wherel = | 8] is the maximal integer that is strictly less thén
Here and later

00 1/p
”f”p:(/ If(t)lpdt) ., 1<p<oo,

and 7 © denotes thé-th derivative off.

In words, for 1< p < oo the classe& (B, L, p) are Sobolev classes, and for
p = oo they represent the dlder classes. Everywhere in the sequel it is tacitly
assumed that belongs to the set of integefs, 2, ...}, whenevep < occ.

In this paper we find ESC and construct the asymptotically minimax tests for
two different problems.

In the first problemp( f) is the supremum norm

lflloo= sup |f()]| ,
1€[0,1]
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and we study the following set. of alternatives:
AZ©) = {f: f€FB LD Ifln = CeIn/e)/ @D}
where
a=8-1/p .
It is known from Ingster (1987) that jf = oo the MRT for this problem is

Veoo = (£2In(L/e)P/EFHD

We show that the MRT for ¥ p < < is
Veo = (£2In(1/)*/ @+

wherea = 8 — 1/p, and we find the ESC.
In the second problem(-) is the pseudo-distance at a fixed paint (0O, 1):
o(f) = f(t), and we consider the set of alternatives

A(C) = |71 FeF@.Lp). flo) = Ce2/2D]

We show that the MRT for this problem is

1/feo — 820{/(204—&-1) ,

and we find the ESC.

In the casep = o0, 0 < B < 1, the explicit expressions for ESC and for
asymptotically minimax tests are obtained by Lepski (1993). Here we give the so-
lution for the casdp, p) € P, and thus extend the result of Lepski (1993) to the
whole scale of classeé®(8, L, p). The solution (constants and tests) is expressed
in terms of certain optimization problems related to optimal recovery (see Donoho
(19944, b), Korostelev (1996), Lepski and Spokoiny (1997), Leonov (1997)). For
some interesting examples the solutions are given explicitly.

2. Main results

Introduce the semi-norm

”f(ﬂ)”p if1<p< oo,
)] Bel{l1,2,..}, Bp>1,
pﬂ,[? = ) D)y
sup [ (x) /J;_l(x)| £ p—oco. B0 .
|x — x|

x,x’eRl,xgéx’

Then

FPB.L.p)={f: ppp(f) <L} .
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Consider the following optimization problem

maxg(0), subject to
lgll2 = 1, 4)
Pg.p(8) < 1.

It is well-known that (4) has a solution (see e.g. Arestov (1989)). Denote this solu-
tion g* (clearly,g* depends or8, p, but we drop this dependence in the notation,
assuming here and later that a pdr p) is fixed). Some examples of solutiog$

are given in Section 5. The constait(0) is the value of the problem (4).

The relation between the problems of the type (4) and nonparametric estimation
has been pointed out by Donoho and Low (1992), Donoho (19944, b). They showed
that for estimation off in (1) at a fixed point or in sup-norm the linear minimax
estimators on the clasg(gs, L, p) can be found in the form of kernel estimators,
where the kernels are properly renormalized solutions of (4). An important point
to understand these results is the fact that (up to a normalizatide)at the same
time the solution of the optimal recovery problem, i.e. the problem of minimax re-
construction off in the deterministic model associated to (@jt) = f(¢) +&Z(¢)
whereZ is a non-random “noise” function withZ ||» < 1 (see Micchelliand Rivlin
(1977) and earlier results cited in Arestov (1989)). This analogy is particularly use-
ful for the case of sup-norm loss, where the stochastic term of the estimation error is
asymptotically degenerate, and the reduction to the deterministic model is natural.
For the loss at a fixed point, however, there is no such a transparent heuristics.

Our results go further and may be interpreted as establishing similar link be-
tween optimal recovery (or, equivalently, the problem (4)) and nonparametric test-
ing. Our tests are based on estimators, and the above “degeneracy heuristics” works
perfectly, at least in the case of the sup-norm. Furthermore, we show that for test-
ing the situation is more favorable than for estimation: the tests based on optimal
recovery attain not only the rate but also the exact minimax constant. Recall thatin
estimation problems the optimal recovery argument does not give constants, except
for the unique example of estimation in sup-norm on ttidéddr class¥(8, L, oo)
(Korostelev (1993), Donoho (1994a)). This has probably not only technical but in-
trinsic origin, and linear minimax methods do not attain optimal constants in most
of estimation problems on the clas$e&, L, p). However, as we show below, the
tests based on linear minimax estimators attain optimal constants in testing.

Let us start with the first problem: testing in the supremum norm.

Theorem 1. Let the set of alternatives e, = A°(C) and let(8, p) € P, ¥ =
(€2In(1/e))*/2+D wherea = 8 — 1/p.
Then the ESC has the form

cr = oLz (2 z
o= & 20 +1

Moreover, for eaclC < C%, we have

liminf inf ({Po(T, =1)4+ sup Ps(T, =0} >1. (5)
¢-0 T FeAR(©)
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Remark 1. Note thatthe constait’ does notdepend gnand also, in view of (5),
the inequality (2) is satisfied for él < y < 1, providedA, = A(C), C < C%,.
This reflects the fact that, for testing in sup-norm, the limiting distribution of the
asymptotically minimax test statisti€s is degenerate.

The asymptotically minimax test statis#i¢ for the case of sup-norm will be denot-
edT*. To defineT > consider the following restricted analog of the optimization
problem (4):

maxg(0), subject to

D
/ g2(x)dx <1, (6)

ppp(8) =1,

whereD > 0 is a constant. Denoté = [—D, D]. As shown in Section 4 below,
all the solutionsg’ (x) of the problem (6) are such thaf (x)I{x € A}, their re-
striction to A, is unique, and O< f_DD g4 < oo. (Here and later {-} denotes the
indicator function.)

Set
i) I{x € A}

Ka(x)
! IP, gk wdu

and consider the kernel estimator

1,1 u—t
fg(t)z—/ KA< >dY(u), te@0,1 .
ha 0 ha

Note that the restricted optimization problem (6) is introduced here in place
of (4) for technical reasons. In fact, there are no results guaranteeing*thtae
solution of (4), is integrable and satisfieg* # 0 in general case. If we knew this,
we could replac& 4 by K* = g*/ [ ¢* everywhere. In some particular examples
whereg* is given explicitly (see Section 5) this is possible, and we do not make a
restriction to D, D].

Denotef; oo (t) = fe (1), if he = he 00, Where

_.2 4 % 5 1
00 = L7241 <2a+1> (e“In(L/e)) =+, a=p-1/p .

For boundary modification of;, introduce the one-sided kernéls : [0, 1] —
Rlandk, : [-1,0] — R!defined as

l
K_(uw)=Y pjOpj@w), Ky@w)=K_(—u) .
j=0

wherel = | 8], andpo, .., p; are the first + 1 orthonormal Legendre polynomials
on [0, 1]. It is easy to see that



Asymptotically exact nonparametric hypothesis testing 23

suppK-) =[0.1], suppKy)=[-1,0],

1 0
/K_(u)ufdu=/ Ki(wu'du=0, j=1,...,1, (7)
0 1

1 0
/ K_(u)du = / Kiy(udu=1.
0 1

The choice of these particular kernéls. and K ;. for boundary correction is
not crucial. Higher order boundary kernels, as well as other boundary correction
procedures ensuring proper rates can be used. The contribution of boundary terms

is of smaller order than the main term in the asymptotics of the test statistic.
Sets, = 2/(22+D),

Je,00(0), t € [Dhe, oo, 1 — Dhe ],
1f1K (”_t)dy( ), 1 €[0, Dheoo)
—_ _ u), 5 )
f;joo(t) = Se JO Se £00 (8)
1 [t u—t
= | k. dY(w), te(l— Dhpoo,1] .
Se JO Se
Now, the test statisti, > is defined by
oo _ [0 IZsclloo < (14 8) Qoo (€% IN(1/2)) 751, ©)
¢ 1, otherwise.

Here On = K allo2L %7 (524) ™, 6. = 1/yMIN(I/).

Theorem 2. Let (B, p) € @ and v, = (¢2In(1/e))%1, o = f — 1/p. Assume
thatD = D, - oo and D, = 0 ((In(1/¢))?), as ¢ — 0, for some a > 0.
Then the statisti@ > defined in (9) satisfies

limsup|Po(T>°=1)+ sup Ps(I>*=0|=0, (10)
e—0 feAX(C)

for eachC > C%,.

Theorem 2 shows that for the test statigiji© the upper bound (3) on the error
holds with anyy. This is related to the fact that for the sup-norm, appearing in
(9), the asymptotic distribution is degenerate. Note also that relations (5) and (10)
together yield the first statement of Theorem 1. Thus we get the following:

Corollary 1. Under the conditions of Theorem 2 the test statig}f€ defined in
(9) is asymptotically minimax for testing in sup-norm, for @y y < 1.

The case 0< B8 < 1, p = oo was considered by Lepski (1993). The ESC
obtained by Lepski (1993) is the corresponding particular case of the coagtant
defined in Theorem 1.
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Consider now the second problem: testing at a fixed pginthe asymptotic
behavior of the minimax test for this problem is not degenerate, and the test depends
on the chosen level.

Denoteg, the (1 — y)-quantile of the standard normal distributioh(q, ) =
1— y, whered(-) is the c.d.f. of the normal’(0, 1) random variable. Define

_.2 2 2
heo= L 2+1 (qu/z) 2+Ig 2+l |
and consider the test statistic

0 if fuolto) < Qoei1,
1 if foo(0) > Qoe%il,

where f; o(t) stands for the estimatgf; (¢), with 7, = h. o, and

70 =

&

1 20
Qo = (L/2)Z1 (qy/2) =L [|Kall2 -

Theorem 3. Let the set of alternatives b, = AS(C), and let(8, p) € ¥ and
Ye = sﬁl, wherea = 8 — 1/p.

Then the ESC has the form
1 2
CS = g" (O L= (2g, ) =+
Moreover,
liminfinf [ Po(T; =1)+ sup Pg(T=0)| >y , (12)
e—>0 T feAQ(C(’)‘)

and, if D, — oo, Dghe0 — 0O, as ¢ — 0, the test sta’[istiL‘Tg0 is asymptotically
minimax:

lim sup(Po(T8 =1+ sup Pu(T. = 0)) <v. (12)
e—0 fead)

forall C > Cj.
Observe that (11) implies
liminfinf (Po(T; =1)+ sup Py(T,=0)] >y ,
0 T FEAYC)
foranyC < Cg, since in this casag(C) D AS(CE;), and thus (2) is satisfied.

Remark 2. The results of this section can be easily extended to the case of the sim-
ple hypothesi$ly : f = ¢ wherec is agiven constant, akly : f(¢t) = fo(t) where

fo(?) is a given function that is smoother than evgrg F (if F = (8, L, p), it
suffices thatfy € ¥(8’, L, p) for someB’ > B).
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The results similar to the Theorems 1, 2 and 3 can be obtained in another setup
of hypothesis testing, where one fixes an upper baund (0, 1) on the error of
the first type and tries to minimize the second type error under this constraint. Then
it is relevant to look for a test;" that is minimax not among all tests, but among
all testsT, of asymptotical leve}, i.e. such that

limsupPo(T: =1) <y1 .

e—0

Denotel (1) the class of all such test. For this setug"* > 0 is called the ESC
andT;} e I'(yy) is called asymptotically minimax test statistic of the leyelif
there existy, € (0, 1) such that simultaneously the following two relations hold:

liminf inf sup P/(T, =0 > , 13
100 TLelyp feASI(DC) r(Te ) > 2 (13)

forall C < C*, and

limsup sup P/(T}=0)<y2, (14)
e—>0 feA.(C)

forall C > C*. The valuey; is then the minimal asymptotical second type error.

Let us apply this definition to the two problems considered here.

For the problem of testing in supremum norm, whe&rgC) = A°(C), it
follows from Theorems 1 and 2 that the relations (13) and (14) are satisfied with
C* = Ck., T} = T andy, = 1 — y1. This is a consequence of degenerate
character of the result for supremum norm.

For the second problem (testing at a fixed point) the answer is quite different. It
follows from (11) and from the proof of (12) that, under assumptions of Theorem 3,
the relations (13) and (14) hold witi* = C§(2y1), T} = T2(2y1), andy1 = 2,
whereCg (2y1) andT2(2y,) are defined ag and7,2 above, withy = 2y;.

We end this section by a comparison of the results on exact minimax testing
and estimation. A standard connection between estimation and testing would sug-
gest to reject the null hypothesi in favor of the alternativeA, = {f : f €
F, o(f) = Cy}) if o(f.) = Q(e) where f, is a good estimator of € % and
Q(e) is a properly chosen threshold. Ingster (1990, 1993) has shown that, as con-
cerns the rates of testing, this connection does not work in nonparametric situation
if o(f) = | fll4, except for the case of sup-norm & oo). This is exactly the
case considered in Theorems 1 and 2, and the critical region of the optimal test
procedure (9) is of the form (£, ) > Q(e). Note that heref,  is a good es-
timator not only in rate, but also in constant, as soon as we consider the unique
case where constants are available for estimatid@idet classes, i.en = oo, see
Korostelev (1993), Donoho (1994a)). Thus, the above mentioned connection be-
tween estimation and testing works perfectly (even in constants) for this particular
case¥ = F(B, L, ), ¢(f) = || fllco- FOr other combinations af(f) and &
considered in this paper such a comparison is not possible since the exact constants
for the associated estimation problems are not available.
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3. Preliminary lemmas

In this section we give some auxiliary results about the properties of solutions to the
problems of the type (6), the asymptotic behavior of suprema of Gaussian processes
and the boundary kernels.

3.1. Properties of solutions

Let p(g) be a convex functional defined on the space of functipn®R! — R1
and satisfying the following two conditions.

(i) The functionalp(-) is convex, nonnegative and symmetric, jg—g) =
p(g), for all g such thato(g) < oc.

(i) The functionalp(-) is renormalizable with exponentx > 0, i.e. for every
g, such thajp(g) < oo, one has

plag(bt) +c¢) =ab®*p(g(t)), Ya=0,b>0,ce R .

The notion of renormalization was introduced in the context of nonparametric
estimation by Donoho and Low (1992). Note, that the functiopais pg, , Satisfy
(i) and they are renormalizable with exponent 8 — 1/p. In particular, for the
Holder casd p = co) we havew = 8.

Let us study the following optimization problem

maxg(0), subject to

D
/ g2(x)dx <1, (15)

pg <1.

This is a generalization of (6).

The next lemma can be deduced from the results on optimal recovery (see e.g.
Gabushin (1970), Micchelli and Rivlin (1977), Arestov (1989)). Some versions of
it, in a more particular context, appeared recently in statistical literature (Donoho
(1994), Korostelev (1996), Lepski and Spokoiny (1997)). For convenience, we state
the lemma in the form adapted to our purposes. We give a simple self-contained
proof, which does not refer to the theory of optimal recovery.

Denote

GAz{g:RleRl:/
—-D

D
g2(x)dx <1, p(g) < 1} , A=[-D,D] .

Lemma 1. Letthe conditions (i) and (ii) hold and 1§ (0)| < oo foreachg € G 4.
Then the following properties are valid.

(L1) The problem (15) has a solutigrj .

(L2) Any solution of (15) is attained on the boundary®f, i.e.

D
/ (&) dx =1 (16)
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(L3) The restriction td— D, D] of any solutiong’; is unique a.e. with respect
to the Lebesgue measure pAD, D].

(L4)
§4(0)>0. 17)
(L5) For eachf, such thato(f) < 1and f(0) = g% (0), we have
D D 2
[ ez wr=1. (18)
-D -D
and
D
o [ gzl (19)
(L6)
g4(0) = |Kall2+ Ba(p) , (20)
where
Kae = 52" 1 e -p, D)} |
f—D 8h
and

Ba(p) = sup If Ka(u)(g(u) — g(0)dul .
g p(e)<l J-o0

Proof of Lemma 1
(L1). Considerg as an element of the weighted-space, with the indicator weight
I{x € A}. This space is reflexive, and the €&j is bounded in this space. More-
over, since the functionayéf)D g?andp(g) are convex, the sél 4 is weakly closed
(Vainberg (1972), p. 111-112). Similarly, since the functiop@) is convex and
such that|g(0)] < oo, Vg € Gy, it is weakly upper semi-continuous. Final-
ly, by the generalized first Weierstrass theorem (Vainberg (1972), Theorem 9.2)
any weakly upper semi-continuous functional attains its maximum on a bounded
weakly closed subset of a reflexive Banach space.

(L2). Assume that there exists a solutigh of (15) such that

D
f @H2<1.
)

D — %=1
-D

Denotef*(t) = kg (K*%t). Then, by the renormalization property (ii),

Then

p(fH=pEH =<1,
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and f*(0) = kg’ (0) > g7 (0). Moreover,
P 2 P 1.2
f (fH= K/ (84" an)dt
-D -D
1

241 bee 2 2+1 b 2
il NGl A
—Dk™ « -D

Thus,f* € G4 andf*(0) > g% (0), which contradicts the assumption tg§t0) =
Mmaxec, &(0). The contradiction proves (16).

(L3). Assume thagi andg, are two different solutions of the problem (15).
Consider the functiorf = (g1 + g2)/2. By convexity ofp and of thel o[— D, D]-
norm, we havef € G 4. Also, f(0) = (g1(0) + g2(0))/2 = g4 (0). Thus, f is a
solution of (15). Now

D D 2 2 N2 D IPRY
/ f2:/ {glzgz_@l 22 }:1_/ wow? g
-D -D -D

where we used the fact that (by (16))

P 2 b 2
/ 812/ g5=1.
-D -D

If g1 # g> onaset of positive Lebesgue measure-i), D] thenf_DD (g1—g2)° >

0,and (21) implieiDD f2 < 1. Sincef is a solution to (15), this contradicts 2).
(L4). Assume thag’ (0) < 0. Then for the functiorf = —g7% we havef (0) =
—g4(0) > 0> g%(0), and f € G4. This contradicts the fact thgt| is a solution
to (15).
(L5). DenoteFo = {f : p(f) <1, f(0) = g4(0)}. Note that

D D
f fzzf (g)?=1 Vfe%o. (22)
-D -D

In fact, if f_DD f? < 1,thenf € G, and f(0) = £4(0), thereforef is a solution
of (15) which is not on the boundary 6f4. This contradict§L2) and proves (22).

In particular, (22) yields that’; is a minimizer of the convex functionjLDD 12
on the convex sefg. Thus, the directional derivatives of this functionagtare
non-negative:

. 1 b * *\\ 2 b *\2
lim = [/ (gh +1(f —&h) —/ €Y } >0, VfeFo. (23
30t |J-p -D

The inequality (23) is equivalent to (18). Finally, note that the functign =
g40), Vit € R, belongs ta%o. In fact, by the renormalization property (ii),

p(f) = p(gh(0) =p0-g(t)+g4(0) =0-p(g) =0,
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whereg is any function such thai(g) < oo. By putting in (18)f (¢) = g7 (0), we
obtain (19).
(L6). Introduce the scalar product

D
(f. 8 =/Df(X)g(x)dx .

By definition of K 4,

Ba(p) = sup [(Ka,g—g(0)

gp(g)=<l
D -1
=sup|(Kg4, g)| = (/ gii) supl(g4. &)l (24)
g% -D g%

where
G={g:R' >R p(g) <1, g(0)=0} .

For anyg €% the functionf (1) = g7 (0) — g(¢) belongs td¥o, sincef (0) = g7 (0)
andp(f) = p(—g) < 1 (here we used (i) and (ii)). Therefore, for this functifn
we can apply (18), which yields

D
(gi,g)ng(O)/Dgi‘i—lv Vge§g . (25)

The right side of (25) is nonnegative, in view of (19). Moreover, for the function
g () = g4(0) — g7 (t) €9 we have, using (16),

D
(g4, 8-) =gii(0)/ gi—1,
—-D

that is the equality in (25) is attained gn= g_. Hence

D
supl(¢’. )] = supg’. €) = &7 (0) / g5 —1. (26)
g€% g% —-D

Applying (26), (24), (16) and the definition & 4, we get

-1

D
Ba(p) = g4(0) — (/Dgﬁ) =g4(0) — [Kall2 -

The lemma is proved.

Remark 3. The conditions of Lemma 1 are satisfiedfoe pg ,, (8, p) € %, and
hence Lemma 1 holds fag ,. Moreover, as in this case all functiogse G 4 are
continuous, one can drop the words “almost everywhere” in (L3): the restriction
of each solutiorg’} to[—D, D] is unique.
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Next, we consider the analog of the problem (4) with a support constraint:

maxg(0), subject to
lgllz2 <1,
pp.p(8) =1, (27)
supp(g) € [—d.d] ,
whered > 0 is a fixed number. For the same reason as before, the problem (27) has
a solution that will be denotegl;(-). The following lemma states that the values

of the problems (6) and (27) approach the value of the problem (4) as the sizes of
supportsd and D tend tooo.

Lemma 2. If (8, p) € P, then

8"(0) = 84(0), g4(0) > ¢"(0), asd — oo ; (28)

£*(0) < g4(0), g4(0) — g*(0), as D — oo . (29)

This lemma s established by the methods of Donoho and Low (1992, Theorem
3), see also Donoho (1994).

Next, we need to characterize the smoothness properties of the k&frial
Lo(RD).

Lemma 3. If (8, p) € %, then there exists a constant > 0 such that
o0
[ (Ka(t +u) — Kau)?du < c1lt|, VreRY. (30)
—0o0

Proof of Lemma 3By definition, K4 (x) = g} (x)/f_DD gy forx e (=D, D), Ky
possibly has jumps at pointsD, D andK4(x) = 0, x ¢ [-D, D]. Letr > 0
(the case < 0 is quite analogous). Suppose that 2D, since fort > 2D the
supports ofK 4 (r 4+ -) and K 4 (-) are non-overlapping and (30) is trivial. We have
forO<r < 2D,

/ (Kalt + 1) — Kau)’du

—00

:(/ +/ +/ )(KA(I-l—u)—KA(u))Zdu . (31)
(=D—t,—D] (=D,D—t] (D—t,D]

Here

(/ + / )(KA<r+u>—KA<u>>2dusskfwxr, (32)
(=D=t,—-D] J(D=1,D]
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whereK,,,, = max, |K4(x)|. To estimate the second integral in the right hand
side of (31) use the fact that, (r +u) — Ka(u) = (g}t +u) — g% (w))/ f_DD gh
foru € (=D, D — ). Hence,

/ (Kalt +u) — Ka@)?du
(=D,D—1]

D -2 o)
< (/Dg§3> f (g5t +u) — ghw)?du , (33)

—0o0

Note thatg’ € F(B, L, p), (B, p) € P.For(B, p) € »we have8p > 1, andthus,

by embedding theorems for Sobolev and Besov spaces (see e.g. Triebel (1992)) one
getsg’ € BEHPRY) ¢ B’;;}/””/Z(Rl) C leffo(Rl), whereB;  (R!) denotes

the Besov space of functions &*. This entails that the last integral in (33) does

not exceed;|z| wherecz is a constant. This remark, together with (31)—(33), proves
30).

( )Finally, the following property will be used later in the proofs.

Lemma 4. For (8, p) € ®? and anyh > 0, D > O such thatDh < % we have

1t —
E/o Ka (”h ’) Fdu— £(0)

sup sup
te[Dh,1—Dh] feF(B,L,p)

< Lh*Ba(pg.p) -

wherea = 8 — 1/p.

Proof of Lemma 4Sincesupp(K 4) € [—D, D], we have

1 1K u—t J
E/o A< - )f(u)u—f(r)

A-0)/h
/ Ka(w) f(t + wh)dw — f(t)
—t/h

sup
te[Dh,1—Dil]

sup
te[Dh,1—Dh]

= sup
te[Dh,1— Dh]

/ Ka(w) f(t +wh)dw — f(1)

—00

IA

sup
teR?

/ KA<w><f(r+wh)—f(r>)dw‘ . (34)

For any fixedr € R and anyf e %(B, L, p) denotefi(u) = f(¢ + u). Clearly,
08,p(f1) = pp,p(f) < L.Forw e R! consider the function

_f(t+wh)
T Lh® ’

If f e %, L, p),then by the renormalization property (ii)

h 1
%) = oD =1

g(w)

PB.p(&) = pp.p (
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Thus, for every e R%,

sup / Ka(w)(f(t +wh) — f(t))dw‘
fEF(B.L.p) |V —00
< Lh® sup / KA(w)(g(w)—g(O))dw‘ = Lh®Ba(pp.p) -
8:pp,p(8)<1 1V —00

This, together with (34), proves the lemma.
3.2. Supremum of a Gaussian process

Let 7 > 0. On the interval [0T] define the random process

1 1
Xt)=— | K
® ﬁ,/o (

whereh > 0, W(-) is the standard Wiener process on) andk : R — Rlis
a function such thatkK |2 < oo.

u—t

> dw(u) .

Lemma5. Let for some1 > 0O,

/ oo(K(r +u) — K@)?du < c1t] (35)

forvt € RL. Then

r T
P sup 1X()| = (1+a(—)) T<E /2In<—> 0.
{te[O,T] h h

ash/T — 0, for any positive functiod(x) defined forx > 0 and such that

§(x)Inx
%
Inlnx

asx — o0.

We omit the proof. Results close to Lemma 5 are well known in the literature on
the extrema of Gaussian processes: Pickands (1969), Konakov and Piterbarg (1983,
1984), Leadbetter, Lindgren and Roetz(1986, Theorem 12.2.9). A direct proof

of Lemma 5 can be obtained following the lines of Adler (1990, p. 119-120).

3.3. Boundary kernels

Lemma 6. LeteitherS = [0, D;he o], K =K_,0rS =[1—D:he. 0, 1], K =
K., whereD, — coase — 0,andD, =0 ((In %)“) , for somea > 0.

Then there exists a constant > 0 such that
1 1 u—t
—| K fwydu — f(t)
Se JO Se

sup  sup §c*52a%1, (36)

fe&F(B,L,p) teS
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and

1 _
P(sup 3/ K(” t)dW(u)
teS |Se JO Se

ase — 0. Herew« = g — 1/p.

1
> ¢,6251 |Inln (_>> -0, (37)
&

Proof of Lemma 6 It suffices to consider the case= [0, Dk ], K = K_.
Let us prove (36). Forany € (8, L, p), anyt € [0, D;h; ], andl = | 8], we
have

1 1 u—t
—[ K—( >f(u)du—f(t)
Se JO Se

1
/0 K_(w) (f(r + wse))dw — f(1)

1 , ’ 0
- ‘ f K_(w) (f wset L2 s+ +w<ws8ﬂ) dw
0 !
1
:sgf K_(w)yw' Ot 4 6wse)dw
0
1
= s / K_w)w'(fP@) = O + 0wse)dw| | (38)
0

where 0< 6 < 1, and we used (7). Ip = oo, the last expression is bounded as
follows

1
< Lsf_l/ |K_(w)wP|dw ,
0

(39)
where the fact thay € %(8, L, oo) was used. Combining (38) and (39) we get
(36) forp = 00. If 1 < p < 00, theng is an integer] = 8 — 1 and instead of (39)
we obtain the following estimate

1
/ K- (FO1) — fO + wsy.e))dw
0

1
f K_w' (O — fO + owse))dw
0

1 Hwsg
< / K] / P (o) ldrdw
0 t R A
1 q 1 t+wsg p P
5<f |K_(w)w1|‘1dw> <f [/ |f(5)(r)|dt} dw)
0 0 t
1
1 t+wsg P
<6 ( f (wse)? L / If(ﬂ’(r)l”dtdw>
0 t
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< e

1

-3 ®) ! p—1 -3
<cese "I, _ dw| <c7Ls; ", (40)

whereq = p/(p — 1), cg > 0,c¢7 > 0 depend only orK_ and p, [. Combining
(38) and (40) we obtain (36) fgr < oco.

Let us prove (37) foK = K_, S = [0, D.h. ~]. Note thatk = K_ satisfies
the condition (35): in factK_ is a polynomial of ordef on the interval [01]
and possibly has jumps at the endpoints 0 and 1. Using the same argument as in
(31)—(33), we get (35). Thus, we can apply Lemma 5 to prove (37). In our case
T = Dshe oo, h = s, and

1
T D.h 1 2a+1
—=ﬂ=ch€<ln(—>> — 00 ,
h Se I3

ase — 0, sinceD, — oo. Herecg > 0 is a constant. Also

1K |l2./21In T = ||K|l2./2(InDg + 1 Inin 1 +1In
2 h) 2 £ 2a+1 £ 8
1
< c9 Inln<—>,
&

in view of the conditionD, = © ((In(%))“) , € —> 0. Herecg > 0 is a constant.
This and Lemma 5 yield (37). Lemma 6 is proved.

4. Proofs of Theorems 1-3

To prove Theorems 1 and 2, it suffices to show (5) and (10) under the conditions
of these theorems respectively.

Proof of (5) Fix 8, p and a positive consta@ < C%,. Write for convenience
C=(1-6C%, 0<8 <1 Letd > 0 be such thag;(0) > g*(0)(1 — §/2),
whereg, is the solution of the problem (27) and is the solution of (4). Such a
valued exists in view of (28). Denote

1 1
(S N (2 (1))
MC)‘(Lgd(m) (8 '"(e)) ’

1
Mzbdh—(C)J_l, xp = (2% —Ddh(C), k=1,...,M,

G(x)th“(C)gd(%), a=pg-1/p,
i) =G(x —xx), k=1,....M .

Since the functionapg , is renormalizable with exponeat we get

pﬂ,p(fk) = /Oﬂ,p(G) =Lpp(ga) <L .
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Hence,fy € (B8, L, p), k=1, ..., M. Moreover,

_ 2 1 20+1
I filloo = |fi G| = Lh®(C)ga(0) = C (8 In (E)) .
Thus,

ke AX(C), k=1..M. (41)
Note also that2 = || fi |5 does not depend an and

2 20
ko (C)f (h(C)>
C 20+1 1
2, 2041 - 2 2 “ 2 (1
LW (C) gl < L (Lgd(o)) 8'”<8>
2041
=12 (—(1_6)C;°> ) £2In <}>
Lgq(0) P
o (£0) T (1)
200 +1 84(0) £
4 5\ & 1 4 5 1
_o0Y Y 2;n (2 oY 2. (2
SZO‘WL1<1 2) ’ |n<8)52a+1<1 2)8 ln(s)’ (42)

where we used the inequaliti$g, |15 < 1 andg*(0)/g4(0) < (1—38/2)~L. In view
of (41), we have, for an arbitrary test statistig

Po(T, =1)+ sup P;(T, =0) >Po(T. =1) + — ZPk(Tg =0)

feA(O) k 1
>Eo(I(Te =D+ I(T: =0)2)
>(1-68)Po(Z>1-9) , (43)

whereP; = Py, for brevity, and

dPy

Now

1 M
Po(|Z—1|za)=P<‘MZsk—1

)

= (‘— > (& —E@&))

> 8) . (44)
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where

8720'2
$k=exp<810§k— 5 ) ,

and¢g, k = 1,..., M, are normalN'(0, 1) random variables that are indepen-
dent since the supports ¢} and f; are non-overlapping fat # j. Obviously,
E(&) = 1. Using (44) and the Bahr-Esseen inequality for the moments of sums of
independent random variables (Petrov (1995, p. 82)) we find that for<albO< 1

c10E & |1
Po(1Z -1 =4 < sl
wherec1g > 0 is a constant that depends wonly. Direct calculation gives

2 2 2
14y e O 2 2(V+V ) _é 1-
El&| _exp( > wv+v )) < eXp(—2a+1 1 > In =)

where we applied (42). Using this and (45) and choosirgé/4 we obtain

(45)

1\ 2«41
Po(1Z — 1] > 8) < c11¢? (m _) ,
&
wherec11 > 0 and

8 1+3) -0
=—— -]>0.
1= 82a + 1) 2

Thus

Po(l1Z—-1>68) —>0, ase— 0. (46)

Since the probability in (46) does not dependignwe deduce (5) from (43) and
(46).

Proof of (10) Here we put), = <£2|n (%))m ,a=8-1/p, é =

T

Inln £
We have
PO(TEOO =1 =Po (”fg*oo”OO > 1+ Be)Qool/fe)
1
< P( sup 3/ K- <“ )dW( ) >—Qoowe>
[0,Dh; o] | Se JO
( )dW(M) > —Qoolﬁa)
te[l— Dh;ool] Ss

e e
t€[Dhg oo, 1—Dhe o] 8

_< ><1+55>Qoowg) . 47)

)dW(u)
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20
Note that%Qoowg > cpe2+1 [In In( ) for ¢ small enough, where, is the
constant in Lemma 6. On the other hand,4@mall enough,

(1— —) (1+6e) Qoo¥e
> <l+ Z) Ocoe
8¢ 1 Inin(1/¢)
<1+ )||KA||2 2In( )<1+@( /—In(l/s) ))

O T
<1+ )”KA”Z\/— 2In( ) ,
whereT = 1 — 2Dh, . Using these remarks and evaluating the last three proba-
bilities in (47) by means of Lemma 5 and (37), we find

Po(T>’ =1 = o(1), ase— 0. (48)
Let us show that fo€ = C} (1 + ), Vé > 0,

sup Py(T°=0)= o(1), ase—0. (49)
FEAR(C)

Together (48) and (49) yield (10). To prove (49) fixe A2°(C), and denote the
minimal number in [0 1], such that

[f (@)l =t2[1§>1<]|f(t)| .
Introduce the random variable
E=Ef(fio®) = fin) .
Using the fact thaff € A°(C), we get

I fesolloo = 1 fZae D] = [Ef (fE 0o (D] — §]
> Ce — [ f O+ [Ef(f o] — [§]
> CYe — | f() — B (floo@)] — &]
> Cl/fs—teS[gFl)]IEf(f;foo(t))—f(t)l—Iél : (50)

Now, Lemma 4 and (36) yield
20
S[gp |Ef(ffoo®) = f(O] < Lhg ooBa(pp.p) + 20,8241
te

This and (50) imply

2o
I feoolloo = Ce — |&] = Lhg o Ba(pp.p) — 2c4e2+1 .
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Therefore,
Pr(T° =0)=Pr(llfislloo < (14 8:) Qo) < Pr(l§] > A) , (51)
where
Ae = Cis — LK o Ba(pp.p) — 2c,6 %51 — (14 8,) Qoo -

Using (20), (29), the definition o .., C%, and the formulaC = (1+ §)C},, one
obtains

Ap = CyYe — Ly (o Ba(pp,p) — QocVe + 0(Yre)

N 1
:(sc;;wswguwl( ) [€°(0) = Ba(pp.p) — K all2] + o)

20+ 1

1 2&11
=8C* Za+1 *(0) —
=08C Ve + YL <2a n 1) [£7(0) — g4(0)] + oY)
=@ +oD)Cie, ase—0.

Note thaté is a Gaussian zero-mean random variable, and its variance does not
depend off. Itis easy to see that
) &? 2
E€)=0(=)=0(e1), ase—0.
Se

Thus,
sup Ps(l§] = Ag) >0, ase—>0. (52)
feAzE©)
Together (51) and (52), prove (49). Therefore, (10) follows.
Proof of Theorem 3We prove in turn (11) and (12).

Proof of (11) Fix g andp. Letd > 0 be large enough, as in the proof of (5). Denote

< Cs )i 2
T = — s h = TE20+1
Lga(0)

fi(x) = Lh%gy (x ;’0) , a=p-1/p .

Clearly, f1 € (8, L, p) and
filto) = Lh®34(0) = Cjeat .
Hence,f1 € AS(CE;), and for any test statisti, we get

Po(Ts =1)+ sup Pf(Ts =0)>Po(T; =1 +P1(T: =0)
fEACH)

>Po(T? = 1)+ Py(T? =0) , (53)
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whereP; = Py, andT? is the Bayesian decision rule, i.e.

e dP
b 1 if d—Pé > 1,
& 0 otherwise.

Note that

Po(T? = 1) = P <|n g—zz > o)

1 1
=P <8_1aoé‘o - 58_203 = 0) =P <§0 = 58_100> ., (54)

where&y ~ N'(0, 1) andog > 0 is defined by

2 v 2,20 (12X~ 10
00 =/ fix)dx = L°h /gd <—)dx
0

— LZhZCH-l”gd” < LZhZCH-l L2 20[+l 2 , (55)

if ¢ > Ois sosmallthatio—dh, to+dh) C [0, 1] (observe thatupp [g4 (*52)] <
(to — dh, tg + dh)). From (54) and (55) we find that, fersmall enough,

Po(T? = 1) > P(go > %r 2“) . (56)

Quite similarly, fore small enough,

P
PL(T? =0) =Py (In 3—0 < o)

1 L
—p <glaoso + 5 %00” < o) >Pp (so < 7#‘”2“) GY))
It follows from (56) and (57) that

liminf [Po(7? = 1)+ P1(T? = lEo| > —rz”‘z“)
e—0

0 2a+1
_p <|so| ay giﬁoi) )
0 2a+1
=2(1—<1><q5 <ng0;> )) ,

where® (-) denotes the standard normal c.d.f. Using Lemma 2, we get that the last
expression tends to(2 — @(q%)) =y, asd — oo. This and (53) prove (11).

Proof of (12) Assume that > 0 is small enough to havey — Dh. o, fo+ Dhe o) C
(0, 1). Then f¢ o(to) is a normal random variable with mean

1 o —
Es (fe0(t0) = N 0/ K (uh ;0> fdu (58)
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and variance

2
1 1 u—1o
Var ¢ (fe0(t0) = E,OE |:<8/0 KA< hro )dW(bO) :|

= e2h, SlIKal} - (59)

Applying (58) and (59) in the casg = 0, we get

Po(T2 = 1) = Po ( fi.ot0) = Qoe 1)

20
fe,0(to) — Eo(fe,0(t0)) _ Qoe2+1
= P 2 > hE
’ ( VaroUrolo)  — ellKallz ﬁ)

=P(s0ozqy) =72 . (60)

where&p ~ N'(0, 1). Next, in view of Lemma 4, we get
[E s (fe,0(t0)) — f(t0)| < Lhg oBa(pp,p) »

forany f € ¥(B, L, p). Using this and (59), we find that, for afl € AS(C),

P10 =0)
20
=Py (fe,o(to) < Qos 2“”)
=Py (I/e0(t0) — Ef(feoltoD] + [Ef (folto)) = f(10)] < Qoe?T = (o))

<Py (f,s,o(to) —Ef(fe.0(t0)) <Lhg oBa(pg.p) + (Qo— C)S%H)

20
o [ fe0l0) = Ef(feoti)) _ Vheo (Lh?,oBA(Pﬂ’P”(QO—C)gz"“)
— - <

VVar ¢(fe 0(10)) el Kall2

=P (80 < e ool Kall;" (Lh20Ba(ppp) + (Qo— CremiT)) . (61)

SinceC > Cg, write C = (1+ 6)C§, & > 0. Note that, in view of (20),

20
e /oo (LhE oBa(pp.p) + (Qo — (L+8)C5)e )

IKall2
2

=2qy IKal;t (BA(pﬂ,p) + -+ 5)8*(0)>

IKall2

=2qy IKal;* (BA(IOB,p) —g4(0) +

= —qy + 243 [ Kall; (€40 — (1 +8)8"(0) < —qy; (62)

if & is small enough to havg) (0) < (14 6)g*(0) (the last inequality is satisfied
for ¢ small enough, sinc®, — oo and (29) holds). Combining (61) and (62) we
obtain

+84(0) — 1+ S)g*(0)>
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limsup sup Pf(Ts0 =0) <P < —qyr) = r . (63)
e=>0 [eAd(C) 22

Finally, (12) follows from (60) and (63).

5. Examples and extensions

In this section we study special cases where the asymptotically minimax test statis-
tics and the ESC can be written explicitly, the definition of test statigtiSs 7.°

can be simplified, and the results of Theorems 1 to 3 sharpened. We also discuss
an extension to the Besov classes of functions.

5.1. Compactly supported solutions

Assume that the paliiB, p) is such that the solutiog™ of the optimization prob-
lem (4) is compactly supported. Then there exidts > 0 such thatg’; = g*
for A = [—Do, Dg], and for anyA = [—-D, D], D > Dg. Thus the condition
D — oo, ase — 0 is no longer useful, and one may replacgeverywhere by
g*v KA()C) by

andB4(pg,p) by

B*(pg,p) = sup /K*(u)(g(u)—g(o))du

geF(B.1,p)

All the results of Sections 2, 3 and 4 remain valid with these changes. Moreover,
inspection of the proof of (12) shows that, in the case of compactly supported
solutions, the test statistic?, defined with

L Tl‘*'l 20 %
Qo = <§> (q3) %1 K™ 2

satisfies the stronger relation

limsup(Po(T2 =1+ sup Pp(T°P=0)) <y ,
£—0 ferz(cy)

i.e.C = Cj isincluded in (12). (In fact, sincg}; = g*, (62) holds for§ = 0 as

well.)
Consider some examples.

Example 1.Holder classegp = co) with0 < g < 1.
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The solutiorg* is easy to find explicitly (see Korostelev (1993)) arfds compactly
supported. The exact formulas are

(0 = ((2/5 + DB+ 1)) w

4p2
g () = (g*(0) — |t|ﬁ>+,
K*(0) = ﬂ%(g O~ F (0, 1K |2 = ﬂ%(g o7

B 28
4 2B+1 1 2B+1
. C5 = g"(OL7 (2qy)
26 + 1) 0=¢0 %

_B
Qoo=‘/3+1( : )2ﬂ1(8 )~ L,

C:O = g*(O)LTlﬂ (

28 \28+1
28
00— 55r22 e ) F L ()77

The above expressions for ESC, andCy; are due to Lepski (1993).
Example 2.Holder classegp = oco) with 8 > 1.

Leonov (1997) shows that the solutigti of (4) is compactly supported for all
B > 1. Note that forg = 2 this fact was first proved by Fuller (1960) whose study
of the problem (4) was motivated by applications in optimal control. Then it was
rediscovered by Gabushin (1968) in a slightly more general framework. The case
B = 2 s, to our knowledge, the only example amonglditr classes witl$ > 1
where the explicit solution of (4) is currently available.

The solution forg = 2 is expressed as follows (Fuller (1960), see also Leonov
(1997)). Let

1 2
1= 75 <3+ V33—4/26+ 6«/33) ~ 0.0586

22392 — 149 + 23)/1+ ¢q
30(1 - ¢3)

6 = ~ 1.528 .

The constant is the value of the problem dual to (4). The solutigit-) of (4) is
g0 =075 (6%1), g =0
whereg (-), the solution of the dual problem, is a symmetric compactly supported

function with infinitely many local extrema, defined for- O by

o0

. 1 ,
IOEDYS [(—1)’61’ + 5 (=D - tzj-)z} It € [tzj 1. 12j41)}

j=0
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wheret_.l =t0=0 1n=414+¢q, tojy1 =1t +q%«/1+ sy =2/14+¢

Z{;Olql?. The support of is contained in the intervgl-Dy, Dy), where
Dy = lemoo i =2J1+ql— /g t~271.
Denote
Iy = /¢(t)dt =21—g)/1+q/A+¢¥?) ~191 .
Then
K*() = 1;%05¢ @50, K 2= 1" .

and the exact constants for the problem of hypothesis testing are

N 4\5 1 X 4\ ¢ 1 4
COCJ: @ L5’ CO: 5 LS(q%)S’

4\5 11 1\5 1 4 _q
Qoo = 5 L51¢ , Qo= > LS(CI%)SLP .
Example 3.Sobolev classes with= 1, p > 2.

The solutiong* of (4) was obtained by Sz.-Nagy (1941). It has a compact support:

P

) =g 01— bt

where

)4
3p — 2\ %2 2p — 4
”2 ) b=L""(g*0)2 .
P

g(0)=< 32

Other exact values for this example are

2p—2 p

K*@) = *(ON2(1 — |bt 17—2,

) 3p_2(8())( D))

* _2p=2 .
IK*ll2=2(p —1)(38p — 2)" 3-2(2p) 32,
cr = 2% <3p2; 2) L%72, Co= g*(o)(zq%)—iﬁﬁL—g,,”_z’

= 2p—2
417 3p—2  _p o ﬁ »
= * 3p—2 — 3p—2 * D 37

O = IK™I2 (3]7—2) L3372, Qg=2 32|K*| (11%) L3

2p—2
Note that the rates of convergence in this example/are £32 for testing at a

=1
fixed point, andy, = (82 In %) 7 for testing in sup-norm.
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5.2. Non-compactly supported solutions

If the solution of (4) is not compactly supported the definition of asymptotically
minimax test statisticg,>° and TgO depends on the solution of the restricted prob-
lem (15), that, in general, should be obtained numerically. The application of our
results in this situation, therefore, requires more work. There exists, however one
important particular case, where the exact solugitof (4) is known explicitly, is
not compactly supported , but the results of this paper hold, &jthn the defini-
tion of 7,2°, T€° replaced byk* = g*/ [ ¢*. This particular case ip = 2. Let us
discuss it in more detail.

We add the condition that the functiorfsare uniformly bounded. That is,
instead of the clas& (g, L, 2) we consider

F1B. L. 2)={f € F(B.L.2) .| flloo = L1} .

whereL, > 0is a given constant. This constant may not be known to a statistician,
since the construction of the tests does not depentl;oifhe sets of alternatives
are defined, respectively, as

AZICO) ={f € AZ(O) ¢ [Iflloo < La}.
A% = [ £ € A%O): fllo < L]

As shown by Taikov (1968) the solution of the problem (4) foe 2 is

1
2 28—
g () = g (sin%) 261" % Ko (es-0%:) . (69
where
_ 00 eiux _ oo COS(ux)
Ko(x)—/_OO —1~|—|u|2ﬂdu_2/0 —1+|u|2ﬁdu . (65)

The functionKo(-) can be calculated explicitly, for example gf= 1 then
Ko(x) = e I,

and if 8 = 2, we get the Silverman (1984) kernel

T I X T
KO(.X') = Ee V2 COS(TZ - Z)

General formula foKg is given in Gradshteyn and Ryzhik (1980, formula 3.738).
It implies, in particular, that for everg there exist positive constanis = a1(8)
andaz = az(B) such that

|Ko(u)| < a1 exp(—azlul), VueR! . (66)
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Define

NI

* 28— 1) % (sinZ)
O =21 <S|n%) ,

K*() = @)@ ~ DF Ko (26 — DFx),

2\ # 1 2o
Co=8"0 (E) L=, C5=g*<°>(2%) YoLE, o (67)
28-1 1
2 (AT iAo (sinZ) C
Qoo—ZIB 5 26 ,
_1 26-1
1 __1 2641 1 T 2 25
— 9277 _ B ] 28 -
Qo= 15,2 #@p-D ¥ L (smzﬁ) (05) 7

where Ky is defined in (65). Note that*(0) is the value of the function (64) at
t=0,andK* = g*/ [ ¢*, whereg* is the function (64). The constants of the type
(67) are obtained for the corresponding minimax estimation problem by Tsybakov
(1998).

Let 7, T2, be the test statistics defined in the same waj&s 7,2, but with
replacingk 4 by K*, and such thak*, Q.. andQg are defined by (67) Note that,
in the construction of >}, we still need the parametér,, but only for boundary
correction: it defines the length of boundary intervals (cf. (8)).

2,2 a
Theorem 4. l.Letp =2, B € {1, 2., ), s = (szln ) 7 LetD, = (ln %) ,
for somez > 1. Then

limsup| Po(T,7 =1 + sup Py(7]=0) 0, VC=>C}
e—>0 FeA(©)

whereC, is defined in (67). Moreover,

liminf |nf Po(T, =1)4+ sup Py(T,=0]|=>1 VC<CL
e—0 FEAX(C)

28-1
Il Letp =2, Bef{l2..}, ¥y =¢ # , 0 <y < 1 Then forCg, defined in
(67),

lim sup PQ(T 1=D+ sup Py(T; 1_0)
e—0 fEAol(CO)

Moreover,

lim |nf mf (PO(T‘E =1+ sup Py(T; = 0)) vy .

¢=>0 1enl (CH)
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We omit the proof of this theorem, because it follows the same lines as the
proofs of Theorems 1 to 3. It is only needed to check that conditions of Lemmas 1
to 4 are fulfilled for the kernek*(-), defined in (67). This is established by direct
calculations, since one has the explicit expressiorkfof:).

5.3. Extension to the Besov classes of alternatives

Consider the semi-norm

A hf”p

wherel = |B8], B >1/p, 1 < p < 0, andAﬁlf is thel-th difference of a func-

tion f, with steph. This semi-norm is related to the Besov spBﬁgo(Rl) (seee.g.
Triebel (1992)). Itis easy to check that the functio,néL satisfies the assumptions

of Section 3, namely itis convex, nonnegative, symmetric, and renormalizable with
exponentr = 8 — 1/p. Hence, Lemma 1 holds far = pgp. Quite similarly, one
shows that Lemmas 2, 3 and 4 hold, with , replaced bypgp. Thus, Theorems

1, 2 and 3 remain valid, with the following changes®(C), A?(C) should be
replaced by the Besov sets of alternatives

A
NSO =17 pE (N L. Iflw=C (s mg) ,

£25(0) = {f g (N <L, flo) = CsmLil}

wherea = 8 — 1/p, the constang*(0) should be defined as the value of the
problem
maxg(0), subject to

lgllz <1, (68)
Php(8) =1,

and the functiorg’} should be regarded as a solution of (15) witk= pgp.

Explicit solutions of (68) and (15) with = pgp are not known, therefore in
the case of Besov classes of alternatives we can only get results on the existence of
asymptotically minimax tests.
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