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Abstract. Consider site or bond percolation with retention parameter p on
an infinite Cayley graph. In response to questions raised by Grimmett and
Newman (1990) and Benjamini and Schramm (1996), we show that the
property of having (almost surely) a unique infinite open cluster is increas-
ing in p. Moreover, in the standard coupling of the percolation models for
all parameters, a.s. for all p2 > p1 > pc, each infinite p2-cluster contains
an infinite p1-cluster; this yields an extension of Alexander’s (1995) “simul-
taneous uniqueness” theorem. As a corollary, we obtain that the probability
θv(p) that a given vertex v belongs to an infinite cluster is depends continu-
ously on p throughout the supercritical phase p > pc. All our results extend
to quasi-transitive infinite graphs with a unimodular automorphism group.

Mathematics Subject Classification (1991):60K35

1. Introduction and statement of results

This paper is concerned with percolation on an infinite, locally finite, con-
nected graph G = (V , E). In bond percolation with retention parameter
p ∈ [0, 1], each edge e ∈ E is independently assigned value 1 (open) with
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probability p and value 0 (closed) with probability 1 − p. In site percola-
tion, it is the vertices rather than the edges that are independently assigned
values 1 and 0 with respective probabilities p and 1 − p. We write PG,bond

p

and PG,site
p (sometimes dropping the superscripts) for the resulting proba-

bility measures on {0, 1}E and {0, 1}V . An infinite connected component of
open edges (or vertices, in site percolation) is called an infinite cluster. It
is elementary that there exists a critical value pc = pc(G, bond) ∈ [0, 1]
such that

PG,bond
p (∃ an infinite cluster) =

{
0 if p < pc

1 if p > pc

(1)

and similarly for site percolation. Further definitions, precise statements
and background are given below, but first we indicate our main results,
which apply when G is a Cayley graph, or more generally, a unimodular
quasi-transitive graph:

Monotonicity of uniqueness.There is a parameter pu (sometimes different
from pc) such that Pp-a.s. there is a unique infinite cluster for p ∈ (pu, 1],
and infinitely many for p ∈ (pc, pu) (see Theorems 1.1 and 1.2).

Simultaneous uniqueness and multiplicity.In the standard coupling of
percolation models for all p ∈ [0, 1], almost surely, uniqueness holds si-
multaneously for all p > pu and there are infinitely many infinite clusters
simultaneously for all p ∈ (pc, pu) (Theorem 1.2).

Continuity above pc. The probability θv(p) that a vertex v is in an infinite
cluster depends continuously on p for p > pc (Corollary 1.3).

For G = Zd , it was shown by Aizenman, Kesten and Newman [2] that
whenever an infinite cluster exists, it is a.s. unique. For other proofs see
[12] or [10]. In contrast, for percolation on the (n + 1)-regular tree Tn with
parameter p < 1, it is easy to see that if an infinite cluster exists, then a.s.
there are infinitely many infinite clusters. More exotic is the behaviour of
an example studied by Grimmett and Newman [14]. They considered the
product graph Tn×Z, defined as the graph whose vertex set is V (Tn×Z) =
V (Tn) × Z, and in which two vertices (a, x) and (b, y) are linked by an
edge if and only if either a = b and |x − y| = 1, or x = y and 〈a, b〉 is an
edge of Tn. For bond or site percolation on this graph, with n sufficiently
large, they showed that if p > pc is close enough to pc, then there are
a.s. infinitely many infinite clusters, whereas if p is sufficiently close to 1,
then there is a.s. a unique infinite cluster. Grimmett and Newman made the
implicit conjecture that the a.s. uniqueness of the infinite cluster should be
increasing in p, and our first main result (Theorem 1.1) confirms this in a
more general setting. It follows (Theorem 1.2) that there is a parameter pu
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such that there is a unique infinite cluster for p ∈ (pu, 1], and infinitely
many for p ∈ (pc, pu).

In order to state our results carefully, we first need to recall some graph
terminology. Let Aut(G) be the group of graph automorphisms of a graph
G = (V , E). A subgroup 0 of Aut(G) is transitive if for every u, v ∈ V ,
there exists a γ ∈ 0 which maps u to v. If such a group exists then the graph
G is called transitive. Similarly, 0 and G are called quasi-transitive if V

can be partitioned into a finite number of sets (orbits) V1, . . . , Vk so that for
any u ∈ Vi, v ∈ Vj there exists a graph automorphism in 0 mapping u on
v iff i = j .

Given a finite symmetric set of generators S = {
g±1

1 , . . . , g±1
n

}
for a

countable group 00, the corresponding (right) Cayley graph of 00 is the
graph G(00, S) := (V , E) with V := 00 and [g, h] ∈ E iff g−1h ∈ S.
Clearly, the group 00 can be identified with a transitive group of automor-
phisms of its Cayley graph, acting by left multiplication. The most familiar
transitive graphs (Zd , regular trees and their products) are all Cayley graphs.

For a subgroup 0 of Aut(G) and a vertex x ∈ V , define the stabilizer

S0(x) = {π ∈ 0 : π(x) = x} ,

and for y ∈ V , define S0(x)y = {z ∈ V : ∃π ∈ S0(x) such that π(y) =
z} . We say that 0 is unimodular if for any x, y in the same 0-orbit we have
the symmetry |S0(x)y| = |S0(y)x|
where | · | denotes cardinality; this is equivalent to the standard definition
requiring the left and right Haar measures on 0 to coincide, see Trofimov
[26]. We call the graph G unimodular if Aut(G) has a quasi-transitive uni-
modular subgroup; in this case, Aut(G) itself is unimodular, see Benjamini,
Lyons, Peres and Schramm [4], Corollary 6.2.

All examples discussed above, including Cayley graphs, are transitive
and unimodular. A transitive graph which is not unimodular can be obtained
by fixing an end ξ in the tree T2, and for each vertex x adding an edge
between x and its ξ -grandparent (see [26] or [4]).

The following result provides a partial answer to a question of Benjamini
and Schramm [7].

Theorem 1.1 (Monotonicity of uniqueness).Consider bond percolation
on a connected, locally finite, unimodular quasi-transitive graphG, and let
p1 < p2.

If PG,bond
p1

(∃ a unique infinite cluster) = 1

then PG,bond
p2

(∃ a unique infinite cluster) = 1 .

The analogous statement for site percolation also holds.
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Lalley [21] studied site percolation on Cayley graphs of certain Fuchsian
groups. Among many other results, he proved Theorem 1.1 in this special
case, making essential use of planarity.

If the edges of G are labeled by i.i.d. random variables {U(e)}e∈E , uni-
formly distributed on [0, 1], then the subgraph spanned by {e ∈ E : U(e) ≤
p} has the same law as the set of open edges under PG,bond

p . Thus the fol-
lowing result is a “simultaneous” sharpening of Theorem 1.1.

Theorem 1.2 (Simultaneous uniqueness and multiplicity). Let G =
(V , E) be a connected, locally finite, unimodular quasi-transitive graph.
Let {U(e)}e∈E be i.i.d. random variables, uniformly distributed in[0, 1], so
their joint distributionLE is a product measure on[0, 1]E. For p ∈ [0, 1],
denoteEp := {e ∈ E : U(e) ≤ p} and letGp = (V , Ep). WriteN(p) for
the number of infinite clusters inGp. There exist constants0 < pc ≤ pu ≤ 1
such thatLE-almost surely,

N(p) =




0 for p ∈ [0, pc)

∞ for p ∈ (pc, pu)

1 for p ∈ (pu, 1] .

More generally, LE-almost surely, for allp1 < p2 in the interval(pc, 1],
any infinite cluster ofGp2 contains at least one infinite cluster ofGp1 . The
analogous statement for site percolation also holds.

The fact that, for each fixed p, N(p) is an a.s. constant that equals either
0, 1 or ∞ follows from the arguments of Newman and Schulman [24], as
noted e.g. in [7] and in [21]. The constants pc and pu depend on G and on
whether bond or site percolation is considered. Benjamini and Schramm [7]
conjectured that N(pc) = 0 for quasi-transitive graphs as long as pc < 1.
For the case Zd , d ≥ 2, this is a classical open problem which has been
solved only for d = 2 [20] and for d sufficiently large [19]. If pc < pu,
then N(pc) = 0 a.s., see [4] and [5].

Theorem 1.2 separates the parameter space [0, 1] into three qualitatively
different intervals (phases), rather than just the two phases indicated in
(1). The bottom phase (“no infinite clusters”) is always a nondegenerate
interval. The middle phase (“multiple infinite clusters”) cannot consist of
a single point (see [5]). For Euclidean lattices we have that pc = pu and
that the middle phase is empty; in this case Theorem 1.2 reduces to the
“simultaneous uniqueness” theorem of Alexander [3]. For the tree Tn we
have pu = 1, so the uniqueness phase consists of the single point {1}. In the
Grimmett–Newman example, as well as in the Cayley graphs considered in
[21], all three phases are intervals of positive length.
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Next, we define, for v ∈ V , the percolation function θv : [0, 1] → [0, 1]
by letting

θv(p) = Pp(v is in an infinite cluster)

(for G transitive, this quantity is of course independent of v). The following
corollary is an immediate consequence of Theorem 1.2 in conjunction with
the results of Van den Berg and Keane [8].

Corollary 1.3 (Continuity above pc). For bond percolation on a con-
nected, locally finite, unimodular quasi-transitive graphG, and any vertex
v ∈ V (G), the percolation functionθv(p) is continuous on(pc, 1]. The
analogous statement holds for site percolation.

The key tool in our proofs is the mass-transport method, which was first
used in the percolation setting by Häggström [15], and was fully developed
by Benjamini et al. [4]. (Precursors of this method were applied earlier by
Adams [1] and by Van den Berg and Meester [9].) The method is briefly
explained in the next section. Section 3 is devoted to the proof of Theorem
1.1, and Section 4 to an alternative proof using random walk. Section 5
contains the proof of Theorem 1.2. Finally, in Section 6, we discuss various
extensions.

2. The mass-transport method

Let G be a locally finite graph, and suppose that 0 ⊂ Aut(G) is quasi-
transitive and unimodular. Suppose that the elements of 0 can be identified
with measure preserving transformations of a probability space (�, Q).
(For example, Q could be the percolation measure Pp on the space {0, 1}E:
Clearly Pp is invariant under any graph automorphism of G.)

Let m(x, y, ω) be a nonnegative function of three variables: two vertices
x, y in the same orbit of 0, and ω ∈ �. Intuitively, m(x, y, ω) represents
the mass transported from x to y given the “configuration” ω. We suppose
that m(·, ·, ·) is invariant under the diagonal action of 0, i.e., m(x, y, ω) =
m(γ x, γy, γω) for all x, y, ω and γ ∈ 0.

Theorem 2.1 (The Mass-Transport Principle). Let0 ⊂ Aut(G) be uni-
modular and quasi-transitive. Given m(·, ·, ·) as above, let M(x, y) :=∫
�

m(x, y, ω) dQ(ω) . Then the expected total mass transported out of any
vertexx equals the expected total mass transported intox, i.e.,

∀x ∈ V
∑
y∈0x

M(x, y) =
∑
y∈0x

M(y, x) . (2)
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Proof. On a Cayley graph, it is straightforward to verify (2): Since M(·, ·)
is also invariant under the diagonal action of 0,∑

y∈0x

M(x, y) =
∑
γ∈0

M(x, γ x) =
∑
γ∈0

M(γ −1x, x) =
∑
y∈0x

M(y, x) .

See [4] for the general case. ut
We remark that (2) fails in the nonunimodular case; see [4] again. The

key step in applying the mass-transport method is to make a suitable choice
of the transport function m(·, ·, ·); examples can be found in [15], [4], [5]
and in the following sections.

3. Monotonicity of uniqueness

In order to prove Theorem 1.1, we will need to define a number of random
processes which will live on a common probability space (�,F, P); we
write E for expectation with respect to P.

Consider the following standard coupling (ω1, ω2) of the bond percola-
tion process on G at two different parameter values 0 ≤ p1 ≤ p2 ≤ 1: For
each e ∈ E independently, let

(ω1(e), ω2(e)) =



(1, 1) w.p. p1

(0, 1) w.p. p2 − p1

(0, 0) w.p. 1 − p2 .

(3)

It is clear that ω1 and ω2 have distributions PG,bond
p1

and PG,bond
p2

, and that the
set of open edges in ω2 contains the set of open edges in ω1. Moreover, the
joint distribution of (ω1, ω2) is the same as that of (Gp1, Gp2), defined as in
Theorem 1.2.

Next, let dist denote graph-theoretical distance in G, and for each v ∈ V ,
define

D1(v) := inf{dist(v, w) : w is in an infinite cluster of ω1} (4)

where Z+ = {0, 1, 2, . . .}, and as usual, the infimum of the empty set is
taken to be ∞.

The following proposition implies Theorem 1.1.

Proposition 3.1. Let G be an infinite locally finite connected unimodular
quasi-transitive graph and pick0 < p1 < p2 ≤ 1 so that

PG,bond
p1

(∃ an infinite open cluster) = 1 . (5)

Pick ω1 andω2 according to the coupling defined in(3). Then, a.s., each
infinite cluster ofω2 contains some infinite cluster ofω1. The analogous
statement for site percolation also holds.
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Proof. We give the proof for bond percolation; the site percolation case
is completely analogous. Assume first that G is transitive. Pick p1 and
p2 satisfying the assumptions of the proposition, and denote by C(v, ωi)

the connected component of v ∈ V in the open subgraph determined by
ωi . Also, let C(∞, ωi) be the union of all infinite open clusters in ωi . For
u ∈ V , let A(u) be the event that

D1(u) = min
v∈C(u,ω2)

D1(v) > 0 .

By considering the closest vertices to C(∞, ω1) in each ω2 cluster, we see
that to establish the proposition, it suffices to prove that

P[{|C(u, ω2)| = ∞} ∩ A(u)] = 0 ∀u ∈ V . (6)

Consider the mass transportmwherem(x, y, ω) = 1 ify is the uniquevertex
in C(x, ω2) which is closest to C(∞, ω1), and m(x, y, ω) = 0 otherwise.
By the mass-transport principle, the expected incoming mass to any vertex
u is finite, so P[{|C(u, ω2)| = ∞} ∩ A∗(u)] = 0, where A∗(u) is the event
that u is the unique minimizer of D1 in C(u, ω2). Consequently

P[|C(u, ω2)| = ∞ ∩ A(u) ∩ {D1(u) > 1}] = 0 (7)

since opening (in ω2 only) an edge connecting u to a vertex w with D1(w) =
D1(u) − 1, and closing all other edges adjacent to w, changes probabilities
by a bounded factor and maps the event in (7) to {|C(u, ω2)| = ∞}∩A∗(w).

To prove (6), it only remains to show that

P[|C(u, ω2)| = ∞ ∩ A(u) ∩ {D1(u) = 1}] = 0 . (8)

For w ∈ C(∞, ω1) let S(w) consist of the vertices v in C(w, ω2) such that
w is the unique vertex in C(∞, ω1) which is closest to v in the metric of
C(w, ω2). By considering the mass transport where each vertex in S(w)

sends unit mass to w, we see that S(w) must be finite a.s. Now observe that,
on the event in (8), we have that opening (in ω2 only) an edge between u

and w ∈ C(∞, ω1) takes us into the event {|S(w)| = ∞}. Hence (8) holds,
and the transitive case is taken care of.

Minor modifications handle the quasi-transitive case. For instance, to
show that S(w) above is finite, consider the mass transport that sends unit
mass from each vertex x to all the vertices in its orbit that are closest to w.

ut
Remark. The proof above actually yields the quantitative bound

E[|C(u, ω2)| 1A(u)] < ∞ ∀u ∈ V . (9)
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4. A random walk approach

Our first proof of Theorem 1.1 used random walk on the percolation cluster.
A complete proof using this approach is longer than the mass transport
argument we gave above. Nevertheless, we sketch the main ideas here, since
we believe they can be useful in other percolation problems. Indeed, very
recently Lyons and Schramm [23] used this approach to prove a remarkable
indistinguishability property of percolation clusters (see Section 6.4 below).
In that application, it seems the random walk approach cannot be replaced
by direct mass transport.

Let pc < p1 < p2, and consider the coupling (ω1, ω2) from (3). Define
the V -valued random process Zv = {Zv(j)}∞j=0 which depends on ω2, but
whose distribution given ω2 is taken to be conditionally independent of ω1,
as follows. Take Zv(0) = v. Given Zv(0), . . . , Zv(j), pick a random vertex
Wv(j) uniformly from the set of nearest neighbours of Zv(j), and let

Zv(j + 1) =
{

Wv(j) if ω2(〈Zv(j), Wv(j)〉) = 1

Zv(j) otherwise .

Recall the definition of D1 in (4). The random walk approach requires the
following lemma, which is easy to prove in the Cayley graph case, and which
can be proved in the transitive unimodular case using the mass-transport
principle.

Lemma 4.1. If G is transitive and unimodular, then(D1(Zv(0)), D1(Zv(1)),

. . .) is a stationary sequence.

Due to space restrictions, we omit the proof; a more general statement
can be found in [23]. Using the lemma, Proposition 3.1. can be proved as
follows, and Theorem 1.1 is a consequence.

Alternative proof of Proposition 3.1. for bond percolation
on transitive graphs

Suppose that G is transitive, and pick p1 and p2 as in the proposition.
Consider the sequence (D1(Zv(0)), D1(Zv(1)), . . .) which is stationary by
the lemma, and define the random variable M = min∞

j=0 D1(Zv(j)). By the
assumption (5), we have a.s. that M < ∞. Moreover, the set of times j such
that D1(Zv(j)) = M has a strictly positive (but possibly random) density
in Z+, i.e. the limit

lim
n→∞

|{j ∈ {0, . . . , n − 1} : D1(Zv(j)) = M}|
n

(10)
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a.s. exists and is strictly positive; this follows from the ergodic theorem. We
are done if we can show that if v is in an infinite ω2-cluster, then M = 0 a.s.
For k ∈ Z+, define the event Ak = {v is in an infinite ω2-cluster, M = k},
and suppose for contradiction that P(Ak) > 0 for some k > 0. Simple
random walk on any infinite locally finite connected graph is either transient
or null recurrent; hence, we have a.s. on Ak that the limiting density of times
{j : Zv(j) = w} is 0 for any w ∈ V . In conjunction with the strictly positive
limit in (10), this implies that Zv has to visit infinitely many vertices w ∈ V

satisfying D1(w) = k. Writing Bk for the event that there exist infinitely
many times j ∈ Z+ such that

D1(Zv(j)) = k, and Zv(i) 6= Zv(j) for i = 0, . . . , j − 1 , (11)

we thus have that

P[Bk | Ak] = 1 . (12)

All vertices in V have the same degree d, by transitivity. We claim that at
any time j such that D1(Zv(i)) ≥ k for i = 0, . . . , j − 1 and (11) holds,
we have

P[D1(Zv(j + 1)) = k − 1 | Zv(0), . . . , Zv(j), ω1] ≥ p2 − p1

d(1 − p1)
. (13)

This is because Zv(j) has some neighbour w such that D1(w) = k −1, and
the conditional probability that the edge between Zv(j) and w is open is at
least (p2−p1)/(1−p1). By repeated use of (13), we infer that the probability
that Zv visits at least m vertices w with D1(w) = k before visiting any vertex
u with D1(u) = k − 1 tends to 0 as m → ∞. Hence, P[Ak | Bk] = 0, and
using (12) we conclude that P[Ak] = P[Ak ∩ Bk] ≤ P[Ak | Bk] = 0. ut

5. Simultaneous uniqueness

In this section we prove Theorem 1.2. We restrict attention to bond per-
colation on transitive graphs, the extensions to site percolation and quasi-
transitive graphs being straightforward.

Proof of Theorem 1.2.Let p1 < p2 < p3 be rationals bigger than pc. If
for some p ∈ (p2, p3) the vertex x is in an infinite cluster C(x, p) disjoint
from C(∞, p1), then this value of p is uniquely determined by x (since we
can directly apply Proposition 3.1. to all rational p simultaneously). We call
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such an infinite cluster C(x, p) exceptional, and denote it C∗(x). Note that
any two exceptional infinite clusters are either identical or disjoint.

Let Ax be the event that x is in an exceptional infinite cluster, and assume
for contradiction that LE(Ax) > 0. Define

p∗(x) = inf{p : x is in an infinite cluster of Gp}

and note that on the event Ax we have C(x, p∗(x)) = C∗(x). For non-
negative integer k, define the random variable Nk

x to be the number of
vertices in C(x, p∗(x)) that are at distance exactly k from C(∞, p1). Fur-
thermore set Kx = min{k : Nk

x > 0}. By conditioning on C(∞, p1) and on
the status of all edges at distance k or more from C(∞, p1), we see that

LE(Ax, Kx = k, Nk
x = n) ≤

(
1 − p2

1 − p1

)n

for any k, n ≥ 1. In particular, LE(Ax, Kx = k, Nk
x = ∞) = 0 for k ≥ 1.

Hence, any exceptional infinite cluster contains a.s. only a finite number of
vertices y that minimize the distance from C(∞, p1). Consider the mass
transport where m(x, y, ω) = 1/n if x and y are in the same exceptional in-
finite cluster and y is one of exactly n such minimizers, and m(x, y, ω) = 0
otherwise. The expected mass sent from a vertex is at most 1, whereas if
exceptional infinite clusters exist with positive probability, then any vertex
v is, with positive probability, one of the minimizers defined above. Thus
the expected mass received at v is infinite, contradicting the mass-transport
principle. ut

6. Extensions

6.1. Non-isotropic edge probabilities

The class of percolation processes on Tn × Z considered by Grimmett
and Newman [14] is actually more general than what we indicated in the
introduction, in that they allowed non-isotropic retention probabilities. Let
us call an edge e ∈ E(Tn × Z) a tree-edge (resp. line-edge) if its two
endpoints differ only in their Tn-coordinate (resp. Z-coordinate). In the
Grimmett–Newman setup, all edges are independent, but tree-edges have
retention probability pT and line-edges have retention probability pZ, where
(pT , pZ) ∈ [0, 1]2. The proof of Theorem 1.1 can easily be generalized in
such a way as to show that if pT ≤ p′

T , pZ ≤ p′
Z and a.s. uniqueness of

the infinite cluster holds at (pT , pZ), then the same thing holds at (p′
T , p′

Z).
Similarly, the proof of Corollary 1.3 can be generalized to show that the
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percolation function θv(pT , pZ) is continuous throughout the interior of the
supercritical regime {(pT , pZ) ∈ [0, 1]2 : θv(pT , pZ) > 0}, thus providing
a new proof of a continuity result of Zhang [27].

6.2. More general graph structures

After seeing our arguments, Schonmann [25] extended our Theorem 1.1 and
Corollary 1.3 by showing that the unimodularity assumption can be dropped.
One may ask whether the assertions of Theorems 1.1 and Corollary 1.3
even hold for any graph, but the answer is negative in both cases. A simple
counterexample to the behaviour in Theorem 1.1 can be obtained by taking
a copy of the Z3 lattice and a copy of the binary tree T2, and adding a single
edge between one vertex in Z3 and one vertex in T2. By similarly connecting
two copies of Z2, we see that the number of infinite clusters need not be an
a.s. constant, and by replacing T2 in the above construction by some tree
T which has pc(T) ∈ (pc(Z3), 1) and which percolates at criticality (such
trees exist, see [22]), we obtain an example which shows that the assertion
of Corollary 1.3 fails for general graphs. In fact, one can even construct
trees where θv(p) has infinitely many discontinuities; see [17].

6.3. Ends of infinite clusters

Say that two self-avoiding paths ξ1, ξ2 in a graph G = (V , E) are equivalent
if for any finite set V0 ⊂ V , both paths eventually remain in the same
connected component of V \V0. Equivalence classes of self-avoiding paths
are called endsof G. Benjamini and Schramm [7] conjectured that when G

is quasi-transitive and has multiple infinite clusters Pp-a.s., then each infinite
cluster must have uncountably many ends a.s. The submitted version of this
paper contained a proof of this conjecture in the unimodular case. More
precisely, we established the following.

Theorem 6.1 (Uncountably many ends).Consider bond percolation on
a connected, locally finite, unimodular quasi-transitive graphG. Fix p

such that thePp-probability of having infinitely many infinite clusters is1.
ThenPp-a.s., every infinite cluster has a set of ends with cardinality of the
continuum.

Our two-page proof of this result used Menger’s Theorem and mass
transport. Due to lack of space, we had to omit the proof in the final version.
Generalizations of Theorem 6.1 were subsequently proved by Lyons and
Schramm [23] and by Häggström, Peres and Schonmann [18]; in particular,
the reader can find proofs of Theorem 6.1 in those references.
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6.4. Infinite clusters with special properties

Let A be some G-automorphism invariant property of an infinite cluster.
An interesting example of such a property, studied in [13], [6] and [16], is
transience, i.e. the property that simple random walk on the cluster under
consideration is transient. For G satisfying the usual assumptions, the ex-
istence of an infinite cluster with property A has probability 0 or 1 for any
p, and our proof of Proposition 3.1 can be modified to prove the following
generalization.

Proposition 6.2. Let G be a locally finite connected unimodular quasi-
transitive graph, and pick0 < p1 ≤ p2 ≤ 1 such that

P G,bond
p1

(∃ an infinite cluster with propertyA) = 1 .

If we then pick the{0, 1}V -valued random objectsω1 andω2 according to
the coupling defined in Section 3, then we have a.s. that each infinite cluster
of ω2 contains some infinite cluster ofω1 with propertyA.

Write pc(G, A) := inf{p > 0 : Pp[∃ an infinite cluster with property
A] > 0} . Suppose that A is an increasingproperty, i.e., that if an infinite
cluster has property A and we add edges or vertices to it, then it still has
property A; by Rayleigh’s monotonicity principle (see [11]), this holds for
the transience property. Under this assumption, Proposition 6.2. implies
that the coexistence of infinite clusters with and without property A has Pp-
probability 0 for all p > pc(G, A). Two natural questions are whether this
probability must vanish also for p = pc(G, A), and whether the assumption
that A is increasing can be dropped. Very recently, both questions were
answered affirmatively by Lyons and Schramm [23].
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