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Summary. Let X, X, X>,... be a sequence of i.i.d. random vectors taking
values in a d-dimensional real linear space R?. Assume that EX = 0 and that
X is not concentrated in a proper subspace of R. Let G denote a mean zero
Gaussian random vector with the same covariance operator as that of X. We
investigate the distributions of non-degenerate quadratic forms Q[Sy] of the
normalized sums Sy = N~1/2 (X1 + -+ + Xy) and show that

Ay sup |P{QISY] < x} ~ P{QIG] <x}| = 0N )

provided that d > 9 and the fourth moment of X exists. The bound O(N~") is
optimal and improves, e.g., the well-known bound ¢(N~9/(+1)) due to Es-
seen (1945). The result extends to the case of random vectors taking values in
a Hilbert space. Furthermore, we provide explicit bounds for Ay and for the
concentration function of the random variable Q[Sy].
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1. Introduction

Let IR? denote the d-dimensional space of real vectors x = (xy,...,x;) with
scalar product (-,-) and norm |x|* = (x,x) = x>+ - -- + x2. Since our results

are independent of the dimension (provided d > 9), it will be convenient to
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denote by R* a real separable Hilbert space. Thus, R* consists of all real
sequences x = (x,x3,...) such that |x|* = x3 +x% + -+ < c0.

Let X, X7,X,,... be a sequence of i.i.d. random vectors taking values in
R?. If EX = 0 and E |X|* < oo, then the sums

Sy=N""(X1 + -+ Xy)

converge weakly to a mean zero Gaussian random vector, say G, such that its
covariance operator € = covG: RY — R? is equal to cov.X.

For a linear symmetric and bounded operator @ : x — Qx mapping R
into RY, define the quadratic form Q[x] = (Qx,x). We call @ non-degenerate
if ker @ = {0}, or equivalently, if @ is injective. If d < oo, non-degeneracy
means that @ is invertible.

Notice that the distribution of the quadratic form Q[G] may be repre-
sented up to a shift as the distribution of a finite (resp. eventually infinite)
weighted sum of squares of i.i.d. standard Gaussian variables, for d < oo
(resp., d = oc0).

Write

o> =Py B,=E|X|", forg>0.

Theorem 1.1. Let EX = 0. Assume that Q and C are non-degenerate and that
d>9 ord=oco. Then

sup [P{Q[8y] < x} ~ P{QIG] < x}| < (@ ©)f/N .

The constant ¢(Q, C) in this bound depends on Q and C only.

Remark. A rather straightforward inspection of the proofs shows that The-
orem 1.1 holds for d = 8 with O(N~'log’ N) instead of ¢(N~'), for some
0 > 0. Itis likely that the results of the paper remain valid for d > 5. We need
the assumption d > 9 for estimation of integrals over the characteristic
function of the quadratic form for Fourier frequencies N*/° < |¢| < N.

An earlier version of results of this paper was published in Bentkus and
Gotze (1995b).

The bound of Theorem 1.1 is optimal since the distribution function of
|SN|2 (for bounded X € R?) may have jumps of order O(N~'), for all
1 <d < . See, for example, Bentkus and Gotze (1996). In that paper a
similar bound @(N~') as in Theorem 1.1 is proved even for d > 5 assuming
that @ is diagonal on the subspace spanned by five coordinates of X, which
have to be stochastically independent and independent of other coordinates.
Both results are based on discretization (i.e., a reduction to lattice valued
random vectors) and symmetrization techniques. The independence as-
sumption in Bentkus and Gotze (1996) allowed to apply an adaption of the
Hardy-Littlewood circle method. For the general case described in Theo-
rem 1.1, we had to develop a new tool — a multiplicative inequality for
characteristic functions.



Uniform rates of convergence for quadratic forms 369

Theorem 1.1 and the method of its proof are related to the well known
lattice point problem for conic sections in number theory. Assume that R is
finite dimensional and that (Qx,x) > 0, for x # 0. Write vol E; for the volume
of the ellipsoid

E,={xecRY:Q[x] <s}, fors>0.

Let volz E; be the number of points in E; N Z¢, where Z¢ c R? is the stan-
dard lattice of points with integer coordinates.
The following result corresponds to Theorem 1.1.

Theorem 1.2 (Bentkus and Gotze 1995a, 1997). For d > 9,

6’(1>, fors>1,
s

where the constant in ((s~") depends on the dimension d and on the lengths of
axes of the ellipsoid E| only.

volz (Es + a) — Vol E;
2eR4 Vol E

Theorem 1.2 solves the lattice point problem for d > 9, and it improves
the classical estimate @(s~%/(@*1)) due to Landau (1915), just as Theorem 1.1
improves the bound O(N~/@+1)) by Esseen (1945) for the CLT for ellipsoids
with axes parallel to coordinate axes. For Hilbert spaces the optimal order of
error under the conditions of Theorem 1.1 had been investigated intensively.
For a more detailed discussion of the literature on error bounds in proba-
bility theory for finite and infinite dimensional spaces and the lattice point
problem in number theory, see Bentkus and Goétze (1996, 1995a, 1997).
Under somewhat more restrictive moment and dimension conditions the
estimate O(N~'*%), ¢ | 0 as d T oo, was proved in Gétze (1979), by a result for
bivariate U-statistics. Assuming special smoothness properties, which are
satisfied, e.g., by L,-type functionals of uniform empirical processes, error
bounds O(N~!) (and even Edgeworth type expansions) are established in
Gotze (1979), Bentkus (1984), Bentkus, Gotze and Zitikis (1993). Since
Theorem 1.1 and more detailed Theorems 1.3—1.5 give a rather complete and
explicit solution to the problem for d < co and d = oo, it may be helpful to
add a few comments on differences between both cases. Error bounds of
order O(N~'/?) and better in Theorem 1.1 for general ellipsoids could not be
proved via an extension of Esseen’s (1945) techniques in IRY since there is no
Lebesgue measure in Hilbert spaces. The symmetrization inequality for
characteristic functions introduced in Goétze (1979), which is related to
Weyl’s inequality for trigonometric sums, provided a sufficiently general tool
to analyze the infinite dimensional case. An extension of this inequality to-
gether with some other new ideas (see below) supplies the basic techniques to
prove sharp results both in the finite and infinite dimensional cases.

It is likely that the dimensional dependence of our results is not optimal.
In order to prove the rate O(N~!) we required that d > 9. Assumptions like
the diagonality of @, € and the independence of coordinates allow to reduce
the dimension requirement to d > 5, see Bentkus and Goétze (1996). Some yet
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unpublished results of Gotze (1994) indicate that for sums of two indepen-
dent arbitrary quadratic forms (each of rank d > 3) the rate O(N~") holds as
well. In view of lower bounds of order ¢(N~'logN) for dimension d = 4 in
the corresponding lattice point problem, an optimal condition would be the
assumption d > 5. To prove (or disprove) that d > 5 is sufficient for the rate
O(N~") seems to be a difficult problem, since its solution implies a solution of
the corresponding unsolved problem for the lattice point remainder for ar-
bitrary ellipsoids. The question of precise convergence rates in lower di-
mensions 2 < d < 4 still remains completely open (even in the case Q@ = I
and for random vectors with coordinates which are independent Rademac-
her variables). For instance, in the case d =2 a precise convergence rate
would imply a solution of the so called circle problem. Known lower bounds
in the circle problem correspond to ¢(N~*/*log’ N) in our setup. A famous
conjecture by Hardy (1916) says that up to logarithmic factors this is the true
order.
Introduce the distribution functions

F(x) =P{Q[Sy —d] <x}, F(x)=P{Q[G-d <x}, acR’. (L)

Furthermore, define the Edgeworth correction Fi(x) = Fi(x; Z(X), Z(G)) as
a function of bounded variation (for d >9; see Lemma 5.7) such that
Fi(—o0) = 0 and its Fourier—Stieltjes transform is given by

def

2(it)? . 3
s \/NEe{tQ[Y]}(MQX, YHQX, X) + 2it{QX, Y) ) y &

Fi(t) = G-a

(1.2)

In (1.2) and throughout we write e{x} = exp{ix} and assume that all random
vectors and variables are independent in aggregate, if the contrary is not
clear from the context. Notice that F; = 0 if a = 0 or if E (X, y)* = 0, for all
y € R?. In particular, F; = 0 if X is symmetric. For a representation of F as
an integral (as in Bhattacharya and Rao 1986) over finite dimensional R¢,
see (1.21).

Write

Ay = sup|F(x) — Fo(x) — Fi(x)] .

We shall provide explicit bounds for Ay. These bounds yield Theorem 1.1.
To formulate the results we need more notation.

We denote by a7 > g3 > -- - the eigenvalues of €, counting their multi-
plicities. We have ¢°> = a7 4 63 + - -- We write 0] > 03 > --- for the eigen-
values of (CQ)>.

Throughout & = {ey, ..., e} denotes a finite subset of R? of cardinality
s, that is, card ¥ = s. We shall write ¥, instead of & if the system ey, ..., e
is orthonormal.

Let p>0 and 6 > 0. For a random vector Y € R?, we introduce the
following condition

N(p,0,L,Y) :P{lY —¢| <6} >p, forallec YUQY . (1.3)
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We shall refer to condition (1.3) as condition A"(p,d,%,Y) = AN (p,0,%,
Y;@Q). Notice that, for any Gaussian random vector G with non-degenerate
covariance, the condition A"(p,d, %, G) holds for any % and ¢ > 0, with
some p > 0. Thus, condition (1.3) for G is just a reformulation of non-de-
generacy.

A particular case where explicit lower bounds for p in (1.3) can be given in
terms of eigenvalues of € and @, is the following: there exists an ortho-
normal system %, = {ey, ..., e} of eigenvectors of € such that Q.%, is again
a system of eigenvectors of €. We shall refer to this assumption saying that
condition #(¥,,C) = B(,, C; Q) is fulfilled, and we shall write

B(S,C): 12 = ee{;%% a (1.4)
where ag denotes the eigenvalue of C corresponding to the eigenvector e. In
particular, such a system ., exists provided that @ and C are diagonal in a
common orthonormal basis, and, if @ is isometric, we can choose .¥, such
that 22 = o2,
See Lemma 5.5 below for some properties of a;, 0; and 4;.
Let us introduce truncated random vectors

X°=Xl{|X|<oVN}, X,=XI{X|>oVN}, X°+X, =X,
and their moments

(0%)4E|X°|4, I, = (GNWE|X°|q . (1.5)

Define F{(x) = Fi(x; £(X°), £(G)) just replacing X by X° in (1.2), and

Ay =

85, = sup [F(x) = Fe) = 7 ()]

By ¢ we shall denote generic absolute positive constants. If a constant de-
pends on, say s, then we shall write ¢, or ¢(s).

In Theorems 1.3-1.5 we assume that ¢ < oo and 6 = 1/300. Furthermore,
in Theorems 1.3—1.6 we assume without loss of generality (see Remark 1.7)
that the symmetric operator @ is isometric, that is, that @ is the identity
operator II. Furthermore, we denote ¢y a positive absolute constant, for
example one may choose ¢y = 1.

Theorem 1.3. Let EX =0, s = 13 and 13 < d < co. Then we have:
(i) Assume that condition N (p,0,%,,coG /o) holds. Then

AS < C(Th + Ag)(1 + |a/al®), Ay < C(Iz + Ag)(1 + |a/al®)  (1.6)

with C = cp=® + c(a/0g)*;

(ii) Assume that condition B(S,, C) is fulfilled. Then the constant in (1.6)
satisfies C < exp {ca®/ii }.

Theorem 1.4. Let X be symmetric, s =9 and 9 < d < co. Then Ay = A;, =
sup,|F(x) — Fo(x)| and we have:
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(i) Assume that the condition N (p,0,%,,coG/0o) is fulfilled. Then
Ay < C(Iy + Ag)(1 +|a/al)), C=cp*; (1.7)

(i1) Assume that condition B(¥ ,, C) is fulfilled. Then the constant in (1.7)
allows the estimate C < exp{ca®/}3}.

Unfortunately, the bounds of Theorem 1.3 are not applicable in dimen-
sions d =9,10,11,12. The following Theorem 1.5 holds for finite-dimen-
sional spaces with d > 9 only. Compared with Theorem 1.3, the bounds of
Theorem 1.5 have a more natural dependence on |a|. However, they depend
on the smallest eigenvalue ¢,;, which makes them unstable in cases where one
of coordinates of X degenerates.

Theorem 1.5. Let EX =0, s =9 and 9 < d < co. Then we have:
(i) Assume that condition NV (p,d,%,,coG/0o) holds. Then

A < C(Th + Ag)(1+ |a/a’), Ay < C(Iz + Ag)(1 + |a/al’) ,  (1.8)

with C = cp~3(a/ag)*;
(i1) Assume that condition B(¥ ,, C) is fulfilled. Then the constant in (1.8)

allows the bound C < ‘a’—;{exp {c% }

Theorems 1.3 and 1.5 yield Theorem 1.1, choosing a = 0 and using the
bound I3 + A4 < B4/(a*N).

Define the symmetrization X of a random vector X as a random vector
such that Z(X) = Z(X; — Xa).

Introduce the concentration function

OX;2)=0X;2,Q) =supP{x < QX +4a] <x+ 4}, fori>0.

Theorem 1.6. Assume that 9 <s<d <oo and 0 << 1/(5s). Let Zy =
X+ -+ Xy. For any random vector X we have:
(i) If condition N (p,d,% s, X) is fulfilled with some p > 0 then

O(Zy;7) < eg(pN) ' max{1;1}, 2>0 ; (1.9)
(ii) If, for some m, condition N (p,5, S ,,m~'?Z,) is fulfilled, then
0(Zyn; 2) < ¢s(pN) ' max{m; 2}, 1>0 ; (1.10)

(iii) Assume that X is not concentrated in a proper closed linear subspace of
RY. Then, for any 6 > 0 and & there exists a natural number m such that the
condition

W(p,é,y,m_l/zzm) holds with some p > 0 . (1.11)

We say that a random vector Y is concentrated in IL C R? if
P{Yyel}=1

It is interesting to compare the bounds of Theorem 1.6 and of Theo-
rem 2.1 below with the classical bound ¢(N~'/> max{1; A}) for the concentration
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of sums (see, e.g., Th. 9 of Ch. 3 in Petrov 1975). Theorem 1.6 and 2.1 are
useful for investigations of infinitely divisible approximations, see Bentkus,
Gotze and Zaitsev (1997).

Remark 1.7. The assumption that the symmetric operator @ is isometric,
i.e., that @ is the identity operator I, simplifies the notation and does not
restrict generality. Indeed, any symmetric operator Q may be decomposed
as Q = Q,Q,0Q,, where Q, is symmetric and isometric and @, is symmetric
bounded and non-negative, that is, (Q;x,x) > 0, for all x € R?. Thus, for
any symmetric Q, we can apply all our bounds replacing the random vector
X by @Q,X, the Gaussian random vector G by Q,G,, the shift a by Q,a,, etc.
In the case of concentration functions, Q(X; 4; Q) = O(Q,X; 4; Q,), and we
may apply Theorem 1.6 provided QX (instead of X) satisfies the condi-
tions.

We conclude the Introduction by a brief description of the basic elements
of the proof — a discretization procedure, a double large sieve and multi-
plicative inequalities.

Let ¢, ¢, ... denote i.i.d. symmetric Rademacher random variables.

Let 6 >0 and & = {ey,...,e} C RY. We say that a discrete random
vector ¥ € RY (or its distribution Z(Y)) belongs to the class I'(3;.%) (briefly
ZL(Y)eTI(0;%)) if Y is distributed as ¢z; + - - + &z, with some (non-
random) z; € R? such that lz; —e;| <0, forall 1 <j<s.

For a bounded and measurable function H#: R? — B taking values in a
Banach space (B, | - |g), define the norm |H|, = sup, |H(x)|g.

Discretization. Assume that a random vector W € R? is independent of
the sum Zy =X + .-+ Xy and that the symmetrization X of X satisfies
P{|X —e| <8} >p >0, for all e € &. Then, for any y > 0 and natural &,
with 0 < k < pN/(4s),

|[EH(2Zy + W)| < ¢,(pN) "|H|, + sup supd|EH(Y1 4+ Y+ b))
beR
(cf. Lemmas 6.1 and 6.2 of Section 6), where supr is taken over all inde-
pendent random vectors Y1, ..., Y of the class I'(5, %).

This discretization allows to reduce the estimation of the characteristic
function F(r) = Ee{tQ[Sy — a]}, t € IR, to the estimation of functions like
o(t) = Ee{tQ[Sy]}, where Sy = N"1/2(Y; 4 --- 4 Yy) is a sum of indepen-
dent (non-identically distributed!) random vectors of class I'(d,.%). Notice
that norms of the random vectors Y¥; are bounded from above by a constant
independent of N.

The symmetrization inequality (see Lemma 5.1) reduces the estimation of
the function ¢ to the estimation of the characteristic function

Ec{t(Tv. T})} | (1.12)
where 7y and 7}, denote independent random vectors, which are normalized

sums of i.i.d. random vectors of class I', taking values in a s-dimensional
subspace of R,
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Let us choose 6 = 1/(5s) and ¥ = &, to be an orthonormal system in
IR?. The double large sieve (see Lemma 4.7) allows to estimate (1.12) and to
obtain:

o)) = (™), for [ < VN, |g()] = o(|/N|"?), for 1] > VN .
These relations imply that
()| = (|| ), for [t < VN, |F(5)] = @<|t/N|S/2), for 7| > VN .
(1.13)
Since for Gaussian X,
[E(@)] ~ (2, for Jff > 1,

the first bound in (1.13) is precise (up to a constant).

The inequalities (1.13) allow to prove in Theorem 1.1 only error bounds
O(N~), for some « < 1. This is due to possible oscillations of |F(r)| between
0 and 1, as |¢{| ~ N. The oscillations are restricted by the following multipli-
cative inequality (cf. Lemma 8.1): for any 7 € IR,

lp()e(t+0)| = 0(3/?), for 0<d<VN , (1.14)
lo(t)p(t +8)| = (9((5/1\/)*/2), for & > VN . (1.15)

Notice that the right-hand sides of (1.14) and (1.15) are independent of ¢. In
other words, (1.14) and (1.15) reflect a certain stationarity in the behavior of
the characteristic function ¢ (and F as well): if |@(#y)] is sufficiently large,
then |¢(z)| is bounded from above (near #) similarly as it is bounded near
t = 0. The inequalities (1.14) and (1.15) guarantee that the distance between
maxima of |¢(¢)| has to be sufficiently large, and that the integral of |¢(¢)/¢|
around its maxima is O(N~') provided that s > 9.

We conclude the Section by introducing the notation used throughout
the proofs. In Section 2 we prove bounds for concentration functions. The
proofs, being technically simpler as those of Theorems 1.3-1.5, already
contain all the principal ideas. In Section 3 Theorems 1.3-1.5 are proved.
In Section 4 we extend the well-known double large sieve used in number
theory to arbitrary (unbounded) probability distributions. In Section 5 we
have collected some simple but useful auxiliary Lemmas. Section 6 con-
tains a description of the discretization of expectations, using random
selections. In Section 7 we prove estimates for characteristic functions.
The proofs of these estimates are based on conditioning, discretization, as
well as on the double large sieve. Section 8 is devoted to the study of the
crucial multiplicative inequality for characteristic functions. This is an
extension of an inequality for trigonometric sums introduced in Bentkus
and Go6tze (1995a, 1997). Section 9 deals with expansions of characteristic
functions.
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Notation. We write e{x} = exp{ix}.

By [o] we shall denote the integer part of a number a.

By c¢,c1,... we shall denote generic absolute positive constants. If a
constant depends on, say s, then we shall point out the dependence as ¢, or
¢(s). We shall write 4 < B, if there exists an absolute constant ¢ such that
A < ¢B. Similarly, A < B, if 4 < ¢(s)B.

By X and Xi,X,,... we shall denote independent copies of a random
vector X, and #(X) shall denote the distribution of X.

By X we shall denote a symmetrization of X, for example X = X — X.

For the sake of brevity we shall write throughout

p=ps =1L, A=A4.
We write Zy = X + -+ Xy and Sy = N"'/2Zy.
By I{4} we denote the indicator of an event A.

The expectation Ey with respect to a random vector Y we define as the
conditional expectation

Eyf(X,Y,Z,..)=E(f(X,Y,Z..)|X,Z,...)
given all random vectors but Y.
By F we denote the Fourier—Stieltjes transform of a function F of

bounded variation, or in other words, the Fourier transform of the measure
which has the distribution function F.

Introduce the function
M(t;N) = 1/\/|t|N, for |t| <NV, u(t;N) = \/]t], for |t) > N~'/* .
(1.16)
Notice that, for s > 0,

2! (|t/z\z|*s/2 + W/Z) < ME(EN) < |t/NI 4 11 (1.17)

Instead of normalized sums Sy, it is more convenient to consider the sums
Zy. Introduce the distribution functions

P(x) = P{Q[Zy — b] <x}, Wo(x) = P{Q[VN G —b] <x} (1.18)

with b = v/N a. Define the Edgeworth correction ¥ (x; Z(X), Z(G)) as a
function of bounded variation (for d >9; see Lemma 5.7) such that
WY (—o0) = 0. Its Fourier—Stieltjes transform is equal to

Y1) = _LE(ﬁ (NDY, X)* + 2(N]DY,X>N]D[X]) e{ND[Y]} , (1.19)
VN \3

where ¥ = G — a and ID = 1Q. Define as well ¥{(x) = ¥, (x; £(X°), £(G))

just replacing in (1.19) the random vector X by X°. Recall that the truncated

random vectors X°, X, and their moments are defined in (1.5). In Sections 2,

3 and 9 we shall denote

X =X —EX°+ W, (1.20)
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where W is a centered Gaussian random vector which is independent of all
other random vectors and variables and is chosen so that covX’ = covG.
Such random vector W exists by Lemma 2.4. Finally by Z5, (resp. Z},) we
shall denote sums of N independent copies of X° (resp. X7).

In finite dimensional spaces we have the following representation of the
Edgeworth correction. Let ¢ denote the standard normal density in IR
Then p(x) = ¢(C~/*x)//detC is the density of G, and we have

Fi(x/N) =¥ (x) :LN}((AX/\/N), A, ={ue RY: Qu—b] <x} ,

6vVN
(1.21)
with the signed measure
x(4) = /Ep’"(x)X3 dx, for measurable 4 ¢ RY | (1.22)
y
and where
Pt = pl) (3w (€ ) — (@€ ww)’) (123

denotes the third Frechet derivative of p in the direction u. We can write a
similar representation for W{(x) = ¥ (x; £(X°), (G)) just replacing X by X°
in (1.21).

We shall often use the following Rosenthal type inequality. Let &;,..., &y
denote independent random vectors which have mean zero and assume
values in R*. Then

N q N N 5 q/2
Zéj <<qZE|éj|q+ <ZE|éj| ) , 0<g<oo . (1.24)
j=1 = =

This inequality easily follows from a result of Acosta (1981) and the fact that

E

Hilbert spaces are type 2 spaces, that is, E’ Zﬁy:l éj‘z < Zjv:l E|§j|2.

Acknowledgement. We would like to thank A. Zaitsev for helpful discussions.

2. Proofs of bounds for concentration functions; truncation

We start the Section with Theorem 2.1 which (under additional restrictions)
provides more explicit bounds for the concentration than those of Theo-
rem 1.6. In the next Theorem we assume that ¢y is an arbitrary positive
absolute constant, for example, one can choose ¢y = 1. Recall as well that we
write f§ = B4, [1 = I, and A = Aq.

Theorem 2.1. Assume that 9 < d < oo and that the operator Q) is isometric.
Then, for any random vector X such that EX = 0 and ¢> < oo, we have:
(i) Assume condition N (p,0, % s,c0G/a) with s =9 and 6 = 1/200. Then

O(Zy;2) < p?max{IT+ A; Al >N~'}, 1>0. (2.1)
In particular, Q(Zy; ) < p~>N~"max{B/c*; 1/a*Bgr};
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(ii) Let the condition B(S,,C) (see (1.4)) be fulfilled with s = 9. Then
O(Zy; 2) < exp{ca® /i3y max{I1+ A; e >N~'}, 2>0 , (2.2)
where ¢ denotes a sufficiently large absolute constant.
Proof of Theorems 1.6 and 2.1. Below we shall prove the assertions (1.9);
(1.9)=(1.10); (1.11); (1.10)=(2.1) and (2.1)=-(2.2). O

For the integration of characteristic functions we shall use the following
Theorem 2.2. This Theorem slightly extends Lemma 6.1 in Bentkus and
Gotze (1997). Its proof repeats in essence the proof of the Lemma men-
tioned, and will be published elsewhere.

Theorem 2.2. Let ¢(t), t > 0, denote a continuous function such that ¢(0) =1
and 0 < ¢ < 1. Assume that

o()p(t+1) < OM*(t;N), forallt>0and 1>0 ,

with some ® > 1 independent of t and t. Then, for any T > 1,0 < B < 1 and
N >1,

T

d O(1 +logT
Vo(t) —t<<s(+70g)+®st/2N’s/4, fors>8§ .
t

B/VN N

For T > 1y, t; > 0, define the integrals

oo N dt
n=[1®0la = [ @0l
—1 t<|t|<T |t|

where W denotes the Fourier—Stieltjes transform of the distribution function
Y of Q[Zy — b] (see (1.18)).

Lemma 2.3. Assume the condition N (p,d,S,,X) with some 0 < < 1/(5s)
and s > 9. Let

to=co(s)(pN) "t =ci(s)(pN) P aals) S T < esls)
with some positive constants c;(s), 0 < j < 3. Then
Iy < (pN)™', L <, (pN)™" . (2.3)

Proof. In the proof we shall denote £k = pN. Without loss of generality we
shall assume that k > c;, for a sufficiently large constant ¢,. Indeed, if k£ < c;,
then we can derive (2.3) using || < 1. Another consequence of k > ¢, is that
1/k§to§ll <T.

Let us prove (2.3) for I;. By Theorem 7.1 we have

(1) < M°(1:k), k=pN .

Since |¥| < 1, we have |‘/I:‘(t)‘ <, min{1l; #°(t;k)}. Furthermore, denoting
ty = k~'/?>max{1;c;(s)} and using the definition of the function .#, we ob-
tain
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1/k P Cs‘ 1

thus proving (2.3) for .
It remains to estimate /;. We shall use Theorem 2.2. By Corollary 6.3 we
have

I :/ |‘f/()| L ssupsup l + k- 'log— ) (2.4)
n<|f<T | | ' per?

for any y > 0, with

dt
1= Ve - | Vo &
n<lf<r |t| f

JA<|t|<T /4 |t|

and
1) = |Ee{rQ[Y, + QY, + 5]}, n=[k/(55)] .

where ¥, = U, +---+ U, and Y, = U] + --- + U, denote sums of indepen-
dent vectors, and supp is taken over all {Z(U)), Z(Uj):1<j <n}C
I'(0;%,).

Put y = 2in (2.4). Then it remains to show that / < 1/k. By Lemma 8.1,

0,(t)p,(t — 1) < M*(t;n), foranyt,t€ R .

Hence, replacing N by n in Theorem 2.2, we obtain [ < 1/n <, 1/k. [

Proof of (1.9). Using a well-known inequality (see, for example Petrov 1975,
Lemma 3 of Ch. 3), we have

N (7

0(Zy; 1) <2 sup max{) —}/ [ ()| dt , (2.5)
acR? -T

for any 7 > 0. To estimate the integral in (2.5) we shall apply Lemma 2.3.

Let us choose 7 = 1. Then using 1 < 1/, for |¢f| < 1, we have

r ~ dt
| 1wolas | la+ [ B0y Ly
-T <(pN) (pN) <l 7]

Lemma 2.3 implies Iy <, 1/(pN) and I} <, 1/(pN). [

Proof of (1.9) = (1.10). Without loss of generality we can assume that
N/m>2. Let Y,Y,... denote independent copies of m~'/2Z,. Write
We=Y1+ -+ Y. Then ¥(Zy) = L(VmW; + b) with k = [N/m] and With
some b 1ndependent of W,. Consequently, we have Q(Zy; 1) < Q(W; 2/m). 1
order to estimate Q(W;;A/m) we can apply (1.9) replacing Zy by W;. We
obtain

O(Wi; 2./m) < (pk)" max{1;1/m} <, (pN)~" max{m; 1} . O
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Proof of (1.11). The existence of the desired m = m(% (X)) can be proved as

follows. Let 7> 0. Split the distribution yu = £ (X)=uv+ vd, with the
conditional distributions
v(d) =P{X € 4||X| <1}, 9(4) =P{X €4d||X]| >},

and parameters u = P{|X| < 7} and v = 1 —u. Denote the minimal closed
linear subspace supporting v by IL,. For any e RR? the distance
ple,IL;) = inf{|x —e|: x € IL;} — 0 as t — oo, since X is not concentrated in
a subspace. Choose and fix © = ¢ such that dimZ,, > 1 and p(e, L;) < J/2,
for all e € ¥ UQY. The measure v in IL,, has bounded support, and
therefore it satisfies the Central Limit Theorem with a limiting Gaussian
measure, say y. Any ball in IL,, with positive radius has positive measure y
since the covariance operator covv = cov y is non-degenerate as an operator
in L,, due to the definition of LL,. Consider the balls B, = {x € RY:
|x —e| < 0} and B, = B, N L,,. Writing p” for the m-fold convolution of the
measure u, we have

L(m28,)(A) = (uv + v0)" (m"24) > u™v"(m'?4) |

for any measurable 4 C IR?. Therefore, for sufficiently large m = m(v, &), we
obtain

L(m28,)(B,) > u"v"(m'*B)) > 27 \"y(B)) > 0, forallec Y UQY ,
since the Gaussian measure y of balls with positive radius is positive. []

Recall that truncated random vectors and moments were defined by (1.5)
and (1.20), and that € = covX = covG. We omit the simple proof of the
following Lemma.

Lemma 2.4. The random vectors X°, X, satisfy
(Cx,x) = (covX°x,x) + E(X,,x)* + (EX°®,x)? .

There exist independent centered Gaussian vectors G, and W such that
Z(G)=ZL(G.+ W) and

2covG, = 2covX® =covX®, (covWix)=E(X, x)*+ (EX°x) .
Furthermore, E|G|* = E|G.|* + E|W|* and E|W|* < 26°T1.

Recall, that Z5, denotes a sum of N independent copies of X°.

Lemma 2.5. Let ¢ > 0. There exist absolute positive constants ¢ and ¢y such
that the condition T1 < ¢,pd* /(2 6®) implies that

N(p,8,F,6G) = N (p/4,45, %, e(2m) "2 Z¢)
for m > ce*a*NA/(pd*).

Proof. The result of the Lemma follows from the following relations (2.6)—
(2.7), since p, 0, & in these relations are arbitrary and E|X°|* < 16E|x°|* =
16NG*A.
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For the Gaussian random vector G, defined in Lemma 2.4, we have

N (2p, 0, S, 6G) => N (p,20,%,¢G.), provided that IT < pd*/(26%67) .
(2.6)

If m > ce*E|X°|*/(po*) with a sufficiently large absolute constant ¢, then
N (2p, 0, ,6G,) = N (p, 20, S, e(2m) " *Z2) . (2.7)

Let us prove (2.6). For e € R? define p, by 2p, = P{|¢G — e| < 6}. Assuming
that IT < p,6°/(2626?), it suffices to prove that P{|¢G, — e| < 20} > p.. Re-
placing 0 by 6/¢ and e by e/, we see that we can assume that ¢ = 1. Applying
Lemma 2.4, we obtain

P{|G. —e| <20} > P{|W|+|G —e| <26} > P{|W| <9, |W|+|G —e| <26}
>P{|W| < dand |G—e| <} >2p, —P{|W| >}
> 2pe - 572E|W|2 > 2Pe - 25720’21_[ > Pe
and (2.6) follows. 3
Let us prove (2.7). Notice that cov (eX°/v/2) = cov (¢G,). Therefore, to

prove (2.7) it suffices to apply Lemma 5.3, replacing in that Lemma X by
eX°/V2. O

Proof (1.10) = (2.1). The proof is based on truncation of random vectors.
Recall that we assumed that s =9 and 6 = 1/200. By a well known
truncation argument, we have

|P{Zy € 4} — P{Z}, € A}| < NP{|X| > oVN} <1, (2.8)
for any measurable set 4, and
0(Zv,7) < T+ Q(Z5,7) . (2.9)
Write K = s/m with ¢ = ¢o/o. Then, by Lemma 2.5, we have
N (P, 8, S0, 6G) => N'(p[4,46, 0, K Z5) , (2.10)
provided that
O<cp, m>cNA/p . (2.11)

Without loss of generality we may assume that I1/p < ¢, since otherwise the
result easily follows from the trivial estimate Q(Zy; ) < 1.

The non-degeneracy condition (2.10) for KZ}; allows to apply (1.10) of
Theorem 1.6, and we obtain

02, 2) = O(K Z5, K*)) < (pN) ™ max{m; K*1} , (2.12)

for any m such that (2.11) is fulfilled. Choosing the minimal m in (2.11), we
obtain

0(Z3,2) < p~>max{A; 2/(a>N)} . (2.13)
Combining the estimates (2.9) and (2.13), we conclude the proof. [



Uniform rates of convergence for quadratic forms 381

Proof (2.1) = (2.2). Note that the bound (2.1) holds with a probability p of
condition A"(p,d,%,,c0G/a). Let us choose 4cy = 0 = 1/200. Then, using
Lemma 5.4 and the assumption %(%,,C), the effective lower bound
p > exp{ca?/3} follows. [

3. Proofs of Theorems 1.3-1.5

The proof of Theorem 1.3 is rather complicated. It starts with a truncation of
random vectors and an application of the Fourier transform to the functions
Y and ¥;. We shall estimate integrals over the Fourier transforms using
results of Sections 2, 5-9. The proof of Theorem 1.4 essentially repeats with
certain simplifications the proof of Theorem 1.3. For the proof of Theo-
rem 1.5 we shall apply in addition some elements of the standard techniques
used in the case of the CLT in multidimensional spaces (cf. e.g., Bhatta-
charya and Rao 1986).

We shall use the following approximate and precise formulas for the
Fourier inversion. A smoothing inequality of Prawitz (1972) implies (sce
Bentkus and Go&tze 1996, Section 4) that

F(x) :%+§ V.P. /ie{—xt}ﬁ(f) ?He : (3.1)

for any K > 0 and any distribution function F with characteristic function F,
where

1[5
RS—/ F(t)|de .
Rl<g [ PG

Here V.P. [ f(t)dt = lim, [, f(r)dt denotes the Principal Value of the
integral.

For any function F: R — IR of bounded variation such that F(—oo) =0
and 2F(x) = F(x+) + F(x—), for all x € R, the following Fourier—Stieltjes
inversion formula holds (see, e.g., Chung 1974)

1 i ~ dt
P = 3F() + 5 fim VP, [ LEFO T ()
The formula is well-known for distribution functions. For functions of
bounded variation, it extends by linearity arguments.
In this Section we shall assume that the following conditions are fulfilled

Q* =1, o*=1, 9<s<I13, 5=1/300, N (p,d, %, coG) . (3.3)

Notice that the assumption 6> = 1 does not restrict generality since from
Theorems 1.3—1.5 with ¢ = 1 we can derive the general result replacing X by
X /o, G/o, etc. Other assumptions in (3.3) are included as conditions in
Theorems 1.3-1.5. The assumption ¢> =1 yields (recall that we write
H:H2 andA:A4)
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NT'<2(M+A), M+A<I, o¢;<1, 4<1, 0;<1. (3.4)

Recall that functions ¥ and ¥; are defined by (1.18) and (1.19). In that
notation we have

Ay =sup|Ay(x)], Ay =sup|A}(x)| , (3.5)
xeR xeR

where
Ay(x) = ¥(x) = Polx) = ¥i(x), AJ(x) =¥(x) —WYolx) - ¥i(x) (3.6)
since the functions F, Fy and F; defined by (1.1)—(1.2) satisfy
F(x) = ¥(N), F(x) =¥,(xN), FN)=P0), FN)=¥,0) . (3.7)

Reduction of Theorems 1.3—1.5 to the proof that

A, < (p+ 0T+ A1 +al%), s=13, (3.8)
A < p M+ A)(1+1alh), s=9, (3.9)
A < pe I+ A1 +af), s=9, (3.10)

respectively.
We have to prove that the bounds (3.8)—(3.10) imply the desired bounds
for Ay, and to show that the assertions (i) of Theorems 1.3—1.5 imply (ii).
To derive the bounds for Ay it suffices to note that IT < IT3 and to verify
that

sup [ (x) — Wi (x)| < 05°(1 + |a)IT (3.11)
in the case of Theorem 1.3, and that

sup [P (x) — ¥ (x)| < 0,°TI; (3.12)

in the case of Theorem 1.5. But the bound (3.11) is implied by (5.5) of
Lemma 5.7 with s = 8. The bound (3.12) one can easily prove using the
representation (1.21) of the Edgeworth correction as a signed measure in
finite dimensional R? and estimating the variation of that measure. Indeed,
using (1.21), we have

sup | (x) — Wo(x)| < N7V, 1 / |Ep" ()X — Ep" (x)X*| dx .
X R

By the explicit formula (1.23), the function u+ p" (x)u® is a 3-linear form in
the variable u. Therefore, using X = X°+ X, and |X°||X;| =0, we have
p///(x)XB _p///(x)X<>3 _ p///(x)X<>3, and

d

N1 < 31130;3/ (1€ 2] + | €725 p(x) dx = cqlz0,°
R

whence (3.12) follows.
Let us prove (i)==(ii). This follows from p > exp{c/;7} and the obvious
inequalities 03 > 013 > A13. To obtain p > exp{ciff} we can use (i) in the
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case when the condition A"( p, 3, &,, coG) is fulfilled with ¢y = 6/4 = 1/1200.
Indeed, the condition #(%,,C) guarantees that e € ¥, U Q%, are eigen-
vectors of the covariance operator €, and we can get the lower bound for p
by an application of Lemma 5.4 using ¢o = 6/4. [

While proving (3.8)—(3.10) we can and shall assume that
OD<cep, A<cp, (3.13)
and in the case of (3.10),
I < cpal, A <cpa | (3.14)

with a sufficiently small positive absolute constant ¢. These assumptions do
not restrict generality. Indeed, in the case of (3.9) the symmetry of X implies
that W] = 0, and we have A}, < 1. Thus, if at least one of the assumptions
(3.13) is not fulfilled, we obviously obtain (3.9). In the case of (3.8) we can
estimate |¥']| using (5.4), and we get

A <1+ ¥ < (1+ |a])0g°

which again allows to assume (3.13) (notice that 03%p~" < p~* + 05°).
If the assumption (3.14) does not hold, the estimate

¢ <q NV2E|C7V2X°P <4 0,2 A (3.15)

immediately implies (3.10). For a proof of (3.15) we can use the represen-
tation (1.21) of the Edgeworth correction as a signed measure. Estimating the
variation of that measure and using

B <a®p, €V <o;'ul, ECVXx°] <ECVX)=d,

we obtain (3.15).

Recall that the random vectors X°, X’ and sums Z3, Z), of their inde-
pendent copies are defined in (1.5) and (1.20). Write W° for the distribution
function of Q[Zy — b]. For 0 < k < N introduce the distribution function

PO(@) = P{QIGI + -+ + G+ X[+ 4+ Xy~ <x}p . (316)
Notice that ¥(© = ¢/, ¢W) — .

Lemma 3.1. Assume that 11 < c\p and that a number 1 < m < N satisfies
m > c;NA/p, with some sufficiently small (resp. large) positive absolute con-
stant ¢y (resp. ¢3). Let ¢3 be an absolute constant. Write

K=c/2m), t =c(pN/m)~"* .

Let F denote any of the functions W°, W& or W, Then we have

1 ] ~
F(x) =~ +-—V.P. / e{—xtK}F(tK)é—FRl : (3.17)
2 27'[ MSH t
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with |Ri| < (pN)"'m . Furthermore,
1 ~ dt
W) = / e{—xtK Y (1K) 1 R, (3.18)
27 lt|<t t

with |Ry| < 053 (A + pm/N)(1 + |a]).

Proof. Let us prove (3.17). For the proof we shall combine (3.1) and Lem-
ma 2.3. Changing the variable ¢t = tK in the approximate Fourier inversion
formula (3.1), we obtain

1 i

F(x)=3+5- V.P. / e{—xtK}F(K) ¥ 4 R (3.19)
T <1 t

where
R| < / ()| dr .
[f<1

Notice all functions ¥°, ‘P<k), Y are distribution functions of the following
type of random variables:

QU+T), UEG +- +G+X + +X5 ,

with some 0 < k < N, where the random vector T is independent of Xf and
G;, for all j. Let us consider two alternative cases: k > N/2 and k < N/2.

The case k < N/2. Let Y denote a sum of m independent copies of K'/2X°.
Let Y, Y,,... be independent copies of Y. Then we can write

KPUZY + -+ Y+ T, (3.20)
with /= [N/(2m)] and some random T; independent of Y;,...,Y;. By
Lemma 2.5 we have

N (p,8,%,coG) = N (p/4,45,F,Y) (3.21)
provided that
O<c¢p and m>c;NA/p . (3.22)

The inequalities in (3.22) are just conditions of the Lemma. Due to (3.20) and
(3.21), we can use Lemma 2.3 in order to estimate the integrals in (3.19).
Replacing in that Lemma X by Y and N by /, we obtain (3.17) in the case
k<N/2.

The case k > N /2. We can proceed as in the previous case defining however ¥
as a sum of m independent copies of K'/2G. The condition (3.21) is fulfilled
since now £(Y) = #(coG/o), and (3.17) follows.

To prove (3.18) we can apply the Fourier inversion (3.2) to the function
P{. Using the estimate (5.6) of Lemma 5.7 with s = 8 and ¢, = #,K, we obtain

dt _ _
/> )| < AY2(0KN) (1 + al)o5®
ti>h
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Since (thN)f1 < (pm/N)l/z, we conclude the proof of (3.18) by an appli-
cation of the arithmetic-geometric mean inequality. [

Let us introduce the following upper bound % = x(f) =x(f;N,
ZL(X),Z(G)) of for the characteristic function of quadratic forms (cf.
Bentkus 1984, Bentkus, Go6tze and Zitikis 1993). We define »« = »(¢; N,
L (X)) +n(t; N, Z(G)), where

w(t;N, Z(X)) = sup |[Ee{iQ[Z] + (a, Z)}|, Ze=X1+-+X; , (3.23)

acR?

with & = [(N —2)/14]. Notice that if Q> =1, then we can replace
1Q[Zi] + (a,Z;) by tQ[Z; — a] in the definition (3.23).

Lemma 3.2. Assume the conditions of Lemma 3.1. Then
dt
/ (|t|K)*n(tK; N, Z(X°), Z(G)) 7 <, (pN)*,  for 0<a<s/2 .
lt]<n
Proof. By (3.21), the condition .A"(p/4,45, %, K'/?Z2) is fulfilled. Therefore,

collecting independent copies of K'/2X° in groups as in (3.20), we can apply
Theorem 7.1. We obtain

w(tK;N, L (X°)) < A (t;pN [/m) .

A similar upper bound holds for %(tK; N, Z(G)) (cf. the proof of (3.17) in the
case of k > N/2. Using the definition of the function .Z(-,-) and (1.16) in
order to get rid of absolute constants, we get

%OK;N;ngﬂ,g«G»<<Snﬂn{1mm/apwnﬁz}, for 7| <1 .

Integrating that bound (cf. the estimation of /; in Lemma 2.3), we conclude
the proof of the Lemma. [

Reduction of (3.8)—(3.10) to an estimation of
Ny = sup [¥/(x) — Wolx) — ¥i()] | (3.24)
where W' is the distribution function of Q[Z}, — b]. It suffices to prove that

the quantity A), satisfies inequalities of type (3.8)—(3.10). Indeed, let us prove
that

sup [P (x) — ¥'(x)| < p2(TT + A)(1 + |af) . (3.25)
Using truncation (cf. (2.8)), we have |¥ — ¥°| < TI, and
sup |[¥(x) — ¥'(x)| < IT+ sup|¥°(x) — ¥'(x)| . (3.26)

In order to estimate |¥° — W'|, we shall apply Lemmas 3.1 and 3.2. The
number m in these Lemmas exists, as it follows from the second inequality in
(3.13). Let us choose the minimal m, that is, m ~ NA/p. Then
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(pN)'m < A/p* and m/N < A/p. Therefore, using (3.5), (3.6) and Lem-
ma 3.1 we have

sup |P°(x) — ¥'(x)| < p2A +/ [¥°(7) — P'(v)] |it|’ t=tK . (3.27)

|t]<n
We shall prove that
1P (1) — V(1) < wI|tN(1 + [{]N)(1 + |a]?) | (3.28)

with » = »(7; N, Z(X°)). Combining (3.26)—(3.28), using 7 = ¢tK and inte-
grating the inequality (3.28) with help of Lemma 3.2, we derive (3.25).

Let us prove (3.28). Recall that X’ = X°* — EX° 4+ W, where W denotes a
centered Gaussian random vector which is independent of all other random
vectors and such that covX’ = covG (see Lemma 2.4). Writing D = Z3, —
E Z3, — b, we have

Z,-b=D+EZ, Z,ZD+VNW ,

and [#°(c) = ¥'(2)] < [fi(9)] + [f2(0)] with

/i(x) = Ee{tQ[D + VNW]} - Ee{zQ[D]},

f2(t) = Ee{zQ[D + EZj]} — Ee{tQ[D]} .
We have to show that both |f;(¢)| and |f>(¢)| are bounded from above by
the right hand side of (3.28). Let us consider f;. We can write
QD+ VNW]=Q[D] +4+B with 4=2/N(QD,W) and B = NQ[W]}.
Taylor expansions of the exponent in (3.29) in powers of itB and it4

with remainders ((tB) and ((t>4%) respectively imply (notice that
EW = 0)

(3.29)

f1(7)] < %|z|N E|W|* +»>N E|W|°E|D|* , (3.30)

where « = »(t; N, £(X°)). The estimation of the remainders of these ex-
pansions is based on the splitting and conditioning techniques described in
Section 9. Using ¢ = 1, E|W|* < IT and E|D|* < N(1 + |a|*), we derive from
(3.30) that

/i(0)] < w12 N (1 + [2[N))(1 + |af) . (3.31)

Expanding in powers of E Zy; = NE X° and proceeding similarly to the proof
of (3.31), we obtain

2(0)] < wI|z|N(1 + )
which concludes the proof of (3.28). [

Proof of Theorems 1.3 and 1.4. Relations (3.8), (3.24) and (3.25) reduce the
proof of Theorem 1.3 to showing that A}, is bounded by the right hand side
of (3.8), assuming that s = 13. Similarly, for the proof of Theorem 1.4 we
have to show that A}, is bounded by the right hand side of (3.9), assuming
s =9 and symmetry of X.
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We shall apply Lemmas 3.1 and 3.2. Choosing m ~ NA/p as in the proof
of (3.25), and using (3.5), (3.6), (3.16), (3.24) and Lemma 3.1 we have

Ay < I+ (p 2+ 0)A( + |af) (3.32)
with

~ dt
I:/ Ay(D)| =, T=1K .
1< |t|

Define the Edgeworth correction W) (x) = ¥ (x; Z(X’), (G)) by replacing X
by X’ in the definition (1.19). We have

A < 1% = o) - B+ ¥ - ]
Below we shall prove that
IW'(1) — o — ¥ (1)] < w(TT+ AN (1 + N (1 +a®) ,  (3.33)
[P (1) — P (1) < n(IT+ A)PN2(1 + [N) (1 + |a]’) | (3.34)
with x = %(1; N, £(X°), Z(G)). Using © = 1K and integrating the inequalities
(3.33)—(3.34) with the help of Lemma 3.2, we derive
I<p*(1+1]al)IT+A)

which combined with (3.32) shows that A, is bounded from above by the
right hand side of (3.8), thus proving Theorem 1.3. Notice that the re-
quirement s = 13 was needed for the integration of (3.33) only since the
highest power of 7 in (3.33) is 6; in all other parts of the proof the require-
ment s = 9 suffices.

In the symmetric case we have ¥ =¥, =0, and we can repeat the
previous proof. Instead of (3.33)—(3.34) we shall prove that

W' (1) — Wo(1)| < »(XT+ A)>N*(1 + °N¥)(1 + |a*) . (3.35)

An integration of this bound shows that A}, is bounded from above by the
right hand side of (3.9), thus proving Theorem 1.4. The highest power of 7 in
(3.35) is 4, and for the integration the assumption s = 9 is sufficient.

Thus it remains to prove (3.33)—(3.35).

Let us prove (3.33). Recall that ¢ = 1. Write 5, = E|X"| and ' = 8. The
covariances of X’ and G are equal, and we can apply Lemma 9.2. Replacing
in that Lemma X by X’, we have

(W' (7) — Wo(x) — W (2)| < v NB (1 + N (1 + By /NP (1 +al®) , (3.36)

where x = »(1; Z(X'), £(G)). Since X' = X° —EX°+ W, and W is inde-
pendent of X°, we obtain

®(; N, Z2(X"), Z(G)) < »n(t;N, Z(X°), Z2(G)) .
Furthermore, for ¢ > 2 we have

B, <, EX°11 + E|W|" <, N/
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since ¢ = 1. Similarly, f’ < (IT + A)N, and (3.36) yields (3.33).

The proof of (3.35) repeats the proof of (3.33), replacing however Lem-
ma 9.2 by Lemma 9.1.

Let us prove (3.34). The proof is based on the observation that
X' = X° — EX°+ W and that the Fourier—Stieltjes transforms W{ and ¥} are
3- hnear forms in X and X’ respectively. For the proof it sufﬁces to use
VNG Z Gy + -+ + Gy, standard splitting-conditioning and symmetrization
techniques, the bounds [EX°| < N~V/2IT and E|W|* < II. We omit related
technicalities, and refer to Lemmas 5.7 and 9.1, where similar proofs are
carried out in detail. [

Proof of Theorem 1.5. Again, due to (3.10) and (3.24) we have to verify that
A}, is bounded by the right hand side of (3.10), that is, that

Ay < p o T+ A)(1+ |a’) (3.37)

Recall that the distribution function W% is defined in (3.16). For any
1 <k <N, we have

Ay <L +5L+5, Iy = sup |¥'(x) - W (x)| ,
b= sup [¥O ) — Wox) ~ Wi ()], b= sup[¥i() — W) . (338)

Below we shall prove that

I <p?A+p kN~ ([3 + /N > +|a?) (3.39)

k\/—ﬂ'/ ﬁ/ ﬁ/(d+7 /2N(d+3)/2
N3/2 2 + N + kd+5631d+14

L < a(TT+A) (3.41)

with ' = E|X'|*. Let us choose k ~ ¢;2\/Nf. Such k < N exists since we
assumed (3.13), (3.14) and B < N(IT + A). Thus, (3.38)—(3.41) yield

L <y

(3.40)

A/ -3 H A [)) ﬁ/3/2 1 3
N p o T+ A+ +N3/2 (1 +|a’) ,

and (3.37) follows by an application of B/ < N(IT+ A) and TT+ A < 1.
Let us prove (3.39). As in the proof of Theorem 1.3, applying Lemma 3.1
we obtain

h < piz/\—l-/ () —PO()| =, 1=K .

ltl<n l¢]

Applying Lemma 9.3 and replacing in that Lemma X by X’, ¢ by T and S by
B = E[X'|*, we have

P (x) — PW ()] < mzk<ﬁ + [7|Nf' + |r|N\/—> + |al)
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Integrating with the help of Lemma 3.2 we obtain (3.39).
Let us prove (3.40). Define the measure ¥’ by replacing X by X’ in (1.22).
Using representations of type (1.21) for ¥ and ¥, we have

L <Iy+1s
with
N—k k
_ k) () —
Iy = Sl;p|LIJ (X) lI10( ) 6N3/2 (A /\/“)| Is = 6N3/2Ascu]11{)d|y( )‘ ’

where A4, —{uele Qlu — ]<x}
Write Z;,, = ZJ G+ Zj 4+1%j. A re-normalization of random vectors
implies

Nk
Is < 8% sup P{Z), € VNA} — P{Zy, € VNA} — iy
ACRR?

7(4)

To estimate &)y we can apply Lemma 9.4 with X; replaced by Xl’ . We get

5 Ii% % 1(d+7)/2pp(d+3)/2
L o tr—0—
N 2d+14
o*N fd+5 24T
Using a representation of type (1.22) for ¥’ and estimating the variation of
the signed measure, we obtain

I5s <4 kN73/2G;2\/E .

Collecting these bounds, we obtain (3.40).
It remains to verify (3.41). Using representations of type (1.21) for the
Edgeworth corrections, we have

Iy = sup [¥} (x) = ¥i(x)| < N7V sup [7/(4) = 2°(4)] -
x ACRY
Both ' and »° are 3-linear forms in X’ and X° respectively. Using X' =
X° —EX®°+ W and estimating the variations of the signed measures, we
arrive at (3.41). [

4. An extension of the double large sieve to unbounded distributions

The large sieves of Linnik (1941) (see also Graham and Kolesnik 1991) play a
key role in some problems of analytic number theory. The main result of the
Section—Lemma 4.1 extends the double large sieve to (unbounded) random
vectors. Lemma 4.7 presents an application of this bound to sums of i.i.d.
vectors in IRY. We need this lemma for the proof of the main result of this

paper.
In this section we shall assume that IR? is finite dimensional, i. e., d < cc.
Let |x|, denote the max-norm |x| = max |x;|.

1<j<d
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Lemma 4.1. Let m denote an integer such that m > d/2. Assume that the
independent random vectors U,V € RY are sums of independent random vec-
tors U; and V; with non-negative characteristic functions,

U=U+ -4+ Uppand V="V+- -+ Vi .
Let R > 0 and T > 0 denote some positive real numbers. Write
A=1+EU/T™, B=1+E[V/R™ ,
and
C=1+ (IR, D= (IR
Then we have

Ee{(U,V)} <na ABCD | max P{|RU,| < 1} | max 1P{|TVb| <1} .
+

Note that the bound of Lemma 4.1 depends on Uj,., and V5,., through
moments 4 and B only.

To compare our results with the corresponding results for trigonometric
sums, we include a special probabilistic version of the double large sieve
bound as Proposition 4.2. We omit the proof since it differs mainly in no-
tation from similar proofs in Graham and Kolesnik (1991).

Proposition 4.2. Let U,V € R? be independent random vectors with non-neg-
ative characteristic functions. Assume that P{|U| < T} =1 and P{|V],
< R} = 1 with some positive constants such that TR > 1. Then

Ec{(U,V)} <4 (RT)'P{|TV], < 1}P{RU| <1} .

Corollary 4.3. For arbitrary positive numbers Ry and Ty write R = min{R; Ry}
and T = min{T; Ty }. Then, under the assumptions of Lemma 4.1, we have

Ee{(U,V)} <na ABCD max I, max I, ,
1<a<2m+1 1<b<2m+1

where
L,:/ Ec{(RU,/R, s)} ds, ibz/ Ec{(T°V,/T,s)} ds .
Is|<1 ls|<1

Remark. Lemma 4.1 can be extended to vectors
T=(T,...,T,) and R=(Ry,...,Ry)
with positive coordinates. Define
T'=(ry'...,1Y) and  Ts=(Tisy,...,Tusa) ,
for s = (s1,...,54) € R?. Then Lemma 4.1 still holds with
A=1+E[T'U™, B=1+ER'V|"
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and

d d
— Z 2m, D= H T/RJ
=1 J=1

Similar extensions hold for other results of the section.
To prove Lemma 4.1 and its Corollary 4.3 we need several lemmas which
may be of separate interest.

Lemma 4.4. Let U and V be independent random vectors taking values in R.
Let R >0 and T > 0. Let g and h denote positive functions. Assume that g as
well as its inverse Fourier transform, say g, are Lebesgue integrable and
El1/g(V/R) < co. Then

[E{U, V) <a iz,

where
_ s)}
- Lol
= su —e{—( .5)} T )} dt
5=sup [ h(s T o/ RE((U. D) d
Proof of Lemma 4.4. Since g(x) = cq [pee{(x,)}g(») dy, we get
Ee{aﬁlq}::Ee{aalq}szﬁg
- AV U+T/RY
_CdE/]Rd g(V/R) g(r)d
:QAﬁ%%mgaR—RmM$,
and
Ee{(U, 1)}| <4 /1. ‘VT;%fs EgRsvﬁfﬂe s |

Consequently,
Eg(Rs — RU) _,
h(s/T)

Representing g as the inverse Fourier transform of g, we obtain J; <, J>,
and the result of the Lemma follows. [

[Ee{(U,V)}| <4 1J3, where J3=su

seR?

Lemma 4.4 yields the following

Corollary 4.5. Let E|U|2m < oo and E|V|™" < oo, for some m > d /2. Then,
for g(s) = (1 + |s|*)™", we have

|Ee{<U, V>}| <y Jljz ,
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where

Jy = / (s/T) ’E(l+|V/R| ) e{(V,s) }(ds ,

Jy = / (1-T T72A.)"(g(t/R)Ee{(U, 1) |dr ,

and where the Laplace operator A, = 9} + - - - + 03 acts on the variables .

Proof. Notice that (1+ |s/T|*)"e{—(t,s)} = (1 — T2A,)"e{—(z,s)}. Thus,
assuming that g = A, the integral J, from Lemma 4.4 we can represent as

Jo = sup

seR?

[ (=128 el~(es) Dale/RES{(U. 7)) d
Integrating by parts we derive J, < J,. [

Lemma 4.6. Assume all conditions of Lemma 4.1 except positivity of the
characteristic functions which is replaced by the assumption that the random
vectors have mean zero. Write

7. :/w g(s/R)Ee{(U,,s)}| ds, jbsz g(s/T)Ee{(Vs,5)}| ds

where g(s) = (1 + |s|*)™. Then
[Ee{(U,V)}| <ma ABC max ¢, max ¢4, .

1<a<2m+17 4 1<b<2m+1

Proof. We shall derive the result from Corollary 4.5. It is sufficient to show
that

B+ V/RP) A V90 <ma B [Ee{(Fhs) (4.1)
1<b<2m+1
|(1=T72A)" (u()g(1/R))| <ma AC > |Ee{(Us,)}g(x/R) ,  (42)
1<a<2m+1

where we denote u(t) = Ee{(U,1)}.
Let us prove (4.1). We have

[B(1+ 1 /RPY e (7)) ua SR
Jj=0
where
5
Li=|EV|Y e{(V,5)}] -
In order to estimate [; recall that V =¥ + - - - + Va,4». Thus

V¥ = (i ij iV, ) = > > ﬂ<nq,nq> ,

1<, [;<2m42 1<ry oy <2m42 g=1
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and instead of /; we have to bound

"E
q

J
Nys Vi ye{ (Vs s }’
Sy

The number of (different) V; in the product H 1(",, V;,) does not exceed
2j <2m. Thus, this product is independent of at least one of vectors
MN,...,Vams1, say Vp. Therefore

J < (E [11.l quI)IEe{<%,s>}| :

q=1
Applying the geometric-arithmetic mean inequality we get
J J . . ‘
E[ Wl 17, <na Z(E\dej i E\V,q|21> Zma E|VY
q=1 q=1
since by Jensen’s inequality
EX/Y =EX +EY|/Y =E[Ey(X + Y)|Y <E|X + Y¥

provided that X and Y are independent and EY = 0. Collecting these esti-
mates, we obtain (4.1).
The proof of (4.2) is a little bit more involved. We have

|(1=T72A)" (u(t)g(1/R))| <ma Y T I
s=0
where
Iy = |AY(u(0)g(t/R))| -
Differentiating the product we get
L<na Y |00 ...a;du(f)]R*Vf\‘(afl . 9lg) (/R
o +|B|=2s

Here o = (o,...,04) and f = (f, ..., B,;) denote non-negative integer multi-
indices with |o| = o) + - - - + o4. The function ¢ satisfies

@ .. 809) ()| <ma 9(2) -
Furthermore, writing the random vector U = (Ujy), ..., Uy)) in coordinates
of R?, we have
o7 .. 9fu(t)| = |EU(°‘1l Ugel(U O -
The product U7} Ué” is a polynomial of order |o| < 2s < 2m in U. Thus
arguing 51m11ariy as in the proof of (4.1) we obtain

)

[EUZ .. U e{ (U, )} <na E[UI" Y [Ee{(U, 1)}

1<a<2m+1
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and (4.2) follows since

SN rErVEUM <040 O
5s=0|o|+|B|=2s

Proof of Lemma 4.1. We shall derive the result from Lemma 4.6. Let X € R?
denote a random vector with non-negative characteristic function. It is suf-
ficient to show that

g / g(s/R)Ee{(X,5)} ds <ma RIP{RX| < 1} . (4.3)
IRd

Introduce the concentration function

2X;4) =sup P{|X —s| <2}, 2>0.
seR?
Assume that a function p(s) = pi(s1)...ps(sq) can be represented as a
product such that the functions p;: R — IR are even, non-negative, non-
increasing on [0,00) and p;(¢f) = p;(0), for 7] <1, for all 1 <j<d. It is
known that (see Zaitsev 1988a, Lemma 5.3, or 1988b, Lemma 2.6)

/ p(s)Ee{(Z,s)} ds <4 2(Z; 1)/ p(s)ds | (4.4)
R? R
for any random vector Z with non-negative characteristic function.
Let us apply the bound (4.4) to the integral in (4.3). Define
p(s) = 0(sy) ... 0(sq), where the function 0: R — R satisfies
0(r) =1, for || < 1, and 0(r) = (2/(1 4+ 2)"“, for || > 1 .

Then g(s) <ma p(s) and a change of variable of integration together with
(4.4) implies J <,,g R?2(RX;1). To finish the proof of (4.3) we should re-
place the norm | - |, by | - |. To this end notice that 2(X; 1) <4 6 ?2(X; ),
for any 0 < 6 < 1 and random vector X. Furthermore, the inequality

sup P{lX —s| <1} <, P{|X| <1}, 2>0,

seR?
holds for any random vector X with non-negative characteristic function. A
proof is based on an application of Parseval’s equality, cf. the proof of
Lemma 5.1 in Zaitsev (1988a). [
Proof of Corollary 4.3. Obviously
P{RU,| < 1} < P{R’|U,/R| < 1}

and the result follows from Lemma 4.1 by an application of

P{|X| < 1}<<d/ [Ec{(X,s)}|ds .

Is|<1

see Esseen (1968), Lemma 6.1. [
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We shall denote |A| = sup,_; |Ax].

Lemma 4.7. Let A be ad x d matrix. Let X € R? denote a random vector with
covariance C. Assume that there exists a constant ¢y such that

P{X|<ci}=1, |A|<cs [A'<cq |C'<eq. (4.5)

Let U and V denote independent random vectors which are sums of N inde-
pendent copies of X. Then (the function 4 is defined by (1.16))

|[Ee{t(AU,V)}| <4 .#4*(t;N), fortcR . (4.6)

Proof. Introducing sums U’ and V' of [N/2] independent copies of the
symmetrization X of X, we have

[Ec{t(AU, V)}| < Ee{t(AU", V')} . (4.7)

To prove (4.7), one should proceed as follows: split V' =V} + V5 + V4 into
three independent sums such that each of 7} and V5 is a sum of [N/2]
independent copies of X; condition on U and 75 and to apply the equality
[Ee{(x, Vi + 5)}| = [Ee{(x, )})* = Ee{(x, 1)}, which is valid for any
x € RY and any i.i.d. random vectors ¥}, V5; repeat the procedure with U
instead of V.

In the proof of the Lemma we can assume that N is sufficiently large, that
is, that N > ¢(d), with a sufficiently large constant ¢(d). Otherwise the result
follows from the trivial bound |Ee{#(AU,V)}| <1 and the estimate
1 g4 A (t;N), valid for N < ¢(d). Furthermore, without loss of generality
we shall assume that U and ¥ are sums of 44N independent copies of X. To
see this, use (4.7) and replace [N /2] by 4dN. Since N is arbitrary and (1.17) is
fulfilled, such a replacement can change in (4.6) only constants depending on
d. Thus we can write

U=U+ - +Uw, V=V++Vg (4.8)

with i.i.d. random vectors Uy, ..., Uaq, V1, ..., Vag such that Uj is a sum of N
independent copies of X. Thus, assuming (4.8) we have to estimate
Ee{t(AU,V)}. Due to the symmetry of random vectors, we may assume as
well that # > 0.

Let us apply Corollary 4.3 replacing U and V by v/¢tAU and /tV, and
choosing m=2d —1, T?=R>=¢N, Ty =R} =¢'N, where we write
¢=1/(2¢% +c4). By the Rosenthal’s inequality and (4.5), the moments
E|AU;[** and E|Vj|** are bounded from above by ¢(d)N?*~!. Further-
more, we can assume that 72 = ¢2tN > 1. Indeed, otherwise the result of the
Lemma is obvious since 1 <, .#(t;N), for 0 < tN <, 1. Thus, Corollary 4.3
implies

Ee{t(AU,V)} <4 T*II , (4.9)
where

1:/ Ee{VH{T* AU, /T,x)} dx, i:/ Ee{VH{T*/T,x)}dx .
<1

[x|<1
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The bound (4.9) implies the Lemma provided that we can show that

—2d

I <q (N PTIT™ Ty aN) P17 (4.10)

Thus it remains to prove (4.10). We shall estimate /. The estimate of I is
similar.

Write & = /#(T°X /T, A'x), where A’ is the transposed matrix A. The
1.1.d. property implies that

Ec{Vi{(T°AU,/T,x)} = (Ee{c})" . (4.11)
Using (4.5) we have |X| < 2¢4, |A'x| < ¢y, for |x| < 1. Therefore
€| < 1, provided that 2c2vi T /T <1 .

But the inequality 2¢2/¢ T *IT<1 is clearly fulfilled due to our choice of &
and T, Ty. Hence the symmetry of X and the inequality cosu < 1 — u?/4, for
|u] <1 together imply

Eeft) = Ecos¢ < 1 - 1B < eXp{—%Eéz} . (4.12)
We have

E& =TT 2E(X, A'x)> = 24T T 2(CA'x, A'x) .

Using |C7'| <¢g and |A7!| <c4 we have (Cz,2) > |z|*/cq and |A'x| >
x| /cq. Consequently, EE? > 2¢;3T*T-2|x?, and, in view of (4.11) and (4.12),
we obtain

'= / Eexp{—Ne, tT*T|x*/2} dv < ((N) T 2'T7
[x[<1

hence proving (4.10) and the Lemma. [J

5. Technical Lemmas

The following symmetrization inequality (see Bentkus and Gotze 1996,
Lemma 3.1) improves an inequality due to Gotze (1979).

Lemma 5.1. Let L,C € R?. Let Z,U,V and W denote independent random
vectors taking values in R?. Denote by
P(x) = (Qx,x) + (L,x) + C, forxeRY
a real-valued polynomial of second order. Then
AEe{tP(Z+ U+ V + W)}< Ee{2t(QZ,U)} + Ee{2((QZ, V)} .

We shall need the following auxiliary bound for the convergence rate in the
CLT in finite dimensional and Hilbert spaces for expectations of smooth
functions.



Uniform rates of convergence for quadratic forms 397

Lemma 5.2. Assume that X is symmetric. Let a function ¢ : RY — R be four
times Frechet differentiable. Then there exists an absolute constant ¢ such that

[Ep(Sy) — E@(G)| < ¢fN~" sup [l (x)]| -

xeR?

Proof. For the sake of completeness we include a sketch of the proof. Write

W,=N""2X, 4+ +X 1+ Gy +-+Gy) .
Then
[Ep(Sy) — E@(G)| <81 + -+ +dy
where, by Taylor expansions in powers of X;/v/N and G;/v/N,

8; = |E(W; + X;/VN) — Eo(W; + G;/VN)| < N ElX[|* suplo@ (x)] -

xeR?
]

Lemma 5.3. Let 6 > 0. Assume that X is symmetric. Then there exists an
absolute positive constant ¢ such that the condition A (2p, 9, , G) implies the
condition N(p,28,%,S), for m > cB/(pd*).

Proof. We shall apply Lemma 5.2. Let e € RY. Write p, = P{|G —e| < d}. It
is sufficient to show that there exists an absolute constant ¢ such that
2P{|S,, —e| <26} > p., form > cB/(p.dt) . (5.1)

Consider a function ¢ : R — R with infinitely many bounded derivatives
such that

0<op<l1, okx)=1, forx| <1, o¢kx)=0, for |x| >2 .
Applying Lemma 5.2 we have

2P{|S, —e| <20} > 2E¢ (Smé_ e) > 2E¢q <¥) — em o7
> 2p€ —Pe = Pe
for m > ¢f/(p.6*), thus proving (5.1). [

Lemma 5.4. Assume that 0 <4¢ <6< 1. Let e € RY, le| =1 be an eigen-
vector of the covariance operator C = cov G, so that Ce = 6,e with some
6. >0. Then the probability p,=P{lec'G—e| <3} satisfies p.>
exp{—ca*e2a,2} with some positive absolute constant c.

Proof. Introduce the Gaussian random vectors G — (G, e)e and (G, e)e. These
vectors are independent since e is an eigenvector of €C = cov G. We have

pe > Plea™'|G — (G, e)e| + |eo7 (G, e)e —e| <5} > pips



398 V. Bentkus, F. Gotze

where

=P{eo |G- (G,e)e| <5/2} and pr =P{|ec (G, e)e —e| <5/2} .
Using Chebyshev’s inequality and ¢> = E(G, e)?, we have

p=1-Plec7!|G— (G,ee| > §/2} > 1 — 42526 2E|G — (G, e)e|’

1 — 46257267 2E|G)” > 1 — 42672 > 1/2

provided that 4¢ < 6.

We can write p, = P{|ec"'o.n — 1| < 5/2}, where 5 is a standard
Gaussian random variable. Using ¢ > a,, 6 > 4¢ and 6 < 1, and replacing

the standard normal density by its minimal value in the interval [0, o/ (¢0.)],
we obtain

pp>P{1-6/2<e0 o < 1} > crexp{—0d®/(26%30)}
>exp{—ca’/(£02)} . O

Lemma 5.5. Assume lhat Q= ]I The collectlons of eigenvalues (counting their

multiplicities) of (QC)*, (CQ)* and D% \/Q(E Cy/QCQ are equal. Fur-
thermore, the eigenvalues 0] > 03 > ... of (CQ)* satisfy

Z@j < 0'%0'2, 0, <o . (5.2)
j>1
If the condition B(S,,C) (see (1.4)) is fulfilled then s < 05 and 7, < oy.

Proof. For any bounded linear operators A,B: RY — R? such that A > 0,
the collections of non-zero eigenvalues of AIB, BA and VABVA coincide
(for a proof of this simple fact see Vakhania 1981, or Lemma 2.3 in Bentkus
1984). Hence, all operators mentioned in the Lemma have the same sets of
eigenvalues.

Let us prove (5.2). For any e € R? we have

(De, e) < 07 (1/QCQe, /QCQe) = 63 (CQe, Qe) .

Therefore, for any orthonormal basis {e;} of R? we obtain

Z Hj = Z{]Dej,ej> < O'% Z(Cer, Qej) = 0'%0'2

Jz1 J=1 J=1

since {Qe;} is again an orthonormal basis of RY. ]

Lemma 5.6. Assume that Q* = . The characteristic functions
u(t) = Ee{t{QG1,Ga)},  Fo(t) = Ee{tQ[G — a]}
satisfy

Fo()]* < u(4t/3), ult f[ +01)72 (5.3)
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Proof. Writing GZ (G, + Gy + G3)/+/3 and applying the symmetrization
Lemma 5.1, we derive the inequality in (5.3). Clearly

u(t) = Eexp{—#*(CQG, QG)/2} = Eexp{—t2|W|2/2)} ,

where W denotes a centered Gaussian vector such that cov W =
VOCQC/QCQ. By Lemma 5.5, the operators cov W and (CQ)* have the
same eigenvalues 04 and we can write W < Z, | Jgjej, where {g;} denotes a
sequence of i.i.d. standard normal variables and {e;} is an orthonormal basis
of R4 correspondmg to the eigenvalues 0 of cov W. Consequently,

u(t) = H = lEe><p{—t294 /2} and simple calculatlons complete the proof
of 5.3). O

Lemma 5.7. Let Q* = 1l and ¢ < oo. Then the Edgeworth corrections Fy and
WY (see (1.2) and (1.19)) are functions of bounded variation provided that s > 9.
If pz < 0o and s > 9 then Fy and Y| are functions of bounded variation as well.
Furthermore, assuming o = 1 and s > 1, we have

sup |WS (x)| < 0;5(1 +|af’) , (5.4)
sup [ (x) — W5 ()| < 0;°(1 + |a*)IT5 (5.5)

and, for any t. > ¢/N, where ¢ is an absolute positive constant,

Proof. We shall consider the case of functions ¥; and W{ only since
Fi(x) =Y (xN) and F(x) =WP]{(xN) (see (3.7)). Assuming ¢ =1, using
splittings of G into independent components and the conditioning and
symmetrization techniques of Section 9, we obtain

~0 dt )
/|> F1(0)] 77 <s APENY P+ (a0 (5.6)
1>t

[F1(0)] < (NVEXPN 2 JuleN) (1 + |iV]) (1 + Jal) (5.7)
with the functlon u defined in Lemma 5.6. A similar bound with E|X°|
instead of E|X|* holds for |‘P1( )| Lemma 5.6 implies u(¢) <, 0, > ||~ since

1>60; >0, >...Thus, both ‘I’1 and ‘i’] are integrable provided that s > 9,
and WY and ‘Pl have bounded variations.

Estlmatmg E|X°|* < /N and using a bound of type (5.7) for |‘I’l( )], W
obtain

W, (0)] <, (tIN)>(1+ [N (1 + |a’) (1 + 6 AN /4 (5.8)

whence, using the Fourier inversion formula (3.2), we obtain (5.4).
To prove (5.5) and (5.6) we use again the Fourier inversion formula (3.2),
estimates of type (5.7), (5.8), 0 = 1 and

X=X°4+X, EX|=VNI; N2EXP <AV,
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6. Discretization of expectations

Assume that the symmetrization X of a random vector X € IR? satisfies

P{E e[ <o} >p, (6.1)
forsome 0 >0,0<p <1 and e € R%.
Recall that ¢j,¢;,... denote i.i.d symmetric Rademacher random vari-
ables.
Throughout this Section we assume that & = {e;,..., e} C R? is an

arbitrary finite subset such that card ¥ =s. Recall that a discrete random
vector U € RY belongs to the class T'(3.%), § >0, if U is distributed as
€121 4+ -+ + &z, with some (non-random) zj,...,z; € R? such that
|z; —e;| <9, forall 1 <j<s.

For a bounded and measurable function H: IRY — B with values in a
Banach space (B, |- |g), define the norm |H|_ = sup,|H (x)|g-

Let H,: R? — B denote a family of bounded functions indexed by r € R
such that the functions (¢,x)+— H,(x) and ¢— |H,|, are measurable. In
Lemmas 6.1 and 6.2 we shall apply the discretization procedure to |[EH (Zy)|
and [ |EH,(Zy)|dt, where we write [ = [i.

In Lemma 6.1 we write n = [pN/2] and T = U; + - - - + U, where U, are
independent random vectors of class I'(d,{e}), that is U; = ¢;z;, for some
non-random z; such that |z; — e| < 9.

Lemma 6.1. Assume that X satisfies (6.1). Let W € R? denote a random vector
independent of Zy. Then, for any y > 0, we have

/|EHt(ZZN W) de < T+ c,(pN)~ / \H,|.. dt (6.2)
with
I = sup sup /\EH,(T—i— W+b)|dt,
[ perd
where supr denotes the supremum over all £(U,), ..., £ (U,) € T'(0,{e}) such
that T is independent of W.

Proof. Replacing H, by the function x+— EyH,(x + W), we can assume that
W = 0. Furthermore, we can assume that pN > ¢ with a sufficiently large
absolute constant ¢ since otherwise (6.2) follows from the trivial estimate
EH,(2Zy + )| < |H|...

Let oy, 05, ... be a sequence of i.i.d random variables, independent of all
other random variables and vectors and such that
P{o; =0} =P{oy =1} =1/2 .
Then the sum

Ve=> (X + (1 —0)X))

-

1

J
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has the same distribution as Zy (recall that X denotes an independent copy of
X). Notice that the random variables ¢, &,... defined by ¢ = 20; — 1 are
1.i.d symmetric Rademacher random variables. Introduce the sum V* =
aXi+ -+ enXn. Using the relation o; = L—z’ + %, we may write V* =
Ve 4+ b, for some b = by(Xi,...,Xy), which is independent of &,...,ey.
Conditioning we have (recall that we assumed that W = 0)

/\EH,(zzN)\dth/Wm, where W = EH,(V°+b) | (6.3)

and where E, denotes the partial integration with respect to the distribution
of E1,82,. ..
Introduce the independent events

={lX;—e| <5}, 1=12,....

Notice that p’ &ef P{A4(/)} > p by the assumption (see (6.1)). Consider the
event

/

PN

By = {at least of events A(1),...,4(N) occur } ,

and introduce Bernoulli random variables &, = 1{4(/)}. For the complement
BS; of the event By, we have

P{By} =1-P{By} <, (pN)’, foranyy >0 . (6.4)

Let us prove (6.4). We can assume that y > 1. Write n; = ¢; — E¢; and notice
that E|171| <, E\él| =p. Using p’N > pN > c, Chebyshev s inequality
and Rosenthal’s type inequality (1.24), we obtain

/

N L
Py} = P{51 oy <pT} < (PIN) VB + -+ oyl

< (PN) 7 (NE P + (VER)') <, (9N)7

whence (6.4) follows since p' > p.
Consequently, (6.4) yields

E/|1//|dt§cy(pN)7V/|H,|oo dt+EI{BN}/]¢]dt :

and it remains to show that

I{By} [ |W|dt < sup sup /\EHI(T+b)|dt (6.5)

beR?

since (6.3) holds. If the event By does not occur, then I{By} = 0, and (6.5) is
fulfilled. If By occurs then at least pN/2 of events A(l) occur, say
A(L), ... ,A(l,) with some a > pN/2 > n. Reorder the random variables
eX;, 1 <1<N,so that A(1),...,A(a) occur. Then we may write

I{BN}/IWIdt=I{BN}/|E8H,(sl)?1 ot elXg+b+by)|dt (6.6)
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with some b; independent of &1, ...,¢,. Conditioning in (6.6) on ¢; such that
n < [ < a, we obtain

I{By} [ |Y|dt < sup I{By} /|E,;IW__’,;”[‘],(81X1 + 4 g, X, +b)| dt
beR?

whence (6.5) follows. []

The next Lemma 6.2 allows to replace sums of independent random
vectors by sums of discrete bounded random vectors of a very special type.

Lemma 6.2. Let Q* = 1. Assume N (p,d,.%,X). Let n = [pN /(5s)]. Then, for
any y > 0, we have

/ EH,(2Zy + b)|di < I + ¢,(s) (pN) ! / \H| dt (6.7)
with
I = sup sup /|EH,(Y+QY’+b)|dt ,
' peRr?
and
|EH(2Zy + b)| < ¢,(s)(pN) " |H|,, + sup sup [EH(Y + QY' +b)| , (6.8)

beR?

where Y = U, +---+ U, and Y' = U{ + - - - + U/ denote sums of independent
(non-i.i.d.!) vectors, and supp is taken over all {Z(U;), X(U;) :
1<j<n}cCI(&9).

Proof. To prove (6.8), it suffices to set H, = HI{0 < ¢ < 1} in (6.7).

It remains to prove (6.7). We shall apply 2s times Lemma 6.1. As in the
proof of Lemma 6.1 we may assume that pN > ¢,, for a sufficiently large
constant c;.

Let »=[N/(2s)] and m = [pr/2]. Notice that m > n since pN > ¢, is
sufficiently large.

Introducing i.i.d random vectors V; such that their common distribution
is equal to £(X| +--- + X,), and collecting summands in Zy in groups, we
may write

ZN+b:V1++VZs+b1 )

where b; is independent of 7, 1 < j < 2s. Conditioning on b; we obtain

JY /\EHt (2Zy + b)| dt < sup /|EHt (Vi + -+ 2V + b)|di . (6.9)
beR?

Write W =2V, +---+ 2V +b. Then 2V +---+ 2V +b =2V, + W. To

estimate the right hand side of (6.9) we can apply Lemma 6.1 replacing in

that Lemma Zy by Vj, N by r, n by m and e by e;. The condition

N(p,d6,%,X) with & = {ey,...,e} guarantees that P{|X —e | <} > p.

Thus, using N < r <, N we get

J < ch,(s)(pN)fy/ |H;|, dt + sup sup /|EH, VW +b )| dt . (6.10)
' perd
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where T( is a sum of m = [pr/2] independent random vectors of the class
I'(6,{e1}). Introducing i.i.d. Rademacher random variables ¢, we can write

m

1 .

>: E €1jZ1j, with ‘le—el|§(5 .
J=1

Splitting W = V5 + W’ with W' = V5 + - -+ + V3, to the last integral in (6.10)
we can apply the procedure leading from (6.9) to (6.10) with V5 instead of ;.

Now we can repeat the procedure with 13, - - V5,. We obtain
J < ¢,(s)(pN)""|H,|, + sup sup /|EH, -+ T 4 b)|dr (6.11)
I peRr

with 7®) = 3% | gz such that
|21 —er| <6, for 1 <k<s, |zy—Qé|<d, fors+1<k<2s.

Reordering the summands we can write

7 4 ... ZZ}“"/Z"J ZU], with U; = i:skakj. (6.12)
k=1

Define z}(j = Qz;. Since Q2 =1, we have z;; = Qzﬁcj. Furthermore, the in-
equality [zx; — Qex| < 6 is equivalent to |z, — x| < 0. Thus, we can write

TOH) 4o 4 7@ = Z Z e Qz),; = Z Uj, with Uj = Z ekt -
= =1

(6.13)

The relations (6.11)—(6.13) together imply (6.7) with m > n instead of n. But
we can remove all summands Uj, Uj’ with n < j < m conditioning on them.

O

Lemma 6.2 allows to bound the following integrals over the characteristic
functions.
Corollary 6.3. Let Q> =1. Assume N (p,d,,X). Write n= [pN/(5s)].
Then, for any 0 < A < B and y > 0, we have

dt . B
| I eti@lzy—a)l <1+ e 6)N) Tlog] |
A<|f|<B lt] A
with
dt e ,
I = sup sup Vo4 =, o(t) € [Ee(iQ[Y + QY + 5]}’
I' peR? JA<|t|<B \f|

where Y = U, +---+ U, and Y' = U| + - - - + U, denote sums of independent
(non-i.i.d.l) vectors, and supp is taken over all {Z(U;), Z(Uj):1<j
<n} CT(5;9).

Proof. 1t is sufficient to choose H,(x) = |f| '1{4 < |¢| < B}E e{tQ[x]/4} in
(6.7) of Lemma 6.2. []



404 V. Bentkus, F. Gotze
7. Bounds for characteristic functions

The main result of the Section is the following Theorem 7.1, which is valid
without any moment assumptions.

Theorem 7.1. Assume that Q* = 1 and that the condition N (p, 9, S 4, X) holds
with some 0 < p <1 and 0 < 6 < 1/(5s). Then

|E e{tQ[Zy — a]}| <5 4°(t;pN) ,
where the function M is defined by (1.16).

Corollary 7.2. Assume that Q* =1 and that the condition N (p,d,S,,G)
holds with some 0 < p <1 and 0 < < 1/(10s). Then

|E e{tQ[Zy — a]}| < (1 + ") M*(tmo; pN /mo), mo = B/p .

Proof of Corollary 7.2. The proof can be reduced to collecting summands in
the sum Zy in groups of size, say m. By Lemma 5.3, a normalized sum, say Y,
of m independent copies of X satisfies the condition ./'(p/2,28,%,,Y)
provided that m ~ f/(pd*), and therefore we can apply Theorem 7.1.  []

To prove Theorem 7.1 we need the auxiliary Lemmas 7.3 and 7.4.
Lemma 7.3 is a initial step for an application of the double large sieve in
Lemma 7.4. In Section 8 we shall extend the methods of this Section for the
proof of the multiplicative inequality.

In the proof of the next Lemma we shall combine discretization tech-
niques (see Lemma 6.2) with symmetrization arguments (see Lemma 5.1).
An application of the geometric-arithmetic mean inequality will then reduce
the problem to the i.i.d case.

Lemma 7.3. Assume that ©° =1 and that the condition N (p, 6,9 X ) holds
with some 0 < p <1 and 6 > 0. Write n = [pN/(11s)]. Then

[Ee{rQ[Zy — a]}| < c;(y)(pN) ™" + sup \/E e{t(W,)/2} (7.1)

where W =V +---+V,and W = V] + --- + V| denote independent sums of
independent copies of random vectors V and V' respectively, and the supremum
supr is taken over all L(V), L(V') € I'(6;5).

Proof. While proving (7.1) we can assume that pN > ¢; with a sufficiently
large constant ¢y, since otherwise (7.1) is trivially fulfilled.
Write H(x) = e{tQ[x]/4} and b = —2a. Then

[Ec{iQ[Zy — al}| = |[EH (22 +b)| ,
and the inequality (6.8) of Lemma 6.2 implies

E e{1Q[Zy — al}| < c,(s)(pN) |H]. + sup sup |[EH(Y + Q' + b)|
I per?

= ¢;(s)(pN) ™7 + sup sup || (7.2)
I per?
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with ¢ =: E e{tQ[Y + QY' + b]/4}, where
Y=U+-+U and Y =U +---+U, k=I[pN/(5)] .

denote independent sums of independent non-i.i.d. vectors, and supy is taken
over all {Z(U;), Z(U;) : 1 <j <k} CI(6;%).
In the view of (7.2), it remains to show that

p|> < supE e{t(W, W’>/2} . (7.3)
r

We shall apply the symmetrization Lemma 5.1. Split ¥ =7+ 77 and
Y+®b=R+R|+R, into sums of independent sums of independent
summands so that each of the sums 7, R and R, contains n = [pN/(11s)]
independent summands U; and UJ( respectively. Such an n exists since
PN > ¢, with a sufficiently large ¢,. The symmetrization Lemma 5.1 and
symmetry of @ imply

2/p|* < Ee{t(T,Q*R)/2} + E e{t(T,Q*Ry)/2} .
Recall that Q> = II. Furthermore,
supE e{#(T,R)} = supE e{t(T,R))} .
r r
Thus,
lp|> < supE e{t(T,R)/2} .
r

Applying the geometric-arithmetic mean inequality we have

Ee{(T,R)/2} =E H Ey e{t(U;,R)/2}
j=1

1 L n
<13 E(Bye{dl0).8)/2))
=1
< sup E(E; e{f<l7a1§>/2})n
L(V)eT(5,7)

= sup Ee{t(W,R)/2} . (7.4)
L(V)er(6,%)

Arguing as in (7.4), we replace R by W' in the last expectation, which con-
cludes the proof of (7.3). [

Recall that %, = {ey,...,e;} C R? denotes an orthonormal system.

Lemma 7.4. Assume that 6 < 1/(5s). Let W=Vi+---+V, and W =
V] + -+ V] denote independent sums of independent copies of some random
vectors V and V' such that (V), L (V') € T(6;%,). Then

Ee{t(W, VV’>} < M>(t:n), forieR . (7.5)
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Proof. The Lemma casily follows from Lemma 4.7. Indeed, we can write
V=tizi+  +e&z, V=08zZ+  +&Z
with some z;, 2, € R such that

lzj —ejl <6, |£—ef <0, for1<j<s. (7.6)

Consider the random vector ¥ = (&j,..., &) € IR® with coordinates which are
symmetrizations of ii.d. Rademacher random variables. Obviously,
P{]Y| <2/s} =1, and cov Y = 21, where I is the unity matrix. Let R and T
denote independent sums of » independent copies of Y. Introduce the matrix
A ={a;:1<ij<s} with a;=(z,2;). Then we can write W, W'y =
(AR, T).

In order to estimate the characteristic function of (AR, T), we shall apply
Lemma 4.7, replacing d by s, N by n, U by R, and V by T. Since ¥, is an
orthonormal system, the inequalities (7.6) imply that A = Il + IB with some
matrix B = {b;} such that |b;| <25+ > Thus we have |[B|< |B|, <
259 + 56, where |B|, denotes the Hilbert-Schmidt norm of the matrix IB.
Therefore the condition 6 < 1/(5s) implies |B| < 1/2. Consequently,
|A~!| < 2. Thus, all conditions of Lemma 4.7 are fulfilled, and (7.5) follows.

]

Proof of Theorem 7.1. We shall assume that pN > ¢, with a sufficiently large
constant ¢y, since otherwise the trivial inequality |E e{tQ[Zy —a]}| <1
combined with

inf.4* (5 pN) = ( pN) (7.7)

implies the result.
Let us apply Lemma 7.3 and Lemma 7.4 with n = [pN/(11s)]. We have
[Ee{1Q[Zy — al}| < (pN) ™" + A" (t/25n) .

By (1.17), #°(t/2;n) <, 4*(¢t;pN). Using (7.7) and choosing y = s/4, we
have (pN) ™7 < .4°(t;pN), which completes the proof of the Theorem. []

8. The multiplicative inequality

The main result of this section is the multiplicative inequality of Lemma 8.1
for characteristic functions of discrete random vectors. Combined with the
discretization technique described in Section 5, the multiplicative inequality

can be applied to bound integrals over general characteristic functions.
Introduce the independent sums

Y, = ny, Y,;:ZU;, L), £(U) €T(8F,), for 1< j<n,
J= J=

(8.1)
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of independent (non-identically distributed!) random vectors. Write
0) = [Ee{rQ[Y, + QY + b}, beR?.
Lemma 8.1. Assume that 0 < 6 < 1/(5s) and Q* = 1. Then we have

0, ()@ (t+ 1) <5 M*(t;n), fort,t€R . (8.2)

Proof. For an alternative proof of (8.2) see Bentkus and G6tze (1995b).
In the proof we may assume that n > 2 since otherwise (8.2) is trivially
fulfilled. We shall prove that

0,(t—1),(t+1) < M*(t;n), fort,teR . (8.3)

This estimate implies (8.2). Indeed, it suffices to put t = s+ 7 in (8.3) and to
use the estimate .4 (t;n) <, .4*(2t;n), which can be easily verified using
(L.17).

Notice that

QK] - QY] = (Qx+y),x—y), 2Qx] +2Q)] = Q[x+y]+ Q-] .
(8.4)
For an arbitrary random vector &, let & denote an independent copy of &.
Writing
= [Ee{rQ[¢ + 51} |
using 0(¢) = 0(—¢) and applying (8.4), we have

0(t+1)0(t — 1) = [Ee{(t + 1)Q[¢ + b] — (t — 1)Q[E + b}
= |Ee{rQ[¢ + b] — tQ[E + b] + tQ[¢ + b] + tQ[E + ]} |
= |Ee{t(Q¢ + Q& +2Qb, & — &) + Q[+ E+20] + L Q¢ - &} .
We shall use (8.5) with & =Y, + QY,. Let ¢, &, & Jo 121, denote 1i.i.d.

Rademacher random variables, which are independent in aggregate. The
random vectors ¥, and Y, are sums of U; and Uf and using (8.1) we can write

é =Y, +QY;/: ZZCJIZJI +Q Z Zsjlzjl )

Jj=n+1 I=1

where z;; denote non-random vectors in R¢ such that |z —e;| <6, for all
possible values of j and /. Consequently, we can write

é+£ ZZS/I+EJIZJI+QZigjl"_s/lz/l7

Jj=n+1 I=1

5 é ZZ(/Z Fjlzjl+QZZFjl F]lZ]l~

j=n+1 I=
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Note that the 2-dimensional random vectors
(e+&e—¢) and ((1+e8)e,e—g) (8.6)

have the same distribution provided that ¢, ¢,¢* are i.i.d. Rademacher ran-
dom variables.

By (8.6), the joint distribution of ¢ + & and & — & does not change, if we
replace ¢ + & by

def
E E 1+8118]1 lej[+Q E E +8J18j1 jlzjl .
j=1 1= j=n+1 I=

Thus, denoting by E. the partial integration with respect to the dlstrlbutlons
of the random variables ¢j;, using (8.5) and an inequality of type |[EX 2 <
E |X|*, we have

0,1+ )01~ 7) < E|E. @ + 206, &) + 5Qfn +25] + 301 - 8}
= E[E. e{t(Qn, & — &) +5Qln + 28]} (8.7)

since ¢ — ¢ and & 1> Jo1 > 1, are independent. Write

n 2n K
N=P,+QP, P,=Y V., P=3 => (U +eu)ezn -
j=1 j=n+l =1

Given ¢j;, ¢, the random vectors ¥V}, 1 <j < 2n, are independent. Split
P, =T+ T and P, = R+ R| + R, so that each of the sums 7, R, R; contains
k = [n/2] summands V;. By an application of the symmetrization Lemma 5.1

(cf. the proof of (7.3)), we obtain
&= &) +5Qln+ 25} < E.ofe(T.R)} + E.oft(T.R1)} (8.8)

since @ = II. Similarly to the proof of (7.3), we have
supEE e{t(T,R)} —supEE e{t(T,R)} ,

and (8.7) together with (8.8) yields
¢, (t+1)p,(t —1) <supEe{t(T,R)} , (8.9)
r

where T =Wy + -+ + Vi, R = Vit + - - - + Vo with

Vi = E, + &j18j1)e 121!7

and where supr is taken over all z;; such that |z; — e;| < 0, for all possible
values of j and /. The random variable ¢¢ is distributed as ¢. Thus, replacing
the random variables ¢;,€;; and &}, by jointly independent copies, say ¢; and

£;, we may assume that I7j =3 (L +e1)ézj.
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By an application of the geometric-arithmetic inequality (cf. (7.4) in the
proof of (7.3)), we obtain

supEe{t(T,R)} <supEe{t(W, W'} , (8.10)
r r

where W (resp., W) is a sum of k = [1n/2] independent copies of

U= Z(l + &1)&1z; (resp., of U = Z(l + 81)512’1> ,
=

[
and supr is taken over all z;,z; such that
lz1—e| <0, |Zh—e] <o, for 1<;j<s.

In order to bound Ee{z(7, W')}, we can apply a modification of Lemma 7.4
(it suffices in the proof of that Lemma just to replace the random vector
Y = (&,...,&) by the random vector ((1 +¢1)é;,..., (1 + &)&). We obtain
(recall that k = [n/2])

Ee{t(W, W} < M*(t;k) <5 M*(t;n) . (8.11)
The estimates (8.9)—(8.11) together imply (8.3). [

9. Expansions of characteristic functions

In this Section we shall obtain bounds for
An(t) = ®(1) — Po(1) — V1 (1) |

where ¥ and ¥, are defined by (1.18) and (1.19).
Throughout we shall assume that EX = EG =0 and covX = covG.
Recall that we write

b=N'"%a, B, =EIX], B=Ps =P Zv=Xi+ +Xy .

We shall denote as well D = t@ and Uy = G; + - - - + Gy. Since \/]VGg Uy,
we can write

~

B(1) = Ee{D[Zy — b}, Pot) = Ee{D[Uy — 8]}

~ 1 4i 3
Y (t) = ———=E( = (NDY, X 2(NDY, X)ND[X ND|Y
(0= = = VY3 2VDY X)X )e(NIY)
where ¥ = G — a. We shall use the upper bound » = »(t; N, £ (X)) + »(t; N,
Z(G)) (cf. (3.23)), where
w(t;N, Z(X)) = sup [Ee{D[Z] +{a,Z)}], k=[N -2)/14] .
aclR

We start with Lemma 9.1 since its proof is simpler than the proof of the main
Lemma 9.2. Here we shall discuss standard technical steps which will be used
in the proofs of Lemmas 9.2 and 9.3. In order to remove lower order terms,
we shall use frequently without mentioning simple inequalities like [3% < po?
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(a consequence of Holder’s inequality), x*y" <, x**7 + y*™7, forx,y, o, 7> 0,
as well as 1 +x* < 1 +x7 with o < 9.

Lemma 9.1. Assume that o =1, Q> =1 and E(X,x)> =0, for all x e RY.
Then Ay(t) =Y(¢t) — Yo(t) and we have

[Av ()] < #BAN(1+ 2N?) (1 + B/N)(1 + [a*) .
Proof. For arbitrary ID : RY — IR? we shall prove that

|Ay (1) < »N|D[*B(|b|* + N + N?6*) + uN|D*p (9.1)
with o2 = E|X]*. Setting
c=1, |D|=sup|Dx|<[t|, b=+Na
|x|=1

in (9.1), we obtain the result of the Lemma.
We start with the following Bergstrém type identity:

N
Av(t) = ¥(1) = Po(1) = Ee{D[Zy — b]}—Ee{D[Uy — b]} = Ui ,
k=1

where J; = Ee{ID[T + X|} — E¢{ID[T + G]}. Here we used the notation:
T=G+ - +G+Xpp1+--+Xnv—b .
In order to obtain (9.1), it suffices to prove that
Vi < #/D[*B(|b* + NB + N?c*) + »D[*p . (9.2)
Writing D[ + u] = D[T] 4 2(IDT,u) + D[u] and expanding in powers of
D[u] with u = X and u = G respectively, we obtain J; = Iy + I; + R, where
I, = E(iD[X])" e{D[T] + 2(DT,X)} — E(iD[G])" e{D[T] + 2(DDT,G)} ,

and |R,| < |ID]*x. Thus, to conclude the proof of (9.2) it suffices to show
that |Iy| and |I;| are bounded from above by the right hand side of (9.2).
Let us estimate |Iy|. Let © be a random variable uniformly distributed in
[0, 1] and independent of all other random variables and vectors. Expanding
in powers of 2(IDT, u) with u = X and u = G, we obtain Iy = Ly — Lg, where

Ly =3E(1 — 1)(DT,2)* e{D[T] + 2¢(DT, Z)} .
In this expansion lower order terms cancel since the expectation and the

covariance of X are equal to those of G, and since E(X,x)* = E(G,x), for all

x € R? In order to estimate Lz split the sum 7 = st.:l T; into five sums
containing an approximately equal number of summands X; or G;, and in-
clude the shift 5 in one of these sums. Then

ILy| < i L, L*:E(l—r)3ﬁ(l])7},,,2>e{l])[T]+2r(1DT,Z)}

J1d2:J3:/4=1 r=1
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Note that {}i, j2,/3,/4} is a proper subset of {1,...,5}. Thus, without loss of
generality we may assume that jj, j», j3,js4 are different from j = 5. Condi-
tioning on the random vectors with the indices present in L*, we have

1 < B] D7, 2| [Er e{DIT] + 26(DT, 2)}|
r=I1

The expectation |Er; ...| is bounded from above by x. The product can be

estimated using the arithmetic-geometric mean inequality, and it is bounded

by a sum of terms E|<1D7},Z)|4. Applying Rosenthal’s inequality we have
E[(D7;,7)['< IDI'EIT;|121* < clDI*B(bI* + NB + N*83) .

Collecting the bounds we see that |[j| is bounded by the right-hand side of
9.2).

The estimation of |/,] is similar to that of |/j|. Here we should expand in
powers of 2(IDT,Z) in a shorter series. We arrive at moments of type
E|D[Z]| |<]DTj,Z>|2. Using ab < a*> + b?, we obtain that these moments are
bounded from above by a sum of E[ID[Z]|* and E|(DDT;, Z)[*. But these in turn
are bounded from above by the right-hand side of (9.2), as already shown in
the estimation of |lj]. [

Lemma 9.2. Assume that ¢ = 1 and Q*> = 1. Then we have

Ay (1)] < %BEN(1 + AN (1 + Bo/N>)(1 + |al®)
Proof. For arbitrary D : R? — IR? and ¢ we shall prove that

[Av(e)] < N#DPB(1 + DPIbI* + DI (V2 + N0 + No?lb[)) .
9.3)

Setting ¢ = 1, |D| < [¢| and b = v/Na in (9.3), we obtain the result of the
Lemma.
It is easy to notice that the following Bergstrom type identity holds:

Av(t) = P(t) — Po(t) — 91 (1) = Ee{ID[Zy — b]} — Ee{DD[Uy — b]} — ¥,(¢)
ZNJ—\/I}l(I)—FXN:(/{—1)(J1—J2—J3 +J4) . (9.4)
k=2

Here we used the notation:

J=Ee{D[S+X]} ~Ee{D[S+G]}, S=G +-+Gy—b,
Ji=Ee{D[T+X +X]}, Jo=Ee{D[T+G+X]},
J;=Ee{D[T +X +Gl}, Ja=Ee{D[T+G+Gl},

and T=Gs+ -+ G+ Xp1 + -+ Xy — .

In the view of (9.4), the relation (9.3) follows provided that we verify that
J =N""¥(¢) + Ry with
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[Ro| < «DPB(1+ N DPo* + Dl (9.5)
and that
|J1 —hHh - +J4|
< %D’ + %|D|*B(B + No* + |b]*?)
+u|D|° (N Bs + N3a® + [b]°) . (9.6)

Let us prove (9.5). Taylor expansions in powers of D[u] and 2(IDS, u) with
u =X and u = G combined with the techniques used in the proof of Lem-
ma 9.1 give

J=Jy+Ri, Jo déf—%E(]DS,Xf e{ID[S]} — 2E(DS, X)D[X]e{D[S]}

9.7)

with some R; bounded similarly as Ry in (9.5). To complete the proof of (9.5)

it suffices to replace S in (9.7) by S + G, Z /NG — b. This can be done using
again Taylor expansions in powers of (IDG|,X) and ID[G|]. A remainder

term, say R,, of such a replacement is bgunded similarly as Ry in (9.5).
Therefore the remark that Gy +--- + GNi\/]VG concludes the proof of

(9.5).
Thus, in order to complete the proof of the Lemma, it remains to prove
(9.6). Writing

D[T + u+v] = D[T] + K(u) + K(v) + 2(Du,v), K(u) L D] +2(DT,u) |

expanding in powers of 2(Du,v) and applying the conditioning techniques
used in the proof of Lemma 9.1, we obtain

Js:J¥0+Jsl+271J52+RS; ISSS“' 5
where, for example,
Jir = E(i(DX, X)) e{D[TILX)L(X), L(u) = e{Kw)}
for 0 <r <2, and
IR,| < x|DPB2, forall 1<s<35 .
Thus
i —Ja —J3 4+ Ja| < lo| + || + || + ex|DP B3, (9.8)
where
L =Jy —Jor — I3 + Ja, 0<r<2.

The estimate (9.8) shows that in order to prove (9.6) it suffices to verify that,
forr=0,1,2,

1. < #DI°B(BI° + NBg + N'6®) + %D (|6 + No*) +#|D[*F* . (9.9)
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Let us prove (9.9) for [j. It is easy to see that
Io = Ee{D[T]}(Ex L(X) — E¢ L(G))(ExL(X) — EGL(G)) .  (9.10)

where L(u) = e{K(u)}. Using Taylor expansions of the function x — e{x}, let
us represent the differences in (9.10) as sums of terms of thir((ii or fourth order
inu = X, X, G,G. More precisely, expanding in powers of y = ID[u], we have

L(u) = e{x} +iye{x} — E.(1 — 1)y* e{ty + x}, xdéf2<1DT7 uy . (9.11)

Expanding now e{x} in powers of x with a remainder (/(x*) for the first
summand in the right hand side of (9.11), and with a remainder O(x) for the
second summand, we obtain a representation of L(u) as a sum of terms up to
fourth order in u. Using this representation of L(u) we obtain the desired
representation for the difference ExL(X) — EGL(G) in (9.10); notice that in
this representation terms of order two and less cancel since X and G have the
same covariances and expectations. A similar representation is valid for the
second difference EgL(X) — E;L(G) in (9.10). Multiplying the representa-
tions of the differences term-wise, applying splitting techniques similar to the
proof of Lemma 9.1, and using Rosenthal’s inequality we derive (9.9) for I;.

Let us prove (9.9) for I;. Tt is easy to see that [} = iJ(X) — iJ(G), where
J(u) = Ee{D[T}E,L(w) (Ex (DX, 0)L(X) — E(DG,w)L(G)) . (9.12)

Using the equality of means and covariances of X,X,G, G we can replace
L(u) in (9.12) by L(ug —1—2i(DT,u). By Taylor expansions L(u)— 1—
2i(IDT,u) = O((IDT,u)” + D[u]). Similarly

Ex (DX, u)L(X) — Eg(DG, u)L(G) = O((DX,u) (DT, u)> + Du]) .

Thus we can proceed as in the estimation of /j, and to obtain (9.9) for I;.
The proof of (9.9) for I, is somewhat simpler than the proof for /;, so we
omit it. [

For 0 < k < N define
PO 1) = Ee{1Q[G: + -+ + Gy + Xy -+ X —al} .
Notice that ¥ (1) = ¥(¢) and PV (1) = Py ().
Lemma 9.3. Assume that ¢ = 1 and Q* = 1. Then we have
[9(0) = PO (0| < w2k(B+ NS+ [INV/NB)(1 + |al’)
Proof. Obviously [®(r) — P® (1) < I, + -+ + I, where
I; = |Ee{rQ[S + X]} —Ec{rQ[S + G]}| ,
Sd:efG1 +o+ G+ X+ Xy —a

An application of splitting and conditioning techniques, combined with
Taylor expansions of the exponents with remainders O((tQ[u])?) and
O((tQS,u)*) with u = X and u = G, conclude the proof. []



414 V. Bentkus, F. Gotze

Define the distributions

N
W) =P{U+ > X, € VNAY, po(4) = P{Uy € VNA} .
J=kt1

For measurable sets 4 C R? define the Edgeworth correction (to the distri-
bution 1) as 1 (4) = (N — k)N=3/2y(4), where the signed measure ¥ is given
by (1.22). Introduce the signed measure v = pu — py — ugk).

Lemma 9.4. Assume that d < oo and 1 < k < N. Then,

B ﬁ(d+7)/2N(d+3)/2

oy sup [v(4)] <q4 +

— 9.13
AcR? ojN ( )

Jed 5 2414
An outline of the proof. (cf. the proof of Lemma 2.5 in Bentkus and G&tze
1996). Assuming that cov.X = cov G = II, we shall prove that

ﬁ ﬂ(d+7)/2N(d+3)/2

Applying (9.14) to € '/2X and € ?G and estimating |C~'/?| < 1/a4, we
obtain (9.13).

While proving (9.14) we can assume that /N < ¢; and N > 1/c,; with a
sufficiently small positive constant c¢;. Otherwise (9.14) follows from the
trivial bound

m<w+wmm/VWMﬁ<w+me.
IRd

To prove (9.14) we shall apply truncation of X, centering and a correction of
the covariances of Gaussian summands G;, for kK +1 < j < N. Namely, in
(9.14) we can replace X; by X} = X;1{|Xj| gd\{m up to an error §/N. The
centering, that is, a replacement of X by Xj’ = X? — EX°, produces an error
bounded by fi/N. A correction of the covariances of the Gaussian random
vectors yields a similar error. We shall denote the corrected Gaussian ran-
dom vectors by G'.

After such a replacement of X; and G; bej{ and G}, fork+1<;<N,we
can assume that all eigenvalues of cov.X] belong to the interval [1/2, 3/2].
Otherwise a trivial bound f > ¢N implies the result. As a consequence of the
truncation we have

E[Sy[ a1, s>0. (9.15)

Denoting by Z), and U, sums of m independent copies of X’ and G’ res-
pectively, introduce the multidimensional characteristic functions g(¢) =

Ee{(t,G)},
f0=Ee{ "z )b o) = EBe{ (VUL

 N—k

= o2 E(it, X' fo(t), V(0) = (f(1) = folt) = /i()g(et), & =k/N .

fi(0)
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By a slight extension of the proof of Lemma 11.6 in Bhattacharya and Rao
(1986), see as well the proof of Lemma 2.5 in Bentkus and Goétze (1996), we
obtain

Sy <4 max / 075(1) dt . (9.16)
o[ <2d JycRre

In order to derive (9.14) from (9.16), it suffices to prove that, for |«| < 2d,
79(0)] < (1+ [t)g(et/V2d + 1), & =k/N (9.17)
|079(0)| <a BN (1+ [t*) exp{—ci(d)|e*},  for |1 < ex(d)N/B . (9.18)

Indeed, using (9.17) and denoting M = 2d + 10, T = cq/N /B>, cq > 0, we
obtain

/Ia“v(t)Idt<<d / P g(et/V2d + T)dt <4 / o5 M, (9.19)

[t|>T lt|>T [t|>T

and it is easy to see that the last integral in (9.19) is bounded from above by
the second summand in the right hand side of (9.14). In the proof of (9.19) we
used VN/BY? > ¢y >0 and g(1) < exp{—c|t|’} <4 |¢|™. Similarly, using
(9.18), we can integrate |0*v(¢)| over |¢| < T, and the integral is bounded from
above by ¢;f/N.

To prove (9.17) we can write g(et) = g°?*!(et/\/2d + 1) and differentiate
the product. Using (9.15) we obtain (9.17).

One can prove (9.18) using a Bergstrdm type identity similar to (9.4), the
estimates (9.15) and a version of the standard techniques provided in
Bhattacharya and Rao (1986). [
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