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Abstract. We consider a ferromagnetic spin system with unbounded inter-
actions on the d-dimensional integer lattice (d ≥ 1). Under mild assump-
tions on the one-body interactions (so that arbitrarily deep double wells are
allowed), we prove that if the coupling constants are small enough, then the
finite volume Gibbs states satisfy the log-Sobolev inequality uniformly in
the volume and the boundary condition.
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1. Introduction

In this paper we address a question of understanding the ergodic property
of unbounded lattice spin systems. We will consider a random field on Zd

described by the formal Hamiltonian

H(σ) = −1

2

∑
x,y∈Zd

Jx,yσxσy +
∑
x∈Zd

(U(σx) − hxσx) , (1.1)

where σx ∈ R is the spin at the site x ∈ Zd , Jx,y are finite range, ferromag-
netic coupling constants (cf. (1.18)–(1.21) below), hx ∈ R and U(s) is a
function which diverges to +∞ faster than any constant multiple of s2 as
|s| ↗ ∞.

Literatures on the equilibrium statistical mechanics for models of this
kind are vast and their phase structure are fairly well understood in some
cases (See [FSS76], [COPP78] and [BH82] for example and references
therein). On the other hand, from the view point of probability theory, it
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seems very natural to be interested in the time evolution of the model, or
more specifically, the associated stochastic dynamics called Glauber dy-
namics. Glauber dynamics is a natural model to describe the way a given
configuration relaxes to equilibrium as time goes by. Therefore, its ergodic
properties are very interesting subject to work on. The study of such dy-
namical theory for unbounded spin systems seems to be in a much more
primitive stage as compared with that for models with compact spin spaces,
but it begins to capture the attentions of many probabilists in recent years.

A key to rapid progresses in the study of dynamical lattice spin systems
with compact spin spaces was the log-Sobolev inequality (See [SZ92],
[LY93], [MO94] and references therein). Although the proof of the log-
Sobolev inequality for unbounded spin systems are much harder, it has
become increasingly feasible in view of some successful examples. The
simplest case is when one can apply the Bakry-Emery 02 criterion ([BE85])
of log-Sobolev inequality. The 02 criterion is applicable to continuous spin
systems when the Hamiltonian of the model is a strictly convex function.
This is in particular the case with the Hamiltonian (1.1) when inf U ′′ is
positive (To be precise, inf U ′′ > −λ(J) is enough. cf. (1.21) below). In
[Z96], the log-Sobolev inequality is extended beyond the applicability re-
gion of the 02-criterion. In fact, the results in [Z96] are applicable to (1.1)
even when U ′′ can take large negative values and we see that the log-Sobolev
inequality is true in at least the following two cases;
(a) d = 1 (cf. [Z96, Theorem 4.1]),
(b) d ≥ 2, Jx,y are large enough and U is a small perturbation from a

strictly convex function in the sense of the sup-norm (cf. paragraphs
following [Z96, Proposition 5.2]).

In this article, we mainly consider the restriction of the lattice field de-
scribed by the Hamiltonian (1.1) to a finite set 3 in the lattice by imposing
a boundary condition ω ∈ R3c

. We prove that, if Jx,y’s (x 6= y) are small
enough, then the log-Sobolev inequality holds uniformly in 3 and ω. This
implies in particular that the (unique) infinite volume tempared DLR-state
also satisfies the log-Sobolev inequality. In view of the corresponding phase
structure (See Theorem 1.1 below), our assumption seems to be one of the
most natural example to be investigated. Heuristically speaking, the proof
of log-Sobolev inequality under our assumption is possible for the follow-
ing reason. As is well known, the log-Sobolev constant is invariant under
independent product of underlying measure space ([G94, Theorem 2.3])
and, since the interaction is weak under our assumption, spins on each site
in the lattice behave almost independently.

The proof is divided into three steps:
First of all, we prepare a theorem which says that if a certain mixing

condition for the Gibbs measure is satisfied, then the spectral gap is uni-
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formly positive in the volume 3 and the boundary condition ω (Theorem
2.2). Here, we will use the method of [LY93] as the basic strategy, as well
as ideas from [Z96].

We next prove that the mixing condition mentioned above implies the
log-Sobolev inequality which is uniform in 3 and ω (Theorem 2.1). We
will do this with the help of the bound on spectral gap obtained in Theorem
2.2. Here, the basic strategy is again the one in [LY93].

Finally, we show that the mixing condition referred to above holds as-
suming that the coupling constants are small enough (Theorem 2.4). This
is carried out by using a formula for the Vassershtein distance ([COPP78])
and a “constructive criterion” (Proposition 2.3), which is very similar to the
famous condition for the phase uniqueness presented in [DSh85].

We begin by introducing the standard setup of the model.

The lattice. We will work on the d-dimensional integer lattice Zd = {
x =

(xi)di=1 : xi ∈ Z
}

on which we consider the l∞-metric;d(x1, x2) = max1 ≤ i ≤ d

×|xi
1 − xi

2| (x1, x2 ∈ Zd). For a set 3 ⊂ Zd , diam3 and |3| stand re-
spectively for its diameter and the cardinality. We write 3 ⊂⊂ Zd when
1 ≤ |3| < ∞. The distance between two subsets 31 and 32 of Zd will be
denoted by d(31, 32). For R ≥ 1, the R-boundary of a set 3 is defined by

∂R3 = {x 6∈ 3; d(x, 3) ≤ R} . (1.2)

The value of R will eventually be chosen as the range R(J) of the interaction
we consider (See (1.18) below). We say 3 ⊂⊂ Zd is a generalized boxwith
size (n1, . . . , nd), if it can be decomposed as follows;

3 = ◦
3 ∪ δ3 , (1.3)

where
◦
3= {

x ∈ Zd; vi ≤ xi < vi + ni, i = 1, . . . , d
}

for some (vi)di=1 ∈ Zd ,

δ3 ⊂
{
x 6∈ ◦

3;
d∑

i=1
|xi − yi | =1 for some y ∈ ◦

3

}
.

Thus a generalized box is a box with (or without) “dust” on its faces. We
call min1 ≤ i ≤ d ni in the above definition the minimum side-lengthof 3. We
set

A = {
3; 3 ⊂⊂ Zd

}
, (1.4)

B(n0) = all generalized boxes with the minimum side-length at least n0 ,

(1.5)

where n0 ≥ 1.
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The configuration spaces.The configuration spaces are defined as follows;

R3 = {σ = (σx)x∈3; σx ∈ R} , 3 ⊂ Zd,

� = RZd

,

S =
⋂
n ≥ 1

{
σ ∈ �; sup

x∈Zd

(1 + d(x, 0))n|σx | < ∞
}

,

S′ =
⋃
n ≥ 1

{
σ ∈ �; sup

x∈Zd

(1 + d(x, 0))−n|σx | < ∞
}

.

The functions of the configuration.Function spaces C and C3 (3 ⊂ Zd) on
the configuration space � are introduced as follows;

C = {f : � −→ R | f satisfies the properties (C1) and (C2) below} .

(1.6)
(C1) There is 3 ⊂⊂ Zd such that f depends only on (σx)x∈3 and is of C∞

with respect to these variables.
(C2) There are positive constants B1.7 and C1.7 such that

|f (σ)| + |∇3f (σ)| ≤ B1.7 exp

(
C1.7

∑
x∈3

|σx |
)

(1.7)

for any σ ∈ �, where

|∇3f (σ)|2 =
∑
x∈3

∣∣ ∂
∂σx

f (σ )
∣∣2 . (1.8)

For f ∈ C, we denote by Sf the minimal set among those 3’s which satisfy
the property referred to in (C1) above. We define

C3 = {
f ∈ C; Sf ⊂ 3

}
, 3 ⊂ Zd . (1.9)

The Hamiltonian.We introduce a function U : R → R which satisfies (U1)
and (U2) below.
(U1) For any m > 0, there exist V, W ∈ C∞(R → R) and C1.12 ∈ (0, ∞)

such that

U(s) = V (s) + W(s) for all s ∈ R, (1.10)

inf
s

V ′′(s) ≥ m , (1.11)
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W(s) = 0 for |s| ≥ C1.12 (1.12)

‖W‖∞ ≤ C1.12 , (1.13)

where ‖W‖∞ = sups |W(s)|.
(U2)

pq ∂2U
∂p∂q

(p, q) ≥ 0 for all (p, q) ∈ R2 , (1.14)

where

U(p, q) = U
(

q+p√
2

)
+ U

(
q−p√

2

)
. (1.15)

A typical example of U is given by the following polynomial;

U(s) =
N∑

ν=1

a2νs
2ν (1.16)

where N ≥ 2, a2 ∈ R, a4 ≥ 0, . . . , a2(N−1) ≥ 0 and a2N > 0. Since a2

can be large negative value, U in (1.16) may have arbitrarily deep double
wells.

For 3 ⊂⊂ Zd and ω ∈ �, we define a function H3,ω : � → R, by;

H3,ω(σ ) = −1

2

∑
x,y∈3

Jx,yσxσy +
∑
x∈3

(
U(σx) − hxσx −

∑
y 6∈3

Jx,yσxωy

)
.

(1.17)
Here, J = (Jx,y ∈ R; x, y ∈ Zd), h = (hz ∈ R; z ∈ Zd) are such that

R(J)
def.= sup

{
d(x, y) ; Jx,y 6= 0

}
< ∞ , (1.18)

‖J‖ def.= sup
x

∑
y

|Jx,y | < ∞ , (1.19)

Jx,y = Jy,x ≥ 0 if x 6= y , (1.20)

λ(J)
def.= inf

x

{
− 1

2

∑
y

Jxy

}
> 0 , (1.21)

Note that we have from (1.20) and (1.21) that for any 3 ⊂⊂ Zd and σ ∈ R3

−1

2

∑
x,y∈3

Jx,yσxσy ≥ λ(J)
∑
x∈3

|σx |2 . (1.22)
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Remark 1.1.If a matrix J satisfies (1.18)–(1.20), we may also assume (1.21)
without changing the model. In fact, define Ĵx,y = Jx,y − (‖J‖+ 1)δx,y and
Û (s) = U(s) − ‖J‖+1

2 s2. Then Ĵx,y satisfies (1.18)–(1.21) and Û satisfies
(1.10)–(1.14) and the replacement of (Jx,y , U ) by (Ĵx,y , Û ) does not change
the Hamiltonian (1.17).

The local specifications and the DLR-state.For a topological space X, we
let M1(X) denote the set of Borel probability measures on X. For 3 ⊂⊂ Zd

and a boundary condition ω ∈ �, we define E3,ω ∈ M1(R3) by;

E3,ω(dσ3) = exp(−H3,ω(σ ))

Z3,ω

∏
x∈3

dσx (1.23)

where Z3,ω is the normalizing constant. E3,ω is called the finite volume
Gibbs stateand the family

{
E3,ω | 3 ⊂⊂ Zd, ω ∈ S

}
is called the local

specification. The following exponential integrability estimate is true; there
is C1.24 = C1.24(J, h, U) ∈ (0, ∞) such that

E3,ω exp(λ|σx |) ≤ exp

C1.24

1 + λ2 + λ
∑

y∈∂R3

|ωy |
 , for λ > 0 ,

(1.24)
whenever x ∈ 3 ⊂⊂ Zd , ω ∈ � and λ > 0. This follows from the
arguments in Proposition III.1 and Theorem III.2 in [BH82]. The bound
(1.24) implies that a function in the class C and its first derivatives have
moments of all order with respect to the measure E3,ω.

For ν ∈ M1(�), we define a new measure νE3 ∈ M1(�) by;

νE3f = ∫
ν(dω)

∫
E3,ω(dσ)f (σ3 · ω3c) , (1.25)

where σ3 · ω3c denotes the following configuration;

(σ3 · ω3c)x =
{

σx if x ∈ 3,
ωx if x 6∈ 3 .

It is a common practice to regard the measure E3,ω, which was originally
defined as a measure on R3, as a measure on the full configuration space
� by identifying it with δωE3, where δw is the Dirac measure concentrated
on ω. With this in mind, we introduce an integral operator E3 :C −→ C

by;

E3f (σ) = E3,σ (f ) . (1.26)
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We now define two subsets G and Gt of M1(�) as follows;

G = {
ν ∈ M1(�); νE3 = ν for any 3 ⊂⊂ Zd

}
, (1.27)

Gt = G ∩ M1,t(�), (1.28)

where

M1,t(�) = {
ν ∈ M1(�); (ν(|σx |))x∈Zd ∈ S′} . (1.29)

A measure inG andGt is called respectively, the DLR-stateand the tempared
DLR-state. It is known that the tempared DLR-state is unique if Jx,y (x 6= y)

are small enough.

Theorem 1.1. ([COPP78, DSh85]) There existsβ = β(U) ∈ (0, ∞) such
thatGt is a singleton ifsupx

∑
y:y 6=x

Jx,y ≤ β.

The inverse spectral gap and log-Sobolev constant.We define the inverse
spectral gapγSG(3) as the smallest γ for which the following inequality is
true for all f ∈ C and ω ∈ �;

E3,ω (f ; f ) ≤ γE3,ω(|∇3f |2) . (1.30)

Here and in what follows, the following common notaiton for the covariance
of functions f and g with respect to a probability measure m is used;

m (f ; g) = m(fg) − m(f ) · m(g) . (1.31)

We define the log-Sobolev constantγLS(3) as the smallest γ for which the
following inequality is true for all f ∈ C and ω ∈ �;

E3,ω

(
f 2 log

f 2

E3,ω(f 2)

)
≤ γE3,ω(|∇3f |2) . (1.32)

It is well known that 2γSG ≤ γLS (cf. [DS89, Corollary 6.1.17]).

MeasuresE3,q ,E3,+ andE3\1,p̄

3,q . We now introduce some new measures on
the configuration space, which plays important roles in this article. In fact,
a mixing condition (2.1) we will assume to derive the log-Sobolev inequality
will be described in terms of these new measures rather than the original
local specification defined by (1.23). For 3 ⊂⊂ Zd , ω ∈ R3c

and q ∈ R3,
we define a measure E3,q ∈ M1(R3) by

E3,q(dp) = E3,ω ⊗ E3,ω

(
(σ 1, σ 2); σ 1 − σ 2

√
2

∈ dp

∣∣∣∣σ 1 + σ 2

√
2

= q

)
= exp(−H3,q(p))

Z3,q

∏
x∈3

dpx , (1.33)
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where

H3,q(p) = −1

2

∑
x,y∈3

Jx,ypxpy +
∑
x∈3

U(px, qx) (1.34)

(Recall that we have defined the function U by (1.15)). It is also convenient
to introduce the following measure;

E3,+(dq) = E3,ω ⊗ E3,ω

{
(σ 1, σ 2); σ 1 + σ 2

√
2

∈ dq

}
. (1.35)

The use of these measures can be demonstrated in the following expression
of the spin-spin correlation function;

E3,ω(σx; σy) = 1
2

∫
E3,ω ⊗ E3,ω(dσ 1dσ 2)

(
σ 1

x − σ 2
x

) (
σ 1

y − σ 2
y

)
= ∫

E3,+(dq)E3,q

(
pxpy

)
. (1.36)

As can be seen from the above expression, if the correlation function E3,q(
pxpy

)
decays in d(x, y) uniformly in q-variable, so does E3,ω(σx; σy),

uniformly in ω and h. This idea will be used repeatedly in proofs in Section
3 (cf. Lemma 3.3 and Lemma 3.4). Furthermore, we defineEW,p̄

3,q ∈ M1(RW)

for W ⊂ 3 and p̄ ∈ R3 by

E
W,p̄

3,q (dpW) = E3,q(dp3 | p ≡ p̄ on 3\W )

= exp(−H
W,p̄

3,q (p))

Z
W,p̄

3,q

∏
x∈W

dpx , (1.37)

where

H
W,p̄

3,q (p) = HW,q(p) −
∑

x∈W,y∈3\W
Jx,ypxp̄y . (1.38)

The Vassershtein distance.For a metric space (X, ρ), which is separable
and complete (hence is a Polish space), we define

M1,ρ(X) = {µ ∈ M1(X); ρ(x, ·) ∈ L1(µ) for some x ∈ X} . (1.39)

We introduce the Vassershtein distance Rρ on M1,ρ(X) as follows;

Rρ(µ1, µ2) = inf
{∫

X2µ(dx1dx2)ρ(x1, x2); µ ∈ K(µ1, µ2)
}

, (1.40)
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where

K(µ1, µ2) = {
µ ∈ M1(X

2); µ(dx1 × X) = µ1, µ(X × dx2) = µ2
}

.

(1.41)
The case of X = R3 and ρ(σ 1, σ 2) = ∑

x∈3 |σ 1
x − σ 2

x | is especially
relevant to us. The Vassershtein distance in this case is denoted by R3; for
µi ∈ M1,ρ(R3) (i = 1, 2),

R3(µ1, µ2) = inf

{∫
R3×R3µ(dσ 1dσ 2)

∑
x∈3

|σ 1
x −σ 2

x |; µ ∈ K(µ1, µ2)

}
.

(1.42)

2. Results

We have the following results for the lattice field described by the Hamil-
tonian (1.17). Recall that we have defined the measure E

W,p̄

3,q by (1.37).

Theorem 2.1. LetF be eitherA or B(n0) for arbitrarily fixedn0 > 0 (cf.
(1.4) and (1.5)). Suppose that the following mixing condition holds; there
exist positive constantsB2.1 andC2.1 such that

sup
q∈R3

∣∣EW,p̄1

3,q (pz) − E
W,p̄2

3,q (pz)
∣∣

≤ B2.1

(
1 +

∑
w∈3∩∂RW

(|p̄1
w| + |p̄2

w|)
)

exp

(
−d(y, z)

C2.1

)
(2.1)

whenever3 ∈ F, W ⊂ 3, y ∈ 3\W andp̄i ∈ R3 (i = 1, 2) differs only
at y. Then the log-Sobolev constants(cf. (1.32)) are uniformly bounded in
the sense that;

sup{γLS(3) | 3 ∈ F} ≤ C2.2 < ∞ , (2.2)

where the constantC2.2 depends only ond, U , J, B2.1 andC2.1. Therefore, the
unique elementµ in Gt (cf. Remark 2.1) satisfies the log-Sobolev inequality;

µ

(
f 2 log

f 2

µ(f 2)

)
≤ C2.2µ(|∇3f |2) (2.3)

for any3 ⊂⊂ Zd andf ∈ C3.

Remark 2.1.The mixing condition (2.1) implies the uniqueness of the tem-
pared DLR-state. In fact, as we will see in Lemma 3.3 below, (2.1) implies
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the following;

|E3,ω(σx; σy)| ≤ C2.4 exp

(
−d(x, y)

C2.4

)
, (2.4)

for any 3 ∈ F, ω ∈ R3c
and x, y ∈ 3, where C2.4 = C2.4(U, J) ∈ (0, ∞).

Furthermore, it is not difficult to prove by standard arguments that (2.4)
implies the uniqueness of the tempared DLR-state (For example, Theorem
IV.3, Proposition IV.4 and Proposition V.1 in [BH82] can be used to show
that “pure phases” µ± coincide.).

Remark 2.2.We will see that the mixing condition (2.1) holds if supx

∑
y:y 6=x

×Jx,y is small enough (cf. Theorem 2.4). It is also known that if d = 1,
then (2.1) holds regardless of the value of supx

∑
y:y 6=x Jx,y . This can be

seen from [Z96, Lemma 4.5].

Remark 2.3.As we experience in models with compact spin spaces, it may
well be the case that for some J, U and h, a mixing condition like (2.1) does
not hold for all 3, but its restriction to “nice” 3’s (typically to cubes or to
“fat” enough boxes) does. This is why we introduced the class B(n0).

Remark 2.4.Theorem 2.1 above is strongly motivated by [Z96, Theorem
5.1]. There, the potential function U is assumed only to satisfy (1.10)–
(1.13) for somem > 0. [Z96, Theorem 5.1] says that if there is C2.4 =
C2.4(U, J, h) ∈ (0, ∞) such that (2.4) holds for large enough cubes 3 ⊂ Zd ,
ω ∈ R3c

and x, y ∈ 3, then there is γ ∈ (0, ∞) for which the log-Sobolev
inequality (1.32) holds for ω ≡ 0 and for large enough cubes 3 ⊂ Zd .
Therefore, as compared with [Z96, Theorem 5.1], Theorem 2.1 in this paper
says more or less that a stronger results follows from stronger assumptions.

Remark 2.5.Let us briefly remark that the uniform bound (2.2) of the log-
Sobolev constants implies “exponential convergence to the equibrium” of
the associated stochastic dynamics (cf. [Y98] [Z96, Theorem 3.1]).

We also present the following weaker result:

Theorem 2.2. Suppose that the same mixing condition as in Theorem 2.2
holds. Then the inverse spectral gaps(cf. (1.30)) are uniformly bounded in
the sense that;

sup{γSG(3) | 3 ∈ F} ≤ C2.5 < ∞ , (2.5)

where the constantC2.5 depends only ond, U , J, B2.1 andC2.1. Therefore,
the unique elementµ in Gt (cf. Remark 2.1) satisfies

µ (f ; f ) ≤ C2.5µ(|∇3f |2) (2.6)

for any3 ⊂⊂ Zd andf ∈ C3.
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This statement about the spectral gap follows easily from Theorem 2.1,
since the inverse spectral gap (cf. (1.30)) is always bounded from above by
a constant multiple of the log-Sobolev constant. In this paper, however, we
prove Theorem 2.2 in advance of Theorem 2.1 and use it as a step to show
Theorem 2.1.

We provide the following “constructive criterion” of the mixing con-
dition (2.1). Recall that for 3 ⊂⊂ Zd , we have defined the Vassershtein
distance R3 by (1.42).

Proposition 2.3. Let3 ⊂⊂ Zd be arbitrary. Suppose that there existV ⊂⊂
Zd , ε2.8 ∈ (0, 1) and a matrixK = (Kx,y ≥ 0 : x, y ∈ Zd) such that

Kx,y = 0 if y − x 6∈ V ∪ ∂RV , (2.7)

‖K‖ def.= sup
y

∑
x

Kx,y ≤ ε2.8|V | , (2.8)

RW∩(x+V )

(
E

W∩(x+V ),p̄1

3,q ,E
W∩(x+V ),p̄2

3,q

) ≤
∑

y

Kx,y |p̄1
y − p̄2

y | (2.9)

for all W ⊂ 3, x ∈ Zd and p̄i ∈ R3(i = 1, 2). Then there exist constants
B2.1 andC2.1 which depend only ond, R, V andε2.8 such that(2.1) holds
wheneverW ⊂ 3, y ∈ 3\W andp̄i ∈ R3 (i = 1, 2) differs only aty.

Remark 2.6.In Proposition 2.3, we did not assume that V and ε2.8 are
independent of the choice of 3. However, in application of the proposition
we have in mind (cf. Theorem 2.2, Theorem 2.1), it is important to find V

and ε2.8 independently of the choice of 3, since we need (2.1) with constants
B2.1 and C2.1 not depending on 3.

Remark 2.7.Conditions (2.7)–(2.9) in Proposition 2.3 are reminiscient of
[DSh85, Theorem 2.1]. Note however we have put stronger assumptions to
get stronger conclusion than that of above mentioned result.

By combining Theorem 2.1 and Proposition 2.3, we can prove the fol-
lowing main result in this article:

Theorem 2.4. There isβ ∈ (0, ∞) such that ifsupx

∑
y:y 6=x

Jx,y ≤ β,

then the following hold.

(a) There existsε2.8 < 1 which depends only ond, U , J such that conditions
(2.7)–(2.9) with V = {0} and with someK = (Kx,y ≥ 0 : x, y ∈ Zd)

are satisfied for all3 ⊂⊂ Zd , W ⊂ 3, x ∈ Zd andp̄i ∈ R3 (i = 1, 2).
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(b) There exist constantsB2.1 andC2.1 which depend only ond, U , J such
that (2.1) holds whenever3 ⊂⊂ Zd , W ⊂ 3, y ∈ 3\W and p̄i ∈ R3

(i = 1, 2) differs only aty.
(c) The uniform bound on the log-Sobolev constants(2.2) with F = A

holds with the constantC2.2 depending only ond, U , J and thus, the
inequality(2.3) for the uniqueµ ∈ Gt holds.

Remark 2.8.Part(b) of Theorem 2.4 implies that if supx

∑
y:y 6=x Jx,y is small

enough, then mixing condition (2.1), and thus (2.4) holds (cf. Lemma 3.3).
In particular, we see that [Z96, Theorem 5.1] applies if supx

∑
y:y 6=x Jx,y is

small enough.

Remark 2.9.The assumptions (U1)and (U2) for the one body interaction U

are mild enough to include examples like (1.16) which are often discussed
in physical litratures. However, from the mathematical point of view, these
assumptions are not minimal to prove the part(c) of Theorem 2.4 with. Based
on the result of B. Helffer [He97], T. Bodineau and B. Helffer improved
the proof of part(c) of Theorem 2.4 in a very recent paper [BH98] and they
succeeded in reducing the assumptions for U to, more or less, the minimal
ones. In fact, they only assume (1.10)–(1.13) for somem > 0 and, (1.14) is
not required.

3. Lemmas

In this section, we prove a couple of lemmas which will be used later. Here,
we will use many ideas from [Z96, Section 4].

Lemma 3.1. For anyλ > 0, there existsC3.1(λ) = C3.1(λ, U, J) ∈ (0, ∞)

such that

E
W,p̄

3,q exp
(
λ|px |2

) ≤ exp

(
C3.1(λ)

(
1 +

∑
y∈3∩∂RW

|p̄y |2
))

, (3.1)

wheneverW ⊂ 3 ⊂⊂ Zd , q ∈ R3 andp̄ ∈ R3.

Proof. To prove (3.1), we begin by proving that

E
x,p̄

3,q exp
(
λ|px |2

) ≤ E
x,p̄

3,q exp
(
λ|px |2

) ∣∣
q≡0 (3.2)

Since the left-hand-side of (3.2) depends on q only through qx , it is enough
to prove that

∂
∂qx

E
x,p̄

3,q exp
(
λ|px |2

) {≤ 0 if qx ≥ 0,
≥ 0 if qx ≤ 0 .

(3.3)
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We have that

∂
∂qx

E
x,p̄

3,q exp
(
λ|px |2

) = −E
x,p̄

3,q

(
∂U
∂qx

(px, qx); exp
(
λ|px |2

))
= − 1

2

∫
E

x,p̄

3,q(dp
1
x)
∫
E

x,p̄

3,q(dp
2
x)

·
(

∂U
∂qx

(
p1

x, qx

)− ∂U
∂qx

(
p2

x, qx

))
· (exp

(
λ|p1

x |2
)− exp

(
λ|p2

x |2
))

. (3.4)

Suppose now that qx ≥ 0, then |px | 7→ ∂U
∂qx

is non-decreasing by (1.14).
This implies that the integrand in (3.4) is non-negative for all (p1

x, p
2
x).

Similarly, the integrand in (3.4) is non-positive for all (p1
x, p

2
x), if qx ≤ 0.

Therefore, we have proved (3.3).
We next find a constant C3.5(λ) ∈ (0, ∞) and a sequence r =

(rx ≥ 0) ∈ S, which depend only on λ, J and U such that∑
x

rx < 1,

E
x,p̄

3,q exp
(
λ|px |2

) ∣∣
q≡0 ≤ exp

(
C3.5(λ) + λ

∑
y

rx−y |p̄y |2
)

(3.5)

whenever x ∈ 3 ⊂⊂ Zd and p̄ ∈ R3. This can be done in the same way
as in the proof of [BH82, Theorem III.2], where similar estimate for the
integral of exp (λ|px |) is obtained. Here, we have to consider the integral of
exp

(
λ|px |2

)
. However, it is not diffucult to generalize the computations in

[BH82, Lemmas III.5 and III.6] to cover our case (by taking m > 0 in
(1.10)–(1.13) large enough, depending on λ). Once (3.2) and (3.5) are
established, one can proceed as in the proof of [BH82, Proposition III.1] to
obtain (3.1).

Lemma 3.2. For anyn = 1, 2, . . . , there existsC3.6(n) = C3.6(U, J, n) ∈
(0, ∞) such that

E3,ω

(
f 2 log

f 2

E3,ω(f 2)

)
≤ C3.6(|1|)E3,ω(|∇3f |2) (3.6)

whenever1, 3 ⊂⊂ Zd andf ∈ C satisfySf ∩ 3 ⊂ 1 ⊂ 3.

To prove Lemma 3.2, we need another lemma.

Lemma 3.3. Suppose that the mixing condition(2.1) holds. Then,

|E3,ω(σx; σy)| ≤ C3.7 exp

(
−d(x, y)

C2.1

)
, (3.7)
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for any3 ∈ F, ω ∈ R3c
andx, y ∈ 3, whereC3.7 = C3.7(U, J, B2.1) ∈

(0, ∞). In general(without the mixing condition(2.1)), the following is
true;

sup{|E3,ω(σx; σx)|; 3 ⊂⊂ Zd, x ∈ 3, h ∈ R3, ω ∈ R3c} ≤ C3.8 < ∞ ,

(3.8)
whereC3.8 = C3.8(U, J) ∈ (0, ∞).

Proof of Lemma 3.3. To prove the Lemma, recall that we have defined
measures E3,q , E3,+ and E

3\1
3,q respectively by (1.33), (1.35) and (1.37).

Note that

E3(σx; σy) = 1
2

∫
E3 ⊗ E3(dσ 1dσ 2)(σ 1

x − σ 2
x )(σ 1

y − σ 2
y )

= ∫
E3,+(dq)

∫
E3,q(dp)pxpy

= ∫
E3,+(dq)

∫
E3,q(dp)pxE

3\x,p

3,q (py) (3.9)

and that we have from (2.1) that

|E3\x,p

3,q (py)| ≤ 2B2.1 (1 + |px |) exp

(
−d(x, y)

C2.1

)
.

Plugging this into (3.9), we have

|E3,ω(σx; σy)| ≤ 2B2.1 exp

(
−d(x, y)

C2.1

)∫
E3,+(dq)∫

E3,q(dp)|px | (1 + |px |) . (3.10)

By (3.1), the integral in the right-hand-side of (3) is bounded by some
constant which depends only on J and U . Therefore we get (3.7). The same
argument as above, but without the use of (2.1), proves (3.8).

Proof of Lemma 3.2. Let us set E
3,ω
1 (dσ1) = E3,ω(R3\1 × dσ1). Since

H3,ω(σ ) = −1

2

∑
x,y∈1

Jx,yσxσy +
∑
x∈1

(U(σx) − hxσx) −
∑
x∈1

∑
y 6∈3

Jx,yσxωy

−1

2

∑
x,y∈3\1

Jx,yσxσy +
∑

x∈3\1
(U(σx) − hxσx)

−
∑

x∈3\1

∑
y 6∈3

Jx,yσxωy −
∑

x∈3\1

∑
y∈1

Jx,yσxσy , (3.11)
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the measure E
3,ω
1 (dσ1) has the following expression;

E
3,ω
1 (dσ1) = exp

(−∑x∈1

(
U(σx) − h3,ω

x σx

))
Z

3\1,σ1

J ν1
J (dσ1)∫

ν1
J (dσ1) exp(−∑x∈1(U(σx) − h

3,ω
x σx))Z

3\1,σ1

J

,

(3.12)
where

h3,ω
x = hx +

∑
y 6∈3

Jx,yωy,

ν1
J (dσ1) = exp

(
1
2

∑
x,y∈1

Jx,yσxσy

)∏
x∈1

dσx,

Z
3\1,σ1

J = ∫
ν

3\1
J (dσ3\1) exp

(
−

∑
x∈3\1

(U(σx) − hxσx)

+
∑

x∈3\1

∑
y∈1∪3c

Jx,yσx(σ1 · ω3c)y

)
.

We would like to deform the above measure into another measure Ē
3,ω
1 (dσ1)

to which we can apply the Bakry-Emery 02-criterion of the log-Sobolev in-
equality ([BE85, Corollaire 2]). To this end, we decompose U into V and
W in a manner described in (1.10)–(1.13), where the parameter m > 0 is
specified later, depending on |1|. We then have by (1.13) that

exp (−2C1.12) ≤ dE
3,ω
1

dĒ
3,ω
1

(σ1) ≤ exp (2C1.12) , (3.13)

where

Ē
3,ω
1 (dσ1) = exp

(−∑x∈1

(
V (σx) − h3,ω

x σx

))
Z

3\1,σ1

J ν1
J (dσ1)∫

ν1
J (dσ1) exp(−∑x∈1(V (σx) − h

3,ω
x σx))Z

3\1,σ1

J

,

(3.14)
Let us next prove that

∑
x,y∈1

∣∣∣∣ξxξy

∂2

∂σx∂σy

log Z
3\1,σ1

J

∣∣∣∣ ≤ C3.8|1|‖J‖2
∑
x∈1

|ξx |2 , (3.15)

for any (ξx)x∈1 ∈ R1. In fact,
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∑
x,y∈1

∣∣∣∣ξxξy

∂2

∂σx∂σy

log Z
3\1,σ1

J

∣∣∣∣
=

∑
x,y∈1

∣∣∣ξxξy

∑
z,w∈3\1

Jx,zJy,wE3\1,σ1·ω3c (σz; σw)

∣∣∣
≤ C3.8‖J‖2

(∑
x∈1

|ξx |
)2

≤ C3.8‖J‖2|1|
∑
x∈1

|ξx |2 .

At this point, we take m = C3.8‖J‖2|1| + 1 to have that∑
x,y∈1

ξxξy

∂2

∂σx∂σy

(∑
x∈1

(
V (σx) − h3,ω

x σx

)− log Z
3\1,σ1

J

)
≥
∑
x∈1

|ξx |2.
(3.16)

This implies that 02 in the sense of [BE85], computed with respect to the
measure Ē3,ω is bounded from below by 1 and thus that we have

Ē
3,ω
1

(
f 2 log

f 2

Ē
3,ω
1 (f 2)

)
≤ 2Ē

3,ω
1 (|∇3f |2) . (3.17)

whenever f ∈ C and 3 ⊂⊂ Zd satisfy Sf ∩3 ⊂ 1 ⊂ 3. By (3.13), (3.17)
and a standard comparison argument ([HS87, Lemma 5.1]), we get (3.6)
with

C3.6 = 2 exp (4C1.12) . (3.18)

The following lemma is technically the most important step in our proof
of Theorem 2.2 and Theorem 2.1;

Lemma 3.4. Suppose that mixing condition(2.1) is true. Then, for any
f ∈ C, 3 ∈ F, x ∈ 3 and1 ⊂ 3 such thatSf ∩ 3 ⊂ 1 ⊂ 3,∣∣E3(f ; σx)

∣∣ ≤ C3.19 |1|2 exp

(
−d(x, 1)

C2.1

)
E3(f ; f )1/2, (3.19)∣∣E3(f 2; σx)

∣∣ ≤ C3.19 |1|2 exp

(
−d(x, 1)

C2.1

)
E3(f 2)1/2

×
(

E3(f ; f )1/2 + E3

(
f 2 log

f 2

E3(f 2)

)1/2
)

,

(3.20)
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whereC3.19 = C3.19(B2.1, C3.1(1)) ∈ (0, ∞). Furthermore, for y 6∈ 3,∣∣∇yE
3(f )

∣∣ ≤ ∣∣E3
(∇yf

)∣∣+ ‖J‖ sup
x∈3

d(x,y) ≤ R

∣∣E3(f ; σx)
∣∣ (3.21)

≤ ∣∣E3
(∇yf

)∣∣+ C3.19‖J‖|1|2 exp

(
−d(x, 1)

C2.1

)
E3(f ; f )1/2 , (3.22)

|∇y

√
E3(f 2)| ≤ E3

(|∇yf |2)1/2

+ 1
2E3(f 2)−1/2‖J‖ sup

x∈3
d(x,y) ≤ R

∣∣E3(f 2; σx)
∣∣ (3.23)

≤ E3
(|∇yf |2)1/2 + C3.19‖J‖|1|2 exp

(
−d(y, 1)

C2.1

)
·
(

E3(f ; f )1/2 + E3

(
f 2 log

f 2

E3(f 2)

)1/2
)

.

(3.24)

Remark 3.1.We will use (3.19), (3.21) and (3.22) to prove Theorem 2.2. On
the other hand, (3.20), (3.23) and (3.24) will be used in the proof of Theorem
2.1, where the term E3(f ; f ) on the right-hand-side of (3.20) and (3.24)
will eventually be bounded by C2.5E

3
(|∇3f |2) by using Theorem 2.2.

Remark 3.2.As will become clear from the proof, if we do not assume any
mixing condition, we have (3.19)–(3.24) without the factor exp(−d(y, 1)/

C2.1).

Proof of Lemma 3.4. Let us begin by proving (3.21) and (3.23). In fact,
it is easy to see that∣∣∇yE

3(f )
∣∣ =

∣∣∣E3
(∇yf

)+
∑
x∈3

Jx,yE
3(f ; σx)

∣∣∣
≤
∣∣∣E3

(∇yf
)∣∣∣+ ‖J‖ sup

x∈3
d(x,y) ≤ R

∣∣∣E3(f ; σx)

∣∣∣
and that∣∣∣∇y

√
E3(f 2)

∣∣∣ = ∣∣ 1
2E3(f 2)−1/2∇yE

3(f 2)
∣∣

=
∣∣∣∣∣12E3(f 2)−1/2

(
2E3

(
f ∇yf

)+
∑
x∈3

Jx,yE
3(f 2; σx)

)∣∣∣∣∣
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≤ 1
2E3(f 2)−1/2

(
2E3

(
f 2
)1/2

E3
(|∇yf |2)1/2

+‖J‖ sup
x∈3

d(x,y) ≤ R

∣∣E3(f 2; σx)
∣∣ )

= E3
(|∇yf |2)1/2

+ 1
2E3(f 2)−1/2‖J‖ sup

x∈3
d(x,y) ≤ R

∣∣E3(f 2; σx)
∣∣ .

By (3.21) and (3.23), the proof of (3.22) and (3.24) comes down to that of
(3.19) and (3.20).

To prove (3.19), recall that we have defined mesuresE3,q ,E3\1
3,q andE3,+

respectively by (1.33) and (1.37) and (1.35). The correlation E3(f ; σx) can
be expressed in terms of these measures as follows;

E3(f ; σx) = 1
2

∫
E3 ⊗ E3(dσ 1dσ 2)

(
σ 1

x − σ 2
x

) (
f (σ 1) − f (σ 2)

)
= 1√

2

∫
E3,+(dq)

∫
E3,q(dp)

(
f

(
q + p√

2

)
− f

(
q − p√

2

))
px

= 1√
2

∫
E3,+(dq)

∫
E3,q(dp)

·
(

f

(
q + p√

2

)
− f

(
q − p√

2

))
E

3\1,p

3,q (px) (3.25)

On the other hand, we have from (2.1) that

∣∣∣E3\1,p

3,q (px)

∣∣∣ ≤ 2B2.1|1|
(

1 +
∑
z∈1

|pz|
)

exp

(
−d(x, 1)

C2.1

)

Plugging this into (3.25), we see that

|E3(f ; σx)| ≤
√

2B2.1|1| exp

(
−d(x, 1)

C2.1

)(
I1(f ) +

∑
z∈1

I2(f, z)

)
,

(3.26)
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where

I1(f ) = ∫
E3,+(dq)

∫
E3,q(dp)

∣∣∣∣f (q + p√
2

)
− f

(
q − p√

2

)∣∣∣∣
= ∫

E3 ⊗ E3(dσ 1dσ 2)
∣∣f (σ 1) − f (σ 2)

∣∣ , (3.27)

I2(f, z) = ∫
E3,+(dq)

∫
E3,q(dp)

∣∣∣∣f (q + p√
2

)
− f

(
q − p√

2

)∣∣∣∣ |pz|

= 1√
2

∫
E3 ⊗ E3(dσ 1dσ 2)

∣∣(f (σ 1) − f (σ 2)
) (

σ 1
z − σ 2

z

)∣∣ (3.28)

We first observe that

I2(f, z) ≤ 1√
2
I3(f )1/2I4(f, z)1/2, (3.29)

where

I3(f ) = ∫
E3 ⊗ E3(dσ 1dσ 2)

∣∣f (σ 1) − f (σ 2)
∣∣2 ,

I4(f, z) = ∫
E3 ⊗ E3(dσ 1dσ 2)

∣∣σ 1
z − σ 2

z

∣∣2 ,

The integrals I1(f ) and I3(f ) can be estimated as follows;

I1(f ) ≤ I3(f )1/2 ≤ 2(E3
∣∣f − E3f

∣∣2)1/2

= 2E3(f ; f )1/2 (3.30)

On the other hand, it follows from (3.1) and Jensen inequality that

I4(f, z) ≤ C3.31 (3.31)

for some C3.31 = C3.31(C3.1(1)) ∈ (0, ∞). Putting (3.29), (3.30) and (3.31)
together, we obtain

I1(f ) +
∑
z∈1

I2(f, z) ≤ I1(f ) + 1√
2
I3(f )1/2

∑
z∈1

I4(f, z)1/2

≤ 2E3(f ; f )1/2(1 + C
1/2
3.31|1|)

which, in conjunction with (3.26), implies (3.19).
The proof of (3.20) is similar to that of (3.19). We see from (3.26) that

|E3(f 2; σx)| ≤
√

2B2.1|1| exp

(
−d(x, 1)

C2.1

)(
I1(f

2) +
∑
z∈1

I2(f
2, z)

)
.

(3.32)
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We first observe that

I1(f
2) = ∫

E3 ⊗ E3(dσ 1dσ 2)∣∣f (σ 1)2 − E3(f )2 − (
f (σ 2)2 − E3(f )2

)∣∣
≤ 2E3(f ; f )1/2E3(f 2)1/2. (3.33)

Next, we have by Schwartz inequality that

I2(f
2, z) ≤ 1√

2
I3(f )1/2I5(f, z)1/2 , (3.34)

where

I5(f, z) = ∫
E3 ⊗ E3(dσ 1dσ 2)| (f (σ 1) + f (σ 2)

)2 (
σ 1

z − σ 2
z

)2 | .

Let us note that ab ≤ exp(a) + b log b for a, b ≥ 0 and that∫
E3 ⊗ E3(dσ 1dσ 2) exp(

∣∣σ 1
z − σ 2

z

∣∣2)
= 2

∫
E3,+(dq)

∫
E3,q(dp) exp

(|pz|2
)

≤ C3.35 (3.35)

by (3.1), where C3.35 = C3.35(C3.1(1)). We then have that

I5(f, z) ≤ 2
∫
E3 ⊗ E3(dσ 1dσ 2)|f (σ 1)2

(
σ 1

z − σ 2
z

)2 |

= 2E3(f 2)
∫
E3 ⊗ E3(dσ 1dσ 2)

∣∣∣∣(σ 1
z − σ 2

z

)2 f (σ 1)2

E3(f 2)

∣∣∣∣
≤ 2C3.35E

3(f 2) + 2E3

(
f 2 log

f 2

E3(f 2)

)
. (3.36)

Putting (3.30), (3.33), (3.34) and (3.36) together, we obtain

I1(f
2) +

∑
z∈1

I2(f
2, z)

≤ I1(f
2) + 1√

2
I3(f )1/2

∑
z∈1

I5(f, z)1/2

≤ E3(f ; f ) + 2√
2
E3(f ; f )1/2

·
√

2 |1|
(√

C3.35E
3(f 2)1/2 + E3

(
f 2 log

f 2

E3(f 2)

)1/2
)
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≤ C3.37 |1| E3(f 2)1/2

(
E3(f ; f )1/2 + E3

(
f 2 log

f 2

E3(f 2)

)1/2
)

(3.37)

which, in conjunction with (3.32), implies (3.20).

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2 by using lemmas presented in the
previous section. We first consider the case F = A. What we want to prove
is equivalent to that

sup
n ≥ 1

γn < ∞ , (4.1)

where

γn = sup{γSG(3) | |3| ≤ n} . (4.2)

To prove (4.1), it is enough to find some constants C4.3 and N4.3 which
depend only on d, R, U , J, B2.1 and C2.1 such that

γ2n ≤ 4
5γn + C4.3, for n ≥ N4.3 . (4.3)

To this end, we take arbitrary 3 ⊂⊂ Zd with |3| ≤ 2n and 0 < f ∈ C3.
We then choose 30 ⊂ 3 such that max {|30|, |3\30|} ≤ n and define

3j = 30 ∪ {x1, . . . , xj

}
, j = 1, 2, . . . , m , (4.4)

fj = E3j f , (4.5)

3j,k = {x ∈ 3j ; d(x, xj+1) < (k/2) }, k = 0, 1, 2, . . . , (4.6)

fj,k = f, if k ≥ 0 and 3j,k = φ ,

fj,k = E3j,kf, if k ≥ 1 and 3j,k 6= φ , (4.7)

where
{
xj

}m

j=1 is an enumeration of 3\30. We will prove (4.3) after a series
of lemmas.
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Lemma 4.1.

E3(f ; f ) ≤ γnE
3
(|∇30f |2)+ C4.8E

3
(|∇3\30f |2)+ C4.8

m−1∑
j=0

E3Qj (f ) ,

(4.8)
whereC4.8 = C4.8(C3.6(1), ‖J‖) ∈ (0, ∞) and

Qj (f ) = sup
{
E3j (f ; σx)

2; x ∈ 3j, d(x, xj+1) ≤ R
}

. (4.9)

Proof.We first divide the left-hand-side of (4.8) into two terms;

E3 (f ; f ) = E3
(
f 2 − f 2

0

)+ E3
(
f 2

0 − f 2
m

)
. (4.10)

The first term on the right-hand-side can be estimated as follows;

E3
(
f 2 − f 2

0

) = E3E30
(
f 2 − f 2

0

)
≤ γnE

3E30
(|∇30f |2)

= γnE
3
(|∇30f |2) . (4.11)

As for the second term, we have

E3
(
f 2

0 − f 2
m

) =
m−1∑
j=0

E3
(
f 2

j − f 2
j+1

)
=

m−1∑
j=0

E3E3j+1
(
f 2

j − f 2
j+1

)
(4.12)

Note that Sfj
∩ 3j+1 = {

xj+1
}

and hence by (3.6) and (3.21) that

E3j+1
(
f 2

j − f 2
j+1

) ≤ C3.6(1)E3j+1
(|∇xj+1fj |2

)
≤ C4.13E

3j+1
(|∇xj+1f |2)+ C4.13E

3j+1Qj (f ) ,

(4.13)

where C4.13 = C4.13(C3.6(1), ‖J‖). It follows from (4.12) and (4.13) that

E3
(
f 2

0 − f 2
m

) ≤ C4.13E
3
(|∇3\30f |2)+ C4.13

m−1∑
j=0

E3Qj (f ) . (4.14)

By (4.10), (4.11) and (4.14), we conclude (4.8).
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Lemma 4.2.

Qj (f ) ≤ C4.15

∞∑
k=0

exp

(
− k

2C2.1

)
E3j

(
E3j,k+1(f ; f )1/2

)2
, (4.15)

whereC4.15 = C4.15(d, R, C2.1, C3.19) ∈ (0, ∞).

Proof.Suppose that x ∈ 3j and d(x, xj+1) ≤ R. We then have that

E3j (f ; σx)
2 = E3j

(
(f − fj )σx

)2

=
( ∞∑

k=0

E3j
(
(fj,k − fj,k+1)σx

))2

=
( ∞∑

k=0

E3j E3j,k+1(fj,k; σx)

)2

≤ C4.16

∞∑
k=0

(k + 1)2
(
E3j E3j,k+1(fj,k; σx)

)2
(4.16)

Since 3j,k+1 ∩ Sfj,k
⊂ 3j,k+1\3j,k and d(x, 3j,k+1\3j,k) ≥ k

2 − R, it
follows from (3.19) that

∣∣E3j,k+1(fj,k; σx)
∣∣ ≤ C4.17(k + 1)2d exp

(
− k

2C2.1

)
E3j,k+1(fj,k; fj,k)

1/2

(4.17)
where C4.17 = C4.17(R, C3.19). We see from Jensen inequality that

E3j,k+1(fj,k; fj,k) = E3j,k+1
(
f 2

j,k − f 2
j,k+1

)
≤ E3j,k+1

(
f 2 − f 2

j,k+1

)
= E3j,k+1(f ; f ) (4.18)

Putting (4.17) and (4.18) together, we have that

E3j
(
E3j,k+1(fj,k; σx)

)2

≤ C2
4.17(k + 1)4d exp

(
− k

C2.1

)
E3j

(
E3j,k+1(fj,k; fj,k)

1/2
)2

≤ C2
4.17(k + 1)4d exp

(
− k

C2.1

)
E3j

(
E3j,k+1(f ; f )1/2

)2

Plugging this into (4.16), we arrive at (4.15).
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Remark 4.1.This remark will become relevant when we turn to the proof
of Theorem 2.2 for the case F = B(n0). From Remark 3.2 and the proof
of Lemma 4.1 we presented above, we see that (4.15) without the factor
exp (−(k.2C2.1)) in the right-hand-side summation is true when we do not
assume any mixing condition. On the other hand, as will be seen from the
way (4.15) is used later (cf. (4.23) in the proof of Lemma 4.3), the factor
exp (−(k/2C2.1)) in the right-hand-side summation of (4.15) are used only
for sufficiently large k’s. It is thus sufficient for us to require (3.19)–(3.22)
to be valid only for 3 = 3j,k with sufficiently large k’s.

Lemma 4.3. For k0 = 1, 2, . . . , bn1/dc − 1,

E3 (f ; f ) ≤ γnE
3
(|∇30f |2)+ γnC4.19 exp

(
− k0

3C2.1

)
E3

(|∇3f |2)
+D4.19E

3
(|∇3f |2)+ C4.19 exp

(
− n1/d

3C2.1

)
E3 (f ; f )

(4.19)

whereC4.19 = C4.19(d, U, J, B2.1, C2.1)andD4.19 = D4.19(k0, d, U, J, B2.1,

C2.1).

Proof.We see from (4.15) that

m−1∑
j=0

E3Qj (f ) ≤ C4.15

∞∑
k=0

exp

(
− k

2C2.1

) m−1∑
j=0

E3E3j,k+1(f ; f ) . (4.20)

Let us first note that E3E3j,k+1(f ; f ) has the following two upper bounds;

γ(k+1)d E
3
(|∇3j,k+1f |2) , E3(f ; f ) . (4.21)

The first bound in (4.21) come from (4.2) and the Markov property. In fact,

E3E3j,k+1(f ; f ) ≤ γ(k+1)d E
3E3j,k+1

(|∇3j,k+1f |2)
= γ(k+1)d E

3
(|∇3j,k+1f |2) .

The second bound E3 (f ; f ) in (4.21) can be seen as follows;

E3E3j,k+1(f ; f ) = E3E3j,k+1(f 2) − E3(f 2
j,k+1)

≤ E3(f 2) − E3(f )2

where we have used Jensen inequality and Markov property.
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We will divide the summation in k on the right-hand-side of (4.20) in
three parts as follows;

∞∑
k=0

=
k0−1∑
k=0

+
k1−1∑
k=k0

+
∞∑

k=k1

, (4.22)

where k1 = bn1/dc − 1. We use the first bound in (4.21) to estimate the first
and the second summations in (4.22) as follows;

k0−1∑
k=0

≤
k0−1∑
k=0

exp

(
− k

2C2.1

) m−1∑
j=0

γ(k+1)d E
3
(|∇3j,k+1f |2)

≤
∑
x∈3

E3
(|∇xf |2) k0−1∑

k=0

exp

(
− k

2C2.1

)
γ(k+1)d

∑
j :3j,k+13x

1

≤ C4.23(k0)E
3
(|∇3f |2) . (4.23)

k1−1∑
k=k0

≤
k1−1∑
k=k0

exp

(
− k

2C2.1

) m−1∑
j=0

γnE
3
(|∇3j,k+1f |2)

≤ γnC4.24 exp

(
− k0

3C2.1

)
E3

(|∇3f |2) . (4.24)

Note that γ(k+1)d ≤ C3.6(k
d
0 ) for k ≤ k0 − 1 by Lemma 3.2 and hence

that we can make C4.23(k0) depend only on k0, d, U, J, B2.1 and C2.1. To
estimate the second summation in (4.22), we make use of the second bound
in (4.21);

∞∑
k=k1

≤
∞∑

k=k1

exp

(
− k

2C2.1

) m−1∑
j=0

E3 (f ; f )

≤ C4.25 exp

(
− n1/d

3C2.1

)
E3 (f ; f ) (4.25)

Now, (4.19) can be seen from (4.8), (4.20) and (4.23)–(4.25) .

Proof of (4.3).With Lemma 4.3 in hand, (4.3) can be proved as follows. By
exchanging the role of 30 and 3\30, we have that for k0 ≤ bn1/dc − 1,

E3(f ; f ) ≤ γnE
3
(|∇3\30f |2)+ γnC4.19 exp

(
− k0

3C2.1

)
E3
(|∇3f |2)

+D4.19E
3
(|∇3f |2) s + C4.19 exp

(
− n1/d

3C2.1

)
E3(f ; f ) ,

(4.26)
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and hence by averaging (4.19) and (4.26) that

E3 (f ; f ) ≤ γn

2
E3

(|∇3f |2)+ γnC4.19 exp

(
− k0

3C2.1

)
E3

(|∇3f |2)
+D4.19E

3
(|∇3f |2)+ C4.19 exp

(
− n1/d

3C2.1

)
E3 (f ; f ) .

(4.27)

Since our choice of 3 and 0 < f ∈ C3 was arbitrary as long as |3| ≤ 2n,
we see from (4.27) that

γ2n ≤
(

1
2 + C4.19 exp

(
− k0

3C2.1

))
γn + D4.19

1 − C4.19 exp
(
− n1/d

3C2.1

) . (4.28)

At this point, we choose k0 such that 1
2 + C4.19 exp (−(k0/3C2.1)) < 3

5 . We
then have (4.3) with C4.3 = 4

3D4.19, whenever 1−C4.19 exp
(−(n1/d/3C2.1)

)
≥ 3

4 .

Proof of Theorem 2.2.for F = B(n0): We modify the proof for the case
F = A as follows. The goal is equivalent to that;

sup
n0 ≤ ni<∞

γ (n1, . . . , nd) < ∞ , (4.29)

where

γ (n1, . . . , nd)

= sup

{
γSG(3); 3 is a generalized box with size (m1, . . . , md),

n0 ≤ mi ≤ ni, 1 ≤ i ≤ d

}
(4.30)

To prove (4.29), it is enough to find some constants C4.31 and N4.31 which
depend only on d, R, U , J, n0, B2.1 and C2.1 such that

γ (2n1, n2, . . . , nd) ≤ 4
5γ (n1, n2, . . . , nd) + C4.31 , (4.31)

for ni ≥ N4.31. To this end, we take arbitrary 3 ∈ B(n0) with the size
at most (2n1, n2, . . . , nd) and 0 < f ∈ C3. We then decompose 3 into
30 ∈ B(n0) and 3\30 ∈ B(n0) such that both of them are of the size
at most (n1, n2, . . . , nd). We can now choose an enumeration

{
xj

}m

j=1 of
3\30 so that 3j ∈ B(n0) for all j = 1, . . . , m, where 3j is defined by
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(4.4). Note also that 3j,k ∈ B(n0) for k > 2n0, where 3j,k is defined by
(4.6). We thus see that the proof of (4.3) for the case F = A works almost
without change (Recall that we need to apply (3.19)–(3.22) to the set 3j,k

with k > 2n0, cf. Remark 4.1.

5. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 by using Theorem 2.2 as well as
lemmas presented in Section 3. The basic strategy is the same as that in the
proof of Theorem 2.2. We first consider the case F = A. What we want to
prove is equivalent to that

sup
n ≥ 1

γn < ∞ , (5.1)

where

γn = sup {γLS(3) | |3| ≤ n} . (5.2)

To prove (5.1), it is enough to find some constants C5.3 and N5.3 which
depend only on d, R, U , J, B2.1 and C2.1 such that

γ2n ≤ 4
5γn + C5.3, for n ≥ N5.3 . (5.3)

To this end, we take arbitrary 3 ⊂⊂ Zd with |3| ≤ 2n and 0 < f ∈ C3.
We then choose 30 ⊂ 3 such that max {|30|, |3\30|} ≤ n and define

3j = 30 ∪ {x1, . . . , xj

}
, j = 1, 2, . . . , m , (5.4)

fj =
√

E3j (f 2) , (5.5)

3j,k = {x ∈ 3j ; d(x, xj+1) < (k/2) }, k = 0, 1, 2, . . . , (5.6)

fj,k = f, if k ≥ 0 and 3j,k = φ ,

fj,k =
√

E3j,k (f 2), if k ≥ 1 and 3j,k 6= φ , (5.7)

where {xj }mj=1 is an enumeration of 3\30. We will prove (5.3) after a series
of lemmas.

Lemma 5.1.

E3

(
f 2 log

f 2

E3
(
f 2
)) ≤ γnE

3
(|∇30f |2)+ C5.8E

3
(|∇3\30f |2)

+C5.8

m−1∑
j=0

E3

(
Rj (f )

f 2
j

)
, (5.8)
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whereC5.8 = C5.8(C3.6(1), ‖J‖) ∈ (0, ∞) and

Rj (f ) = sup
{
E3j (f 2; σx)

2; x ∈ 3j, d(x, xj+1) ≤ R
}

. (5.9)

Proof.We first divide the left-hand-side of (5.8) into two terms;

E3

(
f 2 log

f 2

E3
(
f 2
)) = E3

(
f 2 log

f 2

f 2
0

)
+E3

(
f 2 log

f 2
0

f 2
m

)
. (5.10)

The first term on the right-hand-side can be estimated as follows;

E3

(
f 2 log

f 2

f 2
0

)
= E3E30

(
f 2 log

f 2

f 2
0

)
≤ γnE

3E30
(|∇30f |2)

= γnE
3
(|∇30f |2) . (5.11)

As for the second term, we have

E3

(
f 2 log

f 2
0

f 2
m

)
=

m−1∑
j=0

E3
(
f 2

j log f 2
j − f 2

j+1 log f 2
j+1

)
=

m−1∑
j=0

E3
(
f 2

j log f 2
j − E3j+1(f 2

j ) log f 2
j+1

)
=

m−1∑
j=0

E3E3j+1

(
f 2

j log
f 2

j

f 2
j+1

)
. (5.12)

Note that Sfj
∩ 3j+1 = {

xj+1
}

and hence by (3.6) and (3.23) that

E3j+1

(
f 2

j log
f 2

j

f 2
j+1

)
≤ C3.6(1)E3j+1

(|∇xj+1fj |2
)

≤ C5.13E
3j+1

(|∇xj+1f |2)+ C5.13
Rj (f )

f 2
j

, (5.13)

where C5.13 = C5.13(C3.6(1), ‖J‖) ∈ (0, ∞). It follows from (5.12) and
(5.13) that

E3

(
f 2 log

f 2
0

f 2
m

)
≤ C5.13E

3
(|∇3\30f |2)+ C5.13

m−1∑
j=0

E3

(
Rj (f )

f 2
j

)
.

(5.14)
By (5.10), (5.11) and (5.14), we conclude (5.8).
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Lemma 5.2.

Rj (f )

f 2
j

≤ C5.15

∞∑
k=0

exp

(
− k

2C2.1

)

E3j

(
|∇3j,k+1f |2 + f 2 log

f 2

f 2
j,k

+ f 2 log
f 2

f 2
j,k+1

)
, (5.15)

whereC5.15 = C5.15(d, R, C2.1, C2.5, C3.19) ∈ (0, ∞).

Proof. Suppose that x ∈ 3j and d(x, xj+1) ≤ R. We then have that

E3j (f 2; σx)
2 = E3j

((
f 2 − f 2

j

)
σx

)2

=
( ∞∑

k=0

E3j
((

f 2
j,k − f 2

j,k+1

)
σx

))2

=
( ∞∑

k=0

E3j E3j,k+1
(
f 2

j,k; σx

))2

≤ C5.16

∞∑
k=0

(k + 1)2E3j
(
E3j,k+1

(
f 2

j,k; σx

))2
(5.16)

Since 3j,k+1 ∩ Sfj,k
⊂ 3j,k+1\3j,k and d(x, 3j,k+1\3j,k) ≥ k

2 − R, it
follows from (3.20) that

∣∣E3j,k+1
(
f 2

j,k; σx

)∣∣ ≤ C5.17(k +1)2d exp

(
− k

2C2.1

)
fj,k+1

(
I

1/2
1 + I

1/2
2

)
,

(5.17)
where C5.17 = C5.17(R, C3.19),

I1 = E3j,k+1
(
fj,k; fj,k

)
and I2 = E3j,k+1

(
f 2

j,k log
f 2

j,k

f 2
j,k+1

)
.

I1 can be estimated as follows;

I1 ≤ C2.5E
3j,k+1

(|∇3j,k+1fj,k|2
)

(5.18)

≤ 2C2.5E
3j,k+1

(|∇3j,k+1f |2)+ C5.19(k + 1)5d

(
E3j,k+1(f ; f ) + E3j,k+1

(
f 2 log

f 2

f 2
j,k

))
(5.19)
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≤ C5.20(k + 1)5d

(
E3j,k+1

(|∇3j,k+1f |2)
+E3j,k+1

(
f 2 log

f 2

f 2
j,k

))
. (5.20)

Here, we have used (2.5) in both (5.18) and (5.20), whereas (5.19) is an
application of (3.24). On the other hand, we see from Jensen inequality that

I2 ≤ E3j,k+1

(
f 2 log

f 2

f 2
j,k+1

)
. (5.21)

Putting (5.17), (5.20) and (5.21) together, we have that

E3j
(
E3j,k+1(f 2

j,k; σx)
)2

≤ C2
5.17(k + 1)4d exp

(
− k

C2.1

)
E3j

(
fj,k+1

(
I

1/2
1 + I

1/2
2

))2

≤ 2C2
5.17(k + 1)4d exp

(
− k

C2.1

)
f 2

j E3j (I1 + I2)

≤ C5.22(k + 1)9d exp

(
− k

C2.1

)
·f 2

j E3j

(
|∇3j,k+1f |2 + f 2 log

f 2

f 2
j,k

+ f 2 log
f 2

f 2
j,k+1

)
. (5.22)

Plugging this into (5.16), we arrive at the following bound;

E3j (f 2; σx)
2

f 2
j

≤ C5.23

∞∑
k=0

(k + 1)9d+2 exp

(
− 2k

C2.1

)

×E3j

(
|∇3j,k+1f |2 + f 2 log

f 2

f 2
j,k

+ f 2 log
f 2

f 2
j,k+1

)
,

(5.23)

which proves (5.15).

Remark 5.1.This remark will become relevant when we turn to the proof
of Theorem 2.1 for the case F = B(n0). From Remark 3.2 and the proof
of Lemma 5.1 we presented above, we see that (5.15) without the factor
exp

(
− k

C2.1

)
in the right-hand-side summation is true when we do not assume

any mixing condition. On the other hand, as will be seen from the way (5.15)
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is used later (cf. (5.28) in the proof of Lemma 5.3), the factor exp
(
− k

C2.1

)
in

the right-hand-side summation of (5.15) are used only for sufficiently large
k’s. It is thus sufficient for us to require (3.19)–(3.22) to be valid only for
3 = 3j,k with sufficiently large k’s.

Lemma 5.3. For k0 = 1, 2, . . . , bn1/dc − 1,

E3

(
f 2 log

f 2

E3(f 2)

)
≤ γnE

3
(|∇30f |2)+ γnC5.24 exp

(
− k0

3C2.1

)
E3

(|∇3f |2)
+ D5.24E

3
(|∇3f |2)

+C5.24 exp

(
− n1/d

3C2.1

)
E3

(
f 2 log

f 2

E3(f 2)

)
(5.24)

whereC5.24 = C5.24(d, U, J, B2.1, C2.1)andD5.24 = D5.24(k0, d, U, J, B2.1,

C2.1).

Proof. We see from (5.15) that

m−1∑
j=0

E3

(
Rj (f )

f 2
j

)
≤ C5.15

∞∑
k=0

exp

(
− k

2C2.1

)

·
m−1∑
j=0

E3

(
|∇3j,k+1f |2 + f 2 log

f 2

f 2
j,k

+ f 2 log
f 2

f 2
j,k+1

)
. (5.25)

Let us first note that E3(f 2 log(f 2/f 2
j,k) + f 2 log(f 2/f 2

j,k+1)) has the fol-
lowing two upper bounds;

2γ(k+1)d E
3
(|∇3j,k+1f |2) , 2E3

(
f 2 log

f 2

E3(f 2)

)
. (5.26)

The first bound in (5.26) comes from (5.2) and the Markov property. For
example,

E3

(
f 2 log

f 2

f 2
j,k

)
≤ E3E3j,k

(
f 2 log

f 2

f 2
j,k

)
≤ γkd E3E3j,k

(|∇3j,k
f |2)

= γkd E3
(|∇3j,k

f |2) .
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The second bound E3(f 2 log(f 2/E3(f 2))) in (5.26) can be seen as follows;

E3

(
f 2 log

f 2

f 2
j,k

)
= E3

(
f 2 log(f 2)

)− E3
(
f 2 log(f 2

j,k)
)

= E3
(
f 2 log(f 2)

)− E3
(
f 2

j,k log(f 2
j,k)
)

≤ E3
(
f 2 log(f 2)

)− E3(f 2) log E3(f 2) ,

where we have used Jensen inequality and Markov property in the last line.
We will divide the summation in k on the right-hand-side of (??) in three

parts as follows;
∞∑

k=0

=
k0−1∑
k=0

+
k1−1∑
k=k0

+
∞∑

k=k1

, (5.27)

where k1 = bn1/dc − 1. We use the first bound in (5.26) to estimate the first
and the second summations in (5.27) as follows;

k0−1∑
k=0

≤
k0−1∑
k=0

exp

(
− k

2C2.1

) m−1∑
j=0

(
1 + 2γ(k+1)d

)
E3

(|∇3j,k+1f |2)
≤
∑
x∈3

E3
(|∇xf |2) k0−1∑

k=0

exp

(
− k

2C2.1

) (
1 + 2γ(k+1)d

) ∑
j :3j,k+13x

1

≤ C5.28(k0)E
3
(|∇3f |2) . (5.28)

k1−1∑
k=k0

≤
k1−1∑
k=k0

exp

(
− k

2C2.1

) m−1∑
j=0

(1 + 2γn) E3
(|∇3j,k+1f |2)

≤ (1 + 2γn) C5.29 exp

(
− k0

3C2.1

)
E3

(|∇3f |2) . (5.29)

Note that γ(k+1)d ≤ C3.6(k
d
0 ) for k ≤ k0 − 1 by Lemma 3.2 and hence

that we can make C5.28(k0) depend only on k0, d, U, J, B2.1 and C2.1. To
estimate the second summation in (5.27), we make use of the second bound
in (5.26);

∞∑
k=k1

≤
∞∑

k=k1

exp

(
− k

2C2.1

)

×
m−1∑
j=0

(
E3

(|∇3j,k+1f |2)+ 2E3

(
f 2 log

f 2

E3(f 2)

))
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≤ C5.30E
3
(|∇3f |2)+ C5.30 exp

(
− n1/d

3C2.1

)
×E3

(
f 2 log

f 2

E3(f 2)

)
(5.30)

Now, (5.24) can be seen from (5.8), (??) and (5.28)–(5.30).

Proof of (5.3).With Lemma 5.3 in hand, (5.3) can be proved in the same
way as we derived (4.3) from Lemma 4.3.

6. Proof of Proposition 2.3 and Theorem 2.4

In this section, we prove Proposition 2.3 and Theorem 2.4. The proof of
Proposition 2.3 is based on the two lemmas presented below.

Lemma 6.1. For W ⊂ 3 and for p̄i ∈ R3 (i = 1, 2), there exists a
measureEW,p̄1,p̄2 ∈ K(E

W,p̄1

3,q ,E
W,p̄2

3,q ) such that∑
z∈W∩(x+V )

f W,p̄1,p̄2

z ≤
∑

z

Kx,zf
W,p̄1,p̄2

z , (6.1)

where

f W,p̄1,p̄2

z = ∫
EW,p̄1,p̄2

(dp1dp2)|p1
z − p2

z | . (6.2)

Proof. Let us take EW,p̄1,p̄2 ∈ K(E
W,p̄1

3,q ,E
W,p̄2

3,q ) which attains the Vasser-

shtein distance of EW,p̄i

3,q (i = 1, 2), i.e.,∑
z∈W

f W,p̄1,p̄2

z = RW(E
W,p̄1

3,q ,E
W,p̄2

3,q ) . (6.3)

The existence of such measure is guaranteed by the compactness of the set
K(E

W,p̄1

3,q ,E
W,p̄2

3,q ) and the fact that the map µ 7→ ∫
µ(dp1dp2)|p1

z − p2
z |

from M1(RW × RW) to [0, ∞) is lower semi-continuous.
We next take a measure

Ê
x
(·|p̂1, p̂2) ∈ K(E

W∩(x+V ),p̂1

3,q ,E
W∩(x+V ),p̂2

3,q )

in such a way that it attains the Vassershtein distance of E
W∩(x+V ),p̂i

3,q

(i = 1, 2), i.e.,

RW∩(x+V )(E
W∩(x+V ),p̂1

3,q ,E
W∩(x+V ),p̂2

3,q )

= ∫
Ê

x (
dp1dp2|p̂1, p̂2

) ∑
z∈W∩(x+V )

|p1
z − p2

z | , (6.4)
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and that the map (p̂1, p̂2) 7→ Ê
x
(·|p̂1, p̂2) from R3 × R3 to

M1(RW∩(x+V ) ×RW∩(x+V )) is measurable. The possibility of such measur-
able selection can be shown as an apllication of [SV79, Theorem 12.1.10].
(Use also Lemma 12.1.7 in that book to check that the set of minimizers
of the Vassershtein distance of E

W∩(x+V ),p̂i

3,q (i = 1, 2) is measurable as a
set-valued function of (p̂1, p̂2)).

We now define a measure Ẽ
x,p̄1,p̄2 ∈ M1(RW × RW) by

Ẽ
x,p̄1,p̄2

(A × B) = ∫
A
EW,p̄1,p̄2

(dp̂1dp̂2)
∫

B
Ê

x
(dp1dp2|p̂1, p̂2) ,

where A ⊂ RW\(x+V ) × RW\(x+V ) and B ⊂ R(x+V )∩W × R(x+V )∩W . It
follows from the above definition that

Ẽ
x,p̄1,p̄2 ∈ K

(
E

W,p̄1

3,q ,E
W,p̄2

3,q

)
, (6.5)

Ẽ
x,p̄1,p̄2 = Ex,p̄1,p̄2

on RW\(x+V ) × RW\(x+V ). (6.6)

To see (6.1), it is sufficient to prove that∑
z∈W∩(x+V )

f W,p̄1,p̄2

z ≤
∑

z∈W∩(x+V )

f̃ x,p̄1,p̄2

z , (6.7)∑
z∈W∩(x+V )

f̃ x,p̄1,p̄2

z ≤
∑

z

Kx,zf
W,p̄1,p̄2

z , (6.8)

where

f̃ x,p̄1,p̄2

z = ∫
Ẽ

x,p̄1,p̄2

(dp1dp2)|p1
z − p2

z | . (6.9)

The first inequality (6.7) can be seen as follows. Since (6.6) implies that
f

x,p̄1,p̄2

z = f̃
x,p̄1,p̄2

z for z 6∈ W ∩ (x + V ), we have from this, (6.3) and (6.5)
that ∑

z∈W∩(x+V )

(f W,p̄1,p̄2

z − f̃ x,p̄1,p̄2

z ) =
∑
z∈W

(f W,p̄1,p̄2

z − f̃ x,p̄1,p̄2

z )

≤
∑
z∈W

f W,p̄1,p̄2

z − RW(E
W,p̄1

3,q ,E
W,p̄2

3,q )

= 0.

To prove the second inequality (6.8), we will use (6.4) and (2.8) as follows;
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∑
z∈W∩(x+V )

f̃ x,p̄1,p̄2

z = ∫
EW,p̄1,p̄2

(dp̂1dp̂2)
∫
Ê

x,p̄1,p̄2

(dp1dp2|p̂1, p̂2)

×
∑

z∈W∩(x+V )

|p1
z − p2

z |

≤ ∫
EW,p̄1,p̄2

(dp̂1dp̂2)
∑

z

Kx,z|p̂1
z − p̂2

z |

=
∑

z

Kx,zf
W,p̄1,p̄2

z .

This completes the proof of Lemma 6.1.

Lemma 6.2. For anyA ⊂ W ⊂ 3, L ≥ 1 and p̄i ∈ R3 (i = 1, 2) with
p̄1 ≡ p̄2 off y∑
z∈W

f W,p̄1,p̄2

z exp

(
−d(z, A)

C6.10

)
≤ B6.10

∑
z∈W

d(z,y) ≤ L+D6.10

f W,p̄1,p̄2

z exp

(
−d(z, A)

C6.10

)

+B6.10

∑
z;d(z,y)>L

Kz,y |p̄1
y − p̄2

y |

× exp

(
−d(z, A)

C6.10

)
, (6.10)

wheref
W,p̄1,p̄2

z is defined by(6.2), D6.10 = diam(V ∪ ∂RV ), B6.10 =
B6.10(R, V, ε2.8) and C6.10 = C6.10(R, V, ε2.8). In addition, by (2.7), the
second term on the right-hand-side of(6.10) is zero whenL ≥ D6.10.

Proof. We set ex = exp (−(d(x, A)/C6.10)), whereC6.10 = C6.10(R, V, ε2.8)

is choosen so large that

C6.11
def.= exp

(
−D6.10

C6.10

)
− ε2.8 exp

(
D6.10

C6.10

)
> 0 . (6.11)

We then define l0
z = ∑

x:x+V 3z ex , l1
z = ∑

x exKx,z, lz = l0
z − l1

z and
rz = ∑

x:x+V 3z
d(x,y)≤ L

ex . Let us first prove that

∑
z∈W

f W,p̄1,p̄2

z lz ≤
∑
z∈W

f W,p̄1,p̄2

z rz +
∑

z:d(z,y)≥ L

ezKz,y |p̄1
y − p̄2

y | . (6.12)

We have by (6.1) that
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∑
x:d(x,y)>L

ex

∑
z∈W∩(x+V )

f W,p̄1,p̄2

z

≤
∑

x:d(x,y)>L

ex

∑
z∈W

Kx,zf
W,p̄1,p̄2

z +
∑

x:d(x,y)>L

exKx,y |p̄1
y − p̄2

y | . (6.13)

Since ∑
x:d(x,y)>L

ex

∑
z∈W∩(x+V )

f W,p̄1,p̄2

z =
∑
z∈W

f W,p̄1,p̄2

z

∑
x:d(x,y)>L

x+V 3z

ex

=
∑
z∈W

f W,p̄1,p̄2

z

(
l0
z − rz

)
,∑

x:d(x,y)>L

ex

∑
z∈W

Kx,zf
W,p̄1,p̄2

z ≤
∑
z∈W

f W,p̄1,p̄2

z l1
z ,

it follows from (6.13) that

∑
z∈W

f W,p̄1,p̄2

z

(
l0
z − rz

) ≤
∑
z∈W

f W,p̄1,p̄2

z l1
z +

∑
x:d(x,y)>L

exKx,y |p̄1
y − p̄2

y | ,

which is equivalent to (6.12).
Let us next prove that

rz ≤ C6.14ez , (6.14)

rz = 0 if d(z, y) > L + D6.10 , (6.15)

lz ≥ C6.16ez , (6.16)

where C6.14, C6.16 ∈ (0, ∞) depend only on R, V and ε2.8. To verify (6.14)
and (6.15), note first that an easy to prove fact that

exp

(
−D6.10

C6.10

)
≤ ex

ez

≤ exp

(
D6.10

C6.10

)
if d(x, z) ≤ D6.10 . (6.17)

We thus see that

rz ≤ exp

(
D6.10

C6.10

)
ez

∑
x:x+V 3z
d(x,y)≤ L

1 ,

which proves (6.14) and (6.15).
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On the other hand, it follows from (6.17) and (2.8) that

lz ≥ ez

exp

(
−D6.10

C6.10

) ∑
x:x+V 3z

1 − exp

(
D6.10

C6.10

)∑
x∈Zd

Kx,z


≥ ez

{
exp

(
−D6.10

C6.10

)
|V | − exp

(
D6.10

C6.10

)
ε2.8|V |

}
= C6.11|V |ez , (6.18)

which proves (6.16).
By plugging (6.14), (6.15) and (6.16) into (6.12), we obtain (6.10).

Proof of Proposition 2.3.Suppose that A ⊂ W ⊂ 3. We denote by (E
W,p̄

3,q )A

the restriction of EW,p̄

3,q to RA. Let EW,p̄1,p̄2 ∈ K(E
W,p̄1

3,q ,E
W,p̄2

3,q ) be the mea-
sure we have found in Lemma 6.1. Note that the restriction of EW,p̄1,p̄2

to
RA × RA is an element of K((E

W,p̄1

3,q )A, (E
W,p̄2

3,q )A). We thus have that∣∣∣∣∣∑
z∈A

(
E

W,p̄1

3,q (pz) − E
W,p̄2

3,q (pz)
)∣∣∣∣∣

≤ RA

((
E

W,p̄1

3,q

)
A

,
(
E

W,p̄2

3,q

)
A

)
≤
∑
z∈A

EW,p̄1,p̄2 (|p1
z − p2

z |
)

≤
∑
z∈W

EW,p̄1,p̄2 (|p1
z − p2

z |
)

exp

(
−d(z, A)

C6.10

)
≤ B6.10

∑
z∈W

d(z,y)≤ 2D6.10

EW,p̄1,p̄2 (|p1
z − p2

z |
)

exp

(
−d(z, A)

C6.10

)
.

(6.19)

Here, in passage to the last line, we have used (6.10) with L = D6.10

(and thus without the second term on the right-hand-side of (6.10)). To
proceed from (6.19), note that we have d(z, A) ≥ d(y, A) − 2D6.10 in the
exponential in (6.19) and that by (3.1),

EW,p̄1,p̄2 (|p1
z − p2

z |
) ≤ E

W,p̄1

3,q (|pz|) + E
W,p̄2

3,q (|pz|)

≤ C3.1(4 +
∑

w∈3∩∂RW

(|p̄1
w| + |p̄2

w|)) . (6.20)

Plugging these into (6.19), we conclude that
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∣∣∣∣∣∑
z∈A

(
E

W,p̄1

3,q (pz) − E
W,p̄2

3,q (pz)
)∣∣∣∣∣ ≤ C6.21

1 +
∑

y∈3∩∂RW

(|p̄1
y | + |p̄2

y |
)

× exp

(
−d(y, A)

C6.10

)
. (6.21)

The mixing condition (2.1) can be obtained as a special case of A = {z}.
Proof of Theorem 2.4By Theorem 2.1 and Proposition 2.3, it is sufficient for
us to prove part (a)of the theorem. It can be seen from the same computation
as in the proof of [COPP78, Theorem 2.3] that

Rx

(
E

x,p̄1

3,q ,E
x,p̄2

3,q

)
≤
∑

y

Kx,y |p̄1
y − p̄2

y | (6.22)

for all x ∈ W and p̄i ∈ R3 (i = 1, 2), where

Kx,y =
{

0, if x = y,
Jx,y supp̄∈R3 E

x,p̄

3,q(px; px), if x 6= y .
(6.23)

If we set V = {0} and define K = (Kx,y ≥ 0 : x, y ∈ Zd) by (6.23), then
we have (2.7) and (2.9). To see that (2.8) is satisfied if supx

∑
y:y 6=x

Jx,y is

small enough, it is sufficient to prove that

E
x,p̄

3,q(px; px) ≤ C6.24, (6.24)

where C6.24 = C6.24(U) ∈ (0, ∞). In fact, (6.22) and (6.24) imply that

sup
y

∑
x

Kx,y ≤ C6.24 sup
x

∑
y:y 6=x

Jx,y

and therefore that (2.8) is true if supx

∑
y:y 6=x Jx,y < min

{
1, C−1

6.24

}
.

The proof of (6.24) can be given as an application of the log-Sobolev
inequality to the measure E

x,p̄

3,q as follows. We begin by decomposing U into
V and W as in (1.10)–(1.13), where the parameter m > 0 is arbitrary. We
then have by (1.38) that

H
x,p̄

3,q(px) = U(px, qx) − px

∑
y∈3\x

Jx,yp̄y

= V(px, qx) + W(px, qx) , (6.25)

where U(px, qx) = U((qx + px)
√

2) + U((qx − px)/
√

2), V(px, qx) =
V ((qx + px)/

√
2) + V ((qx − px)/

√
2) − px

∑
y∈3\x Jx,yp̄y , and

W(px, qx) = W((qx + px)/
√

2) + W((qx − px)/
√

2). Since (∂2/∂p2
x)



The log-Sobolev inequality for weakly coupled lattice fields 39

V(px, qx) ≥ m and |W(px, qx)| ≤ 2‖W‖∞, we see from the Bakry-
Emery criterion together with a comparison argument ([HS87, Lemma 5.1],
cf. proof of Lemma 3.2) that

E
x,p̄

3,q

(
f 2 log

f 2

E
x,p̄

3,q(f
2)

)
≤ γE

x,p̄

3,q

(∣∣∣ ∂f

∂px

∣∣∣2) (6.26)

for all f ∈ C{x} with γ = 2 exp(16‖W‖∞)/m. It is well known that (6.26)
implies that

E
x,p̄

3,q (f ; f ) ≤ γ

2 E
x,p̄

3,q

(∣∣∣ ∂f

∂px

∣∣∣2) (6.27)

for all f ∈ C{x} (See [DS89, Corollary 6.1.17]). Putting f (px) = px in
(6.27), we get (6.24) with C6.24 = γ

2 .
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