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Summary. We consider a-dimensional Euclidean domald whose boundary

is Lipschitz continuous but admits locally finite number of outward or inward
Holder cusp points. Using a method of Stampacchia and Moser for PDE, we
first construct a conservative diffusion process on the Euclidean closube of
possessing a strong Feller resolvent and associated with a second order uniformly
elliptic differential operator of divergence form with measurable coefficiapts

The sample path of the constructed diffusion can be uniquely decomposed as
a sum of a martingale additive functional and an additive functional locally of
zero energy. The second additive functional will be proved to be of bounded
variation with a Skorohod type expression whenesjeis weakly differentiable

and the Hblder exponent at each outward cusp boundary point is greater than
1/2 regardless the dimensiah
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1 Introduction

Let D be a domain in the-dimensional Euclidean spa& andD =D UdD C
RY be its closure. Thd-dimensional Lebesgue measure is denotethlsym(dx)
or simply by dx. Given measurable functiorg (x), 1 <i,j < d, onD such
that

aj =g, A< Y a(ag <AER xeD, ¢eRY (L)

1<ij<d

for some constantl > 1, we consider a Dirichlet forn® on L%(D) = L3(D; m)
defined by
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[#]=HYD), %(u,v):/ Z a; (X)d u(x)d v(x)dx, u,v € HY(D),
D1<ij<d
1.2)
whereHY(D) = {u € L?(D) : u € L% D),1 < i < d} the Sobolev space
of order 1. Let{T;,t > O} be the strongly continuous semigroup of Markovian
symmetric operators ob?(D) associated with the Dirichlet forrd .

We denote byCy(D) [resp.By(D)] the space of continuous functions [resp.
bounded measurable functions] Bnwith compact support [resp. vanishing out-
side a bounded set]. We further denote ®YD) [resp. Co(D)] the space of
bounded continuous functions @ [resp. the restrictions t® of functions in
Co(RY)]. Suppose that the Dirichlet forréf is regular on L?(D) rather than on
L2(D) in the sense thatl }(D) N Cy(D) is dense in the spadd (D). This is
the case for instance when the domainis of classC in the sense thaiD is
locally expressible as a graph of a continuous functiod efl variables ([16]).
According to general theorems ([13]), there exists then a conservative diffusion
processM = (X;,Px) on D associated with the Dirichlet forn®” in the sense
that the transition probabilitp,(x, E) = Px(X; € E) of M satisfies that

pif is a version ofTif for anyf € By(D). (1.3)

However we are now concerned with a highly non-trivial problem of constructing
the processM on D with a strong Feller resolvent:

Ga(Bo(D)) C C(D), (1.4)
which particularly implies the absolute continuity of the transition probability:
pi(X,) <m foranyt >0 andx € D. (1.5)

If both the conditions (1.3) and (1.5) are fulfilled, then we can invoke a
general decomposition theorem in [13] of additive functionals (AF’s in abbrevi-
ation) in the strict sense to conclude that the sample Bath (X}, - - -, Xd) of
M admits the unique decomposition

X —x,=M!'+N!, 1<i<d, Ps—as foranyx eD, (1.6)

where M{ are martingale additive functionals (MAF’s in abbreviation) in the
strict sense with covariations

t
(M' MDY, = 2/ gj(Xs)ds, 1<i,j <d, Py—as foranyx €D, (1.7)
0
andN, are continuous additive functionals (CAF’s in abbreviation) in the strict

sense locally of zero energi, are not necessarily of bounded variation (on
each finite time interval) but locally of zero quadratic variation in a certain sense

([13]).

Natural questions arise:
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() Under what condition on the domad, there exists a conservative diffusion
processM = (X;, Px) on D satisfying (1.3) and (1.5) ?

(1) Under what additional conditions on the domdnand coefficientsy; , the
second term#\;' of X/ are of bounded variatioRx —a.s. for anyx € D ?

WhenD is a general bounded Lipschitz domain aad = %(Sij ,1<i,j <d,
Bass and Hsu gave affirmative answer to the both questions (I) and (ll) in [2]
and [3] respectively. Actually [2] and its refinement [13; Example 5.2.2] gave an
explicit expression oN, as

t
N = /Oni(xs)dLs, l<i<d, Pc-asforanyxeD,  (18)

wheren = (ny,---,Nng) is the inward unit normal vector at the boundaii

and L; is a positive continuous additive functional (a PCAF in abbreviation)

in the strict sense associated with the surface measui@Danthe local time

of X; on the boundary. In this case, the diffusibh is called the (normally)

reflecting Brownian motion o® and the decomposition (1.6) with (1.8) is called

its Skorohod representatioiT he first processM, - - -, M) appearing in (1.6) is

the standardi-dimensional Brownian motion starting at the origin in this case.
On the other hand, by extending a work of S.R.S.Varadhan and R.J.Williams

on an infinite two-dimensional wedge [22], DeBlassie and Toby [7] have formu-

lated under a submartingale problem a normally reflecting Brownian motion on

a two-dimensional standard outward cusp domain

C={x.y)eR:y>[x]"}, 0<y<1,

and constructed it from the normally reflecting Brownian motion on the upper half
plane by means of a conformal map and a random time change. They have also
shown in [8] that the constructed process admits the Skorohod representation if
v > 3 but otherwise the process starting at the origin fails to be a semimartingale.
By thinking of the direct product of the DeBlassie-Toby reflecting Brownian
motion onC with the standardl — 2-dimensional Brownian motion, we see that

; is still the critical value of the Hider exponent for the semi-martingale property

of the reflecting Brownian motion on the speciablHer domainC x RY—2 ¢ RY.

It is therefore tempting to consider the problem (I) for a gener@der do-
mainD and further look for a critical value of thedtler exponent with regard
to the question (Il). In this paper, we do not deal with a most genetédiet
domain. However we assume thatis a general (not necessarily bounded) Lips-
chitz domain allowing locally finite number of outward or inward cusp boundary
points with Hilder exponents uniformly bounded away from zero. Our first aim
is to give an affirmative answer to the problem (I) (Theorem 2.1 and Theorem
2.2) by employing the PDE methods of Stampacchia and Moser. We then assume
that

daj € Lig(D), 1<i,j <d, (1.9)
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and give an affirmative answer to the question (Il) under the condition that the
Holder exponent at each outward cusp boundary point is greateétrmgardless

the dimensiord. Actually an explicit expression df using the boundary local
time L; will be derived in this case by invoking an extended version of a general
theorem in [13] to characterizd; and by combining the Sobolev inequalities
obtained in Sect. 3 with the upper bounds of transition functions due to Carlen-
Kusuoka-Stroock [5] (Theorem 2.3).

Furthermore, we shall see that the diffusion process constructed in Theo-
rem 2.2 can be, under the condition tldhg; < L°>°(D), related to a submartin-
gale problem (Theorem 2.4), and accordingly, identified in law with Varadhan-
Williams's [resp. DeBlassie-Toby’s] normally reflecting Brownian motion when
aj (x) = 36; andD is a wedge [resp. a cusp] in R

The present paper is an essential improvement of the previous one [14] where
we gave affirmative answers to questions (I) and (II) only under the restriction
that the Hblder exponents at cusps are uniformly greater tﬁgih, which was
technically required in getting a modified Sobolev inequality of Moser's type - a
key inequality in our construction of a strong Feller resolvent. This requirement
now turns out to be unnecessary thanks to a specific transformation of a standard
cusp domain onto a rectangular set exhibited in the last section.

In the next section, we shall formulate a precise condition on the doBain
and state main theorems answering the questions (I) and (II). Their proof will be
carried out in the subsequent sections.

2 Statement of main theorems

Let F be a real valued function defined on a Ee{C R¥) including the origin
such thaf (x) = a|x|7+f (x), where 0< v < 1, a € R, andf is ak-dimensional
Lipschitz continuous function vanishing at the origin. Hére denotes the Eu-
clidean norm. In this paper we call suéha Holder functionand we denote its
Holder exponent, Blder constant and Lipschitz constant respectively by

ExpF) =1, HOI(F) = «,
Lip(F) =Lip(f) = min{K > 0:|f(x) —f(y)| < K|x —vYy|, X,y € E}.

Forx = (Xg,---,X4) € RY, we letx’ = (X, --,X4_1) SO thatx = (X, Xq).

Let us now consider the following condition (H) on a dom&@nc RY with
d>2:
(H) There are four constantse (0,1), 6 >0, A>1 M > 0 and a locally
finite open coveringU; }j<; of 0D satisfying the following properties :

(i) For eachj € J, there are a Hlder functionF; of d — 1 variables and a
constantr; > 6 such that
F; is defined on thed — 1-dimensional ball centered at the origin with
radiusrj,
Exp(Fi) =,
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HoI(F;) = 0, or I/A < Hol(Fj) < A, or —A < Hol(Fj) < —1/A,
Lip(Fj) <M,
UpND ={¢=(¢".¢): ¢l <rj, F(¢') <}, for some Cartesian coor-
dinate systent = (¢, ().
(i) 9D c | JUj.s, whereUj 5 = {x € U : distx, U;) > §}.
jed
WhenD is bounded, condition (H) reduces to a simple one that every point
x of 9D has a neighbourhoody, such thatoD N Uy is the graph of a Hider
function ofd — 1 variables.
For later convenience, we let

J. = {j €J:Hol(F;) > 0},
Jo = {j €J : Hol(F;) =0},
J_ = {j €J:HoI(Fj) < 0}.

Forj € J, denote bya (¢ 9D) the origin of U; with respect to the coordinate
system(. g is called anoutward [resp.inward] cusp boundary poinof D if
j €J+[resp.j €J3_].

In what follows, we work with the Dirichlet form(¢,H(D)) on L%D)
given by (1.1) and (1.2). LefG,, A > O} be the associated resolvent bf(D).
It is then Markovian in the sense that=O\G,f < 1 whenever X f < 1 and
it is well defined as a bounded linear operator ld&YD) for any p € [1, co].
Denote byC.. (D) the space of those functions @ (D) vanishing at infinity.

Theorem 2.1 Assume that a domain @ RY satisfies condition (H). Then ,G
enjoys the following properties :

(i) G\ (L*D)NLP(D)) cC(D), p>1+d-1)/y.

(i) Gx(Cx(D)) is a dense subspace ofGD).

(iiiy There is a function (X, y) continuous orD x D off diagonal such that

Gif(x) = /D G (x, y)f (y) dy, x €D, f € C(D). (2.1)

As will be seen in Sect.4, Theorem 2.1 is still valid under condition (A)
stated in Sect. 3. Condition (A) is weaker but less concrete than (H) so that we
employ (H) in formulating main theorems.

Theorem 2.1 (i) means thdb, has a strong Feller property. By virtue
of Theorem 2.1 (i) and the Hille-Yosida theorem, there exists a strongly
continuous Markovian semigroupT;,t > 0} on C. (D) such thatG,f =
Jo e MTifdt, f € Co(D). We have then a Feller transition function by
T (x) = fD pt(x, dy) f (y), which gives rise to a Hunt process (cf. [13; Theo-
rem A.2.2])M = (X, Px) on D such that

PX(XtGA):pt(XaA)v t>07 XGD?AEZ)(D)

M is associated with the Dirichlet forres’, H(D)) of (1.2) since the re-
solventG, is. SinceG, (Co(D)) is dense in the Dirichlet space, Theorem 2.1
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(ii) implies that the Dirichlet form¢™ is regular. Therefore we can apply gen-
eral theorems in [13] to the associated p&rand M. In particular,p(X, ) is
absolutely continuous becau&® (X, ) is ([13; Theorem 4.2.4]). Sinc& has
the strong local property and; are uniformly bounded, we can invoke [13;
Theorem 4.5.4]) and [13; Theorem 5.7.2, Example 5.7.1] to concludevthiat

a conservative diffusion process @ Summing up what has been mentioned,
we get

Theorem 2.2 Under condition (H), there exists a conservative diffusion process
M = (X, Px) on D with resolvent G of Theorem 2.1M is associated with the
Dirichlet form given by (1.1) and (1.2), and the transition functigfxp-) of M
satisfies (1.3) and (1.5).

We next formulate a decomposition of the sample pathl agfnd its Skorohod
representation.

Theorem 2.3 Consider a domain Dc RY satisfying condition (H).

(i) The sample pathp& (X, - - -, Xd) of the conservative diffusion procegson

D constructed in Theorem 2.2 admits a unique decomposition (1.6) with MAF’s
M, in the strict sense satisfying (1.7) and CAF’$ N the strict sense locally of
zero energy.

(i) Assume condition (1.9) for;aWe also require the condition that

ExpE) > 5. el (2.2)

for the domain D. Then Nhas the following representation :

' d t d t
= j Qij s) d i (Xs)my (Xs) dLs,
\'A jE:l/O (9a5) (Xs) ds+ ]E:l/o aj (Xs) Ny (Xs) dL.

1<i<d, t>0, P,—a.s.forany xe D,

(2.3)

where L is a uniqgue PCAF in the strict sense with Revuz measure being the
surface measure oD .

Note that (2.3) reduces to (1.8) whep = %(Sij. The above three theorems
extend those results of R.F.Bass and P.Hsu in [2] and [3] formulated for a general
bounded Lipschitz domai® and fora; = 6.

Let us denote by=. the set of all outward cusp boundary poin&? (D)
will stand for the set of twice continuously differentiable functionsRhthat
are together with their first and second partial derivatives bounddd.on

Theorem 2.4 Under condition (H) for the domain and the assumption that

the conservative diffusion procelss= (X;, Px) of Theorem 2.2 enjoys the follow-
ing properties : for each x D,
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1L R(Xo=x)=1,

t d
2. (%) —/ Z [0 (a5 f )] (Xs)ds is a R-submartingale,
0 ij=1
whenever fe C2 (D), f is constant in a neighbourhood &, and

d
D af(x)aj(x)n(x) >0  o-a.e. ondD, (2.5)
ij=1

3. E UOOC |5+(X5)ds] =0.

Whend = 2, g; (x) = ;&ij andD = C the standard outward cusp domain,
R.D. DeBlassie and E.H. Toby [7] have shown the existence and the uniqueness
of the corresponding submartingale problem for a probability meaBuren
2 = {w : w is a continuous function from [@0) into C } : for each fixed
xeC,

L P@©@=x=1,
2. f(w(t))—;/ Af (w(s)) ds is aPy-submartingale

0
wheneverf € C2(C), f is constant in a neighbourhood of the origin
andVf(x)-n(x) >0 onadC,

3. E {/O lo(w(s)) ds] =0.

Hence, by virtue of Theorem 2.4, the diffusion process of Theorem 2.2 coincides
in law with DeBlassie-Toby’s one in [7] in this special case.

In exactly the same way, we see that, whkr 2, g;(x) = 76; andD is a
wedge{d : 0 < § < ¢} C R? for a fixed¢ € (0,2r), the diffusion process of
Theorem 2.2 is identical in law with Varadhan-R.Williams’s normally reflecting
Brownian motion [22].

3 LP-estimate, local estimate and Harnack inequality

In this and the next sections, we shall work under another condition (A) on a
domainD c RY which will be seen to be more general than (H) (Proposition 4.1).
In this section, we derive some estimates for harmonic solutions of equations
associated wit{ &, H*(D)) under condition (A).

In order to state condition (A), we employ the following notations:

B(a,p) = {xeR¥: |x —a| < p},
B(p) = B(0,p),
B.(p) = {(x',xa) € B(p) : x4 > O},
Cy(p) = {(¢,xa) € B(p) : X" < x4},
Q(p) = {(X',xa) € B(p) : — x| < xa},
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fora e RY, p >0, v € (0,1). For a Lipschitz mapping from a setE ¢ RX
into R' such thaf®(x) — &(y)| < K|x —y|, x,y € E, for some constark > 0,
we also denote by Ligf) the smallest constamt of this property.

We now state condition (A) on a domalih ¢ RY:
(A) The following properties hold for an at most countable index Isea
constanty* € (0, 1) and positive constanis’, r*, M* :

(i) There are a poing € 9D and its neighbourhoo¥y associated with each
k € 1 such that
(-1) DNWwNVi =0, k,1el, k#l;
(i-2) there are a constank € [y*,1) and a one to one mappirg from
B(p*) onto Vi with &, (0) = a, Vi N D equals eithewd, (C,,(p*)) or
Dk (Qu(p")), Lip(@) <M*, Lip(d, ) <M*.
(i) Foranya € 9D \ [Jy, Vk, there are its neighbourhodd¥, and a one
to one mapping?, from B(r*) onto W, such that?,(0) = a, ¥,(B:(r*)) =
W, N D, Lip(¥) < M*, Lip(¥;t) <M*.

In our previous paper [14], we considered the same condition as above, but
we assumedy* > (d — 1)/d. Further we did not consider the caggN D =
Py (Q, (p*)), namely, we assumed in [14] that eveay is an outward cusp
boundary point but not an inward one. Under those assumptions, we got the same
estimates as in this section following the PDE argument due to Stampacchia
[18] and Moser [17]. The PDE argument is based on a Sobolev inequality of
Moser's type formulated in Proposition 3.1 below. As will be proved in the last
section, we need not the previous assumptjorn> (d — 1)/d for the validity
of Proposition 3.1. Once it is established, we can follow the PDE argument
developed in [14] without any change so that we shall state the results of this
section omitting the proof and only referring to the corresponding results in [14].

In the rest of this section, we assume (A).

First of all, we note the following easily verifiable observation ifis a
one to one mapping from an open $étc RY onto an open set iR® with
Lip(v~!) <M and if B(a,r) c U andy(a) = a, then

B(a,r/M) c ¥(B(@a,r)). (3.1)

This observation particularly leads us to the following property of the domain
D (see [14;Lemma 3.1]). We set

Ic
lq

{k el :VknD =9 (C,Yk(p*))},
{k el :VknD =&y (Qw(p*))}

a for k € I¢ [resp.lg] may be called an outward [resp. inward] cusp boundary

point. A collection of open sets is said to have a finite intersection property if
there exists an integévl such that any subcollection of cardinality greater than

M has an empty intersection.
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Lemma 3.1 For any p € (0, p*], there exist positive constantg and m, for
which D satisfies the following : For every @ 8D§ = ID \ Uyer 2« (B(p)),
there are a neighbourhood, of a and a one to one mapping, » from B (r,)
onto V, , such thati,a(0) = a, ¥,a (B:+(r,)) = V,a N D, Lip(g,a) <
m, Lip(y;2) < m,.

Furthermore, for any re (0,r,] we have a subset & 8D§ and a positive
constantn = n(r) such that{t, a(B«(r))},. has a finite intersection property,
and for every be 9D, the set Bb,n) N D is contained in one of the following
sets: @y (Cy, (p)) fork € I, Py (Q (p)) for k € lg, ¥,a (B(r)) for a € A.

In the following we set

Cé(p) =P (Cylp),  kelc,
Qi(p) =Dk (Qu(p), kelg,
Ba*(r) = ’(/Jp,a (B+(r)) bl ac aDp#a

for 0 < p < p*, 0 <r < r, Since a Sobolev inequality of Moser's type
formulated in Lemma 2 in [17] is valid fou € H!(B.(r)), we immediately
obtain by means of the mayp, , in Lemma 3.1 that for any € (0, p*], s €
0,1], g € [2,2d/(d — 2)] (g € [2,00) if d = 2 ) there is a positive constant
C1 = Ci(p, K, Q) such that

1/q d 1/2
1_1
(/ |u|qu> < Clrd(qu) {/ ufPdx +12> / &uzdx} :
B (1) N i=1 /Bx()

(3.2)
for u € H*(B;(r)), N C Bj(r) with [N| > «[B;(r)], 0 <r < r,, and
ac GD;‘;*. Here |E| denotes the Lebesgue measure for measurableEs€S;
and the other constan(,, C; etc. below also depend ah p*, r*, M* and
in some cases on* and A. However we omit indicating them.)

Actually (3.2) also holds fou € H* (C(p)) andu € H* (Qi(p)) :

Proposition 3.1 (i) For any x € (0, 1] there is a positive constant,G= Cy(k)
such that

d 1/2
X {/ |u|2dx+p22/ |8iu|2dx} , (3.3)
N i=1 /()

foru € H1(Cr(p)), N C Ci(p) with [N| > k|Ci(p), 0 < p < p*, 2< g <
2(d —1+~)/(d —1—),and ke I¢.

(i) Let2 < g < ocincased=2o0r2<q<2d/(d—2)in case d> 3. Then
for any x € (0, 1] there is a positive constantsG Cz(«, ) such that
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1/q 1/2
(/‘ |quﬁ < Gyl {/‘w2dx+p2§j/" |auFdx} ,
Qs (p)

(3.4)
forue H? (Q;(p)) , N C Qf(p) with [N| > k|Q¥(p), 0 < p < p* and ke lq.
The proof of Proposition 3.1 will be carried out in the last section by em-
ploying a specific transformation of a standard cusp domain onto a rectangular
set.

The following Sobolev inequality in an ordinary sense follows from (3.2),
(3.3), (3.4) and Lemma 3.1 ([14; Proposition 3.2 (ii)]).

Proposition 3.2 (i) There is a positive constan;Guch that
1/2

1/q ) d )
q _
(/D ul dx) < C4{‘/D u] dx+;/D |0yl dx} , (3.5)

forue HY(D), 2<qg<2d —1+~%)/(d — 1 —~%).

(i) Assume the absence of outward cusp boundary paint: §. Then the
above statementis valid f@r< q < 2d/(d—2)in case d> 3andfor2 < q < o
in case d= 2.

We denote the norm of the Sobolev spat&E) by | - [[41). For an open
setE C D, let us consider the following spaces :

C(E) = {ue CXE): |Jullyyg < o0, u=00nIEND}, (3.6)
H(E) = the completion ofC(E) with respect to the normi - |- (3.7)

Note thatH (E) coincides withHI(E) if E C D. WhenE = C}(p), Qi (p) or
B;(r), we can derive the following Sobolev inequalities from Proposition 3.1
([14; Proposition 3.3]).

Proposition 3.3 (i) For anyé € (0,1), there is a positive constantsG Cs(6)
such that

1/q d 1/2
(/ uld dx) < Cs (Z/ |8iu|2dx> , (3.8)
Ck* (p) i=1 Ck* (P)

foru e A(CI(p), 0<p<8p*, 2<q<2(d —1+y)/(d — 1), k€l
(i) Foranyé e (0,1)and forany2 <q<2d/(d—-2)(2<qg < o ifd =2),
there is a positive constantsG Cg(6, q) such that

1/2
ad dul?d , 3.9
</Qk*(p) i X) <Z /Qk ¢ () i X> (59

for u € H(Q(p)), 0< p < 6p*, k € Iq.
(i) LetO<p<p*",0<d<land2<qg<2d/d-2)(2<qg< ofif
d = 2). Then there is a positive constant € C;(p, 6, q) satisfying
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1/q d 1/2
(/ |uld dx) <G (Z/ |6 u|2dx> , (3.10)
B (1) i=1 /Ba(r)
for u e H(B;(r)), 0<r < ér,, ac dD.

We now turn to the Dirichlet forn{#’, H*(D)) given by (1.1) and (1.2). We
also consider the following forn{%E, ﬁ(E)) for an open seE C D.

d
“e(u,v) = Z / u(x)d; v(x)a (x) dx, u, ve ﬁ(E), (3.11)
ij=1/E

with a;, 1<i,j < d satisfying (1.1). Since(é;‘.’;, H (E)) is a Dirichlet form on

L?(E), we have the associated Markovian resolvE@¢ y, A > 0} on L2(E).
Let T be a functional defined by

d
(T, ») :/fOQDdX'FZ/fiai(PdX, v e HY{(D), (3.12)
D = /o

for fi € L?(D), i = 0,1,---,d. SinceT is a continuous linear functional on
H(D), there is for each\ > 0 a unique element € H(D) such that
AU, ) = (T, ¢), ¢ € HY(D). (3.13)

Here ©3(,) = £(, ) + A(, )2y We denote this functiom by G,\T. If T is
defined by (3.12) wittD andH (D) replaced byE andH (E) respectively and
if every f; belongs toL?(E), then we have for each > 0 a uniqueu € ﬁ(E)
denoted byGg T such that

Zeau,9) = (T, ), @ eH(E), (3.14)

where Ze () = Ze(, ) + A(, )2E)-

ObviouslyG,T [resp.Gg ,T] coincides withG,f [resp.Gg »f] in the case
where (T, ) = (f, ) for f € L2(D) [resp.f € L2(E)]. If E = C(p), Qi (p) or
B:(r), then the normi| - [l is equivalent to] - |5, = Ze(, )2 in view
of Proposition 3.3. Therefore there exisdg T € ﬁ(E) satisfying (3.14) with
A=0.

Using Sobolev inequalities (3.5), (3.8), (3.9), (3.10) and following a standard
argument as in [18; Theorem 4.1] (see also [10]), we can get the follolAng
estimates.

Theorem 3.1 () Letp> (d—1)/y*+1and\ > 0. Then it holds that, for some
Cg = Cg(p7 )\) > 0,

d
IGAT [0y < Cs Y (IIfi ey * IIf llro)) » (3.15)
i=0
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where T is given by (3.12) with € L3(D)NLP(D), i =0,1,---,d.
(i) Letkelc, p>(d—-1)/w+1and0 < é < 1. Then there is a positive
constant @ = Cg(p, 6) such that

d
1(n_q_d-—1
1GeAT e < Con? P %) S i lue), (3.16)
i=0
where E= C(p), 0 < p < 6p*, A >0, and T is a continuous linear functional
given by (3.12) with;fe LP(E) and ¢ € H(E).
(i) Letp>d andO < ¢ < 1. Then there is a positive constantd& Cio(p, )

such that
d

IGEAT I < Caop® P " [[fi o), (3.17)
i=0
where E= Qf(p), k € lg, 0 < p < ép*, A >0, and T is a continuous linear
functional given by (3.12) with £ LP(E) and¢ € H (E).
(iv) LetO< p <p*, p>dandO< é < 1 Then there is a positive constant
Cii= C]_]_(p, (5) such that

d
IGEAT o) < Caar @™V " |[fi o). (3.18)

i=0
forA>0, E=B;(r), 0<r <ér,, ac aDﬁ, and for T defined by (3.12) with
E, ﬁ(E), fi € LP(E) instead of D HY(D), f; € LP(D) respectively.

We are next concerned with local estimates for subsolutions of the equations
associated withz. A functionu € H(E) is called a subsolution if

Ze(U,9) <0, >0, peH(E). (3.19)

In the same way as in [18; Theorem 5.1] or in [17; Theorem 1], we obtain the
following local estimates from Proposition 3.3 or (3.2) ([14; Theorem 3.2]).

Theorem 3.2 (i) Let0 < p < ép* for someé € (0,1) and E = C(p) with
k € Ic. Then every nonnegative subsolutior tH *(E) of (3.19) satisfies

1/2
d— 1+
essSUp < Cia(p — )~ 2% | / uldx| , O<s<p, (3.20)
Cr(s) G ()

for some G, = Cy12(6) > 0.
(i) Let0 < p < 6p* for somes € (0, 1) and E= Q7 (p) with k € Ig. Then every
nonnegative subsolution @ H(E) of (3.19) satisfies

1/2
esssup < Cya(p — s)79/? (/ u? dx) , 0<s<p, (3.21)
Qi (s) Q¥ (p)
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for some G3 = Cy3(6) > 0.
(i) LetO<p<p", 0<é6<1 O0<r <éry, ac 8D§ and E=B}(r). Then
every nonnegative subsolutionauH *(E) of (3.19) satisfies

1/2
esssup < Cyu(r —s)"9/2 / ufdx| , O<s«<r, (3.22)
Bx(s) B (r)

for some G4 = Cy4(p, 6) > 0.

If u e HYE) satisfies
Zealu,9) =0, ¢ eH(E), (3.23)

for someX > 0, thenu v 0 and (u) v 0 are both nonnegative subsolutions
of (3.19). Therefore as an immediate consequence of Theorem 3.2 we get the
following result.

Corollary 3.1 (i) LetO < p < 6p* for somes € (0,1) and E = C(p) with
k € Ic [ resp. Q(p) with k € Ig |. Then every solution & H(E) of (3.23)
satisfies (3.20) resp. (3.21)] with u being replaced bjul|.

(i) LetO<p<p*, 0<é6<1 0<r <ér, ac aD;‘f and E=B;(r). Then
every solution us H(E) of (3.23) satisfies (3.22) with u being replaced|by

Finally, by means of Proposition 3.1 and Theorem 3.2, we can get the fol-
lowing Harnack inequality for solutions € H(E) of the equation (3.23) with
A =0 ([14; Theorem 3.3)).

Theorem 3.3 () Letke lc [respk elg ], 0<p<p', 0<k <1
and E = C(p) [resp. Q(p) |. If u € HYE) is a nonnegative solution of
(3.23) with A\ = 0 and satisfies|{x : u(x) > 1} N Ct(p/2)| > »|CS(p/2)|
[resp. |{x :u(x) > 1} N Qi (p/2)| > x|Q¢(p/2)|], then there is a positive con-
stant G5 = Cy5(k) such that

essinfu > Cys resp. essinfu > Cys | . (3.24)
Clp/% Qi (p/4)

(i) Let0O < p <p*, 0<r <r, acdD) 0<r < landsetE=
B (r). If u € HY(E) is a nonnegative solution of (3.23) with= 0 and satisfies
{x :u(x) > 1} N BZ(r/2)| > «|B;(r)|, then there is a positive constant¢C=
Cis(p, k) such that

essinfu > Cyg. (3.25)
By (r/4)
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4 Strong Feller resolvent

In this section, we will show that the resolvef, } associated with the Dirichlet
form (¢,H*(D)) has the same properties as those of Theorem 2.1 under con-
dition (A). At the end of this section, we will show that condition (H) reduces
to (A) and hence Theorem 2.1 follows.

Theorem 4.1 Under condition (A), G satisfies the same properties as in Theo-
rem 2.1. Namely,

() Gy(LXD)NLP(D)) cC(D), p>1+d-1)/7"

(i) Gi(Cx(D)) is a dense subspace ofGD).

(iii) There is a function G(x,y) continuous orD x D off diagonal such that

Gif(x) = /D G (X, y)f (y) dy, x €D, f € C(D). (4.1)

Theorem 4.1 is obtained essentially by the same argument as in [14; Sect. 4]
but we give the proof here for completeness.
Theorem 4.1 (i) is an immediate consequence of the following theorem.

Theorem 4.2 Assume condition (A). Letp (d — 1)/4* +1, T be a functional
given by (3.12) with;fc L?(D) N LP(D), i =0,1,2,---,d, andX > 0. Then
G,\T is uniformly continuous in D and accordingly\& can be extended to a
continuous function oD.

Proof Putu = G,T. Fix ak € Ic and ars € (0, p* /2] arbitrarily. Sete = C*(s).
Let v = Gg o(T — Au) € H(E) be the solution of the equation (3.14) with= 0
andT =T — Au. We see by means of Theorem 3.1 (i), (ii),

d
1 _ 7d71
ol < Colp,1/2)sb w){|fo—Au||Lp<E>+Z||fi||Lp<E>}

i=1

A

IN

d
1(n_q_d—1
cist P75 ST ey + 1 ooy )+ 4.2)
i=0

for some positivec; independent oé andk. Sincew = u — v belongs toH }(E)
and satisfies (3.23) with = 0, following the same argument as in [17] we get
by means of Theorem 3.3 (i)

Osc(w; G (s/4) < (1— ;cls(l/a) Osc(w; G/(s))

c0sc(w; C(9)) ,

A

for c; € (0,1) independent o andk. Here Oscf; F) denotes the oscillation of
a functiong over a sefr : Osc(g; F) = ess supg — ess infg. Hence

Osc(u; C¢ (s/4)) < Osc(v; Gy (s/4)) + Osc(w; Gy (s/4))
< 2||v][Leg) + C20sc(w; C(S)) < 4|vl|Le(E) + c20sc(u; C(S)) -
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Combining this with (4.2) and using [18; Lemma 7.3], we get
Osc(u; Ci(s)) < cas™, 0<s<p*/4 kelg, (4.3)
for some constants; > 0 and¢; € (0,1). In the same way we also get
Osc(u; Qi (s)) < cas®, 0<s<p*/4 k€lg, (4.4)

for some constants; > 0 and¢; € (0,1). Recallr, and 8D,’f appearing in
Lemma 3.1. Similarly, for any € (0, p*/2], there then exist & > 0 and a
&3 € (0,1) such that

Osc(u; B (s)) < css®, 0<s<r,/4 acdD). (4.5)

The estimate for oscillations on open balls with closures contain€, iwhich
is due to Stampacchia [18], asserts that

Osc(u; B(a, s)) < ces™, 0<s<mn/4, acD\D,. (4.6)

Heren is a positive number fixed arbitrarilyp,, = {x € D : dist(x, 0D) < n},
and constantgs > 0 and¢, € (0,1) depend om but are independent af <
D\ D,.
For ane > 0 fixed arbitrarily, we see by virtue of (4.3) and (4.4) that there
exists ans; = si(¢) € (0, p* /4] such that
Osc(u; G (s1)) < e, kelc, 4.7)
Osc(u; Qi(s1)) < e, k €lg. (4.8)
By means of (4.5), we further find a3 = s,(¢, s1) € (0,5, /4] such that
Osc(u; Bi () < e, a€oDy. (4.9)
In view of Lemma 3.1, we can find am, > 0 such that
every pairx, y € D,,, with [x —y| <o is
simultaneously contained in one of sets

C/ (s1) with somek € Ic, Qg (s1) with somek € Iq,
B (sp) with somea € 9DZ. (4.10)

(4.6) with thisn, leads us to
Osc(u; B(a, s3)) < ¢, acD\D,,.>, (4.12)

for somes; = s3(g, 10) € (0, 70/8].

We now setd = (o/2) A s3. Letx, y € D with [x —y| < 6. If x ory
belongs taD,,, /», then|u(x) —u(y)| < ¢ by (4.10), (4.7), (4.8), (4.9). Otherwise,
[u(x) — u(y)| < € by (4.11). O

Employing Corollary 3.1 in place of Theorem 3.1(i) in getting (4.2), we
obtain the following in the same way as above:
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Theorem 4.3 Let W be an open set ofRand E = W N D. Every solution
u € H(E) of (3.23) for some\ > 0 is uniformly continuous in WM D for every
open set WsatisfyingW, C W.

We next give

Proof of Theorem 4.1 (ii) We first follow an argument in [20; Proposition 5.1]
to show
Gy (Cx (D)) € Cxo (D). (4.12)

SinceCy(D) is dense inC (D), it suffices to show that
G (Co(D)) € Cx (D) (4.13)

in the case wher® is unbounded.
Let g € Co(D) ande > 0. Choose arR; > 0 such that

Suppp] € B(Ry) ND, C1l|Gagllzp\BRy) < €5 (4.14)

c: being a positive constant specified later. We next tak®an R; satisfying
the following :

Ci(p*) CD\B(R)  fork € lc with a € 9D \ B(Ry),
Q:(p") CD\B(RY)  fork € lo with a € 9D \ B(Ry),
Bi(r*) c D\ B(Ry) for a € D}, \ B(Ry).

We setdlc ={k € lc :a € 0D \ B(Ry)}, Jo = {k € lg : & € OD\B(Ry)}, and
A= 8D:f*/2\B(R2). Then, on account of (3.1), there is a constagt (0, R, —Ry)
depending orp* but not onR;, R, such that

D2y \B(Ry) C | J C& <p2> ol o (p2 ) ulJB: (rp;/g).
kede k€do acA

We consider the séf = [UKGJMQ {ak}] UAU [D \ Dz, \ B(Ry)] and, for
eacha € K, we define a constarst and a sefE,(s) as follows :

Ci(s), s =p*, if a=ag, ke,
Qi (s), s =p*, if a=zag, keJo,

Ea(s) = t _ . ©
B;(s), S=Trpep2, If achA
B(a,s), s=mn, if aeD)\Dy,\B(R).

Note that
D\ B(R,) C | J Ea(s/2) C | Ea(s) € D \ B(Ry), (4.15)
acK acK

and
CEo NG9, 0) =(9,9) =0, ¢ €H(Ea(9)).
By virtue of Corollary 3.1, we then have
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GG llL (Eu(s/2)) < CollCAYILaEats): (4.16)

where we used a local estimate due to Stampacchia [18] or Moser [17] in the
case that € D \ Dy, \ B(R»). It should be noted that; is a positive constant
independent o, R; andR,. By (4.14), (4.15) and (4.16), we find that

HG>\9||L°°(D\B(R2)) < C1HG>\9||L2(D\B(R1)) <g (4.17)

which along with Theorem 4.2 proves (4.13).

We next adopt Kunita’s argument [15]. Let denote(b&c(D) the space of
the restrictions td of all infinitely continuously differentiable functions drf
with compact support. For eache COOO(D), we define a functiondlu by

d d
(Lu,@:fZ/ <Zaj 8iu>8,gadx, ¢ € HY(D).
j=1 /P \li=1

ThenT = Au — Lu satisfies the condition of Theorem 3.1 (i) and= G, T for
each)\ > 0. By virtue of Theorem 3.1 (i), there is for amy> 0 ag € C§°(D)
such that

[u—Grgll=@) <e.

SinceCg° (D) is dense irC. (D), we thus obtain the densenesf (C (D))
in C (D). O
Proof of Theorem 4.1 (iii) Since G, is Markovian, there exists a function

Ga(x,y) satisfying (4.1) by virtue of Theorem 3.1 (i) and Theorem 4.2. Hence it
is enough to show that

G (x, -) belongs toH(U) and is continuous ot , (4.18)

for any open set with U D \ {x}, wherex € D and\ > 0.
Let us denote the dual space l¢f-(E) by (H 1(E))/. There exists for each
A>0andT € (H 1(D))/ a unique elemen € H(D) such that

gx(U,(p) = <T,(p>, Y e H l(D)

We denote this function by G, T. (We already used this notation forgiven by
(3.12) which is actually a general expressiofTog (H 1(D))' (cf. [16;1.1.14]).)

For a while we fix arx € D arbitrarily. We define a se(s) according as
three different cases.

(Case )} xis a cusp point, that iss = a, for somek € |. In this case we take
ans € (0, p*].

(Case 2 xisaboundary point but not a cusp point, thakiss 9D\ J ¢, {a}-
Choosep < (0, p*] such thatx € 9D \ U, @« (B(p)). Then for anr, given
in Lemma 3.1 we take as € (0,r,].

(Case 3 x is an interior point ofD. In this case we take as € (0,dx/2],
wheredy = dist(x, D).
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Let us put
Ci(s) if k €lc, in Case 1
E (5) Qi (s) if k € lg, in Case 1
s) = . _
X B, (S) in Case 2
B(x,s) in Case 3

Then there exists a unique elemeit* € H(D) such that

(g8, 9) p(y)dy, € HYD). (4.19)

_ 1
IEx(S)| JeL(s)

Here we note the following lemma which is obtained by the same method as
in [14; Lemma 4.3].

Lemma 4.1 Let U be an open set such thdt ¢ D \ {x}. Then G(x,")|u
€ HY(U) and gX*|y converges to §(x, -)|y weakly in H(U) as s | 0.

Take an open sét of RY such thatU ¢ V andx ¢ V and setE =V ND.
On account of Lemma 4.5, (x,-)|[e € HY(E) and gX* e — Gi(X, -)|e weakly
in HY(E) ass | 0. Take anyy € é(E) and extend it td> by puttinge = 0 on
D\ E. Then

Ze Ak e ) = lim 7. (63 e. )

— lim <& X, A = i -
= lim (957, ¢) =lim p(y)dy = 0.

1
s10 [Ex(S)] Je,(s)

This implies thatG, (x, -)|e € H(E) is a solution of (3.23) and hence, in view
of Theorem 4.3G, (X, -) is continuous inJ . O

We finally note the following proposition which along with Theorem 4.1
implies Theorem 2.1.

Proposition 4.1  Condition (H) reduces to condition (A).

Proof For eachj € J, a Holder functionF; in (H) (i) is given by
F(x) = a5 x| + £ (x"),

wherey <9 <1, o =00r /A< o5 < Aor —A < a; < —1/A according
toj e Joorj € J.orj € J_, andfj is a Lipschitz continuous function defined
on thed — 1-dimensional closed ba{lx’ € R~ : [x’| < rj} with fj(0) = 0 and
Lip(fj) <M. Then

U N ={(¢, ) eBm):F () <P},
for some Cartesian coordinate systefn = (CG)’7 é“) = (D, .. -,Qg)).

Letus putl =J,UJ_. Fork €1, & is the point ofoD corresponding to the
origin in ¢®-coordinate system= = {ay : k € |} is then the totality of cusp
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boundary points. For eadhe< |, the neighbourhootlli of ax contains no cusp
boundary point other thaa,, and henceéa, — a| > 6, kK #1, k, | €.

For eactk € |, we define a mapping@y from Ex = {(X’,Xq) : [X'| < Tk, Xg €
R} into ¢®-space by

(' %) = (<9, (),
W =, ¢ = ol + felX').

We then have Lipdc) < 1+A+M and Lip(qﬁk_ ) <1+A+AM. Putp* =
8/2(L+A+M), Vi = & (B(p*)) andM;* = (1 +A)(1 +M). Then we see from
(3.1) that{Vk}kel satisfies (A) (i) withy* = v and M* = M. In particular,
VicND =& (Cyy (p) if ak > 0, = By (Qy(p")) if cu <O.

We next show (A) (ii). Let;, be the positive solution of the equati¢f +¢2 =
(,oo)2 for po = p* A 1. We then take a constaRt> 1 satisfying

-1
[t ("te) Y

and putr* = & /R. Thisr* will play the role ofr* in (A) (ii).
Let us fix ap € dD \ Uy, Vk arbitrarily. By means of (H) (ii), there is a

j € J such thap € U; 4. Denote the:®)-coordinate of by (p@’, pd’). We shall
define a mapping/, and a neighbourhootl, in two caseg < | andj ¢ |
separately. _

In the case thaj < I, (p©’,pY) belongs to®;(E;). Putting §,pa) =
o (p(j)',pg)), we have that{,ps) € E \ B(p*) andpg = +|p’|” in
accordance to the sign af;. We then define a mapping, from the set
Gp = {(X',xq) : X' +P'| <1}, Xa € R} into ¢(V)-space as follows:

(< x9) = (<0 ¢§).
&V—%+W7
C =qj X' +P'|" +xg +f (x +p)
Notice that, on the regiofix € Gp : [x/| < &/S} for S > 1, Lip(¥,) < 1+M +

A (Sglgo)v"*l. Since the distance qf = ¥,(0) from 8 (¥,(Gp)) is greater than
6, we can conclude from (3.1) th8i(r *) C G, for the above chosen' = &,/R.
In the case that ¢ |, we define a mapping, from the setG, = {(x’, xq) :

X" +p0)'| <1;, x4 € R} into ¢¥)-space by
WX/, Xg) = (C“)/,CE)) ,
(O =x +p0, (P =+ (x+p0)

In both casesB(r*) C G,. Accordingly we putW, = ¥,(B(r*)). It is easy
to see thaw, is one-to-one¥,(0) = p, ¥(B:+(r*)) = Wy N D, and Lip@,) <

M, Lip(7; %) < My whereM; = 1+M +A (Rzle,)" ™
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Thus (H) reduces to (A) with, ~*, p*, r* as above ant* = M v M.
0

5 Decomposition of the sample path and additive functionals

This section is devoted to the proof of Theorem 2.3 and Theorem 2.4. To this end,
we first prepare an extended version of a general theorem [13; Theorem 5.5.5]
to characterize the second term in the decomposition (1.6).

Let X be a locally compact separable metric spanehe a positive Radon
measure ofX with full support and &, .7#) be a strongly local regular Dirichlet
form on L?(X; m). We assume that there exists a conservative diffusion process
M = (X, Px) on X associated with the forn¥” whose transition functiopy (X, -)
is absolutely continuous with respectrofor anyt > 0 andx € X.

Then the resolvent oM admits a symmetric densit§,(X,y) with respect
to m which is A-excessive in two variables, y. The potential of a measure
is denoted byG,u(x) = [, Ga(X,y) u(dy). The integral of a functiofi against a
measurey is denoted by(u,f) or (f, u). A positive Radon measune on X is
said to be of finite energy integral if there exists a cons@ntsuch that

/X lo(X)|p(dX) < Ci7/ (v, v), v e &, (5.1)

for some special standard cdre of & . The totality of such measures is denoted
by . It is known thaty € & if and only if (u, Gyp) is finite and that, in this
case,Gyu is a A-excessive and quasi-continuous version of the potebtjal
considered in [13; Sect. 2.2]. We further introduce two classes of positive Radon
measures oiX by

Soo = {1 p(X) < oo, SU)EGW(X) < oo}
Xe

S1={p:pn€S, GruX) < ocoVxe X}

Obviously S C S1 € S. In our later application, the famil§; turns out to
be more useful thafy.

An increasing sequencE,} of finely open sets is said to be an exhaustive
sequence it J,2; E, = X. A positive Borel measurg on X is called smooth in the
strict sense if there exists an exhaustive sequébgé of finely open sets such
thatlg,-p € So, €=1,2,---. Let § be the totality of smooth measures in the
strict senseS; is known to be in one to one correspondence with the (equivalence
classes of) positive continuous additive functionals (PCAF’s in abbreviation) in
the strict sense df1 under the Revuz correspondence ([13; Theorem 5.1.7]).

Lemma 5.1 p € S if and only if there exists an exhaustive sequefieg of
finely open sets such that by € S, £=1,2,---.
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Proof It suffices to show that any € S; admits an exhaustive sequende, }
of finely open sets such thét, - € S, £=1,2,---. We may choosd, as
follows:

Er={XxeO,:GuXx)<{}, (=212,

where {O,} is an exhaustive sequence of relatively compact open sets. Then,
(Ig, - )(X) = p(E) is finite, and furtheiG, (Ig, - x)(x) < ¢ for m-a.e.x € X by
the maximum principle ([13; Lemma 2.2.4]) and hence for every X by the
absolute continuity of the transition function. O

We denote by, the energy measure af € .#o.. The Dirichlet forme is
expressible as

ol 1 —
“u,v) = 2,u<u,v>(X), u,ve.7

by using the co-energy measuyig, ,y. The second assertion of the next propo-
sition replacesy in [13; Theorem 5.5.5] by&;.

Proposition 5.1 (i) Suppose that a function u satisfies the following conditions:
1. u is finite valued, finely continuous andcuZc.
2. lg-puuy € Soo for any relatively compact open set G.

Then we have the unique decomposition

uX) —uXo) =MM +NM vt >0, P, —ae VxeX, (5.2)

where M is a CAF in the strict sense such that, for any relatively compact open
set G,

B (M,) =0, B (ME,)°) = Ex (Bunr), X €6, (53)

B being the PCAF in the strict sense with Revuz meagufeand 7 being the
first leaving time from G. N is a CAF in the strict sense locally of zero energy.
(i) Assume further the following property of u:

Jv =1 — @ with 1Y), |2 € S for any relatively compact

open set G and

& (u,v) =(v,v), Ywe &, (5.4)
for some special standard cof¢” of &.
Then
NU = _AD+ AP P —as ¥xeX, (5.5)

where A and A? are PCAF’s in the strict sense with Revuz measw®sand
v respectively.

Proof The first assertion is a consequence of [11; Theorem 2]. Sifi¢e 1@
in (ii) are in the classS; by the preceding lemma, we can see the validity of
identity (5.5) on account of [12; Theorem 3.3, Corollary 3.1]. O
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We are in a position to prove Theorem 2.3. We fix a domRinc R
possessing the property (H) and a dajasatisfying (1.1). We now apply the
general theory prepared above to the specific Dirichlet form (1.2)%D; m),
the resolvents, of Theorem 2.1 and the conservative diffusighof Theorem
2.2. Herem denotes thel —dimensional Lebesgue measuké.will be called the
reflecting diffusion orD (associated witla; ). Accordingly G, will be called the
resolvent of the reflecting diffusion db.

Notice that, under the condition (H) for the domdin the surface measure
o on gD is well defined with a local expression

J(E)=/ VI+IVF(¢)PAC, E Uy naD, (5.6)

whereE, = {¢’ : ({/,Fj({")) € E}. Further, with the unit inward normal vector
n(¢) = (n(Q), - - - , ng(¢)) making senser-a.e. ondD according as

Q)= TR /1 TR, ¢eunoD,
we have the divergence theorem

/awdm:—/ wnido,  1<i<d, we C(D).
D 8Xi oD

This formula extends to a wider class of functiansand in particular the con-
dition (1.9) fora; guarantees the identity

/8j(aij ~v)dm:—/ vaj n do, v e C§o(D). (5.7)
D oD

Denote by¢; the coordinate functionss(x) =%, 1 <i < d. Then,¢; €
H.L.(D), and the co-energy measures 4 With respect to the Dirichlet form
(1.2) are given by (cf. [13; Example 5.2.1])

Let us denote by an arbitrary ball inRY. Sincea; are bounded, we have

I - M) € Soo-

The PCAF in the strict sense with Revuz measuris just a constant functional
t. Therefore Proposition 5.1 (i) implies the decomposition (1.6) witdtel <
i < d, are CAF’s in the strict sense satisfying (1.7) wittbeing replaced by
t A 754p- OWing to the boundedness af however, we can leB T RY to get
(1.7), proving Theorem 2.3 (i).
Turning to the proof of Theorem 2.3 (ii), we have under the condition (1.9)

d d
;5(¢i7v):/Dv(x)y(dx) with v=-> (da)-m->Y an-o, (59
=1

j=1



Reflecting diffusions on Blder domains 543

holding for anyv € C5°(D), because

d
#(91,v) le /D 3 (x)3 v(x) m(cx)

d d
—Z/ajaij ~vdm+2/&,(aq -v)dm,
j=1 /D j=1 /P

which equals to the right hand side of (5.9) by virtue of (5.7).
Suppose that the surface measursatisfies

lgnop-0 € S1 for any ball B ¢ RY. (5.10)

We then have from the boundednessagfand condition (1.9)

IBﬂD"V| € 1.

Hence (5.9) and Proposition 5.1 (ii) lead us to the expression (2.3) in terms of
a PCAFL in the strict sense with Revuz measure being the surface measure
proving Theorem 2.3 (ii).

It only remains to show (5.10) for the proof of Theorem 2.3.

Theorem 5.1 If (2.2) holds, namely, each outward cusp boundary point is of
Holder exponent greater thab then the surface measuseon 9D satisfies con-
dition (5.10).

For any ballB, the compact seB N dD can be covered by finite number
of open setdJ; s appearing in the condition (H) (ii) for the domaih. Besides
Ga(Xx,y) is jointly continuous off diagonal by Theorem 2.1 (iii). For the proof
of (5.10), it is therefore sufficient to show

lr-ceSs and Gylp-o(X) <oo, XeT, (5.12)

where
r={¢=("¢): Kl <p, Ca=F()} cUnaD

for each fixed € J andp < rj. Exp(F;) will be denoted byy;. c¢1,co,--- will
denote some positive constants. We further let

Io={¢ (¢RI e THCTH I < p}).

Lemma 5.2 LetjeJ,UJ_.
(i) Ir-o € S whenever d> 3. When d= 2, this is true ify; > %
(i) Ip-0eSforanyéd > 0wherel’s = {(:6 < |(]}.
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Proof (i) In view of (1.1) and (5.1), it suffices to prove the inequality
/ u(¢’s Fi (¢Nlo(d¢) < e1y/D(u,u) + (U, U)zp), U € Cg°(D),  (5.12)
Iy

whereD(u, u) denotes the Dirichlet integral af on D. On account of (5.6), the
surface measure has a densityr(¢’) with respect tad¢’ satisfying

o(¢) < ¢’ (5.13)
Hence the square of the left hand side of (5.12) is dominated by
¢ [ R [P (5.14)
I, [¢'<p

The second factor equaf§ r2%*?=4dr, which is finite under the stated condition.
Consider a function) € C§°(U) taking value 1 on the sef’. Then from the
expression

ViE-lKP g
uCREN== [0 U G G, ¢ e T

Fi(¢")

we see that the first factor of (5.14) is dominated by

2 [ WP+ [Vupyc
unbD

arriving at (5.12).
(i) Since o(¢’) is bounded onls . = {¢' : (¢, Fj(¢") € Is}, (5.12) with I',
being replaced by’s . holds for anys > 0. O

In order to complete the proof of (5.11), we prepare a lemma on a comparison
of resolvent densities.

Lemma 5.3 Let K be a compact subset Bf and U be a bounded domain
containing K such that the domain;D= D N U possesses the property (H).
Denote by G(x,Y), X,y € D, the resolvent density of the reflecting diffusion on
D;. Then,

GA(va) < G}\(X7y) + C187 X,y € Kv X # Y, (515)

for some positive constant g£depending on the set K.

Proof Consider the séf =D NU and the resolvent densityg(x,y), X,y € F,
of the partMg of M on the sef. M is obtained fromM by killing the sample
paths upon leaving the st Then by Dynkin’s formula

G)\(Xay) = GS(X,Y) + EX (eiATG)\(X‘My)) , X, Y € Fa

wherer denotes the leaving time from the $et Take an open séW such that
K Cc W C W C U. The second term of the right side of the above identity with
y being restricted t® N'W is dominated by
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Cig = sup Ga(x,y)
xeDNoU, yeDNW
which is finite owing to the off diagonal continuity Theorem 2.1 (iii).
Let M; be the reflecting diffusion oD; and M% be its part on the set
F(c Dj). On account of [13; Theorem 4.4.3¢ and M% share a common
Dirichlet form & on L2(F) given by

Ze(u,v) = &(u,v), u,v € Z[%]
%] = H(Dy),

Whereﬁ(Dl) is defined by (3.7). Therefore we have the inequality
GR(x,y) < Gi(x,y)

holding form x m-a.e. &,y) € F x F. In view of the continuity ofG, andG1,
we get (5.15) for everx € F and everyy e D N'W. O

We return to the sef’ C U; N 9D specified before Lemma 5.2.

Lemma 5.4 Following inequalities hold for xy € I, x # y and a positive
constant Gg depending on the setjUh D :
(i) Ifj €eJrandd> 2, then

d—1—~;

Ga(X,y) <Cuglx —y| 7 . (5.16)

(i) Ifj € pud_andd> 3, then
Ga(X,Y) < Crglx —y[ %2 (5.17)

(i) Ifj € HpUJ_ and d= 2, then

Ga(x,y) < Cpglx —y|~¢ forany ¢ > 0. (5.18)

Proof (i) Notice that the Sobolev inequality in the statement of Proposi-
tion 3.2 (i) holds withD and~* being replaced by; = U; N D and~; respec-
tively. Since the domai; is bounded, we can invoke Carlen-Kusuoka-Stroock
[5] to conclude in the same way as in [3; Sect. 2] that the resolvent density
Gi(x,y) of the reflecting diffusion oD; admits the estimate

G%(X7y) S C1|X - y|7,87 X,ye DJa (519)

for 3 =4/(q —2). In particular, by taking = 2(d — 1 ++;)/(d — 1 —~;) we see
that (5.19) is valid forg = (d — 1 — 4;)/;. We can then use Lemma 5.3 to get
(5.16).

(ii), (iii) In these cases, Proposition 3.2 (ii) is applicable to the doniajire

U; N D and we see the validity of (5.19) fag¥ =d — 2 [resp.8 = ¢ > 0] by
takingq = 2d/(d — 2) [resp.q = 4/e+2]. We again use Lemma 5.3 to get (5.17)
[resp. (5.18)]. O
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Lemma 5.5 Letj e J, UJ_. Assume that; > ; in case j€ J,. Then Gl -
o) < oo, CeT.

Proof Keeping the expression

Galr 00 = [ G- F Do )a
.
and the bound (5.13) af in mind, we first prove the finiteness of the potential
for ¢ =0 in case thaj € J. andy; > ; From (5.16), we have the bound

d—1—~;

-1
]
Galr - 0(0) < / {<|n'|2+|F<n’>|2) |n'1%} . (5.20)

Since

d—1—~; d—1-7

) Q; V] Y P
(W P+FENE) = 2 () 7 W <

for someé > 0, whereq; = HOI(F;), we obtain

5 _d—1—y P
Gilr-o(0) < Cz/ rdn—=3-@=1-7) dr + ¢35~ / rd*i=3dr < oo.
0 s
In the case thaj € J_, we get the finiteness db,l - ¢(0) from (5.17) and
(5.18) in a similar manner to the above.

Next take al € I, ¢ # 0. We can choose a neighbourhoddof ¢ such that
0¢V, V cU;andD; =V ND is a Lipschitz domain. Lef’ = I'NV. Then the
same reasoning as the proof of Lemma 5.3 works to seeGh@t ), n € I,
is dominated bycs|¢ — 1|~9*2 in case thatl > 3 and bycs|¢ — 7|, € > 0, in
case thatl = 2. Sinceo(n) is bounded on’, we see the finiteness ol - 0(0)
and hence ofs,I - o((). O

Proof of Theorem 5.1 We divide the situation into four cases:
M jed, y>1/2 an jed_,d>3
am jed_,d=2 (V) j € Jo

In view of Lemma 5.2 and Lemma 5.5, we see that (5.11) holds in cases (I) and
(IN. Hence it remains to prove (5.11) in cases (lll) and (IV). We can instead
prove a stronger property

SupGylr - o(x) < o (5.21)
xel’
in these cases.
Indeed, when € J_ andd = 2, we have the bound (5.18) G, (x, y) for any
¢ > 0, and we can proceed in a similar manner to the proof of Theorem 6.1 in
our preceding paper [14] in getting (5.21) by choosingmaller tharry;. When
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j € Jo, then we have the bound (5.17) or (5.18)®&f(x, y) which, together with
the uniform boundedness dn of the density functiorr of the surface measure,
readily leads us to (5.21). O

Proof of Theorem 2.4 Take any functiorf as is stated in the theorem and denote
by W a neighbourhood of’; on whichf is constant. Then
lgn@p\w) - 0 € S1 for any ballB ¢ R%. (5.22)
To see this, it suffices to show
Irw-0€S and Gylpw-o(X) <oo, X €T (5.23)

for the setl” € U; N9D appearing in (5.11) and exclusively fpe J.. Sincel™\
W C I's for somes > 0, the first assertion in (5.23) follows from Lemma 5.2 (ii).
The second one fax = 0 [resp. forx # Q] is immediate from the continuity of
G (0,y) [resp. from Lemma 5.5].

Now just as computations made in (5.8) and (5.9), we have

145 1) (Za., -of - o ) (5.24)

i,j=1
and
%’(f,v)=/v(x)1/(dx), v e Cg° (D),
D

with
d

u-—Za. aj Of ) - Za.f aij N lop\w - 0. (5.25)

i,j=1 i,j=1

lop\w can be inserted in the last expression becdlisesanishes orw.
In view of (2.4), (5.22), (5.24) and (5.25), Proposition 5.1 applies and we get

f(X) —f(Xo) =M +NIT Pe-as, x €D, (5.26)
whereM[f] is a MAF in the strict sense with
MUy, 2/ (Z a oif - it ) (Xe) ds (5.27)
ij=1
and
t d B
N —/ Za. aj O f) (Xs)ds+/ doaf-an | (X)dl. (5.28)
ij=1 0 i,j=1

HereL; is a PCAF in the strict sense with Revuz meadyigw - 0. (5.27) and
(5.28) are validP,-a.e. for everyx € D. Under the condition (2.5) fof, the
second functional in the right hand side of (5.28) is a PCAF in the strict sense.
Therefore the desired conclusion follows from (5.26) and (5.28). O
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6 Sobolev inequality of Moser type

In this section we will show Proposition 3.1. Throughout this section we assume
condition (A).
Proposition 3.1 is immediate from the following two propositions.

Proposition 6.1 For anyx € (0, 1] there is a positive constantg= Coo(x, v*,
p*,M* d) such that

d
/ |u|2dx§C20{/ |u\2dx+p22/ |8iu|2dx}, (6.1)
EZ (p) N i=1 “E(0)

for Ef(p) = C¢(p) [ resp. Q(p) |, u € HX(Ef(p)) . N being a Borel subset of
Ei(p) with [N| > k|Ef(p)|, 0< p < p* and k€ Ic [ resp. ke lg |.

Proposition 6.2 (i) Letk € Ic and1l < p < (d — 1 +)/w. Take a q
satisfying p< q < p(d — 1+ %) /(d — 143 — wp) if p < (d — 1 +%)/ %,
orp<g<ooifp=(d-1+~)/%. Then there is a positive constan;G
CZl(pa q, 7*7 P*> M *7 d) such that

1/q
d—1+7k(1_1)
|u‘qu < Cop & \ae
Cs(p)

d 1/p
X / \u|pdx+ppZ/ BuPdx p
Ck* (P) i=1 Ck* (P)

forue HY (Cl(p)), 0< p < p~.

(i) Letl<p <dandtake aq satisfyingg q <pd/(d—p)ifp <d,orp<
g < oo if p =d. Then there is a positive constard,G Co2(p, q,v*, p*, M *,d)
such that

1/q L
( / |qux) < Cop®(i70)
Qs (p)

d 1/p
X / \u|pdx+pPZ/ |BufPdxp
Q¥ (p) i=1 Y Q(p)

forue H (Qi(p)), 0<p <p*, k€ lq.

The part (i) of Proposition 6.2 is obtained by the same method as in [1; pp.128—
135] if we employ a transformatiox., (x) defined below in place of the trans-
formationry(x) in [1;p.130]. The part (ii) is also obtained following argument
in [1; pp.103-104]. So we omit the proof of Proposition 6.2.

In order to show Proposition 6.1 witk/(p) = CS(p), we make use of a
mapping?.,(x) from a cuspC, (p) onto a direct product sef(p). We begin with
the definition of,. Let RY = {(x’,x4) € RY : x4 > 0} and =4 be the following
product space:
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= {{(r,t):0<r<oo,oo<t<oo} if d=2,

STV t0) 1 0<r <00, 0<t < oo, 6 €Oz} if d >3,

where©y_, = {(91,92,“-,9(1,2) 0L 9j <7(=1---,d-3),0<603,<
2r}. Given~ € (0,1), we define the mapping,, : R — =4 as follows:
Whend = 2, we set forx = (X, Xo) € R?
7)) = (1), r=x|(>0), t=xx " (€R);

Whend > 3, we set forx = (X', Xg) € RY

v (x) = (r,t,0),

r=Ix| (>0), t=[x|x""(>0),

0= (0770) (6 @d—Z) if |X/|:Ov

0 (€ Oy-») satisfying (¢1(6), -, pa—1(0)) =x'/|x’|  if [x'| > 0.

Here (¢1(6), - -, ¢a—1(0)) is the spherical polar coordinate 8f~2, that is, for
0 =01, ,04-2) € Og_2,

$1(0) = costy,

@2(0) = sinf; coshy,
¢g_2(#) = sinfy sinfy - - - sinfy_3 COSHy_»,
dq—1(0) = sinfy sind, - -- sinfy_3 SiNfy_».

For eachr > 0, we identify the pointsr( 0, d), 8 € O4_» by regarding them as
a same point. Under this identificatio#,, is one to one fronRY onto =4 and
the inverse mapping’q1 is as follows: Fori(,t) € =5, let £ = £(r,t) be the
(unique) positive solution of the equation

2627 + 2 =2, (6.2)

Then

W) = (%), X =tEYT (ER), % =& (>0). (6.3)
For (r,t,0) € =4 with d > 3, let ¢ = £(r,t) be the positive solution of the
equation (6.2). Then

W;l(rvtve) = (X]_,Xz,“- ;Xd)7

X =60 €R), 1212d-1 x=¢E0 Y
We next note that
v, : C,(p) — X(p) one to one, onto
where X(p) is a subset o=y given by
_[A{r,):0<r<p, -1<t<1} if d=2,
2(p) = { ((1.0):0<r<p 0<t<1 0cOy,  ifd>3 &
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For the sake of convenience, we writet(, ) € X'(p) in cased = 2 too, and use
(6.4) with the convention that(6) = 1. Since¢ = £(r,t) is the solution of the
equation (6.2),X1, -+, Xq) = W;l(r,t,e) satisfies the following relations :

OXd r
o T e+ (e (5.0
Oxa _ —te?h 6.7)
ot £+ (1/y)ezee/ =1 '
OXd _ _ B
89] - 0 (i - 17 2a 9 d 2)7 (68)
and fori =1,2,---,d -1,

ox _ 1 1/7,18xd '
ar - ,th ar d)l (6)7 (69)
N _ (g Yiea-10%a
o= (s et g, (610
OXi 1/~ 5(bi (9) .

= =12---.d-2). A1
og = €7 gy (=120.d-2) (6.11)

In the following,A;, Az, - - - denote positive constants depending onlyyén p*
andd. Lety* <~ <1, 0< p<p*and &, Xz, -+, Xa) =¥, 1(r,t,0), (r,t,0) €
X(p). Then we get the following estimates by means of (6.2), (6.3), (6.4), (6.6),
(6.7):

Arr <xq <r, (6.12)
O0X4
< < .
A < o < As, (6.13)
Ox4
< Agr. 6.14
5t | S Agr (6.14)

Further we see that the Jacobian determinant is given by

_ 00, Xa) ey (@-1/4 OXd goo
J(f7t79)—8(“,[,91’.”79(]_2) = (=D xg o U S(0),  (6.15)

where
1 ifd=2,

sinff =26, si®*6,..-sinfq_5 if d >3, (6.16)

s0)= {
for = (61, -,04—2) € Og_2. By means of (6.12)—(6.16), we readily get

13(r,t,0)| < Agr@-b/7, (6.17)

Ao V< 10, (p)| =

X(p
We next note the following fact:

|3(r,t,0)|dr dtdf < Agpl@=Y/7*1  (6.18)
)
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Lemma 6.1 Lety* <y <1 0<p<p andxX) e Cp), i =01 xO ¢
x®. Set(r® 10 90) =y, (xO), 60 = (80,... 61 ,), i =0,1. Foro<s <
1, put

r(s) = r(o) + S(r(l) — r(o)),

t©®) =t + S(t(l) — t(O)),
9O = (955)’ . 9((1512)7
09 =00 +s(6® - 0?), j=12.,d-2
Then (r®,t®,69) belongs toX(p) for 0 < s < 1. Moreover the following
estimate holds :
3(r@ 1@, gO) 3 (r® @ Hw)
J (r(S)’ ), 9(5))

(6.19)

< Az plI, (6.20)

for 0<s<1 if d=2, and
d—
for 0<s<1 if d=3 and (t@+t®) [](sin0® +sino™) # 0.
=1

w

Proof In view of (6.5) it is obvious tha{r®,t®,69) € Z(p), 0 <s < 1.We
now assume thaft© +t®) I1; =_13(sin0j(°) + sinej(l)) #0in cased > 3. Let 0<
s<1lincased =2, and 0< s < 1 in cased > 3. Then|J (r®,t® 69)| > 0
by virtue of (6.12), (6.13), (6.15) and (6.16). Moreover

J (r © O g(O)) J (r @ @, 9(1))
J (r(S)7 ), 9(5))

B rOp @ @1/ A2 (1O 72 5 (9O) 5 (4D)
—“\Ar® Ao t® 31(9(3)) :

Note that
r® >rOaAr@®  and hence rOr®/r® < p,

and ifd > 3, then
t® >tOAt®,  and hence tOt® /1 < 1,
and forj =1,2,---,d — 3,

)

sing® it (60— /2| > [0 — x/2

sinej(s) >
sing® if |6 —m/2| < |0 — 7/2],
consequently
© @
0< BEV)SED)
i (669)

We thus get (6.20). O
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For an open seE C RY, denote byC*(E) the restrictions toE of all
continuously differentiable functions d®f'. c;, c,, etc. appearing in what follows
denote positive constants depending only~dn p* andd.

Lemma 6.2 For any « € (0,1], there is a positive constant & =
Cas(k, p*,~v*,d) such that

d
/ lul?dx < ng{/ |u\2dx+p22/ |8iu|2dx} : (6.21)
Cy(p N i=1 Y Cy(p)

foru € C*(C,(p)), a Borel subset N_ C,(p) with [N| > &|C,(p)], 7" <7 < 1
and0 < p < p*.

Proof Let v* <~ < 1 and 0< p < p*. Foru € C*(C,(p)), we set

X =W Hr,t,6) € C(p),
Ur,t,0) =uow (r,t,0) = u(x),

‘a”u(rgﬁ)‘ =

ou 1
2; o o (r,t,9)’.

By virtue of (6.8)—(6.11),

o (4.0) = { " 1d_1g: (x)¢i(e)+88x‘:(x)} o
o (1.0) = Xdl”ig; () 1 (6)
+{ X/ Z (x)¢i(9)+§;d(x)} %ﬁd,

Combining these with (6.12), (6.13), (6.14), we find that

M) < Acldue. o). (6.22)
ou ~
(r,t,9) < Aor 4 (6.23)
( >t70) S Alort ou s Ly ] :1a27"'7d_2' (624)
ao,

Let0< k <1, N C C,(p) with [N| > £|C,(p)|, x@ € C,(p) andx®) € N.
Puto® = (r®,t® ¢0) =w, (xO), i =0,1. Then
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u(x®) — u(x®) = 6(e®) - G(e®) = - / ' (o) ds

0

whereo® = (r® t® 9)), andr®, t&, 6 are those given by (6.19). Inte-
grating overx® € N, we find that

1
N oGO < [ ulexe [ ()| ae® []
N oWex(p) 0o |0

SU(U(S))

ds.

Here do() denotes the product measute®dt0)de®) for eachi = 1,2. From
this

NE [ Juox
Cy(p)

<2c,0 ( [ |u|dx)2

0

+2/ |J(0.(0)) da©@ / G(a(s)) |J(a(1)) do®ds
c@e(p) ‘ 8‘<1)56<21(p) 0s ‘
=20+1). (6.25)
Obviously,
I < ICw(p)IZ/ u? dx. (6.26)
N

On account of Lemma 6.1 and (6.17),

o 2
| < 4o © / TN 13 (69) I (6D do@ds
< sy Jpesin |62 D) 206 o
x/ P (o) doWds
aMe(p) J(0®)
0<s<1
_ d 2
< Pohr RO/ /Ugezm 2 (09)| 2(09)] do®doas
aeX(p
0<s<1
X / doWds
oWex(p)
0<s<1
P 2
= 0y 20D/ / G| 13(69)] do©@do®Wds.  (6.27
1P ﬁg}ﬁ{ 9s (@®)] [3(c")] do®do (6.27)
O<s<1

On the other hand, we get from (6.22)—(6.24)
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o o ou
’ Su(g(s))’ < |0 (0®)|[r@ - r @] + o (U<s))’,t(0)_t<1>
d-2 .
+3 ou (a@)‘ 00— |
j=1 06, i i
< <S>)‘ (6.28)

.0 - . .
Denoting 8: o w;l by v and substituting (6.28) into (6.27), we arrive at

I < 320 1>/v+3z / ez (09)?13 (69)| do@do®ds

”ez
O<s<1

d
= c3p® @3N "), (6.29)
i=1
By fixing 0© = (r©,t@ ¢®) € 2(p) and 0 < s < 1, we make use
of the transformatiory™ = (r®,t®, 9W) — o6 = (r® O ¢)). Putting
o=(r,t,0) = (r® t& ¢8), we find that the Jacobian determinant is given by
doW /0o = s~9. Moreovero = (r,t,s) exhausts a sef (s, s) specified by
L-9s)yrO® <r< ps+(@L-s)yO
ag+(@1-s)O <t< s+(1L-s)tO,
Q-9 <6 < qys+(1-9)07, j=12--.d-2
wheregg = —1ifd =2,=0ifd > 3,andy; =7 (j =1,2,---,d—3), ag—» = 2m.
So we get, foreach=1,2,---,d,

. - (0) (92 (s) @
WO = [ gy, 9000 [ (o) ()] do

O<s<1
do@ds / vi(0)? (o) s do.
/ ) 0e3(00,5)

By exchanging the order of integration,
2 _d r r —ps
i(0)2)d - 0
[, oy RIS (LT no= " o)
0<s<1

d-2
t t—s 0; 0 — q;s
1— | o7 ]
x(l_s/\ 1_8\/ad)||<1_s/\oz, 1_s VO)dO’dS

j=1

1i(p)

IN

2d+l7rd72p/ v (0)?)3 ()| do.
X(p)
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Combining this with (6.29) and (6.18), we have

d
U< a0y [ R do
i=1 Y 2(p)

d
< oGP [ jaur dx (6.30)

i=1 C’y(p)
Since|N| > &|C,(p)|, (6.25), (6.26) and (6.30) lead us to (6.21). O

Lemma 6.3 Let0 < p < p* and E(p) be the following subset of'Rwith d > 2.

E(p) = {(x',xa) € B(p) : x4 > g(x)},

whereg is a continuous function ofix’ € R~ : x| < p*} such thatg(0) = 0
andg(x’) <0, |x'| < p*. Then the statement of Lemma 6.2 with(& replaced
by E(p) above holds.

Proof Let u € C*(E(p)) andN (C E(p)) be a Borel subset satisfying\| >
K|E(p)]. Forx = (X', xq4) € E(p), we setx = (X', |Xq]). We also use the polar
coordinate with centex : y =x+rw, r =|y — x|, w=(y —x)/r € S471. The
following inequality is obvious:

NGOl < uty)idy+ INT [u) —u(x)
o [ Juy) = u@) [ ay+ [ up) ~u(y) dy.

from which we obtain

INZul?

2 I 2
§c1{</ Iudy> +|N|2< 8dU(X’,S)dS>
N Xd
2
[Ya |
+ / dy/ |dqu(y’, s)| ds
YEE(p),ya<0 Y

d

r 2
+Z</ dy/ |8iu(x+5w)|ds) },
i=1 yEE(p),y=x+rw 0

[Xd|
< c1{|E(p)| / ul2dy + 21E(0)Pp / Deu(x', )2 ds
Xd

+2|E(p)|p° /

E(p

d
+4|E(p)|pd+lz/ @) dz},
i=1 7?2

eE(z>0 [x —z|"!

|8du|2 dy
)
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where we used the following estimate for the last term.

r 2
(/ dy/ |8iu(x+5w)|ds>
yEE(p),y=x+rw 0

r
§4\E(p)\p/ dy/0 |Giu(x +sw)[*ds

YEE(p),y=x+rw

)
= 4‘E(p)‘p/ rd‘ldrdw/ Giu(x +sw)|*ds
YEE(p),y=x+rw 0
. 2
< 4\E(p)\p"”/ 'a'“(zﬂ'_l dz.
2€E(p)2620 |X — Z|

Therefore we have

NE [ JuoPx
E(p)

gc2{|E<p)|2/ |u|2dy+\E(p>\2p2/ DUl dx
N E(p)

d
dx
+E(p)p*™ / au() Zdz/ }
| | ; zeE(p),zdzol I | Ep X — z|d-1

gc3{|E<p>|2/ |u|2dy+\E(p)\2p2/ Dgul? dx
N

E(p)
d
Y [ aupax).
i=1 P

Noting thatcsp® < |E(p)| < csp, we get the conclusion. 0
Proposition 6.1 now follows from Lemmas 6.3 and 6.4.

Proof of Proposition 6.1 Letk € Ic, 0 < p < p*, andN be a Borel subset
of CY(p) satisfying|N| > &|CS(p)|. In view of [16; Theorem 1.1.7]u o &y €
H*(C,(p)) providedu € H!(C¢(p)). By means of [1: Theorem 3.18], o &y
is approximated by functions belonging® (C., (p)) in H!-norm. Noting that
@, *(N) is a Borel subset oF, (o) and satisfiesd, '(N)| > ' |C,, (p)| for some
k' € (0, 1], we obtain (6.1) withE} (p) = C(p) from Lemma 6.3. Similarly (6.1)
with EZ(p) = Qg (p) follows from Lemma 6.4. O
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