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Summary. Let X = {X;}° _ be a stationary random process with a
countable alphabet 2 and distribution g. Let ¢*(:]x°,) denote the
conditional distribution of X = (X},X;,...,X,,...) given the
k-length past:

qoo(-|x(1k) = dist(Xoo|X9k = Qk) .

Write d(x1,x;) = 0 if X; = x1, and d(x,x;) = 1 otherwise. We say that
the process X admits a joining with finite distance u if for any two past
sequences x‘lk = (X_k+1,-.-,%) and x‘lk = (X_ft1,-.-,%0), there is a
joining of ¢®(-|z°,) and ¢®(:x%,), say dist(X, ,Xg°|*°,,x°,), such
that

o0
E{Zd(Xiv)(i>|)zok7x0k} <u.
i=1

The main result of this paper is the following inequality for processes
that admit a joining with finite distance:

Theorem. Let ¢" denote the distribution of X" = (X1,Xa,...,Xy). Then
for any distribution p" on 2"
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d(p",q") < (u+1)y/5D@"lq") ,

where D denotes informational divergence.

The significance of this bound is that it implies a measure con-
centration inequality. We are able, at least theoretically, to compute u
for Markov chains.

We also prove that the existence of finite distance joining is implied
by a condition frequently used in the theory of 1-dimensional Gibbs
measures.

Mathematics Subject Classification (1991): 60F10, 60G10, 60J10

1. Introduction

Let X = {X;};°__ be a stationary process with a countable alphabet '
and distribution g. If {x;},., is a (possibly infinite) sequence of ele-
ments of %, and the interval (i, m] belongs to J then we denote by xJ"
the subsequence (x;y1,X;42,...,Xy); i Or m may be —oo resp. co. If the
lower index is missing then 0 is understood.

We also use the notation 27" for the space of sequences x!", where,
again, i or m may be infinite. If ¢ is a probability measure on the space
of doubly infinite sequences x> then we use the notation ¢/ to denote
the induced measure on 27". We denote by gyi(-]x!) the distri-
bution dist(X;1|X/ =x!), and by g¢/"™(-]x!) the distribution
dist(X;/ X! = x!).

We denote by d the normed Hamming distance on Z”" x 2™:

(M N 1 n o .n 1 -
d(x Y ) = _d(x Y ) = § d(xiayi) )
n 3
d(x;,,y) =1 if X; 7 Vi, 0 otherwise .

We say that the process X, or the distribution ¢, has the blowing-up
property if for any ¢ > 0 there are 6 > 0 and ny such that for n > ny
and any 4 C 2" with ¢"(4) > exp(—nd), the e-neighborhood of 4 has
measure almost 1. lL.e.,

q"(4) > exp(—nd) = ¢"([4],) > 1 —¢ (1.1)
where [4], is the e-neighborhood of A:
[A],={y' € 2" :d(x",y") < ¢ for somex" €4} .

Note that (1.1) can be replaced by the seemingly stronger implication
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q"(4) > exp(—nd) = ¢"([4],) > 1 —exp(—nd) , (1.1")

which can be seen by applying (1.1) to both 4 and the complement of
[4],. (The 6 of (1.1") is not the same as that of (1.1).) The implication
(1.1°) can be written in the following symmetric form:

q'(4) > exp(—nd), ¢"(B) > exp(—nd) = d(4,B) <& .

Equivalently, the blowing-up property for ¢ means that there exists a
function ¢(d) with lims_o ¢(0) = 0 such that

d(4,B) < (p(%l@ﬁ) + (p(%logﬁ) .

Definition. We say that X, or q, has the measure concentration property,

if for any A,B C X" we have
1 1 og 1
2n T q"(B)

<o (far

Thus measure concentration is much stronger than blowing-up. In
this paper we focus on measure concentration.

Ahlswede et al. [1] proved that if ¢ is i.i.d. (independent identically
distributed) then it does have the blowing-up property. In fact, the
proof given in [1] yielded also the measure concentration property for
the i.i.d. case. Later the measure concentration phenomenon was ex-
tensively studied for i.i.d. processes. C.f. [2] and McDiarmid [3], where
the best constant for the i.i.d. case (¢ = 1) was first obtained. See also
Talagrand’s survey papers [4] and [5] where new proofs, lots of ap-
plications and a large bibliography are given. — Proofs of measure
concentration, based on the use of informational divergence, were
given in the author’s papers [6] and [7]. In [7] also some processes with
memory were considered.

There is a simple but powerful inequality by Pinsker between
variational distance and informational divergence. (See later.) The
extension of this inequality to one between d-distance and informa-
tional divergence was the basis of the proofs of measure concentration
given in [6] and [7].

If p and r are probability distributions on 2" then |p — r| will denote
their variational distance (divided by 2).

Let p" and ¢" be two distributions on Z"; their d-distance is

for some constant c.

d(p'.q") = minEc;’()?”,X”) ,
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where the min is taken over all joint distributions with marginals
. . SN . - .
q" = dist X" and p" = dist X . The distance d(p”,¢") is a natural gen-
eralization of |p — r|, since
lp—r| =minPr{X # X} |

where the min is taken over all joint distributions dist(X,X) having
marginals p = distX and r = dist.X.

If p and r are two probability distributions on % then the infor-
mational divergence of p with respect to q is

D(pllr)y =>_ plx log
xe&
Thus the informational divergence of p" with respect to ¢” is

D(p'lg") = > Pl (xn)

xex” )

Now we recall

Pinsker’s inequality, (C.f. [8], [9].). Let p and r be two distributions on
X then p and r admit a joining dist(U, V) satisfying

Pr{U#V}=|p—r| < /3D(llr) -

In [6], [7] a similar inequality was proved between d(p",q") and
%D(p”Hq”) for the case when ¢ is i.i.d. In [7], this inequality was gen-
eralized to the case of mixing Markov chains, and also for a class of
processes g with very fast and uniform decay of dependence. Namely,
for a class of processes ¢, [7] established

d(p",q") < c-\[2D@"lg") (1.2)

for any probability measure p” on 2", where the constant ¢ depends
on the behavior of the transition probability function ¢*(-x° )=
dist(X5°|X°, =x" ). E.g., if ¢ is a Markov measure with a transition
matrix satisfying

|diSt(X1 ‘X() :x) — diSt(Xl |X0 :y)| <l-a, (13)

then the constant can be taken 1/a. If ¢ is i.i.d. then ¢ = 1 is good, but
a smaller ¢ can be given if ¢ is allowed to depend on the distribution g.
By the following lemma, (1.2) implies measure concentration for g.

Lemma 1. [If there is a constant ¢ such that for any distribution p" on
2", the inequality (1.2) holds, then g has the measure concentration
property with the same constant c.
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(Bobkov and Gotze [16] proved recently that (1.2) is also necessary
for measure concentration, although possibly with a value of ¢ dif-
ferent from the one we used in the definition of measure concentra-
tion.)

Proof of Lemma 1. Assume (1.2). Consider two sets 4, B C Z". Define
a distribution p”, associated with the set 4 as follows:

weony _ ) 4" (X")/q"(4)  x"eAd
P = {O, otherwise ,
ie., p" is ¢" conditioned on A. Define similarly the distribution »”

associated with B.

Then
1 1 1
-D('||¢") = -log—— .
LDl = log s

By our assumption, this implies

- 1 1
] 71 n < . 1: .
Similarly,
dir,q") < —1 lo —1
r .
)= 2n gq”’(B)

Since p" and " are concentrated on 4 and B, respectively, it follows

that
i lo ! O
2 S (B))

d(4,B) <d(p <\/—

The aim of this paper is to give a sufficient condition for (1.2), and
thereby for measure concentration. The condition we give both gen-
eralizes and improves the main theorem of [7]. The improvement
concerns improving the constant in (1.2). Even for Markov chains
satisfying (1.3) the constant can be improved. The process X is always
assumed to be stationary.

We shall use the following concept introduced by Eberlein [10].

Definition. We say that the process X, or the measure q, admits a joining
of finite distance u if for any k and any two past sequences 3°. ,andx’, of
positive probability there is a joining of ¢ (-|%°,) and ¢>=(-x°,), say

dist(X , X5°[x° ., x°,), such that
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E{Zd()?i,)(})|)2°k7xok} <u . (1.4)

i=1
( Eberlein called such processes Very Weak Bernoulli of order 1/n.)

Eberlein proved that if the process X admits a joining of finite
distance, and f is a real valued function on 2 then the process {f'(X;)}
satisfies the central limit theorem (under some quite natural additional
conditions).

Our main result is the following.

Theorem 2. If the process X admits a joining of finite distance u then

d(p",q") < (u+1),/5,D(p"llq") (1.5)

for any distribution p" on Z".

We can give sufficient conditions for the existence of finite-distance
joining in terms of ergodic properties of g.

The following theorem asserts that a condition frequently used in
the theory of 1-dimensional Gibbs measures implies the existence of
finite-distance joining. We need the following notation:

p=sup  supJg(-y) —q(hly)] -
N a0y oy =x0,
Theorem 3. Assume that q(xi|x°_) is bounded from below, and
S vy e < 00. Then q admits a joining of finite distance, and, conse-
quently, has the measure concentration property.

Finally, the following result of Goldstein [11] on maximal coupling
can be used to prove the existence of a finite distance joining. We use
this result as formulated in Lindvall’s book [12, formula (14.1), p. 99].

Let Y =(1,Y,,...) and Z* = (Z;,Z,,...) be (non-stationary)
random processes with values in %, and distribution p> and >, re-
spectively. Write

py = dist(Yn(’O), re = dist(ijO) .
It is a trivial consequence of the definition of variational distance that
for any joining dist(Y*°,Z>) of p* and r*°, and any n > 0
P1r{YnOO ;AZ;O} > |p;° —rﬁol, all n>0 .

Goldstein’s Theorem. There exists a joining dist(Y>,Z>) of p> and r™
such that

Pel1 £ 27} = I 17

n

coall n>0 . (1.6)
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A joining that satisfies (1.6) is called maximal. It is clear that for a
maximal joining of dist(Y>°) and dist(Z>)

o0

> Ed(Y,Z) < i}pﬁf -l
n=0

i=1

Let us apply Goldstein’s theorem to the distributions qoo(‘|)€(ik) and
¢ (-|x°,), where 2%, and x° are two fixed past sequences.

Proposition 4. Assume that there is a constant u such that for any k and

any two past sequences )E(ik and x°,

o (420 - 4 (129 <

Then q admits a joining of finite distance u.

Proposition 4 specializes to Markov chains as follows. For Markov
chains the existence of maximal coupling was proved by Griffeath [12].
For a stationary Markov chain {X;} and fixed j, k € Z, consider the
distributions ¢*(-|j) = dist(X;°|Xo =) and ¢*°(-|k) = dist(X;°|Xy = k).

We have in this case

42 CL) = @ CIE)| = |aen (1) = g (1K)

)

where q(,11)(-|/) = dist(X,111Xo = Jj).

Proposition 4'. If q is the distribution of a stationary Markov chain then
q admits a joining of finite distance u with

u = sup > law 1) — aw k)] -
IR p=1

It is clear that if a Markov chain satisfies (1.3) then u + 1 < 1/a. But
u + 1 can be substantially smaller than 1/a. In the case of finite-state
time-reversible Markov chains one can bound u + 1, using spectral
theory of stochastic matrices. Define

A =max|4] ,

where 4; ranges over the eigenvalues of the transition matrix corre-
sponding to non-constant eigenfunctions. It is well known that a
Markov chain is mixing if and only if 2 < 1. Let s = {s(x)} denote the
stationary distribution of the Markov chain. Then (c.f. [14], Propo-
sition 3)
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n

1
|9 (1)) = n] < —==- 4
Vs(j)
(We used a weaker but simpler bound than that in [14].) It follows that
1

2
min; \/s(j) 14
(Similar bounds also exist in the non-reversible case [15].)

Obviously there exist time-reversible mixing Markov chains, say
with uniform stationary distribution, whose transition matrix does not
satisfy (1.3). For such Markov chains Theorem 4 can be applied. It is
also clear that, by a small perturbation of the transition matrix of such
a Markov chain we can get a transition matrix satisfying (1.3) with an
arbitrarily small @ > 0, but with second largest eigenvalue still
bounded away from 1. In this case u + 1 will be much smaller than
1/a.

The proof of Theorems 2 and 3 is given in Section 2.

u+1<

2. Proof of the theorems

We shall prove Theorem 2 in the following stronger form.

Theorem 2'. If X admits a joining of finite distance u then for any k > 0,

any fixed past sequence x°,, and any distribution p" on 2"

A", q" (1)) < (w+ 1) EDE e (h2)) - (21)

To get Theorem 2 from Theorem 2’, we apply it for k = 0; then x°,
is the empty sequence, and so (1.5) is a special case of (2.1).

Remark. The inequality

d(p",q"(1x")) < (u+ 1)/E=D(p"llg" (0))

(for almost all x ) would not be enough to get Theorem 2, since the
integral of the right-hand-side with respect to ¢° _ may be larger than
2 D" llg").

We introduce the following notation. Let us fix a past sequence x° ,,
and let X" and X" denote random sequences distributed according to
p" and ¢"(-]x", ), respectively.

We have then
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q" (¥"|x%)
q1(x1]x%;)
9% (xlik)
- 'y (xlk)

Pr{Xl”|X1 = x1} =

= Q(xllc‘xl_k) 5

1.€.,
diSt(XﬁX] = x1) = q'f (]xlk) .
Let us put p; = distX 1. Moreover, for a fixed x; € & write
PLCJ) = dist (X)X, =3) .

We shall use the following important identity for expansion of di-
vergence.

D(p'llg" (%)) = D(prllar (2,))
+ Y PEDE )l (&) L (22)

where x° %, is the sequence obtained by appending %; after x?,.

Proof of Theorem 2’. We prove (2.1) by induction on n. For n =1 it
follows from Pinsker’s inequality. (For any k!)

Assume that (2.1) holds for n — 1 and any k. Fix a k and a sequence
x°,. Let X" and X" denote random sequences distributed according to
p" and ¢"(-x" ), respectively. Our goal is to define a joining

dist()?”,X")

of the distributions p” and ¢"(-|x°,) so that Ed (X "X ") be possibly
small. )

First we define a joint distribution dist(X",Y;"), where Y'is a
rgndom sequence (Y2,...,Y,) of length n — 1. For a fixed value x; of
X, define

diS‘[(YﬁX] :)El) = q'f(|x(lk321) .
Since ¢ is stationary, we can use the induction hypothesis for the

sequence x° % instead of x°,, to get a joining

dist()?”, YR = ;el)

that achieves

Ela(X1 )15 =&} < @ 1)\/ﬁD(p’Wl)Hq’f(-\xokfl)) :
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This implies, by the concavity of the square root function,

Ed(X].77) < (w+ 1>\/ﬁZmoel)D(p?(-rael>Hq'f(-rx°k>el)) .

(2.3)
Now we join the distributions dist(X”, Y!") and distX” = ¢"(-]x%,).
Define dist(X, X)) so as to achieve
PI'{Xl #Xl} = ‘pl —q1 (|x(lk)‘ .
Further, if x; and x| are possible values of X, and X, then we can take
a joining

diSt(Y]n,XﬂX] :)el,Xl :xl)
satisfying

E{Zd(n,)@pﬁ = %1,X :xl} <u-d(f,x1) . (2.4)
i=2

Indeed, if x; = x; then
diSt(YIn‘Xl = )21) = q’{(-\x(lkil) = q?(-\x{k) = diSt(XﬂX] = X]) ,

and so we get 0 for the expected distance; if x| # x| then the minimum
expected distance is < u, since ¢ admits a joining of finite distance u.
Now take any joint distribution

dist (X Yf’,X”)

for which dist(X", ¥1"), dist(X,X;) and dist(¥, X7|X 1, X)) are as de-
scribed above. Then we have, using (2.3) and (2.4),

Ec?(f(",)ﬂ)
< P £ X0+ "B ) +%Eid(f’i X)
S%PI{XI #X1}+n;l(u+1)
1
X1

n—1

—{—ZPI’{Xl #X]} = (u—l— 1) . {%Pl‘{f(l #Xl}—k

X \/ﬁzlpl(?ﬁ)D(P{'('

n

%)l (- \x‘lkfl)} : (2:5)
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Now we use Pinsker’s inequality to get

Prif) £} < \D(pllar (12,) -
Substituting this into (2.5), we get the bound

EEJ()?",X") <(u+1)- E \/%D(leqn (%)

n—1 \/2(n1_ 1) Zm(£1)D(p’1’(.|)21)||q7(.,xgk£1))] '

By the concavity of the square root function, and using the expansion
of divergence (formula (2.2)), the right-hand side of the last formula
can be continued to

< (u+1)- /=D lg" (1x0,) -

We have proved (2.1) for n, so the induction step is completed, and the
proof also. O]

n

Discussion. In the proof of Theorem 2 we only used the following
consequence of the existence of finite-distance joining:

E{Zd()ﬁ,xi) !ae(lk,x‘lk} <u,

i=1

provided ﬁ(ik and x°, differ only in the last (i.e., 0°th) symbol. But we
do not know whether this assumption is indeed weaker than the ex-
istence of finite-distance joining. If we only had assumed

E{Zd(f(i,x,-) ae(loo,x‘loo} <u
i=1
1

for =) =x~1 , that condition would not have been enough to prove

oo

Theorem 2. (It is enough to prove the inequality

d(p",q"(1°)) < (u+ 1)y /ED(p" g (-1x..))

with probability 1.)

Proof of Theorem 3. Since g(x;[x° ) is bounded from below, we have
"< 1, and

o0

H(l_"/i)>0 .

i=1
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Write

w=1-T[0-2)

i=1
We have w < 1.
Let us fix two past sequences ° __, x* w €EX 0

—oo? —00?

dist (X XX OO) (2.6)

and define a joining

of ¢ (x? ) and 9 (. \x ) as follows.
Let dlst(X 1,X1 ]x_oc, ) achieve

Pr{X; Z X0 20} = a1 () —ai (b)) [ <o

Assume that dist(X?, X720 ,x0 ) is already deﬁned Fix sequences
%, x' € 2", Let us append the sequences X',x’ to x and x°__, re-
speetlvely, and denote the resulting sequences by x" and X Now
define

(D wi i
dlSt (Xi+l )‘Xrl'+1 |x70c?x—oc)
so as to achieve

Pr{X1+1 7éXz+1|x 0! 700} ‘Qi+1(")€ioo) _qi+1('|xioo)‘ <7

where j < i is the largest integer such that
o
X =x! i

Thus we have defined the joining (2.6).
Define
d®(E*,x) =Y d(&;,x) .
i1

Let us estimate E{d>* (X", x>)[x* _,x°__}. We have

—00?
Pr{f(oC

Aoooax(loo} 2 H(l - Vi) )
i=1

1.€.,

Pr{dOO(XOO,Xoo) > 1;2200,;&00} <w .

Consider two sequences x> and x> such that x> # x>, and let & be the
first index for which x; # x;. Then we have

~ ~k
PriXy = x| 2l X = 3 Xt —x } >

s

(I=7p) -

—00? TV —00?

—_

i
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This implies that
Pr{a (™ x*) > 2

B dX (X x> 1 <

It can be proved similarly that for any / > 1

Pr{doo()?“,xm) > 141020 d@ (R X)) > 1} <w,

1.€.,
Pr{d"o (£,X°) > 1

20 0 /
xfoo,xfoo} <w .

Since w < 1, this implies that E{d%(}?”,xm)mﬂw,xﬂm} is bounded.
L
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