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Summary. We consider random walks with a bias toward the root on the family
tree T of a supercritical Galton–Watson branching process and show that the
speed is positive whenever the walk is transient. The corresponding harmonic
measures are carried by subsets of the boundary of dimension smaller than that
of the whole boundary. When the bias is directed away from the root and the
extinction probability is positive, the speed may be zero even though the walk
is transient; the critical bias for positive speed is determined.

Mathematics Subject Classi�cation (1991): 60J80, 60J15

1 Introduction

Consider a supercritical Galton–Watson branching process with generating
function f(s) =

∑∞
k=0 pksk ; i.e., each individual has k o�spring with probabil-

ity pk , and m := f′(1) ∈ (1;∞): Started with a single progenitor, this process
yields a random in�nite family tree T , called a Galton–Watson tree, on the
event of nonextinction. We assume throughout that no pk is equal to 1.
Simple random walk gives some information on the structure of a tree;

to explore this structure further, random walks with a bias toward the root
have been used (e.g., Berretti and Sokal (1985), Lawler and Sokal (1988),
Lyons (1990)). The rate of escape (speed) of a random walk indicates how
much of the tree a single path explores, while the dimension of harmonic
measure indicates how much of the tree is explored by the ensemble of almost
all paths.
For �= 0, the �-biased random walk on a locally-�nite rooted tree T ,

denoted RW�, is the time-homogeneous Markov chain 〈Xn; n= 0〉 on the
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Fig. 1. The walk is at the highlighted vertex and will take one of its incident edges with
probabilities proportional to the weights indicated

vertices of T such that if u is a vertex with k = 1 children v1; : : : ; vk and
parent u∗, then P[Xn+1 = vi |Xn = u] = 1=(k + �) for i = 1; : : : ; k and P[Xn+1 =
u∗ |Xn = u] = �=(k + �); from the root all transitions to its children are equally
likely. In case k = � = 0; then P[Xn+1 = u∗ |Xn = u] = 1: Normally, we �x the
initial state X0 to be the root, �. See Fig. 1.
For almost every Galton–Watson tree T on the event of nonextinction, RW�

is transient for 15 � ¡ m (Lyons 1990). Here we show that for 1¡ � ¡ m;
the random walk escapes at a positive speed and the corresponding harmonic
measure has Hausdor� dimension less than that of the whole boundary. For
� = 1; i.e., the case of simple random walk, this was shown in Lyons et
al. (1995) by using an explicit stationary measure on the space of trees.
We know of no such direct construction when � ¿ 1; instead, the proof is
based on some a priori bounds on the Green function and a regeneration
argument. The speed of the random walk is the almost sure limit (if it ex-
ists) of |Xn|=n; where |x| denotes the distance from the root to the vertex
x. In Sect. 5, we use positivity of the speed (and, in particular, the �nite-
ness of the mean time between regenerations) to establish the existence of a
�nite measure on the space of trees which is absolutely continuous with re-
spect to Galton–Watson measure and is stationary for the �-harmonic ow.
This is the key to the “dimension drop” of harmonic measure. In Corollary
5.3, we deduce that there exists a.s. a subtree T (�) of T with smaller expo-
nential growth such that RW� on T is con�ned to T (�) with overwhelming
probability.
When the bias is away from the root, i.e., 0¡ � ¡ 1, the walk is obvi-

ously transient on any in�nite tree, but the walk may have zero speed when
too much time is spent at leaves. In Theorem 4.1, we show that for Galton–
Watson trees, the speed is positive i� � ¿ f′(q), where q is the extinction
probability.

2 Linear growth of the range

For the speed of RW� to be positive, certainly the range of RW� must grow
linearly in the number of steps taken. In this section, we establish that when
� ¿ 1, the range grows linearly for any tree on which RW� is transient; this
is false for � = 1. We begin with an a priori bound on the Green function.
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Let G(x; y) :=
∑∞

i=0 Px[Xi = y] be the Green function of RW� on T , i.e.,
the expected number of visits to y when the walk starts at x. Let d(x) denote
the number of children of a vertex x.

Proposition 2.1 Let � ¿ 1 and let T be any tree on which RW� is transient.
Then for every vertex x ∈ T; we have

G(x; x)5
d(x) + �
�− 1 G(�; �) : (2:1)

Proof. Let Ĝ(x; x) denote the expected number of visits to x before visiting
� when starting from x. Let f(x; y) := Px[∃n ¿ 0 Xn = y] denote the proba-
bility of visiting y when starting at x (ignoring the initial visit if x = y), and
let f̂(x; y) denote the probability of visiting y before visiting � when starting
at x.
By considering separately the path before and after the �rst visit to �, we

see that

G(x; x)5 Ĝ(x; x) + f(x; �)f(�; x)G(x; x)5 Ĝ(x; x)− f(�; �)G(x; x)

and therefore

G(x; x)5
Ĝ(x; x)

1− f(�; �)
= Ĝ(x; x)G(�; �) : (2:2)

(This is valid for any transient Markov chain.) Denote by x∗ the parent of the
vertex x (i.e., the neighbor of x that is closer to the root), and observe that

1− f̂(x; x)=
�

d(x) + �
(1− f̂(x∗; x)) :

By comparing the steps of RW� on the path connecting � and x to a sim-
ple asymmetric random walk on the integers, and using a standard result on
gambler’s ruin, we �nd that f̂(x∗; x)5 1=�. Therefore

1− f̂(x; x)=
�

d(x) + �

(
1− 1

�

)
=

�− 1
d(x) + �

: (2:3)

Since Ĝ(x; x) = 1=(1− f̂(x; x)); combining (2.3) and (2.2) yields (2.1).

Let Rn be the number of distinct vertices visited by time n. Our next
proposition is interesting in itself.

Proposition 2.2 Let � ¿ 1 and let T be any tree on which RW� is transient.
Then for all n= 1;

E[Rn]
n

=
1
n
+

�− 1
2�G(�; �) + (�− 1) :

Proof. For every k 5 n; we have

P[∀j ∈ (k; n] Xj =| Xk |Xk ]= G(Xk; Xk)−1 :
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Since Rn is the number of epochs at which a vertex is visited for the last time,
it follows that

E[Rn] = 1 + E
[

n−1∑
k=0
1{∀j∈(k; n] Xj-Xk}

]
= 1 + E

[
n−1∑
k=0

G(Xk; Xk)−1
]

= 1 + (�− 1)G(�; �)−1E
[

n−1∑
k=0

1
d(Xk) + �

]
(2:4)

by Proposition 2.1. This bound is e�ective when the typical degrees are small.
To handle large degrees, note that for x =| �; the drift at x is

E[|Xk+1| − |Xk | | Xk = x] =
d(x)− �
d(x) + �

:

Therefore,

E[Rn]= 1 + E[|Xn|]= 1 + E
[

n−1∑
k=0

d(Xk)− �
d(Xk) + �

]
: (2:5)

Now multiply (2.4) by 2�G(�; �)=(�− 1) and add to (2.5). After a small
amount of algebra, we obtain the proposition.

Remark. The expected range can grow linearly even when RW� is recurrent,
as can be checked for the case � = 2 on the binary tree.

3 Speed

Our aim in this section is to prove the following theorem.

Theorem 3.1 For 1¡ � ¡ m and for a.e. Galton–Watson tree T upon non-
extinction, the limit limn→∞ |Xn|=n exists a.s. and is a positive constant
depending only on � and the o�spring distribution. A lower bound is

(1− �−1)3

12
(1− q�)2 ; (3:1)

where q� is the smallest nonnegative number satisfying

f(1− �−1(1− q�)) = q�:

Our proof relies on the existence of in�nitely many regeneration epochs,
where, given a path 〈X0; X1; : : :〉; we call n ¿ 0 a fresh epoch if Xn =| Xk for
all k ¡ n and a regeneration epoch if, in addition, Xn−1 =| Xk for all k ¿ n:
De�ne (T ) to be the probability that, for the tree T ′ gotten by adjoining a
new vertex to the root of T and designating it the root of T ′, the walk RW�
on T ′ never returns to its root. This is the same as the e�ective conductance
from the root of T ′ to in�nity when edges at distance n from the root of T ′
have conductance �−n: To establish that there are in�nitely many regeneration
epochs, we work on the space of trees, not, as in Sect. 2, on only one tree.
At �rst reading, we recommend that the reader consider only the case p0 = 0:
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For this and other proofs, let Pnon and Enon denote probability and expectation
conditional on nonextinction.

Lemma 3.2 Let A be a measurable set of in�nite trees and Fn be the �-�eld
generated by the events {Xi =| Xj} for 05 i ¡ j 5 n: Let � be a stopping
time with respect to 〈Fn〉 such that � is a fresh epoch and let T� denote the
descendant subtree of X�. Then

Pnon[T� ∈ A |F�] = Pnon[T ∈ A] :

Proof. This lemma expresses a strong Markov property, which is evident with-
out the conditioning on nonextinction. Since each of the events T� ∈ A and
T ∈ A implies nonextinction of T , we have

Pnon[T� ∈ A |F�] =
P[T� ∈ A |F�]

1− q
=
P[T ∈ A]
1− q

= Pnon[T ∈ A] :

Lemma 3.3 Let 1¡ � ¡ m: For a.e. Galton–Watson tree T upon nonex-
tinction and a.e. sample path of RW�; there are in�nitely many regeneration
epochs.

Proof. Condition throughout on nonextinction. It su�ces to show that for any
N; there is a.s. a regeneration epoch n= N: Since T is in�nite, there is a.s. a
fresh epoch n= N ; let � be the �rst such. From Lemma 3.2, with the same
notation, we have

Pnon[∃ a regeneration epoch = N |FN ]

= Pnon[� is a regeneration epoch|FN ]

= Enon [(T )] :

Denote by F∞ the join of all the �-�elds Fn. By martingale convergence, the
conditional probability of a regeneration epoch after N given F∞ is almost
surely

limk Pnon[∃ regeneration = N |FN+k ]

= lim inf
k

Pnon[∃ regeneration = N + k |FN+k ]

= Enon [(T )] :

Since the regeneration epochs are F∞-measurable, there is a.s. a regeneration
epoch after each N .

Let the regeneration epochs be 0¡ �1 ¡ �2 ¡ : : : These are de�ned only
on the event of nonextinction.

Proposition 3.4 For 1¡ � ¡ m; on the event of nonextinction, the di�erences
between successive regeneration epochs {�n+1 − �n}n=1 are i.i.d. as are the
increments {|X�n+1 | − |X�n |}n=1:
Proof. The proof of this intuitively clear assertion requires more formal
notation. Label the edges from each vertex x to its children by the integers
1; : : : ; d(x) so that each vertex is identi�ed with the sequence of labels leading
to it from the root. This identi�es the tree T with a set [T ] of �nite sequences
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Fig. 2. The slab shown is a portion of the whole tree. The path taken is highlighted. The
tree that is not part of the slab is joined only through the �rst and last vertices of the path

of positive integers. For every vertex x; let T (x) denote the tree of descendants
of x; rooted at x; we identify T (x) with the set [T (x)] of sequences which,
when appended to the sequence identifying x; correspond to vertices in T . A
(�nite or in�nite) path X := 〈Xk ; k = 0〉 is described by the sequence of non-
negative integers Ẋ := 〈Ẋ k ; k = 1〉; where Ẋ k is 0 if Xk is the parent of Xk−1
and is otherwise the label on the edge from Xk−1 to Xk . Here, as in the sequel,
we use angle brackets 〈· · ·〉 to denote a sequence (rather than a set).
Conditional on the event of nonextinction, the sequence of fresh trees

T (X�n) seen at regeneration epochs is clearly stationary, but not i.i.d. How-
ever, as we establish below, the part of a tree between regeneration epochs,
together with the path taken through this part of the tree, is independent of
the rest of the tree and of the rest of the walk. We call this part a slab
(see Fig. 2):

Slabn := ([T (X�n)\T (X�n+1) ∪ X�n+1]; 〈Ẋ �n+1; Ẋ �n+2; : : : ; Ẋ �n+1〉) : (3:2)

(These are de�ned only on the event of nonextinction. Note that Slabn is rooted
at X�n :) The stationarity of the sequence of fresh trees seen at regeneration
epochs implies that the random variables Slabn are identically distributed.
Now we demonstrate that the slabs are mutually independent given non-

extinction, which implies the proposition.
Note that for k 5 n, the variables �k are measurable with respect to

〈Xk ; k¡�n〉; in particular, �n is just the length of this sequence. Thus it
su�ces to show that for n= 1, the fresh tree [T (X�n)] and the remaining
walk 〈Ẋ �n+k ; k = 1〉 are independent of [T\T (X�n) ∪ {X�n}] and 〈Ẋ k ; k 5 �n〉
given nonextinction. De�ne the maps �t and  t by

�t([T ]; Ẋ) := ([T\T (Xt) ∪ Xt]; 〈Ẋ k ; 15 k 5 t〉)
and

 t([T ]; Ẋ) := ([T (Xt)]; 〈Ẋ t+k ; k = 1〉) :
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Let GW be the measure on trees given by the Galton–Watson process and
let P = RW� ×GW be the associated probability measure de�ned on a space

 of paths in trees. Let T be a Galton–Watson tree and let X′ be a sample
from RW� on the enlarged tree T ′ started, however, at the root of T . Let Q be
the distribution of the pair (T ; X′) [not (T ′; X′)], so that Q is a probability
measure on a space 
′ which contains 
, in the sense that the set of pairs
(T ; X′) ∈ 
′ such that X′ remains in T may be identi�ed with 
. Note that
Q(
) = E[(T )].
Likewise, for any time t, we have P[ t ∈ 
 | t fresh; �t] = Q(
). More

generally, for any event B ⊆ 
, we have

P[ t ∈ B | t fresh; �t] = Q(B) : (3:3)

For 15 k ¡ t, denote by Ct
k the event that t is a fresh epoch and that there are

exactly k regeneration epochs before time t when the walk is killed at time t.
Let 
non be the intersection of 
 and the event of nonextinction. Then for any
time t, any positive integer n, and any events B ⊂ 
non and F , we have by
(3.3) that

P[ t ∈ B; �t ∈ F; �n = t] = P[ t ∈ B; �t ∈ F; Ct
n−1] = Q(B)P[C

t
n−1; �t ∈ F] :

Therefore,

P[ �n ∈ B; ��n ∈ F] =
∑
t=n
Q(B)P[Ct

n−1; �t ∈ F]

=
Q(B)
Q(
non)

∑
t=n
P[Ct

n−1; �t ∈ F]Q(
non)

=
Q(B)
Q(
non)

∑
t=n
P[�t ∈ F; �n = t]

=
Q(B)
Q(
non)

P[��n ∈ F] : (3:4)

In the case that F is the whole universe, {��n ∈ F} is the event of nonextinction
and we get P[ �n ∈ B] = (1− q)Q(B)=Q(
non). Substitution into (3.4) yields

P[ �n ∈ B; ��n ∈ F]
1− q

=
P[ �n ∈ B]
1− q

P[��n ∈ F]
1− q

;

which establishes the desired independence.

Corollary 3.5 For 1¡ � ¡ m; the di�erences between successive regenera-
tion epochs; {�n+1 − �n}n=1; have �nite means conditional on the event of
nonextinction. An upper bound on their mean is the reciprocal of (3:1).

Proof. The expected number of regeneration epochs in [1; n] is the sum over
k ∈ [1; n] of the probability that k is a regeneration epoch. For each k, this is
E[(T )] times the probability that k is a fresh epoch. The sum over [1; n] of the
probabilities that k is a fresh epoch equals E[Rn]. Therefore, by Proposition 2.2,
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the expected number of regeneration epochs grows linearly in time with a lower
bound of

lim
n→∞ E[(T )]E

[
Rn

n

]
= E[(T )]E

[
�− 1

3�G(�; �)

]
=

�− 1
3�

E[(T )]2 : (3:5)

Since the times between regeneration epochs are i.i.d. given nonextinction, it
follows by the strong law of large numbers that Enon[�2 − �1]¡ ∞. Moreover,
according to (3.5), an upper bound for their mean is 3�=[(�− 1)E[(T )]2].
In order to make this bound more explicit, we use the connection between
random walks and percolation of Lyons (1992). De�ne ′(T ) to be the e�ective
conductance from the root of T ′ to in�nity when the edge from the root of T ′
to the root of T has unit conductance, while edges at distance n= 1 from the
root of T ′ have conductance �1−n=(�− 1). Also, let p(T ) be the probability
that the component of the root of T is in�nite when the edges of T are removed
independently with probability 1− �−1 each. Then the inequality at the bottom
of p. 2047 of Lyons (1992) says that

′(T )5 p(T )5 2′(T ) :

It is easy to calculate that (T )= (�− 1)′(T )=�, whence

E[(T )]=
�− 1
2�

E[p(T )] =
�− 1
2�

(1− q�) ;

since E[p(T )] is the probability of nonextinction of a Galton–Watson branching
process with probability generating function s 7→ f(1− �−1 + �−1s).

Proof of Theorem 3.1. Condition on nonextinction. By the strong law of
large numbers, �n=n → Enon[�2 − �1] a.s. and |X�n |=n → Enon[|X�2 | − |X�1 |] a.s.
Therefore,

|X�n |
�n

→ Enon[|X�2 | − |X�1 |]
Enon[�2 − �1]

a:s: (3:6)

Since lim �n=n exists and is �nite by Corollary 3.5, we have �n+1=�n → 1 and the
theorem follows. The lower bound arises from the upper bound in Corollary 3.5
and the observation that the numerator of (3.6) is at least 1.

4 Outward-biased random walks

If � ¡ 1 and p0 = 0, the argument of the preceding section works to give the
existence and positivity of the speed of RW�, provided we substitute the easy
(2.5) for Proposition 2.2. Thus, when � ¡ 1, the most interesting possibility
occurs when p0 ¿ 0: the walk may have zero speed by spending too much
time at leaves. Recall that q is the extinction probability of the Galton–Watson
process.

Theorem 4.1 Suppose that p0 ¿ 0. Let T be a Galton–Watson tree condi-
tioned on nonextinction. The speed of RW� exists and is constant a.s. It is
positive if f′(q)¡ � ¡ 1 and zero if 05 �5 f′(q).
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Fig. 3. Part of the tree Tf decomposed as the tree Tg (solid lines) together with bushes
(dashed lines)

Proof. Since the case � = 0 is obvious, we assume that � ¿ 0. Let g(s) :=
[f(s)− f(qs)]=(1− q) and h(s) := f(qs)=q. Then an f-Galton–Watson tree Tf
conditioned on nonextinction may be generated by �rst generating a g-Galton–
Watson tree Tg and then appending to each vertex x of Tg a random number Nx
of h-Galton–Watson shrubs, where Nx has a distribution dependent on dTg(x)
only and, given Tg and the numbers Nx, the shrubs are i.i.d. We shall not need
the explicit form of the distribution of Nx (see Lyons (1992)). Call the union
of the Nx shrubs at x a bush (see Fig. 3).

If we observe RW� on Tf only at the times �n that it makes a transition
along an edge of Tg, then we see a sample Yn := X�n of RW� on Tg. Between
these observations, there are excursions of random lengths, possibly zero. To
determine the lengths of these excursions, we consider a single bush. The
expected length of time that RW� takes to return to the root on a �xed �nite
tree � is equal to the reciprocal of the stationary probability of the root of �.
Since RW� is reversible, this is easily calculated to be 2

∑
n=1�n�1−n=�1, where

�n is the number of vertices in generation n. In particular, for h-Galton–Watson
bushes, this sum has expectation

2
∑
n=1

h′(1)n−1�1−n =
{
2=(1− f′(q)�−1) if � ¿ f′(q) ;

∞ otherwise :
(4:1)

When 0¡ �5 f′(q), it follows that the expected time between regeneration
epochs on Tf is in�nite, whence by the strong law of large numbers, the speed
is a.s. zero. (Note that the expected distance between successive regeneration
loci on Tf is the same as on Tg, hence is �nite.)
Now assume that f′(q)¡ � ¡ 1. Between times �n and �n+1, the walk

〈Xk〉 makes a random number of excursions into the bush at Yn. The num-
ber of excursions has a geometric distribution minus 1 with mean (dTf (Yn)−
dTg(Yn))=(�+ dTg(Yn)). In conjunction with (4.1), this implies that

Enon[�n+1 − �n | Yn]5 cdTf (Yn) (4:2)

for some constant c depending only on � and f. Let Z1; : : : ; ZKn be the distinct
vertices among Y1; : : : ; Yn. Let Ui =

∑∞
j=11{Yj=Zi}. Then

n∑
i=1

dTf (Yi)5
Kn∑
k=1

UkdTf (Zk) ;
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so that

Enon

[
n∑

i=1
dTf (Yi)

]
5 Enon

[
Kn∑
k=1

UkdTf (Zk)
]

:

For each k, comparison to asymmetric simple random walk and use of
Lemma 3.2 gives

Enon[UkdTf (Zk)] = Enon[dTf (Zk)Enon[Uk |dTf (Zk)]]

5 Enon

[
dTf (Zk)

1 + �
1− �

]
=

m
1− q

1 + �
1− �

:

Therefore,

Enon

[
n∑

i=1
dTf (Yi)

]
5 n

m
1− q

1 + �
1− �

:

In conjunction with (4.2), this yields

Enon[�n=n]5
cm(1 + �)

(1− q)(1− �)
;

whence by Fatou’s lemma, lim infn→∞ �n=n ¡ ∞ a.s. Because regenerations
occur with positive frequency on Tg, it follows that lim infk→∞ �k=k ¡ ∞ a.s.,
where �k are the regeneration epochs of X. By the strong law of large numbers,
it follows that E[�k+1 − �k ]¡ ∞, and the above lim inf is a limit a.s. with
constant value E[�2 − �1]. Now for �k 5 n ¡ �k+1, we have | X�k |5| Xn |5
| X�k | + n− �k 5| X�k | + �k+1 − �k . Since lim �k+1=�k = 1, it follows that

lim
n→∞ |Xn|=n = lim

k→∞
|X�k |=�k = lim

k→∞
k=�k ¿ 0 :

5 Dimension of harmonic measure

Recall that the Hausdor� dimension of a Borel measure � on a metric space
is de�ned as the in�mum of Hausdor� dimensions of Borel sets with full
�-measure.
Given a rooted tree T , let @T denote the set of in�nite self-avoiding paths

from the root of T . This becomes a compact metric space when equipped with
the standard metric that assigns distance e−n to any pair of self-avoiding paths
with exactly n edges in common. The Hausdor� dimension of @T is logm for
a.e. Galton–Watson tree T (Hawkes 1981). Let UNIFT denote the measure
on @T which is the weak limit of measures uniform on the vertices in the
nth generation of T ; this limit exists on a.e. Galton–Watson tree T : see, e.g.,
Eq. (6.2) in Lyons et al. (1995). When the random walk RW� is transient
and cycles are erased from the path, the path converges almost surely to an
element of @T whose law is denoted HARM�

T . Let HARM� be the function
which assigns to every tree T the probability measure on its �rst generation
corresponding to HARM�

T , i.e.,

HARM�(T )(x) = HARM�
T{paths passing through x}
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for a vertex x in the �rst generation of T . This gives transition probabilities for
a Markov chain on the space of trees if we let HARM�(T )(x) be the transition
probability from T to the descendant tree T (x).
Call t an exit epoch for the path 〈Xk ; k = 0〉 if Xt−1 is the parent

of Xt and Xk-Xt−1 for all k ¿ t. Let 〈tk〉 be the successive exit epochs.
Then 〈Xtk 〉 forms a random ray of T with distribution HARM�

T by de�nition.
Therefore,

The subtrees T (Xtk ) form a HARM�-Markov chain : (5:1)

For a �xed o�spring distribution, let GW denote the resulting Galton–Watson
measure on the space of trees.

Theorem 5.1 For 05 �¡m; conditional on nonextinction; the Hausdor�
dimension of HARM�

T is GW-a.s. strictly less than logm. For 05�1¡�2¡m;
the measures HARM�1

T and HARM�2
T are GW-a.s. mutually singular. (We

allow � = 0 only if p0 = 0:)

The proof depends on the following lemma.

Lemma 5.2 Assume p0 = 0. For 05 � ¡ m; there is a �nite stationary mea-
sure for the HARM�-Markov chain, denoted �HARM; that is absolutely con-
tinuous with respect to GW.

Proof of Theorem 5.1. Because of the decomposition described in the previous
section, the theorem reduces to the case p0 = 0. Theorem 7.1 of Lyons et al.
(1995) shows that the dimension of HARM�

T will be a.s. less than logm as
long as HARM� has a stationary measure absolutely continuous with respect
to GW, and as long as HARM�

T is not a.s. equal to UNIFT . The argument of
Proposition 8.3 in that paper applies in the present case to show that HARM�

T is
not a.s. equal to UNIFT , and Lemma 5.2 of the present work thus shows that
dim(HARM�

T )¡ logm a.s. Theorem 7.1 of Lyons et al. (1995) also shows
that HARM�1

T and HARM�2
T are a.s. mutually singular if they are not a.s.

equal. To see that they are a.s. unequal, note that a.s. equality would force the
vector 〈

�1(T (x))
�2(T (x))

〉
|x|=1

(5:2)

to be a multiple of the constant vector 1 since

HARM�
T (x) =

�(T (x))∑
|y|=1 �(T (y))

:

For Galton–Watson trees, each component of this vector has the same law
as that of �1(T )=�2(T ). Thus, the independence of T (x) and T (y) for two
distinct children x and y of the root implies that the random vector (5.2) is,
in fact, constant GW-a.s. Thus, �1(T )=�2(T ) is a constant GW-a.s. This is
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easily seen to imply that some pk equals 1, which contradicts our standing
assumption.

Proof of Lemma 5.2. The case � = 1 was done in Lyons et al. (1995), so
assume that �-1. We provide only a sketch due to space restrictions. Let
	n := 〈T (X�n); T (X�n+1); : : : ; T (X�n+1−1)〉 be the sequence of forward trees
seen by the walk during the nth slab. Then 〈	n; n= 1〉 is a stationary
Markov chain. There is at least one exit epoch occurring in each slab, namely,
�n. For each n, let �n be the �nite sequence of trees 〈T (Xt); t an exit
epoch in the nth slab〉. Thus, 〈�n; n= 1〉 is a factor of 〈	n; n= 1〉.
Let h(〈�n〉)= 1 be the length of the sequence �1. The tower over 〈�n〉 with
height function h yields a shift-invariant distribution for 〈T (Xtk )〉.
Examination of the tower construction shows that this last sequence is a
HARM�-Markov chain. It is necessarily stationary, with some initial distribu-
tion �HARM.
It remains to prove that �HARM is absolutely continuous with respect to

GW. Now for any Borel subset A of trees,

�HARM(A)5
∫ �2−1∑

n=�1
1A(T (Xn)) dGW =: �(A) :

Thus, it su�ces to show that if GW(A) = 0, then �(A) = 0. Indeed,

�(A)5
∫ ∑

v∈T
1A(T (v)) dGW :

For each vertex v in a Galton–Watson tree T , the forward tree T (v) is also a
Galton–Watson tree, so the last integral vanishes.

We now demonstrate how the drop in dimension of harmonic measure
implies the con�nement of RW� to a smaller subtree. Given a tree T and
positive integer n, let Tn be the vertices of T at distance n from the root
and |Tn| be the cardinality of Tn. We remark that the following proof is
both easier and more general than the analogous proof of Theorem 9.9 in
Lyons et al. (1995).

Corollary 5.3 Assume that p0 = 0. Fix an o�spring distribution and � ∈
[0; m). For GW-almost all trees T and for every �¿0; there is a subtree
T (�) ⊆ T such that

RW�{Xn ∈ T � for all n}= 1− � (5:3)
and

1
n
log |T (�)n | → dim(�) ;

where dim(�)¡ logm is the dimension of HARM�
T . Furthermore; any subtree

T (�) satisfying (5:3) must have growth

lim inf
1
n
log |T (�)n |= dim(�) :
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Proof. Let tk := 1 + max{t; |Xt | = k} be the kth exit epoch and D(x; k) be
the set of descendants y of x with |y|5 |x|+ k. We shall use three sample
path properties of RW� on a �xed tree:

speed : lim
n→∞

|Xn|
n
= speed(�)¿ 0 a:s: (5:4)

H�older exponent : lim
n→∞

1
k
log

1

HARM�
T (Xtk )

= dim(�) a:s: (5:5)

neighborhood size : ∀� ¿ 0 lim sup
n→∞

log |D(Xn; �|Xn|)|
|Xn| 5 � logm a:s:

(5:6)

(In fact, the limit in (5.6) exists and equals the right-hand side, but this is
not needed.) The �rst property (5.4) was proved in Sect. 2 and the second
(5.5) follows from a result of Billingsley and an idea of Furstenberg once
the absolute continuity in Lemma 5.2 has been established; see Lyons et al.
(1995), Lemma 4.1 and Sect. 5. In order to see that (5.6) holds for GW-a.e.
tree, denote by Yk the kth fresh point visited by RW�. Then (5.6) can be
written as

∀� ¿ 0 lim sup
k→∞

|Yk |−1 log |D(Yk ; �|Yk |)|5 � logm

and since |Yk |=k has a positive a.s. limit, this is equivalent to

∀�∗ ¿ 0 lim sup
k

k−1 log |D(Yk ; �∗k)|5 �∗ logm : (5:7)

Now the random variables |D(Yk ; �∗k)| are identically distributed, though not
independent. Indeed, the descendant subtree of Yk has the law of GW. Since
the expected number of descendants of Yk at generation |Yk |+ j is mj for
every j, we have

P(|D(Yk ; �∗k)|= m�′k)5 m−�′k
�∗k∑
j=0

mj :

If �′¿�∗, then the right-hand side decays exponentially in k, so by the Borel–
Cantelli lemma, we get (5.7), hence (5.6).
Now (5.5) alone implies the last assertion of Corollary 5.3.
Applying Egorov’s theorem to the two almost sure asymptotics (5.4) and

(5.5), we see that for each �¿0, there is a set of paths A� with RW�(A�)¿
1− � and such that the convergence is uniform on A�. Thus, we can choose
〈�n〉 decreasing to 0 such that on A�, for all k and all n,

HARM�
T (Xtk )¿ e−k(dim(�)+�k ) and

∣∣∣∣ |Xn|
n speed(�)

− 1
∣∣∣∣ ¡ �n : (5:8)

Now since �n is eventually less than any �xed �, (5.6) implies that

lim sup
n→∞

|Xn|−1 log |D(Xn; 3�|Xn||Xn|)| = 0 a:s: ;
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so applying Egorov’s theorem again and replacing A� by a subset thereof (which
we continue to denote A�), we may assume that there exists a sequence 〈�n〉
decreasing to 0 such that

|D(Xn; 3�|Xn||Xn|)|5 e|Xn|�n for all n (5:9)

on A�.
De�ne F (�)0 to consist of all vertices v ∈ T such that either �|v| = 1=3 or

both

HARM�
T (v)= e−|v|(dim(�)+�|v|) and |D(v; 3�|v||v|)|5 e|v|�|v| :

Finally, let
F (�) =

⋃
v∈F(�)0

D(v; 3�|v||v|)

and denote by T (�) the component of the root in F (�). Since the number of
vertices v ∈ Tn satisfying HARM�

T (v)= e−|v|(dim(�)+�|v|) is at most en(dim(�)+�n),
the bound on |D(v; 3�|v||v|)| bounds the growth rate from above as asserted in
the statement of the corollary. It remains to establish that RW� stays inside F (�)

forever on the event A�, since that will imply that the walk is con�ned to T (�)

on this event. The points visited at exit epochs tk are in F (�)0 by the �rst part of
(5.8) and (5.9). Fix a path 〈Xj〉 in A� and a time n, and suppose that the last
exit epoch before n is tk , so that tk 5 n ¡ tk+1. Denote by N := tk+1 − 1 the
time preceding the next exit epoch, and observe that XN = Xtk . If �n = 1=3,
then Xn is in F (�)0 since �|Xn| = �n, so consider the case that �n ¡ 1=3. By the
second part of (5.8), we have

|Xn|
n speed(�)

¡ 1 + �n and
|XN |

n speed(�)
=

|XN |
N speed(�)

¿ 1− �N = 1− �n :

Dividing, we �nd that

|Xn|5 1 + �n

1− �n
|XN |5 (1 + 3�n)|XN | :

It follows that Xn is in D(Xtk ; 3�|Xtk ||Xtk |) and this completes the proof.

6 Dependence on the bias parameter �

Fix an o�spring distribution, and recall that speed (�) denotes the a.s. con-
stant speed of RW� on Galton–Watson trees upon nonextinction. Similarly, de-
note by dim(�) the a.s. constant dimension of the harmonic measure HARM�

T .
The methods of this paper are not well suited to analyze the dependence of
speed(�) and dim(�) on the parameter �. We state explicitly two questions in
this direction, and refer to the survey Lyons et al. (1996) for further questions
and relevant examples.



Random walks on Galton–Watson trees 263

Question 1 Assume that the o�spring distribution satis�es p0 = 0. Is speed(�)
monotonic nonincreasing for � ∈ [0; m)?
Though a positive answer is intuitively compelling, the evidence available

indicates that if monotonicity holds, it is a special property of Galton–Watson
trees. The calculations in Sect. 4 show that the assumption p0 = 0 cannot be
dropped. Even if we restrict attention to trees without leaves, there exist family
trees of two-type Galton–Watson processes for which speed(�) is not mono-
tonic in � (see Lyons et al. 1996).

Question 2 Determine the smoothness properties of speed(�) and dim(�) for
� ∈ [0; m).
In particular, the methods of the present paper do not yield the intuitively

“obvious” inequality

lim inf
�→1

speed(�)¿ 0 ; (6:1)

since the a priori bound for the Green function in Proposition 2.1 blows
up as � ↓ 1. Of course, continuity of the speed at � = 1 would immediately
imply (6.1).
Continuity for �¡1 is easier to establish, since comparison with simple

asymmetric random walk on the integers is possible.

Proposition 6.1 If p0 = 0; then speed(�) is continuous for � ∈ [0; 1).
Proof. We construct a richer probability space on which random walks
with laws RW� are simultaneously de�ned for all �= 0. Pick a tree T acc-
ording to Galton–Watson measure. Label the edges of T as in the proof of
Proposition 3.4. Let 〈Un〉 be a sequence of i.i.d. random variables uniformly
distributed on [0; 1]. For every �= 0, we de�ne inductively a sequence of
vertices 〈X �

n 〉 as follows. First, let X �
0 be the root of T . For n= 1, denote

by dn−1(�) the number of children of X �
n−1. If X �

n−1 is the root, then de�ne
Ẋ �

n := ddn−1(�) · Une. Otherwise, let

Ẋ �
n := d(�+ dn−1(�)) · Une (6:2)

if the right-hand side is at most dn−1(�), and Ẋ �
n := 0 if the right-hand side

of (6.2) is strictly greater than dn−1(�). This de�nes the path 〈X �
n 〉 as in the

proof of Proposition 3.4.
Given T , the sequence 〈X �

n 〉 is clearly a sample from RW�. For any �xed
�0 = 0 and n= 1, we clearly have pointwise convergence:

X �
n → X �0

n almost surely as � → �0 : (6:3)

Pick �max¡1. Denote by �k(�) the kth regeneration epoch of 〈X �
n 〉. We

shall show continuity of speed for � ∈ [0; �max] by using the formula

speed(�) =
E[|X �

�2(�)
| − |X �

�1(�)
|]

E[|�2(�)− �1(�)|] : (6:4)
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Using the random variables Un, we also de�ne an asymmetric simple ran-
dom walk 〈Yn〉 on the integers. Let Y0 := 0 and for n= 1, let

Yn := Yn−1 + sign
(

1
1 + �max

− Un

)
:

Whenever Yn¿Yn−1, necessarily |X �
n |¿ |X �

n−1| for all � ∈ [0; �max]. Therefore
every regeneration epoch for the process 〈Yn〉 is also a regeneration epoch
for each of the processes 〈X �

n 〉 with �5 �max. Denoting the kth regeneration
epoch for 〈Yn〉 by �Yk , we see that �k(�)5 �Yk for all �5 �max, and therefore
�k(�)→ �k(�0) when � → �0 5 �max. Because the speed of 〈Yn〉 is positive,
�Yk is integrable for each k (indeed, it has an exponentially decaying tail –
see, e.g., Lemma 5.1 in Dembo et al. (1995)). Thus, continuity of speed(�)
in the interval [0; �max] follows from (6.3), (6.4) and Lebesgue’s dominated
convergence theorem.

Remark. Similarly, if pi = 0 for i¡N , then speed(�) is continuous for
� ∈ [0; N ).
Remark. Very similar methods allow us to deduce Theorem 3.1 for 1¡�¡�
for positive-regular nonsingular multitype branching processes such that each
particle has at least one child (a stronger condition than a.s. nonextinction, but
analogous to p0 = 0), where � is the maximal eigenvalue of the mean matrix.
We do not know how to prove that the speed of simple random walk (� = 1)
is positive on multitype trees.
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