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Abstract. For the signal in Gaussian white noise model we consider the problem of testing
the hypothesisH0 : f ≡ 0, (the signalf is zero) against the nonparametric alternative
H1 : f ∈ 3ε where3ε is a set of functions onR1 of the form3ε = {f : f ∈ ^, ϕ(f ) ≥
Cψε}. Here^ is a Hölder or Sobolev class of functions,ϕ(f ) is either the sup-norm off
or the value off at a fixed point,C > 0 is a constant,ψε is the minimax rate of testing
andε → 0 is the asymptotic parameter of the model. We find exact separation constants
C∗ > 0 such that a test with the given summarized asymptotic errors of first and second type
is possible forC > C∗ and is not possible forC < C∗. We propose asymptotically minimax
test statistics.

1. Introduction

Consider the stochastic processY (t) defined on [0,1] and satisfying the stochastic
differential equation

dY (t) = f (t)dt + εdW(t) , (1)

whereW(t) is the standard Wiener process on [0,1], f is an unknown real-valued
function and 0< ε < 1.

Suppose thatf is defined on the whole real lineR1. Given the observation
{Y (t), 0 ≤ t ≤ 1}, consider the problem of testing the simple hypothesis

H0 : f (t) = 0, ∀ t ∈ [0,1] ,

against the nonparametric alternative

H1 : f ∈ 3ε .
Here3ε is a set of functions onR1 of the form

3ε = {f : f ∈ ^, ϕ(f ) ≥ Cψε} ,
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where^ is some functional class,ϕ(f ) is a functional on̂ (usually a distance
betweenf and the zero function),C > 0 is a constant andψε is some positive
function ofε tending to 0 asε tends to 0.

In words, the set of alternatives3ε is the set of functions separated from 0 by
theϕ-distanceCψε and belonging to some functional class^. The set3ε is defined
by four parameters:̂ , ϕ(·),C andψε. However, it can be shown that, given̂and
ϕ(·), the constantC and the functionψε cannot be chosen in an arbitrary way, if
one wants to have a statistically meaningful setup. This fact was first noticed by
Yuri Ingster who indicated the optimal choice ofC andψε for different classes
^ and functionalsϕ(·) (see the survey of Ingster (1993)). In such a choice only
the product valueCψε is important. (Introducing the two parametersC andψε is
conventional and follows the tradition to consider separately the “rate”ψε and the
“constant”C.) It turns out that, ifCψε is too small, then it is not possible to test
the hypothesisH0 againstH1 with the given summarized errors of the first and
second type. On the other hand, ifCψε is very large, such a testing is possible. The
problem is to find the smallest threshold valueCψε for which such a testing is still
possible, and to indicate the corresponding test. Let us give the precise definitions.

Let Tε be a test statistic, i.e. an arbitrary function with zero-one values, being
measurable w.r.t{Y (t), 0 ≤ t ≤ 1}. The valueTε = 0 means thatH0 is accepted,
andTε = 1 means thatH0 is rejected.

We measure the error of the testTε by the summarized probability of errors of
first and second type

rε(C,ψε, Tε) = P0(Tε = 1)+ sup
f∈3ε

Pf (Tε = 0) ,

wherePf is the probability measure generated by{Y (t), 0 ≤ t ≤ 1}, when the
signal in (1) isf . The errorrε depends onC andψε, since3ε does.

Fix a number 0< γ < 1. The functionψε is calledminimax rate of testing
(MRT) if the following two conditions hold:

there exists a constantC∗ > 0 such that for everyC < C∗ we have

lim inf
ε→0

inf
Tε
rε(C,ψε, Tε) ≥ γ , (2)

where infTε denotes infimum over all test statistics,
there exist a constantC∗ and a test statisticT ∗

ε such that

lim sup
ε→0

rε(C,ψε, T
∗
ε ) ≤ γ (3)

for eachC > C∗.
Thus the MRTψε is such that a meaningful test ofH0 is impossible if the

distance between the null hypothesis and the alternative is smaller thanC∗ψε, and
that such a test is possible if this distance is greater thanC∗ψε. The MRTψε is not
unique: it is defined up to an arbitrary positive scaling factor. In the following we
fix natural scaling factors for MRT (corresponding to the “minimal writing length”
of the expression forψε), and thus avoid the non-uniqueness. Clearly,C∗ ≥ C∗
and an interesting question is, whether in some casesC∗ = C∗? If (2) and (3) are
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satisfied withC∗ = C∗, thenC∗ is calledexact separation constant(ESC) and
T ∗
ε is calledasymptotically minimax test statistic.

The study of MRT was initiated by Ingster (1982) who found such rates for the
case wherê is an ellipsoid inL2[0,1] andϕ(·) is theL2[0,1] norm. Ermakov
(1990) obtained the ESC and the asymptotically minimax test for this setup. Ingster
(1987, 1993) derived the MRT for the setup with Sobolev classes^ andLp[0,1]
normsϕ(·), 2 ≤ p ≤ ∞. For the most complete survey on this subject as well as
for the similar problem of testing hypotheses on probability densities see Ingster
(1993). Except the cited example of ellipsoids inL2 with the L2-normϕ(·), the
ESC are obtained for a number of problems, where the class^ and the normϕ(·)
are defined in a coordinate form (ellipsoids inlp: Ingster (1990, 1993), Suslina
(1993); coordinate Besov bodies: Ingster and Suslina (1995)). For the classes^
defined in functional form (such as usual Hölder or Sobolev classes), and whenϕ(·)
is theLp norm, much less is known about the exact asymptotics. To our knowledge,
such asymptotics is available only for the case of Hölder classes with smoothness
parameter less than 1 and theL∞-normϕ(·) (Lepski (1993)).

Here we consider the problem of nonparametric hypothesis testing where^ is
a Hölder or Sobolev class of functions. Letβ > 0, L > 0, and 1≤ p ≤ ∞ be
given. Denote

3 = {(β, p) : eitherp = ∞, β > 0,or 1 ≤ p < ∞, β ∈ {1,2, . . .}, βp > 1} .

Consider the clasŝ = ^(β, L, p), (β, p) ∈ 3, L > 0, defined as follows.
If 1 ≤ p < ∞, β ∈ {1,2, ...}, βp > 1, then

^(β, L, p) =
{
f : f (β−1) is absolutely continuous and‖f (β)‖p ≤ L

}
.

If p = ∞, β > 0, then

^(β, L, p) =
{
f : |f (l)(x)− f (l)(x′)| ≤ L|x − x′|β−l ,∀ x, x′ ∈ R1

}
,

wherel = bβc is the maximal integer that is strictly less thanβ.
Here and later

‖f ‖p =
(∫ ∞

−∞
|f (t)|pdt

)1/p

, 1 ≤ p < ∞ ,

andf (k) denotes thek-th derivative off .
In words, for 1≤ p < ∞ the classeŝ (β, L, p) are Sobolev classes, and for

p = ∞ they represent the Ḧolder classes. Everywhere in the sequel it is tacitly
assumed thatβ belongs to the set of integers{1,2, ...}, wheneverp < ∞.

In this paper we find ESC and construct the asymptotically minimax tests for
two different problems.

In the first problemϕ(f ) is the supremum norm

‖f ‖∞ = sup
t∈[0,1]

|f (t)| ,
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and we study the following set3ε of alternatives:

3∞
ε (C) =

{
f : f ∈ ^(β, L, p), ‖f ‖∞ ≥ C(ε2 ln(1/ε))α/(2α+1)

}
,

where

α = β − 1/p .

It is known from Ingster (1987) that ifp = ∞ the MRT for this problem is

ψε,∞ = (ε2 ln(1/ε))β/(2β+1) .

We show that the MRT for 1≤ p < ∞ is

ψε,∞ = (ε2 ln(1/ε))α/(2α+1) ,

whereα = β − 1/p, and we find the ESC.
In the second problemϕ(·) is the pseudo-distance at a fixed pointt0 ∈ (0,1):

ϕ(f ) = f (t0), and we consider the set of alternatives

30
ε(C) =

{
f : f ∈ ^(β, L, p), f (t0) ≥ Cε2α/(2α+1)

}
.

We show that the MRT for this problem is

ψε,0 = ε2α/(2α+1) ,

and we find the ESC.
In the casep = ∞, 0 < β ≤ 1, the explicit expressions for ESC and for

asymptotically minimax tests are obtained by Lepski (1993). Here we give the so-
lution for the case(β, p) ∈ 3, and thus extend the result of Lepski (1993) to the
whole scale of classeŝ(β, L, p). The solution (constants and tests) is expressed
in terms of certain optimization problems related to optimal recovery (see Donoho
(1994a, b), Korostelev (1996), Lepski and Spokoiny (1997), Leonov (1997)). For
some interesting examples the solutions are given explicitly.

2. Main results

Introduce the semi-norm

ρβ,p(f ) =




‖f (β)‖p if 1 ≤ p < ∞,

β ∈ {1,2, . . .}, βp > 1,

sup
x,x′∈R1,x 6=x′

|f (l)(x)− f (l)(x′)|
|x − x′|β−l if p = ∞, β > 0 .

Then

^(β, L, p) = {
f : ρβ,p(f ) ≤ L

}
.
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Consider the following optimization problem

maxg(0), subject to
‖g‖2 ≤ 1,
ρβ,p(g) ≤ 1 .

(4)

It is well-known that (4) has a solution (see e.g. Arestov (1989)). Denote this solu-
tion g∗ (clearly,g∗ depends onβ, p, but we drop this dependence in the notation,
assuming here and later that a pair(β, p) is fixed). Some examples of solutionsg∗
are given in Section 5. The constantg∗(0) is the value of the problem (4).

The relation between the problems of the type (4) and nonparametric estimation
has been pointed out by Donoho and Low (1992), Donoho (1994a, b). They showed
that for estimation off in (1) at a fixed point or in sup-norm the linear minimax
estimators on the clasŝ(β, L, p) can be found in the form of kernel estimators,
where the kernels are properly renormalized solutions of (4). An important point
to understand these results is the fact that (up to a normalization)g∗ is at the same
time the solution of the optimal recovery problem, i.e. the problem of minimax re-
construction off in the deterministic model associated to (1):Y (t) = f (t)+εZ(t)
whereZ is a non-random “noise” function with‖Z‖2 ≤ 1 (see Micchelli and Rivlin
(1977) and earlier results cited in Arestov (1989)). This analogy is particularly use-
ful for the case of sup-norm loss, where the stochastic term of the estimation error is
asymptotically degenerate, and the reduction to the deterministic model is natural.
For the loss at a fixed point, however, there is no such a transparent heuristics.

Our results go further and may be interpreted as establishing similar link be-
tween optimal recovery (or, equivalently, the problem (4)) and nonparametric test-
ing. Our tests are based on estimators, and the above “degeneracy heuristics” works
perfectly, at least in the case of the sup-norm. Furthermore, we show that for test-
ing the situation is more favorable than for estimation: the tests based on optimal
recovery attain not only the rate but also the exact minimax constant. Recall that in
estimation problems the optimal recovery argument does not give constants, except
for the unique example of estimation in sup-norm on the Hölder clasŝ (β, L,∞)

(Korostelev (1993), Donoho (1994a)). This has probably not only technical but in-
trinsic origin, and linear minimax methods do not attain optimal constants in most
of estimation problems on the classes^(β, L, p). However, as we show below, the
tests based on linear minimax estimators attain optimal constants in testing.

Let us start with the first problem: testing in the supremum norm.

Theorem 1. Let the set of alternatives be3ε = 3∞
ε (C) and let(β, p) ∈ 3, ψε =

(ε2 ln(1/ε))α/(2α+1), whereα = β − 1/p.
Then the ESC has the form

C∗
∞ = g∗(0)L

1
2α+1

(
4

2α + 1

) α
2α+1

.

Moreover, for eachC < C∗∞ we have

lim inf
ε→0

inf
Tε

(
P0(Tε = 1)+ sup

f∈3∞
ε (C)

Pf (Tε = 0)

)
≥ 1 . (5)
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Remark 1. Note that the constantC∗∞ does not depend onγ and also, in view of (5),
the inequality (2) is satisfied for all0< γ < 1, provided3ε = 3∞

ε (C), C < C∗∞.
This reflects the fact that, for testing in sup-norm, the limiting distribution of the
asymptotically minimax test statisticsT ∗

ε is degenerate.

The asymptotically minimax test statisticT ∗
ε for the case of sup-norm will be denot-

edT∞
ε . To defineT∞

ε consider the following restricted analog of the optimization
problem (4):

maxg(0), subject to∫ D

−D
g2(x)dx ≤ 1 , (6)

ρβ,p(g) ≤ 1 ,

whereD > 0 is a constant. DenoteA = [−D,D]. As shown in Section 4 below,
all the solutionsg∗

A(x) of the problem (6) are such thatg∗
A(x)I {x ∈ A}, their re-

striction toA, is unique, and 0<
∫ D
−D g

∗
A < ∞. (Here and laterI {·} denotes the

indicator function.)
Set

KA(x) = g∗
A(x)I {x ∈ A}∫ D
−D g

∗
A(u)du

,

and consider the kernel estimator

fε(t) = 1

hε

∫ 1

0
KA

(
u− t

hε

)
dY (u), t ∈ (0,1) .

Note that the restricted optimization problem (6) is introduced here in place
of (4) for technical reasons. In fact, there are no results guaranteeing thatg∗, the
solution of (4), is integrable and satisfies

∫
g∗ 6= 0 in general case. If we knew this,

we could replaceKA byK∗ = g∗/
∫
g∗ everywhere. In some particular examples

whereg∗ is given explicitly (see Section 5) this is possible, and we do not make a
restriction to [−D,D].

Denotefε,∞(t) = fε(t), if hε = hε,∞, where

hε,∞ = L− 2
2α+1

(
4

2α + 1

) 1
2α+1

(ε2 ln(1/ε))
1

2α+1 , α = β − 1/p .

For boundary modification offε, introduce the one-sided kernelsK− : [0,1] →
R1 andK+ : [−1,0] → R1 defined as

K−(u) =
l∑

j=0

pj (0)pj (u), K+(u) = K−(−u) ,

wherel = bβc, andp0, .., pl are the firstl+ 1 orthonormal Legendre polynomials
on [0,1]. It is easy to see that
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supp(K−) = [0,1], supp(K+) = [−1,0],∫ 1

0
K−(u)ujdu =

∫ 0

−1
K+(u)ujdu = 0, j = 1, . . . , l, (7)

∫ 1

0
K−(u)du =

∫ 0

−1
K+(u)du = 1 .

The choice of these particular kernelsK− andK+ for boundary correction is
not crucial. Higher order boundary kernels, as well as other boundary correction
procedures ensuring proper rates can be used. The contribution of boundary terms
is of smaller order than the main term in the asymptotics of the test statistic.

Setsε = ε2/(2α+1),

f ∗
ε,∞(t) =




fε,∞(t), t ∈ [Dhε,∞,1 −Dhε,∞],
1

sε

∫ 1

0
K−

(
u− t

sε

)
dY (u), t ∈ [0,Dhε,∞),

1

sε

∫ 1

0
K+

(
u− t

sε

)
dY (u), t ∈ (1 −Dhε,∞,1] .

(8)

Now, the test statisticT∞
ε is defined by

T∞
ε =

{
0, ‖f ∗

ε,∞‖∞ < (1 + δε)Q∞(ε2 ln(1/ε))
α

2α+1 ,

1, otherwise .
(9)

HereQ∞ = ‖KA‖2L
1

2α+1

(
4

2α+1

) α
2α+1

, δε = 1/
√

ln ln(1/ε).

Theorem 2. Let (β, p) ∈ 3 andψε = (ε2 ln(1/ε))
α

2α+1 , α = β − 1/p. Assume
thatD = Dε → ∞ andDε = 2 ((ln(1/ε))a) , as ε → 0, f or some a > 0.

Then the statisticT∞
ε defined in (9) satisfies

lim sup
ε→0

(
P0(T

∞
ε = 1)+ sup

f∈3∞
ε (C)

Pf (T∞
ε = 0)

)
= 0 , (10)

for eachC > C∗∞.

Theorem 2 shows that for the test statisticT∞
ε the upper bound (3) on the error

holds with anyγ. This is related to the fact that for the sup-norm, appearing in
(9), the asymptotic distribution is degenerate. Note also that relations (5) and (10)
together yield the first statement of Theorem 1. Thus we get the following:

Corollary 1. Under the conditions of Theorem 2 the test statisticT∞
ε defined in

(9) is asymptotically minimax for testing in sup-norm, for any0< γ < 1.

The case 0< β ≤ 1, p = ∞ was considered by Lepski (1993). The ESC
obtained by Lepski (1993) is the corresponding particular case of the constantC∗∞
defined in Theorem 1.
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Consider now the second problem: testing at a fixed pointt0. The asymptotic
behavior of the minimax test for this problem is not degenerate, and the test depends
on the chosen levelγ.

Denoteqγ the(1 − γ )-quantile of the standard normal distribution:8(qγ ) =
1 − γ, where8(·) is the c.d.f. of the normal1(0,1) random variable. Define

hε,0 = L− 2
2α+1 (2qγ/2)

2
2α+1 ε

2
2α+1 ,

and consider the test statistic

T 0
ε =

{
0 if fε,0(t0) < Q0ε

2α
2α+1 ,

1 if fε,0(t0) ≥ Q0ε
2α

2α+1 ,

wherefε,0(t) stands for the estimatorfε(t), with hε = hε,0, and

Q0 = (L/2)
1

2α+1
(
qγ/2

) 2α
2α+1 ‖KA‖2 .

Theorem 3. Let the set of alternatives be3ε = 30
ε(C), and let(β, p) ∈ 3 and

ψε = ε
2α

2α+1 , whereα = β − 1/p.
Then the ESC has the form

C∗
0 = g∗(0)L

1
2α+1

(
2qγ/2

) 2α
2α+1 .

Moreover,

lim inf
ε→0

inf
Tε

(
P0(Tε = 1)+ sup

f∈30
ε(C

∗
0)

Pf (Tε = 0)

)
≥ γ , (11)

and, ifDε → ∞, Dεhε,0 → 0, as ε → 0, the test statisticT 0
ε is asymptotically

minimax:

lim sup
ε→0

(
P0(Tε = 1)+ sup

f∈30
ε(C)

Pf (Tε = 0)

)
≤ γ , (12)

for all C > C∗
0 .

Observe that (11) implies

lim inf
ε→0

inf
Tε

(
P0(Tε = 1)+ sup

f∈30
ε(C)

Pf (Tε = 0)

)
≥ γ ,

for anyC < C∗
0, since in this case30

ε(C) ⊃ 30
ε(C

∗
0), and thus (2) is satisfied.

Remark 2. The results of this section can be easily extended to the case of the sim-
ple hypothesisH0 : f ≡ cwherec is a given constant, orH0 : f (t) = f0(t)where
f0(t) is a given function that is smoother than everyf ∈ ^ (if ^ = ^(β, L, p), it
suffices thatf0 ∈ ^(β ′, L, p) for someβ ′ > β).
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The results similar to the Theorems 1, 2 and 3 can be obtained in another setup
of hypothesis testing, where one fixes an upper boundγ1 ∈ (0,1) on the error of
the first type and tries to minimize the second type error under this constraint. Then
it is relevant to look for a testT ∗

ε that is minimax not among all tests, but among
all testsTε of asymptotical levelγ1, i.e. such that

lim sup
ε→0

P0(Tε = 1) ≤ γ1 .

Denote0(γ1) the class of all such testsTε. For this setupC∗ > 0 is called the ESC
andT ∗

ε ∈ 0(γ1) is called asymptotically minimax test statistic of the levelγ1 if
there existsγ2 ∈ (0,1) such that simultaneously the following two relations hold:

lim inf
ε→0

inf
Tε∈0(γ1)

sup
f∈3ε(C)

Pf (Tε = 0) ≥ γ2 , (13)

for all C < C∗, and

lim sup
ε→0

sup
f∈3ε(C)

Pf (T ∗
ε = 0) ≤ γ2 , (14)

for all C > C∗. The valueγ2 is then the minimal asymptotical second type error.
Let us apply this definition to the two problems considered here.
For the problem of testing in supremum norm, where3ε(C) = 3∞

ε (C), it
follows from Theorems 1 and 2 that the relations (13) and (14) are satisfied with
C∗ = C∗∞, T ∗

ε = T∞
ε andγ2 = 1 − γ1. This is a consequence of degenerate

character of the result for supremum norm.
For the second problem (testing at a fixed point) the answer is quite different. It

follows from (11) and from the proof of (12) that, under assumptions of Theorem 3,
the relations (13) and (14) hold withC∗ = C∗

0(2γ1), T
∗
ε = T 0

ε (2γ1), andγ1 = γ2,
whereC∗

0(2γ1) andT 0
ε (2γ1) are defined asC∗

0 andT 0
ε above, withγ = 2γ1.

We end this section by a comparison of the results on exact minimax testing
and estimation. A standard connection between estimation and testing would sug-
gest to reject the null hypothesisH0 in favor of the alternative3ε = {f : f ∈
^, ϕ(f ) ≥ Cψε} if ϕ(f̂ε) ≥ Q(ε) wheref̂ε is a good estimator off ∈ ^ and
Q(ε) is a properly chosen threshold. Ingster (1990, 1993) has shown that, as con-
cerns the rates of testing, this connection does not work in nonparametric situation
if ϕ(f ) = ‖f ‖q , except for the case of sup-norm (q = ∞). This is exactly the
case considered in Theorems 1 and 2, and the critical region of the optimal test
procedure (9) is of the formϕ(f ∗

ε,∞) ≥ Q(ε). Note that heref ∗
ε,∞ is a good es-

timator not only in rate, but also in constant, as soon as we consider the unique
case where constants are available for estimation (Hölder classes, i.e.p = ∞, see
Korostelev (1993), Donoho (1994a)). Thus, the above mentioned connection be-
tween estimation and testing works perfectly (even in constants) for this particular
case^ = ^(β, L,∞), ϕ(f ) = ‖f ‖∞. For other combinations ofϕ(f ) and^
considered in this paper such a comparison is not possible since the exact constants
for the associated estimation problems are not available.
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3. Preliminary lemmas

In this section we give some auxiliary results about the properties of solutions to the
problems of the type (6), the asymptotic behavior of suprema of Gaussian processes
and the boundary kernels.

3.1. Properties of solutions

Let ρ(g) be a convex functional defined on the space of functionsg : R1 → R1

and satisfying the following two conditions.
(i) The functionalρ(·) is convex, nonnegative and symmetric, i.e.ρ(−g) =

ρ(g), for all g such thatρ(g) < ∞.
(ii) The functionalρ(·) is renormalizable with exponentα > 0, i.e. for every

g, such thatρ(g) < ∞, one has

ρ(ag(bt)+ c) = abαρ(g(t)), ∀ a ≥ 0, b > 0, c ∈ R1 .

The notion of renormalization was introduced in the context of nonparametric
estimation by Donoho and Low (1992). Note, that the functionalsρ = ρβ,p satisfy
(i) and they are renormalizable with exponentα = β − 1/p. In particular, for the
Hölder case(p = ∞) we haveα = β.

Let us study the following optimization problem

maxg(0), subject to∫ D

−D
g2(x)dx ≤ 1, (15)

ρ(g) ≤ 1 .

This is a generalization of (6).
The next lemma can be deduced from the results on optimal recovery (see e.g.

Gabushin (1970), Micchelli and Rivlin (1977), Arestov (1989)). Some versions of
it, in a more particular context, appeared recently in statistical literature (Donoho
(1994), Korostelev (1996), Lepski and Spokoiny (1997)). For convenience, we state
the lemma in the form adapted to our purposes. We give a simple self-contained
proof, which does not refer to the theory of optimal recovery.

Denote

GA =
{
g : R1 → R1 :

∫ D

−D
g2(x)dx ≤ 1, ρ(g) ≤ 1

}
, A = [−D,D] .

Lemma 1. Let the conditions (i) and (ii) hold and let|g(0)| < ∞ for eachg ∈ GA.
Then the following properties are valid.

(L1) The problem (15) has a solutiong∗
A.

(L2) Any solution of (15) is attained on the boundary ofGA, i.e.

∫ D

−D
(g∗
A(x))

2
dx = 1 . (16)
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(L3) The restriction to[−D,D] of any solutiong∗
A is unique a.e. with respect

to the Lebesgue measure on[−D,D].
(L4)

g∗
A(0) > 0 . (17)

(L5) For eachf , such thatρ(f ) ≤ 1 andf (0) = g∗
A(0), we have

∫ D

−D
fg∗

A ≥
∫ D

−D
(g∗
A)

2 = 1 , (18)

and

g∗
A(0)

∫ D

−D
g∗
A ≥ 1 . (19)

(L6)
g∗
A(0) = ‖KA‖2 + BA(ρ) , (20)

where

KA(u) = g∗
A(u)∫ D

−D g
∗
A

I {u ∈ [−D,D]} ,

and

BA(ρ) = sup
g: ρ(g)≤1

|
∫ ∞

−∞
KA(u)(g(u)− g(0))du| .

Proof of Lemma 1.
(L1). Considerg as an element of the weightedL2-space, with the indicator weight
I {x ∈ A}. This space is reflexive, and the setGA is bounded in this space. More-
over, since the functionals

∫ D
−D g

2 andρ(g) are convex, the setGA is weakly closed
(Vainberg (1972), p. 111–112). Similarly, since the functionalg(0) is convex and
such that|g(0)| < ∞, ∀ g ∈ GA, it is weakly upper semi-continuous. Final-
ly, by the generalized first Weierstrass theorem (Vainberg (1972), Theorem 9.2)
any weakly upper semi-continuous functional attains its maximum on a bounded
weakly closed subset of a reflexive Banach space.

(L2). Assume that there exists a solutiong∗
A of (15) such that∫ D

−D
(g∗
A)

2 < 1 .

Then

κ =
[∫ D

−D
(g∗
A)

2
]− α

2α+1

> 1 .

Denotef ∗(t) = κg∗
A(κ

− 1
α t). Then, by the renormalization property (ii),

ρ(f ∗) = ρ(g∗
A) ≤ 1 ,
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andf ∗(0) = κg∗
A(0) > g∗

A(0). Moreover,∫ D

−D
(f ∗)2 = κ

∫ D

−D
(g∗
A(κ

− 1
α t))2dt

= κ2+ 1
α

∫ Dκ− 1
α

−Dκ− 1
α

(g∗
A)

2 ≤ κ2+ 1
α

∫ D

−D
(g∗
A)

2 = 1 .

Thus,f ∗ ∈ GA andf ∗(0) > g∗
A(0),which contradicts the assumption thatg∗

A(0) =
maxg∈GA g(0). The contradiction proves (16).

(L3). Assume thatg1 andg2 are two different solutions of the problem (15).
Consider the functionf = (g1 + g2)/2. By convexity ofρ and of theL2[−D,D]-
norm, we havef ∈ GA. Also, f (0) = (g1(0) + g2(0))/2 = g∗

A(0). Thus,f is a
solution of (15). Now

∫ D

−D
f 2 =

∫ D

−D

[
g2

1 + g2
2

2
− (g1 − g2)

2

2

]
= 1 −

∫ D

−D
(g1 − g2)

2

2
, (21)

where we used the fact that (by (16))∫ D

−D
g2

1 =
∫ D

−D
g2

2 = 1 .

If g1 6= g2 on a set of positive Lebesgue measure in [−D,D] then
∫ D
−D(g1−g2)

2 >

0, and (21) implies
∫ D
−D f

2 < 1.Sincef is a solution to (15), this contradicts(L2).
(L4). Assume thatg∗

A(0) < 0. Then for the functionf = −g∗
A we havef (0) =

−g∗
A(0) > 0> g∗

A(0), andf ∈ GA. This contradicts the fact thatg∗
A is a solution

to (15).
(L5). Denotê 0 = {f : ρ(f ) ≤ 1, f (0) = g∗

A(0)}. Note that

∫ D

−D
f 2 ≥

∫ D

−D
(g∗
A)

2 = 1, ∀ f ∈ ^0 . (22)

In fact, if
∫ D
−D f

2 < 1, thenf ∈ GA andf (0) = g∗
A(0), thereforef is a solution

of (15) which is not on the boundary ofGA. This contradicts(L2) and proves (22).
In particular, (22) yields thatg∗

A is a minimizer of the convex functional
∫ D
−D f

2

on the convex set̂ 0. Thus, the directional derivatives of this functional atg∗
A are

non-negative:

lim
t↓0

1

t

[∫ D

−D
(g∗
A + t (f − g∗

A))
2 −

∫ D

−D
(g∗
A)

2
]

≥ 0, ∀ f ∈ ^0 . (23)

The inequality (23) is equivalent to (18). Finally, note that the functionf (t) ≡
g∗
A(0), ∀ t ∈ R1, belongs tô 0. In fact, by the renormalization property (ii),

ρ(f ) = ρ(g∗
A(0)) = ρ(0 · g(t)+ g∗

A(0)) = 0 · ρ(g(t)) = 0 ,
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whereg is any function such thatρ(g) < ∞. By putting in (18)f (t) ≡ g∗
A(0), we

obtain (19).
(L6). Introduce the scalar product

(f, g) =
∫ D

−D
f (x)g(x)dx .

By definition ofKA,

BA(ρ) = sup
g:ρ(g)≤1

|(KA, g − g(0))|

= sup
g∈&

|(KA, g)| =
(∫ D

−D
g∗
A

)−1

sup
g∈&

|(g∗
A, g)| , (24)

where

& = {g : R1 → R1 : ρ(g) ≤ 1, g(0) = 0} .
For anyg ∈& the functionf (t) = g∗

A(0)−g(t) belongs tô 0, sincef (0) = g∗
A(0)

andρ(f ) = ρ(−g) ≤ 1 (here we used (i) and (ii)). Therefore, for this functionf
we can apply (18), which yields

(g∗
A, g) ≤ g∗

A(0)
∫ D

−D
g∗
A − 1, ∀ g ∈& . (25)

The right side of (25) is nonnegative, in view of (19). Moreover, for the function
g−(t) = g∗

A(0)− g∗
A(t) ∈& we have, using (16),

(g∗
A, g−) = g∗

A(0)
∫ D

−D
g∗
A − 1 ,

that is the equality in (25) is attained ong = g−. Hence

sup
g∈&

|(g∗
A, g)| = sup

g∈&
(g∗
A, g) = g∗

A(0)
∫ D

−D
g∗
A − 1 . (26)

Applying (26), (24), (16) and the definition ofKA, we get

BA(ρ) = g∗
A(0)−

(∫ D

−D
g∗
A

)−1

= g∗
A(0)− ‖KA‖2 .

The lemma is proved.

Remark 3. The conditions of Lemma 1 are satisfied forρ = ρβ,p, (β, p) ∈ 3, and
hence Lemma 1 holds forρβ,p. Moreover, as in this case all functionsg ∈ GA are
continuous, one can drop the words “almost everywhere” in (L3): the restriction
of each solutiong∗

A to [−D,D] is unique.
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Next, we consider the analog of the problem (4) with a support constraint:

maxg(0), subject to

‖g‖2 ≤ 1,

ρβ,p(g) ≤ 1, (27)

supp(g) ⊆ [−d, d] ,

whered > 0 is a fixed number. For the same reason as before, the problem (27) has
a solution that will be denoted̄gd(·). The following lemma states that the values
of the problems (6) and (27) approach the value of the problem (4) as the sizes of
supportsd andD tend to∞.

Lemma 2. If (β, p) ∈ 3, then

g∗(0) ≥ ḡd (0), ḡd(0) → g∗(0), as d → ∞ ; (28)

g∗(0) ≤ g∗
A(0), g

∗
A(0) → g∗(0), as D → ∞ . (29)

This lemma is established by the methods of Donoho and Low (1992, Theorem
3), see also Donoho (1994).

Next, we need to characterize the smoothness properties of the kernelKA in
L2(R1).

Lemma 3. If (β, p) ∈ 3, then there exists a constantc1 > 0 such that

∫ ∞

−∞
(KA(t + u)−KA(u))

2du ≤ c1|t |, ∀ t ∈ R1 . (30)

Proof of Lemma 3. By definition,KA(x) = g∗
A(x)/

∫ D
−D g

∗
A for x ∈ (−D,D),KA

possibly has jumps at points−D,D andKA(x) = 0, x /∈ [−D,D]. Let t > 0
(the caset < 0 is quite analogous). Suppose thatt ≤ 2D, since fort > 2D the
supports ofKA(t + ·) andKA(·) are non-overlapping and (30) is trivial. We have
for 0< t ≤ 2D,

∫ ∞

−∞
(KA(t + u)−KA(u))

2du

=
(∫

(−D−t,−D]
+
∫
(−D,D−t ]

+
∫
(D−t,D]

)
(KA(t + u)−KA(u))

2du . (31)

Here

(∫
(−D−t,−D]

+
∫
(D−t,D]

)
(KA(t + u)−KA(u))

2du ≤ 8K2
maxt , (32)
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whereKmax = maxx |KA(x)|. To estimate the second integral in the right hand
side of (31) use the fact thatKA(t + u)−KA(u) = (g∗

A(t + u)− g∗
A(u))/

∫ D
−D g

∗
A

for u ∈ (−D,D − t). Hence,∫
(−D,D−t ]

(KA(t + u)−KA(u))
2du

≤
(∫ D

−D
g∗
A

)−2 ∫ ∞

−∞
(g∗
A(t + u)− g∗

A(u))
2du , (33)

Note thatg∗
A ∈ ^(β, L, p), (β, p) ∈ 3. For(β, p) ∈ 3 we haveβp > 1, and thus,

by embedding theorems for Sobolev and Besov spaces (see e.g. Triebel (1992)) one
getsg∗

A ∈ Bβ−1/p
∞,∞ (R1) ⊂ B

β−1/p+1/2
2,∞ (R1) ⊂ B

1/2
2,∞(R

1), whereBsr,q(R
1) denotes

the Besov space of functions onR1. This entails that the last integral in (33) does
not exceedc2|t | wherec2 is a constant. This remark, together with (31)–(33), proves
(30).

Finally, the following property will be used later in the proofs.

Lemma 4. For (β, p) ∈ 3 and anyh > 0,D > 0 such thatDh < 1
2 we have

sup
t∈[Dh,1−Dh]

sup
f∈^(β,L,p)

∣∣∣∣∣1h
∫ 1

0
KA

(
u− t

h

)
f (u)du− f (t)

∣∣∣∣∣ ≤ LhαBA(ρβ,p) ,

whereα = β − 1/p.

Proof of Lemma 4. Sincesupp(KA) ⊆ [−D,D], we have

sup
t∈[Dh,1−Dh]

∣∣∣∣∣1h
∫ 1

0
KA

(
u− t

h

)
f (u)du− f (t)

∣∣∣∣∣
= sup

t∈[Dh,1−Dh]

∣∣∣∣∣
∫ (1−t)/h

−t/h
KA(w)f (t + wh)dw − f (t)

∣∣∣∣∣
= sup

t∈[Dh,1−Dh]

∣∣∣∣
∫ ∞

−∞
KA(w)f (t + wh)dw − f (t)

∣∣∣∣
≤ sup

t∈R1

∣∣∣∣
∫ ∞

−∞
KA(w)(f (t + wh)− f (t))dw

∣∣∣∣ . (34)

For any fixedt ∈ R1 and anyf ∈ ^(β, L, p) denotef1(u) = f (t + u). Clearly,
ρβ,p(f1) = ρβ,p(f ) ≤ L. Forw ∈ R1 consider the function

g(w) = f (t + wh)

Lhα
,

If f ∈ ^(β, L, p), then by the renormalization property (ii)

ρβ,p(g) = ρβ,p

(
f (t + wh)

Lhα

)
= 1

L
ρβ,p(f1) ≤ 1 .
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Thus, for everyt ∈ R1,

sup
f∈^(β,L,p)

∣∣∣∣
∫ ∞

−∞
KA(w)(f (t + wh)− f (t))dw

∣∣∣∣
≤ Lhα sup

g:ρβ,p(g)≤1

∣∣∣∣
∫ ∞

−∞
KA(w)(g(w)− g(0))dw

∣∣∣∣ = LhαBA(ρβ,p) .

This, together with (34), proves the lemma.

3.2. Supremum of a Gaussian process

Let T > 0. On the interval [0, T ] define the random process

X(t) = 1√
h

∫ 1

0
K

(
u− t

h

)
dW(u) ,

whereh > 0, W(·) is the standard Wiener process on [0,1], andK : R1 → R1 is
a function such that‖K‖2 < ∞.

Lemma 5. Let for somec1 > 0,∫ ∞

−∞
(K(t + u)−K(u))2du ≤ c1|t | , (35)

for ∀ t ∈ R1. Then

P

{
sup
t∈[0,T ]

|X(t)| ≥
(

1 + δ

(
T

h

))
‖K‖2

√
2 ln

(
T

h

)}
→ 0 ,

ash/T → 0, for any positive functionδ(x) defined forx > 0 and such that

δ(x) ln x

ln ln x
→ ∞ ,

asx → ∞.

We omit the proof. Results close to Lemma 5 are well known in the literature on
the extrema of Gaussian processes: Pickands (1969), Konakov and Piterbarg (1983,
1984), Leadbetter, Lindgren and Rootzén (1986, Theorem 12.2.9). A direct proof
of Lemma 5 can be obtained following the lines of Adler (1990, p. 119–120).

3.3. Boundary kernels

Lemma 6. Let eitherS = [0,Dεhε,∞], K = K−, or S = [1 −Dεhε,∞,1], K =
K+, whereDε → ∞ asε → 0, andDε = 2

(
(ln 1

ε
)a
)
, for somea > 0.

Then there exists a constantc∗ > 0 such that

sup
f∈^(β,L,p)

sup
t∈S

∣∣∣∣∣ 1

sε

∫ 1

0
K

(
u− t

sε

)
f (u)du− f (t)

∣∣∣∣∣ ≤ c∗ε
2α

2α+1 , (36)
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and

P

(
sup
t∈S

∣∣∣∣∣ εsε
∫ 1

0
K

(
u− t

sε

)
dW(u)

∣∣∣∣∣ ≥ c∗ε
2α

2α+1

√
ln ln

(
1

ε

))
→ 0 , (37)

asε → 0. Hereα = β − 1/p.

Proof of Lemma 6. It suffices to consider the caseS = [0,Dεhε,∞], K = K−.
Let us prove (36). For anyf ∈ ^(β, L, p), anyt ∈ [0,Dεhε,∞], andl = bβc, we
have∣∣∣∣∣ 1

sε

∫ 1

0
K−

(
u− t

sε

)
f (u)du− f (t)

∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0
K−(w) (f (t + wsε)) dw − f (t)

∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0
K−(w)

(
f

′
(t)wsε+ f

′′
(t)

2
(wsε)

2+ · · · + f
(l)(t + θwh1,ε)

l!
(wsε)

l

)
dw

∣∣∣∣∣
= slε

∣∣∣∣∣
∫ 1

0
K−(w)wlf (l)(t + θwsε)dw

∣∣∣∣∣
= slε

∣∣∣∣∣
∫ 1

0
K−(w)wl(f (l)(t)− f (l)(t + θwsε))dw

∣∣∣∣∣ , (38)

where 0≤ θ ≤ 1, and we used (7). Ifp = ∞, the last expression is bounded as
follows∣∣∣∣∣
∫ 1

0
K−(w)wl(f (l)(t)− f (l)(t + θws1,ε))dw

∣∣∣∣∣ ≤ Lsβ−l
ε

∫ 1

0
|K−(w)wβ |dw ,

(39)
where the fact thatf ∈ ^(β, L,∞) was used. Combining (38) and (39) we get
(36) forp = ∞. If 1 ≤ p < ∞, thenβ is an integer,l = β − 1 and instead of (39)
we obtain the following estimate∣∣∣∣∣

∫ 1

0
K−(w)wl(f (l)(t)− f (l)(t + θwsε))dw

∣∣∣∣∣
≤
∫ 1

0
|K−(w)wl |

∫ t+wsε

t

|f (β)(τ )|dτdw

≤
(∫ 1

0
|K−(w)wl |qdw

) 1
q
(∫ 1

0

[∫ t+wsε

t

|f (β)(τ )|dτ
]p
dw

) 1
p

≤ c6

(∫ 1

0
(wsε)

p−1
∫ t+wsε

t

|f (β)(τ )|pdτdw
) 1
p
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≤ c6s
1− 1

p
ε ‖f (β)‖p

[∫ 1

0
wp−1dw

] 1
p

≤ c7Ls
1− 1

p
ε , (40)

whereq = p/(p − 1), c6 > 0, c7 > 0 depend only onK− andp, l. Combining
(38) and (40) we obtain (36) forp < ∞.

Let us prove (37) forK = K−, S = [0,Dεhε,∞]. Note thatK = K− satisfies
the condition (35): in fact,K− is a polynomial of orderl on the interval [0,1]
and possibly has jumps at the endpoints 0 and 1. Using the same argument as in
(31)–(33), we get (35). Thus, we can apply Lemma 5 to prove (37). In our case
T = Dεhε,∞, h = sε, and

T

h
= Dεhε,∞

sε
= c8Dε

(
ln

(
1

ε

)) 1
2α+1

→ ∞ ,

asε → 0, sinceDε → ∞. Herec8 > 0 is a constant. Also

‖K‖2

√
2 ln

(
T

h

)
= ‖K‖2

√
2

(
lnDε + 1

2α + 1
ln ln

(
1

ε

)
+ ln c8

)

≤ c9

√
ln ln

(
1

ε

)
,

in view of the conditionDε = 2
(
(ln(1

ε
))a
)
, ε → 0. Herec9 > 0 is a constant.

This and Lemma 5 yield (37). Lemma 6 is proved.

4. Proofs of Theorems 1–3

To prove Theorems 1 and 2, it suffices to show (5) and (10) under the conditions
of these theorems respectively.

Proof of (5). Fix β, p and a positive constantC < C∗∞. Write for convenience
C = (1 − δ)C∗∞, 0 < δ < 1. Let d > 0 be such that̄gd(0) > g∗(0)(1 − δ/2),
whereḡd is the solution of the problem (27) andg∗ is the solution of (4). Such a
valued exists in view of (28). Denote

h(C) =
(

C

Lḡd(0)

) 1
α
(
ε2 ln

(
1

ε

)) 1
2α+1

,

M =
⌊

1

2dh(C)

⌋
− 1, xk = (2k − 1)dh(C), k = 1, . . . ,M,

G(x) = Lhα(C)ḡd

(
x

h(C)

)
, α = β − 1/p,

fk(x) = G(x − xk), k = 1, . . . ,M .

Since the functionalρβ,p is renormalizable with exponentα, we get

ρβ,p(fk) = ρβ,p(G) = Lρp(ḡd) ≤ L .
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Hence,fk ∈ ^(β, L, p), k = 1, ...,M. Moreover,

‖fk‖∞ ≥ |fk(xk)| = Lhα(C)ḡd(0) = C

(
ε2 ln

(
1

ε

)) α
2α+1

.

Thus,

fk ∈ 3∞
ε (C), k = 1, ...,M . (41)

Note also thatσ 2 = ‖fk‖2
2 does not depend onk, and

σ 2 = L2h2α(C)

∫
ḡ2
d

(
x

h(C)

)
dx

= L2h2α+1(C)‖ḡd‖2
2 ≤ L2

(
C

Lḡd(0)

) 2α+1
α

ε2 ln

(
1

ε

)

= L2
(
(1 − δ)C∗∞
Lḡd(0)

) 2α+1
α

ε2 ln

(
1

ε

)

= 4

2α + 1
(1 − δ)

2α+1
α

(
g∗(0)
ḡd(0)

) 2α+1
α

ε2 ln

(
1

ε

)

≤ 4

2α + 1

(
1 − δ

2

) 2α+1
α

ε2 ln

(
1

ε

)
≤ 4

2α + 1

(
1 − δ

2

)
ε2 ln

(
1

ε

)
, (42)

where we used the inequalities‖ḡd‖2
2 ≤ 1 andg∗(0)/ḡd(0) < (1−δ/2)−1. In view

of (41), we have, for an arbitrary test statisticTε,

P0(Tε = 1)+ sup
f∈3∞

ε (C)

Pf (Tε = 0) ≥ P0(Tε = 1)+ 1

M

M∑
k=1

Pk(Tε = 0)

≥ E0 (I (Tε = 1)+ I (Tε = 0)Z)

≥ (1 − δ)P0(Z ≥ 1 − δ) , (43)

wherePk = Pfk , for brevity, and

Z = 1

M

M∑
k=1

dPk
dP0

.

Now

P0(|Z − 1| ≥ δ) = P

(∣∣∣∣∣ 1

M

M∑
k=1

ξk − 1

∣∣∣∣∣ ≥ δ

)

= P

(∣∣∣∣∣ 1

M

M∑
k=1

(ξk − E(ξk))

∣∣∣∣∣ ≥ δ

)
. (44)
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where

ξk = exp

(
ε−1σζk − ε−2σ 2

2

)
,

and ζk, k = 1, ...,M, are normal1(0,1) random variables that are indepen-
dent since the supports offk andfj are non-overlapping fork 6= j . Obviously,
E(ξk) = 1. Using (44) and the Bahr-Esseen inequality for the moments of sums of
independent random variables (Petrov (1995, p. 82)) we find that for all 0< ν < 1

P0(|Z − 1| ≥ δ) ≤ c10E|ξk|1+ν

δ1+νMν
, (45)

wherec10 > 0 is a constant that depends onν only. Direct calculation gives

E|ξk|1+ν = exp

(
ε−2σ 2

2
(ν + ν2)

)
≤ exp

(
2(ν + ν2)

2α + 1

(
1 − δ

2

)
ln

1

ε

)
,

where we applied (42). Using this and (45) and choosingν = δ/4 we obtain

P0(|Z − 1| ≥ δ) ≤ c11ε
q

(
ln

1

ε

) ν
2α+1

,

wherec11 > 0 and

q = δ2

8(2α + 1)

(
1 + δ

2

)
> 0 .

Thus

P0(|Z − 1| ≥ δ) → 0, as ε → 0 . (46)

Since the probability in (46) does not depend onTε, we deduce (5) from (43) and
(46).

Proof of (10). Here we putψε =
(
ε2 ln

(
1
ε

)) α
2α+1

, α = β − 1/p, δε = 1√
ln ln 1

ε

.

We have

P0(T
∞
ε = 1) = P0

(‖f ∗
ε,∞‖∞ ≥ (1 + δε)Q∞ψε

)
≤ P

(
sup

t∈[0,Dhε,∞]

∣∣∣∣∣ εsε
∫ 1

0
K−

(
u− t

sε

)
dW(u)

∣∣∣∣∣ ≥ δε

4
Q∞ψε

)

+P

(
sup

t∈[1−Dhε,∞,1]

∣∣∣∣∣ εsε
∫ 1

0
K+

(
u− t

sε

)
dW(u)

∣∣∣∣∣ ≥ δε

4
Q∞ψε

)

+P

(
sup

t∈[Dhε,∞,1−Dhε,∞]

∣∣∣∣∣ ε

hε,∞

∫ 1

0
KA

(
u− t

hε,∞

)
dW(u)

∣∣∣∣∣
≥
(

1 − δε

2

)
(1 + δε)Q∞ψε

)
. (47)
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Note that δε4Q∞ψε ≥ c∗ε
2α

2α+1

√
ln ln

(
1
ε

)
for ε small enough, wherec∗ is the

constant in Lemma 6. On the other hand, forε small enough,(
1 − δε

2

)
(1 + δε)Q∞ψε

≥
(

1 + δε

4

)
Q∞ψε

≥
(

1 + δε

4

)
‖KA‖2

ε√
hε,∞

√
2 ln

(
1

hε,∞

)(
1 + 2

(√
ln ln(1/ε)

ln(1/ε)

))

≥
(

1 + δε

8

)
‖KA‖2

ε√
hε,∞

√
2 ln

(
T

hε,∞

)
,

whereT = 1 − 2Dhε,∞. Using these remarks and evaluating the last three proba-
bilities in (47) by means of Lemma 5 and (37), we find

P0(T
∞
ε = 1) = o(1), as ε → 0 . (48)

Let us show that forC = C∗∞(1 + δ), ∀ δ > 0,

sup
f∈3∞

ε (C)

Pf (T∞
ε = 0) = o(1), as ε → 0 . (49)

Together (48) and (49) yield (10). To prove (49) fixf ∈ 3∞
ε (C), and denotēt the

minimal number in [0,1], such that

|f (t̄)| = max
t∈[0,1]

|f (t)| .

Introduce the random variable

ξ = Ef (f ∗
ε,∞(t̄))− f ∗

ε,∞(t̄) .

Using the fact thatf ∈ 3∞
ε (C), we get

‖f ∗
ε,∞‖∞ ≥ |f ∗

ε,∞(t̄)| ≥ |Ef (f ∗
ε,∞(t̄))| − |ξ |

≥ Cψε − |f (t̄)| + |Ef (f ∗
ε,∞(t̄))| − |ξ |

≥ Cψε − |f (t̄)− Ef (f ∗
ε,∞(t̄))| − |ξ |

≥ Cψε − sup
t∈[0,1]

|Ef (f ∗
ε,∞(t))− f (t)| − |ξ | . (50)

Now, Lemma 4 and (36) yield

sup
t∈[0,1]

|Ef (f ∗
ε,∞(t))− f (t)| ≤ Lhαε,∞BA(ρβ,p)+ 2c∗ε

2α
2α+1 .

This and (50) imply

‖f ∗
ε,∞‖∞ ≥ Cψε − |ξ | − Lhαε,∞BA(ρβ,p)− 2c∗ε

2α
2α+1 .
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Therefore,

Pf (T∞
ε = 0) = Pf (‖f ∗

ε,∞‖∞ ≤ (1 + δε)Q∞ψε) ≤ Pf (|ξ | ≥ 1ε) , (51)

where

1ε = Cψε − Lhαε,∞BA(ρβ,p)− 2c∗ε
2α

2α+1 − (1 + δε)Q∞ψε .

Using (20), (29), the definition ofQ∞, C∗∞ and the formulaC = (1 + δ)C∗∞, one
obtains

1ε = Cψε − Lhαε,∞BA(ρβ,p)−Q∞ψε + o(ψε)

= δC∗
∞ψε + ψεL

1
2α+1

(
4

2α + 1

) α
2α+1 [

g∗(0)− BA(ρβ,p)− ‖KA‖2
]+ o(ψε)

= δC∗
∞ψε + ψεL

1
2α+1

(
4

2α + 1

) α
2α+1 [

g∗(0)− gA(0)
]+ o(ψε)

= (δ + o(1))C∗
∞ψε, as ε → 0 .

Note thatξ is a Gaussian zero-mean random variable, and its variance does not
depend off . It is easy to see that

E(ξ2) = 2

(
ε2

sε

)
= 2

(
ε

2α
2α+1

)
, as ε → 0 .

Thus,

sup
f∈3∞

ε (C)

Pf (|ξ | ≥ 1ε) → 0, as ε → 0 . (52)

Together (51) and (52), prove (49). Therefore, (10) follows.

Proof of Theorem 3. We prove in turn (11) and (12).

Proof of (11). Fixβ andp. Letd > 0 be large enough, as in the proof of (5). Denote

τ =
(

C∗
0

Lḡd(0)

) 1
α

, h = τε
2

2α+1 ,

f1(x) = Lhαḡd

(
x − t0

h

)
, α = β − 1/p .

Clearly,f1 ∈ ^(β, L, p) and

f1(t0) = Lhαḡd(0) = C∗
0ε

2α
2α+1 .

Hence,f1 ∈ 30
ε(C

∗
0), and for any test statisticTε we get

P0(Tε = 1)+ sup
f∈30

ε(C
∗
0)

Pf (Tε = 0) ≥ P0(Tε = 1)+ P1(Tε = 0)

≥ P0(T
b
ε = 1)+ P1(T

b
ε = 0) , (53)
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whereP1 = Pf1, andT bε is the Bayesian decision rule, i.e.

T bε =
{

1 if dP1
dP0

≥ 1,
0 otherwise.

Note that

P0(T
b
ε = 1) = P0

(
ln

dP1

dP0
≥ 0

)

= P
(
ε−1σ0ξ0 − 1

2
ε−2σ 2

0 ≥ 0

)
= P

(
ξ0 ≥ 1

2
ε−1σ0

)
, (54)

whereξ0 ∼ 1(0,1) andσ0 > 0 is defined by

σ0
2 =

∫ 1

0
f 2

1 (x)dx = L2h2α
∫ 1

0
ḡ2
d

(
x − t0

h

)
dx

= L2h2α+1‖ḡd‖2
2 ≤ L2h2α+1 = L2τ2α+1ε2 , (55)

if ε > 0 is so small that(t0−dh, t0+dh) ⊂ [0,1] (observe thatsupp
[
ḡd
(
x−t0
h

)] ⊆
(t0 − dh, t0 + dh)). From (54) and (55) we find that, forε small enough,

P0(T
b
ε = 1) ≥ P

(
ξ0 ≥ L

2
τ

2α+1
2

)
. (56)

Quite similarly, forε small enough,

P1(T
b
ε = 0) = P1

(
ln

dP1

dP0
< 0

)

= P
(
ε−1σ0ξ0 + 1

2
ε−2σ0

2 < 0

)
≥ P

(
ξ0 < −L

2
τ

2α+1
2

)
. (57)

It follows from (56) and (57) that

lim inf
ε→0

[
P0(T

b
ε = 1)+ P1(T

b
ε = 0)

]
≥ P

(
|ξ0| > L

2
τ

2α+1
2

)

= P

(
|ξ0| > qγ

2

(
ḡd (0)

g∗(0)

) 2α
2α+1

)

= 2

(
1 −8

(
q γ

2

(
ḡd (0)

g∗(0)

) 2α
2α+1

))
,

where8(·) denotes the standard normal c.d.f. Using Lemma 2, we get that the last

expression tends to 2(1 −8
(
q γ

2

)
) = γ , asd → ∞. This and (53) prove (11).

Proof of (12). Assume thatε > 0 is small enough to have(t0−Dhε,0, t0+Dhε,0) ⊂
(0,1). Thenfε,0(t0) is a normal random variable with mean

Ef
(
fε,0(t0)

) = 1

hε,0

∫ ∞

−∞
KA

(
u− t0

hε,0

)
f (u)du , (58)
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and variance

Var f (fε,0(t0)) = 1

h2
ε,0

E


(ε ∫ 1

0
KA

(
u− t0

hε,0

)
dW(u)

)2



= ε2h−1
ε,0‖KA‖2

2 . (59)

Applying (58) and (59) in the casef ≡ 0, we get

P0(T
0
ε = 1) = P0

(
fε,0(t0) ≥ Q0ε

2α
2α+1

)

= P0

(
fε,0(t0)− E0(fε,0(t0))√

Var 0(fε,0(t0))
≥ Q0ε

2α
2α+1

ε‖KA‖2

√
hε,0

)

= P
(
ξ0 ≥ qγ

2

)
= γ

2
, (60)

whereξ0 ∼ 1(0,1). Next, in view of Lemma 4, we get

|Ef (fε,0(t0))− f (t0)| ≤ Lhαε,0BA(ρβ,p) ,

for anyf ∈ ^(β, L, p). Using this and (59), we find that, for allf ∈ 30
ε(C),

Pf (T 0
ε = 0)

= Pf
(
fε,0(t0) < Q0ε

2α
2α+1

)
= Pf

(
[fε,0(t0)− Ef (fε,0(t0))] + [Ef (fε,0(t0))− f (t0)] < Q0ε

2α
2α+1 − f (t0)

)
≤ Pf

(
fε,0(t0)−Ef (fε,0(t0))<Lhαε,0BA(ρβ,p)+ (Q0−C)ε 2α

2α+1

)

= Pf


fε,0(t0)− Ef (fε,0(t0))√

Var f (fε,0(t0))
<

√
hε,0

(
Lhαε,0BA(ρβ,p)+(Q0 − C)ε

2α
2α+1

)
ε‖KA‖2




= P
(
ξ0 < ε−1

√
hε,0‖KA‖−1

2

(
Lhαε,0BA(ρβ,p)+ (Q0 − C)ε

2α
2α+1

))
. (61)

SinceC > C∗
0, writeC = (1 + δ)C∗

0, δ > 0. Note that, in view of (20),

ε−1
√
hε,0

(
Lhαε,0BA(ρβ,p)+ (Q0 − (1 + δ)C∗

0)ε
2α

2α+1

)
= 2q γ

2
‖KA‖−1

2

(
BA(ρβ,p)+ ‖KA‖2

2
− (1 + δ)g∗(0)

)

= 2q γ
2
‖KA‖−1

2

(
BA(ρβ,p)− g∗

A(0)+ ‖KA‖2

2
+ g∗

A(0)− (1 + δ)g∗(0)
)

= −q γ
2

+ 2qγ
2
‖KA‖−1

2 (g∗
A(0)− (1 + δ)g∗(0)) ≤ −qγ

2
, (62)

if ε is small enough to haveg∗
A(0) < (1 + δ)g∗(0) (the last inequality is satisfied

for ε small enough, sinceDε → ∞ and (29) holds). Combining (61) and (62) we
obtain
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lim sup
ε→0

sup
f∈30

ε(C)

Pf (T 0
ε = 0) ≤ P(ξ0 < −qγ

2
) = γ

2
. (63)

Finally, (12) follows from (60) and (63).

5. Examples and extensions

In this section we study special cases where the asymptotically minimax test statis-
tics and the ESC can be written explicitly, the definition of test statisticsT∞

ε , T 0
ε

can be simplified, and the results of Theorems 1 to 3 sharpened. We also discuss
an extension to the Besov classes of functions.

5.1. Compactly supported solutions

Assume that the pair(β, p) is such that the solutiong∗ of the optimization prob-
lem (4) is compactly supported. Then there existsD0 > 0 such thatg∗

A = g∗
for A = [−D0,D0], and for anyA = [−D,D], D > D0. Thus the condition
D → ∞, asε → 0 is no longer useful, and one may replaceg∗

A everywhere by
g∗, KA(x) by

K∗(x) = g∗(x)∫
g∗(u)du

,

andBA(ρβ,p) by

B∗(ρβ,p) = sup
g∈^(β,1,p)

∣∣∣∣
∫
K∗(u)(g(u)− g(0))du

∣∣∣∣ .
All the results of Sections 2, 3 and 4 remain valid with these changes. Moreover,
inspection of the proof of (12) shows that, in the case of compactly supported
solutions, the test statisticT 0

ε , defined with

Q0 =
(
L

2

) 1
2α+1

(q γ
2
)

2α
2α+1 ‖K∗‖2

satisfies the stronger relation

lim sup
ε→0

(
P0(T

0
ε = 1)+ sup

f∈3∞
ε (C

∗
0)

Pf (T 0
ε = 0)

)
≤ γ ,

i.e.C = C∗
0 is included in (12). (In fact, sinceg∗

A = g∗, (62) holds forδ = 0 as
well.)

Consider some examples.

Example 1.Hölder classes(p = ∞) with 0< β ≤ 1.
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The solutiong∗ is easy to find explicitly (see Korostelev (1993)) andg∗ is compactly
supported. The exact formulas are

g∗(0) =
(
(2β + 1)(β + 1)

4β2

) β
2β+1

,

g∗(t) = (g∗(0)− |t |β)+,
K∗(t) = β + 1

2β
(g∗(0))−

β+1
β g∗(t), ‖K∗‖2 = β + 1

2β
(g∗(0))−

β+1
β ,

C∗
∞ = g∗(0)L

1
2β+1

(
4

2β + 1

) β
2β+1

, C∗
0 = g∗(0)L

1
2β+1

(
2qγ

2

) 2β
2β+1

,

Q∞ = β + 1

2β

(
4

2β + 1

) β
2β+1

(g∗(0))−
β+1
β L

1
2β+1 ,

Q0 = β + 1

2β
2− 1

2β+1 (g∗(0))−
β+1
β L

1
2β+1

(
qγ

2

) 2β
2β+1

.

The above expressions for ESCC∗∞ andC∗
0 are due to Lepski (1993).

Example 2.Hölder classes(p = ∞) with β > 1.

Leonov (1997) shows that the solutiong∗ of (4) is compactly supported for all
β > 1. Note that forβ = 2 this fact was first proved by Fuller (1960) whose study
of the problem (4) was motivated by applications in optimal control. Then it was
rediscovered by Gabushin (1968) in a slightly more general framework. The case
β = 2 is, to our knowledge, the only example among Hölder classes withβ > 1
where the explicit solution of (4) is currently available.

The solution forβ = 2 is expressed as follows (Fuller (1960), see also Leonov
(1997)). Let

q = 1

16

(
3 +

√
33−

√
26+ 6

√
33

)2

≈ 0.0586,

θ = 2(23q2 − 14q + 23)
√

1 + q

30(1 − q
5
2 )

≈ 1.528 .

The constantθ is the value of the problem dual to (4). The solutiong∗(·) of (4) is

g∗(t) = θ− 2
5φ
(
θ

1
5 t
)
, g∗(0) = θ− 2

5 ,

whereφ(·), the solution of the dual problem, is a symmetric compactly supported
function with infinitely many local extrema, defined fort ≥ 0 by

φ(t) =
∞∑
j=0

[
(−1)j qj + 1

2
(−1)j+1(t − t2j )

2
]
I {t ∈ [t2j−1, t2j+1)} ,
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wheret−1 = t0 = 0, t1 = √
1 + q, t2j+1 = t2j + q

j
2
√

1 + q, t2j = 2
√

1 + q∑j−1
i=0 q

i
2 . The support ofφ is contained in the interval(−Dφ,Dφ), where

Dφ = lim
j→∞

t2j = 2
√

1 + q(1 − √
q)−1 ≈ 2.71 .

Denote

Iφ =
∫
φ(t)dt = 2(1 − q)

√
1 + q/(1 + q3/2) ≈ 1.91 .

Then

K∗(t) = I−1
φ θ

1
5φ(θ

1
5 t), ‖K∗‖2 = I−1

φ ,

and the exact constants for the problem of hypothesis testing are

C∗
∞ =

(
4

5θ

) 2
5

L
1
5 , C∗

0 =
(

4

θ

) 2
5

L
1
5 (q γ

2
)

4
5 ,

Q∞ =
(

4

5

) 2
5

L
1
5 I−1
φ , Q0 =

(
1

2

) 1
5

L
1
5 (q γ

2
)

4
5 I−1
φ .

Example 3.Sobolev classes withβ = 1, p > 2.

The solutiong∗ of (4) was obtained by Sz.-Nagy (1941). It has a compact support:

g∗(t) = g∗(0)(1 − |bt |)
p
p−2
+ ,

where

g∗(0) =
(

3p − 2

2p

) p
3p−2

, b = 2p − 4

3p − 2
(g∗(0))2 .

Other exact values for this example are

K∗(t) = 2p − 2

3p − 2
(g∗(0))2(1 − |bt |)

p
p−2
+ ,

‖K∗‖2 = 2(p − 1)(3p − 2)−
2p−2
3p−2 (2p)−

p
3p−2 ,

C∗
∞ = 2

p−1
3p−2

(
3p − 2

2p

)
L

p
3p−2 , C0 = g∗(0)(2qγ

2
)

2p−2
3p−2L

p
3p−2 ,

Q∞ = ‖K∗‖2

(
4p

3p − 2

) p−1
3p−2

L
p

3p−2 , Q0 = 2− p
3p−2 ‖K∗‖2

(
qγ

2

) 2p−2
3p−2

L
p

3p−2 .

Note that the rates of convergence in this example areψε = ε
2p−2
3p−2 for testing at a

fixed point, andψε =
(
ε2 ln 1

ε

) p−1
3p−2

for testing in sup-norm.
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5.2. Non-compactly supported solutions

If the solution of (4) is not compactly supported the definition of asymptotically
minimax test statisticsT∞

ε andT 0
ε depends on the solution of the restricted prob-

lem (15), that, in general, should be obtained numerically. The application of our
results in this situation, therefore, requires more work. There exists, however one
important particular case, where the exact solutiong∗ of (4) is known explicitly, is
not compactly supported , but the results of this paper hold, withKA in the defini-
tion of T∞

ε , T 0
ε replaced byK∗ = g∗/

∫
g∗. This particular case isp = 2. Let us

discuss it in more detail.
We add the condition that the functionsf are uniformly bounded. That is,

instead of the clasŝ(β, L,2) we consider

^1(β, L,2) = {f ∈ ^(β, L,2) : ‖f ‖∞ ≤ L1} ,

whereL1 > 0 is a given constant. This constant may not be known to a statistician,
since the construction of the tests does not depend onL1. The sets of alternatives
are defined, respectively, as

3∞
ε,1(C) = {

f ∈ 3∞
ε (C) : ‖f ‖∞ ≤ L1

}
,

30
ε,1(C) =

{
f ∈ 30

ε(C) : ‖f ‖∞ ≤ L1

}
.

As shown by Taikov (1968) the solution of the problem (4) forp = 2 is

g∗(t) = β

π

(
sin

π

2β

) 1
2

(2β − 1)−
2β−1

4β K0

(
(2β − 1)

1
2β t
)
, (64)

where

K0(x) =
∫ ∞

−∞
eiux

1 + |u|2β du = 2
∫ ∞

0

cos(ux)

1 + |u|2β du . (65)

The functionK0(·) can be calculated explicitly, for example, ifβ = 1 then

K0(x) = πe−|x| ,

and ifβ = 2, we get the Silverman (1984) kernel

K0(x) = π

2
e
− |x|√

2 cos

(
x√
2

− π

4

)
.

General formula forK0 is given in Gradshteyn and Ryzhik (1980, formula 3.738).
It implies, in particular, that for everyβ there exist positive constantsa1 = a1(β)

anda2 = a2(β) such that

|K0(u)| ≤ a1 exp(−a2|u|), ∀ u ∈ R1 . (66)
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Define

g∗(0) = (2β − 1)−
2β−1

4β

(
sin

π

2β

)− 1
2

,

K∗(x) = (2π)−1(2β − 1)
1

2β K0

(
(2β − 1)

1
2β x

)
,

C∗
∞ = g∗(0)

(
2

β

) 2β−1
4β

L
1

2β , C∗
0 = g∗(0)

(
2qγ

2

) 2β−1
2β
L

1
2β , (67)

Q∞ = 1

2β

(
2

β

) 2β−1
4β

L
1

2β (2β − 1)
2β+1

4β

(
sin

π

2β

)− 1
2

,

Q0 = 1

2β
2− 1

2β (2β − 1)
2β+1

4β L
1

2β

(
sin

π

2β

)− 1
2 (
qγ

2

) 2β−1
2β

,

whereK0 is defined in (65). Note thatg∗(0) is the value of the function (64) at
t = 0, andK∗ = g∗/

∫
g∗, whereg∗ is the function (64). The constants of the type

(67) are obtained for the corresponding minimax estimation problem by Tsybakov
(1998).

LetT∞
ε,1, T

0
ε,1 be the test statistics defined in the same way asT∞

ε , T 0
ε , but with

replacingKA byK∗, and such thatK∗, Q∞ andQ0 are defined by (67). Note that,
in the construction ofT∞

ε,1, we still need the parameterDε, but only for boundary
correction: it defines the length of boundary intervals (cf. (8)).

Theorem 4. I.Letp = 2, β ∈ {1,2..., }, ψε =
(
ε2 ln 1

ε

) 2β−1
4β
.LetDε =

(
ln 1

ε

)a
,

for somea > 1. Then

lim sup
ε→0


P0(T

∞
ε,1 = 1)+ sup

f∈3∞
ε,1(C)

Pf (T∞
ε,1 = 0)


 = 0, ∀C > C∗

∞ ,

whereC∗∞ is defined in (67). Moreover,

lim inf
ε→0

inf
Tε


P0(Tε = 1)+ sup

f∈3∞
ε,1(C)

Pf (Tε = 0)


 ≥ 1, ∀C < C∗

∞ .

II. Letp = 2, β ∈ {1,2..., }, ψε = ε
2β−1

4β , 0 < γ < 1. Then forC∗
0, defined in

(67),

lim sup
ε→0


P0(T

0
ε,1 = 1)+ sup

f∈30
ε,1(C

∗
0)

Pf (T 0
ε,1 = 0)


 ≤ γ .

Moreover,

lim inf
ε→0

inf
Tε


P0(Tε = 1)+ sup

f∈30
ε,1(C

∗
0)

Pf (Tε = 0)


 ≥ γ .
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We omit the proof of this theorem, because it follows the same lines as the
proofs of Theorems 1 to 3. It is only needed to check that conditions of Lemmas 1
to 4 are fulfilled for the kernelK∗(·), defined in (67). This is established by direct
calculations, since one has the explicit expression forK∗(·).

5.3. Extension to the Besov classes of alternatives

Consider the semi-norm

ρBβ,p(f ) = sup
h>0

‖1lhf ‖p
|h|β ,

wherel = bβc, β > 1/p, 1 ≤ p ≤ ∞, and1lhf is thel-th difference of a func-

tionf , with steph. This semi-norm is related to the Besov spaceB
β
p∞(R1) (see e.g.

Triebel (1992)). It is easy to check that the functionalρBβ,p satisfies the assumptions
of Section 3, namely it is convex, nonnegative, symmetric, and renormalizable with
exponentα = β − 1/p. Hence, Lemma 1 holds forρ = ρBβ,p. Quite similarly, one

shows that Lemmas 2, 3 and 4 hold, withρβ,p replaced byρBβ,p. Thus, Theorems

1, 2 and 3 remain valid, with the following changes:3∞
ε (C), 3

0
ε(C) should be

replaced by the Besov sets of alternatives

3∞
ε,B(C) =

{
f : ρBβ,p(f ) ≤ L, ‖f ‖∞ ≥ C

(
ε2 ln

1

ε

) α
2α+1

}
,

30
ε,B(C) =

{
f : ρBβ,p(f ) ≤ L, f (t0) ≥ Cε

2α
2α+1

}
,

whereα = β − 1/p, the constantg∗(0) should be defined as the value of the
problem

maxg(0), subject to

‖g‖2 ≤ 1,

ρBβ,p(g) ≤ 1 ,

(68)

and the functiong∗
A should be regarded as a solution of (15) withρ = ρBβ,p.

Explicit solutions of (68) and (15) withρ = ρBβ,p are not known, therefore in
the case of Besov classes of alternatives we can only get results on the existence of
asymptotically minimax tests.
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