
Random random walks on Zd
2
�

David Bruce Wilson

University of California, 387 Soda Hall Berkeley, CA 94720-1776, USA

e-mail: dbwilson@alum.mit.edu

Summary. We consider random walks on classes of graphs de®ned on the d-
dimensional binary cube Zd

2 by placing edges on n randomly chosen parallel
classes of vectors. The mixing time of a graph is the number of steps of a
random walk before the walk forgets where it started, and reaches a random
location. In this paper we resolve a question of Diaconis by ®nding exact
expressions for this mixing time that hold for all n > d and almost all choices
of vector classes. This result improves a number of previous bounds. Our
method, which has application to similar problems on other Abelian groups,
uses the concept of a universal hash function, from computer science.

Mathematics Subject Classi®cation (1991): Primary 60J15; Secondary 60B15

1. Introduction

We choose a set S consisting of n vectors chosen uniformly at random in the
binary d-cube Zd

2, and consider the graph on the vertices of Zd
2 with edges

between pairs of vertices whose di�erence is in S. A random walk on any
such graph consists of a sequence of steps, starting from some initial point.
In each step one moves from a vertex to a neighboring vertex chosen at
random from the set of neighbors.

Random walks of this kind have been studied because they represent
tractable models on which to test and simulate behavior on more complicated
Markov structures. The d-cube itself is an example with n � d. This case has
been intensively studied because of its connection to the Ehrenfest urn of
statistical mechanics. Diaconis (1988), Diaconis, Graham, and Morrison
(1990), and Sinclair (1993) describe and reference many results on such walks.

Diaconis (1993) has posed the following question about the class of
graphs de®ned above: How many steps are required in such a walk before the
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probability distribution as a function of initial vertex loses all memory of its
origin, by becoming essentially uniform on the vertices of the d-cube? The
purpose of this paper is to answer this question. The answer exhibits
threshold behavior at a certain number, T �d; n�, of steps. Up until
�1ÿ e�T �d; n� steps, the distribution is always far from uniform. After
�1� e�T �d; n� steps, however, for almost all S with n > d, the probability is
close to uniform. This threshold number of steps is called the mixing time of
the random walk.

To be more precise, let Q�k�x� be the chance that the random walk started
at 0 is at vertex x after k steps. (Because of symmetry, starting the walk at
another vertex amounts to relabelling the vertices of the d-cube.) Under mild
regularity conditions on S, Q�k�x� approaches the uniform distribution
U�x� � 1=2d as k goes to1. We will measure convergence in total variation
(TV):

kQ�k ÿ UkTV � max
A�Zd

2

Q�k�A� ÿ U�A��� �� � 1

2

X
x

Q�k�x� ÿ 2ÿd
�� �� :

The function T �d; n� is de®ned by

T �d; n� � n
2
ln

1

1ÿ 2Hÿ1�d=n� ;

where H is the binary entropy function given by

H�x� � x log2
1

x
� �1ÿ x� log2

1

1ÿ x
0 � x � 1 ;

and lg is the base-2 logarithm. The main result of this paper is

Theorem 1. For any e > 0, for all su�ciently large d and all n > d, the random
walk satis®es

1) For any choice of S, if k � �1ÿ e�T �d; n�, then kQ�k ÿ UkTV > 1ÿ e.
2) For almost any choice of S, if k � �1� e�T �d; n� then kQ�k ÿ UkTV < e,

provided the Markov chain is ergodic.

Note that almost all Markov chains will be ergodic anyway when nÿ d is
su�ciently large.

We obtain the lower bound on the mixing time by considering a related
random walk on Zn

2, and counting the number of states likely to be reached
after k steps. The upper bound is obtained by considering the map from Zn

2 to
Zd
2 as a universal hash function, and making use of various norms. The ar-

guments are presented in the next two sections. The same ideas can be ap-
plied to similar problems in other larger lattices, and to a lesser extent to
similar problems in general Abelian groups (Wilson, 1994).

In Figure 1 we illustrate the behavior of 1ÿ 2Hÿ1�x� as a function of x,
and in the appendix we derive the asymptotic properties of this function that
we will use in this article. When the mixing time threshold T �d; n� is nor-
malized by d, it is a function of the ratio n=d only. In Figure 2 we show its
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dependence on this variable explicitly, with, for comparison some other
bounds that have been obtained on this parameter.

In the classical case, the set S consists of the standard basis vectors to-
gether with 0, the 0 vector being included to avoid parity problems. Diaconis
and Shahshahani (1987) have shown that the threshold for mixing occurs at

Fig. 1. Here x � H�y�. Hÿ1�x� is the inverse of H in the range 0 � Hÿ1�x� � 1=2. The function

1ÿ 2Hÿ1�x� is represented by the height of the vertical line

Fig. 2. Bounds on the mixing time for Zd
2 . T �d; n� is shown in bold. All upper bounds (besides

T �d; n�) were derived from the Diaconis-Shahshahani upper bound lemma. The upper bounds

hold for almost all v1; . . . ; vn, and the lower bounds hold for all v1; . . . ; vn. All bounds except f

and g are tight when n=d !1, and all bounds except a, b, and e are tight when n=d ! 1
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1
4 d ln d steps. As we shall see, T �d; d � 1��: 1

4 d ln d. By contrast, if jSj � 2d
then T �d; 2d��: 0:24853d. In general, when n is linear in d with n � ad and
a > 1, the function T �d; n�, and therefore the mixing time, is linear in d.

In the appendix we see that Hÿ1�x� � x= lg�1=x� as x! 0. When n is
superlinear in d, we have Hÿ1�d=n� � �d=n�= lg�n=d� � 1, so that

T �d; n� � d
lg�n=d� :

Thus for n � da (®xed a > 1) we have

T �d; n� � a
aÿ 1

d
lg n

;

while if n is superpolynomial in d, T �d; n� behaves as d= lg n for large d.
Aldous and Diaconis (1985) conjectured that for any large group G, for n

suitably large, the mixing time of almost any random walk on G generated by
n group elements is ln jGj= ln n. Dou (1992) con®rmed this conjecture for n
superpolylogarithmic in jGj, which implies the superpolynomial case above.
Dou also considered random walks where, when one moves from a vertex to
a neighboring vertex, the neighbor need not be chosen uniformly at random.
In the more general setting for Zd

2, he showed that if nÿ d is large but n � d2,
then the mixing time is at most �1=2� e�n ln n. Hildebrand (1993) obtained
the polynomial result. Recently Dou and Hildebrand (1996) showed that
when n � da, a=�aÿ 1� ln jGj= ln n upper bounds the mixing time of all
groups, and is tight for many groups including Abelian groups. Alon &
Roichman (1994) have studied the related problem of the eigenvalues of
random graphs based on groups, and Roichman (1996) then gave an alter-
native proof to the Dou-Hildebrand result.

In the other limit, if n � d � c � d � o�d�, from the appendix we see that
1ÿ 2Hÿ1�d=n� � 1ÿ 2Hÿ1�1ÿ c=n� � �������������������ln 4�c=n

p
, so

T �d; n� � n
2
ln

���������������
n=c ln 4

p
� d
4
ln�d=c� : �1�

Greenhalgh (1993) showed that almost all random walks on Zd
2 converge to

uniformity in n ln�n=�c ln 2�� � en steps, for large c � nÿ d. When c � o�d�,
this implies that Equation 1 upper bounds the mixing time. If c � 1 then
Equation 1 reduces to the well-known mixing time threshold of 14 d ln d of the
usual random walk on Zd

2.

2. Mixing time lower bound

In this section we prove a lower bound on the mixing time of the random
walk on Zd

2 whose support is v1; . . . ; vn. The bound holds for all choices of
supporting vectors. We assume n > d. To prove the lower bound on the
mixing time, we consider the random walk on Zn

2 where the translating
vectors are e1; . . . ; en. This walk is a lifting of the random walk on Zd

2: a
translation by ei in Zn

2 corresponds to a translation by vi in the walk on Zd
2,
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and the current state in Zn
2 determines the current state in Zd

2. The idea is to
show that after k steps, the state in Zn

2 is very far from looking like a random
state, so the state in Zd

2 is far from looking like a random state.
Let LOWER�d; n; e� denote the assertion ``If

k � �1ÿ e� n
2
ln

1

1ÿ 2Hÿ1�d=n� ;

then

kQ�k ÿ UkTV � 1ÿ e .''

This assertion is well-de®ned only when n > d. The farthest that a proba-
bility distribution can be from uniformity is 1ÿ 2ÿd , so for a given e,
LOWER�d; n; e� will be true only if d is big enough.

Theorem 2. For any e > 0, if d is big enough, then for any n > d,
LOWER�d; n; e�.

To prove the theorem, we use di�erent bounds which are e�ective when
n� d, n � d �H�d�, and n � d � o�d�. Each case is proved as a separate
lemma.

Case n� d: After k steps of the walk, the state in Zn
2 can take on only

n
k

ÿ �� n
kÿ1
ÿ �� � � � � n

0

ÿ �
possible values. Appendix A of Peterson & Weldon

[1972] gives n
0

ÿ �� n
1

ÿ �� � � � � n
an

ÿ � � 2H�a�n for a � 1=2. (This inequality fol-
lows from an entropy argument; the entropy of a bit vector of size n is at
most the sum of the entropies of its bits, the entropy of each bit being at most
H�a� if its probability of being 1 is at most a.) Let A be the set of corre-
sponding states in Zd

2: Q�k�A� � 1. If k � n=2 and 2nH�k=n� � 2dÿy , then at
most a 2ÿy fraction of the states in Zd

2 are reachable: U�A� � 2ÿy . When

k � nHÿ1�d=nÿ y=n�
we get kQ�k ÿ UkTV � 1ÿ 2ÿy .

It is straightforward to verify that if 0 � d� x � 1 then
Hÿ1�xÿ d� � Hÿ1�x�. This gives the ``obvious lower bound'' of nHÿ1�d=n� in
Figure 2. But for small values of x,

Hÿ1�x� � 1

2
ln

1

1ÿ 2Hÿ1�x� ;

giving

Lemma 3. For any e > 0, if d is big enough and d � n, then LOWER�d; n; e�.
Case n � O�d�: As in the proof of the lower bound of the usual random walk
on Zd

2, here it is useful to count the number of 1's in the Markov chain state.
The strategy is to show that even after k steps of the random walk on Zn

2,
with high probability at most m of the n bits are set. For this range of n, m
can be signi®cantly smaller than k, since after a while some vectors are
chosen multiple times. Here A is the set of states in Zd

2 which correspond to
states in Zn

2 with at most m bits set. As before we require m � n=2 and
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nH�m=n� � d ÿ y so that U�A� � 2ÿy . Now we need to ®nd a large value of k
for which Q�k�A� � 1.

In the random walk on Zn
2, let Ik denote the number of 1's in the state at

time k. I0 � 0, and Ik drifts to n=2 for large k. It is not hard to check that
E�Ik� � �n=2��1ÿ �1ÿ 2=n�k�, and Var�Ik� � n=2. Diaconis [1988] gives a
proof, but for the reader's convenience we rederive it here: Let Xk denote the
number of 0's in the state, minus n=2; X0 � n=2, and Xk drifts to 0 for large k.

E�Xk�1jXk� � n=2� Xk

n
�Xk ÿ 1� � n=2ÿ Xk

n
�Xk � 1�

� Xk ÿ 2Xk=n

E�Xk�1� � X0�1ÿ 2=n�k�1

and

E X 2
k�1 Xkj

� � � n=2� Xk

n
�Xk ÿ 1�2 � n=2ÿ Xk

n
�Xk � 1�2

� X 2
k � 1ÿ 4X 2

k

ÿ �
=n

E X 2
k�1 ÿ n=4 Xkj

� � � X 2
k ÿ n=4

ÿ ��1ÿ 4=n�
E X 2

k�1
� � � X 2

0 ÿ n=4
ÿ ��1ÿ 4=n�k�1 � n=4 ;

so

Var�Xk� � E X 2
k

� �ÿ E Xk� �2

� n2=4ÿ n=4
ÿ ��1ÿ 4=n�k � n=4ÿ n=2�1ÿ 2=n�k

h i2
� n2=4
ÿ � �1ÿ 4=n�k ÿ 1ÿ 4=n� 4=n2

ÿ �k
h i

� �n=4� 1ÿ �1ÿ 4=n�k
h i

� n=4

for n � 4, n � 1, or k odd. When n � 2; 3, we still have Var�Xk� � n=2. Hence
E�Ik� � �n=2��1ÿ �1ÿ 2=n�k�, and Var�Ik� � n=2.

Since the variance isn't too big, odds are that Ik is close to E�Ik�. If
m � n=2ÿ �n=2��1ÿ 2=n�k � x

���
n
p

(x > 0), then

Pr�Ik > m� � 1= 2x2
ÿ �

:

(Martingale inequalities can be used to show that this probability actually
goes to zero much more quickly as x grows; McDiarmid (1989) gives a survey
of these techniques.)

So Q�k�A� � 1ÿ 1=�2x2�. Our other constraints are m � n=2 and

d ÿ y � nH�m=n�
d ÿ y � nH 1ÿ �1ÿ 2=n�k

h i�
2� x=

���
n
p� �

Hÿ1��d ÿ y�=n� � 1ÿ �1ÿ 2=n�k
h i

=2� x=
���
n
p
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�1ÿ 2=n�k � 1ÿ 2Hÿ1��d ÿ y�=n� � 2x=
���
n
p

k � ln 1ÿ 2Hÿ1��d ÿ y�=n� � 2x=
���
n
p� �

ln�1ÿ 2=n�

The constraint m � n=2 translates to �1ÿ 2=n�k � 2x=
���
n
p

, which is implied
by the previous constraint on k.

Assuming that k satis®es this constraint, then with probability at least
1ÿ 1=�2x2�, the kth state is contained in subset A which occupies a 2ÿy

fraction of Zd
2. That is

kQ�k ÿ UkTV � Q�k�A� ÿ U�A� � 1ÿ 1=�2x2� ÿ 2ÿy :

Case n � d �H�d�: Suppose that constants 1 < al < au, and x > 0, y > 0 are
given. If d is big enough, and ald � n � aud, then the y=n and 2x=

���
n
p

terms
are clearly insigni®cant. For any e > 0, if d is big enough, then k can be taken
to be

�1ÿ e�ÿn
2
ln 1ÿ 2Hÿ1�d=n�� �

:

So we have

Lemma 4. For any e > 0 and au > al > 1, if d is big enough and
ald � n � aud, then LOWER�d; n; e�.
Case n � d � o�d�: Suppose x and y are given. Suppose that d > 0 is small
enough, and n � d � c where c � dd. Assume d is big enough.

The appendix derives the behavior of Hÿ1 as its argument approaches 1,
and from this we see

Hÿ1
d ÿ y

n

� �
� Hÿ1 1ÿ c� y

n

� �
� 1

2
ÿ �

�������������������
ln 2

2

c� y
n

r

ln 1ÿ 2Hÿ1
d ÿ y

n

� �
� 2x

���
n
p�� �

� ln �
�������������������
ln 4

c� y
n

r
� 2x

���
n
p�" #

� ÿ ln ���
n
p � ln �

����������������������
ln 4�c� y�

p
� 2x

h i
� ÿ ln ���

n
p � ln

���
c
p � O�1�

� � ln
�������
c=n

p
as c� n

� � ln 1ÿ 2Hÿ1�d=n�� �
Lemma 5. For any e > 0, if d is big enough and n=d ÿ 1 is small enough, then
LOWER�d; n; e�.
Proof of Theorem 2: Immediate from Lemmas 3, 5, and 4. h
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3 Mixing time upper bound

Let UPPER�d; n; e� be the assertion ``If

k � �1� e� n
2
ln

1

1ÿ 2Hÿ1�d=n� ;

then with probability at least 1ÿ e a random v1; . . . ; vn satis®es

kQ�k ÿ UkTV � e'' :

For a given e, UPPER�d; n; e� can only be true if nÿ d is big enough, since
otherwise there is a ®nite chance that the Markov chain will not be ergodic.

Theorem 6. For any e > 0, if d is big enough and nÿ d � x�log d�, then
UPPER�d; n; e�.

As before we consider the random walk on Zn
2, and map it to the walk on

Zd
2. Let M be the matrix whose columns are v1; . . . ; vn. Then a state x in Zn

2 is
mapped to state u � Mx. After enough steps, with high probability the state
in Zn

2 has many 1's, and the number of such states is 2�d . Since the map
amounts to a universal hash function, these states are mapped to Zd

2 ap-
proximately evenly, yielding a distribution close to uniformity.

We use the second moment method to argue that the distribution Q�k is
close to uniformity. Since it isn't likely that the state in Zn

2 will have an
unusual number of 1's, these states collectively don't contribute much to the
distance from uniformity. However, these states contribute more than their
fair share to the second moment. The straightforward application of the
second moment method yields the same upper bound as that given by the L2
norm in Section 5. So the states with a typical number of 1's and the states
with an unusual number of 1's need to be dealt with separately.

De®ne Ri�x� on Zn
2 with

Ri�x� � Q�kn �x� w�x� � i
0 otherwise

�
;

where w�x� is the Hamming weight (number of ones) of state x.
Let m be a map from Zn

2 to Zd
2. If fx is the function on Zn

2 which is one at x
and zero elsewhere, then let mfx denote the function on Zd

2 which is one at
m�x� and zero elsewhere. Extend this de®nition linearly so that m maps ar-
bitrary real-valued functions on Zn

2 to functions on Zd
2. If Qn denotes the

walk on Zn
2, then Q�k � �x 7!Mx�Q�kn , where x 7! y denotes the function which

maps x to y.
With this notation, Q�k �Pn

i�0�x 7!Mx�Ri. Let ri � kRik1. Then by the
triangle inequality,

kQ�k ÿ Uk1 �
Xn

i�0
k�x 7!Mx�Ri ÿ riUk1

�
Xn

i�0
k�x 7!Mx� b�Ri ÿ riUk1
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for any b 2 Zd
2. For convenience we will assume that b is chosen uniformly at

random, and will denote �x 7!Mx� b�Ri by Si.
Let 1x7!u be the random variable which is one if u � Mx� b, and zero

otherwise. Since b is chosen at random, E�1x 7! u� � 2ÿd , and since M is chosen
at random,

E�1x 7! u1y 7! u� � 2ÿ2d x 6� y
2ÿd x � y

�
:

We have

Si�u� �
X
x2Zn

2

Ri�x�1x 7! u

E�Si�u�� �
X
x2Zn

2

Ri�x�E�1x 7! u�

E�Si�u�� � ri2
ÿd

and

E Si�u�2
h i

�
X

x;y2Zn
2

Ri�x�Ri�y�E�1x7!u1y 7!u�

� 2ÿ2d
X
x;y

Ri�x�Ri�y� � 2ÿd ÿ 2ÿ2dÿ �X
x

Ri�x�Ri�x�

E Si�u�2
h i

� 2ÿ2dr2i � 2ÿdri max
x

Ri�x�

Var�Si�u�� � r2i 2
ÿd n

i

� �.
:

Next we use E�Z�2 � E Z2
� �

with Z � jSi�u� ÿ E�Si�u��j to get

E Si�u� ÿ E�Si�u��j j� �2 � Var�Si�u��
E Si�u� ÿ ri2

ÿd
�� ��� � � r2i 2

ÿd n
i

� �.h i1=2
E
X

u

Si�u� ÿ ri2
ÿd

�� ��" #
� r2i 2

d n
i

� �.h i1=2
E kSi ÿ riUk1� � � ri 2

d n
i

� �.h i1=2
:

On the other hand, kSi ÿ riUk1 � 2ri.

Case n � O�d�: Let Ik be the number of 1's in the kth state in Zn
2. Recall that

E�Ik� � n=2�1ÿ �1ÿ 2=n�k�, and Var�Ik� � n=2. By Chebychev,

Pr jIk ÿ E�Ik�j > c
���
n
p� � � 1= 2c2

ÿ �X
i:jiÿE�Ik �j>c

��
n
p
kSi ÿ riUk1 � 1=c2 :

But
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X
i:jiÿE�Ik �j�c

��
n
p

E kSi ÿ riUk1� � � 2d n
dE�Ik� ÿ c

���
n
p e

� ��� �1=2
�

���
2
p dÿnH�E�Ik �=nÿc=

��
n
p � ����������

pn=24
p

e1=12

�
���
2
p ÿy ��������

p=24
p

e1=12

when

d � y � �lg n�=2 � nH�E�Ik�=nÿ c=
���
n
p �

2Hÿ1��d � y � �lg n�=2�=n� � 2c=
���
n
p � 2E�Ik�=n

k ln�1ÿ 2=n� � ln 1ÿ 2Hÿ1��d � y � �lg n�=2�=n� ÿ 2c=
���
n
p� �

k � ln�1ÿ 2Hÿ1��d � y � �lg n�=2�=n� ÿ 2c=
���
n
p �

ln�1ÿ 2=n�
Then assuming that k satis®es this constraint,

Pr kQ�k ÿ Uk1 � 1=c2 � 2ÿy=4
h i

�
��������
p=24

p
e1=122ÿy=4 ;

i.e. almost all Markov chains will have mixed after k steps.

Case n � d �H�d�: Same as the n � d �H�d� case in the lower bound, ex-
cept with �1� e� rather than �1ÿ e�.

Case n � d � o�d� � d � x�ln d�: Similar to the n � d � o�d� case in the
lower bound, switching y with ÿy and x with ÿc. This time we need c big
enough, e.g. c � y � �lg n�=2.

Case n� d: This case is most readily solved by using the L2 norm bounds
proven in the next few sections, and noting that these bounds are asymptotic
to the claimed result when n� d.

Proof of Theorem 6. Immediate from the above cases.

Case n � d � O�ln d�: Here we use the condition on the Markov chain being
ergodic. Consider the random walk on Zn

2. Since the chain is ergodic, 2
nÿdÿ1

even-parity states in Zn
2 map to each state in Zd

2, and similarly for the odd-
parity states. After � 1=4n ln n steps, except for the parity of the state, the
state in Zn

2 is very close to being random, and the state in Zd
2 is at least as

close to being random. But since c � nÿ d is sub-polynomial in d,
1=4n ln�n=c� � 1=4d ln d. See also Ross & Xu (1993) for a study of worst case
mixing time when the Markov chain is ergodic and the vi are distinct.

Proof of Theorem 1. Immediate from Theorems 2 and 6, and the above
case. h

Remark. We assumed that M is a random 0-1 matrix, but the only property
of M that we used is that
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Pr�Mz � 0� � 2ÿd when z 6� 0 :

Choosing M at random requires nd random bits. We can use an upper-
triangular Toeplitz matrix to get by with only nÿ 1 random bits. Using
Wozencraft's ensemble of randomly shifted codes (see Massey (1963, page
21)) we can get the same bounds using only m � max�d; nÿ d� random bits
and a primitive irreducible polynomial of degree m. In fact we don't need the
polynomial to be primitive, so we can compute it deterministically using an
algorithm due to Shoup (1990). Using either of these ensembles will guar-
antee that the Markov chain is connected. We can guarantee ergodicity by
using one less random bit. The expected values above can at most double,
but they still vanish.

4. Using the second largest eigenvalue

For general time-reversible Markov chains, the second-largest eigenvalue of
the state transition matrix is frequently used to upper bound the mixing time
of the random walk. See Diaconis and Stroock (1991). If the Markov chain
has m states and converges to uniformity, then

kQ�k ÿ Uk21 � �mÿ 1�k2k
� ; �2�

where k� is the second largest eigenvalue in absolute value. This section
determines the value that k� approximates with high probability, and gives
the upper bound on the mixing time which follows from Equation 2. When
n� d this bound is tight, but when n � d, this bound is o� by a large factor.
The next section gives the mixing time upper bound derived using all the
eigenvalues.

For the random walk on Zd
2 where the probability of adding v to the

current state is Q�v�, the eigenvalues are associated with group elements: for
u 2 Zd

2, ku is an eigenvalue of the random walk given by

ku �
X

v

Q�v��ÿ1�u�v

(see for instance Diaconis (1988)). k� is just maxu6�0 jkuj. Since
kQ�k ÿ Uk1 < 2d=2kk

� � 2d=2eÿk ln kÿ1� ;

after

k � d�ln 2�=2� c

ln kÿ1�
steps, kQ�k ÿ Uk1 < eÿc.

Next we derive bounds on k� assuming the support of Q is randomly
chosen. Let Sn denote the probability distribution of a random variable
which is the sum of n independent identically distributed random variables
which are �1 with probability 1=2. Suppose vectors v1; . . . ; vn are chosen
uniformly at random. If u 6� 0, then the random variables u � v1; . . . ; u � vn are
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i.i.d. 0-1 random variables with probability 1=2. If the translating vector is
chosen uniformly at random from v1; . . . ; vn, then ku is distributed according
to Sn=n. Cherno�'s bound gives

Pr jkuj � t� � � 2eÿt2n=2 :

With n � a�d � b� and t � ������������
ln 4=a

p
, we have

Pr�k� � t� < 2d2eÿt2n=2 � 21ÿb :

Thus with probability more than 1ÿ 21ÿb, after

� d � 2c= ln 2
lg��n=�d � b��= ln 4�

steps kQ�k ÿ Uk1 < eÿc. In order for b to be negligible in this expression, we
need b� d, and also lg��d � b�=d� � lg�n=�d ln 4��. If d � M � b and
nÿ d ln 4 � M , then

lg
n

d ln 4
� lg 1� M

d ln 4

� �
� M

d ln 4
� b

d
� lg

d � b
d

:

The mixing time bound we get is therefore

� d
lg��n=d�= ln 4� ;

when d � c, d � b, and nÿ d ln 4� b.
We can get a better bound using

2n Pr jkuj � t� �=2 � n
0

� �
� n

1

� �
� � � � � n

bn�1ÿ t�=2c
� �

� 2nH 1ÿt
2� � :

With t � 1ÿ 2Hÿ1�1ÿ 1=a�,
Pr�k� � t� < 21ÿb ;

yielding an upper bound of

� d
2 lg 1=�1ÿ 2Hÿ1�1ÿ d=n�� �3�

almost always if d � c, d � b, and nÿ d � b.
When n� d, both these bounds are tight.
Now we argue that bound 3 for average random walks is the best pos-

sible using only Equation 2. Speci®cally we show that it is a rare event that
k� is less than 1ÿ 2Hÿ1�1ÿ d=n� by more than a factor of 1� o�1�. Let T be
the number of eigenvalues ku (u 6� 0) that are larger than a certain threshold
t, and let pt be the probability that a particular eigenvalue exceeds t. Consider
two vectors u and w, 0 6� u 6� w 6� 0, and the eigenvalues ku and kw. The
values u � vi and w � vi are 0-1 r.v.'s with probability 1=2, and they are inde-
pendent because �uÿ w� � vi is a 0-1 r.v. with probability 1=2. Thus ku is
independent of kw. With the eigenvalues being pairwise independent, we can
compute the variance of T :
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Var�T � � E T 2
� �ÿ E T� �2

� 2d ÿ 1
ÿ �

2d ÿ 2
ÿ �

p2t � 2d ÿ 1
ÿ �

pt ÿ 2d ÿ 1
ÿ �2

p2t
� 2d ÿ 1
ÿ �

pt ÿ p2t
ÿ � � E�T � :

In particular, if E�T � is large, Chebychev's inequality implies (among other
things) that with high probability T is nonzero, so k� > t. From Stirling's
formula we see that for ®xed d > 0, the expected number of eigenvalues
exceeding �1ÿ d��1ÿ 2Hÿ1�1ÿ d=n�� goes to in®nity.

5 Using all the eigenvalues

An important tool for bounding the mixing time of random walks on groups
is the Diaconis-Shahshahani upper bound lemma (Diaconis 1988). When
applied to the random walk on Zd

2, the lemma says

kQ�k ÿ Uk1 �
�����
2d
p
kQ�k ÿ Uk2 �

X
u 6�0

k2k
u

" #1=2
: �4�

This section derives the upper bound on the mixing time which follows from
all the eigenvalues in Equation 4.

We need only consider the case n � d �H�d�, because Equation 4 is at
least as strong as the second largest eigenvalue bound and Greenhalgh's
bound, and these bounds are tight when n � x�1�d and n � �1� o�1��d
respectively. Consider E

�P
u6�0 k2�k�k0�

u

� � �2d ÿ 1�E��Sn=n�2k�k2k0
� :

E �Sn=n�2k
h i

�
Xn

i�0

n
i

� �
2ÿn 1ÿ 2i

n

� �2k

:

Let c � 1ÿ 2i=n.

E �Sn=n�2k
h i

� �n� 1�2ÿn max
0�c�1

2nH��1ÿc�=2�c2k :

To ®nd the maximum we di�erentiate:

�nH��1ÿ c�=2� � 2k lg c�0 � n lg
1

�1ÿ c�=2ÿ 1

� � ÿ1
2

� �
� 2k

c ln 2
� 0 ;

which is solved with

k
n
� 1

4
c ln

1� c
1ÿ c

: �5�

Setting

2nH��1ÿc�=2�c2k � 2nÿd

gives

d
n
� 1ÿ H

1ÿ c
2

� �
ÿ 2

k
n
lg c : �6�
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Given n and d, c is determined by Equations 5 and 6. Find k with Equation
5 and round it up. So then E

��Sn=n�2k� � n� 1. From Section 4, with high
probability we can pick k0 to be O�log n� to get kQ��k�k0� ÿ Uk1 � o�1�. But k
is linear in n, so k0 � k . Equations 5 and 6 have been used to parametrically
plot the upper bound in Figure 2.

It is impossible to derive a bound which is better by more than a factor of
1� o�1� using only Equation 4, at least on average. The reason is as in
Section 4, the eigenvalues are pairwise independent. Assume c is bounded
away from 1, since otherwise it is trivially impossible to derive a better
bound, as there is a matching lower bound. The expected number of eigen-
values that are � c is 2nH��1ÿc�=2�ÿn�dÿO�log n� � cÿ2k=nO�1� ! 1. Since the
mean dominates the variance, Chebychev's inequality implies that with high
probability about that many eigenvalues are � c.

6. Continuous time

In this section we brie¯y consider the continuous time version of the random
walk. The continuous time version is similar to the discrete time version
except that 1) the proofs are easier, 2) there is no threshold when
T �d; n� � O�1� (i.e. when n is exponentially large in d), and 3) the eigenvalue
bounds are worse when n=d � 1� X�1�. In fact, even when all the eigen-
values are used, the upper bound is never better than � �ln 2=2�d, no matter
how large n is, at least in the average case. Here we derive the upper bound
given by all the eigenvalues.

This derivation follows the proof of Greenhalgh's (1993) bound, but uses
one less approximation. In continuous time, the eigenvalues are given by

ku � exp ÿ1�
Xn

i�1
Q�vi��ÿ1�u�vi

" #
:

It is now easier to evaluate E k2k
u

� �
. For u 6� 0,

E k2k
u

� � � 2ÿn
Xn

i�0

n
i

� �
eÿ4ki=n

� 2ÿn 1� eÿ4k=n
h in

:

To get 2dE k2k
u

� � � 1, we need

2nÿd � 1� eÿ4k=n
h in

21ÿd=n ÿ 1 � eÿ4k=n

n=4 ln 1= 21ÿd=n ÿ 1
h i

� k :

If n� d, then

21ÿd=n � 2�1ÿ � �ln 2�d=n�
21ÿd=n ÿ 1 � 1ÿ � �d ln 4�=n
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ln 1= 21ÿd=n ÿ 1
h i

� � �d ln 4�=n

n=4 ln 1= 21ÿd=n ÿ 1
h i

� � d ln 2=2 :

7. Discussion

For the ordinary random walk on the hypercube, the mixing time threshold
is 14 d ln d. When n is large compared with d, the random walk on Zd

2 based on
n random group elements has a mixing time threshold of d= lg�n=d�. These
are two limiting cases of a threshold function valid for all n > d, but whose
interesting behavior occurs when n is linear d. Coincidentally, the Diaconis-
Shahshahani upper bound lemma yields tight upper bounds when n=d ! 1
and when n=d !1, but not when n=d ! c 2 �1;1�.

The techniques used here generalize to give tight bounds for the mixing
time of random random walks on Zd

b (®xed b), but tight bounds for other
Abelian groups, such as Zd

2 � Zd
4, are not known. In a forthcoming paper it

will be shown that the mixing time threshold for Zd
2 upper bounds the mixing

time of all Abelian groups, i.e. part 2 of Theorem 1 holds for Abelian groups
G with lg jGj replacing d. Since Abelian groups are generally slow to mix
compared with other groups, it is natural to conjecture that Zd

2 is the most
slowly mixing of groups with respect to random random walks:

Conjecture 7 For all e > 0, for all su�ciently large groups G, if nÿ lg jGj � 1,
then almost any S � fg1; . . . ; gng � G de®nes a random walk G�S� which
satis®es kQ�k ÿ UkTV � e for

k � �1� e� n
2
ln

1

1ÿ 2Hÿ1�lg jGj=n� :
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A The inverse binary entropy function

In this appendix we derive those properties of Hÿ1�x� and 1ÿ 2Hÿ1�x� that
we use in the article, in particular the asymptotic behavior as x! 0 or x! 1.

We will make use of some higher-order derivatives of the binary entropy
function H .

H�x� � x lg 1=x� �1ÿ x� lg 1=�1ÿ x�
ÿ ln 2H�x� � x ln x� �1ÿ x� ln�1ÿ x�
ÿ ln 2H 0�x� � ln x� 1ÿ ln�1ÿ x� ÿ 1 � ln�x=�1ÿ x��
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ÿ ln 2H 00�x� � 1=x� 1=�1ÿ x�
ÿ ln 2H 000�x� � ÿ1=x2 � 1=�1ÿ x�2

ÿ ln 2H 0000�x� � 2=x3 � 2=�1ÿ x�3

From these it is clear that H�x� increases monotonically from 0 at x � 0 to 1
at x � 1=2, and then decreases back to 0 at x � 1. For 0 � y � 1 we de®ne
Hÿ1�y� to be the value of x between 0 and 1=2 for which H�x� � y.

By Taylor's theorem,

H
1

2
ÿ e

� �
� 1ÿ 2

ln 2
e2 � O e4

ÿ � � 1ÿ d ;

where the constant in the big-oh notation is between 4/3 and 6 when
jej � 1=4. Thus Hÿ1�1ÿ d� � 1=2ÿ e where d � �2= ln 2�e2 when e! 0, and
we conclude

Lemma 8.

Hÿ1�1ÿ d� � 1

2
ÿ �

��������������
�ln 2�d
2

r
1ÿ 2Hÿ1�1ÿ d� �

��������������
�ln 4�d

p
when d! 0.

To get the other limit we let y � w= lg�1=w�, and assume w! 0. Then

H�y� � w
lg�1=w� lg

lg�1=w�
w

� 1ÿ w
lg�1=w�

� �
lg

1

1ÿ w= lg�1=w�
H�y� � w� w lg lg�1=w�

lg�1=w� � �1ÿ o�1�� w
lg�1=w�

H�y� � �1� o�1��w
For any ®xed e > 0, if x is small enough we have

H
�1ÿ e�x

ÿ lg��1ÿ e�x�
� �

< x < H
�1� e�x

ÿ lg��1� e�x�
� �

;

so the monotonicity of H implies

Lemma 9.

Hÿ1�x� � x
lg�1=x�

as x! 0.
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