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Summary. Let X ;X1;X2; . . . be a sequence of i.i.d. random vectors taking
values in a d-dimensional real linear space Rd . Assume that EX � 0 and that
X is not concentrated in a proper subspace of Rd . Let G denote a mean zero
Gaussian random vector with the same covariance operator as that of X . We
investigate the distributions of non-degenerate quadratic forms Q�SN � of the
normalized sums SN � Nÿ1=2�X1 � � � � � XN � and show that

DN �def sup
x

���PfQ�SN � � xg ÿ PfQ�G� � xg
��� � O�Nÿ1� ;

provided that d � 9 and the fourth moment of X exists. The bound O�Nÿ1� is
optimal and improves, e.g., the well-known bound O�Nÿd=�d�1�� due to Es-
seen (1945). The result extends to the case of random vectors taking values in
a Hilbert space. Furthermore, we provide explicit bounds for DN and for the
concentration function of the random variable Q�SN �.

AMS Subject Classi®cation (1991): Primary 60F05; secondary 62E20

1. Introduction

Let Rd denote the d-dimensional space of real vectors x � �x1; . . . ; xd� with
scalar product h�; �i and norm jxj2 � hx; xi � x21 � � � � � x2d . Since our results
are independent of the dimension (provided d � 9), it will be convenient to
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denote by R1 a real separable Hilbert space. Thus, R1 consists of all real
sequences x � �x1; x2; . . .� such that jxj2 � x21 � x22 � � � � <1.

Let X ;X1;X2; . . . be a sequence of i.i.d. random vectors taking values in
Rd . If EX � 0 and E jX j2 <1, then the sums

SN � Nÿ1=2�X1 � � � � � XN �

converge weakly to a mean zero Gaussian random vector, say G, such that its
covariance operator C � covG : Rd ! Rd is equal to covX .

For a linear symmetric and bounded operator Q : x 7!Qx mapping Rd

into Rd , de®ne the quadratic form Q�x� � hQx; xi. We call Q non-degenerate
if kerQ � f0g, or equivalently, if Q is injective. If d <1, non-degeneracy
means that Q is invertible.

Notice that the distribution of the quadratic form Q�G� may be repre-
sented up to a shift as the distribution of a ®nite (resp. eventually in®nite)
weighted sum of squares of i.i.d. standard Gaussian variables, for d <1
(resp., d � 1).

Write

r2 � b2; bq � E jX jq; for q � 0 :

Theorem 1.1. Let EX � 0. Assume that Q and C are non-degenerate and that
d � 9 or d � 1. Then

sup
x

���P�Q�SN � � x
	ÿ P

�
Q�G� � x

	��� � c�Q;C�b4=N :

The constant c�Q;C� in this bound depends on Q and C only.

Remark. A rather straightforward inspection of the proofs shows that The-
orem 1.1 holds for d � 8 with O�Nÿ1 logd N� instead of O�Nÿ1�, for some
d > 0. It is likely that the results of the paper remain valid for d � 5. We need
the assumption d � 9 for estimation of integrals over the characteristic
function of the quadratic form for Fourier frequencies N3=5 � jtj � N .

An earlier version of results of this paper was published in Bentkus and
GoÈ tze (1995b).

The bound of Theorem 1.1 is optimal since the distribution function of
jSN j2 (for bounded X 2 Rd ) may have jumps of order O�Nÿ1�, for all
1 � d � 1. See, for example, Bentkus and GoÈ tze (1996). In that paper a
similar bound O�Nÿ1� as in Theorem 1.1 is proved even for d � 5 assuming
that Q is diagonal on the subspace spanned by ®ve coordinates of X , which
have to be stochastically independent and independent of other coordinates.
Both results are based on discretization (i.e., a reduction to lattice valued
random vectors) and symmetrization techniques. The independence as-
sumption in Bentkus and GoÈ tze (1996) allowed to apply an adaption of the
Hardy±Littlewood circle method. For the general case described in Theo-
rem 1.1, we had to develop a new tool ± a multiplicative inequality for
characteristic functions.
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Theorem 1.1 and the method of its proof are related to the well known
lattice point problem for conic sections in number theory. Assume that Rd is
®nite dimensional and that hQx; xi > 0, for x 6� 0. Write volEs for the volume
of the ellipsoid

Es � fx 2 Rd : Q�x� � sg; for s � 0 :

Let volZ Es be the number of points in Es \ Zd , where Zd � Rd is the stan-
dard lattice of points with integer coordinates.

The following result corresponds to Theorem 1.1.

Theorem 1.2 (Bentkus and GoÈ tze 1995a, 1997). For d � 9,

sup
a2Rd

volZ �Es � a� ÿ volEs

volEs

���� ���� � O 1

s

� �
; for s � 1 ;

where the constant in O�sÿ1� depends on the dimension d and on the lengths of
axes of the ellipsoid E1 only.

Theorem 1.2 solves the lattice point problem for d � 9, and it improves
the classical estimate O�sÿd=�d�1�� due to Landau (1915), just as Theorem 1.1
improves the bound O�Nÿd=�d�1�� by Esseen (1945) for the CLT for ellipsoids
with axes parallel to coordinate axes. For Hilbert spaces the optimal order of
error under the conditions of Theorem 1.1 had been investigated intensively.
For a more detailed discussion of the literature on error bounds in proba-
bility theory for ®nite and in®nite dimensional spaces and the lattice point
problem in number theory, see Bentkus and GoÈ tze (1996, 1995a, 1997).
Under somewhat more restrictive moment and dimension conditions the
estimate O�Nÿ1�e�, e # 0 as d " 1, was proved in GoÈ tze (1979), by a result for
bivariate U -statistics. Assuming special smoothness properties, which are
satis®ed, e.g., by Lp-type functionals of uniform empirical processes, error
bounds O�Nÿ1� (and even Edgeworth type expansions) are established in
GoÈ tze (1979), Bentkus (1984), Bentkus, GoÈ tze and Zitikis (1993). Since
Theorem 1.1 and more detailed Theorems 1.3±1.5 give a rather complete and
explicit solution to the problem for d <1 and d � 1, it may be helpful to
add a few comments on di�erences between both cases. Error bounds of
order O�Nÿ1=2� and better in Theorem 1.1 for general ellipsoids could not be
proved via an extension of Esseen's (1945) techniques in Rd since there is no
Lebesgue measure in Hilbert spaces. The symmetrization inequality for
characteristic functions introduced in GoÈ tze (1979), which is related to
Weyl's inequality for trigonometric sums, provided a su�ciently general tool
to analyze the in®nite dimensional case. An extension of this inequality to-
gether with some other new ideas (see below) supplies the basic techniques to
prove sharp results both in the ®nite and in®nite dimensional cases.

It is likely that the dimensional dependence of our results is not optimal.
In order to prove the rate O�Nÿ1� we required that d � 9. Assumptions like
the diagonality of Q, C and the independence of coordinates allow to reduce
the dimension requirement to d � 5, see Bentkus and GoÈ tze (1996). Some yet
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unpublished results of GoÈ tze (1994) indicate that for sums of two indepen-
dent arbitrary quadratic forms (each of rank d � 3) the rate O�Nÿ1� holds as
well. In view of lower bounds of order O�Nÿ1 logN� for dimension d � 4 in
the corresponding lattice point problem, an optimal condition would be the
assumption d � 5. To prove (or disprove) that d � 5 is su�cient for the rate
O�Nÿ1� seems to be a di�cult problem, since its solution implies a solution of
the corresponding unsolved problem for the lattice point remainder for ar-
bitrary ellipsoids. The question of precise convergence rates in lower di-
mensions 2 � d � 4 still remains completely open (even in the case Q � I
and for random vectors with coordinates which are independent Rademac-
her variables). For instance, in the case d � 2 a precise convergence rate
would imply a solution of the so called circle problem. Known lower bounds
in the circle problem correspond to O�Nÿ3=4 logd N� in our setup. A famous
conjecture by Hardy (1916) says that up to logarithmic factors this is the true
order.

Introduce the distribution functions

F �x� � PfQ�SN ÿ a� � xg; F0�x� � PfQ�Gÿ a� � xg; a 2 Rd : �1:1�
Furthermore, de®ne the Edgeworth correction F1�x� � F1�x;L�X �;L�G�� as
a function of bounded variation (for d � 9; see Lemma 5.7) such that
F1�ÿ1� � 0 and its Fourier±Stieltjes transform is given by

bF 1�t� � 2�it�2
3
����
N
p E eftQ�Y �g 3hQX ; Y ihQX ;X i � 2ithQX ; Y i3

� �
; Y �def Gÿ a :

�1:2�
In (1.2) and throughout we write efxg � expfixg and assume that all random
vectors and variables are independent in aggregate, if the contrary is not
clear from the context. Notice that F1 � 0 if a � 0 or if E hX ; yi3 � 0, for all
y 2 Rd . In particular, F1 � 0 if X is symmetric. For a representation of F1 as
an integral (as in Bhattacharya and Rao 1986) over ®nite dimensional Rd ,
see (1.21).

Write

DN � sup
x

F �x� ÿ F0�x� ÿ F1�x�j j :

We shall provide explicit bounds for DN . These bounds yield Theorem 1.1.
To formulate the results we need more notation.

We denote by r21 � r22 � � � � the eigenvalues of C, counting their multi-
plicities. We have r2 � r21 � r22 � � � � We write h41 � h42 � � � � for the eigen-
values of �CQ�2.

Throughout S � fe1; . . . ; esg denotes a ®nite subset of Rd of cardinality
s, that is, card S � s. We shall writeSo instead ofS if the system e1; . . . ; es

is orthonormal.
Let p > 0 and d � 0. For a random vector Y 2 Rd , we introduce the

following condition

N� p; d;S; Y � : P
�jY ÿ ej � d

	 � p; for all e 2S [QS : �1:3�
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We shall refer to condition (1.3) as condition N� p; d;S; Y � �N� p; d;S;
Y ; Q�. Notice that, for any Gaussian random vector G with non-degenerate
covariance, the condition N� p; d;S;G� holds for any S and d > 0, with
some p > 0. Thus, condition (1.3) for G is just a reformulation of non-de-
generacy.

A particular case where explicit lower bounds for p in (1.3) can be given in
terms of eigenvalues of C and Q, is the following: there exists an ortho-
normal systemSo � fe1; . . . ; esg of eigenvectors of C such that QSo is again
a system of eigenvectors of C. We shall refer to this assumption saying that
condition B�So;C� � B�So;C; Q� is ful®lled, and we shall write

B�So;C� : k2s � min
e2So[QSo

r2e ; �1:4�

where r2e denotes the eigenvalue of C corresponding to the eigenvector e. In
particular, such a system So exists provided that Q and C are diagonal in a
common orthonormal basis, and, if Q is isometric, we can choose So such
that k2s � r2s .

See Lemma 5.5 below for some properties of rj, hj and kj.
Let us introduce truncated random vectors

X � � X IfjX j � r
����
N
p
g; X� � X IfjX j > r

����
N
p
g; X � � X� � X ;

and their moments

K4 � N

�r ����
N
p �4 EjX

�j4; Pq � N

�r ����
N
p �q EjX�j

q : �1:5�

De®ne F �1 �x� � F1�x;L�X ��;L�G�� just replacing X by X � in (1.2), and

D�N � sup
x
jF �x� ÿ F0�x� ÿ F �1 �x�j :

By c we shall denote generic absolute positive constants. If a constant de-
pends on, say s, then we shall write cs or c�s�.

In Theorems 1.3±1.5 we assume that r <1 and d � 1=300. Furthermore,
in Theorems 1.3±1.6 we assume without loss of generality (see Remark 1.7)
that the symmetric operator Q is isometric, that is, that Q2 is the identity
operator I. Furthermore, we denote c0 a positive absolute constant, for
example one may choose c0 � 1.

Theorem 1.3. Let EX � 0, s � 13 and 13 � d � 1. Then we have:
�i� Assume that condition N� p; d;So; c0G=r� holds. Then
D�N � C�P2 � K4��1� ja=rj6�; DN � C�P3 � K4��1� ja=rj6� �1:6�

with C � cpÿ6 � c�r=h8�8;
�ii� Assume that condition B�So;C� is ful®lled. Then the constant in �1:6�

satis®es C � exp
�

cr2kÿ213
	
.

Theorem 1.4. Let X be symmetric, s � 9 and 9 � d � 1. Then DN � D�N �
supxjF �x� ÿ F0�x�j and we have:
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�i� Assume that the condition N� p; d;So; c0G=r� is ful®lled. Then
DN � C�P2 � K4��1� ja=rj4�; C � cpÿ4 ; �1:7�

�ii� Assume that condition B�So;C� is ful®lled. Then the constant in �1:7�
allows the estimate C � expfcr2=k29g.

Unfortunately, the bounds of Theorem 1.3 are not applicable in dimen-
sions d � 9; 10; 11; 12. The following Theorem 1.5 holds for ®nite-dimen-
sional spaces with d � 9 only. Compared with Theorem 1.3, the bounds of
Theorem 1.5 have a more natural dependence on jaj. However, they depend
on the smallest eigenvalue rd , which makes them unstable in cases where one
of coordinates of X degenerates.

Theorem 1.5. Let EX � 0, s � 9 and 9 � d <1. Then we have:
�i� Assume that condition N� p; d;So; c0G=r� holds. Then
D�N � C�P2 � K4��1� ja=rj3�; DN � C�P3 � K4��1� ja=rj3� ; �1:8�

with C � cpÿ3�r=rd�4;
�ii� Assume that condition B�So;C� is ful®lled. Then the constant in �1:8�

allows the bound C � r4

r4d
exp

n
c r2

k29

o
.

Theorems 1.3 and 1.5 yield Theorem 1.1, choosing a � 0 and using the
bound P3 � K4 � b4=�r4N�.

De®ne the symmetrization ~X of a random vector X as a random vector
such that L� ~X � �L�X1 ÿ X2�.

Introduce the concentration function

Q�X ; k� � Q�X ; k; Q� � sup
a;x

P x � Q�X � a� � x� kf g; for k � 0 :

Theorem 1.6. Assume that 9 � s � d � 1 and 0 � d � 1=�5s�. Let ZN �
X 1 � � � � � X N . For any random vector X we have:
�i� If condition N� p; d;So; ~X � is ful®lled with some p > 0 then

Q�ZN ; k� � cs� pN�ÿ1 maxf1; kg; k � 0 ; �1:9�
�ii� If, for some m, condition N� p; d;So;mÿ1=2 ~Zm� is ful®lled, then

Q�ZN ; k� � cs� pN�ÿ1 maxfm; kg; k � 0 ; �1:10�
�iii� Assume that ~X is not concentrated in a proper closed linear subspace of

Rd . Then, for any d > 0 and S there exists a natural number m such that the
condition

N� p; d;S;mÿ1=2 ~Zm� holds with some p > 0 : �1:11�

We say that a random vector Y is concentrated in L � Rd if
PfY 2 Lg � 1.

It is interesting to compare the bounds of Theorem 1.6 and of Theo-
rem 2.1 below with the classical bound O�Nÿ1=2 maxf1; kg� for the concentration
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of sums (see, e.g., Th. 9 of Ch. 3 in Petrov 1975). Theorem 1.6 and 2.1 are
useful for investigations of in®nitely divisible approximations, see Bentkus,
GoÈ tze and Zaitsev (1997).

Remark 1.7. The assumption that the symmetric operator Q is isometric,
i.e., that Q2 is the identity operator I, simpli®es the notation and does not
restrict generality. Indeed, any symmetric operator Q may be decomposed
as Q � Q1Q0Q1, where Q0 is symmetric and isometric and Q1 is symmetric
bounded and non-negative, that is, hQ1x; xi � 0, for all x 2 Rd . Thus, for
any symmetric Q, we can apply all our bounds replacing the random vector
X by Q1X , the Gaussian random vector G by Q1G,, the shift a by Q1a,, etc.
In the case of concentration functions, Q�X ; k; Q� � Q�Q1X ; k; Q0�, and we
may apply Theorem 1.6 provided Q1X (instead of X ) satis®es the condi-
tions.

We conclude the Introduction by a brief description of the basic elements
of the proof ± a discretization procedure, a double large sieve and multi-
plicative inequalities.

Let e1; e2; . . . denote i.i.d. symmetric Rademacher random variables.
Let d > 0 and S � fe1; . . . ; esg � Rd . We say that a discrete random

vector Y 2 Rd (or its distributionL�Y �) belongs to the class C�d;S� (brie¯y
L�Y � 2 C�d;S�) if Y is distributed as e1z1 � � � � � eszs, with some (non-
random) zj 2 Rd such that jzj ÿ ejj � d, for all 1 � j � s.

For a bounded and measurable function H : Rd ! B taking values in a
Banach space �B; j � jB�, de®ne the norm jH j1 � supx jH�x�jB.

Discretization. Assume that a random vector W 2 Rd is independent of
the sum ZN � X 1 � � � � � X N and that the symmetrization ~X of X satis®es
Pfj ~X ÿ ej � dg � p > 0, for all e 2S. Then, for any c � 0 and natural k,
with 0 � k � pN=�4s�,��EH�2ZN � W ��� � cc� pN�ÿcjH j1 � sup

C
sup
b2Rd

��EH�Y 1 � � � � � Y k � b���
(cf. Lemmas 6.1 and 6.2 of Section 6), where supC is taken over all inde-
pendent random vectors Y 1; . . . ; Y k of the class C�d;S�.

This discretization allows to reduce the estimation of the characteristic
function bF �t� � E eftQ�SN ÿ a�g, t 2 R, to the estimation of functions like
u�t� � E eftQ�S0N �g, where S0N � Nÿ1=2�Y 1 � � � � � Y N � is a sum of indepen-
dent (non-identically distributed!) random vectors of class C�d;S�. Notice
that norms of the random vectors Yj are bounded from above by a constant
independent of N .

The symmetrization inequality (see Lemma 5.1) reduces the estimation of
the function u to the estimation of the characteristic function

E efthTN ; T 0N ig ; �1:12�
where TN and T 0N denote independent random vectors, which are normalized
sums of i.i.d. random vectors of class C, taking values in a s-dimensional
subspace of Rd .
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Let us choose d � 1=�5s� and S � So to be an orthonormal system in
Rd . The double large sieve (see Lemma 4.7) allows to estimate (1.12) and to
obtain:��u�t��� � O�jtjÿs=2�; for jtj �

����
N
p

;
��u�t��� � O ��t=N

��s=2� �
; for jtj �

����
N
p

:

These relations imply that��bF �t��� � O�jtjÿs=2�; for jtj �
����
N
p

;
��bF �t��� � O ��t=N

��s=2� �
; for jtj �

����
N
p

:

�1:13�
Since for Gaussian X , ��bF �t��� � jtjÿs=2; for jtj � 1 ;

the ®rst bound in (1.13) is precise (up to a constant).
The inequalities (1.13) allow to prove in Theorem 1.1 only error bounds

O�Nÿa�, for some a < 1. This is due to possible oscillations of jbF �t�j between
0 and 1, as jtj � N . The oscillations are restricted by the following multipli-
cative inequality (cf. Lemma 8.1): for any t 2 R,��u�t�u�t � d��� � O�dÿs=2�; for 0 < d �

����
N
p

; �1:14���u�t�u�t � d��� � O �d=N�s=2
� �

; for d �
����
N
p

: �1:15�
Notice that the right-hand sides of (1.14) and (1.15) are independent of t. In
other words, (1.14) and (1.15) re¯ect a certain stationarity in the behavior of
the characteristic function u (and bF as well): if ju�t0�j is su�ciently large,
then ju�t�j is bounded from above (near t0) similarly as it is bounded near
t � 0. The inequalities (1.14) and (1.15) guarantee that the distance between
maxima of ju�t�j has to be su�ciently large, and that the integral of ju�t�=tj
around its maxima is O�Nÿ1� provided that s � 9.

We conclude the Section by introducing the notation used throughout
the proofs. In Section 2 we prove bounds for concentration functions. The
proofs, being technically simpler as those of Theorems 1.3±1.5, already
contain all the principal ideas. In Section 3 Theorems 1.3±1.5 are proved.
In Section 4 we extend the well-known double large sieve used in number
theory to arbitrary (unbounded) probability distributions. In Section 5 we
have collected some simple but useful auxiliary Lemmas. Section 6 con-
tains a description of the discretization of expectations, using random
selections. In Section 7 we prove estimates for characteristic functions.
The proofs of these estimates are based on conditioning, discretization, as
well as on the double large sieve. Section 8 is devoted to the study of the
crucial multiplicative inequality for characteristic functions. This is an
extension of an inequality for trigonometric sums introduced in Bentkus
and GoÈ tze (1995a, 1997). Section 9 deals with expansions of characteristic
functions.
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Notation. We write efxg � expfixg.
By dae we shall denote the integer part of a number a.
By c; c1; . . . we shall denote generic absolute positive constants. If a

constant depends on, say s, then we shall point out the dependence as cs or
c�s�. We shall write A� B, if there exists an absolute constant c such that
A � cB. Similarly, A�s B, if A � c�s�B.

By �X and X1;X2; . . . we shall denote independent copies of a random
vector X , and L�X � shall denote the distribution of X .

By ~X we shall denote a symmetrization of X , for example ~X � X ÿ �X .
For the sake of brevity we shall write throughout

b � b4; P � P2; K � K4 :

We write ZN � X 1 � � � � � X N and SN � Nÿ1=2ZN .
By IfAg we denote the indicator of an event A.
The expectation EY with respect to a random vector Y we de®ne as the

conditional expectation

EY f �X ; Y ; Z; . . .� � E f �X ; Y ; Z . . .���X ; Z; . . .
ÿ �

given all random vectors but Y .
By bF we denote the Fourier±Stieltjes transform of a function F of

bounded variation, or in other words, the Fourier transform of the measure
which has the distribution function F .

Introduce the function

M�t; N� � 1
� ��������
jtjN

p
; for jtj � Nÿ1=2; M�t; N� �

�����
jtj

p
; for jtj � Nÿ1=2 :

�1:16�
Notice that, for s > 0,

2ÿ1 jt=N jÿs=2 � jtjs=2
� �

�Ms�t; N� � jt=N jÿs=2 � jtjs=2 : �1:17�
Instead of normalized sums SN , it is more convenient to consider the sums
ZN . Introduce the distribution functions

W�x� � PfQ�ZN ÿ b� � xg; W0�x� � PfQ�
����
N
p

Gÿ b� � xg �1:18�
with b � ����

N
p

a. De®ne the Edgeworth correction W1�x;L�X �;L�G�� as a
function of bounded variation (for d � 9; see Lemma 5.7) such that
W1�ÿ1� � 0. Its Fourier±Stieltjes transform is equal to

bW1�t� � ÿ 1����
N
p E

4i
3
hNDY ;X i3 � 2hNDY ;X iND�X �

� �
efND�Y �g ; �1:19�

where Y � Gÿ a and D � tQ. De®ne as well W�1�x� � W1�x;L�X ��;L�G��
just replacing in (1.19) the random vector X by X �. Recall that the truncated
random vectors X �, X� and their moments are de®ned in (1.5). In Sections 2,
3 and 9 we shall denote

X 0 � X � ÿ EX � � W ; �1:20�
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where W is a centered Gaussian random vector which is independent of all
other random vectors and variables and is chosen so that covX 0 � covG.
Such random vector W exists by Lemma 2.4. Finally by Z�N (resp. Z 0N ) we
shall denote sums of N independent copies of X � (resp. X 0).

In ®nite dimensional spaces we have the following representation of the
Edgeworth correction. Let / denote the standard normal density in Rd .
Then p�x� � /�Cÿ1=2x�= �����������

detC
p

is the density of G, and we have

F1�x=N� � W1�x� � 1

6
����
N
p v�Ax=

����
N
p
�; Ax � fu 2 Rd : Q�uÿ b� � xg ;

�1:21�
with the signed measure

v�A� �
Z

A
Ep000�x�X 3 dx; for measurable A � Rd ; �1:22�

and where

p000�x�u3 � p�x� 3hCÿ1u; uihCÿ1x; ui ÿ hCÿ1x; ui3
� �

�1:23�
denotes the third Frechet derivative of p in the direction u. We can write a
similar representation for W�1�x� � W1�x;L�X ��; �G�� just replacing X by X �

in (1.21).
We shall often use the following Rosenthal type inequality. Let n1; . . . ; nN

denote independent random vectors which have mean zero and assume
values in R1. Then

E

����XN

j�1
nj

����q �q

XN

j�1
Ejnjjq �

�XN

j�1
Ejnjj2

�q=2

; 0 < q <1 : �1:24�

This inequality easily follows from a result of Acosta (1981) and the fact that

Hilbert spaces are type 2 spaces, that is, E
��PN

j�1 nj

��2 �PN
j�1 Ejnjj2:
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2. Proofs of bounds for concentration functions; truncation

We start the Section with Theorem 2.1 which (under additional restrictions)
provides more explicit bounds for the concentration than those of Theo-
rem 1.6. In the next Theorem we assume that c0 is an arbitrary positive
absolute constant, for example, one can choose c0 � 1. Recall as well that we
write b � b4, P � P2 and K � K4.

Theorem 2.1. Assume that 9 � d � 1 and that the operator Q is isometric.
Then, for any random vector X such that EX � 0 and r2 <1, we have:
�i� Assume condition N� p; d;So; c0G=r� with s � 9 and d � 1=200. Then

Q�ZN ; k� � pÿ2 maxfP� K; krÿ2Nÿ1g; k � 0 : �2:1�
In particular, Q�ZN ; k� � pÿ2Nÿ1 maxfb=r4; k=r2bgrg;
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�ii� Let the condition B�So;C� (see �1:4�� be ful®lled with s � 9. Then

Q�ZN ; k� � expfcr2=k29gmaxfP� K; krÿ2Nÿ1g; k � 0 ; �2:2�
where c denotes a su�ciently large absolute constant.

Proof of Theorems 1:6 and 2:1. Below we shall prove the assertions (1.9);
�1:9��)�1:10�; (1.11); �1:10��)�2:1� and �2:1��)�2:2�. (

For the integration of characteristic functions we shall use the following
Theorem 2.2. This Theorem slightly extends Lemma 6.1 in Bentkus and
GoÈ tze (1997). Its proof repeats in essence the proof of the Lemma men-
tioned, and will be published elsewhere.

Theorem 2.2. Let u�t�, t � 0, denote a continuous function such that u�0� � 1
and 0 � u � 1. Assume that

u�t�u�t � s� � HM2s�s; N�; for all t � 0 and s � 0 ;

with some H � 1 independent of t and s. Then, for any T � 1, 0 < B � 1 and
N � 1, Z T

B=
���
N
p

���������
u�t�

p dt
t
�s

H�1� log T �
N

�HBÿs=2Nÿs=4; for s > 8 :

For T � t0; t1 � 0, de®ne the integrals

I0 �
Z t1

ÿt1

�� bW�t��� dt; I1 �
Z

t0�jtj�T
jbW�t�j dt

jtj ;

where bW denotes the Fourier±Stieltjes transform of the distribution function
W of Q�ZN ÿ b� (see (1.18)).

Lemma 2.3. Assume the condition N� p; d;So; ~X � with some 0 � d � 1=�5s�
and s � 9. Let

t0 � c0�s�� pN�ÿ1�2=s; t1 � c1�s�� pN�ÿ1=2; c2�s� � T � c3�s�
with some positive constants cj�s�, 0 � j � 3. Then

I0 �s � pN�ÿ1; I1 �s � pN�ÿ1 : �2:3�

Proof. In the proof we shall denote k � pN . Without loss of generality we
shall assume that k � cs, for a su�ciently large constant cs. Indeed, if k � cs,
then we can derive (2.3) using jbWj � 1. Another consequence of k � cs is that
1=k � t0 � t1 � T .

Let us prove (2.3) for I0. By Theorem 7.1 we have

jbW�t�j �s M
s�t; k�; k � pN :

Since jbWj � 1, we have
�� bW�t����s minf1;Ms�t; k�g. Furthermore, denoting

t2 � kÿ1=2 maxf1; c1�s�g and using the de®nition of the function M, we ob-
tain
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I0 �s

Z 1=k

0

dt �
Z 1
1=k

dt

�tk�s=2
�
Z t2

0

ts=2 dt � 1

k
� cs

k
� cs

k�s�2�=4
�s

1

k
;

thus proving (2.3) for I0.
It remains to estimate I1. We shall use Theorem 2.2. By Corollary 6.3 we

have

I1 �
Z

t1�jtj�T
jbW�t�j dt

jtj �c;s sup
C

sup
b2Rd

I � kÿc log
T
t1

; �2:4�

for any c > 0, with

I �
Z

t1�jtj�T

����������������
un�t=4�

p dt
jtj �

Z
t1=4�jtj�T=4

�����������
un�t�

p dt
jtj

and

un�t� �
��E eftQ�Yn �QY0n � b�g��2; n � dk=�5s�e ;

where Yn � U1 � � � � � Un and Y 0n � U 01 � � � � � U 0n denote sums of indepen-
dent vectors, and supC is taken over all fL�Uj�;L�U 0j� : 1 � j � ng �
C�d;So�.

Put c � 2 in (2.4). Then it remains to show that I �s 1=k. By Lemma 8.1,

un�t�un�t ÿ s� �s M
2s�s; n�; for any t; s 2 R :

Hence, replacing N by n in Theorem 2.2, we obtain I �s 1=n�s 1=k. (

Proof of (1.9). Using a well-known inequality (see, for example Petrov 1975,
Lemma 3 of Ch. 3), we have

Q�ZN ; k� � 2 sup
a2Rd

max k;
1

T

� �Z T

ÿT
jbW�t�j dt ; �2:5�

for any T > 0. To estimate the integral in (2.5) we shall apply Lemma 2.3.
Let us choose T � 1. Then using 1 � 1=jtj, for jtj � 1, we haveZ T

ÿT
jbW�t�j dt �

Z
jtj�� pN�ÿ1=2

jbW�t�j dt �
Z
� pN�ÿ1=2�jtj�1

jbW�t�j dt
jtj �

def I0 � I1 :

Lemma 2.3 implies I0 �s 1=� pN� and I1 �s 1=� pN�. (

Proof of (1.9)�) (1.10). Without loss of generality we can assume that
N=m � 2. Let Y1; Y2; . . . denote independent copies of mÿ1=2Zm. Write
Wk � Y1 � � � � � Yk. Then L�ZN � �L�

����
m
p

Wk � b� with k � dN=me and with
some b independent of Wk. Consequently, we have Q�ZN ; k� � Q�Wk; k=m�. In
order to estimate Q�Wk; k=m� we can apply (1.9) replacing ZN by Wk. We
obtain

Q�Wk; k=m� �s � pk�ÿ1 maxf1; k=mg �s � pN�ÿ1 maxfm; kg : (
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Proof of (1.11). The existence of the desired m � m�L�X �� can be proved as
follows. Let s > 0. Split the distribution l �L� ~X � � um� v#, with the
conditional distributions

m�A� � Pf ~X 2 A
��j ~X j � sg; #�A� � Pf ~X 2 A

��j ~X j > sg ;
and parameters u � Pfj ~X j � sg and v � 1ÿ u. Denote the minimal closed
linear subspace supporting m by Ls. For any e 2 Rd , the distance
q�e;Ls� � inffjxÿ ej : x 2 Lsg ! 0 as s!1, since ~X is not concentrated in
a subspace. Choose and ®x s � s0 such that dim Ls0 � 1 and q�e;Ls� < d=2,
for all e 2S [QS. The measure m in Ls0 has bounded support, and
therefore it satis®es the Central Limit Theorem with a limiting Gaussian
measure, say c. Any ball in Ls0 with positive radius has positive measure c
since the covariance operator cov m � cov c is non-degenerate as an operator
in Ls0 , due to the de®nition of Ls0 . Consider the balls Be � fx 2 Rd :
jxÿ ej < dg and B0e � Be \Ls0 . Writing lm for the m-fold convolution of the
measure l, we have

L�mÿ1=2~Sm��A� � �um� v#�m�m1=2A� � ummm�m1=2A� ;
for any measurable A � Rd . Therefore, for su�ciently large m � m�m;S�, we
obtain

L�mÿ1=2~Sm��Be� � ummm�m1=2B0e� � 2ÿ1umc�B0e� > 0; for all e 2S [QS ;

since the Gaussian measure c of balls with positive radius is positive. (

Recall that truncated random vectors and moments were de®ned by (1.5)
and (1.20), and that C � covX � covG. We omit the simple proof of the
following Lemma.

Lemma 2.4. The random vectors X �, X� satisfy

hCx; xi � hcovX �x; xi � EhX�; xi2 � hEX �; xi2 :
There exist independent centered Gaussian vectors G� and W such that
L�G� �L�G� � W � and

2 covG� � 2 covX � � cov ~X �; hcovWx; xi � EhX�; xi2 � hEX �; xi2 :
Furthermore, EjGj2 � EjG�j2 � EjW j2 and EjW j2 � 2r2P.

Recall, that Z�N denotes a sum of N independent copies of X �.

Lemma 2.5. Let e > 0. There exist absolute positive constants c and c1 such
that the condition P � c1pd2=�e2r2� implies that

N� p; d;S; eG��)N� p=4; 4d;S; e�2m�ÿ1=2 ~Z�m� ;
for m � ce4r4NK=� pd4�.
Proof. The result of the Lemma follows from the following relations (2.6)±
(2.7), since p, d, e in these relations are arbitrary and Ej ~X �j4 � 16EjX �j4 �
16Nr4K.
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For the Gaussian random vector G� de®ned in Lemma 2.4, we have

N�2p; d;S; eG��)N�p; 2d;S; eG��; provided that P � pd2=�2e2r2� :
�2:6�

If m � ce4Ej ~X �j4=� pd4� with a su�ciently large absolute constant c, then

N�2p; d;S; eG���)N�p; 2d;S; e�2m�ÿ1=2 ~Z�m� : �2:7�
Let us prove (2.6). For e 2 Rd de®ne pe by 2pe � PfjeGÿ ej < dg. Assuming
that P � ped

2=�2e2r2�, it su�ces to prove that PfjeG� ÿ ej < 2dg � pe. Re-
placing d by d=e and e by e=e, we see that we can assume that e � 1. Applying
Lemma 2.4, we obtain

PfjG� ÿ ej < 2dg � PfjW j �jGÿ ej < 2dg � PfjW j < d; jW j�jGÿ ej < 2dg
� PfjW j < d and jGÿ ej < dg � 2pe ÿ PfjW j � dg
� 2pe ÿ dÿ2EjW j2 � 2pe ÿ 2dÿ2r2P � pe ;

and (2.6) follows.
Let us prove (2.7). Notice that cov �e ~X �=

���
2
p � � cov �eG��. Therefore, to

prove (2.7) it su�ces to apply Lemma 5.3, replacing in that Lemma X by
e ~X �=

���
2
p

. (

Proof (1.10)�) (2.1). The proof is based on truncation of random vectors.
Recall that we assumed that s � 9 and d � 1=200. By a well known

truncation argument, we have��PfZN 2 Ag ÿ PfZ�N 2 Ag�� � NPfjX j > r
����
N
p
g � P ; �2:8�

for any measurable set A, and

Q�ZN ; k� � P� Q�Z�N ; k� : �2:9�
Write K � e=

������
2m
p

with e � c0=r. Then, by Lemma 2.5, we have

N� p; d;So; eG��)N� p=4; 4d;So;K ~Z�m� ; �2:10�
provided that

P � c1p; m � cNK=p : �2:11�
Without loss of generality we may assume that P=p � c1, since otherwise the
result easily follows from the trivial estimate Q�ZN ; k� � 1.

The non-degeneracy condition (2.10) for K ~Z�m allows to apply (1.10) of
Theorem 1.6, and we obtain

Q�Z�N ; k� � Q�K Z�N ;K
2k� � � pN�ÿ1 maxfm; K2kg ; �2:12�

for any m such that (2.11) is ful®lled. Choosing the minimal m in (2.11), we
obtain

Q�Z�N ; k� � pÿ2 maxfK; k=�r2N�g : �2:13�
Combining the estimates (2.9) and (2.13), we conclude the proof. (
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Proof (2.1)�) (2.2). Note that the bound (2.1) holds with a probability p of
condition N� p; d;So; c0G=r�. Let us choose 4c0 � d � 1=200. Then, using
Lemma 5.4 and the assumption B�So;C�, the e�ective lower bound
p � expfcr2=k29g follows. (

3. Proofs of Theorems 1.3±1.5

The proof of Theorem 1.3 is rather complicated. It starts with a truncation of
random vectors and an application of the Fourier transform to the functions
W and Wj. We shall estimate integrals over the Fourier transforms using
results of Sections 2, 5±9. The proof of Theorem 1.4 essentially repeats with
certain simpli®cations the proof of Theorem 1.3. For the proof of Theo-
rem 1.5 we shall apply in addition some elements of the standard techniques
used in the case of the CLT in multidimensional spaces (cf. e.g., Bhatta-
charya and Rao 1986).

We shall use the following approximate and precise formulas for the
Fourier inversion. A smoothing inequality of Prawitz (1972) implies (see
Bentkus and GoÈ tze 1996, Section 4) that

F �x� � 1

2
� i
2p

V.P.

Z K

ÿK
efÿxtgbF �t� dt

t
� R ; �3:1�

for any K > 0 and any distribution function F with characteristic function bF ,
where

jRj � 1

K

Z K

ÿK
jbF �t�j dt :

Here V.P.
R

f �t� dt � lime!0

R
jtj>e f �t� dt denotes the Principal Value of the

integral.
For any function F : R! R of bounded variation such that F �ÿ1� � 0

and 2F �x� � F �x�� � F �xÿ�, for all x 2 R, the following Fourier±Stieltjes
inversion formula holds (see, e.g., Chung 1974)

F �x� � 1

2
F �1� � i

2p
lim

M!1
V.P.

Z
jtj�M

efÿxtgbF �t� dt
t
: �3:2�

The formula is well-known for distribution functions. For functions of
bounded variation, it extends by linearity arguments.

In this Section we shall assume that the following conditions are ful®lled

Q2 � I; r2 � 1; 9 � s � 13; d � 1=300; N� p; d;So; c0G� : �3:3�
Notice that the assumption r2 � 1 does not restrict generality since from
Theorems 1.3±1.5 with r � 1 we can derive the general result replacing X by
X=r, G=r, etc. Other assumptions in (3.3) are included as conditions in
Theorems 1.3±1.5. The assumption r2 � 1 yields (recall that we write
P � P2 and K � K4)
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Nÿ1 � 2�P� K�; P� K � 1; rj � 1; kj � 1; hj � 1 : �3:4�
Recall that functions W and Wj are de®ned by (1.18) and (1.19). In that
notation we have

DN � sup
x2R
jDN �x�j; D�N � sup

x2R
jD�N �x�j ; �3:5�

where

DN �x� � W�x� ÿW0�x� ÿW1�x�; D�N �x� � W�x� ÿW0�x� ÿW�1�x� �3:6�
since the functions F , F0 and F1 de®ned by (1.1)±(1.2) satisfy

F �x� � W�xN�; Fj�x� � Wj�xN�; bF �tN� � bW�t�; bFj�tN� � bWj�t� : �3:7�

Reduction of Theorems 1.3±1.5 to the proof that

D�N � � pÿ6 � hÿ88 ��P� K��1� jaj6�; s � 13 ; �3:8�
D�N � pÿ4�P� K��1� jaj4�; s � 9 ; �3:9�
D�N � pÿ3rÿ4d �P� K��1� jaj3�; s � 9 ; �3:10�

respectively.
We have to prove that the bounds (3.8)±(3.10) imply the desired bounds

for DN , and to show that the assertions �i� of Theorems 1.3±1.5 imply �ii�.
To derive the bounds for DN it su�ces to note that P � P3 and to verify

that

sup
x
jW1�x� ÿW�1�x�j � hÿ68 �1� jaj3�P3 �3:11�

in the case of Theorem 1.3, and that

sup
x
jW1�x� ÿW�1�x�j � rÿ3d P3 �3:12�

in the case of Theorem 1.5. But the bound (3.11) is implied by (5.5) of
Lemma 5.7 with s � 8. The bound (3.12) one can easily prove using the
representation (1.21) of the Edgeworth correction as a signed measure in
®nite dimensional Rd and estimating the variation of that measure. Indeed,
using (1.21), we have

sup
x
jW1�x� ÿW�1�x�j � Nÿ1=2I ; I �def

Z
Rd

��Ep000�x�X 3 ÿ Ep000�x�X �3�� dx :

By the explicit formula (1.23), the function u 7! p000�x�u3 is a 3-linear form in
the variable u. Therefore, using X � X � � X� and jX �jjX�j � 0, we have
p000�x�X 3 ÿ p000�x�X �3 � p000�x�X�3, and

Nÿ1=2I � 3P3r
ÿ3
d

Z
Rd
�jCÿ1=2xj � jCÿ1=2xj3�p�x� dx � cdP3r

ÿ3
d ;

whence (3.12) follows.
Let us prove �i��)�ii�. This follows from p � expfckÿ213 g and the obvious

inequalities h8 � h13 � k13. To obtain p � expfckÿ213 g we can use �i� in the
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case when the conditionN� p; d;So; c0G� is ful®lled with c0 � d=4 � 1=1200.
Indeed, the condition B�So;C� guarantees that e 2 So [QSo are eigen-
vectors of the covariance operator C, and we can get the lower bound for p
by an application of Lemma 5.4 using c0 � d=4. (

While proving (3.8)±(3.10) we can and shall assume that

P � cp; K � cp ; �3:13�
and in the case of (3.10),

P � cpr4d ; K � cpr4d ; �3:14�
with a su�ciently small positive absolute constant c. These assumptions do
not restrict generality. Indeed, in the case of (3.9) the symmetry of X implies
that W�1 � 0, and we have D�N � 1. Thus, if at least one of the assumptions
(3.13) is not ful®lled, we obviously obtain (3.9). In the case of (3.8) we can
estimate jW�1j using (5.4), and we get

D�N � 1� jW�1j � �1� jaj3�hÿ68 ;

which again allows to assume (3.13) (notice that hÿ68 pÿ1 � pÿ4 � hÿ88 ).
If the assumption (3.14) does not hold, the estimate

jW�1j �d Nÿ1=2EjCÿ1=2X �j3 �d rÿ2d K1=2 : �3:15�
immediately implies (3.10). For a proof of (3.15) we can use the represen-
tation (1.21) of the Edgeworth correction as a signed measure. Estimating the
variation of that measure and using

b23 � r2b; jCÿ1=2uj � rÿ1d juj; EjCÿ1=2X �j2 � EjCÿ1=2X j2 � d ;

we obtain (3.15).
Recall that the random vectors X �, X 0 and sums Z�N , Z 0N of their inde-

pendent copies are de®ned in (1.5) and (1.20). Write W� for the distribution
function of Q�Z�N ÿ b�. For 0 � k � N introduce the distribution function

W�k��x� � P
n
Q�G1 � � � � � Gk � X 0k�1 � � � � � X 0N ÿ b� � x

o
: �3:16�

Notice that W�0� � W0, W�N� � W0.

Lemma 3.1. Assume that P � c1p and that a number 1 � m � N satis®es
m � c2NK=p, with some su�ciently small (resp. large) positive absolute con-
stant c1 (resp. c2�. Let c3 be an absolute constant. Write

K � c20=�2m�; t1 � c3� pN=m�ÿ1=2 :

Let F denote any of the functions W�, W�k� or W0. Then we have

F �x� � 1

2
� i
2p

V.P.

Z
jtj�t1

efÿxt KgbF �tK� dt
t
� R1 ; �3:17�
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with jR1j � � pN�ÿ1m . Furthermore,

W�1�x� �
i
2p

Z
jtj�t1

efÿxtKgbW�1�tK� dt
t
� R2 �3:18�

with jR2j � hÿ88 �K� pm=N��1� jaj3�.
Proof. Let us prove (3.17). For the proof we shall combine (3.1) and Lem-
ma 2.3. Changing the variable t � sK in the approximate Fourier inversion
formula (3.1), we obtain

F �x� � 1

2
� i
2p

V.P.

Z
jtj�1

efÿxtKgbF �tK� dt
t
� R ; �3:19�

where

jRj �
Z
jtj�1
jbF �tK�j dt :

Notice all functions W�, W�k�, W0 are distribution functions of the following
type of random variables:

Q�U � T �; U �def G1 � � � � � Gk � X �k�1 � � � � � X �N ;

with some 0 � k � N , where the random vector T is independent of X �j and
Gj, for all j. Let us consider two alternative cases: k � N=2 and k < N=2.

The case k < N=2. Let Y denote a sum of m independent copies of K1=2X �.
Let Y 1; Y 2; . . . be independent copies of Y . Then we can write

K1=2U �D Y 1 � � � � � Y l � T1 �3:20�
with l � dN=�2m�e and some random T1 independent of Y 1; . . . ; Y l. By
Lemma 2.5 we have

N� p; d;S; c0G��)N� p=4; 4d;S; ~Y � �3:21�
provided that

P � c1p and m � c2NK=p : �3:22�
The inequalities in (3.22) are just conditions of the Lemma. Due to (3.20) and
(3.21), we can use Lemma 2.3 in order to estimate the integrals in (3.19).
Replacing in that Lemma X by Y and N by l, we obtain (3.17) in the case
k < N=2.

The case k � N=2.We can proceed as in the previous case de®ning however Y
as a sum of m independent copies of K1=2G. The condition (3.21) is ful®lled
since now L�~Y � �L�c0G=r�, and (3.17) follows.

To prove (3.18) we can apply the Fourier inversion (3.2) to the function
W�1. Using the estimate (5.6) of Lemma 5.7 with s � 8 and t� � t1K, we obtainZ

jtj�t1
jW�1�tK�j

dt
jtj � K1=2�t1KN�ÿ1�1� jaj3�hÿ88 :
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Since �t1KN�ÿ1 � � pm=N�1=2, we conclude the proof of (3.18) by an appli-
cation of the arithmetic-geometric mean inequality. (

Let us introduce the following upper bound , � ,�t� � ,�t; N ;
L�X �;L�G�� of for the characteristic function of quadratic forms (cf.
Bentkus 1984, Bentkus, GoÈ tze and Zitikis 1993). We de®ne , � ,�t; N ;
L�X �� � ,�t; N ;L�G��, where

,�t; N ;L�X �� � sup
a2Rd

��E eftQ�Zk� � ha; Zkig
��; Zk � X 1 � � � � � X k ; �3:23�

with k � ��N ÿ 2�=14�. Notice that if Q2 � I, then we can replace
tQ�Zk� � ha; Zki by tQ�Zk ÿ a� in the de®nition (3.23).

Lemma 3.2. Assume the conditions of Lemma 3:1. ThenZ
jtj�t1
�jtjK�a,�tK; N ;L�X ��;L�G�� dt

jtj �a �pN�ÿa; for 0 � a < s=2 :

Proof. By (3.21), the conditionN� p=4; 4d;S;K1=2 ~Z�m� is ful®lled. Therefore,
collecting independent copies of K1=2X � in groups as in (3.20), we can apply
Theorem 7.1. We obtain

,�tK; N ;L�X ��� �Ms�t; pN=m� :
A similar upper bound holds for ,�tK; N ;L�G�� (cf. the proof of (3.17) in the
case of k > N=2. Using the de®nition of the function M��; �� and (1.16) in
order to get rid of absolute constants, we get

,�tK; N ;L�X ��;L�G�� �s min
n
1; �m=�tpN��s=2

o
; for jtj � t1 :

Integrating that bound (cf. the estimation of I1 in Lemma 2.3), we conclude
the proof of the Lemma. (

Reduction of �3:8�±�3:10� to an estimation of

D0N � sup
x
jW0�x� ÿW0�x� ÿW�1�x�j ; �3:24�

where W0 is the distribution function of Q�Z 0N ÿ b�. It su�ces to prove that
the quantity D0N satis®es inequalities of type (3.8)±(3.10). Indeed, let us prove
that

sup
x
jW�x� ÿW0�x�j � pÿ2�P� K��1� jaj2� : �3:25�

Using truncation (cf. (2.8)), we have jWÿW�j � P, and

sup
x
jW�x� ÿW0�x�j � P� sup

x
W��x� ÿW0�x�j j : �3:26�

In order to estimate jW� ÿW0j, we shall apply Lemmas 3.1 and 3.2. The
number m in these Lemmas exists, as it follows from the second inequality in
(3.13). Let us choose the minimal m, that is, m � NK=p. Then
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� pN�ÿ1m� K=p2 and m=N � K=p. Therefore, using (3.5), (3.6) and Lem-
ma 3.1 we have

sup
x

��W��x� ÿW0�x���� pÿ2K�
Z
jtj�t1

�� bW��s� ÿ bW0�s��� dt
jtj ; s � tK : �3:27�

We shall prove that

jbW��s� ÿ bW0�s�j � ,PjsjN�1� jsjN��1� jaj2� ; �3:28�
with , � ,�s; N ;L�X ���. Combining (3.26)±(3.28), using s � tK and inte-
grating the inequality (3.28) with help of Lemma 3.2, we derive (3.25).

Let us prove (3.28). Recall that X 0 � X � ÿ EX � � W , where W denotes a
centered Gaussian random vector which is independent of all other random
vectors and such that covX 0 � covG (see Lemma 2.4). Writing D � Z�N ÿ
E Z�N ÿ b, we have

Z�N ÿ b � D� E Z�N ; Z 0N �D D�
����
N
p

W ;

and jbW��s� ÿ bW0�s�j � jf1�s�j � jf2�s�j with
f1�s� � E efsQ�D�

����
N
p

W �g ÿ E efsQ�D�g;
f2�t� � E efsQ�D� E Z�N �g ÿ E efsQ�D�g : �3:29�

We have to show that both jf1�t�j and jf2�t�j are bounded from above by
the right hand side of (3.28). Let us consider f1. We can write
Q�D� ����

N
p

W � � Q�D� � A� B with A � 2
����
N
p hQD;W i and B � NQ�W �g.

Taylor expansions of the exponent in (3.29) in powers of isB and isA
with remainders O�sB� and O�s2A2� respectively imply (notice that
EW � 0)

jf1�s�j � ,jsjN EjW j2 � ,s2N EjW j2EjDj2 ; �3:30�
where , � ,�s; N ;L�X ���. The estimation of the remainders of these ex-
pansions is based on the splitting and conditioning techniques described in
Section 9. Using r � 1, EjW j2 � P and EjDj2 � N�1� jaj2�, we derive from
(3.30) that

jf1�s�j � ,PjsjN�1� jsjN���1� jaj2� : �3:31�
Expanding in powers of E Z�N � NEX � and proceeding similarly to the proof
of (3.31), we obtain

jf2�t�j � ,PjsjN�1� jaj� ;

which concludes the proof of (3.28). (

Proof of Theorems 1:3 and 1:4. Relations (3.8), (3.24) and (3.25) reduce the
proof of Theorem 1.3 to showing that D0N is bounded by the right hand side
of (3.8), assuming that s � 13. Similarly, for the proof of Theorem 1.4 we
have to show that D0N is bounded by the right hand side of (3.9), assuming
s � 9 and symmetry of X .
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We shall apply Lemmas 3.1 and 3.2. Choosing m � NK=p as in the proof
of (3.25), and using (3.5), (3.6), (3.16), (3.24) and Lemma 3.1 we have

D0N � I � � pÿ2 � hÿ88 �K�1� jaj3� �3:32�
with

I �
Z
jtj�t1

��bD0N �s��� dt
jtj ; s � tK :

De®ne the Edgeworth correction W01�x� � W1�x;L�X 0�; �G�� by replacing X
by X 0 in the de®nition (1.19). We have��bD0N �� � jbW0 ÿ bW0�s� ÿ bW01j � jbW01 ÿ bW�1j :
Below we shall prove that

jbW0�s� ÿ bW0 ÿ bW01�s�j � ,�P� K�s2N 2�1� s4N 4��1� jaj6� ; �3:33�
jbW01�s� ÿ bW�1�s�j � ,�P� K�s2N 2�1� jsjN��1� jaj3� ; �3:34�

with , � ,�s; N ;L�X ��;L�G��. Using s � tK and integrating the inequalities
(3.33)±(3.34) with the help of Lemma 3.2, we derive

I � pÿ6�1� jaj6��P� K� ;
which combined with (3.32) shows that D0N is bounded from above by the
right hand side of (3.8), thus proving Theorem 1.3. Notice that the re-
quirement s � 13 was needed for the integration of (3.33) only since the
highest power of s in (3.33) is 6; in all other parts of the proof the require-
ment s � 9 su�ces.

In the symmetric case we have W�1 � W01 � 0, and we can repeat the
previous proof. Instead of (3.33)±(3.34) we shall prove that

jbW0�s� ÿ bW0�s�j � ,�P� K�s2N2�1� s2N2��1� jaj4� : �3:35�
An integration of this bound shows that D0N is bounded from above by the
right hand side of (3.9), thus proving Theorem 1.4. The highest power of s in
(3.35) is 4, and for the integration the assumption s � 9 is su�cient.

Thus it remains to prove (3.33)±(3.35).
Let us prove (3.33). Recall that r � 1. Write b0q � EjX 0jq and b0 � b04. The

covariances of X 0 and G are equal, and we can apply Lemma 9.2. Replacing
in that Lemma X by X 0, we have�� bW0�s� ÿ bW0�s� ÿW01�s�

��� ,s2Nb0�1� s4N 4��1� b06=N 2��1� jaj6� ; �3:36�
where , � ,�s;L�X 0�;L�G��. Since X 0 � X � ÿ EX � � W , and W is inde-
pendent of X �, we obtain

,�s; N ;L�X 0�;L�G�� � ,�s; N ;L�X ��;L�G�� :
Furthermore, for q � 2 we have

b0q �q EjX �jq � EjW jq �q N �qÿ2�=2
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since r � 1. Similarly, b0 � �P� K�N , and (3.36) yields (3.33).
The proof of (3.35) repeats the proof of (3.33), replacing however Lem-

ma 9.2 by Lemma 9.1.
Let us prove (3.34). The proof is based on the observation that

X 0 � X � ÿ EX � � W and that the Fourier±Stieltjes transforms bW�1 and bW01 are
3-linear forms in X and X 0 respectively. For the proof it su�ces to use����

N
p

G �D G1 � � � � � GN , standard splitting-conditioning and symmetrization
techniques, the bounds jEX �j � Nÿ1=2P and EjW j2 � P. We omit related
technicalities, and refer to Lemmas 5.7 and 9.1, where similar proofs are
carried out in detail. (

Proof of Theorem 1:5. Again, due to (3.10) and (3.24) we have to verify that
D0N is bounded by the right hand side of (3.10), that is, that

D0N � pÿ3rÿ4d �P� K��1� jaj3� : �3:37�
Recall that the distribution function W�k� is de®ned in (3.16). For any
1 � k � N , we have

D0N � I1 � I2 � I3; I1 � sup
x
jW0�x� ÿW�k��x�j ;

I2 � sup
x
jW�k��x� ÿW0�x� ÿW01�x�j; I3 � sup

x
jW01�x� ÿW�1�x�j : �3:38�

Below we shall prove that

I1 � pÿ2K� pÿ3kNÿ2 b0 �
��������
Nb0

q� �
�1� jaj3� ; �3:39�

I2 �d
k
����
b0

p
N3=2r2d

� b0

r4dN
� b0�d�7�=2N �d�3�=2

kd�5r2d�14
d

�3:40�

I3 � rÿ3d �P� K� �3:41�
with b0 � EjX 0j4. Let us choose k � rÿ2d

��������
Nb0

p
. Such k � N exists since we

assumed (3.13), (3.14) and b0 � N�P� K�. Thus, (3.38)±(3.41) yield

D0N � pÿ3rÿ4d P� K� b0

N
� b03=2

N 3=2

 !
�1� jaj3� ;

and (3.37) follows by an application of b0 � N�P� K� and P� K � 1.
Let us prove (3.39). As in the proof of Theorem 1.3, applying Lemma 3.1

we obtain

I1 � pÿ2K�
Z
jtj�t1
jbW0�s� ÿ bW�k��s�j dt

jtj ; s � tK :

Applying Lemma 9.3 and replacing in that Lemma X by X 0, t by s and b by
b0 � EjX 0j4, we have

jbW0�s� ÿ bW�k��s�j � ,s2k b0 � jsjNb0 � jsjN
��������
Nb0

q� �
�1� jaj3� :
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Integrating with the help of Lemma 3.2 we obtain (3.39).
Let us prove (3.40). De®ne the measure v0 by replacing X by X 0 in (1.22).

Using representations of type (1.21) for W01 and W�1, we have

I2 � I4 � I5

with

I4 � sup
x
jW�k��x� ÿW0�x� ÿ N ÿ k

6N3=2
v0�Ax=

����
N
p
�j; I5 � k

6N 3=2
sup

A�Rd
jv0�A�j ;

where Ax � fu 2 Rd : Q�uÿ b� � xg.
Write Z 0kN �

Pk
j�1 Gj �

PN
j�k�1 X 0j . A re-normalization of random vectors

implies

I4 � d0N �def sup
A�Rd

PfZ 0kN 2
����
N
p

Ag ÿ PfZ 0NN 2
����
N
p

Ag ÿ N ÿ k
6N3=2

v0�A�
���� ���� :

To estimate d0N we can apply Lemma 9.4 with Xj replaced by X 0j . We get

d0N �d
b0

r4dN
� b0�d�7�=2N �d�3�=2

kd�5r2d�14
d

:

Using a representation of type (1.22) for v0 and estimating the variation of
the signed measure, we obtain

I5 �d kNÿ3=2rÿ2d

����
b0

q
:

Collecting these bounds, we obtain (3.40).
It remains to verify (3.41). Using representations of type (1.21) for the

Edgeworth corrections, we have

I3 � sup
x
jW01�x� ÿW�1�x�j � Nÿ1=2 sup

A�Rd
jv0�A� ÿ v��A�j :

Both v0 and v� are 3-linear forms in X 0 and X � respectively. Using X 0 �
X � ÿ EX � � W and estimating the variations of the signed measures, we
arrive at (3.41). (

4. An extension of the double large sieve to unbounded distributions

The large sieves of Linnik (1941) (see also Graham and Kolesnik 1991) play a
key role in some problems of analytic number theory. The main result of the
Section±Lemma 4.1 extends the double large sieve to (unbounded) random
vectors. Lemma 4.7 presents an application of this bound to sums of i.i.d.
vectors in Rd . We need this lemma for the proof of the main result of this
paper.

In this section we shall assume that Rd is ®nite dimensional, i. e., d <1.
Let jxj1 denote the max-norm jxj1 � max

1�j�d
jxjj.
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Lemma 4.1. Let m denote an integer such that m > d=2. Assume that the
independent random vectors U ; V 2 Rd are sums of independent random vec-
tors Uj and Vj with non-negative characteristic functions,

U � U1 � � � � � U2m�2 and V � V1 � � � � � V2m�2 :

Let R > 0 and T > 0 denote some positive real numbers. Write

A � 1� EjU=T j2m; B � 1� EjV =Rj2m ;

and

C � 1� �TR�ÿ2m; D � �TR�d :

Then we have

E efhU ; V ig �m;d A B C D max
1�a�2m�1

PfjRUaj � 1g max
1�b�2m�1

PfjTVbj � 1g :

Note that the bound of Lemma 4.1 depends on U2m�2 and V2m�2 through
moments A and B only.

To compare our results with the corresponding results for trigonometric
sums, we include a special probabilistic version of the double large sieve
bound as Proposition 4.2. We omit the proof since it di�ers mainly in no-
tation from similar proofs in Graham and Kolesnik (1991).

Proposition 4.2. Let U ; V 2 Rd be independent random vectors with non-neg-
ative characteristic functions. Assume that PfjU j1 � Tg � 1 and PfjV j1
� Rg � 1 with some positive constants such that TR > 1. Then

E efhU ; V ig �d �RT �dPfjTV j1 � 1gPfjRU j1 � 1g :

Corollary 4.3. For arbitrary positive numbers R0 and T0 write �R � minfR; R0g
and �T � minfT ; T0g. Then, under the assumptions of Lemma 4:1, we have

E efhU ; V ig �m;d A B C D max
1�a�2m�1

Ia max
1�b�2m�1

�Ib ;

where

Ia �
Z
jsj�1

E efh�R2Ua=R; sig ds; �Ib �
Z
jsj�1

E efh �T 2Vb=T ; sig ds :

Remark. Lemma 4.1 can be extended to vectors

T � �T1; . . . ; Td� and R � �R1; . . . ;Rd�
with positive coordinates. De®ne

Tÿ1 � �Tÿ11 ; . . . ; Tÿ1d � and Ts � �T1s1; . . . ; Tdsd� ;
for s � �s1; . . . ; sd� 2 Rd . Then Lemma 4.1 still holds with

A � 1� E
��Tÿ1U ��2m

; B � 1� E
��Rÿ1V ��2m

;
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and

C � 1�
Xd

j�1
�TjRj�ÿ2m; D �

Yd

j�1
TjRj :

Similar extensions hold for other results of the section.
To prove Lemma 4.1 and its Corollary 4.3 we need several lemmas which

may be of separate interest.

Lemma 4.4. Let U and V be independent random vectors taking values in Rd .
Let R > 0 and T > 0. Let g and h denote positive functions. Assume that g as
well as its inverse Fourier transform, say bg, are Lebesgue integrable and
E1=g�V =R� <1. Then

EfhU ; V igj j �d J1J2 ;

where

J1 �
Z

Rd
h�s=T �E efhV ; sig

g�V =R�
���� ���� ds ;

J2 � sup
s2Rd

Z
Rd

efÿhs; sig
h�s=T � g�s=R�E efhU ; sig ds

���� ���� :
Proof of Lemma 4:4. Since g�x� � cd

R
Rd efhx; yigbg�y� dy, we get

E efhU ; V ig � E efhU ; V ig g�V =R�
g�V =R�

� cdE

Z
Rd

efhV ;U � s=Rig
g�V =R� bg�s� ds

� cd

Z
Rd

E
efhV ; sig
g�V =R� bg�Rsÿ RU�Rd ds ;

and

E efhU ; V igj j �d

Z
Rd

E
h�s=T �efhV ; sig

g�V =R�
���� ���� Ebg�Rsÿ RU�Rd

h�s=T �
���� ���� ds :

Consequently,

E efhU ; V igj j �d J1J3; where J3 � sup
s2Rd

Ebg�Rsÿ RU�
h�s=T � Rd

���� ���� :
Representing bg as the inverse Fourier transform of g, we obtain J3 �d J2,
and the result of the Lemma follows. (

Lemma 4.4 yields the following

Corollary 4.5. Let EjU j2m <1 and EjV j2m <1, for some m > d=2. Then,
for g�s� � �1� jsj2�ÿm, we have

E efhU ; V igj j �d J1�J 2 ;
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where

J1 �
Z

Rd
g�s=T � E 1� jV =Rj2

� �m
efhV ; sig

��� ��� ds ;

�J 2 �
Z

Rd
�1ÿ Tÿ2Ds�m g�s=R�EefhU ; sig� ��� �� ds ;

and where the Laplace operator Ds � @21 � � � � � @2d acts on the variables s.

Proof. Notice that �1� js=T j2�mefÿhs; sig � �1ÿ Tÿ2Ds�mefÿhs; sig. Thus,
assuming that g � h, the integral J2 from Lemma 4.4 we can represent as

J2 � sup
s2Rd

Z
Rd
�1ÿ Tÿ2Ds�mefÿhs; sig
ÿ �

g�s=R�EefhU ; sig ds

���� ���� :
Integrating by parts we derive J2 � �J 2. (

Lemma 4.6. Assume all conditions of Lemma 4:1 except positivity of the
characteristic functions which is replaced by the assumption that the random
vectors have mean zero. Write

Ja �
Z

Rd
g�s=R� E efhUa; sigj j ds; �Jb �

Z
Rd

g�s=T � E efhVb; sigj j ds ;

where g�s� � �1� jsj2�ÿm. Then

E efhU ; V igj j �m;d A B C max
1�a�2m�1

Ja max
1�b�2m�1

�Jb :

Proof. We shall derive the result from Corollary 4.5. It is su�cient to show
that

E�1� jV =Rj2�mefhV ; sig
��� ����m;d B

X
1�b�2m�1

E efhVb; sigj j ; �4:1�

�1ÿ Tÿ2Ds�m u�s�g�s=R�� ��� ���m;d A C
X

1�a�2m�1
E efhUa; sigj jg�s=R� ; �4:2�

where we denote u�s� � E efhU ; sig.
Let us prove (4.1). We have

E�1� jV =Rj2�mefhV ; sig
��� ����m;d

Xm

j�0
Rÿ2jIj ;

where

Ij �
��EjV j2j efhV ; sig�� :

In order to estimate Ij recall that V � V1 � � � � � V2m�2. Thus

jV j2j �
X2m�2

l�1

X2m�2

r�1
hVl; Vri

 !j

�
X

1�l1;...;lj�2m�2

X
1�r1;...;rj�2m�2

Yj

q�1
hVlq ; Vrqi ;
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and instead of Ij we have to bound

J �def E
Yj

q�1
hVlq ; VmqiefhV ; sig

�����
����� :

The number of (di�erent) Vj in the product
Qj

q�1hVlq ; Vrqi does not exceed
2j � 2m. Thus, this product is independent of at least one of vectors
V1; . . . ; V2m�1, say Vb. Therefore

J � E
Yj

q�1
jVlq j jVmq j

 !
E efhVb; sigj j :

Applying the geometric-arithmetic mean inequality we get

E
Yj

q�1
jVlq j jVrq j �m;d

Xj

q�1
EjVlq j2j � EjVrq j2j
� �

�m;d EjV j2j

since by Jensen's inequality

EjX j2j � EjX � EY j2j � EjEY �X � Y �j2j � EjX � Y j2j

provided that X and Y are independent and EY � 0. Collecting these esti-
mates, we obtain (4.1).

The proof of (4.2) is a little bit more involved. We have���1ÿ Tÿ2Ds�m u�s�g�s=R�� ����m;d

Xm

s�0
Tÿ2sIs ;

where

Is �
��Ds

s u�s�g�s=R�� ��� :
Di�erentiating the product we get

Is �m;d

X
jaj�jbj�2s

@a1
1 . . . @ad

d u�s��� ��Rÿjbj �@b1
1 . . . @

bd
d g��s=R�

��� ��� :
Here a � �a1; . . . ; ad� and b � �b1; . . . ; bd� denote non-negative integer multi-
indices with jaj � a1 � � � � � ad . The function g satis®es

�@b1
1 . . . @

bd
d g��s�

��� ����m;d g�s� :
Furthermore, writing the random vector U � �U�1�; . . . ;U�d�� in coordinates
of Rd , we have ��@a1

1 . . . @ad
d u�s��� � ��EU a1

�1� . . . U ad
�d�efhU ; sig

�� :
The product Ua1

�1� . . . U ad
�d� is a polynomial of order jaj � 2s � 2m in U . Thus

arguing similarly as in the proof of (4.1) we obtain��EU a1
�1� . . . U ad

�d�efhU ; sig
���m;d EjU jjaj

X
1�a�2m�1

��E efhUa; sig
�� ;
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and (4.2) follows sinceXm

s�0

X
jaj�jbj�2s

Tÿ2sRÿjbjEjU jjaj �m;d A C : (

Proof of Lemma 4:1.We shall derive the result from Lemma 4.6. Let X 2 Rd

denote a random vector with non-negative characteristic function. It is suf-
®cient to show that

J �def
Z

Rd
g�s=R�E efhX ; sig ds�m;d RdPfjRX j � 1g : �4:3�

Introduce the concentration function

Q�X ; k� � sup
s2Rd

PfjX ÿ sj1 � kg; k � 0 :

Assume that a function p�s� � p1�s1� . . . pd�sd� can be represented as a
product such that the functions pj : R! R are even, non-negative, non-
increasing on �0;1� and pj�t� � pj�0�, for jtj � 1, for all 1 � j � d. It is
known that (see Zaitsev 1988a, Lemma 5.3, or 1988b, Lemma 2.6)Z

Rd
p�s�EefhZ; sig ds�d Q�Z; 1�

Z
Rd

p�s� ds ; �4:4�

for any random vector Z with non-negative characteristic function.
Let us apply the bound (4.4) to the integral in (4.3). De®ne

p�s� � h�s1� . . . h�sd�, where the function h : R! R satis®es

h�t� � 1; for jtj � 1; and h�t� � �2=�1� t2��m=d ; for jtj � 1 :

Then g�s� �m;d p�s� and a change of variable of integration together with
(4.4) implies J �m;d RdQ�RX ; 1�. To ®nish the proof of (4.3) we should re-
place the norm j � j1 by j � j. To this end notice that Q�X ; 1� �d dÿdQ�X ; d�,
for any 0 < d � 1 and random vector X . Furthermore, the inequality

sup
s2Rd

PfjX ÿ sj � kg �d PfjX j � kg; k � 0 ;

holds for any random vector X with non-negative characteristic function. A
proof is based on an application of Parseval's equality, cf. the proof of
Lemma 5.1 in Zaitsev (1988a). (

Proof of Corollary 4:3. Obviously

PfjRUaj � 1g � Pf�R2jUa=Rj � 1g
and the result follows from Lemma 4.1 by an application of

PfjX j � 1g �d

Z
jsj�1

E efhX ; sigj j ds ;

see Esseen (1968), Lemma 6.1. (
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We shall denote jAj � supjxj�1 jAxj.

Lemma 4.7. Let A be a d � d matrix. Let X 2 Rd denote a random vector with
covariance C. Assume that there exists a constant cd such that

PfjX j � cdg � 1; jAj � cd ; jAÿ1j � cd ; jCÿ1j � cd : �4:5�
Let U and V denote independent random vectors which are sums of N inde-
pendent copies of X . Then (the function M is de®ned by �1:16��

E efthAU ; V igj j �d M
2d�t; N�; for t 2 R : �4:6�

Proof. Introducing sums U 0 and V 0 of dN=2e independent copies of the
symmetrization ~X of X , we have

E efthAU ; V igj j � E efthAU 0; V 0ig : �4:7�
To prove (4.7), one should proceed as follows: split V � V1 � V2 � V3 into
three independent sums such that each of V1 and V2 is a sum of dN=2e
independent copies of X ; condition on U and V3 and to apply the equality
jE efhx; V1 � V2igj � jE efhx; V1igj2 � E efhx; ~V1ig, which is valid for any
x 2 Rd and any i.i.d. random vectors V1, V2; repeat the procedure with U
instead of V .

In the proof of the Lemma we can assume that N is su�ciently large, that
is, that N � c�d�, with a su�ciently large constant c�d�. Otherwise the result
follows from the trivial bound jE efthAU ; V igj � 1 and the estimate
1�d M

2d�t; N�, valid for N < c�d�. Furthermore, without loss of generality
we shall assume that U and V are sums of 4dN independent copies of ~X . To
see this, use (4.7) and replace dN=2e by 4dN . Since N is arbitrary and (1.17) is
ful®lled, such a replacement can change in (4.6) only constants depending on
d. Thus we can write

U � U1 � � � � � U4d ; V � V1 � � � � � V4d �4:8�
with i.i.d. random vectors U 1; . . . ;U 4d ; V 1; . . . ; V 4d such that U1 is a sum of N
independent copies of ~X . Thus, assuming (4.8) we have to estimate
E efthAU ; V ig. Due to the symmetry of random vectors, we may assume as
well that t > 0.

Let us apply Corollary 4.3 replacing U and V by
��
t
p

AU and
��
t
p

V , and
choosing m � 2d ÿ 1, T 2 � R2 � e2tN , T 4

0 � R4
0 � e4N , where we write

e � 1=�2c2d � cd�. By the Rosenthal's inequality and (4.5), the moments
EjAUjj4dÿ2 and EjVjj4dÿ2 are bounded from above by c�d�N 2dÿ1. Further-
more, we can assume that T 2 � e2tN � 1. Indeed, otherwise the result of the
Lemma is obvious since 1�d M�t; N�, for 0 < tN �d 1. Thus, Corollary 4.3
implies

E efthAU ; V ig �d T 2d I�I ; �4:9�
where

I �
Z
jxj�1

E ef ��
t
p h�T 2AU1=T ; xig dx; �I �

Z
jxj�1

E ef ��
t
p h �T 2V1=T ; xig dx :
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The bound (4.9) implies the Lemma provided that we can show that

I �d �tN�ÿd=2T d �Tÿ2d
; �I �d �tN�ÿd=2T d �Tÿ2d

: �4:10�
Thus it remains to prove (4.10). We shall estimate I . The estimate of �I is
similar.

Write n � ��
t
p h �T 2 ~X=T ;A0xi, where A0 is the transposed matrix A. The

i.i.d. property implies that

E ef ��
t
p h �T 2AU1=T ; xig � E efng� �N : �4:11�

Using (4.5) we have j ~X j � 2cd , jA0xj � cd , for jxj � 1. Therefore

jnj � 1; provided that 2c2d
��
t
p

�T 2
=T � 1 :

But the inequality 2c2d
��
t
p

�T 2
=T � 1 is clearly ful®lled due to our choice of e

and T , T0. Hence the symmetry of ~X and the inequality cos u � 1ÿ u2=4, for
juj � 1 together imply

E efng � E cos n � 1ÿ 1

4
En2 � exp ÿ 1

4
En2

� �
: �4:12�

We have

En2 � t �T 4Tÿ2Eh ~X ;A0xi2 � 2t �T 4Tÿ2hCA0x;A0xi :
Using jCÿ1j � cd and jAÿ1j � cd , we have hCz; zi � jzj2=cd and jA0xj �
jxj=cd . Consequently, En2 � 2cÿ3d t �T 4Tÿ2jxj2, and, in view of (4.11) and (4.12),
we obtain

I �
Z
jxj�1

E expfÿNcÿ3d t �T 4Tÿ2jxj2=2g dx�d �tN�ÿd=2 �Tÿ2dT d ;

hence proving (4.10) and the Lemma. (

5. Technical Lemmas

The following symmetrization inequality (see Bentkus and GoÈ tze 1996,
Lemma 3.1) improves an inequality due to GoÈ tze (1979).

Lemma 5.1. Let L;C 2 Rd . Let Z;U ; V and W denote independent random
vectors taking values in Rd . Denote by

P �x� � hQx; xi � hL; xi � C; for x 2 Rd ;

a real-valued polynomial of second order. Then

2 E eftP�Z � U � V � W �gj j2� E ef2thQ~Z; ~Uig � E ef2thQ~Z; ~V ig :
We shall need the following auxiliary bound for the convergence rate in the
CLT in ®nite dimensional and Hilbert spaces for expectations of smooth
functions.
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Lemma 5.2. Assume that X is symmetric. Let a function u : Rd ! R be four
times Frechet di�erentiable. Then there exists an absolute constant c such that

Eu�SN � ÿ Eu�G�j j � cbNÿ1 sup
x2Rd

u�4��x�  :

Proof. For the sake of completeness we include a sketch of the proof. Write

Wj � Nÿ1=2�X1 � � � � � Xjÿ1 � Gj�1 � � � � � GN � :
Then

Eu�SN � ÿ Eu�G�j j � d1 � � � � � dN ;

where, by Taylor expansions in powers of Xj=
����
N
p

and Gj=
����
N
p

,

dj � Eu�Wj � Xj=
����
N
p
� ÿ Eu�Wj � Gj=

����
N
p
�

��� ��� � cNÿ2EjX j4 sup
x2Rd

u�4��x�  :

(

Lemma 5.3. Let d > 0. Assume that X is symmetric. Then there exists an
absolute positive constant c such that the conditionN�2p; d;S;G� implies the
condition N� p; 2d;S; Sm�, for m � cb=� pd4�.
Proof.We shall apply Lemma 5.2. Let e 2 Rd . Write pe � PfjGÿ ej � dg. It
is su�cient to show that there exists an absolute constant c such that

2P jSm ÿ ej � 2df g � pe; for m � cb=� ped
4� : �5:1�

Consider a function u : Rd ! R with in®nitely many bounded derivatives
such that

0 � u � 1; u�x� � 1; for jxj � 1; u�x� � 0; for jxj � 2 :

Applying Lemma 5.2 we have

2P jSm ÿ ej � 2df g � 2Eu
Sm ÿ e

d

� �
� 2Eu

Gÿ e
d

� �
ÿ cmÿ1dÿ4b

� 2pe ÿ pe � pe ;

for m � cb=� ped
4�, thus proving (5.1). (

Lemma 5.4. Assume that 0 < 4e � d � 1. Let e 2 Rd , jej � 1 be an eigen-
vector of the covariance operator C � cov G, so that Ce � ree with some
re > 0. Then the probability pe � Pfjerÿ1Gÿ ej � dg satis®es pe �
expfÿcr2eÿ2rÿ2e g with some positive absolute constant c.

Proof. Introduce the Gaussian random vectors Gÿ hG; eie and hG; eie. These
vectors are independent since e is an eigenvector of C � cov G. We have

pe � P erÿ1 Gÿ hG; eiej j � erÿ1hG; eieÿ e
�� �� � d

� 	 � p1p2 ;
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where

p1 � P erÿ1 Gÿ hG; eiej j � d=2
� 	

and p2 � P erÿ1hG; eieÿ e
�� �� � d=2
� 	

:

Using Chebyshev's inequality and r2e � EhG; ei2, we have
p1 � 1ÿ P erÿ1 Gÿ hG; eiej j > d=2

� 	 � 1ÿ 4e2dÿ2rÿ2E Gÿ hG; eiej j2

� 1ÿ 4e2dÿ2rÿ2E Gj j2 � 1ÿ 4e2dÿ2 � 1=2

provided that 4e � d.
We can write p2 � P erÿ1regÿ 1

�� �� � d=2
� 	

, where g is a standard
Gaussian random variable. Using r � re, d � 4e and d � 1, and replacing
the standard normal density by its minimal value in the interval �0; r=�ere��,
we obtain

p2 � P 1ÿ d=2 � erÿ1reg � 1
� 	 � c1 exp ÿr2=�2e2r2e�

� 	
�exp ÿcr2=�e2r2e�

� 	
: (

Lemma 5.5. Assume that Q2 � I. The collections of eigenvalues (counting their
multiplicities) of �QC�2, �CQ�2 and D�def ������������

QCQ
p

C
������������
QCQ
p

are equal. Fur-
thermore, the eigenvalues h41 � h42 � . . . of �CQ�2 satisfyX

j�1
h4j � r21r

2; hj � r : �5:2�

If the condition B�So;C� (see (1.4)) is ful®lled then ks � hs and ks � rs.

Proof. For any bounded linear operators A;B : Rd ! Rd such that A � 0,
the collections of non-zero eigenvalues of AB, BA and

����
A
p

B
����
A
p

coincide
(for a proof of this simple fact see Vakhania 1981, or Lemma 2.3 in Bentkus
1984). Hence, all operators mentioned in the Lemma have the same sets of
eigenvalues.

Let us prove (5.2). For any e 2 Rd we have

hDe; ei � r21h
������������
QCQ

p
e;

������������
QCQ

p
ei � r21hCQe;Qei :

Therefore, for any orthonormal basis fejg of Rd we obtainX
j�1

h4j �
X
j�1
hDej; eji � r21

X
j�1
hCQej;Qeji � r21r

2

since fQejg is again an orthonormal basis of Rd . (

Lemma 5.6. Assume that Q2 � I. The characteristic functions

u�t� � E e thQG1;G2if g; bF 0�t� � Ee tQ�Gÿ a�f g
satisfy

jbF 0�t�j2 � u�4t=3�; u�t� �
Yd

j�1
�1� h4j t2�ÿ1=2 : �5:3�
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Proof. Writing G�D �G1 � G2 � G3�=
���
3
p

and applying the symmetrization
Lemma 5.1, we derive the inequality in (5.3). Clearly

u�t� � E exp ÿt2hCQG;QGi=2� 	 � E exp ÿt2jW j2=2i
n o

;

where W denotes a centered Gaussian vector such that cov W �������������
QCQ
p

C
������������
QCQ
p

. By Lemma 5.5, the operators cov W and �CQ�2 have the
same eigenvalues h4j , and we can write W �D Pd

j�1 h2j gjej, where fgjg denotes a
sequence of i.i.d. standard normal variables and fejg is an orthonormal basis
of Rd corresponding to the eigenvalues h4j of cov W . Consequently,

u�t� �Qd
j�1 E exp ÿt2h4j g21=2

n o
, and simple calculations complete the proof

of (5.3). (

Lemma 5.7. Let Q2 � I and r <1. Then the Edgeworth corrections F �1 and
W�1 (see (1.2) and (1.19)) are functions of bounded variation provided that s � 9.
If b3 <1 and s � 9 then F1 and W1 are functions of bounded variation as well.
Furthermore, assuming r � 1 and s � 7, we have

sup
x
jW�1�x�j �s hÿ6s �1� jaj3� ; �5:4�

sup
x
jW1�x� ÿW�1�x�j �s hÿ6s �1� jaj3�P3 ; �5:5�

and, for any t� � c=N , where c is an absolute positive constant,Z
jtj�t�
jbW�1�t�j dt

jtj �s K1=2�t�N�3ÿs=2�1� jaj3�hÿs
s : �5:6�

Proof. We shall consider the case of functions W1 and W�1 only since
F1�x� � W1�xN� and F �1 �x� � W�1�xN� (see (3.7)). Assuming r � 1, using
splittings of G into independent components and the conditioning and
symmetrization techniques of Section 9, we obtain

jbW1�t�j � �tN�2EjX j3Nÿ1=2
��������������
u�ctN�

p
�1� jtN j��1� jaj3� �5:7�

with the function u de®ned in Lemma 5.6. A similar bound with EjX �j3
instead of EjX j3 holds for jbW�1�t�j. Lemma 5.6 implies u�t� �s hÿ2s

s jtjÿs since

1 � h1 � h2 � . . . Thus, both bW�1 and bW1 are integrable provided that s � 9,
and W�1 and W1 have bounded variations.

Estimating EjX �j3 � ����
N
p

and using a bound of type (5.7) for jbW�1�t�j, we
obtain

jbW�1�t�j �s �tN�2�1� jtN j��1� jaj3��1� h4s t2N2�ÿs=4 ; �5:8�
whence, using the Fourier inversion formula (3.2), we obtain (5.4).

To prove (5.5) and (5.6) we use again the Fourier inversion formula (3.2),
estimates of type (5.7), (5.8), r � 1 and

X � X � � X�; EjX�j3 �
����
N
p

P3; Nÿ1=2EjX �j3 � K1=2 :
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6. Discretization of expectations

Assume that the symmetrization ~X of a random vector X 2 Rd satis®es

P j ~X ÿ ej � d
� 	 � p ; �6:1�

for some d � 0, 0 < p � 1 and e 2 Rd .
Recall that e1; e2; . . . denote i.i.d symmetric Rademacher random vari-

ables.
Throughout this Section we assume that S � fe1; . . . ; esg � Rd is an

arbitrary ®nite subset such that card S � s. Recall that a discrete random
vector U 2 Rd belongs to the class C�d;S�, d > 0, if U is distributed as
e1z1 � � � � � eszs, with some (non-random) z1; . . . ; zs 2 Rd such that
jzj ÿ ejj � d, for all 1 � j � s.

For a bounded and measurable function H : Rd ! B with values in a
Banach space �B; j � jB�, de®ne the norm jH j1 � supx H�x�j jB.

Let Ht : Rd ! B denote a family of bounded functions indexed by t 2 R
such that the functions �t; x� 7!Ht�x� and t 7! jHtj1 are measurable. In
Lemmas 6.1 and 6.2 we shall apply the discretization procedure to jEH�ZN �j
and

R jEHt�ZN �jdt, where we write
R � RR.

In Lemma 6.1 we write n � pN=2d e and T � U1 � � � � � Un, where Uj are
independent random vectors of class C�d; feg�, that is Uj � ejzj, for some
non-random zj such that jzj ÿ ej � d.

Lemma 6.1. Assume that X satis®es (6.1). Let W 2 Rd denote a random vector
independent of ZN . Then, for any c � 0, we haveZ

EHt�2ZN � W �j j dt � I � cc�pN�ÿc
Z
jHtj1 dt �6:2�

with

I � sup
C

sup
b2Rd

Z
EHt�T � W � b�j j dt ;

where supC denotes the supremum over allL�U1�; . . . ;L�Un� 2 C�d; feg� such
that T is independent of W .

Proof. Replacing Ht by the function x 7!EW Ht�x� W �, we can assume that
W � 0. Furthermore, we can assume that pN � c with a su�ciently large
absolute constant c since otherwise (6.2) follows from the trivial estimate
EHt�2ZN � W �j j � jHtj1.

Let a1; a2; . . . be a sequence of i.i.d random variables, independent of all
other random variables and vectors and such that

Pfa1 � 0g � Pfa1 � 1g � 1=2 :

Then the sum

V a �
XN

j�1
�ajXj � �1ÿ aj� �X j�
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has the same distribution as ZN (recall that �X denotes an independent copy of
X ). Notice that the random variables e1; e2; . . . de®ned by ej � 2aj ÿ 1 are
i.i.d symmetric Rademacher random variables. Introduce the sum V e �
e1 ~X 1 � � � � � eN ~X N . Using the relation aj � ej

2 � 1
2, we may write V a �

1
2 V e � b, for some b � bN �X1; . . . ;XN �, which is independent of e1; . . . ; eN .
Conditioning we have (recall that we assumed that W � 0)Z

EHt�2ZN �j j dt � E

Z
wj j dt; where w � EeHt�V e � b� ; �6:3�

and where Ee denotes the partial integration with respect to the distribution
of e1; e2; . . .

Introduce the independent events

A�l� � j ~X l ÿ ej � d
� 	

; l � 1; 2; . . . :

Notice that p0 �def PfA�l�g � p by the assumption (see (6.1)). Consider the
event

BN �
n
at least

p0N
2

of events A�1�; . . . ;A�N� occur
o
;

and introduce Bernoulli random variables nl � IfA�l�g. For the complement
Bc

N of the event BN , we have

P Bc
N

� 	 � 1ÿ P BNf g �c � pN�ÿc; for any c > 0 : �6:4�
Let us prove (6.4). We can assume that c � 1. Write gj � nj ÿ Enj and notice
that Ejg1j2c �c Ejn1j2c � p0. Using p0N � pN � c, Chebyshev's inequality
and Rosenthal's type inequality (1.24), we obtain

P Bc
N

� 	 � P n1 � � � � � nN <
p0N
2

� �
�c � p0N�ÿ2cE g1 � � � � � gNj j2c

�c � p0N�ÿ2c NEjg1j2c � NEg21
ÿ �c� �

�c � p0N�ÿc ;

whence (6.4) follows since p0 � p.
Consequently, (6.4) yields

E

Z
jwj dt � cc�pN�ÿc

Z
jHtj1 dt � EI BNf g

Z ��w�� dt ;

and it remains to show that

I BNf g
Z

wj j dt � sup
C

sup
b2Rd

Z
EHt�T � b�j j dt �6:5�

since (6.3) holds. If the event BN does not occur, then IfBNg � 0, and (6.5) is
ful®lled. If BN occurs then at least pN=2 of events A�l� occur, say
A�l1�; . . . ;A�la� with some a � pN=2 � n. Reorder the random variables

el ~X l; 1 � l � N , so that A�1�; . . . ;A�a� occur. Then we may write

I BNf g
Z
jwj dt � I BNf g

Z
EeHt�e1 ~X 1 � � � � � ea ~X a � b� b1�
�� �� dt �6:6�
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with some b1 independent of e1; . . . ; ea. Conditioning in (6.6) on el such that
n < l � a, we obtain

I BNf g
Z
jwj dt � sup

b2Rd
I BNf g

Z
Ee1;...;en Ht�e1 ~X 1 � � � � � en ~X n � b��� �� dt ;

whence (6.5) follows. (

The next Lemma 6.2 allows to replace sums of independent random
vectors by sums of discrete bounded random vectors of a very special type.

Lemma 6.2. Let Q2 � I. AssumeN� p; d;S; ~X �. Let n � pN=�5s�d e. Then, for
any c � 0, we haveZ

EHt�2ZN � b�j j dt � I � cc�s��pN�ÿc
Z

Htj j1 dt �6:7�
with

I � sup
C

sup
b2Rd

Z
EHt�Y �QY 0 � b�j j dt ;

and

EH�2ZN � b�j j � cc�s�� pN�ÿcjH j1 � sup
C

sup
b2Rd

EH�Y �QY 0 � b�j j ; �6:8�

where Y � U1 � � � � � Un and Y 0 � U 01 � � � � � U 0n denote sums of independent
(non-i.i.d.!) vectors, and supC is taken over all fL�Uj�;L�U 0j� :
1 � j � ng � C�d;S�.
Proof. To prove (6.8), it su�ces to set Ht � HIf0 � t � 1g in (6.7).

It remains to prove (6.7). We shall apply 2s times Lemma 6.1. As in the
proof of Lemma 6.1 we may assume that pN � cs, for a su�ciently large
constant cs.

Let r � N=�2s�d e and m � dpr=2e. Notice that m � n since pN � cs is
su�ciently large.

Introducing i.i.d random vectors Vj such that their common distribution
is equal to L�X 1 � � � � � X r�, and collecting summands in ZN in groups, we
may write

ZN � b � V1 � � � � � V2s � b1 ;

where b1 is independent of Vj, 1 � j � 2s. Conditioning on b1 we obtain

J �def
Z

EHt�2ZN � b�j j dt � sup
b2Rd

Z
EHt�2V1 � � � � � 2V2s � b�j j dt : �6:9�

Write W � 2V2 � � � � � 2V2s � b. Then 2V1 � � � � � 2V2s � b � 2V1 � W . To
estimate the right hand side of (6.9) we can apply Lemma 6.1 replacing in
that Lemma ZN by V1, N by r, n by m and e by e1. The condition
N� p; d;S; ~X � with S � fe1; . . . ; esg guarantees that Pfj ~X ÿ e1j � dg � p.
Thus, using N �s r�s N we get

J � cc�s��pN�ÿc
Z
jHtj1 dt � sup

C
sup
b2Rd

Z
EHt�T �1� � W � b��� �� dt ; �6:10�
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where T �1� is a sum of m � dpr=2e independent random vectors of the class
C�d; fe1g�. Introducing i.i.d. Rademacher random variables ekj, we can write

T �1� �
Xm

j�1
e1jz1j; with jz1j ÿ e1j � d :

Splitting W � V2 � W 0 with W 0 � V3 � � � � � V2s, to the last integral in (6.10)
we can apply the procedure leading from (6.9) to (6.10) with V2 instead of V1.
Now we can repeat the procedure with V3; � � � ; V2s. We obtain

J � cc�s��pN�ÿcjHtj1 � sup
C

sup
b2Rd

Z
EHt�T �1� � � � � � T �2s� � b��� �� dt �6:11�

with T �k� �Pm
j�1 ekjzkj such that

zkj ÿ ek
�� �� � d; for 1 � k � s; zkj ÿQ _ek

�� �� � d; for s� 1 � k � 2s :

Reordering the summands we can write

T �1� � � � � � T �s� �
Xs

k�1

Xm

j�1
ekjzkj �

Xm

j�1
Uj; with Uj �

Xs

k�1
ekjzkj: �6:12�

De®ne z0kj � Qzkj. Since Q2 � I, we have zkj � Qz0kj. Furthermore, the in-
equality jzkj ÿQekj � d is equivalent to jz0kj ÿ ekj � d. Thus, we can write

T �s�1� � � � � � T �2s� �
Xs

k�1

Xm

j�1
ekjQz0kj � Q

Xm

j�1
U 0j; with U 0j �

Xs

k�1
ekjz0kj :

�6:13�
The relations (6.11)±(6.13) together imply (6.7) with m � n instead of n. But
we can remove all summands Uj, U 0j with n < j � m conditioning on them.

(

Lemma 6.2 allows to bound the following integrals over the characteristic
functions.

Corollary 6.3. Let Q2 � I. Assume N� p; d;S; ~X �. Write n � dpN=�5s�e.
Then, for any 0 < A � B and c � 0, we haveZ

A�jtj�B
E e tQ�ZN ÿ a�f gj j dt

jtj � I � cc�s��pN�ÿc log
B
A
;

with

I � sup
C

sup
b2Rd

Z
A�jtj�B

��������������
u�t=4�

p dt
jtj ; u�t� �def E eftQ�Y �QY 0 � b�gj j2 ;

where Y � U 1 � � � � � U n and Y 0 � U 01 � � � � � U 0n denote sums of independent
(non-i.i.d.!) vectors, and supC is taken over all fL�Uj�;L�U 0j� : 1 � j
� ng � C�d;S�.
Proof. It is su�cient to choose Ht�x� � jtjÿ1IfA � jtj � BgE eftQ�x�=4g in
(6.7) of Lemma 6.2. (
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7. Bounds for characteristic functions

The main result of the Section is the following Theorem 7.1, which is valid
without any moment assumptions.

Theorem 7.1. Assume that Q2 � I and that the conditionN� p; d;So; ~X � holds
with some 0 < p � 1 and 0 � d � 1=�5s�. Then

E eftQ�ZN ÿ a�gj j �s M
s�t; pN� ;

where the function M is de®ned by (1.16).

Corollary 7.2. Assume that Q2 � I and that the condition N� p; d;So;G�
holds with some 0 < p � 1 and 0 < d � 1=�10s�. Then

E e tQ�ZN ÿ a�f gj j �s �1� ds�Ms�tm0; pN=m0�; m0 � b=p :

Proof of Corollary 7.2. The proof can be reduced to collecting summands in
the sum ZN in groups of size, say m. By Lemma 5.3, a normalized sum, say Y ,
of m independent copies of X satis®es the condition N� p=2; 2d;So; ~Y �
provided that m � b=� pd4�, and therefore we can apply Theorem 7.1. (

To prove Theorem 7.1 we need the auxiliary Lemmas 7.3 and 7.4.
Lemma 7.3 is a initial step for an application of the double large sieve in
Lemma 7.4. In Section 8 we shall extend the methods of this Section for the
proof of the multiplicative inequality.

In the proof of the next Lemma we shall combine discretization tech-
niques (see Lemma 6.2) with symmetrization arguments (see Lemma 5.1).
An application of the geometric-arithmetic mean inequality will then reduce
the problem to the i.i.d case.

Lemma 7.3. Assume that Q2 � I and that the condition N� p; d;S; ~X � holds
with some 0 < p � 1 and d > 0. Write n � dpN=�11s�e. Then

E e tQ�ZN ÿ a�f gj j � cs�c�� pN�ÿc � sup
C

����������������������������������
E efth ~W ; ~W

0i=2g
q

; �7:1�

where W � V 1 � � � � � V n and W 0 � V 01 � � � � � V 0n denote independent sums of
independent copies of random vectors V and V 0 respectively, and the supremum
supC is taken over all L�V �;L�V 0� 2 C�d ;S�.
Proof. While proving (7.1) we can assume that pN � cs with a su�ciently
large constant cs, since otherwise (7.1) is trivially ful®lled.

Write H�x� � eftQ�x�=4g and b � ÿ2a. Then

E e tQ�ZN ÿ a�f gj j � EH�2ZN � b�j j ;
and the inequality (6.8) of Lemma 6.2 implies

E e tQ�ZN ÿ a�f gj j � cc�s�� pN�ÿcjH j1 � sup
C

sup
b2Rd

EH�Y �QY0 � b�j j

� cc�s�� pN�ÿc � sup
C

sup
b2Rd
juj �7:2�
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with u �: E eftQ�Y �QY0 � b�=4g, where
Y � U1 � � � � � Uk and Y 0 � U 01 � � � � � U 0k; k � dpN=�5s�e ;

denote independent sums of independent non-i.i.d. vectors, and supC is taken
over all fL�Uj�;L�U 0j� : 1 � j � kg � C�d ;S�.

In the view of (7.2), it remains to show that

juj2 � sup
C

E e th ~W ; ~W
0i=2

n o
: �7:3�

We shall apply the symmetrization Lemma 5.1. Split Y � T � T1 and
Y 0 �Qb � R� R1 � R2 into sums of independent sums of independent
summands so that each of the sums T , R and R1 contains n � dpN=�11s�e
independent summands Uj and U 0j respectively. Such an n exists since
pN � cs with a su�ciently large cs. The symmetrization Lemma 5.1 and
symmetry of Q imply

2juj2 � E e th ~T ;Q2 ~Ri=2� 	� E e th ~T ;Q2 ~R1i=2
� 	

:

Recall that Q2 � I. Furthermore,

sup
C

E e th~T ; ~Ri� 	 � sup
C

E e th~T ; ~R1i
� 	

:

Thus,

juj2 � sup
C

E e th ~T ; ~Ri=2� 	
:

Applying the geometric-arithmetic mean inequality we have

E e th ~T ; ~Ri=2� 	 � E
Yn

j�1
E ~U j

e th ~Uj; ~Ri=2� 	
� 1

n

Xn

j�1
E E ~Uj

e th ~U j; ~Ri=2� 	� �n

� sup
L�V �2C�d;S�

E E ~V e th ~V ; ~Ri=2� 	ÿ �n

� sup
L�V �2C�d;S�

E e th ~W ; ~Ri=2� 	
: �7:4�

Arguing as in (7.4), we replace ~R by ~W
0
in the last expectation, which con-

cludes the proof of (7.3). (

Recall that So � fe1; . . . ; esg � Rd denotes an orthonormal system.

Lemma 7.4. Assume that d � 1=�5s�. Let W � V1 � � � � � Vn and W 0 �
V 01 � � � � � V 0n denote independent sums of independent copies of some random
vectors V and V 0 such that L�V �;L�V 0� 2 C�d ;So�. Then

E e th ~W ; ~W
0i

n o
�s M

2s�t ; n�; for t 2 R : �7:5�
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Proof. The Lemma easily follows from Lemma 4.7. Indeed, we can write

V � e1z1 � � � � � eszs; V 0 � �e1z01 � � � � � �esz0s
with some zj, z0j 2 Rd such that

jzj ÿ ejj � d; jz0j ÿ ejj � d; for 1 � j � s : �7:6�

Consider the random vector Y � �~e1; . . . ; ~es� 2 Rs with coordinates which are
symmetrizations of i.i.d. Rademacher random variables. Obviously,
PfjY j � 2

��
s
p g � 1, and cov Y � 2I, where I is the unity matrix. Let R and T

denote independent sums of n independent copies of Y . Introduce the matrix
A � faij : 1 � i; j � sg with aij � hzi; z0ji. Then we can write h ~W ; ~W 0i �
hAR; T i.

In order to estimate the characteristic function of hAR; T i, we shall apply
Lemma 4.7, replacing d by s, N by n, U by R, and V by T . Since So is an
orthonormal system, the inequalities (7.6) imply that A � I�B with some
matrix B � fbijg such that jbijj � 2d� d2. Thus we have jBj � jBj2 �
2sd� sd2, where jBj2 denotes the Hilbert±Schmidt norm of the matrix B.
Therefore the condition d � 1=�5s� implies jBj � 1=2. Consequently,
jAÿ1j � 2. Thus, all conditions of Lemma 4.7 are ful®lled, and (7.5) follows.

(

Proof of Theorem 7:1. We shall assume that pN � cs with a su�ciently large
constant cs, since otherwise the trivial inequality E eftQ�ZN ÿ a�gj j � 1
combined with

inf
t
Ms�t ; pN� � � pN�ÿs=4 �7:7�

implies the result.
Let us apply Lemma 7.3 and Lemma 7.4 with n � dpN=�11s�e. We have

E e tQ�ZN ÿ a�f gj j �s;c � pN�ÿc �Ms�t=2 ; n� :
By (1.17), Ms�t=2 ; n� �s M

s�t ; pN�. Using (7.7) and choosing c � s=4, we
have � pN�ÿc �Ms�t ; pN�, which completes the proof of the Theorem. (

8. The multiplicative inequality

The main result of this section is the multiplicative inequality of Lemma 8.1
for characteristic functions of discrete random vectors. Combined with the
discretization technique described in Section 5, the multiplicative inequality
can be applied to bound integrals over general characteristic functions.

Introduce the independent sums

Yn �
Xn

j�1
Uj; Y 0n �

Xn

j�1
U 0j; L�Uj�;L�U 0j� 2 C�d;So�; for 1 � j � n ;

�8:1�
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of independent (non-identically distributed!) random vectors. Write

un�t� � E eftQ�Yn �QY 0n � b�g�� ��2; b 2 Rd :

Lemma 8.1. Assume that 0 � d � 1=�5s� and Q2 � I. Then we have

un�t�un�t � s� �s M
2s�s; n�; for t; s 2 R : �8:2�

Proof. For an alternative proof of (8.2) see Bentkus and GoÈ tze (1995b).
In the proof we may assume that n � 2 since otherwise (8.2) is trivially

ful®lled. We shall prove that

un�t ÿ s�un�t � s� �s M
2s�s; n�; for t; s 2 R : �8:3�

This estimate implies (8.2). Indeed, it su�ces to put t � s� s in (8.3) and to
use the estimate M2s�s; n� �s M

2s�2s; n�, which can be easily veri®ed using
(1.17).

Notice that

Q�x� ÿQ�y� � hQ�x� y�; xÿ yi; 2Q�x� � 2Q�y� � Q�x� y� �Q�xÿ y� :
�8:4�

For an arbitrary random vector n, let �n denote an independent copy of n.
Writing

h�t� � ��E eftQ�n� b�g�� ;
using h�t� � h�ÿt� and applying (8.4), we have

h�t � s�h�t ÿ s� � ��E ef�t � s�Q�n� b� ÿ �t ÿ s�Q��n� b�g��
� ��E eftQ�n� b� ÿ tQ��n� b� � sQ�n� b� � sQ��n� b�g��
� Ee thQn�Q�n� 2Qb; nÿ �ni � s

2Q�n� �n� 2b� � s
2 Q�nÿ �n�� 	�� �� :

We shall use (8.5) with n � Yn �QY 0n. Let ejl, �ejl, e�jl, j, l � 1, denote i.i.d.
Rademacher random variables, which are independent in aggregate. The
random vectors Yn and Y 0n are sums of Uj and U 0j, and using (8.1) we can write

n � Yn �QY 0n �
Xn

j�1

Xs

l�1
ejlzjl �Q

X2n

j�n�1

Xs

l�1
ejlzjl ;

where zjl denote non-random vectors in Rd such that jzjl ÿ elj � d, for all
possible values of j and l. Consequently, we can write

n� �n �
Xn

j�1

Xs

l�1
�ejl � �ejl�zjl �Q

X2n

j�n�1

Xs

l�1
�ejl � �ejl�zjl ;

nÿ �n �
Xn

j�1

Xs

l�1
��jl ÿ �ejl�zjl �Q

X2n

j�n�1

Xs

l�1
�ejl ÿ �ejl�zjl :
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Note that the 2-dimensional random vectors

�e� �e; eÿ �e� and ��1� e�e�e�; eÿ �e� �8:6�
have the same distribution provided that e; �e; e� are i.i.d. Rademacher ran-
dom variables.

By (8.6), the joint distribution of n� �n and nÿ �n does not change, if we
replace n� �n by

g �def
Xn

j�1

Xs

l�1
�1� ejl�ejl�e�jlzjl �Q

X2n

j�n�1

Xs

l�1
�1� ejl�ejl�e�jlzjl :

Thus, denoting by E� the partial integration with respect to the distributions
of the random variables e�jl, using (8.5) and an inequality of type jEX j2 �
E jX j2, we have

un�t � s�un�t ÿ s� � E E� e
n

thQg� 2Qb; nÿ �ni
��� � s

2Q�g� 2b� � s
2Q�nÿ �n�

o2
� E E� e thQg; nÿ �ni � s

2Q�g� 2b�� 	�� ��2 �8:7�
since nÿ �n and e�jl, j; l � 1, are independent. Write

g � Pn �QP 0n; Pn �
Xn

j�1
Vj; P 0n �

X2n

j�n�1
Vj; Vj �

Xs

l�1
�1� ejl��jl�e�jlzjl :

Given ejl, �ejl, the random vectors Vj, 1 � j � 2n, are independent. Split
Pn � T � T1 and P 0n � R� R1 � R2 so that each of the sums T ;R;R1 contains
k � dn=2e summands Vj. By an application of the symmetrization Lemma 5.1
(cf. the proof of (7.3)), we obtain

2 E� e thQg; nÿ �ni � s
2Q�g� 2b�� 	�� ��2� E� efsh ~T ; ~Rig � E� efsh ~T ; ~R1ig �8:8�

since Q2 � I. Similarly to the proof of (7.3), we have

sup
C

EE� efsh ~T ; ~Rig � sup
C

EE� efsh~T ; ~R1ig ;

and (8.7) together with (8.8) yields

un�t � s�un�t ÿ s� � sup
C

E efsh ~T ; ~Rig ; �8:9�

where ~T � ~V1 � � � � � ~Vk, ~R � ~Vk�1 � � � � � ~V2k with

~Vj �
Xs

l�1
�1� ejl�ejl� ~e�jlzjl ;

and where supC is taken over all zjl such that jzjl ÿ elj � d, for all possible
values of j and l. The random variable e�e is distributed as e. Thus, replacing
the random variables ejl�ejl and ~e�jl by jointly independent copies, say ejl and

~ejl, we may assume that ~Vj �
Ps

l�1�1� ejl�~ejlzjl.
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By an application of the geometric-arithmetic inequality (cf. (7.4) in the
proof of (7.3)), we obtain

sup
C

E efsh ~T ; ~Rig � sup
C

E efsh ~W ; ~W 0ig ; �8:10�

where ~W (resp., ~W 0) is a sum of k � dn=2e independent copies of

~U �
Xs

l�1
�1� el�~elzl resp., of ~U 0 �

Xs

l�1
�1� el�~elz0l

 !
;

and supC is taken over all zl; z0l such that

jzl ÿ elj � d; jz0l ÿ elj � d; for 1 � j � s :

In order to bound E efsh ~W ; ~W 0ig, we can apply a modi®cation of Lemma 7.4
(it su�ces in the proof of that Lemma just to replace the random vector
Y � �~e1; . . . ; ~es� by the random vector ��1� e1�~e1; . . . ; �1� es�~es). We obtain
(recall that k � dn=2e)

E efsh ~W ; ~W 0ig �s M
2s�s; k� �s M

2s�s; n� : �8:11�
The estimates (8.9)±(8.11) together imply (8.3). (

9. Expansions of characteristic functions

In this Section we shall obtain bounds forbDN �t� � bW�t� ÿ bW0�t� ÿ bW1�t� ;
where W and Wj are de®ned by (1.18) and (1.19).

Throughout we shall assume that EX � EG � 0 and covX � covG.
Recall that we write

b � N 1=2a; bs � EjX js; b � b4; r2 � b2; ZN � X 1 � � � � � X N :

We shall denote as well D � tQ and UN � G1 � � � � � GN . Since
����
N
p

G�D UN ,
we can writebW�t� � E efD�ZN ÿ b�g; bW0�t� � E efD�UN ÿ b�g ;

bW1�t� � ÿ 1����
N
p E

4i
3
hNDY ;X i3 � 2hNDY ;X iND�X �

� �
efND�Y �g ;

where Y � Gÿ a. We shall use the upper bound , � ,�t; N ;L�X �� � ,�t; N ;
L�G�� (cf. (3.23)), where

,�t; N ;L�X �� � sup
a2Rd

E efD�Zk� � ha; Zkigj j; k � ��N ÿ 2�=14� :

We start with Lemma 9.1 since its proof is simpler than the proof of the main
Lemma 9.2. Here we shall discuss standard technical steps which will be used
in the proofs of Lemmas 9.2 and 9.3. In order to remove lower order terms,
we shall use frequently without mentioning simple inequalities like b23 � br2

Uniform rates of convergence for quadratic forms 409



(a consequence of HoÈ lder's inequality), xayc �a;c xa�c � ya�c, for x; y; a; c> 0;
as well as 1� xa � 1� xc with a � c.

Lemma 9.1. Assume that r � 1, Q2 � I and EhX ; xi3 � 0, for all x 2 Rd .
Then bDN �t� � bW�t� ÿ bW0�t� and we have

jbDN �t�j � ,bt2N�1� t2N 2��1� b=N��1� jaj4� :
Proof. For arbitrary D : Rd ! Rd we shall prove that

jbDN �t�j � ,N jDj4b�jbj4 � Nb� N2r4� � ,N jDj2b �9:1�
with r2 � EjX j2. Setting

r � 1; jDj � sup
jxj�1
jDxj � jtj; b �

����
N
p

a

in (9.1), we obtain the result of the Lemma.
We start with the following BergstroÈ m type identity:

bDN �t� � bW�t� ÿ bW0�t� � E e
�
D�ZN ÿ b�	ÿE e�D�UN ÿ b�	 �XN

k�1
Jk ;

where Jk � E efD�T � X �g ÿ E efD�T � G�g. Here we used the notation:

T � G2 � � � � � Gk � X k�1 � � � � � X N ÿ b :

In order to obtain (9.1), it su�ces to prove that

jJkj � ,jDj4b�jbj4 � Nb� N 2r4� � ,jDj2b : �9:2�
Writing D�T � u� � D�T � � 2hDT ; ui �D�u� and expanding in powers of
D�u� with u � X and u � G respectively, we obtain Jk � I0 � I1 � R1, where

Ir � E�iD�X ��r efD�T � � 2hDT ;X ig ÿ E�iD�G��r efD�T � � 2hDT ;Gig ;
and jR1j � jDj2b,. Thus, to conclude the proof of (9.2) it su�ces to show
that jI0j and jI1j are bounded from above by the right hand side of (9.2).

Let us estimate jI0j. Let s be a random variable uniformly distributed in
�0; 1� and independent of all other random variables and vectors. Expanding
in powers of 2hDT ; ui with u � X and u � G, we obtain I0 � LX ÿ LG, where

LZ � 8
3E�1ÿ s�3hDT ; Zi4 efD�T � � 2shDT ; Zig :

In this expansion lower order terms cancel since the expectation and the
covariance of X are equal to those of G, and since EhX ; xi3 � EhG; xi3, for all
x 2 Rd . In order to estimate LZ split the sum T �P5

j�1 Tj into ®ve sums
containing an approximately equal number of summands Xl or Gl, and in-
clude the shift b in one of these sums. Then

jLZ j �
X5

j1;j2;j3;j4�1
L�; L� � E�1ÿ s�3

Y4
r�1
hDTjr ; Zi efD�T � � 2shDT ; Zig

�����
����� :
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Note that fj1; j2; j3; j4g is a proper subset of f1; . . . ; 5g. Thus, without loss of
generality we may assume that j1; j2; j3; j4 are di�erent from j � 5. Condi-
tioning on the random vectors with the indices present in L�, we have

L� � E
Y4
r�1
hDTjr ; Zi
�� �� ET5 efD�T � � 2shDT ; Zigj j :

The expectation ET5 . . .j j is bounded from above by ,. The product can be
estimated using the arithmetic-geometric mean inequality, and it is bounded
by a sum of terms EjhDTj; Zij4. Applying Rosenthal's inequality we have

E hDTj; Zi
�� ��4� jDj4EjTjj4jZj4 � cjDj4b�jbj4 � Nb� N2b22� :

Collecting the bounds we see that jI0j is bounded by the right-hand side of
(9.2).

The estimation of jI1j is similar to that of jI0j. Here we should expand in
powers of 2hDT ; Zi in a shorter series. We arrive at moments of type
EjD�Z�j jhDTj; Zij2. Using ab � a2 � b2, we obtain that these moments are
bounded from above by a sum of EjD�Z�j2 and EjhDTj; Zij4. But these in turn
are bounded from above by the right-hand side of (9.2), as already shown in
the estimation of jI0j. (

Lemma 9.2. Assume that r � 1 and Q2 � I. Then we have

jbDN �t�j � ,bt2N�1� t4N4��1� b6=N2��1� jaj6� :
Proof. For arbitrary D : Rd ! Rd and r we shall prove that

jbDN �t�j � N,jDj2b 1� jDj2jbj4 � jDj4�N 2r2b6 � N 4r8 � Nr2jbj6�
� �

:

�9:3�
Setting r � 1, jDj � jtj and b � ����

N
p

a in (9.3), we obtain the result of the
Lemma.

It is easy to notice that the following BergstroÈ m type identity holds:bDN �t� � bW�t� ÿ bW0�t� ÿ bW1�t� � E e D�ZN ÿ b�f g ÿ E e D�UN ÿ b�f g ÿ bW1�t�

� NJ ÿ bW1�t� �
XN

k�2
�k ÿ 1��J1 ÿ J2 ÿ J3 � J4� : �9:4�

Here we used the notation:

J � E efD�S � X �g ÿ E efD�S � G�g; S � G2 � � � � � GN ÿ b;

J1 � E efD�T � X � �X �g; J2 � E efD�T � G� �X �g;
J3 � E efD�T � X � �G�g; J4 � E efD�T � G� �G�g ;

and T � G3 � � � � � Gk � X k�1 � � � � � X N ÿ b.
In the view of (9.4), the relation (9.3) follows provided that we verify that

J � Nÿ1 bW1�t� � R0 with
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jR0j � ,jDj2b 1� N2jDj2r4 � jDj2jbj4
� �

; �9:5�
and that

jJ1 ÿ J2 ÿ J3 � J4j
� ,jDj3b23 � ,jDj4b�b� Nr4 � jbj2r2�
� ,jDj6b23�Nb6 � N3r6 � jbj6� : �9:6�

Let us prove (9.5). Taylor expansions in powers of D�u� and 2hDS; ui with
u � X and u � G combined with the techniques used in the proof of Lem-
ma 9.1 give

J � J0 � R1; J0 �defÿ 4i
3
EhDS;X i3 efD�S�g ÿ 2EhDS;X iD�X �efD�S�g

�9:7�
with some R1 bounded similarly as R0 in (9.5). To complete the proof of (9.5)

it su�ces to replace S in (9.7) by S � G1�D
����
N
p

Gÿ b. This can be done using
again Taylor expansions in powers of hDG1;X i and D�G1�. A remainder
term, say R2, of such a replacement is bounded similarly as R0 in (9.5).
Therefore the remark that G1 � � � � � GN �D

����
N
p

G concludes the proof of
(9.5).

Thus, in order to complete the proof of the Lemma, it remains to prove
(9.6). Writing

D�T � u� v� � D�T � � K�u� � K�v� � 2hDu; vi; K�u� �defD�u� � 2hDT ; ui ;
expanding in powers of 2hDu; vi and applying the conditioning techniques
used in the proof of Lemma 9.1, we obtain

Js � Js0 � Js1 � 2ÿ1Js2 � Rs; 1 � s � 4 ;

where, for example,

J1r � E�ihDX ; �X i�r efD�T �gL�X �L� �X �; L�u� �def efK�u�g ;
for 0 � r � 2, and

jRsj � ,jDj3b23; for all 1 � s � 5 :

Thus

J1 ÿ J2 ÿ J3 � J4j j � jI0j � jI1j � jI2j � c,jDj3b23 ; �9:8�
where

Ir � J1r ÿ J2r ÿ J3r � J4r; 0 � r � 2 :

The estimate (9.8) shows that in order to prove (9.6) it su�ces to verify that,
for r � 0; 1; 2,

jIrj � ,jDj6b23�jbj6 � Nb6 � N3r6� � ,jDj4b23�jbj2 � Nr2� � ,jDj4b2 : �9:9�
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Let us prove (9.9) for I0. It is easy to see that

I0 � E efD�T �g�EX L�X � ÿ EG L�G���E�X L��X � ÿ E�GL��G�� ; �9:10�
where L�u� � efK�u�g. Using Taylor expansions of the function x! efxg, let
us represent the di�erences in (9.10) as sums of terms of third or fourth order
in u � X ; �X ;G; �G. More precisely, expanding in powers of y �def D�u�, we have

L�u� � efxg � iy efxg ÿ Es�1ÿ s�y2 efsy � xg; x �def 2hDT ; ui : �9:11�
Expanding now efxg in powers of x with a remainder O�x3� for the ®rst
summand in the right hand side of (9.11), and with a remainder O�x� for the
second summand, we obtain a representation of L�u� as a sum of terms up to
fourth order in u. Using this representation of L�u� we obtain the desired
representation for the di�erence EX L�X � ÿ EGL�G� in (9.10); notice that in
this representation terms of order two and less cancel since X and G have the
same covariances and expectations. A similar representation is valid for the
second di�erence E �X L��X � ÿ E �GL��G� in (9.10). Multiplying the representa-
tions of the di�erences term-wise, applying splitting techniques similar to the
proof of Lemma 9.1, and using Rosenthal's inequality we derive (9.9) for I0.

Let us prove (9.9) for I1. It is easy to see that I1 � iJ��X � ÿ iJ��G�, where
J�u� � E efD�T �gEuL�u��EX hDX ; uiL�X � ÿ EGhDG; uiL�G�� : �9:12�

Using the equality of means and covariances of X ; �X ;G; �G we can replace
L�u� in (9.12) by L�u� ÿ 1ÿ 2ihDT ; ui. By Taylor expansions L�u� ÿ 1ÿ
2ihDT ; ui � O�hDT ; ui2 �D�u��. Similarly

EX hDX ; uiL�X � ÿ EGhDG; uiL�G� � O�hDX ; uihDT ; ui2 �D�u�� :
Thus we can proceed as in the estimation of I0, and to obtain (9.9) for I1.

The proof of (9.9) for I2 is somewhat simpler than the proof for I1, so we
omit it. (

For 0 � k � N de®nebW�k��t� � E eftQ�G1 � � � � � Gk � X k�1 � � � � � X N ÿ a�g :
Notice that bW�0��t� � bW�t� and bW�N��t� � bW0�t�.

Lemma 9.3. Assume that r � 1 and Q2 � I. Then we have

bW�t� ÿ bW�k��t���� ���� ,t2k�b� jtjNb� jtjN
�������
Nb

p
��1� jaj3� :

Proof. Obviously jbW�t� ÿ bW�k��t�j � I1 � � � � � Ik, where

Ij �
��E eftQ�S � X �g ÿ E eftQ�S � G�g�� ;

S �def G1 � � � � � Gjÿ1 � X j�1 � � � � � X N ÿ a :

An application of splitting and conditioning techniques, combined with
Taylor expansions of the exponents with remainders O��tQ�u��2� and
O�htQS; ui3� with u � X and u � G, conclude the proof. (
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De®ne the distributions

l�A� � PfUk �
XN

j�k�1
Xj 2

����
N
p

Ag; l0�A� � PfUN 2
����
N
p

Ag :

For measurable sets A � Rd de®ne the Edgeworth correction (to the distri-
bution l) as l�k�1 �A� � �N ÿ k�Nÿ3=2v�A�, where the signed measure v is given
by (1.22). Introduce the signed measure m � lÿ l0 ÿ l�k�1 .

Lemma 9.4. Assume that d <1 and 1 � k � N . Then,

dN�def sup
A�Rd

m�A�j j �d
b

r4dN
� b�d�7�=2N �d�3�=2

kd�5r2d�14
d

: �9:13�

An outline of the proof. (cf. the proof of Lemma 2.5 in Bentkus and GoÈ tze
1996). Assuming that covX � covG � I, we shall prove that

dN �d
b
N
� b�d�7�=2N �d�3�=2

kd�5 : �9:14�

Applying (9.14) to Cÿ1=2X and Cÿ1=2G and estimating jCÿ1=2j � 1=rd , we
obtain (9.13).

While proving (9.14) we can assume that b=N � cd and N � 1=cd with a
su�ciently small positive constant cd . Otherwise (9.14) follows from the
trivial bound

dN �d 1� �b=N�1=2
Z

Rd
jxj3p�x� dx�d 1� �b=N�1=2 :

To prove (9.14) we shall apply truncation of Xj, centering and a correction of
the covariances of Gaussian summands Gj, for k � 1 � j � N . Namely, in
(9.14) we can replace Xj by X �j � XjIfjXjj �

����
N
p g up to an error b=N . The

centering, that is, a replacement of X �j by X 0j �def X �j ÿ EX �, produces an error
bounded by b=N . A correction of the covariances of the Gaussian random
vectors yields a similar error. We shall denote the corrected Gaussian ran-
dom vectors by G0j.

After such a replacement of Xj and Gj by X 0j and G0j, for k � 1 � j � N , we
can assume that all eigenvalues of covX 0j belong to the interval [1/2, 3/2].
Otherwise a trivial bound b � cN implies the result. As a consequence of the
truncation we have

EjSN js �s;d 1; s > 0 : �9:15�
Denoting by Z 0m and U 0m sums of m independent copies of X 0 and G0 res-
pectively, introduce the multidimensional characteristic functions g�t� �
E e ht;Gif g,

f �t� � E e hNÿ1=2t; Z 0Nÿki
n o

; f0�t� � E e hNÿ1=2t;U 0Nÿki
n o

;

f1�t� � N ÿ k
6N 3=2

Ehit;X 0i3f0�t�; bm�t� � �f �t� ÿ f0�t� ÿ f1�t��g�et�; e2 � k=N :
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By a slight extension of the proof of Lemma 11.6 in Bhattacharya and Rao
(1986), see as well the proof of Lemma 2.5 in Bentkus and GoÈ tze (1996), we
obtain

dN �d max
jaj�2d

Z
t2Rd
j@abm�t�j dt : �9:16�

In order to derive (9.14) from (9.16), it su�ces to prove that, for jaj � 2d,

j@abm�t�j �d �1� jtj3�g�et=
��������������
2d � 1
p �; e2 � k=N ; �9:17�

j@abm�t�j �d bNÿ1�1� jtj6� expfÿc1�d�jtj2g; for jtj2 � c2�d�N=b : �9:18�
Indeed, using (9.17) and denoting M � 2d � 10, T � cd

����
N
p

=b1=2, cd > 0, we
obtainZ
jtj�T

j@abm�t�j dt �d

Z
jtj�T

jtj3g�et= ��������������
2d � 1
p � dt�d eÿM

Z
jtj�T

jtjd�2ÿM dt ; �9:19�

and it is easy to see that the last integral in (9.19) is bounded from above by
the second summand in the right hand side of (9.14). In the proof of (9.19) we
used

����
N
p

=b1=2 � cd > 0 and g�t� � expfÿcjtj2g �d jtjÿM . Similarly, using
(9.18), we can integrate j@abm�t�j over jtj � T , and the integral is bounded from
above by cdb=N .

To prove (9.17) we can write g�et� � g2d�1�et= ��������������
2d � 1
p � and di�erentiate

the product. Using (9.15) we obtain (9.17).
One can prove (9.18) using a BergstroÈ m type identity similar to (9.4), the

estimates (9.15) and a version of the standard techniques provided in
Bhattacharya and Rao (1986). (
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