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Abstract. We study nonlinear wave and heat equation®6driven by a spatially homoge-
neous Wiener process. For the wave equation we consider the caseshf2, 3. The heat
equation is considered on an arbitr@4sspace. We give necessary and sufficient conditions
for the existence of a function-valued solution in terms of the covariance kernel of the noise.

0. Introduction

The paper is concerned with the following stochastic wave equation

2 .
Tu = Au+ fgu) + bW, 0.1)
u(0,x) = up(x), Lu(0,x)=vo(x), x € RY
and heat equation
iu =Au+ fw)+bw)W, u©,x)=uo(x), xE¢€ R? . (0.2)

ot
In (0.1) and (0.2)uo andvg are given functionsf,» : R — R, and¥#  is a
spatially homogeneous Wiener process defined on a filtered probabilityldpace
(2, F, (F:)i=0, P). For the wave equation we consider the cases ef 1, 2, 3.
The heat equation is considered on an arbitRtyspace.
Process/” takes values in the space of tempered distributigh@®<), and has
the covariance of the following form

E(W @), y) (W (5),9) =t As(T, ¥ %9, ¥,pe LR,

wheregp) (x) = ¢(—x),x € R4, andr" is a positive-definite tempered distribution.
ThenI has to be the Fourier transform of a positive symmetric tempered megasure
onR?. We calll” andu thespace correlatiomndspectral measuref 7. In Section
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1 we gather basic facts concerning a spatially homogeneous Wiener process, and
the stochastic integral with respect to it.

In the paper we are looking far?(R¢, e~!*ldx)-valued solutions to (0.1) and
(0.2). We note that all results of the paper hold true if the exponential weight is
replaced by(1 + |x|%)~*, wherep > d/2.

The problems of existence and uniqueness of solutions to (0.1) and (0.2) have
been the subject of numerous investigations with the main aim of finding verifiable
conditions interms of, b andrI” or w. For bibliographic comments on the parabolic
equation (0.2) we refer to [19]. Necessary and sufficient conditions for the existence
of function-valued solutions of linear equations of the form (0.1) and (0.2) have
been obtained in [11] and [12]. These papers were inspired by Dalang and Frangos
[3] which proved the existence of a local in time solution to the nonlinear equation
(0.1) for dimensiond = 2. Dalang and Frangos assumed that the functipns
andb are Lipschitz, and that the space correlatidiis a non-negative function,
continuous outside 0 and satisfies the integrability condition

/ log(lyl™HT (y»)dy < oo .
{lyl<1}

The results of [3] were improved by Millet and Sanz-&fil5], who showed, still

for dimension 2, that under the above conditions the solution to (0.1) is global
and that the integrability condition is, in a sense, also necessary for the existence.
The methods applied in [3] and [15] rely on the integration theory with respect to
martingale measures developed by Walsh [20]. This theory was originally thought
not to be applicable for the wave equation in dimensica 3 and higher because

the integrand is a distribution valued process. In fact the referee of the present
paper has indicated that Dalang [2] has recently extended the theory of stochastic
integration with respect to martingale measures to a class of distribution-valued
processes, and applied this to 3 dimensional wave equations.

The aim of the present paper is twofold. First we strengthen the results on
nonlinear stochastic wave equations from [3] and [15], to cover noise processes
with space correlations which can be generalized functions, and we treat also
equationsin 3 space dimension. Secondly we complementthe results of [19] dealing
with parabolic equation (0.2). We relax the condition, imposed in [19], that the
spectral measurg is absolutely continuous with respect to Lebegues measure.
Our approach is based on the general integration theory and harmonic analysis as
developed in [19]. In both cases, hyperbolic and parabolic, our existence results are
necessary and sufficient.

Before formulating our results we introduce some notation and definitions. Let
¥ € & (R?) be a strictly positive even function such thetc) = e~ for |x| > 1.
Clearly, the spaces?(R¢, e *ldx) and L3 = L2(R, ¥ (x)dx) are isomorphic.

Let us denote b)H];L the weighted Sobolev space being the completios’dR?)
with respect to the norm

1/2
Wl = (/Rd{lw(x>|2+ |w(x)|2}z9(x)dx)
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Let G be the fundamental solution to the Cauchy problemaif@u — Au =0, see
Section 2.

Definition 0.1. Let ug € H} andvg € L2, and letT > 0. By anL3-valued
solution to(0.1)on a time interva[0, T'] we understand aﬂg—valued measurable
(%:)-adapted processsuch that:

sup [E|u(z)|§2y <o, (0.3)

0<t<T

the stochastic integrals
t
/ Gt —ys)* (b(u(s))d“f/(s)), t €[0,T]
0

are well defined irLg, and forzt € [0, T,

u(t) = 2G) *ug+ G(t) x vo + [y G(t — ) % f(u(s))ds
+ Jo Gt = 5) % (bu()dW () . (0.4)

We say that an®;)-adapted measurable process Q x [0, o0) — L§ is an
Lg-valued global solution t¢0.1) iff it is a solution on any finite time interval, that
is, it satisfies (0.3) and (0.4) for an arbitrafy> 0.

Let P(r)(x) = (4m)—‘1/2ef‘x|2/(4’) be the fundamental solution to the Cauchy
problem for the heat equatiogi,m — Au=0.

Definition 0.2. Letug € L2, and letT” > 0. By anL2-valued solution t¢0.2)on

[0, T] we understand aﬂg-valued measurabl@gy,)-adapted processsuch that:
(0.3) holds, the stochastic integrals

t
/ Pt —s)* (bu(s)dW(s)), t€l[0,T]
0

are well defined irL3, and fort € [0, T7],

u(t) = P(t) xug+ /t Pt —s)* f(u(s))ds + /t Pt —s)x* (b(u(s))d"//(s)) .
0 0
(0.5)

We say that an(%¥;)-adapted measurable process 2 x [0, c0) — L§ is an
Lg-valued global solution t¢0.2) iff it is a solution on any finite time interval.

Definitions 0.1 and 0.2 explicitly require that the stochastic integrals in (0.4)
and (0.5) are well-defined processes with vaIueBﬁnThe integrands act on the
noise process as the composition of the multiplicationtay with the convolution
operators with kernel& and P respectively. In the next section we give a precise
meaning of the stochastic integral with respec#to

Let denote Lebesgue measurelsh In our exposition the following hypothe-
ses (H) and (G) play an essential role.
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H) There is ac > 0 such thal” + « is a non-negative measure.
The condition (H) holds true, and
Jiy=y log(yITHr@y) < oo ifd =2,
Sisi<1y ly|~4t2r(dy) < 0o ifd > 2.
In dimensiornd = 1, (G) is identical with (H).

©

Note that (G) is stronger than (H), and its formulation depends on the dimehsion
of the underlying spaci?.

Remark 0.1.The hypothesis (H) can be equivalently stated in terms of the spectral
measure: as a requirement that there existg auch that the measure+ « &g is
a positive-definite distribution.

Remark 0.2.If I' = Z (u) is anR-valued function bounded from below, then (H)
holds. IfI' = # (1) andu is a finite non-negative measure then (G) holds. For
more examples we refer the reader to [12] and [19].

The main results of the present paper are the following existence theorems. The
first one deals with the wave equation.

Theorem 0.1. Assume thad < 3. Let f andb be Lipschitz continuous functions.
(i) If (G) holds then for arbitraryug € H} andvg € L3 there exists a unique
global L2 -valued solution td0.1).

(i) Assume that H) holds and that there is a constant> 0 such thaib(x)| > ¢
for everyx e R. If for someug € H}, vo € L3, andT > O there exists an
L§—valued solution t@0.1) on|[0, T], then(G) holds.

The second result is concerned with the heat equation.

Theorem 0.2. Letd € N, and letf andb be Lipschitz continuous functions.

() If (G) holds then for everyg € L§ there exists a unique globaﬂ%-valued
solution t0(0.2).

(i) Assume that H) holds and there is a constant> 0 such thatjb(x)| > ¢ for

everyx € R. If for certainug € L3 andT > 0O there exists arL3-valued solution
to (0.2) on[0, T], then(G) holds.

The existence of a solution to the parabolic problem (0.2) was obtained in [19],
see also [1], under the following condition.

(A) The spectral measure of #" is either finite or absolutely continuous with
respect to Lebesgue measure and its density du/dx belongs toL? (R?)
for somep € [1, oo] satisfying(1 — 1/p)d/2 < 1.

Clearly, (A) implies that

1
/Rd T Ixlzdu()c) <00 . (0.6)
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We will show, see Proposition 3.1, that(iff) holds then (0.6) andG) are equiv-
alent.

Theorem 0.2 provides conditions for the existence and uniquenessiof an
solution satisfying the regularity condition (0.3). In fact, see [18], and [19], one can
show that the unique solutianto the heat equation has continuous trajectories in
L2 and satisfies

E sup |u(n)|’, <co forall T >0andp>1.
1€[0.7] s

The paper is organized as follows. In Section 1 we introduce some basic notation
and recall the construction of the stochastic integral with respect to a spatially ho-
mogeneous Wiener process. Next section is devoted to solutions on the weighted
spaceL§ of the linear deterministic wave equation. Then we establish some ana-
lytical lemmas needed to estimate stochastic integrals with resp@ct ®ections

4 and 5 are devoted to the proofs of Theorems 0.1 and 0.2, respectively.

1. Stochastic integration

Let #(R?; C) and.#(R?) denote the spaces of all infinitely differentiable rapidly
decreasing complex and real functions®h Let .’ (R¢; C) and %’ (R?) be the
spaces of complex and real tempered distributior8‘ohe value of a distribution
& on a test functiony is denoted by&, ). We use also the same notation for the
products oriR? andL?(R?; C).

Fory € #(R?; C) we setys (x) = ¥ (—x), x € R?. Denote by¥  (R?) the
space of ally € (R?; C) such thaty = ), and by (R¢) the space of all
£ € ' (RY; ©) such thats, v) = (£, ¥(s)) for everyy € #(R?; ©).

In the paper we denote b§ the Fourier transform o’ (R?; C), that is

Fy(x) = / e 2Ty (y)dy .

Rd

Recall that the inverse Fourier transfosT L is given by the formula
Fhyw = [ Sy
R4

Let & € &/(R?; C). We defineZ ¢ putting (7&,y) = (£,7 Ly) for ¢ €
S (R4; C). Note thatZ transforms”’ (R?) into 9’/(3)([%’).

Let = (2, %, (F:)r>0, P) be a complete filtered probability space. In the
paper we assume that” is a spatially homogeneous Wiener processlpthat is
an¥’(R%)-valued Wiener process satisfying the following conditions:

(A.1) For eachy € L (RY), {(W (1), V)}ielo,00) is a real-valued¥,)-adapted
Wiener process.
(A.2) There exists & € .#/(R?) such that for ally, ¢ € & (R¢) one has

0. ) B'E (W Q). v) (W (D). 9) = (T, ¥ % 9s) -
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We recall, see [19], that a process satisfying (A.1) satisfies (A.2) iff the laws
LW (1)), t = 0 are invariant with respect to all translatiofys : I (R —
SR, h € R, wheret, : S([RY) — FRY, py () = (- + h) for
¥ € Z(R?). We call Q appearing in (A.2) theovariance fornof % . Sincerl is
a positive-definite distribution there exists a positive symmetric tempered measure
wonR4 such that" = . (u), see [9, Theorem 6, p. 169]. Recall, see Section 0,
thatI" appearing in (A.2) is the space correlation ané= . ~1T" is the spectral
measure of/".

If the spectral measune is finite, thenl" is a continuous positive-definite real-
valued function oriR?, and for an arbitrary > 0, # (¢, -) is a stationary random
field such that for alk, y € R?,

EH ' (t,x)W (t,y)=tT(x—y) .

The crucial role for stochastic integration with respeckfas played by the Hilbert
space# y C &'(RY) consisting of all distributiong for which there exists a
constantC such that

G W < CYT ¥ * ), ¥eSRY .

The norm in# - is given by the formula

€|, = Sup _&wl
T verinn IV

The space#’y is called thereproducing kernel Hilbert spacef #°, see e.g. [4],
[10], or [19].
Let H be a Hilbert space and I&(.%” (R?), H) be the space of linear continuous
operators fron” (R?) into H. A mapping¥ from [0, co) x Q into L(%(RY), H)
is calledsimpleif it takes only a finite number of values and there exists a finite
sequencegy =0 <11 < -+ <ty < b1 = 00 Such that
V(t, )=V, w), tE€ttkir1), we, k=0,....m,

with %, -measurable random variablégz; ). For simple processes the stochastic
integral

t
/\Il(s)d“//(s), t>0
0

is defined in the usual way

t m
fo WEAH (5) = D W@t Atirr) — W1 A1)
k=0

Itis an H-valued martingale for which

t
[E/ v(s)d# ' (s) =0, t>0.
0
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Moreover, ifL s (A -, H) denotes the space of Hilbert—Schmidt operators from
A 4 into H then, see e.g. [4], [10], [19],

t 2 t
2
[E’/O \Il(s)d”fV(s)‘H:[E/(; 12,y s fore=0.  (L1)

The formula (1.1) is fundamental for stochastic integration. It underlines importance
of the kernel space . It allows to extend the definition of the stochastic integral,
by an approximation procedure, to all measuraBlg-adapted s (# -, H)-
valued processes such that

t
E /0 WO gy (-, 1yds < 00 forz =0 . (1.2)

In this more general case the identity (1.1) is still valid.
Finally the condition (1.2) can be relaxed to

t
P (/0 W ONF gy (108 < oo> =1 1>0. (1.3)

If (1.3) holds the stochastic integral can be defined by the standard localization
procedure.

We will need a characterization of the spagg,- from [19, Proposition 1.2].
In the proposition belovsL(Zs)([REd, w) denotes the subspacebf(R?, du; C) con-
sisting of all functions: such that ) = u.

Proposition 1.1. A distributioné belongs to# - if and only if¢ = % (uu) for a

certainu € L%S)(Rd, ). Moreover, ife = 7 (up) andn = # (vu), then

(E? 7)>J{”‘1,» = (M, U)L(ZS)(RLI!M) .

Recall thatG and P denote the fundamental solutions to the Cauchy problems for
%u — Au=0andZu — Au = 0, respectively. Let us denote by%, the dense

subspace of# 4 consisting of ally = Z (Y1), whereyr y(s)([Rd). Note that
fR Y @)lu(d) < oo fory e Z (R .
Thus#%,. C Co(RY). Foru € L2, > 0 andy € #Y, we write

H(t,u)n = G(t) x (un) 1.4

and
P(t,u)n = P(t) x (un) . (1.5)

We will show, see Lemmas 3.3 and 5.2, that if (G) holds then far all0 andu,
A (t, u) and (¢, u) have (unique) extensions to Hilbert—Schmidt operators from
A - into L3. Moreover,

[|A(t, M)HL(HS)(-WW%L§) = C1(1)|M|L§ >

12, )]l oy 12) < C2Olutl2
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whereC1(t) andC2(¢) can be chosen such that
T
/ C3(r)dt <oo forT >0andi=1,2 .
0

Thus, 7 (¢, -) andZ(t, -) can be uniquely extended to linear bounded operators from
L2 into Ls)(# 4, L3). Now, letu be anL2-valued measurabléy,)-adapted
process satisfying (0.3). Then for any fixed- 0, the operator-valued processes
H(t —s,b(u(s))) and2(t — s, b(u(s))), s € (0, t) are adapted and satisfy (1.2).
We define the stochastic integrals in (0.4) and (0.5) in the following way

/0 Gt —5) 5 (putsndn () < /0 A =5, b)) |

t t
/ P —s)x* (b(u(s))d“f/(s)) d=ef/ Pt — s, bu)dW (s) .
0 0
In the formulae abové(u(s)) denotes the random field

bu(s)) (@, x) = b(u(s, x, ), x € R, w € Q.
2. Linear deterministic hyperbolic equation on R¢

Consider the linear wave equation Bf,

32 3
ﬁu(t) = Au(t), t>0, u(0)=uo, Eu(O) =g , (2.1)

wereug, vg € ¢ (R?; C). Passing to Fourier transforms we arrive at the problem

2

@yu(t)(x) = A7 x)?Fu(t)(x), t>0, Fu©) = Fuo,

d
—F = 9
dt/M(O) F v .

Hence, by direct computation we get

Fu(t)(x) = co92r|x|t) Fuo(x) + wgvo@) .

In the formula above, we multiply distributiomg andvg by functions co&r |x|t)
and(2r |x|)~1sin(2r |x|r) of x-variable. These products are well defined because
the functions are infinitely differentiable, with all derivatives of a polynomial
growth. Note thafi(r), r > 0 is any”’ (R?; C)-valued mapping infinitely differen-
tiable inz.

Let G be the solution to (2.1) witliz(0) = 0 and%G(O) being equal to the
Dirac §p-distribution. Then

sin(2r |x|t)

a 9 — T —
/(EG(I))()C)—COS(ZT(MU) and ZG(@1)(x) = 2 x|
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Consequently, the unique solution to (2.1) is given by
d
u(t) = EG(t) xug+ G@) *vg .

wheresx denotes the convolution operator definedsby n = 7~ 1(F£7 ) for
tempered distributions andn such that their produc¥ & # n is well defined.

We call G the fundamental solutiotio the wave equatiorflizu — Au = 0.
Explicit formulae forG(¢), t+ > 0 are well known, see e.g. [16, pp. 279-280].
Namely, ifd = 1, thenG(¢), t > 0 are functions ok-variable, and

G (x) = S X{x|<t} -
If d = 2k + 1 for some integek > 1, then

1 <1 9 )"’lﬂ

GO =520 \13) 7

’

whereo is the surface measure on the spher@dnwith center at 0 and radius
If d = 2k, then

1 10 \k-1 1
G()(x) = W<?§> WX Ix|<) -

Recall that in any dimensio&'(0) = 0. Clearly, ifd = 1, 2, 3, then eachG(7),
¢t > 0 is afinite non-negative measure with the support contained in the closed ball
B(0, 1) in R? with center at 0 and radius

Recall that the weighted spack$ andH} were introduced in the first section.
Note that there is a constafiy such that

P(x —z) < Cy€d(x) forr>0,xeR? zeBO,1) . (2.2)

Lemma 2.1. Letd = 1, 2, 3, and letCy satisfy(2.2). Then:

G(t) * ¥ (x) = fd 9(x — y)G()(dy) < Coptdd(x), >0, xeR! . (2.3)
R

Moreover, for alls > 0 andy € S (RY), G(t) * ¥ € L3 and -G (1) x ¥ € H},
and

1
G * 2 < CRrez [,z (2.4)

N

9
5, G0 x vz = Cje (1+z)|¢| : (2.5)
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Proof. By direct calculation we obtain
f G(t)(dz) =t fort>0andd =1,2,3 . (2.6)
R4
Hence

G@)*x9(x) = / B (x —2)G(t)(dz) < Cyt P (x) ,

B(0,1)

which gives (2.3).
We now prove (2.4). Sinc€(0) * v = 0 we can assume that- 0. By (2.6)
and the Schwartz inequality we get

2
/ G (1) % 9 ()29 (x)dx = / \/ ¥(x — DGO 9 ()dx
Rd Rd Rd
< r/ f W (x — 2)2G()(d2)d (r)dx
Rd Rd
< tf / W ()IZ9 (3 + DG (1) (dz)dy
Rd JR4
sinceG(t)(dz) = G(¢)(—dz) andd (y — z) = 9 (z — y), thisis
< tf / W ()29 (y — G(0)(do)dy
Rd JR4
and from (2.3) we obtain
< Cpr2e fR W0 0Idy = Cor?e 1y 12,

which proves (2.4).
We now prove (2.5). To this end note that/it= 1, then we have

d L2
EG(t)*@#(x)‘ = E‘ 5/

{Iyl<t}

1
= GO« Y1) + G@) * [Y'|(x) .

1 0
Y- ndy| = 3| Et/ Wix —12)dz

{lz1<1}

Now, ford = 2 we have

9 109 Y(x—y)
70O v | = 5|7 /{Iy<t} el

RETERy
C2nlar Jygeny (1— 12|22 ¢

1
< ;G(f) * Y (x) + G@) * [Vi|(x) .

Finally, ford = 3 we have
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0

i e _ 3
= ’ 1 /{|z|=1} ¥(x — 12)03(dz)

260y

1
TO@ = Y](x) + G@) * [V [(x) .

IA

Summing up, fod = 1,2,3,¢t > 0,y € #(R?) andx € RY we have

b 1
IgG(t) *U(x)| < ;G(t) * | U|(x) + G@) * |V [(x) .
Hence, by (2.4) we have
0 1 1
IEG(I) * ng < Cﬂezlt/fng + Cﬁtezlvwng )
which is our claim. O

As a direct consequence of the lemma we have the following corollary.

Corollary 2.1. For anyr > 0 there are unique operator§(r) € L(L32, L§) and
9(t) e L(H}, L?) such that for everyy € (RY), 4(t)y = G(t) * ¥ and
4(t) = £ G(t) * . Moreover, there is a constadt such that

&
||€4(t)||L(L§’L§) + ||.4(t)||L(H§’L§) <C(t+ 1€ foreveryr >0 .
3. Main estimates in the hyperbolic case

Recall that#” is given by (1.4). Note that by Corollary 2.1 we have
A ()l 2 < C(e + l)e’|un|L§ forallz > 0,ueL?,ne #9, .

Clearly,
H(t, u)n(x) = /d ulx —y)nx —»GH)dy), uels neA#9, xer? .
R

The aim of this section is to show that for any> 0, #'(z, -) has an extension
to a bounded linear operator frobg into the space of Hilbert—Schmidt operators
LHs) (S, L%), provided that the integrability condition (0.6) is fulfilled.

The following result has been proved, under slightly less general conditions, in
[12].

Proposition 3.1. If hypothesig H) is satisfied, then condition&) and (0.6) are
equivalent.

Proof. Definel'y = 7 (u—+«8p). By Theorem 2 of [12]T", satisfies (G) if and only
if (0.6) holds withu being replaced by + «8o. Since the measuig obviously
satisfies (0.6) and functions 1, lag |~1), and| - |~! are locally integrable in
dimensions 12 and 3 respectively, the result follows. O
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Lemma3.1. Letd < 3. Letu € Cp(R?), r > 0, and let{fi} C %9,, be an
orthonormal basis of# . Then

DA fil?, = f / 17 (G0 (x = Ju) () Pu(dy)pydr . (3.1)
b R4 JRd

k

Proof. Letx € R? ands > 0. Then as<G(r)(x — -)u is a finite measure, we have
Z (G(t)(x — )u) € Cp(RY). Thus the right hand side of (3.1) is well defined. Let
{ex} C V(S)(Rd) be an orthonormal basis ﬁf(zs) () such thatfy = 7 (ex). Then

DA @ filfy =3 1G@) * (wF (exw)l7
k k
=y /R TG (x = ). ex) 9 (x)dlx
k

= / / |7 (G (1) (x — Yu) ()P (dy)? (x)dx
R JRe
which is the desired conclusion. O
The following lemma is essentially contained in [12].

Lemma 3.2. Letd = 1, 2, 3. The following conditions are equivalent:

(i) # (s, 1),s > 0are Hilbert—Schmidt operators acting frosf - into L2, and

!
2
/0 || (s, 1)||L(HS)(”%_’L§)ds < 00

for every, or equivalently for a certain> 0.
(i) The spectral measupe of 7 satisfies the integral conditiof®.6).

Proof. Let{fi} C Jf,,f be an orthonormal basis of . Then, by Lemma 3.1,
we have

S DAk = [ [ 1766 =)0 wds
¥ R4 d

k
sin (2 |yls)
[I.Qdf[gd 472|y|2 w(dy)d (x)dx

B sSirt(2r|yls)
- (/Rd z‘/‘(x)dx) /Rd @) (3.2)

SincefRd ?(x)dx < oo, the desired conclusion follows from the following ele-
mentary estimates

sin?(2z|yls) c(s) 4
4r2lyl2 T 1+ |y?’
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and
al  _ /f sir? (2 |y|s)
LHDE "o t 47T2|y|zsin(4zr|y|t) c2(t)
“amet am = irpe C<F
with properly chosemr(s), c1(z), c2(t) € (0, 00). O

Since there is a constafitsuch thatsin® r)/r2 < C/(1+ r?) for everyr € R,
we have the following direct consequence of (3.2).

Corollary 3.1. There is a constanf’ such that ity satisfieq0.6), then

(dy)
ENIE 2 / f pdy)
1 )“L(HS)(%V/"‘?Lg) = ( Rd ﬂ(x)dx) re 14 |y|?

To go further we need the following reformulation of the hypothesis (H).

Proposition 3.2. Let 1 be the spectral measure df’, and let§p be the Dirac
distribution. Condition(H) holds if and only if there exists > 0 such that for
N € N, the Fourier transforms of the measures

v12

un . (dy) = € (u(dy) + ko(dy)) ,
are non-negative functions.

Proof. Notethatthe sequen(:ﬁN,K}convergesiM’(Rd),asN — 00, tou+«do.
Therefore the sequence of non-negative measiwes= % (i y ) converges to a
non-negative measurg = % (u +«48p). Consequently’ = I', —« A, as required.
If T = ' —«A for some tempered non-negative measiigeand« > 0, then
I'c =T +«landl', = Z (u + «80). Moreover,

T (un ) = (eN) P& NP T,
and the distributions# () are non-negative functions, as required. O

Lemma 3.3. Letd < 3. (i) If condition (G) is satisfied, then for alt > 0 and
u € L2, A (t,u) belongs toL s (# 4, L3). Moreover, there is a constant
such that

- 2 2 2 2
<
|| (t, M)HL(HS)(J/Q,/,’,L??) < Ct e’lung forallr > Oandu € L5 .

(i) Let (H) hold. There exists a constaft > 0 such that ifu € Ll% satisfies
u(x) > 1for almost allx € R, then

DA DflT < D1 @ fel7y + Crul7,. 120,
k k

for an arbitrary orthonormal basi$ f} C 7(9,,/. of Ay .
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Proof of (i). From (H) and Proposition 3.2, there ig & 0 such thal'y ,(x) >0
forall N e N andx € RY. First we prove the desired estimate under the additional
assumption that = 0, that is

I'yo(x) = F(uno)(x) >0 forallN e Nandx e RY .
Letu € Cph(R?). We have
|7 (G (1) (x — u)(I?
= [, [ e i@ 6m e - 9)6(de )
Rd JRd
= / / e 2=y (x — mu(x — n)G @) (dn)G (@) (dn') .
Rd JR4

Sincepun o, N € N, andG(#)(x — ), t > 0,x € R? are finite positive measures,
andu is a bounded function we have

f f |e 27 =13y (x — yu(x — 1) G (1) (dn) G (1) (A w o(dy) < oo .
Rd JRA JRd
Thus, by Fubini's theorem, for any we have
fR (GO ~ )0 P o)
- / / Cyv.o(n — 1 — putx — 1HGO@NGO ) . (3.3)
Rd JR4

Let{fx} C (%f%/. be an orthonormal basis of . Then, by Lemma 3.1 and (3.3)
we have

DA w filf, = /R ) fR JF (GO = u) () Pu(dy)
k

),2
= [lim /Rd /Rd |7 (G (1) (x — ')u)(y)lze_%u(dy)
= Nlinoo /Rd /Rd |7 (G () (x — u)()1en,0(dy)
= lim / / / .o —n)u(x —mux —n')
N—oo RrRd JRrd JRd
G()(dn)G(r)(dn")v (x)dx . (3.4)

Since for each > 0, suppG(t) C B(0, r), we have

/ / / Fv.o(n — 1)ux — e — )G (A G (1) ()9 (o)
Rd JRd JRd

=/ / / Cy,0(n—n)u(x—mu(x—n")G()(dn)G () (dn)d (x)dx .
R4 JB(0,1) JB(0,1)
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Using now (2.2) we get for all > 0 andn, n’ € B(0, r) the following estimate
| [t =t = 9 e
R4
1/2 1/2
< ([ e = mPocod) ([ =)o) < codlul?,
R4 R4 4
Hence, as’y o > 0, we have
/ / / Fw.0(n — 1 u(x — Mutx — )G (A G () )p (x)dx
R4 JRY JRE
= Coelil2; [ [ Twotn - i)G@ENGH@.
9 JRA JRA
Taking in (3.4).u = 1 we obtain

/ / Cy.o(n — )G @)(dnG (1) (dn)
Rd Rd

-1
= ([, o) " [ [ [ Totn - m)Go@nco@ewds
R4 Rd JRA JRE

-1
2
N?oo%ﬂ(”dx) Xk:I%(r, Dfil?s -
To summarize, for alk € Cp(R?) andr > 0 we have the following estimate
-1
,- 2 2 ., 2
; A1) fil?, < Co€lulf, (/R ﬂ(x)dx) ; A4 D fil7s -

Using now Corollary 3.1 we obtain the required estimate in (i). Let us assume now
that (H) is satisfied with a given fixeeh > 0. Thenv = u + «pdp satisfies (H)

with k = 0. Let us denote by?” - the kernel of the spatially homogeneous Wiener
process/” with the spectral measute Then, sincer satisfies (0.6), we can find a
constaniC such that

1A (2, w)|[?

2,41 12 d
e (O 112) < Ct e’|u|L§ forallt > 0,u € Co(RY) . (3.5)

Now, as
/R F (GO =)0 Pu(dy) < /R JF(GOE = ))WIPvdy) . (36)

Lemma 3.1 yields that for arbitrary € Cp(R¢), r > 0 and an orthonormal basis
{fi} € Y, of #y one has

- 2 - 2
ij|f(t,u>fk|L§ <A@ o orya2)
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Thus, by (3.5)#(t, u) € Lus)(# 4, L2) and

. 2 2 2
1AW 2y < CPE U2 37

forallt > 0 andu € Cp(RY). SinceCp(R?) is dense inL3, and.# (¢, u) is linear
with respect ta:, we have (3.7) for alt > 0 andu € L§, which completes the
proof of (i). O

Proof of (ii) . Let(H) be satisfied with a givety > 0. Letv = u+xodg, and lety”

be the homogeneous Wiener process with the spectral meaduge#’,- denote
the kernel of7”, and Ietc%”g/. be the subspace of’, consisting of allZ (nv),

wheren € y(s)(Rd), and let{g;} C }’f(,’ be an arbitrary orthonormal basis of
Ay Letu e L3, satisfiesu(x) > 1 for x € RY. Then applying (3.4) fov and
{gx} we obtain

DA Dgily = 3 1A (@ w7, forr=0. (3.8)
k k

By Lemma 3.1 and (3.6) we have

DA Dfilfs < 314 Dl forr >0 (3.9)
k k

and

DA @ welGy = 1A @ w fulfy +xol (tw) fore=0,  (3.10)
k k

where
16w / / 7 (G () (x — ) (0)]280(dy)? (v)dx
[Rd Rd

Let # be the Wiener process with the spectral measygreand let.# 4 be its
kernel. Obviouslygg satisfies (H) and (0.6). Thus, by Lemmas 3.1 and 3.3(i),
H'(t,u) € LHs) (H 3. Lg) for ¢t > 0, and there is a consta@if > 0 such that

Ty 2 2 2
I(t,u) =||A(t, “)||L(H9(y@,L§) < C1t€ |u|L§ fort >0 . (3.11)
Combining (3.8) to (3.11) we obtain the estimate

D@D Sfilzs < 1A @0 fillz +koCareulfy, 120,
k ' k

which gives the desired conclusion. O
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4. Proof of Theorem 0.1

Proof of (i). Having shown the estimates from the previous section we are able to
prove the theorem in a rather short way. We use the Banach fixed point theorem in
the spacel’r of all Ll%-valued(%,)-adapted processesuch that

2

sup E |Z(t)|L

, <00 .
t€[0,T] v

Let T > 0 be an arbitrary but fixed. Fgr > 0 we set

def _ 1/2
1211, % sup e (Elz(01%)"%  zear .
1€[0.7] v
Note that the norm§ - ||,, p > 0 are equivalent, an@?'r, || - ||,) is a Banach

space for an arbitrary.
Letug € H} andvg € L3. Note that by Corollary 2.1,

0 .
EG(t)*uod:Efg(t)uo and G() o= G()vo, >0,
satisfy

sup {|?(t)uo|Lz9 + |g(t)vo|L%} <oo foranyT € (0, 0) .
0<t<T k k

Let
y(t) = 9(uo+ %(t)vg  forr >0 .

Letz € 2. Then by f(z) andb(z) we denote the random fields(z)(z, x) =
f(z(t, x)) andb(2)(t, x) = b(z(t,x)), x € R%, t € [0, T]. Fort € [0, T] we set
f@z@®)(x) = f(z(t, x)) andb(z(t))(x) = b(z(z, x)). Note thatf (z), b(z) € Xt
foranyz € 7. Forz € Zr we set

t
HE® = v + /0 Gt — 5) % f(2(s))ds
def !
e 1) + /0 GGt — ) f(z(s)ds |
t
b)) = fo G(t — 5) % (b(z(s)dH (5))
d:ef

t
/O H(t —s,b(z(s))dW (s) .

Then it is easy to show thdf maps%'r into 27, and that there is a3 > 0 such
that

- 1 - -
[111(z) — 1)l < ZIIZ —Zll, forallz,zeZr,p>p1 .
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The same holds true for the stochastic integral mappingor, note that by (1.1)
and Lemma 3.3(i) we have
Ell(2)(0)]F; = / 1A =5, b 1205

< Ct3¢ sup E|b(z(s)|?

2
s€0.1] Ly

whereC is independent of and:. Sinceb(z) € X1, we hgvelz(z) € Z'r. Now,
let L be the Lipschitz constant fér. Then for arbitraryw/, ¥ € L§ we have

b)) = b2 < LIV =2

and consequently, by Lemma 3.3(i), for ali> 0 andz, Z € Z'7, we have

II2(z) — (G5 = sup e El@)(1) — )OI,

t€l0,

_ —2
= sup e ol E /H% (=5, bEEN =bEIE oy 12,85

< sup e*zp’c/ (t — )% E|b(z(5)) — b(3(5))[7, ds
te€[0,T] 0 0

t
<CcT%'L? sup e*Z”’/ Elz(s) — 2(s)|%, ds
1€[0,T] 0 ?

t
<CT?%"L? sup | e 2PU=9)e 25 E|z(s) — Z(s)|i2 ds
te[0,T] JO v

t
< CT?%" L%z |12 sup | e 20 ~9ds
0<t<T JO

< CT%"L?2p) Y|z - 213

which gives the desired conclusion. Thus we can fird 0 such thatl = 11 + I»
is a contraction fron¥'r into Z'7. The Banach fixed point theorem yields that there
is a unique solutiom € Z'r to the equation

u=y+Ii(u)+ I2(u),
which completes the proof of the existence of a solution to (0.1). O

Proof of (ii) . Letu be a solution to (0.1) on a time interval,[D], whereT > 0.
Then processes

t
Yo, %o, / Gt —5) fus)ds, 1e[0,T] ,
0

belong toZ'r. Thus the proces;fo’ At — s, bu(s))d¥ (s),t € [0, T], also
belongs to%' 7. Thus

t
/ E||A@—s, b(u(s)))HL s oy LZ)dS < oo foreveryr €0, T] .
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Note that ag is continuous, eitheb(x) > ¢ > 0 for everyx orb(x) < —c < 0
for all x. Thus, by Lemma 3.3(ii),

t
_ 2
fo E||A @& —s, 1)||L(HS)(;7/%L§)ds <oo forte[0,T],
and we conclude by Lemma 3.2 and Proposition 3.1. O
5. The case of the stochastic heat equation

We pass now to the nonlinear stochastic heat equation (0.2). The proof of Theorem
0.2 follows the same pattern as that of Theorem 0.1, given in the previous sections.
We therefore restrict our attention to three basic technical results formulated as
Lemmas 5.1 to 5.3 below. Recall that

x2
P()(x) = (4n1)"%e % forr > Oandr € RY

andP (0) = g is the fundamental solution to the Cauchy problem for the parabolic
equation-u — Au = 0. Let

SOu(x) = /IP(I)(X —udy, we SR, >0,
R4

be the heat semigroup. Then, see [19, Lemma 3.1], or [7], we have the following
fact.

Lemma 5.1. The semigroug has a unique extension to a holomorphic semigroup
on le,. In particular, denoting this extension also Bywe have the estimate

VT >03Cr: |S(t)u|L§ < CT|u|L§ forallt €[0,T],u € L§ .
Recall that? is given by (1.5). Clearly,
P(t,u)n = St)(un) = P(t) * (un) foruel?,ne#%. .
We have the following version of Lemma 3.3.

Lemma 5.2. Let condition(H) formulated in Sectio® be satisfied. Then for all
t > 0andu € Cp(RY), 2(t,u) € Lns)(# 4, L3). Moreover, there exists a
constantC such that

_Q-241y]2
WPUNE o 1z = CEl; [ ey 6)

forall r > Oandu € L3, and

_A+2¢1v|2
120N 2y + CElul?s = (/Rdz?(x)dx) /Rde 2P (dy) (5.2)

forall r > Oandu e L3 satisfyingu(x) > 1, x € R%.
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Proof. Letkgbesuchthaty ,(x) > OforallN € Nandx e R?. Lety = pu—+kodo,
and let7” and% be homogeneous Wiener processes with the spectral measures
andkodo, respectively. Le{ fx} C A 9,% and{g,} be orthonormal bases of -
and.J? 4.

Note first that in the proofs of (3.1), (3.3) and (3.4) we did not use the form of
the fundamental solution. Thus we have

> 12t wakl5, = Jim / / / TN o = nux —mulx —n)
X D2 —00 JRd JR JR4
x P(t)(n) P(t)(n")0 (x)dx dy dn" . (5.3)

Now for all , n’ € R? we have the following estimate

‘ / u(x — Nux — n’)l?(x)dx‘
R4

1/2 1/2 /
< ([ e = mizoear) ([ e = Pocods) < g,
R4 R b

Hence, ad’y «, > 0, we have

f f f C o (1 — 1)u(x — e — )P P@) ()9 (x) dx dn dy
Rd Rd Rd

[nl+1n'|

<ty [ [ Tusotn =)™ P Paadn d

Now note that

Inl+ lnl+'] _ 1?12
N

"5 Pty P(1) () = (drr) e

Rt e e N i
ne & e

8 8

= (4n
2 2

< 24¢ (8nr)~le F 18 < 20 PO P@H(Y)

Thus we have
/ f / I o (1 — 7)u(x — e — )P () P (1) ()9 (x)ckx dly iy’

R‘] R‘] R‘]

< Co€ ul?, / / / TN o (1 — 1) P(26) () P(20) ()9 (x)dx dn

2 Rd Rd Rd
whereCz = 29C1( fpa z?(x)dx)_l. Letting N — oo we obtain

D12 w7, < Collulf, Y 122 Dgul7, foru e Co@®?), 120 .
k

k
(5.4)
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Now

Y12 vl = [ [ 17 (oK - 9)0)R@n b
X P2 R4 JRd

- (/Rd z?(x)dx) /Rd e 4Py (dy) (5.5)

Note that from (5.4) and (5.5) we haw&(z, u) € Lns) (S, L%). Since, by
Lemma 3.1,

Sizwnniit, = [ [ 17(Po6 - )0 Puensm
X ¥ R4 JRd

< [ 17 (o = ) 0Py + xosote) o oo

2
< ||Z(t,u : )
< W2 o oryr2)

we haveZ(t, u) € Ls) (# 4, L) and (5.1) holds true for all > 0 andu € L3.
We now show (5.2). Clearly, it is enough to show this o Cp(RY). Letu €
Cp(R?) satisfyu(x) > 1 for everyx € R?. Then by Lemma 3.1 and (5.3) we have
) 2 — 2 _
||?(t1 u)||L(Hs>(=7/7~t/f”,L12«;) - ||?(t1 u)”L(HS)(:y/’Vng) KOI(I)
2
> |21, 1)||L(H$(%/‘L§) — kol (1) , (5.6)

where
(1) = / / |7 (P(t)(x — )u) ()]?80(dy)® (x)dx
[Rd [Rd

5/ / P(1)(x — 2)|u(z) >0 (x)dz dx
Rd JRd

Ir?
< Ca [ @ be A uiZ, < Cadil,
R4 b D

Combining this with (5.5) and (5.6) we obtain (5.2), which completes the pmof.

Note that

! 47 2g]y|2 1— e 4l
/ / e S L (dy)ds =/ > —udy) .
0 Jre rRd  Amely|

Thus there are continuous functions : (0, o0) — (0, oo) such that

p(dy) /’/ a2y 2
t < e s dy)d
)/Ra1+|y|2— o Jua wlCy)ds

N p(dy)
<¢@) /W rlylz forallz >0 . (5.7)

Combining (5.7) with Lemma 5.2 we get the following result.
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Lemma 5.3. Let condition(H) be satisfied. Then there are continuous function
C1, C2, C3: (0, 0) — (0, c0) such that

t
y 2 2 [ @)
L1262 iz = Caoomiz; [ 00

forall r > Oandu € L3, and

w(dy)

t
9 2 2 Y
L 2GR 2,5+ CatoluiZ = oo [

forall r > Oandu e L3 satisfyingu(x) > 1, x € R%.
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