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Summary. We study a diffusion model of an interacting particles system with
general drift and diffusion coefficients, and electrostatic inter-particles repulsion.
More precisely, the finite particle system is shown to be well defined thanks to
recent results on multivalued stochastic differential equations (see [2]), and then
we consider the behaviour of this system when the number of particlesN goes to
infinity (through the empirical measure process). In the particular case of affine
drift and constant diffusion coefficient, we prove that a limiting measure-valued
process exists and is the unique solution of a deterministic PDE. Our treatment of
the convergence problem (asN ↑ ∞) is partly similar to that of T. Chan [3] and
L.C.G. Rogers - Z. Shi [5], except we consider here a more general case allowing
collisions between particles, which leads to a second-order limiting PDE.

Mathematics Subject Classification (1991): 60K35, 60F05, 60H10, 60J60

1 Introduction

The aim of this paper is to study the behaviour of an interacting realN -particles
system with general drift and diffusion coefficients,electrostatic inter-particles
repulsion, when the number of particlesN tends to infinity. More precisely, we
are interested in systems of particles governed by

dX(i )
t = bN (X (i )

t )dt + σN (X (i )
t )dW(i )

t + γN

∑
16j/=i6N

dt

X (i )
t − X (j )

t

, i = 1, 2, . . . ,N .

(1.1)
The behaviour of this system whenN ↑ ∞ will be considered through the

sequence of empirical measure processes

µ(N )
t =

1
N

N∑
i =1

δX (i )
t
, (1.2)
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(whereδx is the Dirac probability atx ∈ R) by studying the weak convergence
of this sequence and identifying the limit.

Systems of interacting diffusing particles governed by

dX(i )
t = bN (X (i )

t )dt + σN (X (i )
t )dW(i )

t

−DiΨN (X (1)
t ,X (2)

t , . . . ,X (N )
t ) dt , i = 1, 2, . . . ,N ,

whereΨN is an interaction potentiel of the form

ΨN (x(1), x(2), . . . , x(N )) = γN

∑
i/=j

V (x(i ) − x(j )) ,

have been studied by many authors: the reader will find in A.S. Sznitman [6] a
treatment of such equations and references. According to (1.1), we are particularly
interested in the caseV has a logarithmic singularity at 0 so that usual results and
tools are no more available. This class of SDE’s has already been studied by T.
Chan [3] and L.C.G. Rogers - Z. Shi [5] as well: our treatment of the convergence
problem asN ↑ ∞ is partly similar, but our hypotheses are more general. Indeed,
before considering the asymptotic behaviour, we have to answer the question of
existence of solutions to finite-dimensional systems. As a consequence of the
explosive form of the drift term, we can’t use standard results about existence -
uniqueness for SDE’s if the particles happen to collide. Unfortunately, to prevent
collisions,

1. the coefficientsbN andσN must be simple enough to make possible the study
of the first collision time

τ = inf{t > 0 : X (i )
t = X (j )

t for 16i /= j6N}. (1.3)

2. some restrictions have to be imposed to the coefficients in order thatτ = ∞
a.s..

To overcome the difficulty due to possible collisions, we have turned to recent
results about multivalued stochastic differential equations (see [2] and Sect. 2).
These results allow one to construct some diffusions with possibly reflecting
boundary conditions and exploding discontinuous drift: we use those results in a
special case and then we have to verify this diffusion is solution of (1.1), which
is done by using the special features of the problem (particularly the logarithmic
potentialV ). Then, the tightness of the sequence (µ(N ))N is easily obtained and
the limit of any convergent subsequence must verify some equation. To prove
the weak convergence of the global sequence, we need the uniqueness of the
solution to this limiting equation, and we are in a position to conclude in a
particular case. In this situation, we prove the existence of a limiting measure-
valued process which is the solution to a deterministic PDE. In constrast with the
previous works ([3, 5]), collisions between particles are possible and the limiting
PDE is second-order. The reader can find in [3] and [5] some applications of (1.1)
to physics and to the study of the eigenvalues of randomly-diffusing matrices.
See also the references therein.
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2 Prerequisite on multivalued stochastic differential equations

For the reader’s convenience, we recall basic facts on maximal monotone opera-
tors and multivalued SDE’s: the reader can find in [1] more details and references.

2.1 Maximal monotone operators

Definition 2.1. A set-valued operator onR
d

is a mapping A fromR
d

to P (R
d
),

whereP (R
d
) is the set of all subsets ofR

d
; its domain is

D(A) = {x ∈ Rd
: A(x) /= ∅}. (2.4)

A set-valued operator A is characterized by its graph:

Gr (A) = {(x, y) ∈ R2d
: x ∈ Rd

, y ∈ A(x)}. (2.5)

Definition 2.2. A set-valued operator A onR
d

is said to be monotone if

〈y1 − y2, x1 − x2〉> 0 , ∀(x1, y1), (x2, y2) ∈ Gr (A), (2.6)

and maximal monotone if

(x, y) ∈ Gr (A) ⇔
{
〈y− v, x− u〉> 0 , ∀(u, v) ∈ Gr (A)

}
. (2.7)

The following proposition gives the fundamental example of a maximal
monotone operator:

Proposition 2.3. Letϕ : R
d →] −∞ ; +∞] be a lower semi-continuous convex

function onR
d

such that its domaindom (ϕ) = {x ∈ Rd
: ϕ(x) < +∞} is not

empty (we say thatϕ is proper is this case and strictly proper if Int (dom(ϕ) )
/= ∅).

The subdifferential ofϕ, denoted by∂ϕ, is the maximal monotone operator
onR

d
defined by

(x, y) ∈ Gr (∂ϕ) ⇔ ϕ(x)6ϕ(z) + 〈y, x− z〉, ∀z ∈ Rd
. (2.8)

Proposition 2.4. There exists a sequence(An)n of operators (Yosida approxima-
tion) satisfying:

(i ) An is a simple-valued Lipschitz operator defined onR
d

(ii ) for all x ∈ D(A) such that A(x) has exactly one element (which we note A(x)
as well),

An(x) −−−−→
n→∞

A(x) , (2.9)

with |An(x)| ↑ |A(x)| when n↑ ∞.
(iii ) for all x /∈ D(A),

|An(x)| ↑ +∞ when n↑ ∞ ; (2.10)
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2.2 Multivalued stochastic differential equations

The following result shows that for the formal multivalued SDE{
dXt + A(Xt )dt 3 b(Xt )dt + σ(Xt )dWt

X0 = x0 ∈ D(A) ,
(2.11)

existence and uniqueness hold as soon asA is maximal monotone ; the interested
reader will find in [2] a proof of this result (and in [1] another proof and further
developments).

Theorem 2.5. For every d∈ N∗
, A maximal monotone operator onR

d
such that

Int(D(A)) /= ∅, Lipschitz applications b: R
d → R

d
and σ : R

d → R
d⊗Rd

and x0 ∈ D(A), there is exactly one strong (continuous) solution(X,K ) of:

dXt = b(Xt )dt + σ(Xt )dWt − dKt ; 06t <∞
with K finite variation process, K0 = 0, Xt ∈ D(A) for any 06t < ∞, X0 = x0,
and for every continuous process(α, β) such that

(αu, βu) ∈ Gr(A), ∀u ∈ [0; +∞[, (2.12)

the measure
〈Xu − αu, dKu − βudu〉 (2.13)

is (a.s.) nonnegative onR
+
.

3 Existence and uniqueness for the finite particle system

We use the theory of multivalued stochastic differential equations (see [1, 2]) in
order to show that the finite particle system is well defined as stated in the next
theorem.

Theorem 3.1. For every N∈ N∗\{1}, γ > 0, −∞ < x(1)
0 6x(2)

0 6 · · ·6x(N )
0 <

∞ and b : R → R, σ : R → R Lipschitz, there is a unique X=
(X (1),X (2), . . . ,X (N )) which is the strong solution of the following stochastic dif-
ferential system:



dX(1)
t = b(X (1)

t )dt + σ(X (1)
t )dW(1)

t + γ
∑

16j/=16N

dt

X (1)
t − X (j )

t

· · · = · · ·
dX(i )

t = b(X (i )
t )dt + σ(X (i )

t )dW(i )
t + γ

∑
16j/=i6N

dt

X (i )
t − X (j )

t

· · · = · · ·
dX(N )

t = b(X (N )
t )dt + σ(X (N )

t )dW(N )
t + γ

∑
16j/=N6N

dt

X (N )
t − X (j )

t

,

(3.14)
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under the conditions:
X0 = (x(1)

0 , x(2)
0 , . . . , x(N )

0 ) (3.15)

X (1)
t 6X (2)

t 6 · · · 6X (N )
t , 06t <∞, P− a.s. . (3.16)

Proof: (1) Existence part
For all x ∈ RN

, we write x = (x(1), x(2), . . . , x(N )). We consider the strictly
proper lower semi-continuous convex function onR

N
defined by:

ϕ(x) =

 −γ
∑

16i<j6N

ln(x(j ) − x(i )) if x(1) < x(2) < · · · < x(N )

+∞ if not,
(3.17)

whereγ > 0, and the coefficients̃b : R
N → R

N
, σ̃ : R

N → R
N ⊗RN

given by

(b̃(x))(i ) = b(x(i )), ∀x ∈ RN
, 16i6N , (3.18)

and
σ̃ij (x) = δij .σ(x(i )), ∀x ∈ RN

, 16i , j6N . (3.19)

The domain ofϕ is the following open subset ofR
N

D = {x ∈ RN
: x(1) < x(2) < · · · < x(N )}, (3.20)

and the subdifferentialA = ∂ϕ of the convex functionϕ is a simple-valued
maximal monotone operator (sinceϕ is regular onD , we have∂ϕ(x) = {∇ϕ(x)},

for all x ∈ D) onR
N

such that

D(A) = dom(ϕ) = D . (3.21)

The following proposition gives the exact form of the multivalued stochastic
differential equation associated with the previous data: in particular, it shows
that there is no boundary term in this case (multidimensional version of local
time).

Proposition 3.2. For the data N, A, b̃, σ̃, (x(1)
0 , x(2)

0 , . . . , x(N )
0 ) described above,

the corresponding multivalued stochastic differential equation

dXt + A(Xt )dt 3 b̃(Xt )dt + σ̃(Xt )dWt , (3.22)

can be written in terms of coordinates as:

dX(i )
t = b(X (i )

t )dt + σ(X (i )
t )dW(i )

t + γ
∑

16j/=i6N

dt

X (i )
t − X (j )

t

, i = 1, 2, . . . ,N .

(3.23)

Thanks to Theorem 2.5, (3.22) has a unique strong solution: the problem consists
in identifying the processK . The proposition will be proven through several
lemma.
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Lemma 3.3. For all 0 < T <∞, we have

E

(∫ T

0
|A(Xu)|du

)
< ∞ . (3.24)

As a consequence,

(i ) u → A(Xu) is P− a.s. locally integrable onR
+
, that is to say∫ T

0
|A(Xu)|du < ∞, ∀0 < T <∞, P− a.s. ; (3.25)

(ii ) the closed set{06u <∞ : Xu /∈ D} has Lebesgue measure zeroP− a.s..

Proof. Let X [n] be the unique strong solution of

dX[n]
t + An(X [n]

t )dt = b(X [n]
t )dt + σ(X [n]

t )dWt . (3.26)

It is shown in ([2]) that there existsC <∞ such that:

E

(∫ T

0
|An(X [n]

u )|du

)
6 C , ∀n ∈ N∗

. (3.27)

From the monotonicity of (|An(x)|)n, it follows that

E

(∫ T

0
|An(X [p]

u )|du

)
6 C , ∀n, p ∈ N∗

, n < p. (3.28)

Using the convergence in law ofX [n] to X (see [2]) and the continuity of the
mappingx → ∫ T

0 |An(x(u))|du (sinceAn is Lipschitz: see Proposition 2.4), we
have for anyR <∞

E

(
R∧

∫ T

0
|An(Xu)|du

)
6 C , ∀n ∈ N∗

; (3.29)

then Fatou’s lemma shows that

E

(∫ T

0
|An(Xu)|du

)
6 C , ∀n ∈ N∗

; (3.30)

and a second application of Fatou’s lemma together with Proposition 2.4 proves
that

E

(∫ T

0
|A(Xu)|du

)
6 C < ∞ . (3.31)

Lemma 3.4. The process K isP− a.s. absolutely continuous on
{06u <∞ : Xu ∈ D} with density A(Xu) = ∇ϕ(Xu):
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1I{Xu∈D}.dKu = ∇ϕ(Xu).du . (3.32)

Proof. We have to prove that for all 06s < t <∞∫ t

s
1I{Xu∈D}.dKu =

∫ t

s
∇ϕ(Xu).du . (3.33)

Since{06u < ∞ : Xu /∈ D} has Lebesgue measure zero, its complementary
set is dense inR

+
, so we may assumeXs, Xt ∈ D in the proof of (3.33). We

define:
B = {s6u6t : Xu /∈ D} = {s < u < t : Xu /∈ D}, (3.34)

U = ]s; t [\B, (3.35)

so thatU is an open subset ofR, U ∪ B = ]s; t [, and thusU can be written

U = ∪
l
]al ; bl [, (3.36)

where for everyl ∈ N∗
, s6al < bl6t . Therefore, we have∫ t

s
1I{Xu∈D}.dKu =

∫
∪l ]al ;bl [

.dKu

=
∑

l

∫ bl

al

dKu,

and so, it is enough to prove that for alll ∈ N∗

∫ bl

al

dKu =
∫ bl

al

∇ϕ(Xu).du . (3.37)

Let us writea for al andb for bl . We have to prove∫ b

a
dKu =

∫ b

a
∇ϕ(Xu).du , (3.38)

assuming that
Xu ∈ D , ∀u ∈ ]a; b[. (3.39)

It suffices to show (3.38) under the stronger assumption

Xu ∈ D , ∀u ∈ [a; b]. (3.40)

If we define
K = {Xu : u ∈ [a; b]}, (3.41)

thenK is a compact subset of the open setD , which implies the existence of
δ > 0 such that

Kδ = {x ∈ Rd
: dist(x,K )6δ} ⊂ D . (3.42)

Let e ∈ RN
, |e| = 1. Recall that the measure
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〈Xu − αu, dKu − βudu〉 (3.43)

is nonnegative on [a; b] for (α, β) such that

(αu, βu) ∈ Gr(A), ∀u ∈ [a; b] . (3.44)

Taking (αu, βu) = (Xu − εe,∇ϕ(Xu − εe)), 0< ε < δ, we obtain:

〈e,
∫ b

a
dKu −∇ϕ(Xu − εe)du 〉 > 0, (3.45)

and then we letε tend to 0 to get

〈e,
∫ b

a
dKu −∇ϕ(Xu)du 〉 > 0, (3.46)

thanks to (3.42), the smoothness ofϕ on D and Lebesgue’s convergence theorem.
Replacingε by −ε, we finally obtain

〈e,
∫ b

a
dKu −∇ϕ(Xu)du 〉 = 0, ∀e ∈ RN

, |e| = 1, (3.47)

and consequently, ∫ b

a
dKu =

∫ b

a
∇ϕ(Xu)du . (3.48)

From the previous lemma, we assert that the measuredK can be written

dKu = ∇ϕ(Xu)du + dGu, (3.49)

whereG is a continuous boundary process, that is to say:

Gt =
∫ t

0
1I{Xu∈∂D}dGu. (3.50)

Lemma 3.5. For all 06t <∞, 16i < j6N , we have∫ t

0

du

X (j )
u − X (i )

u

< ∞. (3.51)

Proof. Let i = 1. For all 26j6N , sinceK , G are finite variation processes and
all the terms in the absolute value have the same sign,∫ t

0

du

X (j )
u − X (1)

u

6

∫ t

0

∣∣∣∣ l =N∑
l =2

1

X (l )
u − X (1)

u

∣∣∣∣du < ∞. (3.52)

Let i = 2. According to the casei = 1, we know that
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∫ t

0

du

X (2)
u − X (1)

u
< ∞, (3.53)

and consequently for all 36j6N∫ t

0

du

X (j )
u − X (2)

u

6

∫ t

0

∣∣∣∣ l =N∑
l =3

1

X (l )
u − X (2)

u

∣∣∣∣du < ∞ . (3.54)

Let i = 3. According to the casesi = 1 et i = 2, we know that∫ t

0

du

X (3)
u − X (1)

u
< ∞, (3.55)∫ t

0

du

X (3)
u − X (2)

u
< ∞, (3.56)

and consequently for all 46j6N∫ t

0

du

X (j )
u − X (3)

u

6

∫ t

0

∣∣∣∣ l =N∑
l =4

1

X (l )
u − X (3)

u

∣∣∣∣du < ∞ . (3.57)

By iteration, we obtain (3.51).
The following result displays in which direction the boundary termG acts to

keepX insideD :

Lemma 3.6. For all 06t <∞, we have

Gt =
∫ t

0
nsd|G|s, (3.58)

where ns belongs d|G| − a.e. to the set of unitary outward normals of D at Xs.

Proof. Since (X,K )is the solution of (3.22), it follows that for all (α, β) ∈ Gr(A)

〈Xu − α, dKu − βdu〉> 0, (3.59)

and considering the product with 1I{Xu∈∂D}which is du-a.e. zero (see Lemma
3.3) and writingdGu = nud|G|u where|nu| = 1 (corollary of Radon-Nikodym’s
theorem)

〈Xu − α, nud|G|u〉> 0, (3.60)

thus, ford|G|-almost allu, we have

〈Xu − α, nu〉> 0, ∀α ∈ D , (3.61)

and so for allα ∈ D as well, which characterizes the fact thatnu belongs to the
outward normal cone ofD at Xu.

Using the decomposition (3.49) ofdK , we write differently the system of
equations satisfied byX:

dX(i )
t = b(X (i )

t )dt + σ(X (i )
t )dW(i )

t

+γ
∑

16j/=i6N

dt

X (i )
t − X (j )

t

− dG(i )
t , i = 1, 2, . . . ,N .
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Lemma 3.7. Let x ∈ ∂D, x = (x(1)6x(2)6 · · ·6x(j−1) < x(j ) = x(j +1) = · · · =
x(k−1) = x(k) < x(k+1)6 · · ·6x(N )) and n = (n(1), n(2), . . . , n(N )) belong to the
outward normal cone of D at x. Then n(j ) + n(j +1) + · · · + n(k−1) + n(k) = 0 (with
natural modifications for j= 1, k = N , j = k).

Proof. By definition of the outward normal cone ofD at x, we have:

〈x − α, n〉> 0 , ∀α ∈ D = {y : y(1)6y(2)6 · · ·6y(N )}. (3.62)

Let ε > 0 such thatx(j−1) < x(j ) − ε < x(k) + ε < x(k+1). The inequality
(3.62) for α = (x(1), x(2), · · · , x(j−1), x(j ) − ε, x(j +1) − ε, . . . , x(k−1) − ε, x(k) −
ε, x(k+1), . . . , x(N )) ∈ D givesε(n(j ) +n(j +1) + · · ·+n(k−1) +n(k))>0, and withα =
(x(1), x(2), · · · , x(j−1), x(j )+ε, x(j +1)+ε, . . . , x(k−1)+ε, x(k)+ε, x(k+1), . . . , x(N )) ∈ D ,
we obtainε(n(j ) + n(j +1) + · · · + n(k−1) + n(k))60. Consequently, we have shown
that n(j ) + n(j +1) + · · · + n(k−1) + n(k) = 0.

In the following lemma, it is shown the processG is zero in fact and con-
sequently there is no boundary term: thus the proof of Proposition 3.2 will be
complete.

Lemma 3.8. G = 0.

Proof. We deduce from Lemma 3.6 and Lemma 3.7 (withj = k) that the measure
dG(i ), 16i6d, is supported by

{06u <∞ : X (i )
u = X (i +1)

u } ∪ {06u <∞ : X (i )
u = X (i−1)

u }, (3.63)

with natural modifications fori = 1, i = d. Therefore, in order to prove Lemma
3.8, it suffices to show that for all 16i6N − 1

1I{X (i )
u = X (i +1)

u }dG(i )
u = 1I{X (i )

u = X (i +1)
u }dG(i +1)

u = 0, (3.64)

or for all 16i6d − 1, 16j6i < k6N ,

1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(i )

u

= 1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(i +1)

u

= 0.
(3.65)

Let j6l < m6k. We are going to prove

1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(l )

u

= 1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(m)

u

= 0.
(3.66)

Using the occupation times formula, we can claim∫ ∞

0

La
t (X (m) − X (l ))

a
da =

∫ t

0

σ2(X (m)
u ) + σ2(X (l )

u )

X (m)
u − X (l )

u
du, (3.67)
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whereLa(X (m)−X (l )) is the local time ata of the real continuous semi-martingale
X (m)−X (l ). From the continuity ofX and the Lipschitz continuity ofσ, we deduce

sup
06u6t

(
σ2(X (m)

u ) + σ2(X (l )
u )

)
6 C .

(
1 + sup

06u6t
|Xu|2

)
6 C , (3.68)

so, using Equation (3.67) and Lemma 3.5∫ ∞

0

La
t (X (m) − X (l ))

a
da < ∞, (3.69)

which impliesL0
t (X (m) − X (l )) = 0 thanks to the right continuity of local time.

From the identity
X (m)

u − X (l )
u = (X (m)

u − X (l )
u )+, (3.70)

calculating (X (m)
u − X (l )

u )+ with Tanaka’s formula and sinceL0(X (m) − X (l )) ≡ 0,
we have ∫ t

0
(dG(m)

u − dG(l )
u ) =

∫ t

0
1I{X (m)

u >X (l )
u }(dG(m)

u − dG(l )
u ), (3.71)

where we have used Lemma 3.3 to assert that 1I{X (m)
u >X (l )

u } = 1 a.e. with respect to
the Lebesgue measure in order to identify the others terms in the semimartingale
decompositions ofX (m)

u −X (l )
u and (X (m)

u −X (l )
u )+. The last equality can be written∫ t

0
1I{X (l )

u = X (m)
u }dG(m)

u =
∫ t

0
1I{X (l )

u = X (m)
u }dG(l )

u , (3.72)

hence also

1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(l )

u

= 1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(m)

u .
(3.73)

Let v = ej + ej +1 + . . . + ek where (e1, e2, . . . , eN ) is the canonical ba-

sis of R
N

. From Lemma 3.7,v is orthogonal to every normal vector at any
point of {x(1)6x(2)6 · · ·6x(j−1) < x(j ) = · · · = x(i ) = x(i +1) = · · · = x(k) <
x(k+1)6 · · ·6x(N )}. So, using Lemma 3.6, we have

1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }〈v, dGu〉 = 0,

(3.74)
and from the definition ofv

p=k∑
p=j

1I{X (1)
u 6X (2)

u 6···6X (j−1)
u <X (j )

u =···=X (i )
u =X (i +1)

u =···=X (k)
u <X (k+1)

u 6···6X (N )
u }dG(p)

u = 0 .

(3.75)
Now, using (3.73) and (3.75), we get (3.64). The proof of Lemma 3.8 is complete
and, consequently, that of Proposition 3.2 as well.

Proof: (2) Uniqueness part
For the sake of completeness, we prove uniqueness for the problem (3.14) but it
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is clear this proof is just a particular case of the general result of uniqueness for
multivalued stochastic differential equations (see [2]). In particular, uniqueness
is a direct consequence of the Lipschitz continuity ofb, σ and the monotonicity
of ∂ϕ.

Let X andY be solutions of (3.14). We define:

Sp = inf{t>0 : |Xt | + |Yt |>p}, p ∈ N∗
. (3.76)

Using Ito’s formula, we have:

|Xt∧Sp − Yt∧Sp |2

= 2
∫ t∧Sp

0
〈b(Xs)− b(Ys),Xs − Ys〉ds

+ 2
∫ t∧Sp

0
〈σ(Xs)− σ(Ys),Xs − Ys〉dWs

− 2γ
∫ t∧Sp

0

∑
16i6N

∑
16j/=i6N

(X (i )
s − Y (i )

s )

(
1

X (i )
s − X (j )

s

− 1

Y (i )
s − Y (j )

s

)
ds

+
∫ t∧Sp

0
tr
[{σ(Xs)− σ(Ys)} {σ(Xs)− σ(Ys)}∗] ds,

but for all x, y ∈ D , we can claim

∑
16i6N

∑
16j/=i6N (x(i ) − y(i ))

(
1

x(i )−x(j ) − 1
y(i )−y(j )

)
=

∑
16i6N

∑
16j<i6N

(
1

x(i )−x(j ) − 1
y(i )−y(j )

)
((x(i ) − y(i ))− (x(j ) − y(j )))

=
∑

16i6N

∑
16j<i6N

(
1

x(i )−x(j ) − 1
y(i )−y(j )

)
((x(i ) − x(j ))− (y(i ) − y(j )))

6 0 ,

which implies that

|Xt∧Sp − Yt∧Sp |2 6 2
∫ t∧Sp

0
〈b(Xs)− b(Ys),Xs − Ys〉ds

+ 2
∫ t∧Sp

0
〈σ(Xs)− σ(Ys),Xs − Ys〉dWs

+
∫ t∧Sp

0
tr
[{σ(Xs)− σ(Ys)} {σ(Xs)− σ(Ys)}∗] ds,

and then from the assumption onb, σ:

E|Xt∧Sp − Yt∧Sp |2 6 C E
∫ t∧Sp

0
|Xs − Ys|2ds

6 C
∫ t

0
E|Xs∧Sp − Ys∧Sp |2ds.

HenceE|Xt∧Sp − Yt∧Sp |2 = 0 from Gronwall’s lemma, and then, using Fatou’s
lemma,E|Xt−Yt |2 = 0. The proof of uniqueness for (3.14) is therefore complete,
and Theorem 3.1 follows at once.
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4 Tightness

For a particular choice of the coefficientsb, σ, we are able to study the collision
between particles governed by the system (3.14) (see [1] or [5] for a proof).

Proposition 4.1. We consider the solution X of (3.14) for the data N∈ N∗\{1},
γ > 0, −∞ < x(1)

0 < x(2)
0 < · · · < x(N )

0 < ∞ and the coefficients b,σ given by
b(x) = θx + δ, σ(x) = σ ( θ ∈ R, δ ∈ R, 06σ <∞ ). Let τ be the first collision
time between the particles, that is to say

τ = inf{t > 0 : X (i )
t = X (j )

t for 16i /= j6N}. (4.77)

If we suppose
2γ > σ2, (4.78)

then there is no collision between particles, that is to say

P(τ = ∞) = 1. (4.79)

We are interested in the behaviour of the interacting particles system (3.14)
when

γ =
2λ
N

, (4.80)

as the numberN of particles tends to infinity, which we study through the
empirical measure process:

µ(N )
t =

1
N

N∑
i =1

δX (i )
t
, (4.81)

whereδx is the Dirac probability atx for x ∈ R. Thus, we would like to establish
a kind of “strong law” limiting behaviour asN ↑ ∞ for (3.14).

This interacting SDE, and particularly its behaviour whenN ↑ ∞, have
recently been studied by L.C.G. Rogers-Z. Shi [5] and T. Chan [3] but they were
forced to suppose that there was no collision between particles (otherwise they
couldn’t define a solution for the system (3.14) up to∞), that is to say they
studied the limiting behaviour in the particular case

b(x) = −θ.x, ∀ x ∈ R, (4.82)

σ(x) ≡ σ, ∀ x ∈ R, (4.83)

(0 < θ <∞, 0< σ <∞) with σ2 6 2γ =
4λ
N

. That’s the reason why they had

to considerσ =
const.√

N
, and consequently tending to 0 asN tends to infinity.

Our treatment is partly similar to that of T. Chan [3] and L.C.G. Rogers -
Z. Shi [5] except that we consider the most general case forb andσ (thanks to
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Theorem 3.1) at least for tightness, but we will consider particular coefficientsb
andσ when studying convergence (see Sect. 5).

Henceforth, we will assume (to simplify)

x(1)
0 = x(2)

0 = . . . = x(N )
0 = x0 ∈ R , ∀N ∈ N∗

. (4.84)

Theorem 4.2. With the same assumptions as in Theorem 3.1 exceptγ is given by
(4.80) and the initial data by (4.84), the sequence of measure-valued processes
(µ(N ))N is tight and any limitµ is a continuous probability measure-valued process
satisfying:

∫
f (x)dµt (x) = f (x0) +

∫ t

0
ds

(∫
b(x).f ′(x)µs(dx)

)

+
1
2

∫ t

0
ds

(∫
σ2(x).f ′′(x)µs(dx)

)

+λ

∫ t

0
ds

(∫ ∫
f ′(x)− f ′(y)

x − y
µs(dx)µs(dy)

)
(4.85)

for all f ∈ C2
b (R) (= {f ∈ C2(R) : f , f ′, f ′′ bounded}) with x2f ′′(x) and xf′(x)

bounded.

Proof. Let (fn)n∈N∗ be a dense subsequence of functions inC2
c (R) and f0 be a

positive function inC2(R) with x2f ′′0 (x), xf ′0(x) bounded andf0(x) → ∞ as
|x| ↑ ∞. In order to obtain the tightness of (µ(N ))N , it is sufficient (see [3]) to
prove that for eachn ∈ N, the sequence of continuousreal − valued processes

(
∫

fn(x)dµ(N )
. (x))N is tight. Consequently, it is enough to prove the tightness of

(
∫

f (x)dµ(N )
. (x))N for all f ∈ C2(R) with x2f ′′(x) andxf ′(x) bounded.

From (3.14), (4.81) and Itô’s formula, we have:
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∫
f (x)dµ(N )

t (x) =
1
N

N∑
i =1

f (X (i )
t )

= f (x0) +
1
N

N∑
i =1

∫ t

0
f ′(X (i )

s )σ(X (i )
s )dW(i )

s

+
1
N

N∑
i =1

∫ t

0
b(X (i )

s ).f ′(X (i )
s )ds

+
1
N

N∑
i =1

∫ t

0
f ′(X (i )

s )

(
2λ
N

∑
16j/=i6N

1

X (i )
s − X (j )

s

)
ds

+
1

2N

N∑
i =1

∫ t

0
σ2(X (i )

s ).f ′′(X (i )
s )ds.

(4.86)

Hence, using the definition (4.81) of (µ(N ))N and the symmetry of the inter-
action, the equality (4.86) can also be written:

∫
f (x)dµ(N )

t (x) = f (x0) + M (N )
t

+
∫ t

0
ds

(∫
b(x).f ′(x)µ(N )

s (dx)

)

+λ

∫ t

0
ds

(∫ ∫
{x/=y}

f ′(x)− f ′(y)
x − y

µ(N )
s (dx)µ(N )

s (dy)

)

+
1
2

∫ t

0
ds

(∫
σ2(x).f ′′(x)µ(N )

s (dx)

)
,

(4.87)
whereM (N ) is a continuous martingale such that:

〈M (N )〉t =
1

N 2

N∑
i =1

∫ t

0
{σ(X (i )

s ).f ′(X (i )
s )}2ds. (4.88)

The triple integral of (4.87) is

λ

∫ t

0
ds

(∫ ∫
f ′(x)− f ′(y)

x − y
µ(N )

s (dx)µ(N )
s (dy)

)
− λ

N

∫ t

0
ds

(∫
f ′′(x)µ(N )

s (dx)

)
(4.89)
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so that∫
f (x)dµ(N )

t (x) = f (x0) + M (N )
t

+
∫ t

0
ds

(∫
b(x).f ′(x)µ(N )

s (dx)

)

+λ

∫ t

0
ds

(∫ ∫
f ′(x)− f ′(y)

x − y
µ(N )

s (dx)µ(N )
s (dy)

)

− λ

N

∫ t

0
ds

(∫
f ′′(x)µ(N )

s (dx)

)

+
1
2

∫ t

0
ds

(∫
σ2(x).f ′′(x)µ(N )

s (dx)

)
.

(4.90)

Now, using (4.90), the assumption thatxf ′(x), x2f ′′(x) are bounded,b and
σ are Lipschitz, and the well-known Aldous criterion (see [4]), the sequence of

continuous real-valued processes (
∫

f (x)dµ(N )
. (x))N is easily shown to be tight

and, consequently, the laws of the processes (µ(N )))N are shown to be tight. From
the tightness, we have at least the convergenceµ(N ) ⇒ µ along a subsequence
(Nk). Let k tend to infinity in (4.90) (written forN = Nk) for suitable f and
use the convergenceµ(Nk ) ⇒ µ, the boundedness off , xf ′(x), x2f ′′(x): thus, we
show that any such limit processµ satisfies (4.85). This concludes the proof of
Theorem 4.2.

5 Convergence

In this section, we would like to obtain the weak convergence of (µ(N ))N when
N ↑ ∞ to a measure - valued processµ. From Sect. 4, it remains to prove there
is only one possible limit for all (µ(Nk ))k . We shall do this for quite particular
coefficients, more precisely

b(x) = θ.x + ρ, ∀ x ∈ R, (5.91)

σ(x) = σ, ∀ x ∈ R, (5.92)

for some constantsθ, ρ ∈ R, 0< σ <∞ ; so we henceforth consider the system

dX(i )
t = σdW(i )

t +
2λ
N

∑
16j/=i6N

dt

X (i )
t − X (j )

t

+ (θX (i )
t + ρ)dt , i = 1, 2, . . . ,N .

(5.93)
However, it is worth noticing that we don’t assumeσ2 6 2γ. In particular,

this implies:
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– in contrast with [3] and [5], the sequence of diffusion coefficientsσN does
not tend to 0 asN →∞, so that the process “hidden behind” the limitµ of
µ(N ) is not deterministic anymore ;

– there might be collisions between the particles governed by the system (5.93).

Theorem 5.1. With the same assumptions as in Theorem 4.2 (with b,σ given
by (5.91), (5.92)), the sequence of measure-valued process(µ(N ))N is (weakly)
convergent and the limitµ is the unique continuous probability measure-valued
function satisfying:∫

f (x)dµt (x) = f (x0) +
∫ t

0
ds

(∫
(θx + ρ).f ′(x)µs(dx)

)

+
σ2

2

∫ t

0
ds

(∫
f ′′(x)µs(dx)

)

+λ

∫ t

0
ds

(∫ ∫
f ′(x)− f ′(y)

x − y
µs(dx)µs(dy)

)
(5.94)

for all f ∈ C2
b (R) with xf ′(x) bounded.

Proof. Thanks to Theorem 4.2, we have at least thatµ(N ) ⇒ µ along a subse-
quence and any such limit processµ = {µt , t ∈ R+} satisfies∫

f (x)dµt (x) = f (x0) +
∫ t

0
ds

(∫
(θx + ρ).f ′(x)µs(dx)

)

+
σ2

2

∫ t

0
ds

(∫
f ′′(x)µs(dx)

)

+λ

∫ t

0
ds

(∫ ∫
f ′(x)− f ′(y)

x − y
µs(dx)µs(dy)

)
(5.95)

for all f ∈ C2
b (R) with xf ′(x) bounded (note thatσ is constant and so the

boundedness ofx2f ′′(x) isn’t necessary anymore). If we can show that (5.95)
has a unique solution, we actually prove the convergence of (µ(N ))N , this time
not only up to subsequences, and thereby Theorem 5.1. Now, forz = x + iy ∈
C, y > 0, set

f (u) =
1

u − z
, (5.96)

and

Mt (z) =
∫

µt (du)
u − z

. (5.97)

Simple calculations, with (5.95) at their starting point, show thatM satisfies the
PDE
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
∂Mt (z)
∂t

= −θMt (z) − (θz + ρ)
∂Mt (z)
∂z

+ σ2∂
2Mt (z)
∂z2

+ 2λMt (z).
∂Mt (z)
∂z

M0(z) =
1

x0 − z
.

(5.98)

Let us note that|Mt (z)|6 1
y

for all t>0, x ∈ R, |Mt (z)| → 0 when|x| → ∞
andM.(. + iy) ∈ L2([0; t ] ×R) for all t>0, y > 0. Now, let us fixy > 0 and set

u(t , x) = Mt (x + iy) . (5.99)

We define the linear operatorL by

L u =
∂u
∂t

+ θ.u + (θx + i θy + ρ)
∂u
∂x

− σ2∂
2u

∂x2
. (5.100)

Thanks to (5.98),u is a solution to the PDE
L u = 2λu.

∂u
∂x

u(0, x) =
1

x0 − x − iy
u ∈ L2([0; T] ×R) , ∀T <∞ .

(5.101)

In order to prove Theorem 5.1, it also suffices to show uniqueness for (5.101).
We will prove it thanks to several lemma.

Lemma 5.2. Let u be a solution to the PDE
L u = 0
u(0, x) = u0(x) , u0 ∈ L1 ∩ L∞

u ∈ L2([0; T] ×R) , ∀T <∞
(5.102)

Then we have:

u(t , x) =
∫

u0(e−θt (x − v))e−θt

× exp

−
(
v − 1

θ
(ρ + i θy)(eθt − 1)

)2

2σ2 (e2θt − 1)
θ


× 1

√
2πσ

√
e2θt − 1

θ

dv . (5.103)

Proof. This kind of result is very classic and so we don’t give a detailed proof.
Let us just note that it suffices to consider the Fourier transform of the equation
Lu = 0 to obtain the new equation

∂û
∂t

− θξ.
∂û
∂ξ

− (θy − i ρ)ξû + σ2ξ2û = 0 , (5.104)
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(with the notation ˆu(t , ξ) =
∫

e−ixξu(t , x) dx) and, then, using the well-known

method of the characteristics, we get

û(t , ξ) = û0(eθtξ) exp

(
1
θ

(θy − i ρ)ξ(eθt − 1) − ξ2σ
2

2θ
(e2θt − 1)

)
. (5.105)

The inverse Fourier formula allows us to conclude.

Lemma 5.3. Let u be a solution of the PDE
L u =

∂g

∂x
= h , g and h bounded on[0; T] ×R

u(0, .) = 0
u ∈ L2([0; T] ×R) , ∀T <∞

(5.106)

Then u must be given by

u(t , x) =
∫ t

0

∫
1√

2πσ
√

e2θs−1
θ

eθs

(
veθs − x + 1

θ (ρ + i θy)(eθs − 1)

)
σ2 (e2θs − 1)

θ

× exp

−
(

x − veθs − 1
θ

(ρ + i θy)(eθs − 1)

)2

2σ2 (e2θs−1)
θ


×g(t − s, v) ds dv .

(5.107)

Proof. Uniqueness follows from Lemma 5.2. We are now looking forf (t , x, v)
such that

u(t , x) =
∫ t

0

∫
f (s, x, v)h(t − s, v)dsdv , (5.108)

and consequently

û(t , ξ) =
∫ t

0

∫ ∫
e−ixξf (s, x, v)h(t − s, v)dsdvdx . (5.109)

We want to find

ϕ(t , ξ, v) =
∫

e−ixξf (t , x, v)dx , (5.110)

satisfying

û(t , ξ) =
∫ t

0

∫
ϕ(s, ξ, v)h(t − s, v)dsdv =

∫ t

0

∫
ϕ(t − s, ξ, v)h(s, v)dsdv ,

(5.111)
with ∫

ϕ(0, ξ, v)h(t , v)dv =
∫

e−ivξh(t , v)dv . (5.112)
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So we have
∂ϕ

∂t
− θξ.

∂ϕ

∂ξ
− (θy − i ρ)ξϕ + σ2ξ2ϕ = 0 , (5.113)

ϕ(0, ξ, v) = e−ivξ . (5.114)

Thanks to the proof of Lemma 5.2 (see (5.105)), we can assert that

ϕ(t , ξ, v) = e−i ξeθtv exp

(
1
θ

(θy − i ρ)ξ(eθt − 1) − ξ2σ
2

2θ
(e2θt − 1)

)
. (5.115)

Using (5.110), (5.115) and the inverse Fourier formula, we obtainf (t , x, v).

Then, we deduce from (5.108) the expression ofu(t , x) in terms ofh =
∂g

∂x
and,

finally, an integration by parts gives formula (5.107).
Now, we are able to show the uniqueness of the solution to Equation (5.101).

Let us also assume thatu1 andu2 satisfy

L u = 2λu.
∂u
∂x

= λ.
∂u2

∂x
, (5.116)

with |ui (t , x)|61/y, i = 1, 2. Writing (5.116) foru1 andu2 and then making the
difference, we obtain

L (u1 − u2) = λ.
∂(u2

1 − u2
2)

∂x
. (5.117)

Hence, there exists a constantC <∞ such that

v(t)6 C
∫ t

0
v(s)

1√
e2θ(t−s)−1

θ

ds, (5.118)

where
v(t) = sup

x
sup
s6t

|u1(s, x)− u2(s, x)| . (5.119)

Using the elementary fact that we can find a constantν > 0 such that√
e2θu − 1

θ
> ν

√
u , 06u6T , (5.120)

we can write

v(t)6 C ′
∫ t

0
v(s)

1√
t − s

ds, (5.121)

and iterating this inequality

v(t) 6 C ′2
∫ t

0

(∫ s

0
v(u)

1√
s− u

du

)
1√

t − s
ds

= C ′2
∫ t

0
v(u) du

∫ t

u

ds√
s− u

√
t − s

, (5.122)
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v(t)6 C ′2
∫ t

0
v(u) du

∫ 1

0

dr√
r (1− r )

6 C ′′
∫ t

0
v(u) du , (5.123)

and, finally, thanks to Gronwall’s lemma, we can claim thatv = 0 and, conse-
quently,u1 = u2. This ends the proof of Theorem 5.1.
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