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Summary. We study a diffusion model of an interacting particles system with
general drift and diffusion coefficients, and electrostatic inter-particles repulsion.
More precisely, the finite particle system is shown to be well defined thanks to
recent results on multivalued stochastic differential equations (see [2]), and then
we consider the behaviour of this system when the number of parhiclgses to
infinity (through the empirical measure process). In the particular case of affine
drift and constant diffusion coefficient, we prove that a limiting measure-valued
process exists and is the unique solution of a deterministic PDE. Our treatment of
the convergence problem (BsT o) is partly similar to that of T. Chan [3] and
L.C.G. Rogers - Z. Shi [5], except we consider here a more general case allowing
collisions between particles, which leads to a second-order limiting PDE.
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1 Introduction

The aim of this paper is to study the behaviour of an interactingNepétrticles
system with general drift and diffusion coefficien&dectrostatic inter-particles
repulsion when the number of particld$ tends to infinity. More precisely, we
are interested in systems of particles governed by
dt
12

dx® = by Ot + on X)W + oy 30T 1 =120
1jAEN Y t
(1.2)

The behaviour of this system wheh T co will be considered through the
sequence of empirical measure processes

N .

N
1
MEN) = N ;5)(1(07 1.2)
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(whereéy is the Dirac probability ak € IR) by studying the weak convergence
of this sequence and identifying the limit.
Systems of interacting diffusing particles governed by

= byt + on (4)aw"
Do (XD, x@, o xMydt, i =1,2,... N,

whereWy is an interaction potentiel of the form

U (X(l),X(2)7 el X(N)) = W ZV(X(i) _ x(j)),
i#

have been studied by many authors: the reader will find in A.S. Sznitman [6] a
treatment of such equations and references. According to (1.1), we are particularly
interested in the casé has a logarithmic singularity at 0 so that usual results and
tools are no more available. This class of SDE’s has already been studied by T.
Chan [3] and L.C.G. Rogers - Z. Shi [5] as well: our treatment of the convergence
problem asN T oo is partly similar, but our hypotheses are more general. Indeed,
before considering the asymptotic behaviour, we have to answer the question of
existence of solutions to finite-dimensional systems. As a consequence of the
explosive form of the drift term, we can’t use standard results about existence -
uniqueness for SDE’s if the particles happen to collide. Unfortunately, to prevent
collisions,

1. the coefficientdy andoy must be simple enough to make possible the study
of the first collision time

7= inf{t >0 : X" = x9 for 1<i#j<N}. (1.3)

2. some restrictions have to be imposed to the coefficients in order thato
a.s..

To overcome the difficulty due to possible collisions, we have turned to recent
results about multivalued stochastic differential equations (see [2] and Sect. 2).
These results allow one to construct some diffusions with possibly reflecting
boundary conditions and exploding discontinuous drift: we use those results in a
special case and then we have to verify this diffusion is solution of (1.1), which
is done by using the special features of the problem (particularly the logarithmic
potentialV). Then, the tightness of the sequeng&'()y is easily obtained and

the limit of any convergent subsequence must verify some equation. To prove
the weak convergence of the global sequence, we need the uniqueness of the
solution to this limiting equation, and we are in a position to conclude in a
particular case. In this situation, we prove the existence of a limiting measure-
valued process which is the solution to a deterministic PDE. In constrast with the
previous works ([3, 5]), collisions between particles are possible and the limiting
PDE is second-order. The reader can find in [3] and [5] some applications of (1.1)
to physics and to the study of the eigenvalues of randomly-diffusing matrices.
See also the references therein.
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2 Prerequisite on multivalued stochastic differential equations

For the reader’s convenience, we recall basic facts on maximal monotone opera-
tors and multivalued SDE's: the reader can find in [1] more details and references.

2.1 Maximal monotone operators

Definition 2.1. A set-valued operator oR% is a mapping A fromk? to .J)(Rd),
where;J/'—’(IRid) is the set of all subsets & ; its domain is

D) = {x e R : AKX) #0}. (2.4)
A set-valued operator A is characterized by its graph:
Gr(A) = {(x,y) e B : xe R? y € AX)}. (2.5)
Definition 2.2. A set-valued operator A oR" is said to be monotone if

(Y1 — VYo, X1 — %) = O, V(X1, Y1), (X2, ¥2) € Gr(A), (2.6)

and maximal monotone if

x,y)eGr(A) < {(y—v,x—u>20, V(u,v)eGr(A)}. (2.7)

The following proposition gives the fundamental example of a maximal
monotone operator:

Proposition 2.3. Let g : R —] — 00 ; +o00] be a lower semi-continuous convex

function onl2® such that its domaidom ) = {xe R : ©(X) < +oo} is not
empty (we say thap is proper is this case and strictly proper if Int (doraj )

% 0).

The subdifferential oy, denoted by, is the maximal monotone operator
on ¢ defined by

(X,y) € Gr@y) < o(X) < p(2) + {y,x — 2), vze RS (2.8)

Proposition 2.4. There exists a sequen¢&,), of operators (Yosida approxima-
tion) satisfying:

(i) A, is a simple-valued Lipschitz operator defined B
(i) for all x € D(A) such that Ax) has exactly one element (which we nofg)A
as well),
An(x) —— AX). (2.9)

with [An(X)| T |A(X)| when nT oco.
(ii ) for all x ¢ D(A),

|An(X)| T +oo when nf oo; (2.10)
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2.2 Multivalued stochastic differential equations

The following result shows that for the formal multivalued SDE
{ dX + A(X)dt o b(X)dt + o(X)dW
Xo =% € D(A),
existence and uniqueness hold as sooA Bsmaximal monotone ; the interested

reader will find in [2] a proof of this result (and in [1] another proof and further
developments).

(2.11)

Theorem 2.5. For every de IN*, A maximal monotone operator &’ such that
Int(D(A)) # 0, Lipschitz applications b R - RY and o:RY - RIgRC
and % € D(A), there is exactly one strong (continuous) solut{gh K) of:

dX = b(X)dt + o(X)dW — dK¢; O<t < oo

with K finite variation process, = 0, X; € D(A) for any 0<t < oo, Xo = Xo,
and for every continuous procegs, 3) such that

(o, Bu) € Gr(A), Yu € [0; +oof, (2.12)
the measure
(Xy — ay, dKy — Budu) (2.13)
is (a.s.) nonnegative oft.".

3 Existence and uniqueness for the finite particle system

We use the theory of multivalued stochastic differential equations (see [1, 2]) in
order to show that the finite particle system is well defined as stated in the next
theorem.

Theorem 3.1. For every Ne N"\{1}, v > 0, —oo < x{"<x@P< - <V <
cocand b : B — IR, 0 : R — IR Lipschitz, there is a unique X=
(XD, x@ . XNy which is the strong solution of the following stochastic dif-
ferential system:

dt
dXt(l) - b(Xt(l))dt + g(Xt(l))dV\é(l) 7y Z XD _ x 0
1jFIEN Y '
| | o dt
dx? = bt + (XMW + 4 3 % _ x®
1j#gN ‘
dt
dx™ = bx™Mdt + o(x™Mydw™ + 4 3 XN — 0

1NN
(3.14)
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under the conditions:
Xo = (Y, P, ¢ (3.15)

XD LXA o XN 0Kt < 00, P—as.. (3.16)

Proof: (1) Existence part
For allx € ", we wiitex = (x®,x@,...,x™N). We consider the strictly
proper lower semi-continuous convex function®n defined by:

Y IO —x0) i x® < x@ < < X
e(x) = 1<i<j N (3.17)
+00 if not,

wherey > 0, and the coefficients : RY - RY, 5 RY - R o " given by
~ - - N .
(b)) = bxM), vx e R™, 1<i <N, (3.18)

and
5y (x) = 6&.0(xD), vx € BV, 1<ij <N, (3.19)

The domain ofy is the following open subset a"
D = {xeR" : x® < x® < ... «xN} (3.20)

and the subdifferentiah = Jp of the convex functionp is a simple-valued
maximal monotone operator (singds regular orD, we havedp(x) = {Ve(X)},

for all x € D) on &N such that
D(A) = dom() = D. (3.21)

The following proposition gives the exact form of the multivalued stochastic
differential equation associated with the previous data: in particular, it shows
that there is no boundary term in this case (multidimensional version of local
time).

Proposition 3.2. For the data N A, b, 5, (x{",x?, ..., x{") described above,
the corresponding multivalued stochastic differential equation
dX + A(X)dt > b(X)dt + &(X)dW , (3.22)

can be written in terms of coordinates as:

dX{(l) - b(Xt('))dt + O'(Xt(l))d\M(l) + Z (|)d_t . i = :]_7 2, ceey N .

IAEN
(3.23)

Thanks to Theorem 2.5, (3.22) has a unique strong solution: the problem consists
in identifying the proces¥. The proposition will be proven through several
lemma.
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Lemma 3.3. Forall 0 < T < oo, we have

E(/OT |A(Xu)|du> < 00. (3.24)

As a consequence,

(i) u — A(X.) is P — as. locally integrable orlR", that is to say
T
/ [AXy)|du < oo, VO<T < oo, P—as; (3.25)
0
(ii ) the closed sefO<u < oo : X, ¢ D} has Lebesgue measure zdfo- as..

Proof. Let X" be the unique strong solution of
dx[M + A (xMydt = bXM)dt + o(X[™)dW . (3.26)

It is shown in ([2]) that there exist€ < oo such that:

;
E(/ |An(xg“1)du> <C, vn e N, (3.27)
0

From the monotonicity of|An(X)|)n, it follows that

.
E(/ IAn(XLEp])IdU) <C, vn,pelN' n<p.  (3.28)
0

Using the convergence in law &M to X (see [2]) and the continuity of the
mappingx — fOT |An(X(u))|du (sinceA, is Lipschitz: see Proposition 2.4), we
have for anyR < oo

.
E(R/\/ An(Xu)|du) <C, vn e I"; (3.29)
0

then Fatou’'s lemma shows that

E(/T |An(xu)du> <C, vne ', (3.30)
0

and a second application of Fatou’s lemma together with Proposition 2.4 proves
that

E(/T |A(Xu)|du> <C < . (3.31)
0
[ |

Lemma 3.4. The process K i€ — a.s. absolutely continuous on
{0€uU < o0 : Xy € D} with density £X;) = Vo(Xy):
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lix,en}-dKy = Vp(Xy).du. (3.32)

Proof. We have to prove that for allds <t < oo

t t
/1{XueD}.dKu = / Vio(X,).du. (3.33)
S S

Since {0<u < oo : X, ¢ D} has Lebesgue measure zero, its complementary
set is dense i", so we may assumkg, X; € D in the proof of (3.33). We
define:

= {s€ugt : Xy ¢D} = {s<u<t: X, ¢D}, (3.34)

U =]s;t[\B, (3.35)
so thatU is an open subset df, U UB =]s;t[, and thusU can be written

U = tla;bl, (3-36)

where for everyl € TN, s<a < b<t. Therefore, we have

t
/ 1{XUED}'dKU = / dKU
s Ula; b|

Z/ Ak,

and so, it is enough to prove that for &l IN*
by
dKu V<p(Xu) du. (3.37)

Let us writea for g andb for b;. We have to prove

/abdKu = /ab Vo(Xu)-du, (3.38)

assuming that
Xy € D, Yu €]a;bl. (3.39)

It suffices to show (3.38) under the stronger assumption
Xy € D, Yu € [a;Db]. (3.40)

If we define
= {Xy : u€ela;b]}, (3.41)

then.7Z" is a compact subset of the open Betwhich implies the existence of
6 > 0 such that

= {x e R? : distx,K)<8} € D. (3.42)

Letec ", le| = 1. Recall that the measure
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<Xu — Oy, dK, — 5udu> (3-43)
is nonnegative ond; b] for («, 8) such that
(aw, Bu) € GrA), Yu € [a;b]. (3.44)
Taking (o, Bu) = Xy — e, Vo(Xy — €€)), 0 < € < 4, we obtain:
b
<e,/ dKy, — Vo(Xy —ee)du) > 0, (3.45)

and then we let tend to O to get

b
(e, /a dKy — Vp(Xo)du) > 0, (3.46)

thanks to (3.42), the smoothnessobn D and Lebesgue’s convergence theorem.
Replacinge by —¢, we finally obtain

b

(e,/ dK, — Vo(Xy)du) = 0, Vee IR{N, le| = 1, (3.47)
a
and consequently,
b b
/ dK, = / Vip(Xy)du. (3.48)
a a

[ |

From the previous lemma, we assert that the meadkirean be written
dKy = Ve(Xy)du + dG,, (3.49)
whereG is a continuous boundary process, that is to say:
t
G = [ 1ixeom)dG. (3.50)
0

Lemma 3.5. For all 0<t < oo, 1<i < j<N, we have
t
du
. < oo. (3.52)
/o 9 —x{

Proof. Leti = 1. For all 2j<N, sinceK, G are finite variation processes and
all the terms in the absolute value have the same sign,

t ot
du

/ 0w S /

0 Xu — Xu 0

Leti = 2. According to the case= 1, we know that

1=N

Z 1
X — xm

1=2

du < oo. (3.52)
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t
du
< 00, (3.53)
f e

and consequently for allgj <N
1
> xM — x@

t t
du
/ 0) (2)</
0 Xu'—Xy 0 l=3

Leti = 3. According to the casas= 1 eti = 2, we know that

t
du
/o X© _ X < 00, (3.55)

t
du
< 00, (3.56)
b o

and consequently for all<gj <N

t t
du

/ 0 y@ S /

0 Xu — Xu 0

By iteration, we obtain (3.51). [ |
The following result displays in which direction the boundary t&Bnacts to
keepX insideD:

I=N
du < oo. (3.54)

I=N

Z 1
X — x®

=4

du < oo. (3.57)

Lemma 3.6. For all 0<t < oo, we have

t
G = / nsdGls, (3.58)
0
where r belongs dG| — a.e. to the set of unitary outward normals of D at.X

Proof. Since K, K)is the solution of (3.22), it follows that for alb( 5) € Gr(A)
(Xu — @, dKy — Gdu) > 0, (3.59)

and considering the product with;d copywhich is du-a.e. zero (see Lemma
3.3) and writingdG, = n,d|G|, where|n,| = 1 (corollary of Radon-Nikodym’s
theorem)

(Xu — a,n,d[G|y) 2 0, (3.60)
thus, ford|G|-almost allu, we have
Xy — a,ny) >0, Va €D, (3.61)

and so for alla € D as well, which characterizes the fact tmgtbelongs to the
outward normal cone dD at X,. [ ]

Using the decomposition (3.49) dK, we write differently the system of
equations satisfied bX:

dx = bxM)dt+ o (XV)ydw

dt i
_ 0 5 =
Y (O 50 dc®”,i=12...,N.
1jAgEN 7t t
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Lemma 3.7. Let x € 9D, x = (xWgx@g ... gx0-D < xO = x(*D) = ... =
xk=D = xK < xE D gxMy and n = (n®, n@, ... nMN) belong to the
outward normal cone of D at x. Theffh+ n0*D + ... + nk=D + n) = o (with
natural modifications for =1, k =N, j = k).

Proof. By definition of the outward normal cone &f at x, we have:
(x—a,n) 20, VaeD = {y:yW<y®< .. <y} (3.62)

Let ¢ > 0 such thatx(— < x0) — ¢ < x® + ¢ < x&*1 The inequality
(8.62) fora = (xW,x@ ... x(=1 x) — ¢ x(+D _ o xk-D _ o x® _
g, x&* D xMN)y € D givese(n® +nl*D+...+nk=D+n®) > 0, and witha =
(X(l), )((2)7 C. ,X(j —1)’ X(j)+€, X(J""l)+((_:7 . ,X(k—l)+€’ X(k)+€, X(k"'l)’ . 7)((N)) eD,
we obtaing(n®) +n0*Y + ... + nk=1 + nk)) < 0. Consequently, we have shown
thatn(J) +n(j+1)+.. . +n(k_l)+n(k) = 0. [ |

In the following lemma, it is shown the proce€sis zero in fact and con-
sequently there is no boundary term: thus the proof of Proposition 3.2 will be
complete.

Lemma 3.8.G = 0.
Proof. We deduce from Lemma 3.6 and Lemma 3.7 (yith k) that the measure
dG®", 1<i <d, is supported by

{0<u <00 @ X0 = X"} U {0€u < 00 1 X = X0 (3.63)

with natural modifications for = 1, i = d. Therefore, in order to prove Lemma
3.8, it suffices to show that for all<li <N — 1

1{X5i)zx§+n}dGﬁi) = 1{X§i):X£i+1)}dGS+l) =0, (3.64)
or for all 1<i<d — 1, 1<j <i < kKN,

1{x{51)<x{52)<__.gx‘jj71)<XLEJ):A.‘:Xui):xu(Hl):_“:xtgk)<xu(k+1)<_ugx‘SN)}dG{]i) )
) ) ) ) i+
é{x&”gx@g .__gxlgj71)<XLEJ):“.:xul):xéul):_“:xék)<x§k+1)< _4_<X£N)}dGu (3.65)

Letj <I < m<k. We are going to prove

: 0
T L A T NS et

) ) (m)
L@ xS D ex Pz mx (D= mx® < xD g xW1 A (3.66)

Using the occupation times formula, we can claim

I Lax™ = xO) / o2 + 02(XP)
0 0

a XM _ x0) du, (3.67)
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whereL2(XM —X ") s the local time a& of the real continuous semi-martingale
XM _X®, From the continuity oK and the Lipschitz continuity of, we deduce

sup (02(x5m>)+02(xu<'>)> < C.(l + sup |xu2> <cC, (3.68)
oguxt oguxt
so, using Equation (3.67) and Lemma 3.5

oo Lacxm _ x(0)
0 a

< o0, (3.69)

which impliesLY(X™M — X®) = 0 thanks to the right continuity of local time.
From the identity
XM ) = o - X0 @70

calculating K™ — X{V)* with Tanaka’s formula and sinde®(X™ — X1y = 0,
we have

t t
[ e —aad) = [ 1,00 @aP - dal). @7
0 0

where we have used Lemma 3.3 to assert t bl X0y = 1 a.e. with respect to
the Lebesgue measure in order to identify the others terms in the semimartingale
decompositions oK{™ — X and (™ —X{))*. The last equality can be written

t t
_ I
/Ol{xu<|)zxu<m)}dGSm) = /0 1{Xu<.):xu<m>}dep, (3.72)
hence also
) (1)
1{xu<”<xsz>s-~-<xuﬂ*1><x§>=~-~=xs')=xs'+1>=~--=xsk><xsk+“<~~-<xé“)}gG?m> (3.73)
XOLXOL XTIV X P =mxOax (==X x Vg x VY G™.

letv = g + g+ + ... + & where €1,6,...,ey) is the canonical ba-

sis of RN, From Lemma 3.7p is orthogonal to every normal vector at any
point of {X(l)gx(z)g...gxﬂ—l) < X(J) = ... = X(I) = X(""l) = ... = X(k) <
x&+ ¢ ... «xMN)}, So, using Lemma 3.6, we have

LxO X X xmmx Ok Dok x gy (1, AG) = 6

(3.74)
and from the definition of
p=k
Z 1{XL§1)<XL§2)<.ngxéj—l)<xéj):”_:x‘§i): (i+1):m:XL(Ik)<x‘Sk+1)<mgxéN)}dGlgp) = 0.
p=j
(3.75)
Now, using (3.73) and (3.75), we get (3.64). The proof of Lemma 3.8 is complete
and, consequently, that of Proposition 3.2 as well. [ |

Proof: (2) Unigueness part
For the sake of completeness, we prove uniqueness for the problem (3.14) but it
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is clear this proof is just a particular case of the general result of uniqueness for
multivalued stochastic differential equations (see [2]). In particular, uniqueness

is a direct consequence of the Lipschitz continuityppfr and the monotonicity
of Jep.

Let X andY be solutions of (3.14). We define:

S =inf{t=0: X + V| >p}, peclN” (3.76)
Using Ito’s formula, we have:

Xirs — Ying |2
| “3&3, ths|

= 2 / (b(Xs) — b(Ys), Xs — Ys)ds

0 irs
+2 / (0(X6) — 0(Ye), Xs — Ye)dVIL

tAS | | 1
*27/ > > KO- YO)( O _ %0 9 _ Y(J))d

ICIEN 1A LN
+ /O tr [{o (%) — 0(¥e)} {o(X) — o(¥e)}"] ds

but for allx,y € D, we can claim

ZlgigN Zlgj#gN(X(i) - y(i)) (X(i)ix(j) - y(i)iy(j))
= ZlgigN Zlgj<i<N x(i)ix(i) - y(i)iy(j) (x® — y®) — (x0) —y)y)

ZlgigN Elgj<igN X0 x0 y(i)iy(]) ((x® = x0) — (y® —y0)y)
< 0
which implies that

tAS,
Mg — Vs 2 < 2 / (b(Xe) — b(Ys), X — Ye)ds
0

tAS
#2 [ (o) ~ o). X ~ Yoy
s,
¢ [ [{o00) — o)} o00) — o) ] ds
0
and then from the assumption dno:
tAS,
EfXrs, — Yins|2 < CE / X — Ye[2ds
0

< c/ [E|Xsns, — Yens, |°ds.

HenceE|XM3) Ymsp|2 0 from Gronwall's lemma, and then, using Fatou’s
lemma,[fi|X; —Y;|? = 0. The proof of uniqueness for (3.14) is therefore complete,
and Theorem 3.1 follows at once. [ ]
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4 Tightness

For a particular choice of the coefficiertiso, we are able to study the collision
between particles governed by the system (3.14) (see [1] or [5] for a proof).

Proposition 4.1. We consider the solution X of (3.14) for the dataaNY "\ {1},
_ (1) @ ... (N) i i

7 >0, —00 < X5 < X7 < -+ < Xy < oo and the coefficients b given by

b(x)=6x+6,0(x) =0 (0 € R, § € R, 0<o < 00 ). LetT be the first collision

time between the particles, that is to say

= inf{t>0: X" = x9 for 1<i#j<N}. (4.77)
If we suppose
2y > o2, (4.78)

then there is no collision between particles, that is to say
P(r = o0) = 1L (4.79)

We are interested in the behaviour of the interacting particles system (3.14)

when
2\

N )
as the numbeN of particles tends to infinity, which we study through the
empirical measure process:

N = (4.80)

N
1
MEN) = N _216)(1(”7 (4.812)
1=

wheredy is the Dirac probability ax for x € [R. Thus, we would like to establish
a kind of “strong law” limiting behaviour adl 1 co for (3.14).

This interacting SDE, and particularly its behaviour when1 oo, have
recently been studied by L.C.G. Rogers-Z. Shi [5] and T. Chan [3] but they were
forced to suppose that there was no collision between particles (otherwise they
couldn't define a solution for the system (3.14) upctg, that is to say they
studied the limiting behaviour in the particular case

b(x) = —6.x, vx e R, (4.82)
o(X) = o, vx € R, (4.83)
(0< 6 <o0,0< 0 < oc)with 02 < 2y = T\IA' That's the reason why they had

. const . o
to considers = N and consequently tending to 0 Bstends to infinity.

Our treatment is partly similar to that of T. Chan [3] and L.C.G. Rogers -
Z. Shi [5] except that we consider the most general casd fand o (thanks to
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Theorem 3.1) at least for tightness, but we will consider particular coefficients
and o when studying convergence (see Sect. 5).

Henceforth, we will assume (to simplify)
) =x@ = =xM =x cR,yN eN". (4.84)

Theorem 4.2. With the same assumptions as in Theorem 3.1 excepgiven by
(4.80) and the initial data by (4.84), the sequence of measure-valued processes

(™)) is tight and any limii is a continuous probability measure-valued process
satisfying:

[1wdue = t0a) + [ t ds( / b(X)~f'(X)us(dX))
" ; /0 t ds( / az(x).f”(x)us(dx)) (4.85)

o [as( [ [T emnaten)

forall f € CA(R) (= {f € C*(R): f,f’,f” bounded}) with x?f”(x) and xf'(x)
bounded.

Proof. Let (f,),cp+ be a dense subsequence of functionCg{[R) andf, be a
positive function inC2(IR) with xfy’(x), xf;(x) bounded andy(x) — oo as
IX| T oo. In order to obtain the tightness ofi{"))y, it is sufficient (see [3]) to
prove that for eaclm € IV, the sequence of continuousal — valued processes

(/ f.(x)d ™ (x))y is tight. Consequently, it is enough to prove the tightness of
(/f(x)dqu)(x))N for all f € C2(IR) with x?f”/(x) andxf’(x) bounded.

From (3.14), (4.81) and dts formula, we have:
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N
[100du00 = LS Fex?)
i=1

1Lt , :
109+ (3 [ 100 aw

L~ [ e g7
+N;/o b(X{).f/(x{"yds

N t
1 C(2) 1
+NZ/Of/(XS(I))< > 0 (j))ds
i=1

1A LN

N
.o ; /O ' 2O) 1 (xO)ds,
(4.86)

Hence, using the definition (4.81) ofi{"))y and the symmetry of the inter-
action, the equality (4.86) can also be written:

/ F00du) = 1) + MY

+ /0 t ds( / b(X).f’(X)uéN’(dX))
ol ], L i)
* ; /ot ds< / *(x). f”(x)u(”)<dX)>’

whereM ™) is a continuous martingale such that:

(4.87)

0= 3 [ ooy (.26

The triple integral of (4.87) is

/ as( [ [0 tooontay)
*Q /0 ds( / f”(x)u(N)(dx)) (4.89)
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so that

/ f)duMx) = fxo) + MM

o [as( [ oereuto00)

o o [ [T IO @0nt)
-3 ol [ roontoen)

o5 [ os( [ s ont@n).

Now, using (4.90), the assumption thet (x), xf”(x) are boundedp and
o are Lipschitz, and the well-known Aldous criterion (see [4]), the sequence of

(4.90)

continuous real-valued process% f((x)duFN)(x))N is easily shown to be tight

and, consequently, the laws of the procesg@¥Y)y are shown to be tight. From
the tightness, we have at least the convergerfté = 1 along a subsequence
(Nk). Let k tend to infinity in (4.90) (written folN = Ny) for suitablef and
use the convergenge™) = 1, the boundedness 6f xf’(x), x?f”(x): thus, we
show that any such limit procegssatisfies (4.85). This concludes the proof of
Theorem 4.2.

5 Convergence

In this section, we would like to obtain the weak convergenceufffy when

N T oo to a measure - valued processFrom Sect. 4, it remains to prove there
is only one possible limit for all {™)),. We shall do this for quite particular
coefficients, more precisely

b(x) = 6.x + p, vx € R, (5.91)
o(x) = o, Vx e R, (5.92)
for some constant®, p € IR, 0 < o < oo ; so we henceforth consider the system
i i 2\ dt i
0 — 0] 0] (-
dx = cdw" + N > < x0 + OX" + pydt,i=1,2,...,N.
1KjALN t
(5.93)

However, it is worth noticing that we don't assumé < 2. In particular,
this implies:
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— in contrast with [3] and [5], the sequence of diffusion coefficiesysdoes
not tend to 0 adN — oo, so that the process “hidden behind” the limibf
™) is not deterministic anymore ;
— there might be collisions between the particles governed by the system (5.93).

Theorem 5.1. With the same assumptions as in Theorem 4.2 (with lgiven

by (5.91), (5.92)), the sequence of measure-valued pragé¥yy is (weakly)
convergent and the limit is the unique continuous probability measure-valued
function satisfying:

t
[ro0dieo = fe0)+ /0 ds( / (9X+p)~f’(x)us(dx))

0—2 ‘ "
+, /0 ds( / f (x)us(dx)) (5.94)
t o) = 1'(y)
+A/O ds( / / y us(dX)us(dY))

for all f € C2(1R) with xf’(x) bounded.

Proof. Thanks to Theorem 4.2, we have at least th@? = , along a subse-
guence and any such limit procegs= {u,t € IR+} satisfies

[rodieo = te0)+ /Otds( / (9X+p)-f'(X)us(dX))

2 t
+°'2 /0 ds( / f”(x)us(dx)> (5.95)
' f'(x) —f'(y)
ox [as( [ [T 00t

for all f € CZ(IR) with xf’(x) bounded (note that is constant and so the
boundedness of?f”/(x) isn't necessary anymore). If we can show that (5.95)
has a unique solution, we actually prove the convergence®i)(, this time
not only up to subsequences, and thereby Theorem 5.1. Now, fox +iy €

C, y >0, set

fw = iz, (5.96)

and

M(z) = / p(dw) (5.97)

u—z

Simple calculations, with (5.95) at their starting point, show tasatisfies the
PDE
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2
8l\gt(2) = 19Mt(2) — (6z+p) mgtz(Z) vt g/lztz(Z) + 2>\'V't(2)~a'\gtz(2)
Mo(Z) = Xo — Z .
(5.98)

Let us note thatM(z)| < ; forallt>0,x € IR, [M{(z)] — O when|x| — oo
andM (. +iy) € L2([0;t] x IR) for all t >0,y > 0. Now, let us fixy > 0 and set

u(t,x) = Mc(x +iy). (5.99)
We define the linear operatdarby
_ du . ou ,0%
Lu = ot +9'U+(0X+|9y+p)8x 0 (5.100)
Thanks to (5.98)u is a solution to the PDE
Lu = ZAU.gz
1
u(0,x) = _ (5.101)
Xo =X —1ly

ueL(o;T]xR), VT < .

In order to prove Theorem 5.1, it also suffices to show uniqueness for (5.101).
We will prove it thanks to several lemma.

Lemma 5.2. Let u be a solution to the PDE

Lu=20
u(0,x) = up(x), Up € LrNL>® (5.102)
ueL(o;T]xR), VT <

Then we have:

u(t,x) = /uo(e‘et(x —v))e "

1. ot 2
(v—a(pﬂey)(e —1))

2(e29t o 1)
0

xexp| —
20

1

x do. (5.103)
\/2 \/QZGt -1
o 9

Proof. This kind of result is very classic and so we don't give a detailed proof.
Let us just note that it suffices to consider the Fourier transform of the equation
Lu = 0 to obtain the new equation

ol 00

u CNen 2020 —
ot~ P e — OV —inE0 %0 = 0, (5.104)
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(with the notationu(t, &) = /e“xgu(nx) dx) and, then, using the well-known
method of the characteristics, we get

0.9 = ae"9exp( 0y —ipete” ~1) - €5, ~1)). (6.105)

The inverse Fourier formula allows us to conclude. [ |

Lemma 5.3. Let u be a solution of the PDE
dg
Lu = x =h, gandh bounded of0; T] x IR
u(0,) = 0 (5.106)
ueL?(o;T]xR), VT <

Then u must be given by

: (ve" —x+ S ity - 1)
u(t,x) = 1 efs
( ) /0 / \/27m\/929;’1 0.2 (e293 _ 1)
0

2
(x —vels — ;(,0 +i0y)(e’ — 1))

xexp| —
2(e?05-1)
20 0

xg(t —s,v)dsdv.
(5.107)

Proof. Unigueness follows from Lemma 5.2. We are now looking ffér, x, v)
such that

u(t,x) = /Ot/f(s,xm)h(t—s,v)dsdv, (5.108)

and consequently

t
a, ) = / //efixﬁf(s,x,v)h(t—s,y)dsdudx. (5.109)
0
We want to find
e, v) = /e*‘xﬁf(t,X,v)dx, (5.110)

satisfying

t t
ae,¢) = /O /@(s,f,v)h(t—s,v)dsdv = /0 /gp(t—S@,v)h(S,v)deu,
(5.111)
with
/@(O,{m)h(t,v)dv = /e“”gh(tm)dv. (5.112)
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So we have 5 5
Y Y o 202 0 _
ot 95'85 Oy —ip)ép + 0% = 0, (5.113)
©(0,&,v) = e V¢, (5.114)

Thanks to the proof of Lemma 5.2 (see (5.105)), we can assert that

ot 0) = eriee" exp(;(ey — e —1) - €27 (@ - 1)) . (5.115)

Using (5.110), (5.115) and the inverse Fourier formula, we olftéirx, v).

Then, we deduce from (5.108) the expressiomn@f x) in terms ofh = gi and,

finally, an integration by parts gives formula (5.107). [ |
Now, we are able to show the uniqueness of the solution to Equation (5.101).
Let us also assume that andu, satisfy
ou ou?
Lu = 2\u. = A\ A1

u AU % A ox (5.116)
with |ui (t,x)| < 1/y, i = 1,2. Writing (5.116) foru; andu, and then making the
difference, we obtain

o2 )

L(up —uw) = A Ix (5.117)
Hence, there exists a constaht< co such that
! 1
vt) < C / v(S) ds, (5.118)
0 \/eze(t—s),l
0
where
v(t) = supsup |ui(s,X) — ux(s,X)]| . (5.119)
X sgt
Using the elementary fact that we can find a constantO such that
e29U _ 1
0 > vyu, 0LugT, (5.120)
we can write .
1
t) < C’ s ds 5.121
w<e [ b s (5121)

and iterating this inequality

o [T [° 1 1
o(t) € C /O(/O U(U)\/S—Udu>\/t—8ds

t t ds
- ”2
= C /0 v(U) du/u s uvt_s’ (5.122)
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o(t) < C7 /0t v(u)du/ol \/r((ir—r) <c” /Ot w(u)du, (5.123)

and, finally, thanks to Gronwall’'s lemma, we can claim that O and, conse-
quently,u; = u,. This ends the proof of Theorem 5.1.
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