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1 Introduction

1.1 A brief of the basic framework

Let �X;F;Ft�0; P � be a ®ltered probability space where we have a �d � m�-
dimensional standard Brownian motion f�Wt; Vt�;Ft; t � 0g and n a d-di-
mensional,F0-measurable, square integrable random vector, independent of
�W ; V �. Let also f : �0;1� �Rd ! Rd , r : �0;1� �Rd !L�Rd ;Rd� �
Rd2 ; h : �0;1� �Rm ! Rm be continuous functions which satisfy su�cient
conditions to have existence and uniqueness of the solution for the following
system of stochastic di�erential equations (cf [3] or [16]):

dXt � f t;Xt� � dt � r t;Xt� � dWt �1�
dYt � h t;Xt� � dt � dVt �2�

with the initial conditions X0 � n and Y0 � 0. The process X is usually called
the signal process and Y the observation process. We denote
Yt �D r�Ys; 0 � s � t� and Y �D r�Ys; s � 0�, the observation r-®elds. The ®l-
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tering problem consists in determining the conditional law of the signal given
the observation process, i.e., in computing

pt�u� �def E u Xt� �jYt� �; 8t ;
where u is a Borel bounded function on Rd . To do this, one changes the
underlying measure so that Yt becomes a Brownian motion under the new
probability measure ~P , independent of X and

pt�u� � qt�u�
qt�1�

; P ÿ a:s: ;

where qt�u� �def ~E�u�Xt� exp�
R t
0 h��s;Xs� dYs ÿ 1

2

R t
0 jh�s;Xs�j2ds�jYt� and ~E is the

expectation with respect to ~P . By imposing stronger conditions on the co-
e�cients and the initial conditions of (1) and (2) one proves that qt uniquely
satis®es the following evolution equation, called the Zakai equation

qt�u� � p0�u� �
Z t

0

qs�A�s�u�� ds�
Z t

0

qs h��s�u� � dYs; a:s: 8t ; �3�

where A�t� : D�A� 2 Cb�Rd� ! Cb�Rd� is the in®nitesimal generator associ-
ated with the signal X and u 2 D�A�.
For a detailed account of the ®ltering problem, see for instance, [3] or [16].

1.2 A brief outline of the paper

In the next section we construct a sequence of branching particle systems
with wildly varying space and time dependent distributional branching
generating function. This sequence is proven to be tight in the third section
and it is used to prove the existence of a measure-valued branching process
denoted by X (calligraphic X), de®ned on �X;F; ~P �, with the property that,
for every u 2 D�A�, the process
Mu�t� �def X�t�;u� � ÿ X�0�;u� � ÿ

Z t

0

X�s�;A�s�u� � dsÿ
Z t

0

X�s�; h��s�u� � dYs

�4�
is a square integrable martingale with respect to the ®ltrationFt _Y. From
the particular construction we use, the quadratic variation of the martingale
Mu�t� will have the form

hMu�t�i �
Z t

0

Xs; vsu
2

ÿ �
ds; P ÿ a:s: �5�

where vs is a bounded, positive function, continuous in time and vt � 1
4,8t 2 �0; 1�. The last condition insures the existence of the branching mecha-

nism presented in the next section. In section 4 we present the connection
between this process and the ®ltering problem. We prove that the conditional
expectation of X given Y satis®es (3) and that the particle systems approx-
imation can be used to solve numerically the ®ltering problem.
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We feel this result is of interest for a number of reasons, some are technical
and relate to the extension of the DawsonWatanabe construction ([5], [20]) of
a measure valued process to a case where the expected number of o�spring
varies so rapidly with time that it is not a function at all but in reality is only a
distribution. However, we are more excited by the potential this construction
has for the numerical solution of stochastic pde's over high dimensional state
spaces. We illustrate our idea in this paper by concentrating on the important
example of the Zakai equation of non-linear ®ltering.

1.3 Problems with high-dimensional ®ltering

As we have set out above, the essential problem of non-linear stochastic
®ltering is to ®nd the conditional distribution of Xt given the information
obtained by measuring Ys for s in some time window t ÿ R; t� �. The problem
has a considerable importance, but its usefulness is limited to those cases
where numerical solution is feasible.

In the special casewhere the evolution ofXt is given by a linear equation and
h is also linear, one has the very nice property that if one assumes a Gaussian
distribution for X0 then the conditional distribution of Xt is always Gaussian,
and in consequence can be described by a ®nite number of parameters (itsmean
and covariance). This remark has enormous computational signi®cance: the
conditional distribution can be obtained by solving an ordinary di�erential
equation for the covariance and a stochastic di�erential equation for themean.
This approach is the well known Kalman ®lter ([11], [12]).

However, it took a considerable time for the Kalman ®lter to be used in a
routine way. The major reason for its acceptance has to be that with modern
computing power it is almost a trivial exercise to solve an ODE and only
slightly more di�cult to solve an SDE numerically. On the negative side,
there are many situations where the linear/Gaussian assumptions of this
model are inappropriate and in this case it would seem attractive to apply the
Zakai equation which gives a stochastic PDE for the measure (or its density)
describing the conditional distribution of Xt.

This might seem like a wonderful panacea; unfortunately, in real appli-
cations Xt is often a multidimensional variable, even in four dimensions it can
be a serious problem to solve a PDE and more di�cult to accurately solve an
SPDE, in ®fty dimensions it is utterly hopeless. This has lead to attempts to
®nd wider classes of models where the posterior distribution lies in a ®nite
dimensional manifold (the so-called BenesÏ and Ocone ®lters, [2], [15]) but
these represent a very small class.

More practical have been the approaches where linearisation can be ap-
plied recursively using the extended Kalman ®lter ([16]). But clearly ap-
proaches via linearisation have strong limitations if there is signi®cant
uncertainty in the observations. It has remained a serious problem to ®nd
good ways to approximate the posterior measure in the general case. It is this
problem we try to address in this paper. We start with a few general remarks.
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In high dimensions one of the most convenient ways to describe a mea-
sure is to generate a sample of it, in other words a sequence of points ran-
domly chosen according to its distribution. This fact has been realised by
statisticians for many years and explains the popularity of Gibbs Sampling
(cf [8], [9], [10]). The reason is that often one is interested in some low
dimensional marginal distribution and not the measure itself. Obtaining this
directly from a density function in high dimensions is not computationally
feasible, as it involves a numerical integration over the whole space. On the
other hand the projection of a sample can quickly be computed, and non-
parametric approaches can be used e�ectively to construct approximate
marginal distributions.

Our idea is that it might be possible to approach the Zakai equation by
creating a sample from the posterior measure. We do not quite succeed, but
we are able to produce arbitrarily good approximations.

1.4 Constructing particle approximations

Recall ([18]) that the Dawson Watanabe measure valued process is easily
constructed as a limit of branching particle systems, each particle of which
moves according to the same law and branches independently of the others.
Such processes are easy to simulate (particularly on parallel machines) and so
the Dawson Watanabe process can be approximated numerically.

In our case, we construct a measure valued process whose expectation at
any time is the conditional distribution of Xt . This also has a branching
particle system approximation; moreover the particles evolve independently
moving with the same law as X and branch according to a mechanism that
depends on the trajectory of the particle and Y , but is independent of the
events elsewhere in the system. It is also easy to simulate. It follows that one
may approximate the measure valued process, and by taking independent
copies of this approximation, estimate its expectation. The result is a cloud of
paths, with those surviving to the current time providing an estimate for the
conditional distribution of Xt.

Because we can look back along the paths that have survived and observe
the historical process, we see that we are also able to update our estimate of
the past behaviour of our process without serious computational di�culty.

Our approach is feasible in the sense that one can carry it out and get a
return directly related to the amount of computational e�ort invested.
However, it has to be said that the convergence could still be quite slow. We
are currently investigating rates of convergence and hope to report on this at
a later date. However, if we contrast this approach with the one where
particles are weighted with exponentials (the classical Monte Carlo method,
see for instance [6], [17], [19]), we would point out two apparent advantages
over this (largely disastrous) method. Firstly, all computations done are
associated with particles that carry the same weighting ± one never ®nds
oneself computing a trajectory that will obviously have a smaller weight than
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another. A second related point is that paths exploring unfruitful directions
of exploration are rapidly killed suggesting a model akin to lemmings ¯owing
along and reproducing heavily, but being killed if they drift away from the
plausible values of the variables. This again suggests a sifting out of poten-
tially unhelpful computation.

2 Assumptions and notations

Let Cb�Rd� be the space of continuous bounded functions on Rd , C0�Rd� be
the space of continuous functions which vanish at in®nity, CK�Rd� be the
space of continuous functions with compact support, C2

K�Rd� be the space on
continuous functions with compact support with continuous ®rst and second
partial derivatives and C2

b�Rd� be the space on continuous bounded func-
tions with continuous ®rst and second partial derivatives.

Let MF �Rd� be the space of ®nite measures over Rd endowed with the
topology of weak convergence, i.e., the topology in which, ln ! l i�
�ln; f � ! �l; f � for all f 2 Cb�Rd� and M 0F �Rd� be the space of ®nite mea-
sures over Rd endowed with the topology of vague convergence, i.e., the
topology in which, ln ! l i� �ln; f � ! �l; f � for all f 2 C0�Rd�.

We assume that the coe�cients of the system (1)+(2) satisfy the neces-
sary Lipschitz and linear growth conditions for the solution of the Zakai
equation (see [16] or [3]) to exist and be unique and that h is a continuous
bounded function. We also assume that the domain C2

K�Rd� [ f1g
� D�A� � Cb�Rd� of the in®nitesimal generator A�s� has the following
properties:
��� For every f 2 D�A�, there exists a sequence fn 2 D�A� such that
f 2

n 2 D�A� and fn converges boundedly and pointwise to f and, respectively,
Afn converges boundedly and pointwise to Af (a sequence xn of bounded
functions converges boundedly and pointwise to x if it converges pointwise
and supn kxnk <1).
���� There exists a sequence fukgk>0;uk : Rd ! �0; 1� of continuous bounded
functions such that uk;u

2
k 2 D�A�, for all s 2 �0; 1�, x 2 Rd ; jA�s�uk�x�j � 1

k
and there exists Rk and rk such that 0 < k < rk < Rk; and uk CB�0;Rk�

��� � 1 and
uk
��
B�0;rk� � 0

Remark 2.1 If the coe�cients of the stochastic di�erential equation (1) are
continuous, then for any f 2 C2

K�Rd� � D�A�, we have f 2 2 C2
K�Rd� �D�A�.

Moreover, for any f 2 C2
b�Rd� \D�A� one can choose fn 2 C2

K�Rd� � D�A�
such that fn converges boundedly and pointwise to f and, respectively, Afn

converges boundedly and pointwise to Af . Under reasonable extra condi-
tions (e.g. that the space-time process is Feller), if f 2 D�A� � Cb�Rd�, then
Ptf 2 C2

b�Rd� \D�A� and limt!0 Ptf � f , and limt!0 APtf � Af boundedly
and pointwise, so condition ��� is satis®ed (Pt is the semigroup associated to
the process X ).
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Remarks 2.2 If the coe�cients of the stochastic di�erential equation (1)
satisfy the condition

lim
x!1
kf �x�k
kxk � 0; lim

x!1
kr�x�k
kxk � 0 ;

then one can prove that if

uk�x� �
0 for kxk � rk

exp
kxk2ÿR2

k

kxk2ÿr2k

� �
for rk < kxk < Rk

1 for kxk � Rk

8><>:
then uk satisfy ���� for large enough rk and Rk.

From now on, we work under the new probability measure ~P and all
the expectations and conditional expectations will be considered with respect
to ~P .

3 The construction of the particle systems

Let f�Xn�t�;Ft�; 0 � t � 1g be a sequence of branching particle systems on
�X;F; ~P � with values in MF �Rd� de®ned as follows:

(a) Initial condition

1. Xn�0� is the occupation measure of n particles (we will denote the number
of particles alive at time t by Nn�t�) of mass 1

n, i.e.

Xn�0� � 1

n

Xn

i�1
dxn

i
;

where xn
i 2 Rd , for every i; n 2 N.

2. The occupation measure of the particles tends weakly to the initial dis-
tribution of the signal, i.e.

lim
n!1 Xn�0�;u� � � ~E u�n�� � � p0�u� 8f 2 Cb�Rd� :

(b) Evolution in time

We describe the evolution of the processes in the interval i
n ;

i�1
n

� �
,

i � 0; 1; . . . ; nÿ 1.

1. At the time i
n, the process consists of the occupation measure of Nn� in�

particles of mass 1
n.

2. During the interval the particles move independently with the same law as
the signal (1). Let V �s�, s 2 � in ; i�1

n � be the trajectory of a generic particle in
this interval.

3. At the end of the interval, each particle branches into a random number of
particles with a mechanism depending on its trajectory in the interval. The
mechanism is chosen so that it has ®nite second moment and the mean

222 D. Crisan, T. Lyons



number of o�springs for a particle given the r-®eldFi�1
n ÿ � r�Fs; s < i�1

n �
of events up to time i�1

n is

exp

Z i�1
n

i
n

h��t; V �t�� dYt ÿ 1

2

Z i�1
n

i
n

h�h�t; V �t�� dt

 !
�6�

and the variance is equal to vi�1
n
. The particles branch independently of each

other.
In the description above vs is an arbitrary bounded, positive function,

continuous in time and vt � 1
4 ; 8t 2 �0; 1�. The last condition insures the ex-

istence of the required branching mechanism. We denote by kvk the supre-
mum of v over the interval �0; 1�, i.e.,

kvk � sup
t2�0;1�

vt :

Just before the �i� 1�-th branching, we will have Nn� in� particles. Let us
denote by Xn�i�1n ÿ� the state of the process just before the �i� 1�-th
branching and by V j

n �s�, s 2 � in ; i�1
n � the trajectory of the j-th particle alive

during the interval �1 � j � Nn� in��. Let also qj
n�i�1n � be the number of o�-

springs of the j-th particle at time i�1
n and, since we assumed that h is a

continuous bounded functions, let khk be the quantity

khk � sup
�t;x�2�0;1��Rd

kh�t; x�k <1 : �7�

Remarks 3.1 We have the following relations:

i. ~E�Nn�t�� � Nn�0� � n, 8n � 0, t 2 �0; 1�.
ii. ~E�N 2

n �t�� � ekhk
2 �nt�

n n2 �Pk��nt� vk
n
ekhk

2 �nt�ÿk
n , 8n � 0, t 2 �0; 1� ��x� is the largest

integer smaller that x).

Proof. i. Nn does not change during the intervals �kn ; k�1
n �, k � 0; . . . ; nÿ 1 so

Nn�t� � Nn��tn�n �. Therefore it su�ces to prove that ~E�Nn� in�� � ~E�Nn��i�1�n �� for
0 � i < nÿ 1. Using (6), we have

~E Nn
i� 1

n

� �� �
� ~E

"XNn� in�

j�1
exp

Z i�1
n

i
n

h� t; V j
n �t�

ÿ �
dYt ÿ 1

2

Z i�1
n

i
n

h�h t; V j
n �t�

ÿ �
dt

 !#

� ~E

"
~E

"XNn� in�

j�1
exp

Z i�1
n

i
n

h� t; V j
n �t�

ÿ �
dYt

 

ÿ 1
2

Z i�1
n

i
n

h�h t; V j
n �t�

ÿ �
dt

!�����F i
n

##

� ~E

"XNn� in�

j�1
~E

"
exp

Z i�1
n

i
n

h� t; V j
n �t�

ÿ �
dYt
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ÿ 1
2

Z i�1
n

i
n

h�h t; V j
n �t�

ÿ �
dt

!�����F i
n

##

� E Nn
i
n

� �� �
since s! exp

R s
i
n

h��t; V j
n �t�� dYt ÿ 1

2

R s
i
n

h�h�t; V j
n �t�� dt

� �
is an Fs-adapted

martingale.

ii. From the construction of the branching mechanism of the particles we
have that

~E qj
n
�i� 1�

n

� �� �2

jFi�1
n ÿ

" #

� vi�1
n
� exp

Z i�1
n

i
n

h� t; V j
n �t�

ÿ �
dYt ÿ 1

2

Z i�1
n

i
n

h�h t; V j
n �t�

ÿ �
dt

 ! !2

� vi�1
n
� e

khk2
n exp

Z i�1
n

i
n

2h� t; V j
n �t�

ÿ �
dYt ÿ 1

2

Z i�1
n

i
n

�2h��2h t; V j
n �t�

ÿ �
dt

 !
This inequality and the independence of the particles implies (as in i.)

~E Nn
i� 1

n

� �� �2
" #

� ~E
XNn

i
n� �

j�1
~E ~E qj

n
i� 1

n

� �� �2
�����Fi�1

n ÿ

" #
F i

n

" #24 35
� ~E 2

XNn� in�

1�j1<j2�l

~E ~E qj1
n

i� 1

n

� ������Fi�1
n ÿ

" #"24
� ~E

�
qj2

n
i� 1

n

� �
Fi�1

n ÿ

����� ����F i
n

�35
� vi�1

n
� e

khk2
n ~E Nn

i� 1

n

� �� �
� e

khk2
n ~E Nn

i� 1

n

� �
Nn

i� 1

n

� �
ÿ 1

� �� �
:

It follows that

~E Nn
i� 1

n

� �� �2
" #

� e
khk2

n ~E Nn
i
n

� �� �2
" #

� vi�1
n
; �8�

hence

~E Nn
t
n

� �� �2� �
� ~E Nn

�tn�
n

� �� �2
" #

� ekhk
2 �nt�

n n2 �
X

k��nt�
vk

n
ekhk

2 �nt�ÿk
n
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where the second inequality was obtained from (8). This completes the proof
of the Remark. (

Let u be a continuous bounded function. Using the Remark 3.1 we get
that �Xn�t�;u� is square integrable and

~E Xn
i� 1

n

� �
;u

� �����Fi�1
n ÿ

� �

� 1
n

XNn� in�

i�1
u V j

n
i� 1

n

� �� �
exp

Z i�1
n

i
n

h� t; V j
n �t�

ÿ �
dYt ÿ 1

2

Z i�1
n

i
n

h�h t; V j
n �t�

ÿ �
dt

 !
�9�

and also

~E Xn
i� 1

n

� �
;u

� �2����Fi�1
n ÿ

" #
ÿ ~E Xn

i� 1

n

� �
;u

� �����Fi�1
n ÿ

� �� �2

� 1

n
Xn

i� 1

n
ÿ

� �
; vi�1

n
u2

� �
: �10�

In between two branches the particles move according to the prescribed SDE
(1), hence for t in the interval � in ; i�1

n � and u 2 D�A�

Xn�t�;u� � � Xn
i
n

� �
;u

� �
�
Z t

i
n

Xn�s�;A�s�u� � ds� Su;i
n �t� ; �11�

where f�Su;i
n �t�; Ft�; t 2 � in ; i�1

n �g is a square integrable local martingale (we
use again the Remark 3.1) with the quadratic variation

hSu;i
n i�t� �

1

n

Z t

i
n

Xn�s�;
X

j1;j2;k

rj1;krj2;k
@u
@xj1

@u
@xj2

 !
ds

� 1

n

Z t

i
n

Xn�s�; Tr Du�rr�Du� �� � ds : �12�

It follows that

Xn�t�;u� � � Xn�0�;u� � �
Z t

0

Xn�s�;A�s�u� � ds� Su
n �t� �Mu

n ��nt��

�
X�nt�

i�1
�E Xn

i
n

� �
;u

� �����F i
nÿ

� �
ÿ Xn

i
n
ÿ

� �
;u

� �� �
; �13�

where f�Su
n �t�; Ft�; t 2 �0; 1�g is a square integrable local martingale

Su
n �t� �D Su;�nt�

n �t� �
X�nt�ÿ1

i�0
Su;i

n
i� 1

n

� �
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which has the quadratic variation

hSu
n i�t� �

1

n

Z t

0

Xn�s�; Tr Du�rr�Du� �� � ds �14�

and f�Mu
n �l�; Fl�1

n ÿ�; l � 0; 1; . . . ; ng is a discrete martingale

Mu
n �0� �D 0;

Mu
n �l� �D

Xl

i�1
Xn

i
n

� �
;u

� �
ÿ �E Xn

i
n

� �
;u

� �����F i
nÿ

� �� �
:

and has conditional quadratic variation

hMu
n i�l� �

Xl

i�1
�E Xn

i
n

� �
;u

� �
ÿ ~E Xn

i
n

� �
;u

� �����F i
nÿ

� �� �2����F i
nÿ

" #

� 1

n

Xl

i�1
Xn

i
n
ÿ

� �
; vi

n
u2

� �
�15�

Remarks 3.2 The process Mu
n �l� is a martingale also with respect to the

larger ®ltration Fl�1
n ÿ _Y.

Using (9) and (13), we can express the process �Xn�t�;u� as

Xn�t�;u� � � Xn�0�;u� � �
Z t

0

�Xn�s�;A�s�u� ds� Su
n �t� �Mu

n ��nt��

�
X�nt�

i�1

1

n

XNn
iÿ1

n� �

j�1
u V j

n
i
n

� �� �
� exp

Z i
n

iÿ1
n

h� s; V j
n �s�

ÿ �
dYs

  

ÿ 1
2

Z i
n

iÿ1
n

h�h s; V j
n �s�

ÿ �
ds

!
ÿ 1

!
: �16�

Then applying Ito's rule to the exponential in the last term of (16) and
exploiting the fact that Y is a Brownian motion, we get

Xn�t�;u� � � Xn�0�;u� � �
Z t

0

Xn�s�;A�s�u� � ds� Su
n �t� �Mu

n ��nt��

� 1

n

Z �nt�
n

0

XNn
�sn�
n� �

j�1
u V j

n
�sn� � 1

n

� �� �
Bs

n V j
n ; s

ÿ �
h� s; V j

n �s�
ÿ �

dYs �17�

where

Bs
n V j

n ; p
ÿ � � exp

Z p

�sn�
n

h� r; V j
n �r�

ÿ �
dYr ÿ 1

2

Z p

�sn�
n

h�h r; V j
n �r�

ÿ �
dr

 !
�18�
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4 The existence of the process X

We show ®rst that the sequence fXngn>0 is tight in DM 0F �Rd ��0; 1� endowed
with the Skorohod topology and then that it `stays mostly' within a compact
set. More precisely, we will prove that there exists a sequence of compact sets
Kk 2 Rd such that, for every e > 0

lim
k!1

lim sup
n!1

~P 9t 2 �0; 1� s:t: Xn�t�; ICKk� � > e� � � 0 �19�

The two properties will ensure that the sequence fXngn>0 is tight in the space
DMF �Rd ��0; 1� endowed with the Skorohod topology. So ®rst we prove the
tightness over the space DM 0F �Rd ��0; 1�. For this, it is su�cient to prove (cf.
[18]) that the processes f�Xn�s�;ui�, s 2 �0; 1�g form a tight sequence, where
fuigi�0 is de®ned as follows: u0 is the constant function 1 and fui; i > 0g is a
dense set in C0�Rd� (we will take them to be in D�A� with compact support).
In order to prove that f�Xn�s�;ui�; s 2 �0; 1�g is a tight sequence for every
i � 0, we use the following theorem (cf. [1])

Theorem 4.1 [Aldous] Let fang be a sequence of real valued processes with
caÂdlaÂg paths such that

(i) fan�t�g is tight on the line for each t 2 �0; 1�.
(ii) For any arbitrary sequence of stopping times fsngn�0 (with respect to the

natural ®ltration of fang) and any sequence fdngn�0 of positive real num-
bers with limn!1 dn � 0, we have

lim
n!1 an sn � dn� � ÿ an sn� � � 0 in probability :

Then fang is tight.
Condition (i) follows from the Proposition 4.2.

Proposition 4.2 For every t 2 �0; 1� we have

lim
k!1

sup
n�0

~P sup
0�s�t

Xn�s�; 1� � > k
� �

� 0 : �20�

Proof. Since

~P sup
0�s�t

Xn�s�; 1� � > k
� �

�
~E sup0�s�t�Xn�s�; 1�
ÿ �2h i

k2
; �21�

it is enough to prove that supn�0 �E��sup0�s�t�Xn�s�; 1��2� is ®nite. Let us
denote by

wn�t� �D ~E sup
0�s�t

Xn�s�; 1� �
� �2
" #

:

From (17) we obtain
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wn�t� � 3 Xn�0�; 1� �2�3 ~E sup
0�i��nt�

M1
n �i�

�� �� !2
24 35

� 3

n2
~E sup

0�p��tn�n

Z p

0

XNn
�sn�
n� �

j�1
Bs

n V j
n ; s

ÿ �
h� s; V j

n �s�
ÿ �

dYs

������
������

0@ 1A2264
375 �22�

We prove that wn is bounded from above uniformly in n, by exploiting (22)
and using the Gronwall inequality. For this we give an upper bound for each
of the three terms of the right hand side of the inequality (22) of the form
a� b

R t
0 wn�s� ds.

The ®rst term
We have

Xn�0�; 1� �2� Nn�0�2
n2

� 1 : �23�

The second term
Doob's maximal inequality (cf [13], pp. 14) gives us the following upper
bound:

~E sup
0�i��nt�

M1
n �i�

�� �� !2
24 35 � 4 ~E M1

n ��nt��ÿ �2h i
� 4 ~E hM1

n i��nt��ÿ �2h i

� 4kvk
n

X�nt�

i�1
~E X

i
n
ÿ

� �
; 1

� �� �
� 4kvk �nt�

n
� 4kvk : �24�

The third term
We ®nd ®rst an upper bound for ~E��PNn��sn�

n �
j�1 Bs

n�V j
n ; s��2�. We have that

~E
XNn
�sn�
n� �

j�1
Bs

n V j
n ; s

ÿ �0@ 1A2264
375

� ~E
XNn
�sn�
n� �

j1;j2�1
~E Bs

n V j1
n ; s

ÿ �
Bs

n V j2
n ; s

ÿ �����F�sn�
n

� �24 35
� ~E

XNn
�sn�
n� �

j1;j2�1
e
khk2

n ~E exp

Z s

�sn�
n

 
h� p; V j1

n �p�
ÿ �� h� p; V j2

n �p�
ÿ �! 

dYp

"24
ÿ1
2

Z s

�sn�
n

jh p; V j1
n �p�

ÿ �� h p; V j2
n �p�

ÿ �j2dp

!����F�sn�
n

#35
which gives us, as in Remark 3.1
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~E
XNn
�sn�
n� �

j�1
Bs

n V j
n ; s

ÿ �0@ 1A2264
375 � ekhk

2
~E Nn

�sn�
n

� �� �2
" #

: �25�

Now using Burkholder-Davis-Gundy inequality and (25), we ®nd

~E sup
0�p��tn�n

Z p

0

XNn
�sn�
n� �

j�1
Bs

n V j
n ; s

ÿ �
h� s; V j

n �s�
ÿ �

dYs

������
������

0@ 1A2264
375

�
Z �tn�

n

0

~E
XNn
�sn�
n� �

j�1
Bs

n V j
n ; s

ÿ �
h s; V j

n �s�
ÿ �������

������
2264
375 ds

� 4ekhk
2khk2

Z t

0

~E Nn
�sn�
n

� �� �2
" #

ds :

The last inequality gives the following upper bound on the third term of (22)

4ekhk
2khk2

Z t

0

wn�s� ds ; �26�

where K2 is a constant independent of n.
From (22), (23), (24) and (26) we obtain

wn�t� � 3� 12kvk� � � 12ekhk
2khk2

Z t

0

wn�s� ds :

Finally, using the Gronwall inequality (see, for instance [13] pp. 287) we ®nd
that wn�t� � c�t�, where

c�t� �def 3� 12kvk� �e4khk2ekhk2
1�4kvk t; t 2 �0; 1� :

So also supn�1 ~E��sup0�s�t�Xn�s�; 1��2� � c�t� which ®nishes the proof of the
proposition. (

Remarks 4.3 Using a similar argument one can prove that, 8p � 1, there
exists a function cp : �0; 1� ! R�, such that

sup
n�1

~E sup
0�s�t

Xn�s�; 1� �
� �p� �

� cp�t�; t 2 �0; 1� : �27�

We prove now that the processes �Xn�t�;ui� satisfy condition (ii) of Theorem
(4.1). Since C2

k �Rd� � D�A� is dense in C0�Rd� (under the uniform norm) we
can take the functions ui; i � 1 from this set.

Proposition 4.4 For any arbitrary sequence of stopping times fsngn�0 any
positive real sequence fdngn�0 with limn!1 dn � 0 and u 2 C2

K�Rd� [ f1g, we
have
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lim
n!1

~E Xn sn � dn� �;u� � ÿ Xn�sn�;u� �j j2
h i

� 0 �28�

and hence

lim
n!1

~P Xn sn � dn� �;u� � ÿ Xn�sn�;u� �j j � e� � � 0 : �29�

for all e > 0.

Proof. Let a and b be the following quantities

a �def sup
f�t;x�2�0;1��Rdg

kA�t�u�t; x�k <1

b �def sup
f�t;x�2�0;1��Rdg

Tr Du�rr�Du� �j j <1:

Obviously, if u is the constant function 1, then a � b � 0. Using (17) we get

~E Xn sn � dn� �;u� � ÿ Xn�sn�;u� �j j2
h i
� 4 ~E

Z sn�dn

sn

Xn�s�;A�s�u� � ds
� �2
" #

� 4 ~E Su
n sn � dn� � ÿ Su

n sn� �
ÿ �2h i

� 4 ~E Mu
n n sn � dn� �� �� � ÿMu

n �nsn�� �ÿ �2h i
� 4 ~E

Z n sn�dn� �� �
n

�nsn �
n

XNn
�sn�
n� �

j�1
u V j

n
�sn� � 1

n

� �� �
Bs

n V j
n ; s

ÿ �
h� V j

n �s�
ÿ �

dYs

0@ 1A2264
375 �30�

We have, consecutively,

~E
Z sn�dn

sn

Xn�s�;A�s�u� � ds
� �2
" #

� dn ~E
Z sn�dn

sn

Xn�s�;A�s�u� �2 ds
� �

� dna2 ~E sup
0�s�1

Xn�s�; 1� �
� �2

sn � dn� � ÿ sn� �
" #

� d2na2c�1� �31�
~E �Su

n �sn � dn� ÿ Su
n �sn��2

h i
� K ~E�hSu

n i�sn � dn� ÿ hSu
n i�sn��

� K
n

~E
Z sn�dn

sn

Xn�s�; Tr Du�rr�Du� �� �
� �

ds

� Kb
n

~E sup
0�s�1

�Xn�s�; 1���sn � dn� ÿ sn�
� �

� Kb
2n
�1� c�1��dn �32�
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~E Mu
n n sn � dn� �� �� � ÿMu

n nsn� �� �ÿ �2h i
� ~E Mu

n n sn � dn� �� �� � ÿMu
n �nsn�� �ÿ �2h i

� 1

n
~E

Xn�sn�dn�� �

�nsn��1
Xn

i
n
ÿ

� �
; vi

n
u2

� �24 35
� kvkkuk

2

n
~E sup

0�s�1
Xn�s�; 1� �

�
n�sn � dn�� � ÿ �nsn�� �

�
� kvkkuk2 1� c�1�

2
dn � 1

n

� �
�33�

~E
1

n2

Z �n�sn�dn��
n

�nsn �
n

XNn
�sn�
n� �

j�1
u V j

n
�sn� � 1

n

� �� �
Bs

n�V j
n ; s�h� s; V j

n �s�
ÿ �

dYs

0@ 1A2
264

375
� ~E

Z �n�sn�dn��
n

�nsn �
n

1

n2
XNn
�sn�
n� �

j�1
u V j

n
�sn� � 1

n

� �� �
Bs

n�V j
n ; s�h��s; V j

n �s��
0@ 1A2ds

264
375

� khk2kuk2 ~E
sup0�s�1

PNn
�sn�
n� �

j�1 Bs
n�V j

n ; s�
� �2

n2
n sn � dn� �� �

n
ÿ �nsn�

n

� �26664
37775

� kuk2khk2c0�1� dn � 1

n

� �
�34�

where c0�1� is obtained similarly to c�1� as an uniform upper bound for

~E
sup0�s�1

PNn
�sn�
n� �

j�1 Bs
n�V j

n ; s�
� �2

n2

26664
37775

The inequalities (31), (32), (33), (34) imply that all the terms from the right
hand side of (30) tend to 0 when n goes to 1, hence ~E�j�Xn�sn � dn�;u�
ÿ�Xn�sn�;u�j2� tends to 0 as well. (

We prove now that the sequence satis®es (19). For this, we need the
following two results.

Proposition 4.5 Let u 2 D�A� � Cb�Rd� such that u;u2 2 D�A�. Then

lim
n!1

~E sup
s;t2�0;1�

 
1

n

Z �nt�
n

�ns�
n

XNn
�rn�
n� �

j�1
u V j

n
�rn� � 1

n

� �� �
Br

n�V j
n ; r�h��r; V j

n �r�� dYr

24 :

ÿ
Z t

s
�Xn�r�; h��r�u� dYr

�2
35 � 0 �35�
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Proof. It is enough to prove that

lim
n!1

~E sup
t2�0;1�

1

n

Z �nt�
n

0

XNn
�rn�
n� �

j�1
u V j

n
�rn� � 1

n

� �� �
Br

n�V j
n ; r�h��r; V j

n �r�� dYr

0@24
ÿ
Z t

0

�Xn�r�; h��r�u� dYr

�2
35 � 0 �36�

Firstly, we observe that last integral can be taken from 0 to
�nt�
n without

changing the limit. Then, using (25) and Burkholder-Davis-Gundy inequal-
ity, we get

~E sup
t2�0;1�

1

n

Z �nt�
n

0

XNn
�rn�
n� �

j�1
u V j

n
�rn� � 1

n

� �� �
�Br

n�V j
n ; r� ÿ 1�h��r; V j

n �r�� dYr

0@ 1A2
264

375
� k

n2

Z 1

0

~E

���� XNn
�rn�
n� �

j�1
u V j

n
�rn� � 1

n

� �� �
Br

n�V j
n ; r� ÿ 1�h��r; V j

n �r��
����2 dr

24 35
� kkhk2kuk2

Z 1

0

~E
1

n2

Z r

�rn�
n

XNn
�rn�
n� �

j�1
Br

n�V j
n ; p�h��s; V j

n �p�
�

dYp

0@ 1A2264
375 dr

� 1

2
kkhk2kuk2c�1��e1

n ÿ 1�: �37�

Thus one can eliminate Br
n�V j

n ; r� from the ®rst term of (35) without changing
the limit. After these 2 transformations, (35) becomes

lim
n!1

~E sup
t2�0;1�

1

n

Z �nt�
n

0

XNn
�rn�
n� �

j�1
u V j

n
�rn� � 1

n

� �� �
ÿ u�V j

n �r��
� �

h��r; V j
n �r�� dYr

0@ 1A2
264

375
Using once again Burkholder-Davis-Gundy inequality, we ®nd the following
upper bound for the terms of the sequence

kkhk2c�1� kAuk2
n2

� CkAu2 ÿ 2uAuk
n

 !
which completes our proof (we used the classical identity Tr�Du�rr�Du��
� Au2 ÿ 2uAu). (

Proposition 4.6 For uk de®ned as in the assumption (��) in section 2, there
exists an uniform constant M such that

lim sup
n!1

~E �Xn�t�;uk�� � � �p0;uk� �
M
k

�38�

for all t 2 �0; 1�.
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Proof. Using equation (17), we have that

�Xn�t�;uk� ��Xn�0�;uk� �
Z t

0

�Xn�s�;A�s�uk� ds� Suk
n �t� �Muk

n ��nt��

� 1

n

Z �nt�
n

0

XNn
�sn�
n� �

j�1
uk V j

n
�sn� � 1

n

� �� �
Bs

n�V j
n ; s�h��s; V j

n �s�� dYs : �39�

Since for uk as above Suk
n �t� and Muk

n ��nt�� are martingales with mean zero
and also the last term has mean zero, we have that

lim sup
n!1

~E �Xn�t�;uk�� � � lim sup
n!1

~E �Xn�0�;uk�� � � t
k
lim sup

n!1
~E sup

s2�0;1�
�Xn�s�; 1�

" #

and since limn!1 ~E �Xn�0�;uk�� � � �Xn�0�;uk� � �p0;uk� and ~E
�
sups2�0;1�

�Xn�s�; 1�
� � 1�c�1�

2 we have our claim. (

We want to prove that there exists a sequence of compact sets Kk; such
that, for all e > 0;

lim
k!1

lim sup
n!1

~P�9t 2 �0; 1�; �Xn�s�; ICKk � � e� � 0

which is equivalent to proving that

lim
k!1

lim sup
n!1

~P � sup
t2�0;1�
�Xn�s�; ICKk � � e� � 0 �40�

which, in turn, is implied by (using Chebychev's inequality)

lim
k!1

lim sup
n!1

~E sup
t2�0;1�
�Xn�t�; ICKk �2

" #
� 0 : �41�

Proposition 4.7 For Kk �D B�0;Rk�; where Rk was de®ned in assumption (��),
(41) holds.

Proof. Since ICKk � uk it is enough to prove that

lim
k!1

lim sup
n!1

~E sup
t2�0;1�
�Xn�t�;uk�2

" #
� 0 : �42�

We have

�Xn�t�;uk� ��Xn�0�;uk� �
Z t

0

�Xn�s�;A�s�uk� ds� Suk
n �t� �Muk

n ��nt��

� 1

n

Z �nt�
n

0

XNn
�sn�
n� �

j�1
uk V j

n
�sn� � 1

n

� �� �
Bs

n�V j
n ; s�h��s; V j

n �s�� dYs :

�43�
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Since Xn�0� is convergent to p0 we have that

lim
k!1

lim sup
n!1

~E �Xn�0�;uk�2
h i

� lim
k!1
�p0;uk�2 � 0 : �44�

From the de®nition of the functions uk we have (as in the proof of the
previous proposition) that

lim
k!1

lim sup
n!1

~E sup
t2�0;T �

Z t

0

�Xn�s�;A�s�uk� ds
� �2

" #
� 0 : �45�

Using Burkholder-Davis-Gundy inequality

lim
k!1

lim sup
n!1

~E sup
t2�0;T �

Suk
n �t�

ÿ �2" #

� lim
k!1

lim sup
n!1

K2

n
~E
Z T

0

X�r�;Au2
n ÿ 2unAun

ÿ �
dr

� �
� 0 �46�

and also

lim
k!1

lim sup
n!1

~E sup
t2�0;T �

Muk
n �t�

ÿ �2" #
� lim

k!1
lim sup

n!1
K2 vk k ~E

Z T

0

�Xn�r�;u2
k� dr

� �
:

Since u2
k � uk, we have, using Fatou's lemma

lim
k!1

lim sup
n!1

~E sup
t2�0;T �

Muk
n �t�

ÿ �2" #
� lim

k!1
K2 vk k

Z T

0

lim sup
n!1

~E Xn�r�;uk� �� � dr �47�

From (38) and (47) we obtain that

lim
k!1

lim sup
n!1

~E sup
t2�0;T �

Muk
n �t�

ÿ �2" #
� 0 : �48�

Using (35) we obtain that

lim
k!1

lim sup
n!1

~E sup
t2�0;T �

1

n

Z �nt�
n

0

XNn��sn�
n �

j�1
uk V j

n
�sn� � 1

n

� �� �
Bs

n�V j
n ; s�h��s; V j

n �s�� dYs

0@ 1A2
264

375
� lim

k!1
lim sup

n!1
~E sup

t2�0;T �

Z t

0

�Xn�r�; h��r�uk� dYr

� �2
" #

� k hk k2 lim
k!1

lim sup
2

n!1

Z t

0

~E �Xn�r�;uk�2
h i

dr : �49�

Let now W�T � �D limk!1 lim supn!1 ~E supt2�0;T ��Xk�t�;un�2
h i

. From (43),

(44), (45), (46), (48), (49) and Fatou's lemma we obtain that there exists a
constant K such that
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W�T � � K
Z T

0

W�s� ds

for all T 2 �0; 1� which implies our claim, using, once again, Gronwall's in-
equality. (

We know now that the sequence Xn is tight in DMF �Rd ��0; 1�, hence rela-
tively compact. Then �Xn; Y � is relatively compact in the space
DMF �Rd ��Rm �0; 1�. Let �X; Y � be the limit process of one of its convergent
subsequences (to avoid even more cumbersome notation we re-index this
sequence as f�Xn; Y �gn�0). We will show that X is a solution of the `mar-
tingale problem' (4)+(5). We need ®rst several useful results.

Proposition 4.8 Let u be a continuous bounded function. Then, for all p � 1

~E�� sup
t2�0;1�

j�X�t�;u�j�p� <1 �50�

Proof. Since fk : DR�0; 1� ! R, fk�a� �D �supt2�0;1� jatj�p ^ k > 0 is a bounded
continuous function on DR�0; 1� and the process t! �Xn�t�;u� converges in
distribution to the process t! �X�t�;u�, we have that, for all k>0

~E � sup
t2�0;1�

j�X�t�;u�j�p ^ k

" #
� lim

k!1
~E sup

t2�0;1�
j�X�t�;u�j

 !p

^ k

" #

� lim
k!1

lim
n!1

~E sup
t2�0;1�

j�Xn�t�;u�j
 !p

^ k

" #
� kukpcp�1� �51�

where cp is the function de®ned in Remark 4.3.

Proposition 4.9 The process X has continuous paths in MF �Rd�.
Proof. With a similar proof to the one in Proposition 4.4 one shows that for
u 2 C2

K�Rd� and for all e > 0

lim
d!0

lim sup
n!1

~E sup
s;t2�0;1�;jsÿtj�d

j�Xn�s�;u� ÿ �Xn�t�;u�j
 !2
24 35 � 0 : �52�

Using the fact that supn�1 ~E��sup0�s�1�Xn�s�; 1��2� <1 (see proof of Prop-
osition 4.2), one then extends (52) to all u 2 C0�Rd� by taking a sequence of
functions un 2 C2

K�Rd� that converges uniformly to u. This implies that for
all u 2 C0�Rd� and for all e > 0, one has

lim
d!0

lim sup
n!1

~P sup
s;t2�0;1�;jsÿtj�d

j�Xn�s�;u� ÿ �Xn�t�;u�j � e

 !
� 0 : �53�

Based on Theorem 15.5 from [4], (53) implies that the real valued process
t! �X�t�;u� is continuous ~P -a.s.. for all u 2 C0�Rd� and hence the process
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t! X�t� is continuous as a process with values in MF 0 �Rd�. Since t! X�t� is
a genuine DMF �Rd ���0; 1�� process, we get that it is continuous as a MF �Rd�-
valued process. (

Since the limit process is continuous, the one dimensional projections of the
sequence ± Xn�t� ± are convergent in distribution to X�t� and, in particular,
the sequence �Xn�t�;u� is convergent in distribution to �X�t�;u� for any
u 2 Cb�Rd�.
Proposition 4.10 Let u be a continuous bounded function. Then, for all p � 1

lim
n!1

~E�j�Xn�t�;u�jp� � ~E�j�X�t�;u�jp� : �54�

Proof. The proposition follows from the fact that �Xn�t�;u� is convergent in
distribution to �X�t�;u�, by using the uniform integrability of the sequence
and Remark 4.3. (

We are now able to prove that X satis®es the martingale problem
(4)+(5).

Theorem 4.11 For u 2 D�A� the process f�Mu�t�;Ft _Y�; t 2 �0; 1�g where

Mu�t� �D �X�t�;u� ÿ �X�0�;u� ÿ
Z t

0

�X�s�;A�s�u� dsÿ
Z t

0

�X�s�; h��s�u� dYs

is a square integrable martingale with the quadratic variation

hMui�t� �
Z t

0

�X�s�; vsu
2� ds :

Proof. We will use the idea contained in the Theorem 8.2 from [7]. LetM be
a separating subset of the set of continuous bounded functions on MF �Rd�
and N be a separating subset of Cb�Rm�. We want to prove that for all
u 2 D�A�

~E �Mu�t� ÿMu�s��Pm
i�1ki�X �ti��Pm0

j�1k
0
j�Y �tj��

h i
� 0 �55�

and

~E ��Mu�t� ÿMu�s��2 ÿ
Z t

s
X�r�; vru

2
ÿ �

dr�Pm
i�1ki�X �ti��Pm0

j�1k
0
j�Y �t0j��

� �
� 0

�56�
for all m;m0 � 0, 0 � t1 < t2 < . . . < tm � s � t, 0 � t01 < t02 < . . . < t0m � 1,
k1; . . . ; km 2M and k01; . . . ; k0m 2N. We prove only (55), since (56) can be
done analogously. From the de®nition of Mu, (55) is equivalent to

~E���X�t�;u� ÿ �X�s�;u�ÿ
Z t

s
X�r�;A�r�u� � dsÿ

Z t

s
X�r�; h��r�u� � dYr�

�Pm
i�1ki�X �ti��Pm0

j�1k
0
j�Y �t0j��� � 0 �57�
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We only need to show (57) for u with the property that u2 2 D�A� since
using the property (�) of A�s� and the dominated convergence theorem we
can extend this to an arbitrary u 2 D�A�. Using a proof analogous with the
one used in Proposition 4.10 one shows, consecutively, that since �Xn; Y �
converges in distribution to �X; Y �

lim
n!1

~E �Xn�t�;u�Pm
i�1ki�Xn�ti��Pm0

j�1k
0
j�Y �tj��

h i
� ~E �X�t�;u�Pm

i�1ki�X �ti��Pm0
j�1k

0
j�Y �tj��

h i
�58�

lim
n!1

~E �Xn�s�;u�Pm
i�1ki�Xn�ti��Pm0

j�1k
0
j�Y �tj��

h i
� ~E �X�s�;u�Pm

i�1ki�X �ti��Pm0
j�1k

0
j�Y �tj��

h i
�59�

lim
n!1

~E
Z t

s
�Xn�r�;A�r�u� drPm

i�1ki�Xn�ti��Pm0
j�1k

0
j�Y �tj��

� �
� ~E

Z t

s
�X�r�;A�r�u� drPm

i�1ki�X �ti��Pm0
j�1k

0
j�Y �tj��

� �
: �60�

Using theorem 2.2 from [14], we have that, since �Xn; Y � converges in dis-
tribution to �X; Y � also �Xn; Y ;

R t
0�Xn�s�; h��s�u� dYs� converges in distribu-

tion to �X; Y ; R t
0�X�s�; h��s�u� dYs� and using (35) and, once again, an

argument similar to the one used in Proposition 4.10, we have that

lim
n!1

~E

"
1

n

Z �nt�
n

�ns�
n

XNn
�rn�
n� �

j�1
u V j

n
�rn� � 1

n

� �� �
Br

n�V j
n ; r�h��r; V j

n �r�� dYr

�Pm
i�1ki�Xn�ti��Pm0

j�1k
0
j�Y �tj��

#

� ~E
Z t

s
X�s�; h��s�u� � dYsP

m
i�1ki�X �ti��Pm0

j�1k
0
j�Y �tj��

� �
: �61�

Since u2 2 D�A�, we have that Tr�Du�rr�Du� � Au2 ÿ 2uAu 2 Cb�Rd� and
hence Su

n is a square integrable martingale such that

E �Su
n �2�p�

h i
� E hSu

n i2�p�
h i

� kAu2 ÿ 2uAuk
n

and hence

lim
n!1

~E Su
n �t� ÿ Su

n �s�
ÿ �

Pm
i�1ki�Xn�ti��Pm0

j�1k
0
j�Y �tj��

h i
� 0 : �62�

From (58),(59),(60),(61) and (62) we obtain that

~E �Mu�t� ÿMu�s��Pm
i�1ki�X �ti��Pm0

j�1k
0
j�Y �tj��

h i
� lim

n!1
~E �Mu

n �t� ÿMu
n �s��Pm

i�1ki�Xn�ti��Pm0
j�1k

0
j�Y �tj��

h i
� 0 : �63�

(
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Remark 4.12 The martingale Mu is a martingale also with respect to the
initial ®ltration Ft and its conditional expectation with respect to Y is 0.

With this we conclude the existence of the process with the properties de-
scribed in the introduction.

Remark 4.13 The normalised occupation measure ln of a sequence of points
chosen randomly with the distribution p0 will almost surely converge
(weakly) to p0. Therefore the entire construction is valid when Xn�0� is taken
to be ln. The readers may ®nd the arguments in this paper more intuitive if
they have in mind this initial data.

At this point in time, we have not had the energy required to prove the
uniqueness of the solution of the ®ltered martingale problem (4) + (5),
although we believe this to be unique. Uniqueness is not central to our
overall objective, achieved in the next section, where we show that, given Y ,
the (conditional) mean of Xn converges almost surely to the unique solution
of the Zakai equation and hence to the unnormalised distribution of the
signal.

5 Application to the nonlinear ®ltering problem

The process X is the solution of the `®ltered' martingale problem (4)+(5). It
follows that for u 2 D�A� (and the uniform square integrability of �X�t�;u�,
�X�t�;Au� and �X�t�; h�u�)

~E X�t�;u� �jYt� � � ~E X�0�;u� �jY0� � �
Z t

0

~E X�s�;Au� �jYs� � ds

�
Z t

0

~E X�t�; h�u� �jYs� � dYs �64�

In establishing (64), we used the fact that for every integrableFt-measurable
random variable A we have ~E�AjY� � ~E�AjYt� (since Y is a Brownian
motion) and if fUt; t � 0g is an Ft-progressively measurable process such
that ~E

R t
0 U 2

s dt <1; 8s � 0 then

~E
Z t

0

UsdYsjYt

� �
�
Z t

0

~E UsjYs� � dYs

~E
Z t

0

UsdsjYt

� �
�
Z t

0

~E UsjYs� � ds

A proof of these observation can be found in [16]. One can also obtain the
corresponding evolution equation for time dependent u.

Let XY �x�
n and XY �x� be the processes Xn and, respectively, X given the

observation path Y:�x�. Let also ~Ex be the corresponding expectations given
Y:�x�, Zx

n �t� � ~Ex�XY �x�
n �t��, i.e., the measure obtained by integrating the

measure valued random variable XY �x�
n �t� (this is, actually, what we are
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computing in numerical applications) and Zx�t� � ~Ex�XY �x��t��. Using Fu-
bini's theorem, we have

Zx�t�;u� � � ~Ex XY �x��t�;u
� �h i

� ~E X�t�;u� �jY� ��x� �65�

Zx
n �t�;u

ÿ � � ~Ex XY �x�
n �t�;u

� �h i
� ~E Xn�t�;u� �jY� ��x� �66�

Using (65), the evolution equation (64) becomes

Z�t�;u� � � Z�0�;u� � �
Z t

0

Z�s�;Au� � ds�
Z t

0

Z�t�; h�u� � dYs �67�

From (67) and the fact that we assumed from the beginning that the solution
of the Zakai equation is unique, we deduce the following

Theorem 5.1 The unnormalised conditional distribution of the signal X given
the observation coincide with the conditional expectation of X given the ob-
servation.

The next theorem is the cornerstone of the numerical algorithm. It shows
that, in order to approximate the unnormalised conditional distribution qt,
we construct the process Xn up to time t (where n is taken so that the error is
as small as we want), keeping the observation path ®xed, and then compute
its (conditional) expectation.

Theorem 5.2 There exists �X 2 X with ~P ��X� � 1 such that for every x 2 �X we
have limn!1Zx

n �t� � qY:�x�
t , i.e.,

lim
n!1 Zt

n�x�;u
ÿ � � qY:�x�

t �u� �68�

for every u continuous bounded function (qY:�x�
t is the unnormalised distribution

of the signal given the observation path Y:�x�).
Proof. Let M be a set containing a countable collection of C10 �Rd� func-
tions, uniformly dense in C0�Rd� and the constant function 1. To prove the
theorem, we only need to show that, for every function in M ,

lim
n!1 Zx

n �t�;u
ÿ � � qY:�x�

t �u�; ~P ÿ a:s: : �69�

(to simplify the notation we will omit the x variable from now on). For this
we use the solution of the following backward ItoÃ equation

dws�x� � ÿA�s�ws�x� ÿ h��s; x�ws�x� dYs �70�
wt�x� � u�x�

where u 2 M . From [3], pp. 126±134 or [16], we obtain that equation (70) has
a unique solution in appropriate spaces of solutions and qt�wt� � q0�w0�.
Since w0 is continuous and bounded ~P ÿ a:s:, it follows that
limn!1�Zn�0�;w0� � �p0;w0� � q0�w0�, ~P -a.s.. Hence, in order to show (69),
we need to prove that
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lim
n!1 Zn�t�;wt� � ÿ Zn�0�;w0� � � 0; ~P ÿ a:s: : �71�

The ®rst step is to prove that

Zn
nt
n

h i� �
;w nt

n� �
� �

� Zn�0�;w0� �; ~P ÿ a:s: �72�

and then that

lim
n!1 Zn�t�;wt� � ÿ Zn

nt
n

h i� �
;w nt

n� �
� �

� 0; ~P ÿ a:s: : �73�

We have that

Zn
nt
n

h i� �
;w nt

n� �
� �

ÿ Zn�0�;w0� �

�
Xnt

n� �

i�1
~E Xn

i
n

� �
;w i

n

� �����Y� �
ÿ ~E Xn

iÿ 1

n

� �
;wiÿ1

n

� �����Y� �
and

~E Xn
i
n

� �
;w i

n

� �����Y� �
ÿ ~E Xn

iÿ 1

n

� �
;wiÿ1

n

� �����Y� �

� ~E
XNn

iÿ1
n� �

j�1
w i

n
V j

n
i
n

� �� �
qj

n
i
n

� �
ÿ wiÿ1

n
V j

n
iÿ 1

n

� �� �����Y
24 35 :

Since the number of o�springs qj
n� in� of the particle V j

n is independent of the
`future' of Yi

n
, we have that

~E qj
n

i
n

� �
jF i

n
_Y

� �
� ~E qj

n
i
n

� �����F i
n
_Y i

n

� �
� ~E qj

n
i
n

� �����F i
n

� �
� e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

:

Hence

~E
XNn

iÿ1
n� �

j�1
w i

n
V j

n
i
n

� �� �
qj

n
i
n

� �
ÿ wiÿ1

n
V j

n
iÿ 1

n

� �� �����Y
24 35
� ~E

XNn
iÿ1

n� �

j�1
w i

n
V j

n
i
n

� �� �
~E qj

n
i
n

� �����F i
n
_Y

� �
ÿ wiÿ1

n
V j

n
iÿ 1

n

� �� �����Y
24 35

� ~E
XNn

iÿ1
n� �

j�1
w i

n
V j

n
i
n

� �� �
e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � dsÿ wiÿ1

n
V j

n
iÿ 1

n

� �� �����Y
24 35
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� ~E
XNn

iÿ1
n� �

j�1
~E w i

n
V j

n
i
n

� �� �
e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

"24
ÿ wiÿ1

n
V j

n
iÿ 1

n

� �� �����Y _F i
n

�����Y� : �74�

We prove that

~E w i
n

V j
n

i
n

� �� �
e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

"

ÿwiÿ1
n

V j
n

iÿ 1

n

� �� �����Y _Fiÿ1
n

�
� 0 : �75�

Since V j
n is a Markov process, we have that

~E w i
n

V j
n

i
n

� �� �
e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

����Y _Fiÿ1
n

" #

� ~E w i
n

V j
n

i
n

� �� �
e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

����Y _ r V j
n

iÿ 1

n

� �� �" #
:

�76�
We compute ®rst

R�x� � ~Eiÿ1
n ;x

u V j
n �t�

ÿ �
e
R t

iÿ1
n

h� V j
n �s�� � dYsÿ1

2

R t

iÿ1
n

h�h V j
n �s�� � ds

����Y� �
where the expectation ~Eiÿ1

n ;x
is taken with respect to the probability ~Piÿ1

n ;x
and

~Piÿ1
n ;x

is taken so that V j
n start at time iÿ1

n from x. This will imply that the

conditional expectation of u�V j
n �t��e

R t

iÿ1
n

h��V j
n �s�� dYsÿ1

2

R t

iÿ1
n

h�h�V j
n �s�� ds

given
Y _ r�V j

n �iÿ1n �� (and, consequently, given Y _Fiÿ1
n
) is R�V j

n �iÿ1n ��. Using the
fact that qt�u� � qiÿ1

n
�wiÿ1

n
�, we ®nd

~Eiÿ1
n ;x

u V j
n �t�

ÿ �
e
R t

iÿ1
n

h� V j
n �s�� � dYsÿ1

2

R t

iÿ1
n

h�h V j
n �s�� � dsjY

� �
� ~Eiÿ1

n ;x
wiÿ1

n
V j

n
iÿ 1

n

� �� �����Y� �
� wiÿ1

n
�x�

Hence

~E u V j
n �t�

ÿ �
e
R t

iÿ1
n

h� V j
n �s�� � dYsÿ1

2

R t

iÿ1
n

h�h V j
n �s�� � ds

Y _Fiÿ1
n

�
� wiÿ1

n
V j

n
iÿ 1

n

� �� ������
�77�

Similarly

~E u V j
n �t�

ÿ �
e
R t

i
n

h� V j
n �s�� � dYsÿ1

2

R t

i
n

h�h V j
n �s�� � ds

Y _F i
n

�
� w i

n
V j

n
i
n

� �� ������
�78�
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From (77) and (78) we get that

~E w i
n

V j
n

i
n

� �� �
e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

����Y _Fiÿ1
n

" #

� ~E ~E u V j
n �t�

ÿ �
e
R t

i
n

h� V j
n �s�� � dYsÿ1

2

R t

i
n

h�h V j
n �s�� � ds

����Y _F i
n

� �"

� e
R i

n
iÿ1

n
h� V j

n �s�� � dYsÿ1
2

R i
n

iÿ1
n

h�h V j
n �s�� � ds

����Y _Fiÿ1
n

#

� wiÿ1
n

V j
n

iÿ 1

n

� �� �
which proves (75). The identity (72) follows now from (74) and (75).

In the analysis above we considered V j
n de®ned up to time t, although in

the description of the branching system it is not, but obviously we can attach
`an extension' from i

n to t, satisfying the same SDE and independent of Y .
We prove now (73). Using Ito's formula we have that

Zn�t�;wt� � ÿ Zn
nt
n

h i� �
;w nt

n� �
� �

� 1
n

~E
XNn

nt
n� �� ��

j�1

Z t

nt
n� �

h� V j
n �s�

ÿ �
w V j

n �s�
ÿ �

dYsjY
24 35

� 1
n

~E
XNn

nt
n� �� ��

j�1

Z t

nt
n� �

~E h� V j
n �s�

ÿ �
w V j

n �s�
ÿ �jY _F nt

n� �
h i

dYs

�����Y
24 35 : �79�

Hence

~E Zn�t�;wt� � ÿ Zn
nt
n

h i� �
;w nt

n� �
� �� �4� �

� 1

n4
~E

XNn
nt
n� �� �� �

j�1

Z t

nt
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~E h� V j
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n �s�
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��� i
dYs

h0@ 1A4
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� 1

n4
~E

XNn
nt
n� �� �� �

j1;j2;j3;j4�1
~E
Y4
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Z t

nt
n� �

~E h� V jk
n �s�

ÿ �
w V jk

n �s�
ÿ �

Y _F nt
n� �

��� i
dYs

h ���F nt
n� �

" #24 35
Using once again an argument based on the Gronwall inequality we obtain
that

~E ~E w V j
n �s�

ÿ �
Y _F nt

n� �
��� ih �4� ���� F nt

n� �
h i

� mkuk4; 8s 2 nt
n

h i
; t

h i
and from this, using integration by parts, we ®nd the following upper bound

~E
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Z t
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n� �

~E h� V jk
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ÿ �
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ÿ �jY _F nt

n� �
h i

dYs

����F nt
n� �
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where the constant M is independent of n. It follows that

~E Zn�t�;wt� � ÿ Zn
nt
n

h i� �
;w nt

n� �
� �� �4� �

� Mc4�t�khk4kuk4
n2

�80�

(c4 is the function de®ned in Remark 4.3). Finally from (80) we obtain (73)
by a Borel-Cantelli type argument. (

Remarks 5.3 The expectation Zn�t� of the process XY
n �t�, i.e., the process

Xn�t� with ®xed observation path Y:, converges almost surely to the unnor-
malised conditional distribution of the signal qY:

t . One can prove the fol-
lowing: let XY ;1

n �t�; . . . ; XY ;m�n�
n �t� be m�n� independent copies of XY

n �t�, then,
for m�n� � O�na� and a > 0,

lim
n!1

1

m�n�
Xm�n�
i�1
XY ;i

n �t� ÿZn�t�
 !

� 0; ~P ÿ a:s::

So if we take m�n� independent copies of the system consisting of n initial
particles of mass 1

n and let them evolve and branch at times k
n, by averaging

them we obtain an approximation of the unnormalised conditional distri-
bution of the signal.

An alternative way of looking at the above approximation procedure is to
start with proportionally more particles so that, if the time step is 1

n, we start
with m�n� � n initial particles of mass 1

m�n��n. In this way we see that the
measure valued process we have constructed is, in some sense, extremal, and
that, if we introduce slightly longer interbranching times relative to the
number of particles one starts with initially, one would get convergence to
the solution of the Zakai equation.

In this paper we have proved the existence of a solution to the ®ltered
martingale problem (4)+ (5). This is an extension of the classical Dawson-
Watanabe construction. Averaging the particle approximations over inde-
pendent evolutions leads to numerical approximation of the Zakai equation.

A sequel in preparation to this paper will look at the numerical e�ec-
tiveness of this method and closely related approaches.
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