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Summary. Let X � fXig1i�ÿ1 be a stationary random process with a
countable alphabet X and distribution q. Let q1��jx0ÿk� denote the
conditional distribution of X1 � �X1;X2; . . . ;Xn; . . .� given the
k-length past:

q1 �jx0ÿk

ÿ � � dist X1jX 0
ÿk � x0ÿk

ÿ �
:

Write d�x̂1; x1� � 0 if x̂1 � x1, and d�x̂1; x1� � 1 otherwise. We say that
the process X admits a joining with ®nite distance u if for any two past
sequences x̂0ÿk � �x̂ÿk�1; . . . ; x̂0� and x0ÿk � �xÿk�1; . . . ; x0�, there is a
joining of q1��jx̂0ÿk� and q1��jx0ÿk�, say dist�X̂10 ;X10 jx̂0ÿk; x

0
ÿk�, such

that

E
X1
i�1

d X̂ i;Xi
ÿ �jx̂0ÿk; x

0
ÿk

( )
� u :

The main result of this paper is the following inequality for processes
that admit a joining with ®nite distance:

Theorem. Let qn denote the distribution of X n � �X1;X2; . . . ;Xn�. Then
for any distribution pn on Xn
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�d pn; qn� � � �u� 1�
�����������������������
1
2n D pnkqn� �

q
;

where D denotes informational divergence.

The signi®cance of this bound is that it implies a measure con-
centration inequality. We are able, at least theoretically, to compute u
for Markov chains.

We also prove that the existence of ®nite distance joining is implied
by a condition frequently used in the theory of 1-dimensional Gibbs
measures.

Mathematics Subject Classi®cation (1991): 60F10, 60G10, 60J10

1. Introduction

Let X � fXig1i�ÿ1 be a stationary process with a countable alphabetX
and distribution q. If fxjgj2J is a (possibly in®nite) sequence of ele-
ments of X, and the interval �i;m� belongs to J then we denote by xm

i
the subsequence �xi�1; xi�2; . . . ; xm�; i or m may be ÿ1 resp.1. If the
lower index is missing then 0 is understood.

We also use the notation Xm
i for the space of sequences xm

i , where,
again, i or m may be in®nite. If q is a probability measure on the space
of doubly in®nite sequences x1ÿ1 then we use the notation qm

i to denote
the induced measure on Xm

i . We denote by ql�1��jxl
i� the distri-

bution dist�Xl�1jX l
i � xl

i�, and by ql�m
l ��jxl

i� the distribution
dist�X l�m

l jX l
i � xl

i�.
We denote by �d the normed Hamming distance on Xn �Xn:

�d xn; yn� � � 1

n
d xn; yn� � � 1

n

Xn

i�1
d xi; yi� � ;

d xi; yi� � � 1 if xi 6� yi; 0 otherwise :

We say that the process X , or the distribution q, has the blowing-up
property if for any e > 0 there are d > 0 and n0 such that for n � n0
and any A � Xn with qn�A� � exp�ÿnd�, the e-neighborhood of A has
measure almost 1. I.e.,

qn�A� � exp�ÿnd� ) qn��A�e� � 1ÿ e ; �1:1�
where �A�e is the e-neighborhood of A:

�A�e � yn 2 Xn : �d xn; yn� � � e for some xn 2 A
� 	

:

Note that (1.1) can be replaced by the seemingly stronger implication
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qn�A� � exp�ÿnd� ) qn��A�e� � 1ÿ exp�ÿnd� ; �1:10�
which can be seen by applying (1.1) to both A and the complement of
�A�e. (The d of (1.1¢) is not the same as that of (1.1).) The implication
(1.1¢) can be written in the following symmetric form:

qn�A� � exp�ÿnd�; qn�B� � exp�ÿnd� ) �d�A;B� � e :

Equivalently, the blowing-up property for q means that there exists a
function u�d� with limd!0 u�d� � 0 such that

�d�A;B� � u
1

2n
log

1

qn�A�
� �

� u
1

2n
log

1

qn�B�
� �

:

De®nition.We say that X , or q, has the measure concentration property,
if for any A;B � Xn we have

�d�A;B� � c �
������������������������
1

2n
log

1

qn�A�

s
�

������������������������
1

2n
log

1

qn�B�

s !
for some constant c.

Thus measure concentration is much stronger than blowing-up. In
this paper we focus on measure concentration.

Ahlswede et al. [1] proved that if q is i.i.d. (independent identically
distributed) then it does have the blowing-up property. In fact, the
proof given in [1] yielded also the measure concentration property for
the i.i.d. case. Later the measure concentration phenomenon was ex-
tensively studied for i.i.d. processes. C.f. [2] and McDiarmid [3], where
the best constant for the i.i.d. case (c � 1) was ®rst obtained. See also
Talagrand's survey papers [4] and [5] where new proofs, lots of ap-
plications and a large bibliography are given. ± Proofs of measure
concentration, based on the use of informational divergence, were
given in the author's papers [6] and [7]. In [7] also some processes with
memory were considered.

There is a simple but powerful inequality by Pinsker between
variational distance and informational divergence. (See later.) The
extension of this inequality to one between �d-distance and informa-
tional divergence was the basis of the proofs of measure concentration
given in [6] and [7].

If p and r are probability distributions onX then jp ÿ rj will denote
their variational distance (divided by 2).

Let pn and qn be two distributions on Xn; their �d-distance is

�d pn; qn� � � minE�d X̂
n
;X n

� �
;
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where the min is taken over all joint distributions with marginals
qn � distX n and pn � dist X̂

n
. The distance �d pn; qn� � is a natural gen-

eralization of jp ÿ rj, since
jp ÿ rj � minPr X̂ 6� X

� 	
;

where the min is taken over all joint distributions dist�X̂ ;X � having
marginals p � dist X̂ and r � distX .

If p and r are two probability distributions on X then the infor-
mational divergence of p with respect to q is

D pkr� � �
X
x2X

p�x� log p�x�
r�x� :

Thus the informational divergence of pn with respect to qn is

D pnkqn� � �
X

xn2Xn

pn xn� � log pn xn� �
qn xn� � :

Now we recall

Pinsker's inequality, (C.f. [8], [9].). Let p and r be two distributions on
X; then p and r admit a joining dist�U ; V � satisfying

Pr U 6� Vf g � jp ÿ rj �
�����������������
1
2 D�pkr�

q
:

In [6], [7] a similar inequality was proved between �d�pn; qn� and
1
n D�pnkqn� for the case when q is i.i.d. In [7], this inequality was gen-
eralized to the case of mixing Markov chains, and also for a class of
processes q with very fast and uniform decay of dependence. Namely,
for a class of processes q, [7] established

�d pn; qn� � � c �
�����������������������
1
2n D pnkqn� �

q
; �1:2�

for any probability measure pn on Xn, where the constant c depends
on the behavior of the transition probability function q1��jx0ÿ1� �
dist
ÿ
X10 jX 0

ÿ1 � x0ÿ1
�
. E.g., if q is a Markov measure with a transition

matrix satisfying

dist X1jX0 � x� � ÿ dist X1jX0 � y� �j j � 1ÿ a ; �1:3�
then the constant can be taken 1=a. If q is i.i.d. then c � 1 is good, but
a smaller c can be given if c is allowed to depend on the distribution q.

By the following lemma, (1.2) implies measure concentration for q.

Lemma 1. If there is a constant c such that for any distribution pn on
Xn, the inequality (1.2) holds, then q has the measure concentration
property with the same constant c.
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(Bobkov and GoÈ tze [16] proved recently that (1.2) is also necessary
for measure concentration, although possibly with a value of c dif-
ferent from the one we used in the de®nition of measure concentra-
tion.)

Proof of Lemma 1. Assume (1.2). Consider two sets A;B � Xn. De®ne
a distribution pn, associated with the set A as follows:

pn xn� � � qn xn� �=qn�A� xn 2 A
0; otherwise ,

�
i.e., pn is qn conditioned on A. De®ne similarly the distribution rn

associated with B.
Then

1

n
D pnkqn� � � 1

n
log

1

qn�A� :

By our assumption, this implies

�d pn; qn� � � c �
������������������������
1

2n
log

1

qn�A�

s
:

Similarly,

�d rn; qn� � � c �
������������������������
1

2n
log

1

qn�B�

s
:

Since pn and rn are concentrated on A and B, respectively, it follows
that

�d�A;B� � �d pn; rn� � � c �
������������������������
1

2n
log

1

qn�A�

s
�

������������������������
1

2n
log

1

qn�B�

s !
: (

The aim of this paper is to give a su�cient condition for (1.2), and
thereby for measure concentration. The condition we give both gen-
eralizes and improves the main theorem of [7]. The improvement
concerns improving the constant in (1.2). Even for Markov chains
satisfying (1.3) the constant can be improved. The process X is always
assumed to be stationary.

We shall use the following concept introduced by Eberlein [10].

De®nition.We say that the process X , or the measure q, admits a joining
of ®nite distance u if for any k and any two past sequences x̂0ÿk and x0ÿk of
positive probability there is a joining of q1��jx̂0ÿk� and q1��jx0ÿk�, say
dist�X̂10 ;X10 jx̂0ÿk; x

0
ÿk�, such that
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E
X1
i�1

d X̂ i;Xi
ÿ �jx̂0ÿk; x

0
ÿk

( )
� u : �1:4�

(Eberlein called such processes Very Weak Bernoulli of order 1=n.)

Eberlein proved that if the process X admits a joining of ®nite
distance, and f is a real valued function on X then the process ff �Xi�g
satis®es the central limit theorem (under some quite natural additional
conditions).

Our main result is the following.

Theorem 2. If the process X admits a joining of ®nite distance u then

�d pn; qn� � � �u� 1�
�����������������������
1
2n D pnkqn� �

q
�1:5�

for any distribution pn on Xn.

We can give su�cient conditions for the existence of ®nite-distance
joining in terms of ergodic properties of q.

The following theorem asserts that a condition frequently used in
the theory of 1-dimensional Gibbs measures implies the existence of
®nite-distance joining. We need the following notation:

ck � sup
N

sup
x0ÿN ;y

0
ÿN :y0ÿk�x0ÿk

q �jx0ÿN

ÿ �ÿ q �jy0ÿN

ÿ ��� �� :
Theorem 3. Assume that q�x1jx0ÿ1� is bounded from below, andP1

k�1 ck <1. Then q admits a joining of ®nite distance, and, conse-
quently, has the measure concentration property.

Finally, the following result of Goldstein [11] on maximal coupling
can be used to prove the existence of a ®nite distance joining. We use
this result as formulated in Lindvall's book [12, formula (14.1), p. 99].

Let Y1 � �Y1; Y2; . . .� and Z1 � �Z1;Z2; . . .� be (non-stationary)
random processes with values in X, and distribution p1 and r1, re-
spectively. Write

p1n � dist Y1n
ÿ �

; r1n � dist Z1n
ÿ �

:

It is a trivial consequence of the de®nition of variational distance that
for any joining dist�Y1;Z1� of p1 and r1, and any n � 0

Pr Y1n 6� Z1n
� 	 � p1n ÿ r1n

�� ��; all n � 0 :

Goldstein's Theorem. There exists a joining dist�Y1; Z1� of p1 and r1

such that

Pr Y1n 6� Z1n
� 	 � p1n ÿ r1n

�� ��; all n � 0 : �1:6�
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A joining that satis®es (1.6) is called maximal. It is clear that for a
maximal joining of dist�Y1� and dist�Z1�

X1
i�1

Ed�Yi;Zi� �
X1
n�0

p1n ÿ r1n
�� �� :

Let us apply Goldstein's theorem to the distributions q1��jx̂0ÿk� and
q1��jx0ÿk�, where x̂0ÿk and x0ÿk are two ®xed past sequences.

Proposition 4. Assume that there is a constant u such that for any k and
any two past sequences x̂0ÿk and x0ÿkX1

n�0
q1n �jx̂0ÿk

ÿ �ÿ q1n �jx0ÿk

ÿ ��� �� � u :

Then q admits a joining of ®nite distance u.

Proposition 4 specializes to Markov chains as follows. For Markov
chains the existence of maximal coupling was proved by Gri�eath [12].
For a stationary Markov chain fXig and ®xed j; k 2 X, consider the
distributions q1��jj� � dist�X10 jX0�j� and q1��jk� � dist�X10 jX0 � k�.

We have in this case

q1n ��jj� ÿ q1n ��jk�
�� �� � q�n�1���jj� ÿ q�n�1���jk�

�� �� ;
where q�n�1���jj� � dist�Xn�1jX0 � j�.
Proposition 4¢. If q is the distribution of a stationary Markov chain then
q admits a joining of ®nite distance u with

u � sup
j;k

X1
n�1

q�n���jj� ÿ q�n���jk�
�� �� :

It is clear that if a Markov chain satis®es (1.3) then u� 1 � 1=a. But
u� 1 can be substantially smaller than 1=a. In the case of ®nite-state
time-reversible Markov chains one can bound u� 1, using spectral
theory of stochastic matrices. De®ne

k � max jkij ;
where ki ranges over the eigenvalues of the transition matrix corre-
sponding to non-constant eigenfunctions. It is well known that a
Markov chain is mixing if and only if k < 1. Let s � fs�x�g denote the
stationary distribution of the Markov chain. Then (c.f. [14], Propo-
sition 3)

Measure concentration for a class of random processes 433



q�n���jj� ÿ qn
�� �� � 1��������

s�j�p � kn :

(We used a weaker but simpler bound than that in [14].) It follows that

u� 1 � 2

minj
��������
s�j�p � 1

1ÿ k
:

(Similar bounds also exist in the non-reversible case [15].)
Obviously there exist time-reversible mixing Markov chains, say

with uniform stationary distribution, whose transition matrix does not
satisfy (1.3). For such Markov chains Theorem 4 can be applied. It is
also clear that, by a small perturbation of the transition matrix of such
a Markov chain we can get a transition matrix satisfying (1.3) with an
arbitrarily small a > 0, but with second largest eigenvalue still
bounded away from 1. In this case u� 1 will be much smaller than
1=a.

The proof of Theorems 2 and 3 is given in Section 2.

2. Proof of the theorems

We shall prove Theorem 2 in the following stronger form.

Theorem 2¢. If X admits a joining of ®nite distance u then for any k � 0,
any ®xed past sequence x0ÿk, and any distribution pn on Xn

�d pn; qn �jx0ÿk

ÿ �ÿ � � �u� 1�
�������������������������������������
1
2n D pnkqn �jx0ÿk

ÿ �ÿ �q
: �2:1�

To get Theorem 2 from Theorem 2¢, we apply it for k � 0; then x0ÿk
is the empty sequence, and so (1.5) is a special case of (2.1).

Remark. The inequality

�d pn; qn �jx0ÿ1
ÿ �ÿ � � �u� 1�

���������������������������������������
1
2n D pnkqn �jx0ÿ1

ÿ �ÿ �q
(for almost all x0ÿ1) would not be enough to get Theorem 2, since the
integral of the right-hand-side with respect to q0ÿ1 may be larger than�����������������������

1
2n D pnkqn� �

q
.

We introduce the following notation. Let us ®x a past sequence x0ÿk,
and let X̂

n
and X n denote random sequences distributed according to

pn and qn �jx0ÿk

ÿ �
, respectively.

We have then
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Pr X n
1 jX1 � x1

� 	 � qn xnjx0ÿk

ÿ �
q1 x1jx0ÿk

ÿ �
� qn

ÿk xn
ÿk

ÿ �
q1ÿk x1ÿk

ÿ � � q xk
1jx1ÿk

ÿ �
;

i.e.,

dist X n
1 jX1 � x1

ÿ � � qn
1 �jx1ÿk

ÿ �
:

Let us put p1 � distX̂ 1. Moreover, for a ®xed x̂1 2 X write

pn
1 �jx̂1� � � dist X̂

n
1jX̂ 1 � x̂1

� �
:

We shall use the following important identity for expansion of di-
vergence.

D pnkqn �jx0ÿk

ÿ �ÿ � � D p1kq1 �jx0ÿk

ÿ �ÿ �
�
X

x̂1

p1 x̂1� �D pn
1 �jx̂1� �kqn

1 �jx0ÿkx̂1
ÿ �ÿ �

; �2:2�

where x0ÿkx̂1 is the sequence obtained by appending x̂1 after x0ÿk.

Proof of Theorem 2¢. We prove (2.1) by induction on n. For n � 1 it
follows from Pinsker's inequality. (For any k!)

Assume that (2.1) holds for nÿ 1 and any k. Fix a k and a sequence
x0ÿk. Let X̂ n and X n denote random sequences distributed according to
pn and qn��jx0ÿk�, respectively. Our goal is to de®ne a joining

dist X̂
n
;X n

� �
of the distributions pn and qn��jx0ÿk� so that E�d X̂

n
;X n

� �
be possibly

small.
First we de®ne a joint distribution dist�X̂ n

; Y1n�, where Y n
1 is a

random sequence �Y2; . . . ; Yn� of length nÿ 1. For a ®xed value x̂1 of
X̂ 1, de®ne

dist Y n
1 jX̂ 1 � x̂1

ÿ � � qn
1 �jx0ÿkx̂1
ÿ �

:

Since q is stationary, we can use the induction hypothesis for the
sequence x0ÿkx̂1 instead of x0ÿk, to get a joining

dist X̂
n
; Y n

1 jX̂ 1 � x̂1
� �

that achieves

E �d X̂
n
1; Y

n
1

� �
X̂ 1 � x̂1
��n o

� �u� 1�
�����������������������������������������������������������������

1

2�nÿ 1�D pn
1 �jx̂1� �kqn

1 �jx0ÿkx̂1
ÿ �ÿ �s

:
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This implies, by the concavity of the square root function,

E�d X̂
n
1; Y

n
1

� �
� �u� 1�

������������������������������������������������������������������������������������
1

2�nÿ 1�
X

x̂1

p1�x̂1�D pn
1 �jx̂1� �kqn

1 �jx0ÿkx̂1
ÿ �ÿ �s

:

�2:3�
Now we join the distributions dist�X̂ n

; Y n
1 � and distX n � qn��jx0ÿk�.

De®ne dist�X̂ 1;X1� so as to achieve

Pr X̂ 1 6� X1

� 	 � p1 ÿ q1 �jx0ÿk

ÿ ��� �� :
Further, if x̂1 and x1 are possible values of X̂ 1 and X1, then we can take
a joining

dist Y n
1 ;X

n
1 jX̂ 1 � x̂1;X1 � x1

ÿ �
satisfying

E
Xn

i�2
d�Yi;Xi�jX̂ 1 � x̂1;X1 � x1

( )
� u � d�x̂1; x1� : �2:4�

Indeed, if x̂1 � x1 then

dist Y n
1 jX̂ 1 � x̂1

ÿ � � qn
1 �jx0ÿkx̂1
ÿ � � qn

1 �jx1ÿk

ÿ � � dist X n
1 jX1 � x1

ÿ �
;

and so we get 0 for the expected distance; if x̂1 6� x1 then the minimum
expected distance is � u, since q admits a joining of ®nite distance u.

Now take any joint distribution

dist X̂
n
; Y n

1 ;X
n

� �
for which dist�X̂ n

; Y n
1 �, dist�X̂ 1;X1� and dist�Y n

1 ;X
n
1 jX̂ 1;X1� are as de-

scribed above. Then we have, using (2.3) and (2.4),

E�d X̂
n
;X n

� �
� 1

n
PrfX̂ 1 6� X1g � nÿ 1

n
E�d�X̂ n

1; Y
n
1 � �

1

n
E
Xn

i�2
d Yi;Xi� �

� 1

n
Pr X̂ 1 6� X1

� 	� nÿ 1

n
�u� 1�

�
����������������������������������������������������������������������������������������������

1

2�nÿ 1�
X

x̂1

p1 x̂1� �D
�

pn
1

�
� ��x̂1�kqn

1

�
� ��x0ÿkx̂1

��s

� u
n
PrfX̂ 1 6� X1g � �u� 1� �

(
1

n
Pr X̂ 1 6� X1

� 	� nÿ 1

n

�
�������������������������������������������������������������������������������������������

1

2�nÿ 1�
X

x̂1

p1�x1�D
�

pn
1

�
� ��x̂1�:kqn

1

ÿ � x0ÿkx̂1
���s )

: �2:5�
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Now we use Pinsker's inequality to get

Pr X̂ 1 6� X1

� 	 � ���������������������������������
1
2 D p1kq1 �jx0ÿk

ÿ �ÿq
:

Substituting this into (2.5), we get the bound

E�d X̂
n
;X n

� �
��u� 1� � 1

n

���������������������������������
1
2 D p1kq1 �jx0ÿk

ÿ �ÿq�
� nÿ 1

n

������������������������������������������������������������������������������������
1

2�nÿ 1�
X

x̂1

p1 x̂1� �D pn
1 �jx̂1� �kqn

1 �jx0ÿkx̂1
ÿ �ÿ �s

� :

By the concavity of the square root function, and using the expansion
of divergence (formula (2.2)), the right-hand side of the last formula
can be continued to

� �u� 1� �
�����������������������������������
1
2n D pnkqn �jx0ÿk

ÿ �ÿq
:

We have proved (2.1) for n, so the induction step is completed, and the
proof also. (

Discussion. In the proof of Theorem 2 we only used the following
consequence of the existence of ®nite-distance joining:

E
X1
i�1

d X̂ i;Xi
ÿ ���x̂0ÿk; x

0
ÿk

( )
� u ;

provided x̂0ÿk and x0ÿk di�er only in the last (i.e., 0'th) symbol. But we
do not know whether this assumption is indeed weaker than the ex-
istence of ®nite-distance joining. If we only had assumed

E
X1
i�1

d X̂ i;Xi
ÿ ���x̂0ÿ1; x0ÿ1

( )
� u

for x̂ÿ1ÿ1 � xÿ1ÿ1, that condition would not have been enough to prove
Theorem 2. (It is enough to prove the inequality

�d pn; qn �jx0ÿ1
ÿ �ÿ � � �u� 1�

���������������������������������������
1
2n D pnkqn �jx0ÿ1

ÿ �ÿ �q
with probability 1.)

Proof of Theorem 3. Since q�x1jx0ÿ1� is bounded from below, we have
c1 < 1, and

Y1
i�1
�1ÿ ci� > 0 :
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Write

w � 1ÿ
Y1
i�1
�1ÿ ci� :

We have w < 1.
Let us ®x two past sequences x̂0ÿ1; x

0
ÿ1 2 X0

ÿ1, and de®ne a joining

dist X̂
1
;X1jx̂0ÿ1; x0ÿ1

� �
�2:6�

of q1��jx̂0ÿ1� and q1��jx0ÿ1� as follows.
Let dist�X̂ 1;X1jx̂0ÿ1; x0ÿ1� achieve

Pr X̂ 1 6� X1jx̂0ÿ1; x0ÿ1
� 	 � q1 �jx̂0ÿ1

ÿ �ÿ q1 �jx0ÿ1
ÿ ��� �� � c1 :

Assume that dist�X̂ i;X ijx̂0ÿ1; x0ÿ1� is already de®ned. Fix sequences
x̂i; xi 2 Xi. Let us append the sequences x̂i; xi to x̂0ÿ1 and x0ÿ1, re-
spectively, and denote the resulting sequences by x̂i

ÿ1 and xi
ÿ1. Now

de®ne

dist X̂ i�1;Xi�1jx̂i
ÿ1; x

i
ÿ1

ÿ �
so as to achieve

Pr X̂ i�1 6� Xi�1 x̂i
ÿ1; x

i
ÿ1

��� 	 � qi�1 �jx̂i
ÿ1

ÿ �ÿ qi�1 �jxi
ÿ1

ÿ ��� �� � cj ;

where j � i is the largest integer such that

x̂i
iÿj � xi

iÿj :

Thus we have de®ned the joining (2.6).
De®ne

d1 x̂1; x1� � �
X1
i�1

d x̂i; xi� � :

Let us estimate Efd1�X̂1;X1�jx̂0ÿ1; x0ÿ1g. We have

Pr
n

X̂
1 � X1 x̂0ÿ1; x

0
ÿ1

�� o
�
Y1
i�1
�1ÿ ci� ;

i.e.,

Pr
n

d1
ÿ
X̂
1
;X1

� � 1 x̂0ÿ1; x
0
ÿ1

�� o
� w :

Consider two sequences x̂1 and x1 such that x̂1 6� x1, and let k be the
®rst index for which x̂k 6� xk. Then we have

Pr
n

X̂
1
k � X1k

���x̂0ÿ1; x0ÿ1; X̂ k � x̂k;X k � xk
o
�
Y1
i�1
�1ÿ ci� :
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This implies that

Pr
n

d1
ÿ
X̂
1
;X1

� � 2
��x̂0ÿ1; x0ÿ1; d1ÿX̂1;X1� � 1

o
� w :

It can be proved similarly that for any l � 1

Pr
n

d1
ÿ
X̂
1
;X1

� � l� 1
��x̂0ÿ1; x0ÿ1; d1ÿX̂1;X1� � l

o
� w ;

i.e.,

Pr
n

d1
ÿ
X̂
1
;X1

� � l x̂0ÿ1; x
0
ÿ1
o
� wl :

���
Since w < 1, this implies that Efd1�X̂1;X1�jx̂0ÿ1; x0ÿ1g is bounded.

(
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