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Abstract. We consider a ferromagnetic spin system with unbounded inter-
actions on the d-dimensional integer lattice (¢ > 1). Under mild assump-
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1. Introduction

In this paper we address a question of understanding the ergodic property
of unbounded lattice spin systems. We will consider a random field on Z¢
described by the formal Hamiltonian

H(a):—% > Jeyowoy+ Y (Uey) —hoy) . (LD

x,yezd xezd

where o, € R is the spin at the site x € Z¢, J,. y are finite range, ferromag-
netic coupling constants (cf. (1.18)—(1.21) below), 7, € R and U(s) is a
function which diverges to 4-oo faster than any constant multiple of s as
Is| /" oo.

Literatures on the equilibrium statistical mechanics for models of this
kind are vast and their phase structure are fairly well understood in some
cases (See [FSS76], [COPP78] and [BHS82] for example and references
therein). On the other hand, from the view point of probability theory, it
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seems very natural to be interested in the time evolution of the model, or
more specifically, the associated stochastic dynamics called Glauber dy-
namics. Glauber dynamics is a natural model to describe the way a given
configuration relaxes to equilibrium as time goes by. Therefore, its ergodic
properties are very interesting subject to work on. The study of such dy-
namical theory for unbounded spin systems seems to be in a much more
primitive stage as compared with that for models with compact spin spaces,
but it begins to capture the attentions of many probabilists in recent years.
A key to rapid progresses in the study of dynamical lattice spin systems
with compact spin spaces was the log-Sobolev inequality (See [SZ92],

[LY93], [MO94] and references therein). Although the proof of the log-

Sobolev inequality for unbounded spin systems are much harder, it has

become increasingly feasible in view of some successful examples. The

simplest case is when one can apply the Bakry-Emery I'; criterion ([BE85])
of log-Sobolev inequality. The I'; criterion is applicable to continuous spin
systems when the Hamiltonian of the model is a strictly convex function.

This is in particular the case with the Hamiltonian (1.1) when inf U” is

positive (To be precise, inf U” > —A(J) is enough. cf. (1.21) below). In

[Z296], the log-Sobolev inequality is extended beyond the applicability re-

gion of the I';-criterion. In fact, the results in [Z96] are applicable to (1.1)

even when U” can take large negative values and we see that the log-Sobolev

inequality is true in at least the following two cases;

(@) d =1 (cf. [296, Theorem 4.1]),

(b)y d > 2, Jy , are large enough and U is a small perturbation from a
strictly convex function in the sense of the sup-norm (cf. paragraphs
following [Z96, Proposition 5.2]).

In this article, we mainly consider the restriction of the lattice field de-

scribed by the Hamiltonian (1.1) to a finite set A in the lattice by imposing

a boundary condition @ € R*°. We prove that, if Jyy’s (x # y) are small

enough, then the log-Sobolev inequality holds uniformly in A and w. This

implies in particular that the (unique) infinite volume tempared DLR-state
also satisfies the log-Sobolev inequality. In view of the corresponding phase
structure (See Theorem 1.1 below), our assumption seems to be one of the
most natural example to be investigated. Heuristically speaking, the proof
of log-Sobolev inequality under our assumption is possible for the follow-
ing reason. As is well known, the log-Sobolev constant is invariant under

independent product of underlying measure space ([G94, Theorem 2.3])

and, since the interaction is weak under our assumption, spins on each site

in the lattice behave almost independently.

The proof is divided into three steps:

First of all, we prepare a theorem which says that if a certain mixing
condition for the Gibbs measure is satisfied, then the spectral gap is uni-
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formly positive in the volume A and the boundary condition @ (Theorem
2.2). Here, we will use the method of [LY93] as the basic strategy, as well
as ideas from [Z96].

We next prove that the mixing condition mentioned above implies the
log-Sobolev inequality which is uniform in A and @ (Theorem 2.1). We
will do this with the help of the bound on spectral gap obtained in Theorem
2.2. Here, the basic strategy is again the one in [LY93].

Finally, we show that the mixing condition referred to above holds as-
suming that the coupling constants are small enough (Theorem 2.4). This
is carried out by using a formula for the Vassershtein distance ([COPP78])
and a “constructive criterion” (Proposition 2.3), which is very similar to the
famous condition for the phase uniqueness presented in [DSh85].

We begin by introducing the standard setup of the model.

The lattice. We will work on the d-dimensional integer lattice Z¢ = {x =
(x')L_, : x* € Z} on which we consider the /o -metric; d (x1, x2) = max; <; <4
xlx{ —x§| (x1,x € Z9). For a set A C Z¢, diamA and |A| stand re-
spectively for its diameter and the cardinality. We write A CC Z¢ when
1 < |A| < oo. The distance between two subsets A; and A, of Z¢ will be
denoted by d(A1, A;). For R > 1, the R-boundary of a set A is defined by

oRA ={x &€ A;d(x,A) < R} . (1.2)

The value of R will eventually be chosen as the range R (J) of the interaction
we consider (See (1.18) below). We say A CC Z¢ is a generalized bowith

size (ny, ..., ng), if it can be decomposed as follows;

A=A USA , (1.3)
where
1O\= {x ezZ% v < xt <V +n;, i = 1,...,d} for some (vi)fl:1 ez?,

o d . . o
SA C {x gA; Y |x' — y'| =1 forsome y €A }

i=1
Thus a generalized box is a box with (or without) “dust” on its faces. We
call min; <; <4 n; in the above definition the minimum side-lengtbf A. We
set
o ={A; A CCZ , (1.4)
A (ny) = all generalized boxes with the minimum side-length at least n¢ ,
(1.5)

where ng > 1.
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The configuration space$he configuration spaces are defined as follows;
RA ={0 = (0)xen; 0x €R}, AC Zd»

Q =R%

7= {cr € Q; sup(1+d(x,0))"|oy| < oo},

n>1 xezd

g = U o€ Q; sup(1+d(x,0)"oy| < oo}

n>1 xezd

The functions of the configuratioRunction spaces % and %, (A C Z¢) on
the configuration space 2 are introduced as follows;

¢ ={f:Q2 —> R f satisfies the properties (C1) and (C2) below} .
(1.6)
(C1) Thereis A CC Z¢ such that f depends only on (0, ),ca and is of C*
with respect to these variables.
(C2) There are positive constants B 7 and C 7 such that

[f(@)+IVaf(o)]l = Bi7exp <C1.7 Z |0x|> (1.7)
XEA
for any o € 2, where
Vaf@P =Y | f)] . (1.8)
xXeA

For f € 4, we denote by Sy the minimal set among those A’s which satisfy
the property referred to in (C1) above. We define

Gn={fe® Sy CcA}, AcCZ?. (1.9)
The HamiltonianWe introduce a function U : R — R which satisfies (U1)
and (U2) below.

(U1) Forany m > 0, there exist V, W € C*(R — R) and C; 15 € (0, 00)
such that

U(s) = V(s) + W(s) foralls eR, (1.10)

inf V/(s) > m , (1.11)
S
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W(s)=0 for|s| = Ci12 (1.12)
Wlew < Cra2 , (1.13)
where ||W || = sup, |W(s)|.
(U2)
Paia(p.q) = 0 forall (p.q) €R? (1.14)
where
= qtp q=r
@/(P,Q)—U<ﬁ)+U(f2> . (1.15)
A typical example of U is given by the following polynomial;
N
U(s) =) ans™ (1.16)
v=1
where N > 2,a, e R,as > 0,...,ayn-1) = 0and apy > 0. Since a,

can be large negative value, U in (1.16) may have arbitrarily deep double
wells.
For A cC Z% and w € 2, we define a function H*” : Q@ — R, by;

1
HM(0) = —3 Z Jy,y0r0y + Z (U(GX) —hyo, — Z Jx,yaxa)}) .

X, yeA xXeA yEA
(1.17)
Here,J = (J,, €R; x,y € Z,h = (h, € R; z € Z%) are such that
R S sup{d(x,y); Je,y #0} <00, (1.18)
def.
191 = sup > |yl < 00, (1.19)
Ty
Sy =20 ifx#y, (1.20)
dif, . 1
AJ) = 11;f{ ! Zny} >0, (1.21)
y
Note that we have from (1.20) and (1.21) thatforany A cC Z¢ando € R?
1
-3 Z Je ey > A(J)Z|0x|2 . (1.22)

x,yeA XeEA
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Remark 1.1.If a matrix J satisfies (1.18)—(1.20), we may also assume (1.21)
without changing the model. In fact, define JAx, y = Je,y— (I +1)d,,, and
U(s) = U(s) — 262 Then J, , satisfies (1.18)~(1.21) and U satisfies
(1.10)—(1.14) and the replacement of (J, ,, U) by (fx,y, U) does not change
the Hamiltonian (1.17).

The local specifications and the DLR-stdfer a topological space X, we

let ., (X) denote the set of Borel probability measures on X. For A cC Z¢

and a boundary condition @ € 2, we define EA¢ € .#(R™) by;
_exp(—H"(0))

EMN(doy) = 7w ]_[ do, (1.23)

xeA

where Z*® is the normalizing constant. EA+¢ is called the finite volume
Gibbs stateand the family {E** | A CC Z¢, w € #} is called the local
specificationThe following exponential integrability estimate is true; there
is Ci24 = C124(J, h, U) € (0, o) such that

EMexp(hloy]) < exp | Cias |14+ 22+ 1 Z lw,y | , forA >0,
yearA

(1.24)
whenever x € A cC Z4, w € Q and A > 0. This follows from the
arguments in Proposition III.1 and Theorem III.2 in [BH82]. The bound
(1.24) implies that a function in the class % and its first derivatives have
moments of all order with respect to the measure E*-®.

For v € .#,(R2), we define a new measure vE® € .# () by;

VEM f = [v(dw) [EM®(do) f(os - wpe) (1.25)
where o, - wac denotes the following configuration;

o, ifx € A,

(@4 - @p0)s = {a) ifx & A .

It is a common practice to regard the measure £, which was originally
defined as a measure on R*, as a measure on the full configuration space
Q by identifying it with 8, E®, where §,, is the Dirac measure concentrated
on . With this in mind, we introduce an integral operator E* : 4 —> %
by;

EMf(o) = EM(f) . (1.26)
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We now define two subsets ¢4 and %, of .#(£2) as follows;

4 ={ve.u,(Q); vE* =vforany A CC 2}, (1.27)
gt :gmﬂl,t(g), (128)

where
M1 (Q) = {v e 1(Q); W(|ox])yeza € S} (1.29)

A measure in % and %, is called respectively, the DLR-stateand the tempared
DLR-stateltis known that the tempared DLR-state is unique if J, , (x # y)
are small enough.

Theorem 1.1. ([COPP78, DSh85]) There existg = B(U) € (0, o0) such

that«, is a singleton ifup, » LTy B
yiy#x

The inverse spectral gap and log-Sobolev constéftdefine the inverse
spectral gapysg(A) as the smallest ¢ for which the following inequality is
true for all f € ¥ and w € Q;

EY(f; f) < yEM(IVASP) . (1.30)

Here and in what follows, the following common notaiton for the covariance
of functions f and g with respect to a probability measure m is used;

m(f;g) =m(fg) —m(f) -m(g) . (1.31)

We define the log-Sobolev constani s(A) as the smallest y for which the
following inequality is true for all f € ¥ and w € 2;

no (2 f?
E™® log ———-
<f BN
It is well known that 2ysg < ys (cf. [DS89, Corollary 6.1.17]).
Measuress ,, &a + andﬁ}f "7 We now introduce some new measures on
the configuration space, which plays important roles in this article. In fact,
amixing condition (2.1) we will assume to derive the log-Sobolev inequality
will be described in terms of these new measures rather than the original

local specification defined by (1.23). For A cC Z¢, w € R** and ¢ € R,
we define a measure & , € .#1(R*) by
—0 ol + o?
=q

V2 V2

exp(—#'p.4(p))
= dpx . 1.33
s []dr (1.33)

) < yEM(IVAf) . (1.32)

1 2

&pq(dp) = EN @ EN® ((ol, o, 2 edp

xeA
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where

1
Hng(p)==5 D JesPsPy+ D (P 4) (1.34)

X, yEA xeA

(Recall that we have defined the function # by (1.15)). It is also convenient
to introduce the following measure;

4 g2
V2
The use of these measures can be demonstrated in the following expression
of the spin-spin correlation function;

én+(dq) = EM® @ EM {(o*‘, o2 2 € dq} . (135)

EN?(oy; oy) = %fEA"‘) ® EN?(do'do?) (U; — oxz) (O'y] — oyz)
= [6a+dq)Enq (Pxpy) - (1.36)

As can be seen from the above expression, if the correlation function &5 4
(pxpy) decays in d(x, y) uniformly in g-variable, so does E*(oy; oy),
uniformly in w and h. This idea will be used repeatedly in proofs in Section
3 (cf. Lemma 3.3 and Lemma 3.4). Furthermore, we define 62’5 e #,(R")
for W C A and p € R” by

Of@/‘t';(dpw) =&Epq(dpa|l p=pon A\W)

w.p
exp(—=HA . (p))
- Wf; []dps - (1.37)
gA,q xeW
where
ANy = Hwg(p)— Y Teypeby - (1.38)
xeW,yeA\W

The Vassershtein distandéor a metric space (X, p), which is separable
and complete (hence is a Polish space), we define

My p(X) ={pn € M(X); p(x,-)eLi(n)forsomex € X} . (1.39)

We introduce the Vassershtein distance %, on .# ,(X) as follows;

R (11, 12) = inf{ [ \op(dxidxz) p(xy, x2); o € A (wr, 12)} , (1.40)
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where

H (1, wa) = {p € (X?); pldxy x X) = w1, (X xdxy) = pa} .
(1.41)

The case of X = R” and p(c',0%) = Y ., |0} — 02| is especially
relevant to us. The Vassershtein distance in this case is denoted by %4 ; for
Wi € M1 ,(RY) (= 1,2),

AN, t2) = inf] [on pap(do'de®) Y ol —oll: pe f/(m,uz)} :
xXeA
© (1.42)

2. Results

We have the following results for the lattice field described by the Hamil-
tonian (1.17). Recall that we have defined the measure é”‘x/,’qp by (1.37).

Theorem 2.1. Let# be either« or %(ng) for arbitrarily fixedny > 0 (cf.
(1.4) and (1.5)). Suppose that the following mixing condition holtgere
exist positive constant®, ; andC,; such that

w,p! W, p?
sup |65°0 (p) —6nly ()]
geRA

d(y,
532.1<1+ > <|ﬁi,|+|ﬁi|>)exp(— (gZ)) @.1)

weANIRW 21

whenevelA € 7, W C A,y € A\W andp’ € R* (i = 1, 2) differs only
at y. Then the log-Sobolev constaiits. (1.32)) are uniformly bounded in
the sense that

sup{yrs(A) | A € 7} < Cra <00, (2.2)

where the constard, , depends only od, U, J, B, ; andC, ;. Thereforethe
unique element in %, (cf. Remark 2.1) satisfies the log-Sobolev inequality

f2
21
M(f o8 n(f?)

foranyA cc Z¢and f € €.

) < Coon(IVa fP) (2.3)

Remark 2.1.The mixing condition (2.1) implies the uniqueness of the tem-
pared DLR-state. In fact, as we will see in Lemma 3.3 below, (2.1) implies
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the following;

(2.4)

d(x,
|EA’w(O'x;O—y)| =< C2.4exp(_M> )

Cra

forany A € 7,w € RA° and x, y € A, where C,4 = C4(U, J) € (0, 00).
Furthermore, it is not difficult to prove by standard arguments that (2.4)
implies the uniqueness of the tempared DLR-state (For example, Theorem
IV.3, Proposition IV.4 and Proposition V.1 in [BH82] can be used to show
that “pure phases” p4 coincide.).

Remark 2.2.We will see that the mixing condition (2.1) holds if sup, > iy
x Jy,y is small enough (cf. Theorem 2.4). It is also known that if d = 1,
then (2.1) holds regardless of the value of sup, > Jy.y. This can be
seen from [Z96, Lemma 4.5].

Viy#X

Remark 2.3.As we experience in models with compact spin spaces, it may
well be the case that for some J, U and h, a mixing condition like (2.1) does
not hold for all A, but its restriction to “nice” A’s (typically to cubes or to
“fat” enough boxes) does. This is why we introduced the class #(n).

Remark 2.4.Theorem 2.1 above is strongly motivated by [Z96, Theorem
5.1]. There, the potential function U is assumed only to satisfy (1.10)-
(1.13) for somem > 0. [Z96, Theorem 5.1] says that if there is Cr4 =
C»4(U, 3, h) € (0, 0o) suchthat (2.4) holds for large enough cubes A C z,
w € R and x, y € A, then there is y € (0, oo) for which the log-Sobolev
inequality (1.32) holds for @ = 0 and for large enough cubes A C Z¢.
Therefore, as compared with [Z96, Theorem 5.1], Theorem 2.1 in this paper
says more or less that a stronger results follows from stronger assumptions.

Remark 2.5 Let us briefly remark that the uniform bound (2.2) of the log-
Sobolev constants implies “exponential convergence to the equibrium” of
the associated stochastic dynamics (cf. [Y98] [Z296, Theorem 3.1]).

We also present the following weaker result:

Theorem 2.2. Suppose that the same mixing condition as in Theorem 2.2
holds. Then the inverse spectral gapt (1.30)) are uniformly bounded in
the sense that

sup{ysg(A) | A € 7} < Cr5 <00 (2.5)

where the constant, s depends only od, U, J, B,; andC, ;. Therefore
the unique element in %, (cf. Remark 2.1) satisfies

W (f; f) < Casu(IVafIP) (2.6)
foranyA cc Z9and f € %x.
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This statement about the spectral gap follows easily from Theorem 2.1,
since the inverse spectral gap (cf. (1.30)) is always bounded from above by
a constant multiple of the log-Sobolev constant. In this paper, however, we
prove Theorem 2.2 in advance of Theorem 2.1 and use it as a step to show
Theorem 2.1.

We provide the following “constructive criterion” of the mixing con-
dition (2.1). Recall that for A cC Z¢, we have defined the Vassershtein
distance Z, by (1.42).

Proposition 2.3. LetA cC Z“ be arbitrary. Suppose that there existc C
Z% g,5 € (0, 1) and amatrixk = (K, , > 0:x,y € Z9) such that

Key=0 ify—xg VUV, 2.7

def.
IK| = sup Y " Kyy < 251V, 2.8)
y X

WNx+V).pl JWNx+V),p? -1 9
%WQ(X-FV) (éaA,q ! b 5 éaA,q ! b ) = Z Kx,y|py - pyl (29)
y

forall W c A, x € Z?andp’ € RA(i = 1, 2). Then there exist constants
B, and C;; which depend only od, R, V ande; g such that2.1) holds
wheneveW C A,y e A\W andp’ € R? (i = 1, 2) differs only aty.

Remark 2.6.In Proposition 2.3, we did not assume that V and e, g are
independent of the choice of A. However, in application of the proposition
we have in mind (cf. Theorem 2.2, Theorem 2.1), it is important to find V
and &; g independently of the choice of A, since we need (2.1) with constants
B; 1 and C;1 not depending on A.

Remark 2.7.Conditions (2.7)—(2.9) in Proposition 2.3 are reminiscient of
[DSh85, Theorem 2.1]. Note however we have put stronger assumptions to
get stronger conclusion than that of above mentioned result.

By combining Theorem 2.1 and Proposition 2.3, we can prove the fol-
lowing main result in this article:

Theorem 2.4. There isB € (0, oo) such that ifsup, Z iy Jey < B,
then the following hold. ™

(a) There exists, g < 1which depends only ah U, J such that conditions
(2.7)~2.9) with V = {0} and with som& = (K, , > 0:x,y € Z9)
are satisfied foralA cc Z, W c A,x e Z¢andp’ e R* (i =1, 2).
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(b) There exist constant®, ; andC, ; which depend only od, U, J such
that(2.1) holds wheneven cc Z4, W Cc A,y € A\W andp’ € RA
(i =1, 2) differs only aty.

(¢) The uniform bound on the log-Sobolev constgft?) with # = .o/
holds with the constant,, depending only o@, U, J and thus the
inequality(2.3) for the uniquew € %, holds.

Remark 2.8 Part(b) of Theorem 2.4 implies thatif sup, . Jy yissmall
enough, then mixing condition (2.1), and thus (2.4) holds (cf. Lemma 3.3).
In particular, we see that [Z96, Theorem 5.1] applies if sup, > Jyy 18
small enough.

Viy#X

Remark 2.9.The assumptions (U1) and (U2) for the one body interaction U
are mild enough to include examples like (1.16) which are often discussed
in physical litratures. However, from the mathematical point of view, these
assumptions are not minimal to prove the part(c) of Theorem 2.4 with. Based
on the result of B. Helffer [He97], T. Bodineau and B. Helffer improved
the proof of part(c) of Theorem 2.4 in a very recent paper [BH98] and they
succeeded in reducing the assumptions for U to, more or less, the minimal
ones. In fact, they only assume (1.10)—(1.13) for somen > 0 and, (1.14) is
not required.

3. Lemmas

In this section, we prove a couple of lemmas which will be used later. Here,
we will use many ideas from [Z96, Section 4].

Lemma 3.1. For anyA > 0, there exist€"; (1) = C51(A, U, J) € (0, o0)
such that

fg’XV,’fexp(klpxlz)Sexp(ca.l(/\)(w > |13y|2>>, 3.1

yeANIgW

wheneveW c A cc Z¢, g e R* andp € RA.
Proof. To prove (3.1), we begin by proving that

550 exp(lpal?) < 657 exp(rlp?) |, g G2

Since the left-hand-side of (3.2) depends on g only through ¢, it is enough
to prove that

5 <0 ifg, >0,
506 n s exp(Mpl?) {

= 33
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We have that
-6k exp(rIpel?) = —63% (2(pr. g.0: exp(h1p.l?))
— 3 S e dp) [63h (@dp))
( L) — 2 (pl, qx))
(exp(rlpyl®) —exp(AIpi?)) - G4

Suppose now that g, > 0, then |p,| — +- is non-decreasing by (1 14).
This implies that the integrand in (3.4) is non negative for all ( px, )
Similarly, the integrand in (3.4) is non-positive for all (p!, p?),if ¢, < 0.
Therefore, we have proved (3.3).

We next find a constant C35(A) € (0,00) and a sequence I =
(ry = 0) € &, which depend only on A, J and U such that

er < 1,

X

Exlexp(pl) | 2o < CXP(C35()») +2.) relpyl ) (3.5
¥

whenever x € A CC Z¢ and p € R™. This can be done in the same way
as in the proof of [BH82, Theorem III.2], where similar estimate for the
integral of exp (A|p,|) is obtained. Here, we have to consider the integral of
exp (M DPx |2). However, it is not diffucult to generalize the computations in
[BH82, Lemmas II1.5 and II1.6] to cover our case (by taking m > 0 in
(1.10)—(1.13) large enough, depending on ). Once (3.2) and (3.5) are
established, one can proceed as in the proof of [BH82, Proposition III.1] to
obtain (3.1). |

Lemma 3.2. Foranyn =1, 2, ..., there exist<36(n) = C34(U, J, n) €
(0, 00) such that

2
‘“(ﬁlog EAf:—(fz)> < Cie(IADEN(VAS)  (3.6)

wheneverr, A cC 29 and f € ¢ satisfyS; N A C A C A.

To prove Lemma 3.2, we need another lemma.

Lemma 3.3. Suppose that the mixing conditigh 1) holds. Then

d(x, y))
Ca ’

|[EY (0,3 0y)] < Cizexp (— (3.7
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foranyA € 7, w € R2 andx, y € A, whereCs; = C37(U, J, By)) €
(0, 00). In general(without the mixing conditiori2.1)), the following is
true;

sup{|EY®(0y; 00)]; A CCZ9 xeA, heRY, weRYN} < (s <00,
(3.8)
whereCs g = C33(U, J) € (0, 00).

Proof of Lemma 3.3To prove the Lemma, recall that we have defined
measures &5 4, &5 + and (Eﬁ\f respectively by (1.33), (1.35) and (1.37).
Note that
E™oy:0y) = 3 [E* ® EMNdo'do?) (o) — o)) (o) — o))
= f@@A,+(d¢])f§A,q(dP)PxPy
= [6r+(dq) [En.q(@dP)pxE " (py) (3.9)

and that we have from (2.1) that

x d(x,y)
|é02,\q’p(py)| =< 2BZ.I (1 + |px|) exXp (_ C
2.1

Plugging this into (3.9), we have

d )
|[EN®(0y; 0y)| < 2By exp (— (g Y)

) [Er+(dq)

[Enq@p)pel (14 |pal) (3.10)

By (3.1), the integral in the right-hand-side of (3) is bounded by some
constant which depends only on J and U. Therefore we get (3.7). The same
argument as above, but without the use of (2.1), proves (3.8). a

Proof of Lemma 3.2et us set EA**(dos) = EM?(RMA x doy). Since

HA’w(O’) = _% Z Jx,)*axay + Z (U(Ux) - hxax) - Z Z Jx,yaxwy

X, yEA XeA xeA y¢gA
1
_E Z Jx,yaxoy + Z (U(oy) — hyoy)
x,yEA\A xeA\A

o Z Z‘/x,y(fxa)y— Z ij,yaxay s 3.11)

xXeA\A ygA xeA\A yeA
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the measure E g’w(daA) has the following expression;

EN (o) = S Lrea (V@) —h7001)) Z3\ 0 (do)

= vaA(dGA) exp(— erA(U(Ux) . hfc\'w(fx))Zj\\A"’A s
(3.12)

where

R =he+ Y Ty,

YEA
vJA(daA) =exp(% Z Jx’yoxay) l_[dax,
x,yeA xXeA
Zhse fvj‘\A(daA\A)exp(— > (Uloy) = hyoy)

xE€A\A

+y Y Jx,yax(aA-wAc)y) .

xeA\A ye AUAC

We would like to deform the above measure into another measure E 2"" (dop)
to which we can apply the Bakry-Emery I',-criterion of the log-Sobolev in-
equality ([BE8S5, Corollaire 2]). To this end, we decompose U into V and
W in a manner described in (1.10)—(1.13), where the parameter m > 0 is
specified later, depending on |A|. We then have by (1.13) that

A,

E
dEzA\,w (oa) <exp(2Cri2) (3.13)

A

exp (—2C1.12) <

where

@ A\A, 04
Ero(doy) = S Lnen (V(00) =3 001)) 2y vy (dow)

b o) exp(= X, (Vo) — h o))z 4
(3.14)

Let us next prove that

2

0 A\A,o
—log Z7;\" %"
56y do,do, g4

2

X, yEA

< CslAINIPY IS . (315)

xeA

for any (£,),ea € R2. In fact,
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82 A\A,O’A
> e ———log Z;
do,do,
X, yeEA
= Z Sxéy Z Jx,z]y,wEA\A’UA.wAC(O'z;Uw)
X, yEA zZ,weA\A
2
< GslJIP? (Zw)
XEA
< CaslIIPIALY I& L
xXeA

At this point, we take m = C3g||J||?|A| + 1 to have that

82 w sOA
Z éxfym (Z (V(o,) — h™%a,) —log 32 ) > Z|§X|2.

xX,yeEA XEA xXeEA

(3.16)

This implies that T, in the sense of [BE85], computed with respect to the
measure £ is bounded from below by 1 and thus that we have

2

EY | £21o _f— < 2EX“(IVASP) . (3.17)
A (f SENe(f) a7 (VaS

whenever f € ¥and A CC Z9 satisfy S;NA C A C A.By (3.13),(3.17)

and a standard comparison argument ([HS87, Lemma 5.1]), we get (3.6)
with

C3,6 = 26Xp (4C1412) . (318)
(|

The following lemma is technically the most important step in our proof
of Theorem 2.2 and Theorem 2.1;

Lemma 3.4. Suppose that mixing conditiai2.1) is true. Thenfor any
feé, Ae7,xe AandA C AsuchthatS, N A C A CA,

dtr, A)) EMNS: V2, (3.19)

|EA(f500)] < Cs19 | A exp (—
d(x, A)) EN(F2)12

% EA(f f)1/2+EA (f210 f2 )1/2
’ “ErGD) )

|EN(f?500)] < Caao|AP exp (—

(3.20)



The log-Sobolev inequality for weakly coupled lattice fields 17

whereCs 19 = C3.19(B>.1, C3.1(1)) € (0, 00). Furthermorefor y &€ A,

IVyEX(H] < |E* (Vyf)|+ 19 sup |EA(f; 00)| (3.21)
d(x,y) <R

dx, A
< |E* (Vo f)| 4 Caa0ll3I AP exp <—%) ENf OV, (322)

VAWVENFD < EN (1Y, f17)

+1EM(AH T3 sup |EA(f2 00 (3.23)
xe
d(x,y) <R

1/2
)"+ 03.19||J|||A|2exp(

IA

E*(IVy fI?

_d(y, A))
Ca
. EA(f f)1/2+EA <f210g f—2>1/2
’ EA(f?)
(3.24)

Remark 3.1.We will use (3.19), (3.21) and (3.22) to prove Theorem 2.2. On
the other hand, (3.20), (3.23) and (3.24) will be used in the proof of Theorem
2.1, where the term E*(f; f) on the right-hand-side of (3.20) and (3.24)
will eventually be bounded by C, s E® ( IVaf |2) by using Theorem 2.2.

Remark 3.2.As will become clear from the proof, if we do not assume any
mixing condition, we have (3.19)—(3.24) without the factor exp(—d(y, A)/
Ca1).

Proof of Lemma 3.4Let us begin by proving (3.21) and (3.23). In fact,
it is easy to see that

[VEA(D] = [EX (Vo) + 3 Ly BN 00)

xeA

A

B (V)] + W1 swp B4z 00

d(x.y) <R

and that

VWVERP| = [JEAUH TR, EN ()|

1
SEN(HT <2EA (FVf) + D Tey ENF ox)>'

xeA



18 N. Yoshida

A

%EA(fz)—]/z (2EA (f2)1/2 EA (lvyflz)l/z

XEA
d(x,y) <R

+13II sup |EM(f% m\)

= E*(IV, /)"

+IEAAHTV2I3N sup |EM(f 00|
xeA

d(x,y) <R

By (3.21) and (3.23), the proof of (3.22) and (3.24) comes down to that of
(3.19) and (3.20).

To prove (3.19), recall that we have defined mesures &' 4, £ﬁ>f and &5 +
respectively by (1.33) and (1.37) and (1.35). The correlation E* (f; o) can
be expressed in terms of these measures as follows;

EN(fio0) = 1[E* @ EMNdo'do?) (o) — 02) (f(a") = f(a)

+ _
= L [6a4(dg) [ &1 4(dp) ( 7 (%) iy (qﬁp» N
= 5 [6r+(dq) [6r4(dp)

~ (f (—"g’ ) - f (—qkp )) s (po) (3:25)

On the other hand, we have from (2.1) that

dx, A
< 2B4|A| (1 +Z|pz|> exp (— (221 )>

ZEA

A\A,
‘éﬂA,\q p(px)

Plugging this into (3.25), we see that

dx, A
[EM(f1 0] < V2Bai|Alexp <— (éﬂ )) (Il(f) + 3 L. z)) ,
(3.26)

ZEA
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where

1(f) = [€n.4(dq) [6r.(dp) ‘f (%) _f (%)‘

= [E*® E*(do'da?) |f(e") — foD)] | (3.27)

L(f.2) = [6r.:(dq) [Enq(dp) | f (%) —f (%)‘ X

= 5 [EY® ENdo'do?) [(f(o!) = f(0?) (0] —07)] (3.28)

We first observe that
L(f.2) = LHP L', (3.29)
where
L(f) = [E*® ENdo'de?) | f(o") — f(2)

2

’

L(f,2) = [E"® E*(do'do?) |0} — o}

The integrals I, (f) and I3(f) can be estimated as follows;

L(f) < LHYV? < 2EN|f - ENFPH2

IA

= 2EM(f; H'? (3.30)

On the other hand, it follows from (3.1) and Jensen inequality that

Ii(f,z) < C33 (3.3D)

for some C331 = C331(C5.1(1)) € (0, 00). Putting (3.29), (3.30) and (3.31)
together, we obtain

L)+ ) b2 < LN+ 5LNH'PY L(fa'?

ZEA ZEA

< 2EM(f VA + C2A)

which, in conjunction with (3.26), implies (3.19).
The proof of (3.20) is similar to that of (3.19). We see from (3.26) that

d(x, A
[EN(f% 00l < V2Bai] Al exp (— (gm )> (11<f2> + ) b(f”, z))
. ZEA

(3.32)
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We first observe that
L(f?) = [E* ® EMNdo'do?)
| f(@")? = EN? = (f(0) = EN)?)
< 2EM(f NH'PEN (2 (3.33)

Next, we have by Schwartz inequality that

L(f*.2) = 5LHPIs(f.9'7 (3.34)

where

2 2
Is(f.2) = [E* ® EMNdo'da®)| (f(e) + f(67) (o) —02) | .
Let us note that ab < exp(a) + blogb fora, b > 0 and that
[E* ® EN(do'da?) exp(|0z1 — 622|2)

=2[6n4(dq) [6n.q(dp)exp (Ip:I°)

< Ci35 (3.35)
by (3.1), where C335 = C335(C3.1(1)). We then have that

Is(f.2) < 2fE* @ ENdo'de?)| f(0")? (o) — 62)’ |

2 flo!)?
(Oll - GZZ) EA(fZ)
2 Af £2 f?
2C335EM(f?) 4+ 2E (f log EA(f2)> . (3.36)
Putting (3.30), (3.33), (3.34) and (3.36) together, we obtain

L)+ Y L(f*2)

ZEA

= 2EMf*) [E* ® EMNdo'do?)

A

< L(f)+ HLO Y (£

zZeA

< EMfi )+ HZEMNS N

2 1/2
‘ﬁw<¢cs.35EA<f2)l/2+EA(leog / ) )

EA(f?)
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2 1/2
SCmﬂNE%ﬁﬂmGﬂUJYM+E%?H%E4ﬂJ )

(3.37)

which, in conjunction with (3.32), implies (3.20). a

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2 by using lemmas presented in the
previous section. We first consider the case # = .«/. What we want to prove
is equivalent to that

sup y, < 0o , 4.1)
n>1
where
Yo = sup{ysc(A) | |A| < n}. 4.2)

To prove (4.1), it is enough to find some constants Cy43 and N4z which
depend only ond, R, U, J, B, and C, such that

Yon = %yn+C4'3, forn > N4'3 . (43)

To this end, we take arbitrary A CC Z¢ with |A| < 2nand 0 < f € %,.
We then choose Ay C A such that max {|Ag|, |A\Aog|} < n and define

Aj=AoU{x,....x;}, j=12....m, (4.4)
fi=ENf, (4.5)
Aj,k = {X € Aj; d(x,xjH) < (k/2) }, k ZO, 1,2,... , (46)

fix=1f ifk>0andA;r=¢ ,
fik=EY4f, ifk > land Ajx # ¢ , 4.7

where {x;}"

i1 is an enumeration of A\ Ay. We will prove (4.3) after a series
of lemmas.
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Lemma4.1.
m—1
ENF ) < vaEN(IVao fIP) + CasEN (IVaa, f1P) + Cag Y _E*2;(f)
j=0
! 4.8)
whereCy g = C43(C36(1), I € (0, 00) and
2;(f)=sup{EM(f;0,)% x € Aj, d(x,x;21) < R} . (49)

Proof. We first divide the left-hand-side of (4.8) into two terms;

EN(f H=EMN(FP—f)+EMN(fs — fr) - (4.10)

The first term on the right-hand-side can be estimated as follows;
BN - ) = BN (1= £)

ynEAEAO (lvl\of|2)

A

VnE® (IVa f17) 4.11)

As for the second term, we have

—_

m—

E" (f()z_fn%) = ZEA (sz_szﬂ)

~
(=}

—_

3

=Y E"ENY(f7 — f7) 4.12)

S

Note that S7, N Aj41 = {x;41} and hence by (3.6) and (3.21) that
Ef (fj2 - fj2+1) = C3-6(1)EAM (|Vx.i+lfj|2)

< CasEN (Vi f1P) + CarsENY 25(f)

~.

(4.13)

where Cu 13 = Ca13(Cs6(1), [|13]). It follows from (4.12) and (4.13) that

m—1

E* (f3 = fr) < CasE™ (IVaao fI?) + Caiz D E*2;(f) . (4.14)

J=0

By (4.10), (4.11) and (4.14), we conclude (4.8). a
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Lemma 4.2.

= k
ﬂx(f)sausZexp(—zC )EAf (ENwi(f: NV, @a1s)
k=0

2.1

whereCy 15 = C415(d, R, Ca.1, C3.19) € (0, 00).

Proof. Suppose that x € A and d(x, x;41) < R. We then have that

EYN(f; 00> = EYN((f = fo)

o 2
= (Z EY ((fiu — fj,k+1)UX)>

k=0

00 2
= (Z EN ERNS(f 45 ox)>

k=0

o0
Cate Y _(k+1)? (ENEN(f14500)° (4.16)
k=0
Since Aj,k+1 N Sijk C Aj,k+l\Aj,k and d(x, Aj,k-i—l\Aj,k) = % — R, it
follows from (3.19) that

A

_ K\ o,
| EM41 (i 00| = Caralh+ D™ exp (‘F) ENE(fias fr0'?
2.1

4.17
where C4.17 = C4.17(R, C3.19). We see from Jensen inequality that ( )
EYs(fx fix) = ER (sz,k - fj2,k+1)

< BNk (2 - sz,k-i-l)
= EYN*1(f: f) (4.18)

Putting (4.17) and (4.18) together, we have that

EA (EAj,kJrl(fi’k; Ox))z

k _ , )
= C;%_n(k + 1)4d exp (—a> EA (EAf‘k“(ijk; fj,k)l/z)

k N .
= Cz%.l7(k + 1)4d exp (—C—) EN (EA/,k+l(f; f)l/Z)

2.1

Plugging this into (4.16), we arrive at (4.15). a
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Remark 4.1.This remark will become relevant when we turn to the proof
of Theorem 2.2 for the case # = %(np). From Remark 3.2 and the proof
of Lemma 4.1 we presented above we see that (4.15) without the factor
exp (—(k.2C3.1)) in the right-hand-side summation is true when we do not
assume any mixing condition. On the other hand, as will be seen from the
way (4.15) is used later (cf. (4.23) in the proof of Lemma 4.3), the factor
exp (—(k/2C3.1)) in the right-hand-side summation of (4.15) are used only
for sufficiently large k’s. It is thus sufficient for us to require (3.19)—(3.22)
to be valid only for A = A ; with sufficiently large k’s.

Lemmad4.3.Forky=1,2,..., [n"4] —1,

E*(f1 ) < vaEY (IVaof?) + ¥aCaroexp (— . )EA (IVafI?)

2.1
1/d

3Cy

+D410E" (IVa fI?) + Ca10exp <— ) E*(f5 f)

(4.19)

whereCy 19 = Cs.19(d, U, J, By1, Ca1)@andDy 19 = Dy 19(ko, d, U, J, By,
Cr1).

Proof. We see from (4.15) that

m—1

ZEAQ (f) < c4152exp( ZCN) ZEAEW (f; f) . (4.20)

Let us first note that EA EAi++1( £; f) has the following two upper bounds;

Varnt EN(IVan F17) ER ) 421
The first bound in (4.21) come from (4.2) and the Markov property. In fact,

EYEMS(f3 f) < Varne ENENS (VA fP)
= Vs EN (Va0 F17)
The second bound E* (f; f) in (4.21) can be seen as follows;
ENENS(f: f) = ENENS(£2) — EN(f2,,0)
< EMN(f — ENSY?

where we have used Jensen inequality and Markov property.
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We will divide the summation in k on the right-hand-side of (4.20) in
three parts as follows;

l_

Z Z (4.22)
k=k

k=k,

> =3

k=0

TTM|

where k; = |n'/?] — 1. We use the first bound in (4.21) to estimate the first
and the second summations in (4.22) as follows;

m—1

ko—1 ko—1
Z = Zexp< )Zy(k+l)dE (|VAJk+1f| )
- ko—1
ZEA Ve fIP ZGXP( )V(k+1)d Z 1

=
xeA jZAJ'>k+13X
< Cuzsk))E* (IVAfI?) . (4.23)
k]*l k]*l k m—1
Z < Zexp - ZVnEA (lvl\j,k+1f|2)
2C3,) 4
k=ko k=ko Jj=0
< yaCanexp (——— ) E* (1VafP) . (4.24)
3Ca,

Note that Y41y < C3,6(kg) for k < kg — 1 by Lemma 3.2 and hence
that we can make Cj3(ko) depend only on kg, d, U, J, B, and C; ;. To
estimate the second summation in (4.22), we make use of the second bound

in (4.21);

00 00 k m—1
Z < Zexp(—ﬁ>;EA(f;f)

k=k, k=k,
1/d
< Cso5€xp <— ) EM(f: f) (4.25)
3Cy
Now, (4.19) can be seen from (4.8), (4.20) and (4.23)—(4.25) . O

Proof of (4.3).With Lemma 4.3 in hand, (4.3) can be proved as follows. By
exchanging the role of Ay and A\ Ay, we have that for kg < |n'/d] —1,

k
3 CZ.I)EA(WAfF)

E*(f: ) < vE*(IVaao £17) + ¥uCao CXP(—
1/d

3Cy,

+D4_19EA(|VAf|2)S+C4.196XP(— )EA(f; AR

(4.26)
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and hence by averaging (4.19) and (4.26) that

n k
EN(f ) < %EA (IVA £1?) + yuCar9 €xp (—3C°2 1) E* (IVAfI?)

1/d

n
+D410E" (IVa fI?) + Caroexp (—

A .
3C2,1)E fs f) .

4.27)

Since our choice of A and 0 < f € %, was arbitrary as long as |A| < 2n,
we see from (4.27) that

(% + Cy.19 €Xp <—%>) Yn + Dao
I — C419exp <— ;’Cl;dl)

At this point, we choose kg such that % + Cyq19exp (—(ko/3Cr1)) < % We
then have (4.3) with C4 3 = %D 19, whenever 1 —Cy 19 exp (—(n'/4/3C))
> 3 O
T

Proof of Theorem 2.Xor # = %(no): We modify the proof for the case
ZF = o/ as follows. The goal is equivalent to that;

Von = (4.28)

sup y(ny,...,ng) <00 , 4.29)
nop <n;<oo
where
y(ny, ..., ng)
A is a generalized box with size (m, ..., my),
= sup | ¥sG(A); .
ng<m; <n;, 1=<i=<d
(4.30)

To prove (4.29), it is enough to find some constants C43; and N43; which
depend only ond, R, U, J, ng, B;1 and C, such that

y@ni,ny,....ng) < sy(ning, ... ng) + Caz 4.31)

for n; > Ny3;. To this end, we take arbitrary A € %(ng) with the size
at most 2ny,ny,...,ng) and 0 < f € €,. We then decompose A into
Ao € %(ng) and A\Ag € %(ng) such that both of them are of the size
at most (ny, ny, ..., ny). We can now choose an enumeration {x j }’]": of

1
A\Ag so that A; € #(ng) forall j = 1,...,m, where A; is defined by
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(4.4). Note also that A € #(no) for k > 2ng, where A ; is defined by
(4.6). We thus see that the proof of (4.3) for the case # = .o/ works almost
without change (Recall that we need to apply (3.19)—(3.22) to the set A x
with k > 2ng, cf. Remark 4.1. a

5. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 by using Theorem 2.2 as well as
lemmas presented in Section 3. The basic strategy is the same as that in the
proof of Theorem 2.2. We first consider the case # = /. What we want to
prove is equivalent to that

Sup ¥, < 00 , (5.1
n>1
where
Yo =sup {yLs(A) | |[A] < n} . (5.2)

To prove (5.1), it is enough to find some constants Cs3 and Ns3 which
depend only ond, R, U, J, B, and C, such that

Y < iya+Cs3, for n > Ns3 . (5.3)

To this end, we take arbitrary A CC Z¢ with |[A| < 2nand 0 < f € %,.
We then choose Ay C A such that max {|Ag|, |[A\Ag|} < n and define

Aj=AoU{x,....x}, j=12....m, (5.4)
fi=VvEN() (5.5)
Ajp={x€hj; dx,xj11) < (k/2)}, k=0,1,2,... , (5.6)

fj,sz, ikaOﬂl’ldAj,k:qﬁ,

fix =VEY (2, ifk > landAj; #¢ , (5.7
where {x; };'7:1 is an enumeration of A\ Ay. We will prove (5.3) after a series

of lemmas.

Lemma5.1.
2

E* <f2 log f—) < YuE" (IVao f1?) + CssE™ (IVarao fI7)

EA (fz)
m—1 9.
+Csg Y E* (%) : (5.8)
J

j=0
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whereCsg = Cs3(C36(1), [J])) € (0, c0) and
2;(f) =sup{ EN (f*0,0)% x € Aj, d(x,xj31) < R} . (5.9

Proof. We first divide the left-hand-side of (5.8) into two terms;

E® leogf—z :EA<f210g—2)+EA (leogf—(%) (5.10)
E*(£?) o )

The first term on the right-hand-side can be estimated as follows;

2 2
E® (leog —) = EAEM <f2 log —)
3 fs
< WE“E™ (Vo 1)
= % E* (IVa f1?) - (5.11)
As for the second term, we have
f2 m—1
E* (f2 log f—‘;) =) EM(filog f} = f71 log f111)
m j:0
m—1
=Y EN(flog ff — EM7 (D) log fy)
j=0
m—1 f2
= Z EAEAH (sz log Tj> . (5.12)
j=0 Jjtl

Note that S;, N Aj41 = {x;41} and hence by (3.6) and (3.23) that

A

_ f7 _
Ef (f,-2 log = | < C3s(WEM (Ve fi17)
j+1

. R;i(f)
Csi3EY (Ve fIP) + Csis jfzf , (5.13)

J
where Cs13 = Cs.13(C36(1), ||d])) € (0, 00). It follows from (5.12) and
(5.13) that

IA

2 m=1 B
E" <f2 log f_oz) < Cs13E™ (IVa\ao f?) + Cs.13 Z E* sz)
fm j=0 f]
(5.14)
By (5.10), (5.11) and (5.14), we conclude (5.8). a
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Lemma 5.2.

R;(f) = k
12 < Css kg(; exp <— 2C2_1>

J
EAj |V 2 21 f_2 21 f2
A J17 4 [T log ==+ f7log — , (515
fj,k Jok+1

whereCs 15 = Cs.15(d, R, C11, Ca5, C3.19) € (0, 00).

Proof. Suppose that x € A; and d(x, xj+1) < R. We then have that

EN (00 = BN (2= o)
) 2
- (X (- o)
k=0
00 2
(B o)
k=0

Csa6 _(k+ D2EN (BN (£2,50,)) (5.16)
k=0

Since Aj,k+] N Sfj,k C Aj’](Jr]\Aj’k and d(x, Aj’kJr]\Aj’k) > ]% — R, it
follows from (3.20) that

IA

k
|[EN#1 (f2,5.04)] < Csanh+ 1) exp (——2C ) fian (12 4+17)
2.1
(5.17)
where Cs 17 = Cs.17(R, C3.19),

2

. j .’k
I = EN* (fi fix)  and L = EMe ( julog 2]k )
jiket1

I, can be estimated as follows;

I

IA

CosEN (Vo frul?) (5.18)

IA

2C,sENR (Va0 fIP) + Csaolk + 1)

2
(EA (f; f)+ EMisn <f2 log _2)) (5.19)

J-k
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< Cspolk+ 1) (EA”‘“ IV, f17)

2
L ENisn (f2 log _2> ) . (5.20)
J.k

Here, we have used (2.5) in both (5.18) and (5.20), whereas (5.19) is an
application of (3.24). On the other hand, we see from Jensen inequality that

2
I, < Efikn (leog f ) . (5.21)

Jok+1

Putting (5.17), (5.20) and (5.21) together, we have that

EA_/ (EAf.k+1 (sz,k; Ux))2

k 2
< Gt ¥ern () £ (e (174127))

IA

k _
2C2,,(k + )" exp (—C—) fTEN (I + D)
2.1

< Csy(k+ D)™ exp (—L)
Ca
f? f?
fFEM <|VAj_k+]f|2+f2log—2+f210g . ) . (5.22)
' fj,k fj,k+1

Plugging this into (5.16), we arrive at the following bound;

EN(f?;0,)? > 2k
& < C5_23 Z(k+ 1)9d+2 exp (__)

2
fj k=0 =X
2 2
< EM (m,.,wff T fPlog L+ f21og L ) ,
Tk Jk+1
(5.23)
which proves (5.15). |

Remark 5.1.This remark will become relevant when we turn to the proof
of Theorem 2.1 for the case # = %(np). From Remark 3.2 and the proof

of Lemma 5.1 we presented above, we see that (5.15) without the factor

% in the right-hand-side summation is true when we do not assume

any mixing condition. On the other hand, as will be seen from the way (5.15)

exp (—
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is used later (cf. (5.28) in the proof of Lemma 5.3), the factor exp (— L) in

the right-hand-side summation of (5.15) are used only for sufficiently large
k’s. It is thus sufficient for us to require (3.19)-(3.22) to be valid only for
A = A with sufficiently large k’s.

Lemmab.3. Forky=1,2,..., |n'] —1,

E® (leog f? )
EA(f?)
k
=< VnEA (lvAof|2) + YnCs24€xp (_3C(;1) E® (|VAf|2)

+ Ds o EN (IVA £17)
nl/d A 5 fZ
+Cs.24€xp <_3C2.1) E (f log EA(f2)> (5.24)

whereCs 4 = Cs4(d, U, J, By.1, Co.1) andDs o4 = Ds4(ko, d, U, J, By 1,
Cr1).

Proof. We see from (5.15) that

m—1 5? k
> E( ;f>><c51szexp( 2%)

J

2
ZEA (WA,Mﬂ T log]f T £ log L ) - (525)

-0 j.k jk-‘rl

Let us first note that E*(flog(f?/f7,) + f*1og(f*/ f741)) has the fol-
lowing two upper bounds;

2
2)/(k+1)dEA(|VAj’k+1f|2) , 2EA <f2 10g #fﬂ)) . (526)

The first bound in (5.26) comes from (5.2) and the Markov property. For

example,
f? oy f?
1 E® E™i* 1
(f ngjk) =< (f ng]k

< Y ENEYS(IVa,, f1?)

= Y E* (Vo fP) -
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The second bound E( £ log(fZ/EA (f%))) in (5.26) can be seen as follows;
2
(f log ]{ ) A(FPlog(f2) — E (f2log(f70)
J.k
= EN(f2log(f?) — E* (f7xlog(f70)

A (fPlog(f?) — E*(fH)log EM(F?)

IA

where we have used Jensen inequality and Markov property in the last line.
We will divide the summation in & on the right-hand-side of (??) in three
parts as follows;

=~

0 1

ki—1 00
+) o+, (5.27)

0 k=ky  k=k

k=0

=~
Il

where k; = |n'/?] — 1. We use the first bound in (5.26) to estimate the first
and the second summations in (5.27) as follows;

ko—1  ko—1 k m—1
Z = Z P <_ 2C, 1) Z (1 + 2y(k+1)d) E* (|VA_f.k+1f|2)
k=0 k=0 :

j=0
ko—1
<Y EM(IVofI Zexp (——) (14 2vuse) D 1
xeA le,‘)kJFle
< Cs5(ko) E2 (|vAf| ) - (5.28)
ki—1 ki—1 m—1
Y= Zexp( )Z(szn)EA (Va0 f1)

k=ko k=ko

< (1 +2y,) Csyoexp <—

> E*(IVAfP?) . (5.29)

2.1

Note that Y1y < C3,6(kg) for k < kg — 1 by Lemma 3.2 and hence
that we can make Csg(ko) depend only on kg, d, U, J, B, and C; ;. To
estimate the second summation in (5.27), we make use of the second bound
in (5.26);

> <> ew (5 )

k=k, k=k;

m—1 ’
<X (B (a2 (108 i ) )

J=0
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nl/d
< Cs30E™ (IVafI?) + Cssoexp (‘ )

Af 2 f?
xXE (f log EA(f2)> (5.30)
Now, (5.24) can be seen from (5.8), (??) and (5.28)—(5.30). |
Proof of (5.3).With Lemma 5.3 in hand, (5.3) can be proved in the same
way as we derived (4.3) from Lemma 4.3. O

6. Proof of Proposition 2.3 and Theorem 2.4

In this section, we prove Proposition 2.3 and Theorem 2.4. The proof of
Proposition 2.3 is based on the two lemmas presented below.

Lemma6.1. For W C A_(]and fqzr pl € RY (i = 1,2), there exists a
measures™-7"7* € (6,7, &,'1") such that

DAY AL 6.1)
zeWNx+V) 4
where
5l 52 =1 =2
fPP = [6M PP dpldph)pl — pll 6.2)

-1 = =1 =2
Proof. Let us take &"-7'7" € (é”K’; , é"x/qp ) which attains the Vasser-
shtein distance of (52]; (i=1,2),ie.,
-1 =2 - OW‘_I oW‘ =2

DS = Aw Ny 6N - (63)

zeW
The existence of such measure is guaranteed by the compactness of the set

W.pt WP
A&y €5y ) and the fact that the map u — [u(dp'dp®)|p! — p2|
from . (RY x RY) to [0, 00) is lower semi-continuous.
We next take a measure

AX Al A2 WNG+V).p' WNE+V),p?
ECIpL ey, TiEn, )

in such a way that it attains the Vassershtein distance of c«?yg(ﬁv)’p '

(i=12),ie.,

X N A X p?
@WO(HV)(@@IV\V;( VL ’élv\v’g( Y )
= [& (dp'dp”1p". p°) D Ipi—pll . (6.4)

zeWNx+V)
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and that the map (p',p? — & (|p',p» from R* x R to
M (RYOEHY) o RWNE+V)) jg measurable. The possibility of such measur-
able selection can be shown as an apllication of [SV79, Theorem 12.1.10].
(Use also Lemma 12.1.7 in that book to check that the set of minimizers
of the Vassershtein dlstance of &, S(HV) P (i = 1,2) is measurable as a
set-valued function of (p!, p?)).

We now define a measure gx’ﬁl’ﬁz e #(RY x RY) by

~ 5l =2 5l 52 A A p A H
ET(Ax By = [, &P @pldp?) [ & dp'dpt1p', B

where A ¢ RW\&GHV) o RWM\GHY) gnd B ¢ REHVINW o RO+VINW - 1¢
follows from the above definition that

~ =1 =2
F e (é"f\vg’ Lenr ) (6.5)
GO = o PP on RWAGHY)  RWGHY), (6.6)

To see (6.1), it is sufficient to prove that

)AL W A 6.7)

zeWNx+V) zeEWNx+V)
Yo <ZK NACE S (6.8)
zeWNx+V)
where
~ =1 =2 ~x,pl, p?
foPr = (& (dpdp?)|p! - p2| . (6.9)

The ﬁrzst mequallt (6.7) can be seen as follows. Since (6.6) implies that
=1

PP — PP for 7 & W N (x 4 V), we have from this, (6.3) and (6.5)
that

Z (fWPP XP p) Z(prp XP p)

zeWNx+V) zeW

w,p', p? w.pl W, p?
Zfz p-p _%W(@@A,q ,g),\,q )
zeW
= 0.

IA

To prove the second inequality (6.8), we will use (6.4) and (2.8) as follows;
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~ =1 =2 S T ~x,p',p? Al A
Y ST = [eM T aptdph [ET T dpldp*lpt B

2eWNGx+V)
x> pl-p
2eWNGx+V)
=1 52 ~ N ~ N
< [6" T @dpldpt) ) Kbl — B
Z
=1 52
= Z Kx,zfzw’p P
Z
This completes the proof of Lemma 6.1. O

Lemma6.2. ForanyA C W C A, L > landp’' € R* (i = 1,2) with
p' = p*offy

=1 = d(z, A) =1 =2 d(Z,A)
Z w,p', p? B Z w,p',
£t exp( C )S 6.10 £t exp( Cs.10 >

zeW 6.10 zeW
d(z,y) = L+Dg 10

=1 =2
+Bs.10 Z Kz,ylpy _py|
2;d(z,y)>L

X eXp (_dézg ::)) , (6.10)

where £V7"7" is defined by(6.2), Dg1o = diam(V U 3xV), Bg1o =
B6_10(R, V, 82_8) and Cf).]() = C641()(R, V, 82_8). In addltlon by (27), the
second term on the right-hand-side(6f10) is zero wher, > Dg j.

Proof. Wesete, = exp (—(d(x, A)/Cg.10)), Where Cg.10 = Cg.10(R, V, £28)
is choosen so large that

e D D,
Ce.11 & exp (— 6'10) — &28€Xp <C6'10> >0 . (6.11)

Ce.10 6.10

We then define 19 = > .. e, I} = Y eK.., [, =12 —1! and

r, =Y xx+tvs: ex. Letus first prove that
d(x,y)<L

=1 52 pl p2 - —
OEEED oY S D M B R

zeW zEW z:d(z,y) > L

We have by (6.1) that
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5l 52
> o T

x:d(x,y)>L zeWNx+V)

=1 =2 - —
< Y e Y KNP+ Y eKaylpy— byl . (6.13)

x:d(x,y)>L zeW x:d(x,y)>L

Since

= ) = )
> e T oprroypt 3o

x:d(x,y)>L zeWNkx+V) zeW x:d()i’v);)~>L
_Zprp 10 ,,Z) ,
zeW
Z exZszprp <Zprpll )
x:d(x,y)>L zeW zeW

it follows from (6.13) that

SR r) <P Y ek lp - B

zeW zeW x:d(x,y)>L

which is equivalent to (6.12).
Let us next prove that

r; < Ce.se; , (6.14)
r. =0 ifd(z,y) > L+ Deio » (6.15)
lz = C6.16ez ’ (616)

where Cg 14, Ce.16 € (0, 00) depend only on R, V and ¢, g. To verity (6.14)
and (6.15), note first that an easy to prove fact that

D o D .
exp <— C6'10) <= <exp (Cﬁ'lo) ifd(x,z) < Deio . (6.17)

which proves (6.14) and (6.15).
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On the other hand, it follows from (6.17) and (2.8) that
De 10 Dg 10
[, > - 1-— K,
= efon(-0) X r-ew (o) Tk

D D
> e, {exp (— CZIE) V| — exp (%2) 82.8|V|}

= Ce.11lVl]e; , (6.18)

which proves (6.16).
By plugging (6.14), (6.15) and (6.16) into (6.12), we obtain (6.10). O

Proof of Proposition 2.3Suppose that A C W C A. We denote by (éaf\v,’qﬁ)A
the restriction of @‘X/; to RA. Let 677" ¢ 1”(@@2/”;1, @QX/”;Z) be the mea-

sure we have found in Lemma 6.1. Note that the restriction of eV 1o
R4 x R4 is an element of Ji”((c«?x’é’ )a, (@@,VK’;’ )a). We thus have that

(27 o - o7 w)‘

z€A

w,p! W, p?
=7 ((O@A’; )A ’ (éaA*‘; )A)

= 36" (!~ p2)

zZ€A
- d(z, A
= XA (it e (T2
' Ce.10
zeW
51 5 d(z, A)
< Bs.10 Z gt (Ip) — p2l) exp (— Coro )

zeW
d(z,y) <2Ds¢.10

(6.19)

Here, in passage to the last line, we have used (6.10) with L = Dg 9
(and thus without the second term on the right-hand-side of (6.10)). To
proceed from (6.19), note that we have d(z, A) > d(y, A) — 2Dg 1o in the
exponential in (6.19) and that by (3.1),

-1 =2 W,_I 0W3_2
VPP (Iph = p21) < Ex T (p) + X T (Ip:D)

A

Ciid+ > (15l +1521) - (6.20)

weANIRW

Plugging these into (6.19), we conclude that
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<Ceo |1+ Z (Ipy1 + 1731

)EAO@RW

d(y, A
X exp (—%) . (6.21)

=1 =2
S (6N (o =X ()

Z€EA

The mixing condition (2.1) can be obtained as a special case of A = {z}.O

Proof of Theorem 2.By Theorem 2.1 and Proposition 2.3, it is sufficient for
us to prove part (&) of the theorem. It can be seen from the same computation
as in the proof of [COPP78, Theorem 2.3] that

2, (j\’;,(gﬁ“’) ZnyLDy—py (6.22)

forallx € W and p' € R? (i =1, 2), where

Ke,= " ; =, 623)
T ey SUPsera Eph (pai px)s ifx #Ey '
If we set V = {0} and define K = (K, > 0:x,y € Z%) by (6.23), then
we have (2.7) and (2.9). To see that (2.8) is satisfied if sup, Z # Jy,y 18
VIyFEX
small enough, it is sufficient to prove that

5)5\1; (Px; px) < Ceoa, (6.24)
where Cg s = Cg24(U) € (0, 00). In fact, (6.22) and (6.24) imply that

SupZny =< C624SUP Z ny

X
Viy#EX

and therefore that (2.8) is true if sup, 3", . Jey < min {1, Cg,}.

The proof of (6.24) can be given as an application of the log-Sobolev
inequality to the measure &, Z as follows. We begin by decomposing U into
V and W as in (1.10)—(1.13), where the parameter m > 0 is arbitrary. We
then have by (1.38) that

%)XI;(PX) = U(pPx, qx) — Px Z Jx,y}sy
yeA\x

=7 (Pxs qx) + W (Pxs qx) s (6.25)

where %(px, qx) = U((qx + p)vV2) + U((gx — px)/V2), V' (P, qx) =
V(@ +p)/V2) + V(@ —p)/V2) = pedyenrs JxyPys  and
W (Perqx) = W@ + px)/V2) + W((gx — px)/v/2). Since (32/3p?)
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V' (px,qx) = mand [#(py,qx)] < 2||[W|w, we see from the Bakry-
Emery criterion together with a comparison argument ([HS87, Lemma 5.1],
cf. proof of Lemma 3.2) that

p f2 X, D a
c«?f\’p f2 log ——— | < y(g@A’p |¢f

K Exn(f?) RN
for all f € €,y with y = 2exp(16||W||«)/m. It is well known that (6.26)
implies that

2
) (6.26)

_ _ 2
Eng (3 ) = 5654 (\5,{ ) (6.27)

for all f € € (See [DS89, Corollary 6.1.17]). Putting f(p,) = px in
(6.27), we get (6.24) with Cg o4 = % Ul
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