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Summary. Let (X;,7 € Z) be a linear sequence with non-Gaussian innova-
tions and a spectral density which varies regularly at low frequencies. This
includes situations, known as strong (or long-range) dependence, where the
spectral density diverges at the origin. We study quadratic forms of bivariate
Appell polynomials of the sequence (X;) and provide general conditions for
these quadratic forms, adequately normalized, to converge to a non-
Gaussian distribution. We consider, in particular, circumstances where
strong and weak dependence interact. The limit is expressed in terms of
multiple Wiener-Ito6 integrals involving correlated Gaussian measures.
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1 Introduction

We pursue the study, started in Giraitis and Taqqu [12], of the asymptotic
distribution of quadratic forms
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N
On =Y bt = $)Pyu(X;, X;) (1.1)
t,s=1
in bivariate Appell polynomials P, ,, as N — oo. Here
X,::Za(t—u)fu, teZl (1.2)
ucl

is a linear sequence. The weights a(u) of the linear sequence satisfy
>, @*(u) < oo and the innovations &,’s are i.i.d. random variables with zero
mean, variance 1 and finite 2(m + n)-th moment so as to ensure that
EP} (X, X;) < o0,

The case m =n =1 which corresponds to P, ,(X;, X;) = X:X; — EX.X;,
was studied by Fox and Taqqu [3] when {X,} is Gaussian and by Giraitis and
Surgailis [8] when {X;} is a linear sequence of the form (1.2). The corre-
sponding limits of Oy are either Gaussian or non-Gaussian depending on the
behavior at the origin of both the spectral density f(x) = 2z|a(x)|*, —n <
x < m of {X;} and the Fourier transform b(x) of the kernel {h(z)}. Specifi-
cally, if a(x) = [|x| “L(1/|x])]"/* and b(x) = |x| PL;(1/|x|), where L and L, are
slowly-varying functions at infinity, then Qy converges to a normal distri-
bution if « + < 1/2 and to a non-normal distribution if « + f > 1/2.

These results have been used to derive the asymptotic behavior of the
Whittle estimator of « (Fox and Taqqu [4], Giraitis and Surgailis [8]). The
parameter o is of interest because it measures the “intensity”’ of long-memory
in the sequence {X;}. We shall say that {X,} is strongly dependent if o > 0 and
weakly dependent if o < 0. In the case of strong dependence the spectral
density f(x) of {X;} blows-up at the origin.

Terrin and Taqqu [18] started the investigation of the non-linear case
(1.1), where P, ,, m +n > 2, is an Appell polynomial of the linear sequence
X;. Appell polynomials are natural in this context because they are adapted
to the distribution of X;. In this paper, we weaken the assumptions of Terrin
and Taqqu (replacing the assumption on a by one on f) and deal with all
possible cases where the limit is non-Gaussian, including the particularly
delicate situations where strong and weak dependence interact (see Case (A;)
in Section 2). We also include the cases m = 0 or n = 0. The limits are ex-
pressible as multiple Wiener-1t6 integrals with correlated Gaussian measures.
This paper, together with [12, 10] which focus on the central limit theorem,
thus provides a complete description of the asymptotic behavior of the
quadratic form Qy as N — oc.

Extensions to functional limit theorems appear in Giraitis and Taqqu
[11]. For applications to Whittle estimation, see Giraitis and Taqqu [9].
Related papers include Taqqu [16], Dobrushin and Major [2], Major [15],
Avram and Taqqu [1], Giraitis and Surgailis [6, 7], Terrin and Taqqu [17],
Ho and Hsing [13], Koul and Surgailis [14].

The paper is structured as follows. Section 2 contains the definition of the
Appell polynomials, the precise assumptions on the spectral density f(x) of
X, and on the kernel {b(¢)} in (1.1), as well as the statements of the main
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theorems. Theorem 2.1 deals with the case m,n > 1 and Theorem 2.2 with the
case where either m or n is zero. Theorem 2.3 provides a multivariate gen-
eralization. The proof of the theorems are given in Section 3. These proofs
use a number of propositions presented in Section 4 that reduce the problem
to the weak convergence of step functions approximations. The weak con-
vergence of these approximations is established in Section 5.

2 Assumptions and results
We start with a definition of the multivariate Appell polynomials

Poon Xy, X)) =Xy Xy X Xy e =0,1 0

nj N

6,

The alternate notation *: ...:”, called Wick product, is convenient and we
shall use it as well (the indices in P correspond to the number of times that

the variables in *“: :” are repeated). The Appell polynomials P, ., can be
defined by Py o =1 and the recurrence relations
0
apnl B (xla ce ,Xk) = anm ..... nj—1,... 0 <x17 cee 5xk) 3
J
EPn1 ..... nk(‘lelﬂ"'aXv[k)ZO M

The first relation indicates that these polynomials behave like power func-
tions. The second relation provides the constants of integration and relates
the polynomial to the joint distribution of the X;’s. The multivariate Appell
polynomials can also be defined by the generating function

S _exp(Thzm)
YA G ) = 2P Z)
Eexp(3}ziX,)

.....

(see [1], [6] for more details). The univariate Appell polynomials

Pu(X) =1 X, ... X = X" (2.1)
N —

were considered by Avram and Taqqu [1], Giraitis and Surgailis [6]. If X; is
Gaussian, then P,(X;) is the Hermite polynomial. Among all Appell poly-
nomials, the Hermite polynomials are the only ones that are orthogonal. In
spite of their lack of orthogonality, the multivariate Appell polynomials
possess nice probabilistic properties such as the diagram formula for mo-
ments and cumulants. We are interested here in the bivariate Appell poly-
nomials

PunlX0s X)) =2 Koy oo K Ky X e (22)
—— ——

m n
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In Giraitis and Taqqu [12] we found conditions for Qy to satisfy the
central limit theorem (CLT). We focus, in this paper, on non-central limit
theorems (NCLT) for Qy. We assume that!

fx) = 2aja(x)]* = x| L1 /|x]), as x—0 (—co<a<l),
b(x) = x| PLi(1/x]), as x—0 (—co<f<1)

where f(x), x € [-m,n] is spectral density of the sequence (X;); b(x),
x € [-m, 7] is a real even function defined by the relation

b(t) = / e“b(x)dx, teZ
[77[*,7-[]

and L, L; are slowly varying functions at infinity, i.e. L(¢x)/L(¢) — 1, — oo
for any fixed x > 0. We assume that f(x) and b(x) are bounded in 7 > |x| > ¢
for any ¢ > 0, that is, if they diverge, they can do so only at the origin.
(Terrin and Taqqu [18] make the stronger assumption a(x) =
| 2L (1 [x))).

Let

du(0) :=1—m(l —a), (m>1). (2.5)

The number d, (o) in (2.5) characterizes the dependence structure of the
sequence (: X" :)yez- It is easy to prove that if d), (o) < 0 then : X . has a
continuous spectral density ,,(x), x € [-=n, ], while if d,(a) >0, then
W, (x) = |x|_d’"(“)L(’”>(l/|x|) as x — 0, where L™ is a slowly varying function
at infinity, that is, the spectral density ¢,,(x) diverges at the origin. Thus, the
cases dy(o) < 0 and d,,(«) > 0 correspond to the weak and strong depen-
dence of : X" : .
Set now

I if m=1
d (%) '_{max(dm(oc),O), it omAl (2.6)

and
= dj (@) + d (2) + 26 . (2.7)

Giraitis and Taqqu [12] studied situations where Oy satisfies the Central
Limit Theorem (CLT) with y < 1 (Theorem 2.4). Our goal is to analyze what
happens when y > 1. But we also treat the case y > 0 in Theorem 2.2.

We assume for convenience that 1 <m <n and d,(a) # 0,d,(a) # 0
when m,n > 2. We have to distinguish between “components™ : X,": that
are linear (m = 1,:X,(m) :=X;) and non-linear (m >2) and also between
components that are weakly dependent (d,,(«) < 0) and strongly dependent

!'We use the notation:
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(dn(r) > 0). We will consider the boundary case d,(«) = 0 only when m = 1.
(Then 0 = d;(«) = a, that is, f(x) = L(1/|x|) in (2.3).)
We have to distinguish between three situations:
(A1) ceither m=n=1;
or I =m<nand d,(«) > 0;
or 2<m<n, and d,(a) >0, d,(o) > 0;

(A2) either 1 =m <nandd,(a) <0 (case (A}));
or 2<m<nand dy(a)>0,d,(a) <0;

(A3) 2<m<nanddy(x) <0,d,(a) <O .

In the case (4;), each component :Xt(m) rand : Xt("> : is either linear or it is
non-linear and strongly dependent. In case (4,), : X,<m) : satisfies the same
condition as in (4;) but : X,("> : is non-linear and weakly dependent. In case
(43), both components are non-linear and weakly dependent.

To characterize the limit as N — oo, introduce a vector

(z<‘>(dx),z<m> (dx),z<">(dx)) (2.8)

whose components are complex-valued Gaussian measures Z(!) (dx), 2" (dx)
and Z"(dx) with zero mean such that
EZD(d)ZU)(dy) =0 if x#y; 1L,I'=1,mn
EZW(dx)ZW) (dx) = o(1,1)dx ;

o(1,1) = Cov(&y,: Xy i 2< 1, I =m,n;

o(1,I') =y, ,(0) if [,I'>2 and either equal to m orn .
The Gaussian measures Z (dx) and Z")(dx) will be used in the weakly
dependent cases d,,(a) < 0 and d,(«) < 0 respectively. The cross spectral

density v, (x) of the vector (: X" (¢) :, : X")(¢) :) is then continuous at the
origin. Its expression is given in (5.20). In the special case

alx) ~ [f () /2] 2 ~ 62 LA/ (6 0) (29)
considered in Terrin and Taqqu [18], one can show that
Ya(0) = (1/2m) " Cov(: ™ - X" ) (2.10)
t

The joint vector (2.8) is now well defined. We will need

ZW in case (4,); (z1,Z™), n > 2 in case (45);
(zM 7MY, 2 < m < nin case (43) .
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Note that Z(1) has the standard covariance

but Z", n > 2, has covariance
EZ"(4)Z)(B) = ,,,(0) [ dx .
’ ANB
Moreover, in case (43), the joint covariance of (Z<1>7Z(")), n>2is
EZ(I)(A) ( ) COV(fo,. :) dx )
ANB
and in case (43), for (2", Z"), 2 < m < n,

EZ™(A)Z0)(B) = ,,,,(0) [ dx .

ANB
Finally, define
L(N)"™L3(N), incase 4,
L*(N) =< L(N)"L3(N), in case A,
2(N), in case 43 . (2.11)

h

Theorem 2.1 (Non-central limit theorem). Suppose m > 1, n > 1 and
y=d () +df () +28>1 . (2.12)

(In the case (45), suppose also that (2.9) holds.) Then, in the cases (4;),
j=12,3,as N — oo,

1 d

- Oy=>2ZY) | 2.13
NVL*(N)QN o (2.13)
where
m-+n
25"13':/ o Z%fo et Rl P20 () . 20 (),
Rm+/1 lerl

m+1

[ <Z> il 2l 220 ) 2 )2 )
R -

z3) :/ Do (x1,x2) 2™ (dx1)Z" (dxs)
RZ

Dy (x1,x2) := /Ko(x1 + u)Ko(xs — u)|u| P du | (2.14)
R

and

Ko(x) :=——. (2.15)
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Observe that the function ®) which appears in the integrand of Z,%, is
always bounded. The limits Z,% are represented as multiple Wiener-1t6 in-
tegrals (see, for example, Major [15] for a definition).

To shed some light on Theorem 2.1, recall that the limiting distribution of
properly normalized sums Zivzl : X" : may be represented by a 1- or m-tuple
Wiener-1t6 integral (see Giraitis [5], Giraitis and Surgailis [7]), respectively.
The limiting distribution of Qy has a much more complicated structure. As
Theorem 2.1 indicates, it is represented by a multiple Wiener-I1td integral
whose order depends on whether :Xt(m> :and :Xt(") : are strongly dependent.
A strongly dependent component :X,(m> : contributes an m-fold integral to
the limit, and a weakly dependent component :X,<m) : contributes a single
integral.

In the next theorem we study the asymptotic behavior of the quadratic
form Qy (1.1) when m > 1 and n = 0, that is, when

Oy = bt —5)Pu(X;) . (2.16)
ts=1

In this case, P, o(X;, X;) = Pu(X;) =: X,(m) : is the univariate Appell polyno-
mial, and the parameter y in (2.7) becomes y = d} (o) + 1 + 2.
The following theorem addresses the cases:

(Ay) m>2, n=0, d,(x) <O0;
(As) either m = 1,n=0;
orm>2 n=0, d,(a)>0.

We set L*(N) = L}(N) in the case (44) and L*(N) = L"(N)L?(N) in the case
(ds).

Theorem 2.2 Assume m > 1, n =0, and

0<y=di(x)+1+28 . (2.17)
Then as N — oo,

V'L (V)] oy S Z2Y) (2.18)

in the cases (4;), j=4,5. The limit Z,% is Gaussian:
235 = (0) [ 0u(x,0)2(@) (2.19)
R
5)

but the limit Z,(no is non-Gaussian:

‘m,0

z%) :/ Do(x1 + -+ + X, )t | 2 x| 2 Z(dxy) ... Z(dx) . (2.20)

Here ,,(0) is the spectral density of :X,(m) . at the origin and Z(dx) is a
complex Gaussian random measure with E|Z(dx)|* = dx.

Using the notation of Theorem 2.1, zY = [ ®o(x,0)Z™ (dx) and, in
7P 7(dx) = 7D (dx).

m,0?
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Theorem 2.2 implies that both the CLT and non-CLT can be valid with
the normalizing factor N=7', 0 < ' < 1. Whether the limit Z,,o is Gaussian or
not is determined by the dependence type of the variables P, (X;) =: Xt(m) :
t € Z. 1t is Gaussian if P,(X;),t € Z has weak dependence (d(a) < 0) and
non-Gaussian (given by the stochastic Wiener-1t6 intergral) if P, (X;),t € Z is
strongly dependent (d() > 0).

The following example provides a “non-CLT” with the classical nor-
malization v/N.

Example 2.1 Suppose that all slowly varying functions equal 1, m > 2,
l—1/m<a<1,so that d,(«) =1—m(1 —a) > 0. Choose f§ = —d,(«)/2.
Then y =1 and

1
VN
)

where Z, , is a non-Gaussian random variables given by (2.20).

d
On =>Z,<,22)

Remarks

1.1. Theorem 2.1 in the case (4;) was proved by Taqqu and Terrin ([18],
[17]), for dy(x) >0 and d,(«) >0 and with condition (2.3) on the
spectral density f(x) = 2m|a(x)|* replaced by the stronger assumption
a(x) = [x|™? L(1/|x|) (x — 0). This stronger condition was not really
needed because the proof in [18] uses only conditions on the behavior of
the spectral density f(x) = 2r|a(x)|*, around the origin.

1.2. Case (44) involves d,(«) <0 and excludes m = 1. Tt is instructive,
however, to try to apply it to the case m = 1. In order to do so, one has
to use the definition of d(x) for m > 1, hence redefine d; (x) as
max(d;(a),0) = max(o,0) = 0. Then the y in (2.12) becomes y* =0+
1 +2p. This y* is greater than the y = o+ 1 + 28 which is used in (4s)
with the standard definition (2.6) of d| (x). The corresponding nor-
malization N7'/? is thus too high and the limit in (2.13) ought to be 0.
This is indeed the case since i;(0) = 0 implies a limit of Z 0 =0. By
using the correct case, namely (4s), one would normalize by N?/? and
obtain the non-degenerate Gaussian limit ng

1.3. We do not consider the cases y > 1 when either m >2, dy(a) =0 or
n > 2,d,(o) = 0. These are boundary cases. We conjecture, that in these
cases, (2.13) holds with the norming factor N~7/2L/(N), where L'(N) is a
slowly varying function.

1.4. The boundary case y = 1 was considered in Theorem 2.2 when m > 1
and n = 0. We conjecture that if y = 1 and m,n > 1, then the CLT holds.

1.5. Theorems 2.1 and 2.2 involve Wiener-It6 integrals Z,%’,)n, j=1,...,5 Let
FU) denote the (non-random) integrand of Z,% The condition
|FU| ;2 < oo, which ensures the existence of the Wiener-Ito integral, is
proved in the Appendix.

1.6. Under the assumptions of the Theorems 2.1 and 2.2 the finite-dimen-
sional distributions of {(N”L* (N))fl/zQ[N,]7 ¢t > 0} converge to those of
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{Z,%(t), t >0} inthecases j = 1,...,5, respectively. The limits (Z,%(t))
are obtained by replacing, in the definition of the limits Z,&,”n = Z,gf,),,(l),
the kernel 2.14 ®y(x;,x;) by the kernel

®,(x1,72) = / Koy + ) — w)lul ™ du |
R
where
E:itx -1

ix

K(x):=

1.7. For functional limit theorems, see Giraitis and Taqqu [11].

Multivariate extension

We now provide a multivariate generalization of the Theorems 2.1 and 2.2
Suppose we have £ > 1 quadratic forms

: sz )P, (X Xy),  (mp+my > 1), I=1,.. k

where (X;) is the linear sequence (1.2) whose spectral density has the as-
ymptotic behavior (2.3) and where the weights b,(.) are Fourier coefficients
of the functions b,(x), |x| < =,

bi(x) = W L1/ Ix]), W <m0 (Bl< 1) I=1,.. 0k,

where L;,/ = 1,...,k are slowly varying functions.
Assume E|g \2 () < 00, in order to ensure that QN has finite second
moments for all /. Let

pr=di (o) +df (@) +28, =1,k (2.21)

ny
and Lj(N), I = 1,...,k be defined as L*(N) in (2.11), but replacing L, (N) by
L;(N) respectively. Under the assumptions of Theorems 2.1 and 2.2 each of
the quadratic forms A;,l/zQ vg» [ =1,...,k, normalized by Ay; = N"'Lj(N)
converges to the limit (7, 0 )0 = (Z,%)n,))po in cases j = 1,...,5. The indexes

[ and ¢ in [, ) indicate that the parameter f in the deﬁmtlon of the integral
Z,(,,’L is replaced by f; and the kernel Ky(x) by the kernel K;(x).

Theorem 2.3 Suppose that each of the quadratic form Q,(\p, I=1,...)k
satisfies the assumption of the Theorem 2.1 or 2.2. Then, for any t1,...,t; >0,

—1/2 (1 1/2 Ak 1 k
( PO QENL]) = (Ifl >,...,1,(k)) N—o0) . (222)

The proof of Theorem 2.3 can be derived in the same way as that of
Theorems 2.1 and 2.2.
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3 Proof of the theorems

Since Theorem 2.2 involves the particular case » = 0, and since its proof is
related to that of Theorem 2.1, we combine the proofs of these two theorems.
Set

O (11, 12) = /[ Dl +3)Duz = by (3.1)

where
u i(N+1)x sin(Nx/2)
(z_: ) N = sin(x/2)

is the Dirichlet kernel. Applying the multilinearity of P, ,(X;, X;) we can write
(see Giraitis and Taqqu [12], Section 4 or Giraitis and Taqqu [10], Section 3):

QN = Z dN(ul7-"7um+n) : éuﬁ'"?éu,w,, : (32)
UL yeeestimin €L

where
N

dy (.. tmin) = Y b(t—s)a(t —w) - a(t — uy)

ts=1

X a(s — tpy1) - - (S — Umin)

_ (U1 X1+ nXmin) m+n
= e(l] * +>dN(X1,...,Xm+n)d x
[ nn]m+ll

and

3 i )(xl e X))

dN(xl, cee ;mern) = &(xl) a(xm+n)e ’ (3 3)
X (I)N(xl T+ Xy X1 + +xm+n) y

where @y is defined in (3.1).

If n =0, we interpret Oy (x; + - -+ + Xy X1 + -+ 4 Xn) a8 Dy (g + -+ -
+ x,0), and set
V1)
i (A1+4.A+xm)(DN<xl NI _~_xm70> ] (34)
In order to make explicit the dependence in (3.2) of the quadratic form Qy on
the weights dy or dN, we shall often write Oy (dy) or QN(dN)

Our goal is to find the asymptotic behavior of QN(dN) adequately nor-
malized.

c}’N(xl, ey X)) = alxy) . a(xm)e

3.1. Approximation by step functions

We first approximate @y in (3.3) by “‘step functions”.

If dyy(or) > 0 and m > 2 (or d,(2) > 0, n > 2), that is, if : X" : (or : X" :) in
(2.2) are strongly dependent, we shall focus on the components a(x;) of dy
with x; close to the 0. Here, | <i<m(orm+ 1 <i<m+n).
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In the case d,,(a) < 0, m > 2, which corresponds to weak dependence of
:Xt(m> ;, the local behaviour of a(x;) does not play any role and we shall
discard a small neighborhood of x; = 0. The function a(x;) will be bounded
outside that interval.

We divide now the interval Ty := [-K,—1/K) U (1/K,K], K > 0 into /g
smaller intervals. Let #(=1/K<t<---<t, =K, t;:=t+hl,
I=1,...,1g. Set A, = (1171,11],A,1 = [7!1, 7[1,1), [=1,...,lg. We assume
that the mesh size

K—K!
hEhK::liHO as K — oo . (3.5)
K
Let D {A;,l—l Jg,—1,...,—Ig} denote the set of intervals A,
whose union is Tg. When d>?2, let Dﬁ() ={A, x- XA A, ED?,

l; # +/ly if i #i'}, denotes the collection of the mini-cubes {A} = Ay,
x -+ x A, of the c-dimensional cube T¢ = Tx x ... x Ty where “diagonals”
A;, = £A;, have been excluded.

For each mini-cube {A}, we introduce the constants C;
cases (4;), j=1,...,5:

m m+n
(1) — ~(1) _
CA = CAIIX...XA[”H” 7(1)0 (Z tl[’ Z tl[> )

U) for each of the

i=1 i=m+1
@ _ O Z
CA = CA,I XX Apy XAy = (DO L5 tlm+] y
i=1

3 3
C<A> = C(A,?xA,z = Do (1, 11,),
C(A4) = C(ASI? = (DO([]],O);

=, ., =0, (z o) ,

i=1

where @ is defined by (2.14).
Finally, we introduce the renormalized step functions CI)(’)A where
j =1,2,3 denote the case (41), (42), (43) of Theorem 2, respectively. Set

m+n
LGt = > CV T[N € A) (3.6)
AeDi’”*'” k=1

(I)g\%_)A(xl’ e ,xm+n) - Z C<Az H]l ka & AIA

{AyeDl*) k=1
m—+n
1N Z x; |mod 27| € Ay,
i=m+1
m—+n

< [T (x> 1/mnN), (3.7)

i=m+1
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(DS,)A()”’ . ,xm+n) = Z C?A)} (N[(Zx,) mod 2rn| € A]],
{ayen{ i=1
m—+n m+n
N|| > x|mod 2r|e A, | [] 1(ki| > 1/1nN)
i=m+1 i=1

(3.8)

where @ is defined by (2.14).
If the assumptions of Theorem 2 are satisfied, i.e. m > 1,n = 0, we use the
following step functions instead:
c A,)

In the case (44), that is d, () < 0, m > 2, we set
m
x [T (x> 1/InN) (3.9)

(I)]@A(xl,.. Xm) Z C ( [(Zx,)mod 2n
i

A; eD =1
and denote by 74 0 the Gaussian limit Z,, o in (2.19).
In the case (As) that is dy, (o) > 0, we set

5
O (1) = Y C{A}H]l Nx; € Ay) (3.10)
{A}GDM

and denote by Z 0 the non-Gaussian limit Z, o in (2.20).

3.2. Convergence

Now, we divide the function
dy =dJ\ +7)) j=123,4,5 (3.11)
defined in (3.3) into a main part
Ay = ax1) - (o) N"PL (V) T 0 P00 (xy, L ) (3.12)

and a part corresponding to the remainder term

i VD e, i
/r\(]\j]’)A a(xy) - a(xmn)e 2 (bt "IH)U]\(//?A(le oy Xmtn) s (3.13)

where

R m m-+n
U](\}]7>A(x17"'7xm+n) :<(DN <le‘, Z xi>
i=1

i=m+1

- N1+'BL1(N) CD](\{)A(xl, s axm+n)> ’
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j=1,2,3,4,5. Thus,

Ov(dy) = On(d))) + On (7)) - (3.14)

From Proposition 4.1, 4.2 and 4.3 in Section 4 it follows that Ve > 0, there
exists K > 0 and a set of partitions {A} which define the step functions CD%?A,
such that '

[L*(N)N'] "' Var Oy (7)) < e (3.15)
the limit
-~ (i d -
L (N)N')" 20y (d)y) = q¥ (3.16)
exists and
Var(qy) —2Y) < (3.17)

as N — oo for j=1,2,3,4,5. The statements (2.13) of Theorem 2.1 and
(2.18) of Theorem 2.2 follow from (3.14)—(3.17) and (3.11). This concludes
the proof of the theorems.

4 Propositions

The following propositions have been used.

Proposition 4.1 For any ¢ > 0, there exists K > 0 and a set of partitions {A},
such that (3.15) holds.

Proof of Proposition 4.1. Since (see Giraitis and Taqqu [12], (4.8))

VarQ(dy) < C(&) Y dylti,- - tmin) = C(&)|d (4.1)
tyeostmin €L
we get
Var O ( ”NA) <C(¢ HrNAHLZ : (4.2)

From (4.2) and the definition (3.13) of ?%’)A, it follows that the norm

2 - j m-+n
p < C/[ Wf(xl)...f(x,,,+,,)|UA(,{>A(x1,...,me)Pd e

=¢ / []+/ [.]) = Clrng+ra2) .
(=)™ A <Ay [~ AL, AL,

| (4.3)

The set Ag"])v in (4.3) denotes {(xi,...,xn) € R:1/K < |Nx;| <K,
i=1,...,m} if d,(«)>0; and the set {(x,...,xn) €ER:1/K<N]|
(x1 +...+x,)mod 27| <K, |x,<l > 1/logN, i=1,...,m} if d,(x) <0, res-
pectively. (The definition of Ay’ is similar). Note the asymmetry in the

N = H?J(v/)A
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definition of Aﬁg";, between the strongly and weakly dependent cases. In the

case of strong dependence, we require all the x;’s to be “outside” the origin.

In the case of weak dependence it is only their sum that can is required to lie

outside the origin. Note also that, whereas ry; involves integration over

A};”])v X A%",)N, ry involves integration over the complement of that set.
Clearly,

O\ (61, Xgn) = 0 FOr (x1,. o Xmia) € [, \ AP X ALY . (4.4)

It remains to estimate ry,; and ry».

We estimate first 7y ;. Consider, for example, the case j =2 for which
dn(a) > 0 and d,(2) < 0. Note that in this case, y = d,/ () +df (o) + 2 =
1 — m + mo + 2f. After the change of variables (x{,...,x,,) = N(x1,...,%u),
X N[(Xms1+ -+ + Xpmyn)mod 27), we get

m+l
VL ) s < CUON-L-() // LGN ()
i=1,...m+1
X SO @t /N - [ (3] X X0 P
where
hN(x/U te 7x:n;x;n+l) = NiliﬁLlil(N)(DN (Zx;/Nﬂx;nH/N)
i=1
—ha(X], o XX, )
and

ha(x i) = > CO T € AL, €A,) -
{ayeDY k=1

The function
f(*”)(u):/[ S ) () ) (46)

denotes the n'™ convolution of f (periodically extended in R). Under the
assumption d,(«) < 0, the convolution ") (u) is a bounded function, and
under the assumption d,, () > 0 we can also bound

[Lr0/N) < camwmen)
i=1

in (4.5), using the following well-known property of the slowly varying
functions:

N7*L™Y(N)f(x/N) < Clx|”*"9 uniformly in N > 1 and |x| <Nn  (4.7)
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(for any € > 0 fixed), where C = C(¢). Thus,
Rylh) < C(K) | (& i P (48)

Using the estimate
|Dy(x)| < const N(1 + [Nx|)™", |x| < 3m/2 (4.9)
it follows that the function
pr(uruz) = IN"PL (N )@y (/N ua /N)|
satisfies
py(ur,uz) < p(ur, uz)

= const/(l )7 (1 =)y dy <00 (410)
R

uniformly in (u;,u;) € [ng,gN]z, and hence uniformly in |u;], |uz] < K.
Here € > 0 is a fixed small number. Since N~'Dy(u/N) — Ko(u) as N — oo,
applying the dominated convergence theorem, we get

N PLIYN) Oy (uy /N uz /N) — ®o(ur,uz) (N — o0)

for |u|, |uz] < K, where the limit @ is defined by (2.14). We now want to
examine the integral deﬁning RNK(h) in (4.5).

The function Aa(x},...,x,,;x, ) involves an indicator function of a set
concentrated around the dlagonals whose measure tends to 0 with the mesh
size h. Since the integral in the estimate (4.8) of Ry x (%) is over a compact set,
since Ay 1s bounded, and in view of the definition of the functions @%?A and
hy it follows that

limsupRyx(h) =0 72 —0 (4.11)
N

for any fixed K > 0.
We deal now with ry, in (4.3) and consider again the case j = 2. Using
(4.4), we get

n m+n 2
I”N,2 - / f()C1) .. .f(xm+,,) (I)N in’ Z X; d711+nx
(Al <A =1 i=mtl
Write
N2 =IN3 T N4 (4.12)

where ry 3 and ry 4 are obtained by replacing @y (u1,us), defined in (3.1), by
Duslur,z) = [ Dl +3)Dylus ~ )by
By
k = 3,4 respectively and where

By={yel-mn]:|u+y>3n orju+y >3n} ,
Bi={yemn: ol <3mle+yl < in)



348 L. Giraitis et al.

Consider first ry 3. We have

s < /[ I )

2
' (/ |Dn (1 + y)Dy (2 —y)i?(J’)|dy> duy duy
IS |ur+y[=3/2n or [ux+y[23/2n

(4.13)
where 0" (u) is the m™ convolution defined in (4.6). Note that 0" (u),
m > 1, is bounded for |u| > € (since f(x) is bounded for |x| > ¢, one can
always bound one of the integrants in (4.6) and hence separate the variables).
Suppose first that m,n > 1. If |u; +y| > %n, then [u;| > % and |y| > 7, and
hence both functions /" (u;) and b(y) are bounded. Thus,

n 2
o[ ) s ) (/10w = )Dxtus = ylay) dna
< CN = o(N'L*(N))

(see e.g. Giraitis and Taqqu [12], Relation (5.9)).
Suppose now m > 1,n = 0. Then f*")(u;) = 1 and

2
N3 = / FOm () (/ | Dy (uy +y)DN(—y)B(y)|dy> duy .
T y|<m,Jui+y|>3/2n

Since £ (uy), |Dy(y)| and b(y)| are bounded for |u;| > Zand 3 < [y| <7, we

get
T T 2
3 < C/ </ | Dy (uy +y){dy> duy

<C / ’ In*> N du; = O(In* N) = o(N'L*(N)) . (4.14)

We finally consider ry 4 defined in (4.12). Relations (4.4) and (4.9) lead to the
bound:

[N”"L*(N)]ferA < const/ fK(ul,uz)pz(ul,uz)dulduz ,
[—nN N]?

where p(u1,uy) is defined in (4.10), and where fx (u1,u,) will be defined below.
To motivate the form of fx(u;,us), note that we want to bound the renor-
malized [[7, /(x) [17" | f(x;). We shall use the bound (4.7) if d,,(a) > 0,

i=m+1

and (2.3) if d,(x) <0 and make a change of variables as above. For
example, if d,,(o) > 0, we set N ¥, =x;, i=1,...,m; u; = > 1, x,, and we
get

m m

m
Hf(Nx,») < aNH | <ayluy —xy— =X | 7" H )~

i=1 i=1 i=2
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where ay is some function of N and o' = a + €. Taking advantage of the
symmetry in the variables of integration, we can choose for N sufficiently
large,

fK(uuuz) = f,g*m)(ul)fo(*")(uz) +f~()(*m)(ul)f1(<*n>(u2)
+j;O(*m)(ul)fo*;ﬂ(uz)(]1(|ul| < 1/K or |u| > K)
+ (U(Juz| < 1/K or |uz| > K)) .

Here £ (u) :=
Jul 1 (jul < 1/K or |u] > K),

if m=1,; ,
m—1 7/7...7x xh .. .x - Y < X > X,
S [(u = x5 D TP | < 1/K or x| > K)dm Y
it m>2d,(x) > 0;

s[up ]f[inyn]m—lf(u—xlz — —xﬁn)f(x’z)f(xin)ﬂ“x;n‘ < I/K)dmflx/,
ue|—mn,m

it m>2,du(0) <0 .

The function £ (u) is /™ (u) with K =0 and 1/K = co. The function
FY™ (u) is defined in a similar way. In the case m > 2, dy(x) < 0, we used
the inequality 1(|x/,| <1/InN) <1(|]x,| < 1/K), valid for N sufficiently
large.

In order to apply the dominated convergence theorem, we shall derive an
upper bound for the function fx.

Taking into account (4.7), it is easy to show (as in Giraitis and Taqqu
[12], Lemma 5.2) that f; (u) < const|u|7d”+’(°‘)*/ uniformly in K > 0andu € R
(for small € > 0). (In fact, if d,,(«) < 0, then fi(u) is bounded.) Thus,

Sic(ur,u2) < constluy |~ |7 O =y, un) (4.15)

uniformly in u,u; € [-nN,nN], with € > 0 small. Note also, that for any
fixed wuy, us,

Jx(u,up) -0 as K — oo . (4.16)
Therefore, from the assumption y > 1 in (2.12) and Lemma 4.1 below, it

follows that f(-,-)p*(-,-) € L(R?). Thus, using relations (4.15) and (4.16),
we get

lim sup[N”’L*(N)}ferA <const| fi(ui,u)p*(ur,u2)duy duy — 0 (K — o0) .
N R2

This, together with (4.3), (4.12) and (4.14), implies the statement (3.15) of
Proposition 4.1. O

Lemma 4.1 Let p(uy,uz) be defined as in (4.10) and set —1 < oy, 00, < 1. If
o +op+ 28> 1, then

= / o |7 iz | |y, ) [Py iy < 00
R2
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If oy +2+1>0, then
1;:/|ul\—“1|p(ul,o)|2arul <o .
R

This lemma is proved in the Appendix.
Proposition 4.2 Relation (3.16) holds for any K > 0 and partition {A}.

Proof. We start with the proof of (3.16). Let A = (a,b] be an interval from
D§<l> (see Subsection 3.1). Set

aya(x) == N"2LV2(N)a(x)l(x € A/N)e™? x| <n . (4.17)
For m' > 2, put
ay Aty X)) = a(xy) - (i el /2 H 1(Jxg| > 1/InN)
k=1
A((x1 + -+ xp)mod2w € A/N), x| <7, x| <7 (4.18)

(Below m’ > 2 will be used to denote either m' =m >2 orm' =n > 2.)
From (4.17)—(4.18) and the assumption (2.3) it follows that

(ana(xt, .. xw)| < CK)(InN)Y < oo (m' >2) (4.19)

X]VH,xm/

for lar(ge p >0, and |aya(x)| < C(K), for m’ =1 uniformly in the intervals
Ae DK>. Introduce the Fourier coefficients

aN,A(th ceyty) = / / ei(tm+.“+t,,,/xm/)&N.’A(x1’ o ,Xm/)dm/x (m/ >1) .
[77[‘,”]”’

(4.20)
Then from Definition (3.12) of LAZN_A it follows that

A N A
NPy ) =3¢ ST At tn) G

{A} Hyeestmin €L

where j = 1,2,3,4,5 refers to the Cases (4;)—(4s), and where Z%’Z} denotes
the sum over all partitions {A} = A;, x ... X A;((j) with [; # [y for 1 # i and
c(D=m+nc2)=m+1, ¢(3)=2, c(4) =1, ¢(5) =m;

A%?A(Ily s atm+n)

\/NaN,A,l(tl) e WQN,A,,,I‘,ﬁtm+n) if j=1,
VNaya,(t1) ... V/Nay a,(tn)
B X VNaya,,  (tnits - s tmin) if j=2,
| VNawa . t)VNay At tag) B =3,
VNaya(ti,- . s tw) if j=4,
\/]VaN,A,l(tl) ... \/NaN,A,m(tm) if j=5. (4.21)
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Setting

Zy = > VNaya(t,..otw) &, G (2 1) (422)

1‘1,4..7tm/EZ

we can rewrite

N0y (dy.a) = O +RY) (4.23)
as a sum of a main term
& (1) 1) 0
> Ca'Zyw - Zyy > if j=1,
(A% X -
@ W )
c@z WD g e i
> A “NA, NALEN AL J
{A’]x...xALnxA,’nH}
0 X oB) g .
NA T > G NA’ZN.A’Z’ if j=3,
{A’XA’} ’
2 cVz NA, if =4,
(a7}
&L 5,0 )
>z, if =5, (4.29)
{A]x..xAL} ol "

and a remainder term

/R : A
R](\]]):ch) Z AO?A(tla-"atm+n)( : itla"wéz‘mM : _é(/)(tla"wthrn)) )

{A} (t15eestmsn ) €L
(4.25)

j=1235R ](\,) = 0), where, to simplify notation, we now write A}, A, ...,
1nstead of Aj Ay, ..., and where /; and é(’ are given below.

To motivate the deﬁnltlon of J; and v, j=1,2,3,5, recall that, since the
sequence (&;) is i.i.d, it follows from the well- known properties of Wick
products (see [3]) that

:5[])'"?é[k7élk+|)"'?élk/ = 5[17"'aét- o étk+17"'7§tk/ : (426)

if {t1,...,6} 0 {tix1,... .t} =0. Thus [; C Z"™ will be the set, where
the difference : &, ,... 5,W —ED(t, ) # 0, with ED (1, ) =
étb : ét,,,M 9 5(2)01’ - m+n) S RS gtm+17" Et,,m1 5
&l (tl,... tuin)=: Cyeney & i 5%],.. oy &6 >(t1, e tm) = &
¢, « - Equivalently, then, the sets [; C Z’"*" j=1,2,3,5, are subsets of Z”’+"
deﬁned as follows: The vector (ti,...,tm4n) €1 if t, =1y for some
1 <s < s <m+n. The vector is in I, if, in addition, s < m, and it is in I3 if,
in addition to the previous two criteria, ¢, = ty for some m < s’. The vector is
inIsif t; =ty for some 1 < s < s < m.
From Lemma 5.1 below it follows that

00\ S q) (Vo) j=1,2345 (4.27)
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where the limit q A is defined by the nght hand side of (4.24), after replacing
the ZNA) with m' = 1,m or n by Z ) defined in (5.1).
From Lemma 5.2 below it follows that the remaining term R(’ in (4.23) is
negligible: .,
RS0 (N—>oo) j=1,2,3,45. (4.28)

Hence, the relations (4.23), (4.27) and (4.28) imply the convergence (existence
of the limit) (3.16).

Proposition 4.3 The number K > 0 and the partition {A} in Proposition 4.2
can be chosen so that Relation (3.17) holds.

Proof. We prove (3.17) only in the case (4) (or j = 2) (the proof in the cases
j=1,3,451s s1mllar and based on the Lemma 4. 1)

Let (Z( ),Z20m 7)) be defined in (2.8). Then, qA ) defined in (4.27) can be
written in the form

o = [ F )20 ) 20 @) 2 i)

where
FA(z)(xl,. X)) = <I>(Az>(x1, e Xt )]t - ..xm|7“/2
and
) m+1
Q)(A>(x1,~--7xm+1)= Z @y z:tz,tlm+1 Hﬂ xr € Ap,)

(m+1)
{A}eDy

On the other hand, we have that
z) = / FO Ly, xme)ZW(dx1) - .. ZW (dx) 20 ()
where

F(2>(x1, ey Xme) = @ (in;me) [xp .. .x,,,|7°‘/2 .
i=1

Therefore, by the well-known properties of the stochastic Wiener-Itd inte-
grals,

m

Var( 2,)7) < constHFA(2) - HL2

:C(/ }(I)A(xl,...,xmﬂ)
[7K,K]m+l

m
2 —
_G)O(in,xm+1)| |x1...xm\ “dxl...dme

+ / ‘F(Z)(xla"'yxn1+1)’2dxl ~--dxm+l>
R\ [-K K"

=:jk +Jjx - (4.29)
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The dominant convergence theorem implies

since F® e L2(R™") (see Corollary 6 below) and R™'\[-K,K]""!
-0 (K— o0).

Clearly, since the function @ is continuous, for any fixed ¢ > 0, K > 0,
the term jx can be made arbitrary small (jx < ¢) by choosing {A} with
sufficiently small mesh size .

This, together with (4.29) and (4.30) proves (3.17). O

Using Lemma 4.1, we show in the Appendix (Corollary 6.1) that the
limiting processes Z,g{,),,, j=1,...,5in Theorems 2.1 and 2.2 are well-defined.

5 Convergence of the step function approximations

Using diagram formulas for cumulants (Giraitis and Surgailis [6]), we first
prove that the step function approximations converge to the desired limits.
This convergence is used in the proof of Proposition 4.2.

Lemma 5.1 Let Z(m‘) ...,Z]i,mg, m; € {1,m,n} be defined by (4.22) and m; are
such that d(m;) = 1 —m;(1 —a) <0ifm;>2. Let A, € Dg), =1,...,pare
such that
!/ !/ . .
ANEA =0 (i#]) .
Then

m » d m m,
(2 Zyn) = (20" 2y

as N — oo, where the Gaussian complex valued variables (measures) Z A ),

i=1,...,p are defined by

_“/2 . o

Zil Ja |x| D (dx), ¥f I=1 (5.1)
A ), if I=mn>2,

and the Z’s are defined by (2.8).

Proof. Let Yy; = Re Z\/y, Yy pi = Im 2" ¥ = Re 2", ¥,y = Im 7",

i=1,...,p. It is sufficient to prove that for any real numbers uy,...,u, the
convergence
2p d 2p
Sy = ZuiYNJ = 8= Z%‘Yi (5.2)
i=1 i=1

holds as N — oo. Because the limit S in (5.2) is Gaussian, it is sufficient to
check that

Var Sy — Var § (N — o) (5.3)
and
cumg(Sy) -0 (N —o0) fork>3 | (5.4)

where cumy (Sy) denotes the k-th cumulant of Sy.
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Without loss of generality we assume below that all moments of &
exist (otherwise &, can be approximated in (4.22) by ¢&1(|&] < K'),
K' >0).

Let us prove (5.4) first. Because of the multilinearity properties of the
cumulant, it is sufficient to prove that

Lk :zcum(YN,-],...,YNJk)—>O (N—>OO)VkZ3 (55)

for any (i1,...7%) € (1,...,2p).
From the definition (4 22) of Z A we get

S VUNOy(t, ) e G

yeotm; €L
i=1,...,2p after setting
GNJ: Re aN,Af(tlv“'atmi)? HN,PJri:Im aNAA;(t17""t’np+i)7 i=1,...,p

with mpyi; = m.

Using again the multilinearity of the cumulants, the fact that (&) is an
ii.d. sequence, and the cumulant formula for : &, ,...,¢, : (see, e.g. [6],
Theorem 4 (iv)), we get

T = Z d )Un(7) (5.6)

=(Vi...

where

Z HNN,, i tim)] (5.7)

and where _ and d(y) are defined below. >, is taken over all connected
partitions of the table

(L1),...,(1,my)
w=1\ ... ,..., ... (5.8)
(e, 1), .00, (kymy,)
by subsets V7, ..., V. such that V; contains elements from two or more rows of

the table W. (Since y,(&)) = E& = 0, we do not need to consider »’s with
|V| = 1). A partition is connected if it does not split the rows of the table W
into two or more disjoint subsets. Finally,

d() = xn (&) - 1)
where y,(&) is the /-th cumulant of &, and ¢, (i,j) € W are defined by
tij=t, if(i,j))eV, Viey=MN,... %) .
Using (5.6), we get
ul<C©E > JuvG) -

=M., V)
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We shall now apply Parseval’s equality in the form

k
qu —271:/ kﬁl(xl)...fc}k(xk)ﬂ(<2xi>mod 2n£0>dkx,
[_mn]'

i=1
gel*, (59

to Uy(y). If ENi denotes the Fourier transform of Oy, we get

UN( ) (27‘( Nk/2/ H HN Jj xj Ly~ 7xj,m,j )dmox (510)
where mg := m;, + - - - + m;, and the 1ntegral f[ Ao - ..d™x is taken over all
hyperplanes

( in,,-)modznzo, s=1,...,r (5.11)
(i))ev;

in [—m, n]™. Note that

|6N,l'(-x17' . 7xmi)| S |&N.A[(x17' . 7xm,)| + |&N,7Ai(x17' . axm,-)‘ .

By (4.17)—(4.19), |§Nﬁ,-(x1,...,x1)\ is bounded by C(K) if /=1, and by
C(K)(logN)? if 1 > 2 (I =m,n) for large p. Moreover, since the partition
y=(",..., V) is connected, the variables

yii=(xj1 —|—---—|—xj7,,,l./_)mod 2n, j=1,...,k—1

are linearly independent. After this (partial) change of variables we integrate
over the remaining variables and obtain

1l < C(K)Nk/z(lnN)kp/ Hﬂyj (A} U=A))/N)d" "y

< C(K)(1nN)"PN’f/zz\H’f*1> -0 (N—-o0) Vk>3,

i.e. (5.5) holds. This concludes the proof of (5.4).
To prove the convergence (5.3) of the variances, it is sufficient to show
that as N — oo

. l I .
by o 77T )H{o, if AjNAY =0

N EN A EZm) (A} Z0m: (A’) if A=A, . (5.12)
Indeed, from the relations (5.12), ReZA;'fA = (Z;vml‘) +Zz(vn,13))/2, ImZ](v"ji) =

(le,ﬁig) - Z;,'?B)/Zi, and the equality Z]<V'7A> Lz NﬁA (see definitions (4.22),
(4.20)), it follows that as N — oo , for m;,my, = 1,m, n,

E Re ) Tm Z") — 0 = E Re ") Tm 7",
E Re Z{"}) Re %) — EZ")(A)Z)(A)) /2 = E Re Zy") Re 2y,
E Im Zy") Im z}v’j’gz — EZ"(A)Z0)(A))/2 =E Im Z)") Im zg;w .

This obviously implies (5.3).
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It remains thus to prove 5.12. Since

. FZm) Zm) . prlm) (m)
ky = EZ\'W 2\ = EZVN 2" (5.13)

using formula (5.6) for the right side of (5.13), we obtain

by =Y d()UL(>) (5.14)

where y = (71,. .., ;) denotes the partitions of the table # in (5.8) consisting
in this case of two rows, and the numbers Uy (y) are obtained from (5.7)-
(5.10) with £ = 2:

Z H\/_aNA” G tim,)]
2
(2m) N/ H ay ar (Xi1s s Xjm,)
]+ i

X 1((xj1 + -+ 4 xjm)mod 21 € AT /N)d™ " "™x . (5.15)

where Af = A|,A] = —A. Suppose first A{NA,=0. In (5.15),
(X110 + -+ X1 m )mod 2n €A} /N, (x21 + -+, +X2,m,)mod 27 € —A}/N. Since
by (5.11),

(x11+ -+ +x1m)mod 21 = —(x21 + - -+ + X2.m,)mod 27 | (5.16)

we are integrating in (5.15) over an empty set. Thus Uy, (y) = 0 and ky = 0.
Suppose now A} = A),. To prove the second relation in (5.12), we consider
three cases:
1. Let A} = A, and m; =my = 1. Then from (5.14) and the definition
(4.22) of Z al - , it follows that

by = NSy (i y 05 =N2r [ Gy (W e
tel —m,7

NA'

:/ 2nja(x) PN (N) 1 (x € A /N)dx ~/ x| *dx (N — 00)
[77—577[] A/l

because of (4.17), (2.3), and Eéé = 1. In view of (5.1), Relation (5.12) holds.
2. Let Ay = A, my = 1, my > 2. Then d, (o) < 0 and by (5.6) and (5.13)—
(5.15),
()
ky = xm2+1(éo)2ﬂ/ [NT L (N )l )1 € A /N)]

[77T¢7T]MZAI
alxa)... LAZ(XzAmz)]l((xZ‘] + -+ x mz)mod 21 € —A] /N)
my
< [T (x2kl > 1/ InN)a@™*x (5.17)
k=1

In view of (5.11), we have in (5.17) (x1; +x21 + - - - + X2, )mod 27 = 0, and
therefore x5, = (—x11 —x21 — - -+ — X2.m,—1)mod 2m. Hence,
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ky = : ]dxm[N7“/2L71/2(N)€z(x1‘1)]1(x1,1 S All/N)]gN(xl,l) ,
where
o) = (€02 [l
[—m,n]™2
mz—]
X a(=x11 —X21 = — Xamy-1) H 1(|x2,] > 1/1InN)
=1

A1) (erp +x20 - -+ X2 m,—1))mod2 7] > l/lnN)dmzflx

and where the function a(x) has been periodically extended in R. Since gy is
continuous (see Lemma 5.2 of [12]), gy(x11) =¢(0) + en(x11), where
en(x11) — 0 uniformly in N on A|/N and

9(0) = 711 (E0)27 / 8(x21) . - a(2myr)

[—7‘[,7‘[]”1271
X a(—xp) — - —x;mz,l)dmz_lx
= 1 (E0) Y (@)™
jez
Hence (2.9) implies
Jim &y :g(O)/ | dx (5.18)

On the other hand, by (5.1) and (2.8),

Z0) (A} Z0w (AT / x| 220 / Z0) (dy)

= Cov(&,: X\™ ;)/ x|~ dx . (5.19)
A
But
Cov(¢&y,: Xém2> ) = Z a(=s1)...a(=sm)E: &, &g, 10
Sl,...,‘\‘mz
= Zm1(80) D_(a()™
ez

because E : ésl,...,fsmz 2y = cum(Ey,, ..., ¢, , &) is non-zero only if
§] =...=Su =0. By Parserval identity (5.9), Cov(éo,:XO(mZ) :) = g(0).

Comparing (5.18) and (5.19), we get (5.12).
3. Let A’1 = A’ and my,my > 2. In this case, we assume in the lemma
dm, () < 0 and d,,, (o) < 0. This ensures that the joint spectral density

() 2
V(2= 3 dG) (2 / Tt - at)

=", W) Jj=1

: Il((xu 44 xp ) mod 27 = )»)d"““”zx (5.20)
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J € [—m, 7] of the sequences (: X"™)(¢) :) ., and (: X")(¢) :) ,., is continu-
ous at A =0. Then from (5.14), (5.15) and the definition (4.18) of ay, it
follows that as N — oo,

kv ~ Y s (O)N / 1y € A /N)dy = A}, 0 (0) -

Hence (5.12) also holds in this case. O
The following lemma is used in the proof of Proposition 4.2.

Lemma 5.2 Let RY) be defined by (4.2). Then

VarRY -0 (N— o), j=1235. (5.21)
Proof. Recall that R%j involves a sum over repeated indices ¢, ..., tui,. TO

motivate the notation that will be used in this proof, consider for example the
case j=3 with m=4 and n=2 and focus on the term
X =:&,,¢,,6,, &, &, &, - where all the s are different except that
t1 =t =tsand 13 = t4. Let W} = {1,2,5}, V1 = {3,4}, V5 = {6} (In the case
j =3 considered here, the letter W is used when the indices appear in dif-
ferent Wick products and the letter 7 is used when the indices appear in the
same Wick product). Note that ¥}, V5, W} form a partition of the index set
M= {1 ;m~+n}={l,...,6}. Setting s; =¢t; if je W, t; =¢; if j€V,
and using the notation (2. 1) and property (4.26), we get

X =8 & 8 by il Gy = &P n e e ne =il d® g

1 2 1

where, in terms of the original ¢ variables, : éV‘ =:1&,,&, 5 é* =&,
deal with the repeated indices s}, we shall use 'the formula

et

: f‘gn') S f‘E"") =F: é‘gn') N iﬁ"k) D+ Z c(j) : ég’) : (5.22)
=1

where c¢(j) are some weights. Thus, we can write : ég) i 53? =c(3): ég) :
+e(2): €0 e(l) 1 &g e(0) = e(3) : 6 (@) 6 s (D) 8
+¢(0) : fW'/“ : where W), = {1,2,5}, W/, = {1,2} (for example), W/, = {1}
(for example) Wy =10, fW” = 5,1,5,2,@5 ;, etc. Then X—c(3). Vl i ER

2
Tt e(0) ::é sEt =e(d)iElEr g et
c(0 ) : 5,?‘ , é,Vf, f:?“ : by using agam the property (4.26). In any one of
the terms, the important thing is that the indices are the same within 7}, the
same within 75, the same within ;. Note that we considered here the case
j = 3. The definition of V' and W will be different from case to case (see
below).
In general, using (5.22) and the property (4.26) of the Wick products of
1.1.d. variables : &, :, we can write:
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RY —ERY = % S e, ww)
Voo VWi ooy W,/)WCWI,...,Wr’,CWr/
. W/
ST Al 8 @ s & (5.23)

s3] seees8 EL
p
A ST AL A5

where the coefficients c(V,W,W’) depend on partitions (¥,...,¥V;
Wi,...,W.), (W/,...,W)) defined below but do not depend on ¢,...,

f
Imin-
Here the sum ZVI....VWI....W/ is taken over all partitions

My, Vs Wiy oy W), v+ > 0 of the index set M :={1,...,m+n}, and
such the 7, and W, are characterized as follows:

Definition 5.1 The sets V; and W, are such that |V;| > 1, || > 2, and

1) in the case j = L: [V | =1, |W| > 2;

2) in the case j=2: |V =1 if V; C {1,...,m}, no restrictions on V;
if p,c{m+1,...,m+n}, W, contains at least one point of
{1,...,m};

3) in the case j=3: VyC{l,...,m} or VyC{m+1,... . m+n}, W
contains points from both {1,... ,m} and {m+1,...,m+n};

5) in the case j = 5: |V = 1, |Wi| > 2.

(These requirements follow from the definition of the sets /; in (4.25)).
The sum ZW, ” is taken over all subsets W/ C W;,l =1,...,r including
the empty set. In the sum Zt st st ONE sets t; =6, € Z if jel,
[=1,...,r and Z]_SIGZ Nif ]EW;, [=1,...,/. Finally for
V= (11,...,11) CcM, ét, denotes the Wick product :ft'f = étl_l,...,é,i] :
where ¢ =1, =...=t,. & is defined similarly. Note that the term
2,08, 0 in (4.25) is included in (5.23); it corresponds to
W =W,.. W =W.

We can rewrite (5.23) as

RY —ERY = " Sooodwww)

(Nyeess Vs WA eeos W) W C Wy W C W

R Vi Vr w! yer/,
> A%?A(tl,...,tm+,,):ftT‘,..., Foli s & (5.24)
£y b3S, EZ "
that is, as a sum in (¢f,...,25,s,...,s%) € Z'*" without excluding the di-

agonals, with some other coefficients ¢'(V,W,W’). (For example if
Bo= {1}, = {2}, Sy Al 0) 1 €0, 80 = 0, Al (0,0) €1 &F
Zt* NA([],[Q) fVlUVZ ').Then
varR{)<c Y S (v, ww) (5.25)
PrveeViWh e W) W

where
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an(V, W, W'

j " v, W W,
— Var Z A%?A(n,...,fmﬂ);5,71,...,5,:,55,...,5‘?*

r!
[N A EZ

It remains to estimate the terms gn(V, W, W’).

First we consider the case when W/ # 0,..., W, # (). Then: a) there exists
a pair (i,1) of indices such that W/ := (i, /) satisfies the conditions in defi-
nition 5.1; b) any index 11, ..., 1, will have a corresponding &, in the Wick

product : /1, &l 5W o gfg/ .. Thus, (4.1) implies the bound
av (V. W w') < cul” (5.26)

where
2

il i
u](VA) = Z }A%?A(Z‘l,...,ler,,)

fyeny tm+n€Z:ti:t1

Now consider the case where (W], ..., W) contains W, = (). Set for simplicity
that W/ =0,..., W/ =0, W/, #0,...,W, # 0. Then

an(V, W, W) Var(Z 3 [Z AP, m+,,)]

1y l*s*W’;é@ sEw!

v v, W W,
><:ft,f‘,...,ft:’,ﬁs,,[‘,...,ﬁs/:

—Var<z Z [ZANAtI,... m+n)]

SRR 1+17
" w,
X:ft{w .,gt 755]1 ésy/' :) .

Note that in this case the Wick product : é - ét* is - ,é : does not
depend on the indices s7,...,s;. Using the same argument as above we get
from (4.1) that

av(V, W, W') < Col)\(Wi,..., W) (5.27)
where
. 2
oA W) = 3 (ZANM,... m+n)> . (5.28)
el AHI, s JEL Ns|,.s)

Taking into account (5.25), (5.26) and (5.27), it remains to check, for the
proof of (5.21) that

0 (N = o0) 5.29
N.A

and
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o (W, ) =0 (N —o0), j=1,2,3,5. (5.30)

We first prove (5.29)—(5.30) in the most complicated case (43), i.e. j = 3.
We prove (5.29) first. Because of symmetry, it is sufficient to treat the case
(i,1) = (1,m+ 1). By (4.21),

A](\?A,)A(tl’ s 7tm+’l) = NaNAl (tlﬂ R tm)aN,Az(IM+l7 o 7tm+n)
with Ay N Ay = 0. Since (i, /) = (1,m+ 1),
m 2
ug}_’AH) E N2 Z Z |aN Al S, 1, ... )aN Az(s tnt2, - ..7lm+,,)| .

0 yeeistmslmt 2o tmgn S

(5.31)

From Parseval’s identity, using the expression (4.18) for ay and the cor-
responding bound (4.19), we get

Wy v < N2C(K) (In V) /

[-n,m

]1((x1 + - +x,)mod 27 € AI/N>
]m+n72 )

[_

' 2
A((z=x1) +x2+ -+ + Xppn)mod 27 € Ay /N)dx,

X dde2 - dx,,,dxm+2 - dxm+”
for some p > 0. Setting y; = (xa+ -+ +xu), and y» = (Z+x2+ - + Xpin)>

we get

(lm+l) < N2C ( )(IHN)ZP/ ]]((xl —|—y1)m0d 2 € A]/N)

— 7,7
x 1((x} +y1)mod 27 € A;/N)
. ]1((—x1 +y2)mod 2w € Az/N)dxl dxll dyy dy
= O(N"'(InN)?) -0 (N — o) ,

because ), and x; are linearly independent. Hence (5.29) holds.
It remains to verify (5.30). Again Parseval’s identity and (4.19) imply

W (..., W) < NC(K)(InN)>

<
[~m.n)"

A((Xms1 + -+ -+ Xprn)mod 21 € Ay /N)d"x

)
/ Il((x| + -4 x,)mod 27 € A;/N)
[

—m,x)"0

2

I i (5.32)

icwe
where We={l,....m+n}\(WiU...UW), no:=|MU...UW|, nj:=
|W¢| = m + n — ng and the integral [ ("), dmx is taken over the hyperplanes

D x |mod2n=0, p=1,...,L (5.33)

SEW,
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If ' = 0, we have ny = m + n and, setting
yvi=(x; 4+ +xp)mod 27 = — (X1 + - - + Xpp)mod 27 (5.34)

we obtain from (5.32) and (5.34) that

(3) 2d (W) m-+n
oy (Wi, W) < C(K)N(InN) [.]d™

-
< C(K)N(In N / 1(y € A /N)L(=y € As/N)dy = 0
— 7,7

since A; N —A, = () by definition of {A}.
If n’ # 0, proceeding as in the proof of (5.29), one obtains

u§j>A<WI, . W,) —O(N""InN)?) =0 (N — o) . (5.35)

Therefore, (5.30) holds. Lemma 5.2 is now proved for the case j = 3.
The proof in the cases j = 1,2, 5 is similar but one must use the following
properties of the coefficient ay a:

’aN‘A(t)‘ = ‘/—Z ei’xl\wdz(zzN)Il(x € A/N)dx’

< c/n 1(x € A/N)dx = C(K)N~" | (5.36)

2 . 2 _ —u
S Java(0) zzn/A|aN,A<x)| dr ~ N ‘/A\x| & (N —o0)  (537)

tel

which follow from (4.17) and (4.20).
For instance, consider the case j = 2. To evaluate (5.31), use (4.21). One
may get

W= 3 ST [VNawa, (5)VNay ., (s)

Boeeostusturs 1 ostmin S

X VNaya, (t3) ... VNay a, (tn) - VNay a,, ( m+17-~-atm+n>|2
= O(N"'(InN))*

since

Z|\/_CZNA] \/_aNAz( S Z|\/_QNA1 |f (1/N)
by (5.36), (5.37) and

2 . 2
Z |\/NaN,Am+| (g5 -+ -, tm+n)’ = CN/ ‘aN,Am“ (X1, - - - 7xm+n)| d"x
[-ma)"

< CN(InN)¥ / 1((omst + - -+ Xmin)mod 27 € Ayt /N)d"x

(=7

= O(InN)¥
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One can also get

ugn = ST S| WNaya, (s)VNayay(62) ... VNay ., (tn)

Oyt 25 tman S

2
. \/NGN,A,,,H (S7 tm+27 cee 7tm+n)|

< CN? Z Z‘aN,Al(S)aN,AmH(Satm+2a .- 'atm+n)‘2

tng2seestmin S

by (5.37). One then proceeds as in the case j = 3. O

6 Appendix

Our goal here is to establish Lemma 4.1 and to show that the limiting pro-
cesses Z,(,{,L, j=1,...,5 are well-defined. Let

-1 1, -
plui)i= [ (13 (1l —ol) bl (6)
be the function introduced in (4.10). Lemma 4.1 is a consequence of the two

following lemmas.

Lemma 6.1 If —1 < oy, 0,8 < 1 and

o+ +2>1 (6.2)
then

= /2 o | fua| "2 p(ur, w2) | oty day < o0
R

Proof. 1) Suppose first § > 0. Relation (6.2) implies that either
ap+p>0 or au+p>0. (6.3)

For simplicity, we assume below that o;+f>0. If o +5<1, set
By =p,=p/2.1fa; + > 1 (and, therefore, o; > 0)put f; = (1 —oy —€)/2,
By =P+ (01 — 1 +¢€)/2, where € > 0 is small number. Then 0 < 8,5, < 1,
p1 + B, = . Using in (6.1) the inequalities

A+ A+ <A+ k+x)7", xyeR
and

/ | (L4 x+y) e < Cle) 1+ )™, (0<2e<a<1) (6.4)
R
we obtain

plur,uz) < (1+ [uy —ual) ™2 / (L Juy + )72+ fuz — )PP dy
R

2 1/2
< (- ) ] ( JCRES dy)
=1

< C(e) (14 Jur = wa) ™2 (1 )P o) P (6.5)
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Using (6.5), we obtain
2
I< c/ TT el ™1+ )50 + oy — o)) dwr s . (6.6)
R’ i

Since 0 < oy + f, < 1, setting |1 + [u;|| "™ < |uy| P, integrating over u;
and using (6.4), we get

1< [ fua (0 ) B ) < o
R

because of (6.2), oy + f +or+fr =01+ + > 1.
i1) Suppose now f < 0. Then from (6.2) it follows that
I1>0+p>0, i=1,2; (6.7)
o+ >1, >0, 00>0

and
(I+p)>1/2, (6.9)

because if (6.9) is not true, then oy +on+2f= (o +0p—2)+
21+ p) <0+ 1=1,i.e. (6.2) does not hold. Let us estimate p(-) in (6.1):

plns) = [ Lday < [ 1 (um] < b1/2) + 1l < b1/2)
3

+1(p] < 2/l )y = Y pyan, ) -
=1

Then
3 , 3
1< Cz:/2 | a2 | pj (ur, u2) | duy duy =: CZIJ .
=1 /R =

It remains to prove that
Ij<oo, j=1,23. (6.10)

Let j =1 (the case j = 2 is similar by symmetry). Since here |u;| < |y|/2, we
have 1+ |uy+y| > 1+ ||y|—|wl|l > 1+ (|y|/2) > |y|/2, and thus, since
B <0, weget (1+[u+y) " < ((1+w +)"|y/2/ )" Hence,

i, uz) < € / (Ut + )™+ g — ) dy
R

gc/0+w+m+ﬂﬂﬁﬂﬂwq@
R
< C A+ |uy +w)) T < C(1 4wy + w) 2

because of (6.4) and (6.9). Then
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h= C/ ot | uea] (1 ey 4 o)™ P
R2
< C/ lua| ™2 (1 + |ua]) ™ du < 00
RZ
because of (6.4) and (6.8), when ¢ > 0 is sufficiently small.

It remains to prove (6.10) in the case j = 3. Taking into account that
f < 0 and using (6.4), we obtain

mwmﬁZAqufme+wIU+M—ﬂVMB@
< Clsl 2 [ (1l +51)7 (14 = 51) '
< Clul ™ [ b7 (1 o —51)
C (&) wyua| P2 (1 + uy 4 ua) ™
Then
L < C/w a7 Paia| =P (1 + iy + 102]) " duty s
and, by (6.4), (6.7) and (6.2) we obtain
I < Ce) /R o =P (1 + Jua )™ P < 00

where ¢ > 0 is small enough. O

Lemmma 6.2 If —1 < a, f < 1, and

1+28+a>0,

then
[ = / || ™ |p(u) | du < oo
where p(u) = [o(1+ lu+y) " (1 + )~y av.
Proof. Let ¢ > 0 be sufficiently small. If f < 0, then, by (6.4),
Sy 1p “1-pre
pl) < [ (Ut oty P < €1 )
R

and thus
I< / a1+ Jul) 20 < oo
R

Ifﬁ > 0, then (1 + |y‘)71 < (1 T |y|)7l+l)’+e < |y|71+ﬁ+s)

p(u) < C/R(Il+Iu+y|)7l\ylf”“dy§ Cle) (L A+ fu) ™
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and
< c/ 7 (14 Ju]) > dut < o 0
R
Let FY) be the integrand in the integral defining Z,% in Theorem 2.1,

j=1,2,3 and the integrand in the integral defining Z,% in Theorems 2.2
j=4,5.

Corollary 6.1 If the conditions of Theorem 2.1 are satisfied, then the functions
FU), j=1,2,3 satisfy

IFD 2 < o0 (6.11)

in the cases (4;), j =1,2,3 respectively. If the conditions of Theorem 2.2 are
satisfied, then (6.11) also holds in the cases (4;), j=4,5.

Proof. The functions FY) involve @, defined in (2.14). Since

[Ko(x)] =

] 1
¢ ‘ xeR, (6.12)

<C ,
14+ x

ix
we have @y (x1,x;) < Cp(x1,x3) for all (x1,x;) € R?. Consider the case j = 1

first, where F()(xy, ..., Xp0) = Qo (30 i ot )l |72 )~

: m m-+n
Setting uy = Y 7" x;, up =y 1" | X;, We get

\|F<1>||§2:/ e, ) d
-

< /Rzpz(ul,uz)g(*m)(ul)g(*n)(uz)du1 dur
where
g(*m)(u) _ /R’H(‘u — Xy — = X2 X |) A (6.13)
By using the inequality
/R Xy Fae <y, a4 Bp>1,0<0, f<1

repeatedly, we get
g™ (u) < C|u|7d'”("), ueR (6.14)

as in the proof of Lemma 5.2 in [12]. Hence

||F<l)

A4+ A4t
nscC /Rzzﬂ(ul,uznun WO g5 duy duy < 00

by Condition (2.12) and Lemma 6.1.

The cases j = 2 and 3 are treated similarly. When j = 2, for example, we
set uy = x,,.» and define g*”) not through (6.13), but as a bounded function.
Since d,(a) < 0 in this case, Relation (6.14) still holds and the rest of the
proof applies.
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In the cases j = 4 and 5, we end up with

IO, < C / a5 p() d < oo |
R

where p(u) is as in Lemma 6.2. Condition (2.17) and this lemma conclude the
proof in these cases. O
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