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Summary. In this paper we prove a Sanov result, i.e. a Large Deviation Principle
(LDP) for the distribution of the empirical measure, for the annealed Glauber
dynamics of the Sherrington-Kirkpatrick spin-glass. Without restrictions on time
or temperature we prove a full LDP for the asymmetric dynamics and the crucial
upper large deviations bound for the symmetric dynamics. In the symmetric
model a new order-parameter arises corresponding to the response function in
[Sozi83]. In the asymmetric case we show that the corresponding rate function
has a unique minimum, given as the solution of a self-consistent equation. The
key argument used in the proofs is a general result for mixing of what is known
as Large Deviation Systemk@S) with measures obeying an independent LDP.
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1. Introduction

Sherrington and Kirkpatrick [ShKi75] introduced their model as a “simple” mean-
field version of the Edwards-Anderson spin-glass — but the model turned out not
to be simple at all — only a few results are proved in a mathematically rigorous
way (see for example [AiLeRu87], [CoNe95], [Gui95] and citations therein).
In [S0Zi83] a dynamical diffusion approach was proposed by Sompolinsky and
Zippelius which they used to derive properties of the (statical) model in the
limit ast — oo. This approach was put on firm mathematical ground in a joint
work of G. Ben Arous and A. Guionnet which is published in the PhD-thesis
of A. Guionnet [Gui95] and a series of papers [BeGu95]-[BeGu94a], which are
also part of the PhD-thesis. Based on their large deviations results, they develop
a fairly complete picture of the asymmetric model. But in the symmetric case,
corresponding to the physical model, they still have a (technical) restriction in
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their results. Ifg is the inverse temperature aiidthe length of the time interval
they prove their results under the condition ti¥&T is smaller than some fixed
constant.

In the Sherrington-Kirkpatrick model (SK-model) it is more natural to use
jump processes instead of diffusions. This ansatz was introduced in [Som87].
Some rigorous results for the asymmetric dynamics were proved in [Gru92].
There is a strong advantage in the use of Glauber dynamics. The Girsanov ex-
ponent, used to describe the interacting model, is fairly well-behaved, which
permits to work without restiction on time and temperature. The price you have
to pay for this is the loss of Gaussian techniques.

Let's be more explicit. The SK-model is defined by a random Hamiltonian

U (o) = — 2\/NZJ -oioy, ae&N
i7=1

on the state spac&N := {—1,1}N, where fori > j theJ'J are chosen inde-
pendently according to a centered Gaussian distribution with variance one, and
Jii =31 —the coupling-matrix) is supposed to be symmetric. Another way to
describe the coupling-matrix is to say that the pairs (Ji-) are i.i.d. centered
Gaussian foi > j with covariance

E,QVY=E(0M)?=1 E@"7-IJ')=a @

with « := 1. For fixed couplingd the Gibbs measures at temperatutreare
defined by

wyn{o}) = Z} exp[-3-Uy(a)], oc &N

with the partition-functiorZ; \ := 3~ .~ €xp[-3-U} (o)] as the normalization.

In the dynamical approach a Glauber dynamics for these measures is introduced,
i.e. a Markov process with state spag&é' for which the Mg N are reversible
invariant measures. Define the field at Site be 7

N
, 1 ey
W) : &N - R, o—h(o):= y > 3 a.
i=1j
Then the simplest possible choice for the process is a single spin-flip jump process

with state spaceZN, where thei-th spin changes its statg — —o; with the

transition rate 1

1 +exp[Baihy (o))

We denote by := (o4, -,0i_1, —0i, 0is1, - - -) the configuration with the-th
coordinate being flipped. Then the transition semi-groyp,ft) belonging to
the process defined by the ratgssatisfies the forward equation

Gi(o) =

N
P o)=Y (60 )P o (0) ~ 6 (0)Pyr (1)

i=1
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with the initial condition B »(0) = 6,/ ». This process can be constructed as
a measure on%[0, TN, where Z-[0,T] =: X is the Skorohod space of
cadig-functionsu : [0, T] — &. For eachx € &[0, TN

t— X)), x()=), - () e &N,

defines a function in the Skorohod spaeg[0, T] =: Y of real-valued functions
on [0, T]. We are considering the law of the combined Markov process

((ha(x), %), - -, (n (%), xn)) € (Y x X)N =2 ZN

as a measure on the product of the space of paths with the space of the fields,
i.e. as a measure oY (x X)\. Let q € .#(Z»[0,T]) be the Markov process
starting with some distribution o and jumping with rate one between both
states. Then we can write the interacting process on the time intervi] {ia
Girsanov formula as

pNCI(B) = / 15(N’(x).X) - exp
XN

N
ZG(h’(X),xi)l N (@)

i=1

for some measurable sBtc (Y x X)N =: ZN where the Girsanov exponent has
the simple form

_ 1
U = 2 M expliy(s (s )
. /‘T exXp23y(9X(S)
o 1+exp[2y(SX(o)

for (y,x) € Y x X. The coupling-matrixJ appears in the Eq. (2) only through
the field H. The idea of Sompolinsky and Zippelius is to average these measures
with respect to the distribution of th&'s. The physical reasoning behind this

is that the “individual dynamics” still evolves with fixed coupling and therefore
some information of the distribution of the quenched system can be gained in
the limit asT — ooc.

At this point different dynamical models can be defined by choosing different
distributions for the coupling-matrid. The physical SK-model corresponds to
the symmetric choicex = 1 for the couplings] as in Eq. (1). But every choice
a € [—1,1] is allowed which means that the coupling-matiixs becoming less
and less symmetric up to a complete anti-symmetric matrixafor —1. The
most important other choice is the asymmetric case0, what implies that the
Gaussian variabled'’ andJ!' are independent. We include all possible models
a € [—1, 1] in our work to study the influence of the couplings (see [RSZ89] for
results in this direction). In the asymmetric model the proofs are much simpler
(Sect. 4.1). The effect of the dependence in the coupling-matfor o # 0 can
be seen in Sect. 5.

Let’s now continue to define the annealed spin-glass dynamics. Following the
ideas of [Sozi83] we average the measy®<$>? with respect to the distribution

®3)
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of the J defined in Eg. (1) for some fixed € [—1,1]. Interchanging the order
of integration leads to

va L (dy)g®N(dx),  (4)

N
Py ¢(B) :=/ / 1(y;x)-exp| Y Gl %)
XN JYN i=1
Whereu('ix stands for the conditional distribution of the fieldsk) € YN under
J for givenx € XN. Since thel'! are centered Gaussian) , is a centered
Gaussian measure o' with covariance
N
1 .
/Y HEMO A= S KEKO for ie{L N ()
j=Lj7

for the diagonal elements, and

[ OO = 5@x @ Tor 1€ (Lo NLi 7]

for the off-diagonal elements. Recall that=Y x X and denote by
1 N
0% :ZN — 1 (2), z+— N > 6
i=1

the empirical measure. The measures studied in this paper are the distributions
of the empirical measures undg} ©, i.e. the measures

PG = 0 (P ©), (6)

on.Z41(Z), where f¢) = vof ~! denotes the image of a measurender a map
f. #41(Z) is the space of Borel probability measuresn

In this paper we examine the large deviations properties of the annealed
spin-glass dynamics, i.e. of the measuRdsC®, in the thermodynamic limit as
N — oo. We prove a full LDP for the asymmetric case= 0 in Sect. 4.1
and the upper large deviations bound for the symmetric model and every model
a 7 0 in Sect. 6. In the asymmetric case, we prove that the corresponding rate
function Sg has a unique minimuny* € _Z2,(Y x X) given as the solution of
the self-consistent equation

v* = exp[Gl v @0,

where. /5, - iS a centered Gaussian measurezg[0, T] with the covariance
constructed from th&X-marginalry (v*) of the measure*. Via an Borel-Cantelli
argument (see [BeGu95], Theorem 2.7) this large deviations result implies the
following quenched weak convergence result for the asymmetric spin-glass dy-
namics.

Corollary 1.1. Let the J4 be choosen independently. Then for aimost all J
PN-GI L 5 in  #4(2),

whereé, - is the Dirac-measure at*.
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Also propagation of chaos results (as in [Gui95]) can be derived. The main
motivation behind the search for a LDP of tAf - is to prove weak convergence
results and laws of large numbers by analyzing the corresponding rate functions.
For such results the upper large deviations bound is sufficient.

We believe that most of the other results for the asymmetric Langevin spin-
glass dynamics found in [BeGu95], [Gui95] can be transferred to the Glauber
case.

However, we are not going to study the rate function in the symmetric case,
which would be the most interesting part from the physical point of view. Since
our results are valid for all times and temperatures the longtime behavior as
T — oo can also be approached. We hope to be able to tackle this problem in a
later work.

1.1. Outline of the paper

— Most of the proofs in this paper are based on a general technical result,
which is the contents of Sect. 2. Starting point is the fact, that we have (from
the construction of the measures) a good representation of the conditional
distribution ofPN-¢ given theX-marginal. We will now state the idea behind
the technical result: Assume we have a sequence of meazRlNrea a Polish
space<Z and a continuous surjection

into another Polish space” such that

1. QN := n(PN) satisfies a full LDP with rate 3,

2. for all fixedx € .2 the conditional distributiorP} of PN given that
7w =X, fulfills a LDP with rate I §;-) on Z.

Setting 1 §; A) :=inf,cal (X; 2) for A C &, we have

PUA = [ PEAQY@I~ [ expl-N - 10aA]Q" @Y
and Varadhan’s Theorem suggests thatPResatisfy a LDP with rate

S @) = 1(n(2);2) + I (7(2)).

In Sect. 2 we prove a result along this line.

— In Sect. 3 we give some general definitions and describe how the measures
PN-G of the annealed spin-glass dynamics fit into the concept of Sect. 2.

— For the asymmetric spin-glass dynamics corresponding to the me&!é)fn%s
we prove a full LDP in Sect. 4.1. This is possible since the fields having
covariance Eq. (5) are independent fer= 0. In Sect. 4.2 we prove by a
fixed point argument that the rate functiorg’ $yoverning the LDP of the
measuresPON’G has a unique minimum, given as the solution of the self-
consistent equation Eq. (29).
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— The difficult part in the proof of the LDP foPN-®, a # 0, is the weak
dependence in the Gaussian variables distributed accordinj,toThis de-
pendence leads to the necessity for the introduction of a new order parameter
(see Remark 6.4), which we believe corresponds to the response function in
[Sozi83]. The physicist's technique in this situation is the so called Gaus-
sian decoupling or Hubbard-Stratonovich transformation. In this technique
complex integration is used. In this paper we give a pure probabilistic proof
for this technique, which is contained in Sect. 5. We consider first a simple
homogenous model in Sect. 5.1 in order to show the influence of terms of
order,ﬁ in the off-diagonal part of a covariance like Eqg. (5). In Sect. 5.2 we
state the Gaussian decoupling result (in a finite dimensional setting), which is
the major step in the proof of the LDP for the “free” spin-glass dynarRj}s
— defined aPN-® but with G= 0 - i.e. the measures without the physical
interaction given by the Girsanov exponent G.

— In Sect. 6 we use the finite dimensional result of Sect. 5 to prove a full LDP
for the “free” measure®) and conclude from this principle the full upper
bound for theP-© via Varadhan's Theorem, siné\:® can be written as

P ¢(B) = / 1g(v) exp [N / de} Pa (dv),
(Y xX)

for a measurabl® c .Z,(Y x X).

2. LDP for mixtures of Large Deviation Systems (LDS)

In this chapter we state the technical result which we need for the proof of a
LDP for the situation described in the introduction. Mixtures of LDS were used
in the proof of a Sanov result for exchangeable random variables in [DiZa92]. In
a mean-field setting the integrating measures — corresponding to the distribution
of an order-parameter in physics — will satisfy a LDP.

Let & and.Z" denote Polish spaces and ey }nen be a sequence of
measurable subsets.af” with the property that for every pointin a measurable
set.Zs C .2 there exists a sequencey), Xy € %N, converging tox; we
call such a sequence a#f)-sequence. We assume that we have a continuous
surjective mapr : £ — .2 and a familyIl = {P} : x € .2y, N € N} of finite
measures on the Boretfield .2(<L) such that

PN(r 1{x}*)=0 vxe.Zn,N eN. (7)

We assume further th&®)(Z) < exp[-N«x] for some fixed constant € R.
Letl : . % x L — [k, o] be some function and defineX;(A) := inf,cal (X; 2)
for a setA ¢ Z. We will use the following (slightly modified) concept due to
[DaGa94] (Definition 1.1 and Definition 1.2):

Definition 2.1. We call IT a Large Deviation System with rate functiorif the
following conditions are satisfied:



Glauber spin-glass dynamics 193

(i) Compactness of the level sets: For each X, and eachp > « the set
D(x;p)={ze Z:1(x;2) < p} (8)

is compact.
(i) Lower large deviations bound: We have the inequality

lim inf ; InPY (G) > —1(x; G) 9)

for each open set G g2, each xe %, and each(.2y)-sequence con-
verging to X.
(i) Upper large deviations bound: We have the inequality

lim sup,\ll InPY (F) < —I(x;F) (10)

N—oo

for each closed set F inZ, each xe .#Z., and each(.%y )-sequence con-
verging to X.

Observe that we are not dealing with probability measures - that turns out to be
useful to treat interacting systems. The lower bound Eq. (9) and Eq. (7) imply
that 1 (x; z) = oo for z ¢ 7=*({x}), so we can define the function

J: Z — [k, o0] (1D

[ W(x(@);2) if zen Y I
z — J@ '_{ 00 otherwise :

Remark 2.2.Since .Z" is a metric space, each poirt € .Z., has a count-
able base for the neighborhood.i#” and we have the following observations
[Diza92]:

1. For each closed s& C & and eachx € .%., such that 1§; F) < co there
exists for eachb > 0 a neighborhoodl) of x in .2 such that

lim sup L [ sup PX"f(F)] < —I(x;F) +6. (12)

N —oo X' e.AnNuU

If I (x; F) = oo there exists for each € R a neighborhoodJ of x such that
the I.h.s. of Eq. (12) is smaller thaAL.

2. For each open sg6 C &, eachd > 0 and eachx € .Z. there is a
neighborhoodJ of x such that

o1 . N
/ > —l(X; — 0.
liminf N In [X/ell/ry/\meU Py (G)} >—1(x;G) -6 (13)

— 00
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We will call the LDS I measurable if the mapBN : .2y — (L) are
() NN — B(A(Z))-measurable, where the spac&(Z) of finite
measures onZ is equipped with the weak topology and(.2") N .2y is the
traceo-field on.%y. Let (QN € .//Zl(.%')) be a sequence of probability mea-
sures on.%", which satisfies a full LDP with a (good) rate function,-J(the
definition can be looked up in [DeZe93], Chap. 1.2). We make the following
assumptions:

1. QV(2x)=1 VYN €N,
2. 07 = {1y <p}C Zi.

We set forB € .2(Z)
PWm:/"PNmQWw) (14)
N

By the monotone-class theorem and monotone convergence this defines a se-
guence of finite measures o0&, which maybe none-normalized. Analogous to
Varadhan’s Theorem we have the

Theorem 2.3. For the sequence of measure¥ B full LDP with good rate func-
tion
S@) :=3@)+dx (7(2)) (15)

holds.

Proof. S is lower semi-continuoud:et z € & be such that &) < co. We
have to show that fof > 0 we can find a neighborhodd C & of z such that

SV)>S@ -9 (16)

For a fixedx € .%5 the function I§;-) is lower semi-continuous and we can
find ane > 0 such that 14(2); B.(z)) > | (w(2), z) — g whereB,(z) is the closed
e-ball aroundz. Because of Remark 2.2 we find an opendet .2", n(z) € U
such that Eq. (12) holds with := B.(z), x := 7(z) for a constanlg. This implies
together with the upper LD-bound Eq. (10) that

(r(2)2) ~ % <1 (r(2);BL@) ~ & < 1 (6 Bu(2)
for all x € U N.Z.,. Because J- is lower semi-continuous there is an open

setU’, m(z) € U’ C & such that J-(U’) > J, (n(2)) — 5. Then for
V :=B.(z2) N7 XU NU’) Eq. (16) is obtained.

Upper boundWe fix some closed sét C & and choose > 0 andL > 0. We
denote byd;”" C .#., the compact level set fdr of J .- . Because of Eq. (12) and
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the lower semi-continuity of J- we find an open coved;” C Uik:l Uy =: Cp,

X € &, x € Uy, such that

N—o0 XENNU

. 1
limsup  In [ sup P){“(F)] < —Ky +§
and int(eux Jo =1 d2 (Uy) > Ju (%) — 5, where

k. =4 TOGF) ifH(x;F) <oo
X7 1 L—k+e otherwise

Thus, there exists sondy such that for allN > Np we have the inequality

PN(F)

k
N N N C N N
/M PNF) QY (dx) < Q <cL)+;/U PN (F) Q" (dx)

% N2

IN

k
Q"€+ > e | N (K - 3 )| Q")
i=1

Taking logarithm, using the upper LD-bound fo@N and [Deze93],
Lemma 1.2.15 leads to

1
l INPN(F) < — min {Kq+Jp(6)— e} AL
sy INPUE) <= iny [ 27 60—
—inf{IOGF)+Jdp (X) —e:xenm(F)} AL

1IN

—(inf S(z) — €) A L.
zcF

Sincee can be chosen arbitrarily, we obtain the upper bound by lettirg co.

Lower bound Let G ¢ & be open and fix € G ande > 0. Since Jf) = c©
for z ¢ 7= 1( &%), we assume that € 7—1(.2.,). Because of (13) we have an
openU, 7(z) € U such that

lim inf ; In [ inf PXN(G)] > 1 (n(z);G) — ;

XEANN

Then there exists somdy such that for allN > Ng we have
PIE) > [ PME)IQEN > expN((r(2): 6) ] - (V).
N
Taking the limit asN — oo leads to
lim inf ,\11 INPY(G) > —1(n(2);G) = Iz (U) — € > ~I(n(2);2) = I (n(2) — .

This gives the lower bound sineewas arbitrary.

Compactness ob, := {z : S(z) < p}: (see [DiZa92]) Let's assume thdt, is
not compact for some > x. Then we have a sequence of poigsc @,
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such that %) does not have a convergent subsequence. Because of Eg. (15)
and the bound > &, X = n(z) is a sequence in the level @ﬁ”_‘n ={y <

p—k} C %% and has a convergent subsequergce- x since@'f_'ﬁ is compact.

Let xy be an (#y)-sequence converging to and Ky C &£ be a compact
subset with limsugp_, ., 4 INPY (KS) < —3p; such a seK, exists, i.e.PY is
exponentially tight, because of Definition 2.1 and Theorem (P), [Puk91] (see also
[Deze93], Example 4.1.10 for an outline of the proof). Becazis#oes not have

a convergent subsequence there ik auch thatz, ¢ Ky for all k > ko. Let

D :={z, : k > ko}. D is closed becausg, cannot have any accumulation point.
Since Z is metric we can find disjoint open seltth,, Ux with Ky ¢ Uk and

D C Up. Because of Eqg. (12) we can find some open\sek € V such that:

. 1 . 1
limsup  In [PNUS N7~ 1(V))] < limsup In [ sup PX“!(U,E)}
N —oo N N —oo N X' €V N.2ZN
. 1
< IanjolipN INPN (US)+p (17)
. 1
< Ilizn sup INPR (KO +p < -2

Applying the lower bound t&Jp N 7~1(V) and observing that, € 7=(V) for
k large enough we finally obtain

1
liminf = InPN(U vy >—-  inf S@) > —p. 18
iminf (Upnm(V)) = LI @=-p (18)
But Eqg. (17) and Eq. (18) cannot hold simultaneously and therafgreust be
compact for evernp > k. O

3. General definitions

In this section we give some general definitions and describe how the annealed
spin-glass dynamics fits into the concept of Sect. 2.

Let X := Z,[0,T] and Y := ZR[0, T] be the Skorohod spaces of functions
on the interval [QT] with values iné& := {—1,+1} and in R respectively, and
defineZ = Y x X. q € .#(X) is the measure oiX corresponding to the
process jumping between the two states with rate 1 and starting with some fixed
distribution on#". Denote by

#om(X) = #{s € [0, T] : x(s) 7 x(s—)}

the number of jumps ok on the time interval [OT]. #o,1) is a continuous

map since’ is a descrete topological space and the peculiarity of the Skorohod
topology at the endpoink. For our Sanov result we need a stronger topology on
some subset of measures, such that we can easily integrate over the unbounded
function #o 11. Define
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2= {1/ € 26:(X) : /#[OJ] dv < 00}

and
& = {# € . 6,(2): /#[OVT](X) w(dy, dx) < oo} ,

respectively, and equip both spaces with the weakest topology, such that the maps
vi— [f(x)v(dx) andu — [ g(y,x) p(dy, dx) are continuous for all continuous
functions

It :
f:X R (X
LAY #[07_'_] +1 S b( )7
and a
g >
1z R (2
g - ) #[O,T] +1 € b( )7

respectively. With these topologies both spaces are Polish spa@e®7], where
the Borelo-field on & and.#" are the same as the traaefields, i.e. 2(<Z) =
B(A(Z2)NZ and. ZB(Z) = .7 (A1(X)) N.%". The Sanov result holds for
the measure®" = ©%(q*N) on.2" since the condition (Eqg. (0.3) in f087])

/ explo(#o,r) + 1)]dg = expla + T(e™ — 1)] < o
is satisfied for allv € R. The rate function for the LDP of th@N is the relative

entropy H(|q).
We define the surjection

mx . L — A v ax(v)

to be the projection of a measure on Xsmarginal. Let
o5 :Z2N -z Z— . Z(ﬁ
N - - I N . Z

be the continuous map on the empirical measure and déffnsimilar. We set
2y =8 (xNy e

and.Z5 = {v € & :H(v|q) < oo}. If we denote by

ph:E(dy, dx) := exp

N
Ze(yi,m] Vi < (dy) - 6x(dx) (19)

i=1

the (none-normalized) conditional distribution of the measuf¢® defined in
Eq. (4) for givenX-coordinatesx € XN, we can write

i o(e) = | PYE@) a0
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for a measurable s& c zZN. The measurepgg(G are invariant under permuta-
tions, i.e. for each permutatiorof {1,...,N} we havep);® = =(pN L(X)) Hence,

we can write the conditional distribunon of the measU?@éG defined in Eqg. (6)
for the givenX-marginalpy € .2y as

Pg‘ p(i =0 (pa X(N)) (20)
wherex™) e XN is such that
R x™) = pu.

The mapPa O AN — A(X) is measurable. Therefore we have the represen-
tation

PN.6(a) = /} PY-S(A) Q" (dp)

for A C & measurable. Because of Theorem 2.3 we can prove a LDP of the
measure®)-C by showing, that
I={PNS :py e}

&, PN

is a LDS (see Definition 2.1), i.e. for everyy-sequencey — p € .2 the
measuresIPO’j‘;pGN satisfy a LDP with a good rate function depending only on the
limit p € 2.

For G = 0 we define analogousIP) | := PY:5=0 and P}} := P}.G=0,

corresponding to a “free” model without the interaction given by the Girsanov
exponent G.

4. Asymmetric spin-glass dynamics

4.1. LDP for the asymmetric dynamics

Annealed asymmetric spin-glass dynamics means that we are interested in a LDP
of the distribution of the empirical measure under (see Eq. (4))

Py "%(B) :=/ / 1g(y,X) - exp
XN JyN

i.e. under the average of the dynamic in the case of the completely independent
coupling matrixJ (« = 0). This situation is considerably simple, since for fixed
x € XN the distribution of the fields

N
3G x )] U () g (dx),
i=1

) ey, i=1,...,N,

are i.i.d. centered Gaussian with covariance (compare Eq. (5))

E; (W (x )N (x (s))) = Z X; (1) (s)

j=1
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for s,t € [0, T] — for convenience we add the missing diagonal terms ()
which has no influence on a large deviations scale. The covariance is only a
function of the empirical measure. We define

D,(5.1) = [ X(9x(1) ) (21)

for p € & and denote with /" € .74,(Y) the Gaussian measure &h with
covariance [) (see Proposition 4.4). Because of the independence of the fields
Vi underu(')\fx the none-normalized conditional distributipﬁf;(gX in Eq. (19) has

the simple form 7

PosC(dy, dx) := exp

3G )] (e, @8 @ (e, ©54)).

As in Sect. 3. we denote bR)° := OF (p5°) for x € XN such thato (x) =
pn € 2N. We will prove the following results for the asymmetric spin-glass
dynamics.

Lemma 4.1. The system

= {Pt':}»(s N € ZN}

is a LDS with rate

19(p: 1) = H| 1, ®p)— [Gdv if wx(y? =p
0 00 otherwise

and the
Corollary 4.2. The probability measures)P® € . #(Z) obey a full LDP with
rate

S§0) = HEL 150 )~ [ G = Hilepl6) Fi 2 a).

Before we prove these results we state some properties of G and the map
. An immediate consequence of the definition of G in (3) and the Skorohod
topology ([Bill68], Chapter 3) is:

Remark 4.3.G : Z — R is measurable. G is continuous &t X) € Z wheny is
continuous at the (finite) jumps € [0, T], X(s) # X(s—) of x. G(z) < T for all
z € Z. We have a very crude estimate

IG(y, ) — GY', ¥)Il < 2B(#0o,1(X) + Ty — ¥'[lc (22)

where|y || = SURcp 1 |Y(S)| is the co-norm.
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Because of the discontinuity of G we have to use at some places in the proofs
a approximate version of G, which we define now. For a functioa Y we
define foré > 0 a smoothed version by

1 t
Y= { [ y@ds+(@-1voyo). (23)
(t—8)A0
We define a lower cutoff for the function G as:
1
G(y,x) := > n
sS:X(S)F(s—) 1+ eXp[ZS’y(s—)x(s-)] AL
T
. / exp[23y(s)X(s)] AL . (24)
o 1+exp[2By(s)x(s)] AL
We obtain for & the monotony
T
< L
GG+, .| (25)
and the bound
T > GH(y,x) > — In(1 +L)#o.1(x). (26)

The functions &((-)?,-) =: G5 and G(()°,-) =: Gs are continuous everywhere
and converge point-wise to'GG respectively, fo — 0.

Proposition 4.4. For every measure < .2 there exists a centered Gaussian
measure./,” € .Z6:(Y) with covariance Eq. (21). Ipn = p € 2% in the
stronger topology onZ" then

4 W
Ao =,

in Z61(Y), i.e. weakly, and/,(Zr[0, T]) = 1, i.e. the fields y are/,-a.s. con-
tinuous.

Proof. Because of the definition, Dis a covariance and there exists a centered
Gaussian proces$,t € [0, T] with covariance . Forp € .2

Fo(t) = / #0000 p(dx), t € [0,T]

is a well-defined, nondecreasing, right-continuous functiont an [0, T]. We
calculate:

E(X, — X204 — %)% < /E(X, — X)UE(X — X,
3(Dp(t27 t2) + Dp(t7 t) - 2Dp(t27 t))(Dp(tL tl) + Dp(ta t) - 2Dp(t1> t))

3 / (x(t2) — X())2 p(d¥) / (X(t) — X(t)? p(dx)
3.2 [Fu(ta) — F,(1)] [Fo(t) — Fu(ty)] (27)

IN



Glauber spin-glass dynamics 201

for t, > t > t; and therefore [Bill68], p.133-134, ensures the existence of the
measure/,. Let nowp € .25, i.e. H(p|q) < oo implying p < q. Then

Fo(t) = Fot—) = p({x(t) #x(t-)}) =0,

i.e. F, is continuous, since the distribution of the jumps undeis the same
as under a Poisson process. Thes#) is p a.s. continuous which implies
F,. (t) — F,(t) for all t € [0, T] and sinceF, is continuous and monotone the
convergence is uniform. Calculating as in Eg. (27) shows

/ (X(t2) — X()(x(t) — X(t))? e (@X) < 3+ 2 [y (t2) — Fp (1))

and a slight modification of [Bill68], Theorem 15.6, proves thaf, = Ay
Since

/ (X(tz) — X(t)* p(d) < 322 [F,(tz) — F,(t)]?
[Bill68], Theorem 12.4, shows/,(Zr[0, T]) = 1. O

Remark 4.5.Instead of the usual Skorohod topology, the spaceZg[0, T] can
be equipped with the topology generated by the uniform njpri,. Denote this
topology by.7, and the corresponding Boretfield by 74 := o(.7%,). Because
T C T,

o(7) Co(7%)=7¢.

If pn = p € F is a.dy-sequence the measurek, ./, can be extended to
the o-field 2. This is true for./, since. 4,{Zr[0, T]) = 1 and for./4,, because
for fixed x € XN, O%(x) = pn,

N
61 RY = R0,T], U o(U) = jN Zlum

is continuous for the uniform topology and,, = qS(./*Vl’@N) for .J{ the stan-
dard Gaussian measure on R. This implies ([Bill68], p.150-151), that the ex-
tended measures/,,,./J, converge weakly as Borel measures on the metric
space ¢R[0, T],.7%).

Proof of Lemma 4.1. The advantage in the asymmetric case is that the rate
function I is convex and we can apply a general result due to & for the
proof, which we state as Theorem A.1 in the appendix. Normalizing the measures
Py"® shows that the result can be applied as long as lim  InPg°(2)
converges and this is true as the calculations below will show. In our situation

f]

w:%e%ay%ﬂ

v S @(Z)}

is the set of continuous functions bounded ky# and £ as before. We fix a
(-24) sequencey — p and letx™ € XN be such tha®f (xN)) = py. In order
to show condition (i) and (ii) of Theorem A.1 we will prove ford W:
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;In[Zexp[N/fdu] 0pN(du)

1 N
o LT[ ervtr X+ 8. x0- )

AN()

= [ ( [ ettt 0+ 6. %045 (dy)) on (A4)
X Y
= ( | ety + 6. ut;‘(dy)) p(dx) =: A5(F).
JX Y

We can split this estimate into:

‘/In/exp[f +G]d.J,dp — /In/exp[f +GJ]d. 1, dpn
’/In/exp[f +G]d. 4, dp — /In/exp[f +G]d. 1, dpn

exp[f + G]d. 7, dpn —/In/exp[f +G]d. A, dpn | -

In

Ay =% 0: Because of the definition 0¥V, f| < c(#om + 1). Since
A,(€10,T]) = 1 and Remark 4.3[ exp[f(y,-) + G(y, )] . /,(dy) is a contin-
uous function onX. We have to show that

9,0):= |n/exp[f6'7 )+ G, )] 7p(dy) € W.

ThenAy — 0 asN — oo due to the definition of the topology o®". We will
show the bounds for g defined similar for later use. We get the upper bound

< (¢ +T)#Hom +1).

gPN

We fix some compact séf; C Y such that
» 1
o (Ky) > 5 forall N > N;

and someN;. Compactness ivg[0, T] implies ([Bill68], Theorem 14.3) that

sup|lyllee < L1 < o0,
yeKy

This leads to
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/ explf (v, ) + G, X)] . 15, (dy)

o (#o,1 (X)+1) 1 (Ho,11 (X))
= e / ( ) o (@y)
1+ exp[23]y|[ o] &

g~ C (o, 1 (X)+1) (/ ( 1 ) A (dy)) #om(x)
1+exp[2]y]l]

1
exp [— <Cf —In <2(1 + eXF’[%'—l]))) (#om(x) + 1)]

and therefordg pN| < Ci(#o 1 + 1) for some constart; andN > Nj.

Y

Y

By "“%° 0: Further we approximate

Bv < / g,don| + / 9, don

#Hom>La} #o,11>L2}
+ / g,don — / g, don
#o, 1 <Lz} {#o,m<L2}
= CN

= 20 / Lo, >Loy (o1 + 1)dpn + Cyy.

Since h, := 14, 1,>1,} #o,1+1) € W the first term tends tg h, dp asN — oo
and this can be made small fbg large enough. Define

gl = In/exp[f(y, ) +G(y?, )14, (dy)

for v € {p1,---} U {p}. Then

Cy < / g,dpn — / 95 dpn

o, <L2} {#o,m<L2}
= C}
/g de /gPN de + /gPN de /gPN de .
#o m<La2} {#om <Lz} #o, 1 <L2} {#om<L2}
= CZ2 = C3

First we studyCZ and Cjj. Let K, C Zg[0,T] be a compact set such that
A,(Kz) > 1— €, and denote bK;* the es-ball aroundK; in the uniform metric.
Because of Remark 4.5
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Ikm inf 1, (K3%) > 1,(K;?)
for the measures extended to thdield 4. Then because of Eq. (22)

Cy < exply(la+1)]  sup
XE{#o <L2}

- / explf (. X) + Gy, )] 7, (dy)’

< gt ((L2+1)23 / ly = ¥*llos .45 (KQ))
K,

/ explf (v, X) + Gy, ). 1. (dy)

Fory € K;? there is ay"e K, with |ly — ¥||oc < e3 and therefore

Y~y O < VS~ IO+ 9() — S+ IY*(S) — 59
< 263+ uy(6), (28)

wherewy(6) is the modulus of continuity oy {[Bill68], Eq. (8.1)). Because of
the theorem of Arzél-Ascoli

supwy(96) =09

yeK
for the compact seK, and we are done witlC; and C$ since a appropriate
choice ofK5, e3, 6 will ensure that they are small fod large enough.

C3 remains to be studied. Singg EiN p for everye, there is a compact set
K4 C X such that

pn(Kg) < e
for N large enough. Observe that

7 = {exp[f(,x) + G(()°,X)] : X € Ka} .

is a family of functions orY that is uniformly bounded and uniformly continuous
on compact sets. Therefore the last term
vanishes because of [DeZe93], Theorem D.11.

The functionA® is Gateaux differentiable and therefore (i) and (i) of Theo-
rem A.1l are satisfied.

A slight modification of [Sep93], Lemma 2.19 proves thi&t (v) = | §(p; v)
on Z.

This concludes the proof of Lemma 4.1 because condition (iii) of Theo-
rem A.1 holds as for the standard Sanov result. O

Proof of Corollary 4.2. SlnceP 0,on S is a LDS and QN) satisfies a full LDP with
rate H ¢|q) in view of Theorem 2.3 all that remains is to observe that

Ci < explea(Lz + 1)] | pn(K§) + sup ‘/hd Do — hd./%'
{he.7}
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S§)

1§ (mx (1)) + H (mx () |q)
/X H (x 2y © 6) (mx () (Ax) + H (e ()] ) — / Gdv

H (U‘,/’%;(V) ®q) — /Gdy,

because of Appendix A, Eq. (65).5%) = H(v|exp[G} 5 ) © q) since
exp[Gl 14 w) ® q is a probability measure and [DeSt89], (3.2.14). O

4.2. Minimum of the rat&§

We can draw two immediate conclusions from our large deviations result Corol-
lary 4.2. Since the rate functionSShas compact level sets the set

M:={veZ:S§w)=0}#0

of minima of Sg’ is compact and non-empty. From the form of the ra&{LS =
H (| ) © d) we know how the minima must look like. Since b () =
0 < v = u we get that an element € M must be a solution of the
self-consistent equation

v =exp[Gl o) ® Q. (29)

The process given by Eq. (29) describes a particle jumping in a centered Gaussian
field y with rate c (x(s—)y(s-)) := 1+exp[%x%sf)y(si)], where the covariance of

the Gaussian field is the same as the covariance of therginal of the process.
Since the r.h.s. of Eq. (29) is completely determined byXhearginal ofr we

will look on the self-consistent equation of tikemarginal, i.e.

d )
1n00= [ explay. 1. 1;(dy) (30)

for a measure € .2". We will prove

Lemma 4.6. Equation (30) has exactly one solutigri and therefore Eq. (29)
has a unique solutior* := exp[Gl/,+ ® q.

So far we have nowhere used the fact that we are dealing with stochastic
processes. Of course we have to use this fact to show that Eq. (30) has only one
solution. We will start with a description of exp[G] as a solution of a stochastic
differential equation. The process— #p(x) is a Poisson process under
and M{* := #p y(X) — t, the compensated Poisson process, is a martingale. Let
y € ZR[0, T] be some fixed function and

rr-Rx& —R

be a continuous bounded function. Then the unique solution of the stochastic
differential equation
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t
zx=1- /0 Z2 1 (y(s-), X(s—)) A

is the martingale (see [Pro90], Theorem 36)

t
ze=e| [ry@xea] ] @-re)xE).
0 S<tX(s—)7X(s)
For r(h-,a.)- = lf);‘fggggll we getZ* =: exp[G (Y, x)] and ZF¥ = exp[Gfy, x)] with
the definition of G as in Eq. (3).
For the proof of Lemma 4.6 we will use the same ideas as in [Gui95] and
[BeGu95] for the proof of Theorem 5.5. For some measure .%" we define
the probability measurke, € .%" by

ZIZ x) = / exp[Gly, x)] 7, (dy).

We will use a fixed point argument for the map— L, to show the uniqueness.
Since the measurds, are absolutely continuous with respectaq@ very useful
metric on.%" is the variational distance. We will need the variational distance
with respect to a filtration oz [0, T]. Denote by

F =0 ({x(s):s<t})

the standard filtration generated by the evaluation maps x(s) up to timet.
Then for some measuresy € .Z41(X) the variational distance is

Di(v, 1) = sup{’/f dv — /f du’}, (31)

where the supremum is taken over af measurable functions f bounded by
one. If 4 < g andv <« g then

o= [ [Ea |

whereE, gg 7| denotes the conditional distribution @g given.7. We have

finished the proof of Lemma 4.6, if we show th&t= L« has only one solution,
which is true by Gronwall’'s Lemma when we have shown the following

— du
ﬁ] " {dq

A

Proposition 4.7. There is a constant C such that for alkt T

t
Di(L,,L,) < C/ Ds(v, 1) ds.
0
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Proof. Since exp[G&(y, ‘)] is a martingale

dL,
S [ dq

Z} = [ explaty. 1. 1itay).

If we denote by

Z/(x) = / F (y(5), X(S) explGs(x, y)]. 1, (dly)

then the stochastic integral definition of exp[@Gads to

t
De(L. L) / \ /O (22 (x) — 22 (x)) dMZ| q(dw)

IN

t
/ /0 |22 (x) — 2 (x)| dNZ q(dlx),

whereN{* := #p 11(X) +t is a strictly increasing process. We will first prove the
crucial step

122 (x) = 2L ()| < C1 (o.5(X) + 1 +5) Ds(v, 1.

Denote byW the Hilbert space”,([0, s], \*) where \* is the measure\* :=
dN*+65 and denote by f, g >:= f[o,s[ f(u)g(u) dNJ +f (S)g(s) the inner product
onW. Let./;,, be any measure ow x W such that the first and the second
marginal are centered Gaussian measures with covariance

/ <f.005% Ay (dgr,dga) = / <£.x(()-) >2 (dx)
W xW X

and
/ <f,g2>% A,,(dg1,dgy) :/ <f,x(()-) >* (dx)
W xW X
respectively. Then a telescopic-product argument and
0<r <1, |r(h,o)—r(, 0) <28/h—-h

leads to the inequality

122 () — 20 ()] < 26€ / <lg—gl.1> Ay (dg.dg’)
W xW

< Zﬁes\/(#[o,s[(x) +1+s)) /W

where we have used the Cauchy-Schwarz inequality in the last step. Denote by
mw : Z¢[0,T] — W the maprw(x)(u) := x(u—) for u € [0,s] and by =, ,,

any measure oV x W having marginalsry (v) and myw (1) respectively. Now
take. 1, , to be the centered Gaussian 8hx W having covariance

w lg = g'lI% - Hu(dg,dg),  (32)

X
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/ (<f,g>2+<f' g >?) 4, ,.(dg,dg)

= /(<f7g >2+<f/,g/ >2) Euu(dgadg/)-
(33)

Because
/ lg = g'lI*. 12, (dg, dg’) = / lg = 9'lI* Z,u(dg, dg)
W xW W xW
< A(Hos(x) +1+9)) (/ (lg =gl A1) Z,,.(dg,dg)
W xW

by taking the infimum over all measurés,,, on W x W having the required
marginals, we obtain the estimate

Z2 () - ZL(X)| < 48€ (#os(x) + 1 +8)) dY (mw (v), mw(p))
< 40€ (#os(x) + 1 +8)) DY (mw(v), mw (k). (34)

where dV is the Vaserstein-metric on#Z;(W) and DV the corresponding
variational-metric. The last inequality in (34) is always true since the Vaserstein-
metric is smaller than the Prohorov-metric ([EtKu85], Chapter 3, Eq. (1.1) and
Theorem 1.2). Since for every bounded, measurable funétiomnW, f oy is
bounded and7_-measurable oz [0, T], we have

D" (mw (1), 7w (1)) < Ds(v, 1),

which proves our interim result.
Ds(v, ) is monotone irs and therefore measurable. Since for every measur-
able functionf on [0, T]

t t
[ [ ttosta+ 1458 @ Nz a@) = [ 20+ 1) (5)ds
X JO 0
we have shown Proposition 4.7 by choosing

C :=83e" (2T + 1).

5. Gaussian decoupling

The main difficulty in generalizing the results of Sect. 4.1 is the weak depen-

dence of the Gaussian variables given by the covariance Eg. (5). To clearify the
influence of this weak dependence we study a simple homogenous “toy”-model
in Sect. 5.1. In Sect. 5.2 we will use the idea behind the “toy”-model to prove

a finite dimensional Gaussian decoupling result, which will be the key step for

the proof of the LDP for the symmetric spin-glass dynamics in Sect. 6.
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5.1. A “toy”-model

As an application of Theorem 2.3 we prove a Sanov result for a sequence of
weakly dependent Gaussian variables.

Let Y be some separable Banach-space angebe a centered Gaussian
measure oty N with a covariance of the form

N 1 N
> A@.Z)+ D B@.7)
i=1

ij=1

/ <zy><Zz,y> pV(dy)
YN

N
> Az,Z)+N-B(z,Z)  (35)

i=1

for z,z/ € (Y*)N, the dual space t¥N, andz = § >, z. AandB are some
symmetric bilinearforms olY * x Y *, where necessarilj has to be positive and

B has to be such thaf := A+ B is positive. An example could bB = oA

for « € [—1,1] if a Gaussian measure with covariandeexists onY. The
dependence between the Gaussian variapledistributed according t@N is
getting weaker and weaker &k — oo but the variables “feel” a dependence on
the mean-valuqi ZiN=1Yi =: m(y), which is of the same order for al as can

be seen in the covariance Eq. (35). Denoterbg centered, Gaussian measure
on Y with covarianceA, e.g. the first marginal opN. The mean-value is an
important order-parameter since the conditional distribugidnof pN for given
mean-value m = is the same as the conditional distribution of the Gaussian
measure/®N — corresponding to the distribution of independent variables — for
given m =x. We define the map

éx YN — YN
y — ((a—m@)+x),---, (W —my) +x)).
By Gaussian calculus can be proved, thaip™N) = p) and that indeedy (p) =

ox(v®N). By QN we denote the distribution of the mean-value unpfér Using
Eqg. (35) we evaluate the characteristic function@¥ and find forz ¢ Y* that

/exp lﬁ < z,zi:yi >] p“‘(dy):exp{—z.lN (Az,z) +B(z,2))| .

Hence,{QN }nen is a sequence of centered Gaussian measures with covariance
ﬁC which satisfies a full LDP with rate function

A*(y) == sup {< z,y > 1C(z,z)} , YEY,
zeY* 2
due to Schilder's Theorem ([DeSt89], Theorem 3.4.5).
Let PN := ) (pN) be the law of the empirical measure ungdr and m (1)
be the mean-value of a measuyre= . 721(Y), which is well-defined whenever
Jllyll i(dy) < o< (see App. B). We have the following Sanov result:
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Lemma 5.1. The sequencéPN) of measures obeys a full LDP o#Z.(Y) with
rate function

S () = Inf H (uley = v) + A7(M (1)),

whereey * v is the convolution of with the Dirac-measure aty, i.e. the shift of
v by afixed ye Y .S (u) = oo if m(w) is not defined.

Remark 5.2.I1t can be easily seen that g)(= 0 < u = v and therefore

PN 2% ¢, as in the case of independent Gaussian variables; the effect of the
weak dependence is visible only on an exponential scale. But on a large deviations
scale the influence is fairly strong. If for exam@e:= —A then the rate S4) is

finite only when mf) = 0.

Proof. As shown in Appendix B we see that a Sanov result holds for the measures
ey @®N) on

y = {,,L € (Y)Y : /|\y||1+<S u(dy)}

equipped with the stronger topology such that the map on the mean palie
m () is continuous. We define the continuous map

po— / Ety—m () (dY) = Ex—m (u)) * p

and setP} = &, (O (v*N)). By applying the contraction principle and an
approximation argument can be seen that {PN : x € Y, N € N} is a LDS
on %/ with rate

oy | infyey H(uley xv) if m(p) =x
HOG ) = { 00 otherwise

SincePN(-) = [, P{'(-) Q" (dx) we conclude the proof of Lemma 5.1 by applying
Theorem 2.3. O

5.2. Gaussian decoupling for the spin-glass dynamics

Let X be some Polish space aWd be some finite dimensional Hilbert-space, i.e.
some vector space with an inner prodsct, - >. Assume we have a continuous,
bounded map

T:X =W, X — 7(X) =X, (Il < &,

for some constant. We define for some measupec . #4,(X) the covariance
operator

Dp~w::/fx<fx,w> p(dx)
X
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on W. SinceW is finite dimensional there is a centered Gaussian meadyre
on W having covariance Pand the magp — ./, is continuous. Fox € XN
we define the centered Gaussian meastlre on WN through the covariance

N N
a
DY, (w, w') = ig_l < wi,Dgxy - wi > N igj_l <wi, ™ ><wj,™ > (36)

for w,w’ € WN and a parameter € [—1,1]. This is the analogous construc-
tion as in the fields for the annealed spin-glass dynamics in Eq. (5), with the
slight difference, that for (36) an additional independent Gaussian coupling
i =1---,N appears; an easy argument using Eq. (43) and [DeZe93], Theo-
rem 4.2.13, shows that the LDP is unaltered. We define the mea§yreon
WN 5 XN ~ (W x X)N =:ZN by

pgl,x = Vgl,x @ bx.

Analogous to the definitions in Sect. 3 we g} & := Of(p),) for some

pn = O8(x) andx € XN. We denote byzy = OF(XN), 25 =. 2" 1= 261(X).
Before we state the LDP fd?a'\‘yp we need some additional definitions. We

denote by.7%,(W) the space of linear operators . With the inner product

(A,B) =TrA"B

725(W) is a finite dimensional Hilbert-space. We define
Dw = {y €. M(2): / ||w|1+5y(dw,dx)}

equipped with the stronger topology as in App. B. In this topology the map
C:Z — 7HW)
v — C@):= /w <X, > v(dw, dx) (37)
is well-defined and continuous. €)(is just the mean-value of the measy@),

where
w1 Z — IH(W) z=(w,X)—w <X, >.

Observe that|p(z)? = Y. < w,w >< X, & >2= [lw]|?- |[X|]* < [Jw||*~?
since||7(x)|| < & for all x € X. We will also use the notation
w<w, - >= wdw'

indicating that 2,(W) ~ W®W - the tensor product OV x W. ForA € .7,(W)
we denote byAs ;= ;(A+A*), A2 = ;(Af A*) respectively the symmetric- and
antisymmetric part oA. We define the positive symmetric operator
CuopA = D,-A-D,+aD,-A"-D, (38)
= (1+a)b,-A°-D,+(1—a)D,-A*-D,
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on.7»(W) and define

r,,(A):= sup {(A7 B) — ;(B,Ca,p(B))}. (39)
Be.7(W)

We are now in the position to state the main result of this section

Theorem 5.3. For each(.:Zy )-sequencey = p € A1 (X) the mea\suresC’E?pN
obey a full LDP on.#£,(Z) with good rate function

SN HGl 1, @ )+ 1, (C () i () = p and

ol i) = [ lw]| p(dw,dx) < 0o >
00 otherwise
(40)
where. /,’is the Gaussian measure with covariarigg and. /, ®g p is given by

d(-1, ®s p) 1
. X, w) = ex ,B-x>— B-x,D,-B-x .

d(/l; ®p) ( ’LU) pI<w 2 < P >

Remark 5.4../,®g p can be characterized by the conditional distribution for the

given second coordinate:

("/%'@B Px = ‘//l(lsp,Dp'B'Tx) ® Ox,

where. Jp, b, 8.7 is the Gaussian measure with covariangeddd mean [ -
B - "x.

If a = 0 in Eg. (36) the Gaussian variables distributed according to
z/gfx(dw) are independent. We get analogous to Lemma 4.1, witk G, the
following result, where we have lifted the LDP to the stronger topology as in
App. B.

Lemma 5.5. For every.Zy-sequencey SiN p € 26,(X) the sequence of mea-
sures Fgf oy ON L satisfies a full LDP with rate

HW| 1, ®p) mx@)=p
00 otherwise ’

l(p;u):{

where. /,’is the centered Gaussian measure on W with covaridce

For the remainder of this section we fix a#f)-sequenceoy — p and
xN e XN such thatof(xV) = pn. We set y := D,,. I}, will be the rate
function for the LDP of the order parameter C. DenoteRdy,, := C(P) ) the
distribution of C on.%»(W). Then we get the

Proposition 5.6. Rg{pN has a full LDP on%,(W) with good rate function’y; ,.
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Proof. We evaluate the characteristic functionR}f on-

1 N
/ exp [i N ;(A, wi &N

u(';‘_’XN (dw)

/ expli(A, W)]RY , (dW)
(W)

/ ’\Il Z <A XN w > u(’;',XN(dw)
i p—

1
= eXp |: ZNZDB"N (27 Z):|

and

1 1 -
NZDEQN(Z’Z) N2 ZTI’(A*DNATX'(@TX.)
i

o Ty, T Ty, T
+N32Tr(xi®xa CATXETY A
1)

1
N

= AC., M)

TI’(A#< -Dn -A- DN)+OtTI'(A' Dn -A- DN))

R . is a centered Gaussian measure with covarigice, ,, and therefore we

have a Schilders-type result which can be proved by applying Theorem A1l.

Before we start with the proof of Theorem 5.3, we give a useful representation
for the coupling-matrixJ given by Eq. (1).

Remark 5.7.For everya € [—1, 1] there are constants;, x, € [—1, 1] such that
H12+I€22:l and 2Ky = a, ‘Hl‘ > ‘Hz‘

(For exampler; = kp = 12 will do in the symmetric casex = 1) and the
coupling-matrixJ can be chosen as

IV = BV + gl (41)
where theEll for (i,j) € {1,...,N}? are i.i.d. standard centered Gaussian.

Proof of Theorem 5.3We split the proof in two parts.

Step 1: Assume for the moment that D =,Ds invertible onW. Since Oy — D

in .72,(W) we have thaDy* exists forN > Np and Oy* — D1 in .2,(W).
We define the linear subspatl ¢ WN by

Uy = {w eWN : ﬁ >_ui®™ = CEfw.x") =0}
i
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and denote by, the orthogonal complement 1dy. The projections orJy,
Uy arePy andPy respectively. The spaddy is just

Uy ={weWN:3B e . BW), w=B-%",vi=1...,N}.
For N > Ng we can express the projectiét as
(PN . w)i =wi — C(@l%l (w,XN)) . D'ql . TXiN.

The subspacedy andUy- have the property that the projectioRg and Py of
a Gaussian variable distributed according/gpr are independent. To show this
we set forw € WN, w := Py - w and«i := Py - w. Then we have

DE,XN (w, w)

D <+, Dy - (wi +10) >
VLA DY CREHER SIS (TRE R
i j
= Dg,x"‘ (’LE, @ + DE,XN (ﬁ}? ﬁ)) (42)

Because of this independence we have the following nice representation which
can be proved by Gaussian-calculus:

Lemma 5.8. Let N > Ny and define for Me .75(W)
omzZN — ZN
z — ((wi— (COF@)—M) D' X1, %1), -
-, (wn = (CE{@) = M) -Dy* - X, xn))

Then i . = om(P) ) = om(PY,n) is @ regular conditional probability for
Py . GivenC (OF ,w) =M, i.e.

P = [ Bl RY, (M)
S(W)

We definePjj . := O5(py ,)- Because of Theorem 2.3 and Proposition 5.6

we have completed the proof of Step 1 if we show the
Lemma 5.9. For N > Ny

I = {P(}XN ‘M € .%’Z(W)}
is a LDS onZyy with rate function

H(ul 16 ®s p) if C(v)=M and mx(v) = p

00 otherwise

inf
JM;v) = Be.72(W)
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Proof. We will prove the result on#,(Z) first. Define forM € .72,(W)
(pM,D Zw — -//él(z)

[ s /6(y,(c(y),M).D—1.TX7X) I/(dw,dX).

dn p is continuous sincd x| is bounded. Therefore for fixell, D we have
a LDP for@Mp(Pc’,\"p) due to the contraction principle and Lemma 5.5 with the
rate

IM;v) = inf {H (ul. 4, ® p) : Pu o) = v, (1) = p}
if 7% (v) = p andoo otherwise. We assume thak(v) = p. Since C ¢y p(i)) =M
for all mx (1) = p we have JM;v) = oo for C(v) Z M. If &y p(p) = v and
C(u) = M’ then . = &y p(v) and therefore the infimum is taken over the
measurespg(v) = [ duw—p.~x v(dw,dx) with B € .7%(W). Again [DeSt89],
(3.2.13) shows

H (e )1, ® p) = H(|p—s (1, ® p)).
But pg(. /o ® p) =.Jp ®p-1.8) p and therefore the result holds.

We will show that for each sequendty — M in .2(W) P,\’)l‘N’pN = Oy .Dy

is exponentially approximated k& ,D(Pg’p). To this end we introduce a version

of the Vaserstein-metric

dy(v,v/)? = inf { / ((lw — w2+ d(x,X'Y?) A1) x(dz,dZ) : x € ///} :
WxW

(43)
where the infimum is taken over all measugesn Z x Z having first respectively
second marginals,(x) = v, mo(x) = /. Itis a result due to [Dob70], Theorem 2,
thatd, is a complete metric compatible with the weak topolog)ys some metric
on X. We definezy (v) := (&m p(v), Pmy oy (V) € #21(Z)? and set

I = {u €. M(2): /||w||21/(dw,dx) < L} :
Forv € I we have:
dy(Pm o (), Puy by (1))
< Dgt = DB [ C )~ M3 [ w(d,d

IN

Iyt~ DY 2 (2|MN Hr ||w|2u<dw,dx)) (44)

where we have used that the operator norm is smaller than the nor#b ).
For largeN the last expression in Eq. (44) is uniformly small bnand therefore

. 1
lim Sup In P(’)\pr {v: di(Pm p(v), Pmy Dy (V) > 6}

N—oo
= As

. 1
< lim sup In(Py,, (1) + Py, (1L N Ag)) < —L,

N —oo



216 M. Grunwald

where we have used the notation of App. IB.tends toco asL — oo and
thereforeZy defines an exponential approximation [DeZe93], Theorem 4.2.13
andPfj p has a LDP with the same rate J.

To strengthen the LDP teZy, observe that

N N
D llwi = (€O 2) = Mn) - ™%, %)[> <K (Z o | + 1)
i=1

i=1
for some constariK and then apply App. B. O
Step 2: For the proof of the general case we denote by

Vi={weW:D w=0}"
the subspace on which the restrictibry is invertible and by P the orthogonal

projection onV. We define the mapy : .2£1(Z2) — .Z6,(Z) by

vi— ¢y (v) = / O(p-w,x) ¥(dw, dX).
z

Because of5tep 1and the continuity of the injection: V. — W we have a LDP
for the measureBN:Y := ¢, (PN ). The rate function is actually the same rate

a,pN a,pN

function defined in (40) since
Ayep({V xrH(V)}) =1

Therefore it remains to show thﬂc’;‘_;}{“ is an exponential approximation of

PO’\ipN (see [DeZe93], Definition 4.2.10). We will use again the Vaserstein-metric

d; Eq. (43) and have to show, that

. 1
Jim P (v di gy (1) > 8)) = oo
=TI}

for every$ > 0. However, because of Eq. (43) and using Eq. (41)

N
1
Poon () < Vot ({w ewh:§ D IPrw? > 6})
i=1

N
g No? /wN exp laz (| P aw; ||2] l/g"x(m(dw)

i=1

IN

2 2
N

e N’Egexp |20 ) w3 P ZN:E”X w2l P > El'x
E @) K1 i K2 j
; VN VN

j=1

AN

2

IN

N
1 i}
e NYE; exp 4a§ K3 PL\/N E EVx
: =

g oo ( / exp[dalPLwl] 1, (dw>)N , (45)
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by Cauchy-Schwarz and the fact the¢ > x3. Ptw under./,, are centered,
Gaussian variables with covariancé FDy - P+ = P+ - (Dy — D) - P*. Since the
operator-norm of (R — D) is smaller than the noriDy — D ||, the variational
characterization of the largest eigenvaljg of P+~ - Dy - P+

A =sup{||Pt Dy -PHw| :w e W, ||w|| =1} < ||Dn — D2

implies that\y — 0 for N — co. Because of Eq. (69) and TFRDy - P+ — 0
the integral in the last expression of Eq. (45) converges to 1 fof all0 and
all . This completes the proof. O

6. Symmetric spin-glass dynamics
6.1. “Free”-case

In the proof of the LDP for the asymmetric spin-glass dynamics we were able to
include the interaction given by the Girsanov exponent G due to the independence
of the Gaussian fields. In the symmetric case, or more general in the cases when

E;d100 = 70,

we have to show first a LDP for the underlying measures
N .— N N
Pa _/ PaﬁpQ (dp)7
AN

where forx € XN, p = 6) , € .2\ (see Sect. 3 for the definitions),
PY, =68 (vhx®6) .

In Sect. 6.2 we then get the upper bound in the interacting model via Varadhan’s
Theorem. We split the proof again into first establishing thatR!j'g) define a
LDS and then averaging wit@N.

We need some additional definitions to state the results. Let

)
\/ / yeRds ye %
0

be the usual norm or%, = %45([0,T],\) - A Lebesgue-measure on,[0] -
and we denote the inner-product byy,y’ >:= fOT y(s)y’(s)ds. For a measure
v € Z such that

Iyll2:

/ lyll2(dy, dx) < oo

we define a function ¢ € %5([0,T]?, A ® \) by

C.(s,t) = /y(s)x(t)u(dy, dx). (46)
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We are thinking of &8 € %,([0, T]?, A ® \) as an operator acting o, by

-
(B -y)(s) ::/0 B(s, t)y(t) dt.

£5([0,T]?, A ® )\) is isometric to the Hilbert-space of Hilbert-Schmidt operators
F2(L5) on L, On.735(4,) we have the inner product

T /T
(A,B) ::/ / A(t,s)B(t,s)ds dt

0 Jo
For A € .7(%7) we defineC, ,(A) as in Eq. (38) and’;; ,(A) similar to
Eqg. (39).
Remark 6.1.In the casex = 0, contraction principle, Lemma 4.1 (with & 0)
and App. B show that we have the representation

I5,(Co) =inf{H (u|. 1;’® p) : mx (1) = p,C = C, } (47)

for the rate function governing the LDP of th | =C P/ ).

&, PN
We are now in the position to state our main

Theorem 6.2. For each (.4 )-sequencepy — p € .Z. the measures (EPN
obey a full LDP onZ with good rate function

. . Y : _
Bel/%f(%z)H(u\ Iy @e p)+ 15 (Cu) if mx(u) =pand

La(pi 1) = Jyllu(dy) < oo > (48)
00 otherwise

where./,’is the Gaussian measure with covariariggas in Proposition 4.4 and
the measure/, ®g p is defined by

d(.15, @ p)
d(.15, @ p)

As an immediate corollary we get

(x,y) :=exp <y,B-x>f1

2<B~x,Dp~B~x> .

Corollary 6.3. The sequence of measure§ Bn < has a full LDP with rate
function:
Sa) =, _inf H ] I5) @8 0)+ I 0)(Co). (49)

whereS,, (v) = cc for [ |ly||v(dy) = occ.

Remark 6.4.The measures/;, ) ®g g can be characterized by their conditional
distribution as in Remark 5.4. The effect of the order parameteirCan inter-
acting model (with an “energy” exponent G), is to producexasepending shift

in the Y-marginal. This is the influence of the response function in the symmet-
ric model, as can be seen in [RSZ89], or in [Gru92] for a simple Markov-chain
model. This effect will probably become more transparent in a later work, when
we deal with the interpretation of the raté€ f the interacting model.
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Proof Theorem 6.2.Most of the work has actually been done in Sect. 5. We
have to apply an appropriate approximation scheme to the mea%yyrf%sand
we must have an exponential control over the error we make.

For the proof we fix aZy-sequencey — p € .25 andx™ ¢ XN such
that O ,w = PN -

For some functiory € Zg[0, T] we define a approximate version by

ko pG+1) T T
Kia) -— 2 ; ; —.
ye(s) = T /iTk y(t)dt, for se [| 2k,(| + 1)2k {—. i, (50)
2

for s € [0, T[ and sety®(T) = limgt y¥(s). We define the map
b AZ) —  Ma(2) (51)
v — ()= /(S(yk,x) v(dy, dx).

The approximation scheme we will use is

POl = (PN ) (52)

0, PN a,pN
Using the results of Sect. 5 we get the following LDP result forlﬂf;;éﬁw

Corollary 6.5. The sequence of measureﬁth’ has a full LDP on #Z1(Z) with
good rate function

inf  H(ulok (A, @8 p) + T5(CL) mx(u) = p,
BEBN (%)

Kgoooy .
Lalpin) = Iy l@y) < oo
0o otherwise
(53)
where

TN L2) = {B € . (%) : B(s,t) =B(s,t') fors,8' € I, t,t' € Iy},
(54)
andIK(C ) is defined as in Definition (39) but with the supremum running over

P
T S2) instead of 2( %)

Proof. We have to translate into the notation in Sect. 5. Wet= (Zg[0, T])X

be the #-dimensional space of piecewise constant functions equipped with the
%, inner-product< -, - >. Identify 7(x) := x¥ for every functionx € Z [0, T].

The last changes come from the fact tiiat> y¥ acts as a orthogonal projection

on W in the space”y. O

We will apply the general approach of [Deze93], Chap. 4.2.2, and have to
check

Proposition 6.6. P,';;’;N is an exponentially good approximation og{ll?N.
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Proof. Let dx anddy be the usual Skohorod-metric e, [0, T] and onZg[0, T]
respectively (observe tha (y,y’) < |ly — Y|« is always true). Then we define
as in Eq. (43) the Vaserstein metric

dz(v,v) = inf { / (v (y,y) +dx(x,x")) A 1)x(dz,dz’) : x € .//zw/}
ZxZ

(55)
on .Z41(Z). We have to check that

I 1 . k _
kILmoo“,[,nf:ipN InPY | {v:dz(v,¢")) > 6} | = —0
= /15

for all 6 > 0 ([Deze93], Definition 4.2.14). We define (see Eq. (41))
1 Y 1 N
ZN' E) := ElJ .(N)’ and ZN_ E) := Ejl _(N)’ 56
1,i (E) \/N; % 2 (E) \/N; X (56)
fori,j € {1,...,N}. Then, like in Eq. (45), we obtain
1 N
Pl o (As) < vl ({y eyN: (N ZdY(yiaYik)> AL > 6})
i=1
1 N
< V(’;I’X(N) ({y eyN: N Z 1% _yik”oo ANL> 5})
i=1

N
exp[-Nad] /Y _exp [a > Iy = yEIEA 1} VN xay(@Y)

i=1

N

IN

IN

N
exp[-N as]Eg exp la <n1| Z 1205 (E) — 21 (E)¥|| A 1

i=1

N

+| g Z szl\,li (E) - Z:{\,Ii E))l A 1)1
i=1

N

expl-Nas] ( [ exetzalial Iy = ¥l A 2135 (dy)) )

IN

Because of Remark 4.5 there is a compactkset Zg[0, T] such that
P 1
oK) < expl-2alral],

and because of the weak convergence in|th@..-norm, for everye > 0 there
is a numbemMNy such that

Ao (K)°) < exp[-2alral]
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for N > Np, whereK¢ is thee-ball aroundK in || - ||~. Lets takee := 4a|1m|'
Then

/exp[2o<|m| Ny = V¥l A 2] (dy) < 1+ exp[] sup [y - Al
yeKe

But
k T
sup [ly —y*[| <2+ supwy | , |,
yeKe yeK« 2
and since sup - wy () — 0 for k — oo, we get

lim limsup ! INPY  (As) < —ad+In(l+e)

K— 00 N o0 N @, PN
for arbitrarily largea. O

As a direct consequence of [DeZe93], Theorem 4.29,'Z§pN has a weak
LDP with rate

I o(p;v) := supliminf inf 1¥(p; ), (58)
§>0 k—oo wpeBs(v)
whereBs(v) is the é-ball aroundr. The functioni, is lower semi-continuous
by construction.
We complete the proof of Theorem 5.3 with the next proposition, since lifting
the result toZ is possible becausiégipN ({w;l(pN)}) =1 and the rate function
| . is finite only on the fixed poinp.

Proposition 6.7. iy=l,.1,isa good rate function. The condition

infl , < limsupinflX (59)
F K—oo F

([Deze93], (4.2.18))s satisfied for every closed set & . #41(Z) and therefore

PN, has a full LDP.

Proof. For the proof we will restrict the rate functions | and H to the closed set
{p : mx(p) = p}, since | =oco on the complement, anyway. Observe that because
of App. B C ) is well-defined forv € {u : H,(u[. 1, ® p) < oo} = &y,
where H, is the standard relative entropy H defined to bg(kl. 7, ® q) = co
for mx (1) 7 p-

We will establish some properties of the rate functions. J{#. 4, ® p) = co
then H,(v|.4, ®s p) = oo for all B € .72,(£>) since. 4, ® p and.J, ®g p are
mutually absolutely continuous and

Howl 4 2e ) = Houl1,® p)

—/[<y,B-x>—;<B-x,D-B-x>} v(dy, dx)

= M0 - [@.C0) - HB.Co,®)|. (60
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In addition Eg. (60) and Eq. (39) show that

S0 H 078 0) = )@ ) T0,(C.) (61)

for v € &y ,. ForB € .7(>)
(B,Ca(B)) = (1 +a)(B%, Co,,(B%) + (L — a)(B*, Co,,(B%) < 2- (B, Co,,(B))

and therefore 1
T > T5,(A)

for all a € [-1,1]. Combining Eq. (60) and Eq. (47) leads to
. 1. 1 .
lalpiv) = H (]|, ® p) — ZFO,p(C v) > 2H P15 ® p). (62)

The inequality Eq. (62) is actually valid for all € .#41(Z) and therefore the
level set
P ={la <L} C{H, <2}

is precompact. Similar results hold foﬁ.l 3
We are now going to prove the upper inequality* |, for v € &4 . Since
yK —y in &[0, T] for every continuous functiowy

o) = v for k— oo,

since .4,(Zr[0,T] = 1 (Proposition 4.4) and’ <« ./, ® p. Hence, for all
5 > 0, ¢*(v) € Bs(v) for k large enough. The characterization ([DeZe93],
Lemma. 6.2.13) shows that

H o (okOlok() = HT (),

where ka(~\~) is the relative entropy restricted to thefield .7 ¥ := o(¢k) gen-
erated byp(y, x) := (¥, x). Since 7k ¢ .7 fork <k’ ando (Ugoo-7¥) =
.73(Z) is the Borele-field onZ [Geo85], Proposition 15.6, leads to the monotone
convergence

H (@ ()| ( 1, ® p)) / H p(ul. 4, @ p)

for all measureg € . #41(Z). We define the projectionFon %, by (P¢-y) := yX
and seB¥ := P<. B - P for some operatoB € .7»(%5). With the representation
Eq. (60) for X we get the estimate

(o) < mint 15 (51 60)
< m (RO )~ |B5.C.) - 56 Co,(8)

+IK(C)

= Hl 100 - [B.C)— 5(6.Co,@)] +17,(C)
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for all B € .%5(%>) since the last two expressions in the second line converge
due to the convergenckB — B¥||, — 0 in ./%(%,). SinceB was arbitrary,
taking the infimum proves the inequality.

Lower estimatd , > | ,: To simplify the proof of the lower bound we will
switch to the stronger topology on a subsgt” C .Z4,(Z) (as in App. B) such
that the mapr — C,, is continuous and’; (C,) is lower semi-continuous.
Because of Theorem 5.3 the result is st|II valid. The condition for the lower
bound is only getting stronger.

Since

15 (piv) 2 Hp(l/|¢k( ) Hp(¢>k(V)|¢k( 1o p)),

and thereford ,(p; ») = oo for v such that H |1, ® p) = co, we assume
that H,(v|. 1, ® p) =0 L < oo. I¥(p;v) is finite only whengk(v) = v, i.e.
v(pk(Y x X)) = 1. We therefore have the relatiofy(p; v) > 1 X (p; ¢*(v)) for all
v e . Then

inf  H,(v|74,®8 p) inf H,(v|. 1, ®8 p)
Bea(%) | | ’ {Be(%2):3(B,Co ,(B)<2L} g | g

inf H
LeS p(V|M)a

where
S = {U% ®g p ’B € .7(L) - 2(B,C0,p(|3)) < ZL} caw

S is precompact since K./, ®g p|. 4, ® p) = 3(B, Co,,(B)). BecausepX (v) €
Bs(v) for k > kg we have

cnf 150 €)
Ko oK( 4 K
EEIIQJ(V) [{Be ALk :?Bi:cop(B))<2 L} Ay e 0) +Fa’p(CE)1
k k *,K i
|t @I + Tz = ot 15 i)

Because H(v|u) is lower semi-continuous iny(u) and S is precompact,
! . . . .
I ‘; (p; -) are lower semi-continuous functions converging monotong at

1" (1) /1l v).

We get the lower bound since

I (o supliminf inf 1% (p;
(piv) pliminf inf 1a(p:)

8
. . /
> suplim inf | K (0:6) = 1alpv).
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The last missing step is to establish the condition Eq. (59) for all closedrsets

2t,(Z). From the explicit construction of the compact set for the exponential

tightness of the Sanov result ([DeZe93], Lemma 6.2.6) and the convergence
MA@ A @)

we have a compact s& C .#;(Z) such that

160 2 JHAF WIS @ ) 2 L

forallk=1,2,--- andv ¢ K. In the case limsyp,  inf,cg | ';(p; V) = oo we
do not have to prove anything. We assume therefore that

lim sup inf | K(piv) =k < o0,
ve

k—oo

i.e.inf,cp | ﬁ(p; v) < 2k for k large enough. Since thé,lare good rate functions
the infimum is attained at some point

v € Ko NF, IQL 15 (piv) = L5 (ps o).

We will find a convergent subsequengge = 1y € F NKy,. From the definition
Eq. (58) we get

; ) < . < liminf inf 1¥ (o
Jnf La(pip) < Talpiv) < liminfinf 1, (o 1)

N

liminf 1% (p; 1) < &,
n—oo

which shows the result.

6.2. “Interacting”-case

It is now a simple task to show large deviations results for interacting models,
i.e. models with present Girsanov exponent G, corresponding to the annealed
symmetric spin-glass.

We first prove a full LDP in an approximate situation. Fix soimg 0. Then
we have the

Lemana 6.8. The sequence of probability-measures
PN.C (dv) := expN [ G-dv]PN(dv) on Z defined with the Girsanov exponent
Gt as in Eq. (24) stisfy a full LDP with ratSSL(y) =S,(v) — [G-dv.
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Proof. We will again use the LDS-approach. TLherefore we fix somdg-
sequencey — p € .%5. We have to show tha?o'\ij is a LDS with rate

La(p; ) — /GLd(') =15 (p; ).

The level sets{I & (p;-) < M} are precompact since?l(p;-) > 1a(p;) — T.
Since all measures < { SL(p; ) < M} satisfyy(#7[0, T] x X) = 1 the function
15" (p;) is lower semi-continuous. The function;Gsee Eq. (24) below), is
continuous and bounded by Eq. (26). Since the Theorem 6.2 is valid the
measure?ﬂﬁ? are a LDS with rate 4(p;-) — [ G5d() =: |25(p; ). We will
show: For eactM > 0 and eachk > 0 there is a seBy C &L, 6 > 0 and aNg
such that

InPY (B%) < —M

i 1
imsup, o

N—oo
and|G-— G| < e for § < éo, v € By, andmx (v) = pn for N > Ng or 7x (v) = p.
Let K C Zg[0, T] (Remark 4.5) be a compact set such thgf(K¢) < Je;. We
assume thaK is star-shaped, i.e. for € K, A € [-1,1] Ay € K. Such sets exist
due to Arzeh-Ascoli’'s Theorem. S’ :=K +K = {y +y’ :y,y' € K} and let
K’3s, be the 2; ball aroundK’ in the Skohorod metridy and Ks, be theé;
ball for K in the || - ||co-norm (remembedy (y,Y’) < ||y — Y’ ||). We define

By = {U eZ v ((K/251 X X)C) < 62},

which is a closed set inZ due to the Portmanteau Theorem, and obtain the
estimate (see Eq. (56))

N
1
Pos(Bia) = Vi <{y ev™: N Z Tk sz, e (i) 2 52})

i=1

IN

N
exp[—N aé] / exp laz Z Ik e (Y )] y(’lx(N)(dy)
YN

i=1

IN

N
exp[—Nadz]Ee exp [Olz Z <1K51C(/‘9121,i (B)) + 1k, o (K12 (E)))l

i=1

IA

N
expt-Natd ( [ exp[2a-1e,c00] - h@) (63)
Because of Remark 4.5 we conclude

lim sup Linpn (BG) < —aby +In(er - € + 1),

N —oo N PN

Assuming thatr € By and nx(v) = py We have for allL, (see Eg. (22)) and
Eq. (28)):
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’/(GL — G5)dv

<2n@el) [ om0+ D@

{#om>L2}

+62(Lo +1)In(1+L) + B(Lo + 1) (461 + supwy(é)> .
yeK

Now we are almost done. We have to choose (in this ordgrNo, 62, 61, €1,
K and thendo appropriatly to ensure the existence By, 6o and Ny with the
required properties.
The rest is now fairly standard. LEt C & be a closed set. Then fof > Ng,
6 < b
PNC (F) < NT. PN (BS)+ M. PNC(F N By).

a,pN a,pN

Making use of the inequalityﬁL —e<lI Sg on By we get in the limit:

: 1 .
lim supN PNVGL(F) < max{26 — VeanrEBM I SL(p; v),—M + T}

&, PN
N—o0

IN

max{Ze— inf | S (p;v), —M +T}.

Sincee andM were arbitrary we are done with the upper bound.
G(';(y7x) — Gh(y, x) for all (y,x) and therefore by dominated convergence

/G'gdl/—>/GLdu

asd — 0 for all v € Z. We fix some open sél C Z. For the lower bound
we start with the general inequality
L L
liminf inf 1 5°(p; ) < inf 1S (p;
50 veu < (piv) ey @ (piv)
and complete the proof since

. Gs T | N,G:
— o . < Oz, 8
VIQLI (p;v) Ikmlnf N NPy 5l (U)

N . 1
< max{e+I|NrrL|g10f N In Ps’ﬁ‘L(U);THlSmupN In Pg‘,pN(BM)}.

Mixing the measurei?o'\i’((f;L by QN and Theorem 2.3 proves the lemma. O
Now we come to the most interesting result from a physicist’s point of view,
which for a mathematician is just a

Corollary 6.9. The measure$P}-°) of the annealed symmetric spin-glass dy-
namics obey a full Large Deviation upper bound @hwith good rate function
SS(v) :==Sa(v) — [ Gdw.



Glauber spin-glass dynamics 227

Proof. First we will show that § is a good rate function. Since’s> S, — T
the set
O ={SC <L} C{S,<L+T}

is precompact. We have to show, that is closed. Fix a sequencg, — v,
vn € @. By the Definition of §,, H(mx(vn)|q) < L+ T and Proposition 4.4
shows thatv,(Zr[0, T] x X) = 1 for all n € N. Because of the lower semi-
continuity of S, and [DeZe93], Theorem D.12.

L > liminf S$(vn) > IinminfSa(z/n)+Iinminf(—/Gdz/n) > S, (V) — /Gdy,

which provesy € ¢,. Since we do not have the lower bound, we have to prove
that S > 0. Sinced, is compact, there is a such that $(v) = inf,,c = S(u).
Then— [ Gdr < oo and by dominated convergence

SS@) = lim s ) >0,

since the ﬁL are non-negative.

The measure®-¢ are exponentially tight since the\ are exponentially
tight ([Puk91], Theorem (P)) and & T. Therefore it is enough to prove a weak
upper LD-bound ([DeZe93], Lemma 1.2.18). We fix some compacFsetZ.
Then Eg. (25) shows that fdr > Lg

. 1 T
IlmsupN InPN-S(F) < 1+

N—oo LO N—oo

. 1 T
+I|msup|\I InPN-C(F) < 1

1 GL
+Lo ||r:1fSa .

The only missing step is to show

lim infSS = infSC.
L—oo F F
DefineGt as in Eq. (24) omitting theL-parts in the second term. Theff&iu) =
S.(v) — [ G-dv are lower semi-continuous functions converging monotone to
S¢,
sS /8¢
asL — oo by Fatou’s Lemma. We have the inequality

— for L > Ly.
a = a T4, =0

SinceF is compact we end the proof by

. L G T
lim infS® > lim infS® —
L—oo F L—oo F 1+
T
= infsS®—
F @ 1+Lg

sincelo can be chosen arbitrarily large. O
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A. Some technical results

For the proof of Lemma 4.1 we will use a quite general result due to B3a(
(Theorem 3.4), that we will state for the sake of completeness.

Let W be a real vector space an@ a subset of its algebraic dudf*. We
equipW* with the weak topologyc(W*, W) induced byW and equipZ with
the relative topology. Leti(y) be a sequence of probability measures@nIn
this setting we have the

Theorem A.1 ([DaGa87]). Suppose the following conditions are satisfied:

1. for eachw € W, the limit
. . 1
A(w) = lim Ay(w) = lim In/ expN- < z,w >] un(d2)
N —oo N —oo N z

exists and is finite;
2. A is Gateaux differentiable, i.e. the real function+ A(w + tw’) is differen-
tiable for everyw, w’ € W. Define

A*(y) = sup[<y,w > —A(w)], yeW", (64)
weW

and suppose further that
. {yeWwW*: A*(y) < o0} C Z.

Then the sequencg:y) satisfies a full LDP withA* restricted to Z as rate
function.

We will state a second result that we will need to identify the rate function.

Let Z, X be Polish spaces, : Z — X a measurable map apda measure on
Z. A regular conditional probability distribution (RCPIR) will be a measurable
map u. : X — Z61(Z) with the following properties:

Lo(rH{x}) =1
2. p(B) = [y ix(B) m(1)(dx), B € .2(Z).

Such a RCPDu. exists and isr(u)-almost everywhere unique (see [DeZe93],
Theorem D.3). For this situation the result [DeSt89], Lemma. 4.4.7, holds:

Lemma A.2. Let andv be measures on Z and denotehyandv. the RCPD
of the measures. Thenwse H (14| 1x) IS measurable and

H(|p) = H (w(v)|m(w)) + /X H (v] px) m(v)(dX) (65)

holds.
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B. Sanov result for a stronger topology

In the Sect. 5 and Sect. 6 respectively we need the map C to be well-defined
and continuous. We will therefore outline the arguments for strengthening a
Sanov result to a stronger topology. The argument is adapted for the case of (not
necessarily independent) Gaussian variables on a Banach-space.

Let Z be some separable Banach-space BNda sequence of measures on
A#61(Z) having a full LDP. Let

Z = {y € M,y(2) : / z“‘s} C A(Z) (66)
for some fixedd €]0, 1[ and let

o6 (7Y - f(2)|
c° = {f e ¢ (2): fgzp||z||1+5 A1 < ooy (67)

As in [Léo87] we will equipZ with the weakest topology such that all maps

1/»—>/fd1/
z

for f € £ are continuous. If we want to emphasize the topology we use on
Z, we will denote byZ,,,, Z equipped with the relative topology and with

the stronger topology defined abov&; is a Polish space Ro87]. The Borel
o-field .2 (Zs) on Zy is just the tracer-field induced by. 2 (.721(Z)). Define

the mean-value of a measurec & to be the unique element m)(€ Z such

that

/ <y,z> v(dz)=<y,m() >
z

holds for ally € Z*, the dual space df. On Zs the map mJ) is continuous as
an argument outlined in ([DeZe93], Example 6.2.21) shows. Then we have the

Proposition B.1. If the sequence ® has the properties that
/ exp[a.N/HzHZy(dz)] PN(dv) < kN < o0 (68)
Z

for somea > 0 and that P'(Z) = 1 then the restrictions of the measure P
have a full LDP onZs.

Proof. In the I.I.D.-case this would be (a even weaker) result as @0f7], but
we need the result in a dependent version. Defind_for0 the set

= { e, [ 2 vtd2) < L} ~

I} is closed in_#Z,(Z) because of ([DeZe93], D.12). Chebycheff's inequality
and Eq. (68) show that
PN(I) < exp[-aNL] - &N

This inequality has two consequences.
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1. The lower LD bound ofPN applied to the open seff and PN(Z) = 1
establish the conditions of [DeZe93], Lemma 4.1.5. ThereRjterestricted
to &£, has a full LDP.

2. On I equipped with the relative topology induced byZ:(Z) the maps
v — [f dv are continuous for all £ #® and therefore the topology is the
same as the one induced B¥s. BecausePN has a full LDP we have for
L’ =alL — Ink a compact seK., ¢ Z,, such that:

. 1
lim sup InPN(KS) < —L’

N—oo

ThenCy, := K NI is a compact set inlZs because both topologies coincide
onI, and

lim supl\ll InPN(CS) < -L’

N—oo

holds, i.e. the familyPN is exponentially tight onZs.

An application of the “inverse contraction principle” [DeZe93], Theorem 4.2.4,
shows the proposition. O

C. Hilbert-space variables

Let Y be some separable Hilbert-space ard a centered Gaussian measure on
Y defined by the covariance B .74 (Y) - the space of trace-class operators on
Y.

Proposition C.1. Let A = A\; > )\, - - - be the eigenvalues &f then for alla such
that
20 <6< 1

we have the inequality
/ [ally[IP] 45 < exp[2usaTr D] (69)

with s = "G

Proof. [GiSk74], p. 351, establishes the equation

/ exploly|[?].Jo'= ] | v flzam '

Forz < 6 < 1 we obtain the bound
V12> exp[-usz] & (1—2) > exp[-2usz]

for us = ~ "1~ since expf-z] is convex and therefore

H v _120[)\. <exp [Zuéa Z Ai] = exp[2usTr D.
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