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Abstract
This work considers the two-dimensional Allen–Cahn equation

∂t u = 1

2
�u +m u − u3, u(0, x) = η(x), ∀(t, x) ∈ [0,∞) × R2,

where the initial condition η is a two-dimensional white noise, which lies in the scaling
critical space of initial data to the equation. In a weak coupling scaling, we establish
a Gaussian limit with nontrivial size of fluctuations, thus casting the nonlinearity as
marginally relevant. The result builds on a precise analysis of theWild expansion of the
solution and an understanding of the underlying stochastic and combinatorial structure.
This gives rise to a representation for the limiting variance in terms of Butcher series
associated to the solution of an ordinary differential equation.
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1 Introduction

We consider the two-dimensional Allen–Cahn equation

∂t u = 1

2
�u +m u − u3, u(0, ·) = η(·), t � 0, (1.1)

withm ∈ R and initial condition a spatial white noise η onR2, namely a homogeneous
Gaussian random field with correlation function

E[η(x)η(y)] = δ(x − y), ∀x, y ∈ R2,

where δ is the Dirac delta at zero. Under these assumptions, there exists no solution
theory for (1.1), since the initial condition is scaling critical for the equation. By
this we mean that formally (assuming the solution u exists and setting for simplicity
m = 0), under the re-scaling uδ(t, x) := δu(δ2t, δx), which leaves the initial condition
invariant in law, uδ solves again

∂t u
δ = 1

2
�uδ − (uδ)3. (1.2)

The invariance under this re-scaling indicates that the nonlinearity cannot be treated
perturbatively and so for instance modern theories on singular SPDEs do not apply,
since they work under the assumption that on small scales the equation is governed
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The Allen–Cahn equation with weakly critical random initial datum

by the effect of the Laplacian. From a deterministic perspective, invariance under re-
scaling indicates that the initial condition lies, up to an infinitesimal loss of regularity,
in the critical space of initial data, which in the case of this equation corresponds to the
Hölder–Besov space C−1(Rd). While some equations can be solved deterministically
for all subcritical initial data, (1.1) is locally well-posed only for initial data with
regularity C−α(Rd), for α < 2

3 , and ill-posed otherwise [12].
Obtaining a solution theory to (1.1) is therefore challenging but also of great interest.

Indeed, ifm > 0, then (1.1) is a model for the formation of phase fields, sincemu−u3

corresponds to the gradient of a double-well potential and the solution tends (for
large times) to take the value of one of the two minima of the potential, leading to
the evolution of two competing phases. Here, starting the equation at a generic initial
condition should lead tomany conjectured long-time properties, for instance regarding
the speed of coarsening of sets in the evolution ofmean curvature flow (see [3, 31] from
the physics literature and [25, 28] for some mathematical results and a discussion of
the problem). In this context, space white noise plays the role of a canonical “totally
mixed” initial condition, which gets instantaneously smoothened by the heat flow,
leading to random level sets which then evolve under mean curvature flow.

On the other hand, when m � 0, and if instead of a random initial condition
one chooses an additive space-time white noise, then equation (1.1) is a fundamental
model in stochastic quantisation. In this case the invariant measure of the equation is a
celebrated model in quantum field theory, and a recent proof of triviality in the critical
dimension d = 4 has been a breakthrough in the mathematical understanding of such
measure [1]. At the same time, there is no result for the dynamics of the equation in
d = 4.

Wewill study (1.1) in aweak coupling regime. Namely, for ε ∈ (0, 1
2 )

1 and pt (x) =
1

2π t exp
(
−|x |2

2t

)
, we study the limiting behaviour of the solution Uε to

∂tUε = 1

2
�Uε +mUε − 1

log 1
ε

U3
ε, Uε(0, ·) = λ̂ pε2�η(·), (1.3)

where � denotes spatial convolution. The parameter λ̂ > 0 will be referred to as the
coupling constant. By scaling, (1.3) is equivalent to the problem

∂t uε = 1

2
�uε +m uε − u3ε, uε(0, ·) = ηε(·) := λ̂√

log 1
ε

pε2�η(·), (1.4)

and the solutions to (1.3) and (1.4) are related via Uε(t, x) =
√
log 1

ε
uε(t, x). We will

also use the notation λ2ε := λ̂2
(
log 1

ε

)−1. We remark that even though the nonlinearity
is attenuated to zero, it still has a non-trivial effect in the limit. To make this point
more precise let us, first, state our main result:

1 The choice ε < 1/2 is arbitrary to avoid issues with the blow-up at ε = 1 of the logarithm.
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Theorem 1.1 There exists a λ̂fin ∈ (0,∞) such that if m ∈ R and T , λ̂ ∈ (0,∞)

satisfy

m T � log (λ̂fin/λ̂), with m = max{m , 0}, (1.5)

and if σ
λ̂
:= σ(λ̂2) := (1+ 3

π
λ̂2)− 1

2 , where ζ �→ σ(ζ ) is the solution to

d

dζ
σ = − 3

2π
σ 3 with σ(0) = 1, (1.6)

then we have:

lim
ε→0

E

[∣∣Uε(t, x) − λ̂ σ
λ̂
emt pt�η(x)

∣∣2] = 0, ∀(t, x) ∈ (0, T ] × R2.

Our result shows that the non-linearity ismarginally2 relevant as it affects the size of
the limitingfluctuations λ̂ σ

λ̂
, which are strictlyweaker than the fluctuations of the limit

when simply dropping the non-linearity in (1.3) (the solution to this linear problem
reads as λ̂emt pt�η(x)). The latter describes the limiting fluctuations of a sub-critical
scaling of the initial condition, considered in the previous work by Hairer–Lê–Rosati
[25], which studied the long-time behaviour of (1.4). Let us note that our requirement
λ < λ̂fin < ∞ emerges as a technical constraint and we do not expect any actual phase
transition. The restriction comes from the necessity to control certain series expansions
(see in particular Propositions 3.1 and 3.4 as well as Remark 3.2). We conjecture that
the result should extend to all λ̂, t > 0. In particular, the extension to arbitrary large
times, for λ̂ small enough, should be a consequence of Theorem 1.1: For an arbitrarily
small time t0 > 0 the solution Uε(t0, ·) converges to a smooth function. From time t0
onwards, the non–linearity in (1.3) should have no more effect, due to the vanishing
coupling constant, and the dynamics will be governed by the linearised equation of
(1.3). This would be especially interesting in relation to the study of the metastable
behaviour of the Allen–Cahn equation (with m > 0) at large scales. However, this is
beyond the scope of this paper and will be studied separately.

The understanding of stochastic PDEs (and related statistical mechanics models) at
the critical dimension is only now starting to take shape. The only studied examples, so
far, are two-dimensional stochastic heat equations (SHE) with multiplicative space-
time white noise, the two-dimensional isotropic and anisotropic KPZ equation and
the two-dimensional Burgers equation. For the linear SHE, a weak coupling regime
was noted by Bertini–Cancrini [2] and explored by Caravenna–Sun–Zygouras [13].
Here the coupling constant which appears in the weak scaling plays a crucial role
as a phase transition takes place at a precisely defined, critical value. Below this
value, Gaussian fluctuations, similar in spirit to Theorem 1.1 emerge [13], while a
limiting field, which is not Gaussian or an exponential of Gaussian, emerges at the
critical value [15, 16]. A similar phase transition takes place for the two-dimensional
isotropic KPZ equation [7, 14, 20] but, so far, only Gaussian fluctuations below the

2 “marginally” refers to the fact that the nonlinearity has neither a dominant nor a negligible effect as seen
via the renormalisation scaling uδ(t, x) = δu(δ2t, δx) and the invariance in (1.2).
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critical coupling value have been established [14, 20]. This result has been obtained via
the use of the Cole-Hopf transformation, which relates the solution of the linear SHE
to that of the KPZ equation. For the two-dimensional anisotropic KPZ and Burgers
equation, the weak coupling limit has been studied in [8–10] andGaussian fluctuations
have been established, building crucially on the explicit Gaussian invariant measure
available for that equation. We note that no phase transition takes place in this setting.
Moreover, Dunlap–Gu [17] andDunlap–Graham [18] have proposed another approach
to weak coupling limits of the (nonlinear) stochastic heat equations through the study
of forwards-backwards SDEs, while the linear SHE on a critical hierarchical lattice
has been explored by Clark [11]. Finally, non-linear PDEs with random initial data
have also been studied in the context of dispersive equations, see for example [4, 19,
32] and references therein.

Our approach in this work attempts to make a first step towards analysing singular
SPDEs at the critical dimension via a systematic study of its Wild expansion, i.e.
an expansion of the solution (in the spirit of a Picard iteration) in terms of iterated
space-time stochastic integrals that are indexed by trees and live in certain Wiener
chaoses. An approach of this sort has been successful in the study of subcritical SPDEs
via the theory of regularity structures [23], thanks to the fact that one can restrict
attention to a finite number of terms in the expansion, before exploiting sophisticated
analytic solution theories. On the contrary, at the critical case all terms in the expansion
contribute and their contribution needs to be accounted for.

In the case of (1.3) and (1.4), analysing the terms in theWild expansion, we discover
that the main contribution comes from certain projections of the Wild terms on the
first Wiener chaos, see Proposition 3.3. Hence, the Gaussian limiting behaviour. An
interesting structure emerges that clarifies the role of the ODE (1.6) as determining the
limiting order of the fluctuations of the Gaussian field. Roughly speaking, the terms
in the Wild expansion, which have the dominant contribution, appear in the limit
as a Gaussian variable, multiplied by an iterated integral in time variables indexed
by another tree structure. The new iterated integrals are recognised as terms in the
celebrated Butcher series (or B-series) expansion of the ODE (1.6). Our approach has
both an analytical and a combinatorial component. On the analytical side, we take
advantage of the contractive properties of (1.4) to control the error of the truncated
Wild series (see Proposition 3.1 and Remark 3.2). This analysis is inspired by the study
of finite Wild expansions performed in [25]. However, in order to treat a diverging
number of terms, it requires a new and deeper understanding of the interplay between
the graphical properties of the trees, that index terms in the expansion, and their
analytic contribution. Thus, we introduce a combinatorial component to perform a
detailed analysis of Wiener chaos decompositions in terms of graph theoretical trees.
Here we find that specific cycles appearing in contracted trees (dubbed v-cycles) play
a fundamental rôle, and interesting links to permutation cycles and their statistics
appear: see Sects. 4 and 5.

Let us next highlight a curious link of our main result to a mean-field equation
of McKean-Vlasov type. More precisely, the limiting fluctuations of (1.3) appear to
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agree with the limiting fluctuations of the McKean-Vlasov equation

∂tVε = 1

2
�Vε +mVε − 3

log 1
ε

E

[
V2

ε

]
· Vε, Vε(0, ·) = λ̂ pε2�η(·). (1.7)

In particular, we have that

Proposition 1.2 For any λ̂ > 0 there exists a unique solution Vε to (1.7), in the sense
of Definition 6.1, which satisfies:

lim
ε→0

E

[
|Vε(t, x) − λ̂ σ

λ̂
emt pt�η(x)|2

]
= 0, ∀(t, x) ∈ (0,∞) × R2,

with σ
λ̂
as in (1.6).

An emergence of an equation like (1.7) might appear plausible if one considers an
ansatz where the leading order terms of the solution to (1.3) is Gaussian. In such a
setting and if Uε is Gaussian, then the projection on the first homogeneous Wiener
chaos ofU3

ε is given by3E[U2
ε]Uε, which agreeswith the nonlinearity in (1.7).However,

Uε, itself is far from Gaussian and it is also far from obvious, a priori, that its limit
(1.3) is Gaussian. A deeper understanding of the relations between (1.3) and (1.7) is
desirable.

Remark 1.3 We close the introduction by observing that our results should hold also
in any dimension d � 3 (and m = 0 for simplicity). In this case, the white noise
η switches from being critical to super-critical, and we could have considered initial

data of the form uε(0, x) = ε
d
2−1 pε2�η(x). Then, the super-critical equivalent of

Theorem 1.1 should read

lim
ε→0

E

[∣∣ε− d
2+1uε(t, x) − λ̂ σ

λ̂
(d) pt�η(x)

∣∣2] = 0, ∀(t, x) ∈ (0,∞) × Rd ,

with

σ
λ̂
(d) :=

(
1+ ( d

2 − 1
)−1 6λ̂2

(4π)d/2

)− 1
2

,

for all λ̂ > 0 small enough. The statement should follow almost verbatim from our
arguments.

Outline of the paper

The remainder of the paper is structured as follows. In Sect. 2 we give an introduction
to rooted trees and their use in the analysis of ODEs and SPDEs. In Sect. 3, we present
the main steps of the proof of Theorem 1.1 while assuming the paper’s key ingredient,
Proposition 3.3. Section 4 introduces notation and estimates required, before we pro-
vide a proof of Proposition 3.3 in Sect. 5. In Sect. 6 we prove Proposition 1.2. Finally,
we establish some technical results in the Appendix.
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Notation

Let N = {0, 1, 2, . . .}. We denote with Pt = exp
( t
2�

)
the heat semigroup on R2:

Ptϕ(x) = pt�ϕ(x), pt (x) = 1

2π t
exp

(
−|x |2

2t

)
1[0,∞)(t), ∀(t, x) ∈ R× R2,

where � denotes spatial convolution. Similarly, we define the heat semigroup with
mass m ∈ R by P(m)

t = em t Pt and associated kernel p(m)
t (x) = em t pt (x). Here we

allow the semigroup to be defined for any Schwartz distribution ϕ on R2: if such ϕ is
not locally integrable the integral should be interpreted in the usual generalised sense.
We will abuse notation and sometimes write singletons of the form {a} simply as a.
Thus, A \ a := A \ {a}, for some set A.

2 Trees, wild expansion and Butcher series

The linchpin of our argument is a precise control on theWild expansion of the solution
uε to the equation (1.4). Wild expansions were popularised in the context of stochastic
PDEs by Hairer’s seminal work [22], and are originally attributed to the work of Wild
[35]. A Wild expansion is an expansion of a solution to a parabolic PDE or an ODE
in terms of iterated integrals. The terms in such an expansion are naturally indexed by
rooted trees, which in our setting are associated—similarly to Feynman diagrams—to
integrals involving the heat kernel and the correlation function of the noise ηε. Wild
expansions are also naturally linked to Butcher series’—see for example [21] and
the many references therein—which allow for a tidy bookkeeping of the coefficients
appearing in the Wild expansion of a solution to an ODE. This section is devoted to
establish all such connections rigorously, and in a manner that will be useful to our
analysis.

2.1 Finite rooted trees

We start by introducing basic concepts concerning trees. We will work with finite,
rooted trees. A tree τ is a connected, undirected planar graph that contains no cycle.
We denote by V(τ ) the set of vertices of a tree τ and by E(τ ) the set of its edges. A
finite rooted tree is a tree with a finite number of vertices, and one particular vertex
o ∈ V(τ ) singled out as the root. Rooted trees induce a partial order on the set of
vertices V(τ ), by writing v ≺ w if the unique path from w to the root o passes through
v, for any pair v,w ∈ V(τ ) with v �= w. In particular, if v ≺ w we say that w is a
descendant of v or that v is an ancestor of w, and we say that v is a leaf if it has no
descendants. The closest ancestor v ∈ V(τ ) of w ∈ V(τ ) \ o is called parent of w, we
write p(w) = v. The set of leaves of a tree τ will be denoted by L(τ ) and we define
�(τ) := |L(τ )| the total number of leaves in a tree. The collection of vertices of a tree
which are not leaves will be called inner vertices, it will be denoted by I(τ ) and its
cardinality is defined to be i(τ ). An exception to this convention will be made when
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the root is the only vertex of the tree, in which case it will be considered as a leaf and
thus not an inner vertex. The cardinality of all the vertices of a tree τ will be denoted
by |τ | and we have that |τ | = �(τ) + i(τ ). Finally, we call the degree of a vertex the
number of incident edges.

As a convention, we draw trees (from now on always finite and rooted) growing
upwards, out of the root of the tree, which is placed at its bottom. For example, the
following are trees with inner vertices coloured white (and circled red) and leaves
coloured black:

1 , , , , , , , . (2.1)

Here 1 is the empty tree, which is different from the single root . Next, we will be
working with unordered trees, which means, for example, that the three trees below
will be considered to be identical:

.

We will denote by T the set of all finite, unordered, rooted trees. By convention T
contains also the empty tree 1.

In our setting, large trees arise naturally from smaller ones by combining them, as
we will now explain. Suppose that τ1, ..., τn ∈ T are given. Then we define the grafted
tree τ = [τ1 · · · τn] which is built by connecting the roots of the trees τ1, ..., τn ∈ T,
by means of new edges, to a new common vertex, which acts as the root of the new
tree τ . The following graphical representation is perhaps the best explanation of this
construction:

[τ1 · · · τn] =
τ1 τ2 · · · τn

.
(2.2)

Here are some examples of graftings of trees:

[ 1 ] = , [ ] = , [ ] = or [ ] = .

We observe that the empty tree 1 can be ignored in a grafting (unless it is the only tree):
[1 τ1 · · · τn] = [τ1 · · · τn]. Next, one obtains the space of finite, unordered rooted trees
from the space of finite rooted trees by quotienting through the equivalence relation
that identifies

[τ1 · · · τn] ≡ [τσ(1) · · · τσ(n)]

for every σ ∈ Sn (the group of permutations on n indices) and any choice of n ∈ N
and trees τ1, . . . , τn and the same for any subtree of a given tree.

123



The Allen–Cahn equation with weakly critical random initial datum

In particular, due to the cubic nonlinearity that characterises the Allen–Cahn equa-
tion, we will be dealing with sub-ternary trees:

T�3 := {τ ∈ T : any inner vertex in τ has at most 3 descendants} ,

and its subset T3 of ternary trees:

T3 := {τ ∈ T \ {1} : any inner vertex in τ has exactly 3 descendants} .

For example, T�3 contains all the trees appearing in (2.1), and the second, third and
fourth trees in (2.1) additionally lie in T3.Weworkwith the conventions that the empty
tree belongs to T and T�3, but not T3 and that the “single vertex” tree τ = belongs
to T3 (here by convention the root counts as a leaf and not as an inner vertex). Note
that the last tree in (2.1) is not ternary, as its root has degree one.

It will be convenient to introduce some terminology for subtrees of sub-ternary
trees. We will call the tree a trident, a cherry and a lollipop. Further,
when these trees are embedded into larger trees, we will call the root vertices of these
components (marked in red white here) respectively the basis of the trident, basis
of the cherry or basis of the lollipop. Finally, we note that for ternary trees τ ∈ T3,
the number of leaves �(τ) and the number of inner vertices i(τ ) satisfy the relation
�(τ) = 2i(τ ) + 1.

We close this subsection by introducing several important quantities:

1. Symmetry factors. For any τ ∈ T we write s(τ ) ∈ N for the symmetry factor
associated to the tree. This amounts to the cardinality of the symmetry group
associated with τ . More precisely, if we assign a label to each vertex of the tree
τ , then s(τ ) is the number of permutations of the labels that leave the structure
of rooted unordered tree invariant. It is given by the following recursive formula.
First, set s( ) = s(1) = 1. Then, if τ is of the form τ = [(τ1)k1 · · · (τn)kn ] for
pairwise distinct τi ’s, each one appearing ki times andwith τi �= 1, for i = 1, ..., n,
then

s(τ ) =
n∏

i=1

ki ! s(τi )ki . (2.3)

Since any rooted tree can be constructed by grafting together strictly smaller trees,
the above defines the symmetry factor for all rooted trees.

2. Tree factorials. Similarly we define the tree factorial τ ! ∈ N for any τ ∈ T. For
the empty tree 1 we define 1! = 1 and, iteratively, for a tree τ = [τ1 · · · τn] we
define τ ! by

τ ! = |τ | τ1! · · · τn ! ,

where |τ | = 1 + |τ1| + · · · |τn| is the total number of vertices of the tree τ . We
observe that the tree factorial of a linear tree over n vertices (that is, the tree over
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n vertices in which every inner vertex has exactly one descendant), is equal to n!.
Thus, the notion of tree factorial generalises the usual notion of factorial.

3. Tree differentials. For an analytic function h : R → R, we define recursively
its tree differential (sometimes called elementary differential) h(τ ) : R → R as
follows: For all y ∈ R, we define h(1)(y) = y for the empty tree 1 and we set
h( )(y) = h(y) for the single vertex tree . Then, for an arbitrary tree τ ∈ T \ {1, }
such that τ = [τ1 · · · τn], τi �= 1, we define inductively

h(τ )(y) = h(n)(y)
n∏
j=1

h(τ j )(y), for all y ∈ R, (2.4)

where h(n) is the usual nth derivative of h.

2.2 Butcher series

In this sectionwewill review how trees are used to index series expansions of solutions
to ordinary differential equations. In particular, the kind of expansion that we are
interested in goes under the name of Butcher series (or B-series for short) [5, 26]. As
we have already mentioned, the structure of such series expansions in combination
with the structure of our Wild expansion plays an important role in our analysis.
In particular, this structure lies behind the identification of the limiting fluctuation
strength σ

λ̂
in Theorem 1.1. To start our brief discussion on Butcher series, consider

an analytic function h : R → R and the differential equation

dy

dζ
= h(y) , ∀ζ > 0 and y(0) = y0 ∈ R .

Then the solution y(ζ ) can be expressed, locally around ζ = 0, through the following
series:

y(ζ ) =
∑
τ∈T

h(τ )(y0)

τ ! s(τ )
ζ |τ | =: Bh(ζ, y0) , ∀ζ ∈ [0, ζ�) , (2.5)

where ζ� > 0 depends on h and y0. The sum runs over all rooted, unordered trees
(including the empty tree 1) and s(τ ), τ ! and h(τ ) have been defined in Sect. 2.1 above.
For details on this derivation we refer to [5, 6, 26], see also [21, Theorem 5.1]. In any
case, at the heart of (2.5) lies the identity (see for example [6, Theorem 311C])

y(n)(0)

n! =
∑
τ∈T|τ |=n

h(τ )(y0)

τ ! s(τ )
, (2.6)

which allows to express the solution of the ODE in terms of the Butcher series, when-
ever its Taylor series centered at zero converges absolutely. In this work, the following
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ODEs are of particular relevance:

{
ẏ = −y3

y(0) = 1
and

{
ẏ = y3

y(0) = 1
, (2.7)

both of which admit explicit solutions y(ζ ) = (1+2ζ )−1/2 and y(ζ ) = (1−2ζ )−1/2,
respectively. Observe that both solutions are real analytic at 0 with radius of conver-
gence 1

2 , so that (2.5) holds with ζ� = 1
2 . Strikingly y explodes at ζ = 1/2, whereas y

is defined for all times. Our approach to treating the coefficients of the Butcher series
does not allow to distinguish the behaviour of the solution y from that of y and leads
ultimately to one of the requirements in Theorem 1.1 for the coupling constant λ̂ to be
sufficiently small. Overcoming this issue would require to take into account the sign
of the terms in the Butcher series (or avoid the series entirely), and this lies beyond
the reach of our current proofs.

2.3 Wild expansion

In this subsection we establish some basic properties concerning the Wild expansion
of the solution uε to (1.4). By convolving with the heat kernel, we can explain the
heuristics that lead formally to the derivation of the Wild expansion to (1.4). We write
the solution of equation (1.4) in its mild formulation

uε(t, x) = P(m)
t ηε(x) −

∫ t

0

(
P(m)
t−s u

3
ε(s, ·)

)
(x) ds

=
∫

R2
p(m)
t (x − y)ηε(y) dy −

∫ t

0

∫

R2
p(m)
t−s (x − y)u3ε(s, y) ds dy

=
∫ t

0

∫

R2
p(m)
t−s (x − y)ηε(y)δ0(s) ds dy−

∫ t

0

∫

R2
p(m)
t−s (x−y)u3ε(s, y) ds dy,

(2.8)

where in the last line we rewrote the first integral using a delta function at time s = 0.
We now introduce our first diagrammatic notation:

ε (t, x) :=
∫ t

0

∫

R2
p(m)
t−s (x − y) δ0(s) ηε(y) ds dy = P(m)

t ηε(x), (2.9)

with the right-hand side interpreted in the Itô sense. Here we associate to the lollipop
a random function in the following way. We assign the time-space variable (t, x) to
the root, the time-space variable (s, y) as well as the weight δ0(s) ηε(y) to the leaf and
the kernel p(m)

t−s (x− y) to the connecting edge. Finally, we integrate over the variables
associated to all vertices except the root. In other words, the edge represents a time-
space convolution between the heat kernel and the weight of the leaf, evaluated at the
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time-space variables assigned to the root. Therefore, we can rewrite (2.8) as follows:

uε(t, x) = ε (t, x) −
∫ t

0

(
P(m)
t−s u

3
ε(s, ·)

)
(x) ds. (2.10)

Writing explicitly the arguments of the functions appearing in (2.10) can be cumber-
some, so to shorten the notation we will equivalently write

uε = ε − P(m) ∗ u3ε ,

where P(m)∗ϕ = ∫
R×R2 p

(m)
t−s (x−y)ϕs(y) dy ds denotes space-time convolutionwith

the kernel p(m). Now, we can iterate this description of uε by inserting the identity for
uε in (2.10) into the right-hand side of the expression itself:

uε = ε − P(m) ∗
(

ε − P(m) ∗ u3ε
)3

. (2.11)

Expanding the cube on the right-hand side above, we find the expression

uε = ε − P(m) ∗ 3
ε + 3P(m) ∗

( 2
ε · P(m) ∗ u3ε

)

−3P(m) ∗
(

ε ·
(
P(m) ∗ u3ε

)2)+ P(m) ∗
(
P(m) ∗ u3ε

)3
. (2.12)

In order to motivate the representations we are after, let us just focus on the second
term of the above expression. We use the following representation of the cubic power

ε (t, x) :=
(

ε (t, x)
)3

,

where we have glued together three lollipops at a common root, thus forming a trident
whose basis is associated to time-space coordinates (t, x). We then introduce the
planted trident:

ε (t, x) :=
∫ t

0
P(m)
t−s1

(
ε (s1, ·)

)3
(x) ds1

=
∫ t

0

(
P(m)
t−s1 ε (s1, ·)

)
(x) ds1 = P(m) ∗ ε(t, x) ,

which allows us to rewrite (2.12) in terms of

uε = ε − ε + 3P(m) ∗
( 2

ε · P(m) ∗ u3ε
)

−3P(m) ∗
(

ε ·
(
P(m) ∗ u3ε

)2)+ P(m) ∗
(
P(m) ∗ u3ε

)3
. (2.13)
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We observe that, crucially, the first two terms are rather explicit: they live in a finite
inhomogeneousWiener chaos andwe are able to control themwith tools from stochas-
tic analysis. Of course, we can continue this expansion at will and iterating the
procedure above we obtain formally an expression for uε that we call Wild expansion.
The elements of this expansion are given in the next definition.

Definition 2.1 To any tree τ ∈ T3 and ε ∈ (0, 1
2 ) we associate a random function

(t, x) �→ X τ
ε (t, x) for (t, x) ∈ (0,∞) × R2 as follows. For τ = we set

Xε (t, x) := P(m)
t ηε(x) .

Then, iteratively, assuming we have defined X τ1
ε , X τ2

ε , X τ3
ε for trees τ1, τ2, τ3 ∈ T3,

we define X τ
ε for the tree τ = [τ1 τ2 τ3] ∈ T3 as

X τ
ε (t, x) := −a(τ )P(m) ∗ ( X τ1

ε X τ2
ε X τ3

ε

)
,

where a(τ ) is the combinatorial factor

a(τ ) =

⎧⎪⎨
⎪⎩

1 , if τ1 = τ2 = τ3 ,

3 , if exactly two of the trees τ1, τ2, τ3coincide ,

6 , if all trees τ1, τ2, τ3 are distinct ,

(2.14)

which appears becausewe are considering unordered trees. TheWild expansion associ-
ated to the Allen–Cahn equation (1.4) is then defined as the (formal) series

∑
τ∈T3 X

τ
ε .

Now we will connect the terms X τ
ε from Definition 2.1 to explicit stochastic inte-

grals. Thiswill follow in two steps: first we generalize the diagrammatic representation
that we have started to introduce in (2.13). Then we show (see Lemma 2.4 below) how
an iterated stochastic integral relates, up to an appropriate combinatorial factor, to the
associated element of the Wild expansion.

To this end, for any tree τ ∈ T3 with vertices V(τ ), partitioned into leaves L(τ ),
inner verticesI(τ ), and edgesE(τ ), we associate the (inhomogeneous)Wiener integral

[τ ]ε(t, x) =
∫

DV(τ )
t

∏
u∈V(τ )

p(m)
sp(u)−su (yp(u) − yu) dsI(τ ) dyI(τ )

∏
v∈L(τ )

δ0( dsv)ηε( dyv),

(2.15)

where [τ ] denotes the planted version of τ , cf. (2.2). Here

Dt := [0, t] × R2 (2.16)

and DV(τ )
t is the Cartesian product of Dt over the index set V(τ ). Moreover, we recall

that p(u) denotes the unique parent of u with p(oτ ) = o[τ ] the vertex associated
to the time-space point (t, x), and o[τ ] being the root of the planted tree [τ ]. The
integral (2.15) does not neglect integration over any diagonals, hence, it lies in an
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inhomogeneousWiener chaos, see also (4.6) below. Note that in the integral (2.15) we
are not integrating over the root variable of the tree [τ ] (which is assigned to the point
(t, x)), but integrate instead over all other vertices of [τ ], i.e. all vertices of τ . Further,
observe that with this definition, by construction, if [τ ] = [[τ1] [τ2] [τ3]], then

[τ ]ε = P(m) ∗ ([τ1]ε[τ2]ε[τ3]ε). (2.17)

Next, we remark that in general, a term X τ
ε of the Wild expansion is related to the

Wiener integral represented by the associated planted tree [τ ]ε via a combinatorial
factor cτ ∈ N as X τ

ε = cτ · [τ ]ε. With the formulation above we have for example:

Xε = − ε, Xε = 3 ε.

The factors cτ appear because we are considering unordered trees (and ultimately
because of the commutative property of the product). It will be important to obtain
a precise expression for cτ , and this is the objective of the remainder of this section.
Our eventual expression for cτ contains tree derivatives with respect to a “trimmed”
version of τ . Therefore, we start by introducing a “trimming” operator on trees.

Definition 2.2 We call the map

T : T3 → T�3, T (τ ) = τ , (2.18)

the trimming operator, where T (τ ) is the tree that is spanned by the inner vertices of
τ , i.e. T “cuts off” all the leaves and the edges attached to them.

To lighten later notation,wehave also used the chromatic notation bywhich τ = T (τ ),
for example

= T ( ) = 1 , T
( ) = , and T

( )
= .

The reader should have the following pictorial description of T in mind

�→ �→ , (2.19)

where we again coloured leaves black in the last expression according to the chosen
convention. A first result regarding the trimming operation guarantees that it is a
bijection between finite families of ternary and sub-ternary trees of the following
form, for arbitrary N ∈ N

TN3 = {τ ∈ T3 : i(τ ) � N } ⊆ T3 ,

TN�3 = {τ ∈ T�3 : |τ | � N } ⊆ T�3 .
(2.20)

The next lemma summarises this and other properties of T .
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Lemma 2.3 The following hold.

(i) The map T is a bijection from TN3 to TN�3, for every N ∈ N.
(ii) Let τ ∈ T3 \ { } and τ1, τ2, τ3 ∈ T3 such that τ = [τ1 τ2 τ3], then

τ = [τ1 τ2 τ3] .

In other words, trimming via T and grafting via [. . .] commute.
Proof By definition of TN3 , its image under T is a subset of TN�3. On the other hand,

for any τ ∈ TN�3 we can construct a σ ∈ TN3 such that T (σ ) = τ as follows. To each

vertex that has 3 − k descendants, for k ∈ {1, 2, 3}, we append exactly k lollipops ,
so that in the new tree that vertex has exactly three outgoing edges. The constructed
tree σ lies in TN3 , since i(σ ) = |τ | � N and every inner vertex of σ has exactly three
descendants. Moreover, it satisfies T (σ ) = τ . This concludes the proof of the first
part of the statement.

In order to prove (ii), let τ ∈ T3 \ { } and τ1, τ2, τ3 ∈ T3 such that τ = [τ1 τ2 τ3].
Now, becauseT does not act on the root of τ , cf. Definition 2.2, we necessarily have

τ = T (τ ) = [T (τ1) T (τ2) T (τ3)] = [τ1 τ2 τ3] .

In order to avoid confusion, let us discuss explicitly the case where τi = and thus
τi = 1, for some i ∈ {1, 2, 3}. Without loss of generality let us assume that τ2 = , as
in the example (2.19) displayed above. Then, by convention of [. . .], we have

τ = [τ1 τ2 τ3] = [τ1 τ3] .

This identity propagates to τ = [τ1] if additionally τ3 = . Moreover, in the most
extreme case τ = , this reduces further to τ = = [1] = [1 1 1]. �

The following result establishes the link between the Butcher series and the Wild
expansion, according to our definitions.

Lemma 2.4 The following identity holds for h(y) = −y3 and any τ ∈ T3:

X τ
ε (t, x) = h(τ )(1)

s(τ )
[τ ]ε(t, x) , ∀ε ∈ (0, 1

2 ) , (t, x) ∈ (0,∞) × R2,

with the symmetry factor s(τ ) and elementary differential h(τ ) defined in (2.3) and
(2.4), respectively.

Proof The statement is true for X since h( )(1) = h(1)(1) = 1. Now we proceed by
induction. Assume that the statement is true for all trees τ ∈ T3 with |τ | � n, for some
givenn ∈ N, and let τ ∈ T3 be a treewithn+1vertices such that τ = [τ1 τ2 τ3], τi ∈ T3.
Furthermore, observe that the combinatorial factor a(τ ) appearing in Definition 2.1
can be expressed as follows:

a(τ ) = 3! s(τ1)s(τ2)s(τ3)
s(τ )

,
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with the symmetry factor s(τ ) defined in (2.3). Or, in other words

s(τ1)s(τ2)s(τ3)

s(τ )
=

⎧⎪⎨
⎪⎩

1
6 , if τ1 = τ2 = τ3,
1
2 , if exactly two of the trees τ1, τ2, τ3 coincide,

1, if all trees τ1, τ2, τ3 are distinct.

(2.21)

Therefore, from the definition of the terms of the Wild expansion, see again Defini-
tion 2.1, we have

X τ
ε = −6

s(τ1)s(τ2)s(τ3)

s(τ )
P(m) ∗ (X τ1

ε X τ2
ε X τ3

ε )

= −6
s(τ ) s(τ1)s(τ2)s(τ3)

s(τ ) s(τ1)s(τ2)s(τ3)

h(τ1)(1)h(τ2)(1)h(τ3)(1)

s(τ )
[τ ]ε , (2.22)

by our induction hypothesis, and by (2.17). Now, let k ∈ {0, 1, 2, 3} be the number of
trees τi satisfying τi �= . As we consider unordered trees, we can write

τ = [τ1 · · · τk · · · ] ,

without loss of generality. Thus

−6
s(τ ) s(τ1)s(τ2)s(τ3)

s(τ ) s(τ1)s(τ2)s(τ3)
= −6

s(τ ) s(τ1) · · · s(τk)
s(τ ) s(τ1) · · · s(τk)

= − 6

(3− k)!
s(τ1) · · · s(τk)
s([τ1 · · · τk])

s(τ )

s(τ1) · · · s(τk) ,

since s( ) = s(1) = 1 and by using the fact that

s(τ ) = (3− k)! s( )3−k s([τ1 · · · τk]) = (3− k)! s([τ1 · · · τk]) ,

which is a direct consequence of the symmetry factor’s definition (2.3). Next, due to
commutativity of the trimming and grafting cf. Lemma 2.3(ii), we have τ = [τ1 τ2 τ3].
In particular this implies, using Lemma 2.3(i), that if j of the τi ’s agree, then also j
of the τi ’s agree. Therefore, since as in (2.21), the ratio

s(τ1) · · · s(τk)
s([τ1 · · · τk])

only depends on the number of identical subtrees, we obtain

−6
s(τ ) s(τ1)s(τ2)s(τ3)

s(τ ) s(τ1)s(τ2)s(τ3)
= − 3!

(3− k)! = h(k)(1) .

Overall, (2.22) can therefore be rewritten as

X τ
ε = h(k)(1) h(τ1)(1) · · · h(τk)(1)

s(τ )
[τ ]ε = h(τ )(1)

s(τ )
[τ ]ε ,
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where we used the definition of the elementary differential (2.4) together with the fact
that h( )(1) = h(1)(1) = 1. This concludes the proof. �

With this, we have introduced all the elements which allow us to discuss the proof
of Theorem 1.1, without entering into technical details. These are deferred to later
sections and require the introduction of additional tools.

3 Outline and proof of main result

The first step towards the proof of Theorem 1.1 is the analysis of single terms in our
Wild expansion. The key result in this direction (Proposition 3.3) is presented in the
upcoming Sect. 3.1. The proof of Theorem 1.1 is then carried out in Sect. 3.2.

3.1 FromWild expansion to single-tree estimates

Formally, the solution of (1.4) can be represented in terms of theWild series expansion
as

uε =
∑
τ∈T3

X τ
ε =

∑

τ∈TN3
X τ

ε +
∑

τ∈T3\TN3
X τ

ε =: uN
ε + (

uε − uN
ε

)
,

where uN
ε is defined to be the series

∑
τ∈TN3 X τ

ε truncated at level N ∈ N. Unlike

the full Wild expansion, uN
ε is well defined as it is a finite sum. The structure of the

Allen–Cahn equation and in particular the fact that the non-linearity−u3 is monotone
in u, allows to circumvent a direct treatment of the infinite part of the series. More
precisely, we have that uN

ε solves

∂t u
N
ε = 1

2
�uN

ε +m uN
ε − (uN

ε )3 + RN
ε , uN

ε (0, ·) = ηε(·) , (3.1)

where the error term RN
ε depends only on trees at the “boundary” of TN3 :

RN
ε =

∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

X τ1
ε X τ2

ε X τ3
ε . (3.2)

Here we used the fact that any tree in τ ∈ T3 \ { } can be written recursively as
τ = [τ1 τ2 τ3], for some smaller τ1, τ2, τ3 ∈ T3, hence,

( ∑

τ∈TN3
X τ

ε

)3 =
∑

τ∈TN3
τ=[τ1 τ2 τ3]

a(τ ) X τ1
ε X τ2

ε X τ3
ε + RN

ε .
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Utilising a maximum principle in combination with more structural estimates, which
we will describe in detail below, we are able to control the error of the approximation
as follows.

Proposition 3.1 Let λ̂ > 0 and T > 0 satisfy

λ̂em T <
1

10
√
C

, (3.3)

with m = max{m , 0} and

C := 6e2+2π

π
. (3.4)

Then uniformly over all (t, x) ∈ (0, T ] × R2, ε ∈ (0, 1
T ∧ 1

2 ) and N � �log 1
ε
�

√
log 1

ε

∥∥∥ uN
ε (t, x) − uε(t, x)

∥∥∥
L2(P)

� C0

log 1
ε

(√
C λ̂em t

)N
ε

, (3.5)

with C0 = C0(T ,m, λ̂) ∈ (0,∞) the constant defined in (3.21).

The proof of this proposition is deferred to Sect. 3.2. In order for this estimate to
help us prove Theorem 1.1, we would like the right-hand side of (3.5) to vanish as
ε → 0. This forces us to choose a cut-off level N = Nε that grows to infinity as
ε → 0, and a suitably small coupling constant λ̂ satisfying (3.3). In particular, we fix
the cut-off level Nε given by

Nε =
⌊
log 1

ε

⌋
. (3.6)

We note that this estimate runs along the same lines as [25, Proposition 3.15], with
the fundamental difference that we need to push the estimate here to be uniform over
a growing N , more precisely N � �log 1

ε
�. Indeed in [25], for ηε scaled (in the two-

dimensional setting) as ε1−α pε�η with α ∈ (0, 1), the bound that one obtains is of the
form:

∥∥∥ uN
ε (t, x) − uε(t, x)

∥∥∥
L2(P)

� C(N ,m, t)ε2−3α
(
emtε1−α(1+ log (tε−2))

)N
,

for some constant C . The parameter α ∈ (0, 1) modulates the sub-critical level of the
noise.We seehere that ifα < 1, then in order tomake the left-hand side small, it suffices
to choose N finite, but sufficiently large. Instead, in our setting which corresponds to
α = 1, this bound degenerates and is replaced by (3.5). Having a control on the error,
then, leads to the need of a growing choice of Nε. We collect the essential elements
of this discussion in the following remark.
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Remark 3.2 The estimate in Proposition 3.1 is crucial to understand our approach.
First, this bound forces us to control the Wild expansion up to the (diverging) level
Nε = �log 1

ε
�, uniformly over ε. It is for this reason that we require the precise

estimates on the stochastic integrals associated to trees up to size |τ | � Nε, which are
at the heart of our work. Second, this bound imposes us to work with a small coupling
constant λ̂ and small times (if m > 0), although we expect our main result to hold for
all times and coupling constants.

Given the error estimate in Proposition 3.1 above, the next task is to identify the
convergence of the truncated sequence uNε

ε = ∑
τ∈TNε

3
X τ

ε . This convergence is very

delicate, in particular because the number of terms in the sum now grows with ε. The
next proposition contains the key estimate that allows us to overcome this issue.

Proposition 3.3 Let T > 0 and λ̂ > 0. Then, uniformly over any ε ∈ (0, 1
T ∧ 1

2 ),

τ ∈ TNε

3 , with Nε = �log 1
ε
�, and uniformly over all (t, x) ∈ [0, T ] × R2, we have

∥∥∥∥
√
log 1

ε
· X τ

ε (t, x) − h(τ )(1)

τ ! s(τ )

(
3λ̂2

2π

)|τ |
λ̂em t Pt+ε2η(x)

∥∥∥∥
L2(P)

� |h(τ )(1)|
τ ! s(τ )

(
C λ̂2e2m t

)|τ | e2|m| t + | log (t + ε2)| +
√
log 1

ε

2 log 1
ε

λ̂em t

√
4(t + ε2)

,

where τ is the trimmed tree T (τ ) defined in (2.18) and C is the constant defined in
(3.4).

The aboveProposition both identifies the limit of
√
log 1

ε
X τ

ε and gives a quantitative
estimate of its rate of convergence. The proof of Proposition 3.3 is at the heart of this
article and can be found at the end of Sect. 5. It builds on all the results that are derived
on the way. We highlight that the bound we obtain is uniform over all trees τ ∈ T3
with |τ | = O(log 1

ε
). This is rather remarkable: As |τ | grows, every tree consists of a

growing number of components living in distinct homogeneous chaoses and it requires
precise estimates to bound all of them at once. It is thus crucial that the right hand-side
is summable over τ and decays for ε → 0, in order to justify the asymptotics

√
log 1

ε
uNε

ε (t, x) =
√
log 1

ε

∑

τ∈TNε
3

X τ
ε (t, x) ∼ λ̂

∑

τ∈TNε
3

h(τ )(1)

τ ! s(τ )

(3λ̂2
2π

)|τ |
em t Pt+ε2η(x)

∼ λ̂

⎧⎨
⎩
∑
τ∈T3

h(τ )(1)

τ ! s(τ )

(3λ̂2
2π

)|τ |
⎫⎬
⎭ P(m)

t η(x) ,

as ε → 0. The series appearing in the expression above equals

∑
τ∈T3

h(τ )(1)

τ ! s(τ )

(3λ̂2
2π

)|τ | = y
(3λ̂2
2π

)
= σ

λ̂
(3.7)
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where y(·) is the solution of the differential equation ẏ = −y3 with y(0) = 1, cf.
(2.7), which leads to the expression for the limiting variance in Theorem 1.1. Making
the previous argument rigorous is the content of the following proposition, which is
the final step towards the proof of Theorem 1.1.

Proposition 3.4 Let λ̂ > 0 and T > 0 satisfy

λ̂em T <
1√
2C

, (3.8)

with m = max{m , 0} and C be the constant defined in (3.4). Then for all (t, x) ∈
(0, T ] × R2

lim
ε→0

∥∥∥∥
√
log 1

ε
uNε

ε (t, x) − λ̂ σ
λ̂
P(m)
t η(x)

∥∥∥∥
L2(P)

= 0 ,

where σ
λ̂
is as in (3.7).

We remark that condition (3.3) implies (3.8). Neither of them are optimal, however,
we distinguish between them to keep track of explicit constants. We will provide the
proof of Proposition 3.4 at the end of the next subsection. Before we pass to the proof
of Theorem 1.1, let us explain the structure that underlies our main estimate, which is
contained in Proposition 3.3.

3.1.1 Outline of the structure governing the terms X�
"

Each Wiener integral X τ
ε is an element of an inhomogeneous Wiener chaos (cf.

[30]). An element of an inhomogeneous Wiener chaos admits a decomposition
into its homogeneous Wiener chaos components. These projections are obtained via
all possible pairwise contractions of noises. In (2.15), this means that X τ

ε can be
written as a sum over all possible subsets of pairs of leaves κ ⊂ L(τ ) × L(τ ),
where for each (u, v) ∈ κ we replace the product of noise terms ηε(yu)ηε(yv) by
E[ηε(yu)ηε(yv)] = λ2ε p2ε2(yu − yv). In the ε → 0 limit this corresponds to “con-
tracting” the noises to the “diagonal” yv = yu , as p2ε2 approximates a Dirac δ.
A diagrammatic example of a possible contraction (or homogeneous Wiener chaos)
configuration is the following:

1

2 3

4

ε

,

which lies in the first homogeneous Wiener chaos (as only one leaf is uncontracted)
and is therefore Gaussian. At the heart of our approach lies the observation that in a
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The Allen–Cahn equation with weakly critical random initial datum

contracted tree as depicted above, the eventual contribution to the limit is determined
by the total number of so-called 1-cycles that one can iteratively extract from the tree.
These are cycles that involve two leaves and one inner vertex, such as the one incident
on the inner vertex 4 (or equivalently 3) above. The reason for their importance is a
time-space decoupling. Indeed the contribution of the cycle based at 4 can be computed
explicitly as follows:

λ2ε

∫

(R2)2
p(m)
s4 (x4 − y)p2ε2(y − y′)p(m)

s4 (x4 − y′) dy dy′ = λ2εe
2m s4 p2(s4+ε2)(0),

(3.9)

by using the Chapman–Kolmogorov equations, where we denoted the time-space
variable associated to the vertex i by (si , xi ). Notably, the result is independent of
the space variable x4. We can therefore replace the original kernel through a time-
dependent kernel based at x4 (all the rest unchanged), which graphically we visualize
as a red loop around x4:

1

2 3

4

ε

�→
1

2 3

4

ε

.

Similar approach has been followed for removing the cycle rooted at 3.Now integrating
over x4, again by the Chapman–Kolmogorov equations as

λ2ε

∫

(R2)2
p(m)
s2−s4(x4 − x2)p

(m)
s4 (y′ − x4)p

(m)
s2 (y − x2)p2ε2(y − y′) dy dy′ dx4

= λ2εe
2m s2 p2(s2+ε2)(0), (3.10)

we are left with the product between the time-only-dependent kernels in (3.9) and
(3.10) and the kernel associated to the tree in which we remove vertex 2 and 4 (and the
cycles that are incident to them). This tree now has 1-cycles based at vertices 2 and
4. We can follow the same procedure iteratively for the rest of the cycles as indicated
in:

1

2 3

4

ε

�→
1

2 3

4

ε

�→
1

2 3

4

ε

,

removing all 1-cyclcs until there are none left. Hence, in the last diagram we remain
with a tree which depicts an iterated (time-only) integral, with (time-only dependent)
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weights λ2εe
2m si p2(si+ε2)(0) at every vertex i . Note that the ordering of the time

variables within this integral is inherited from the tree decorated by loops. A crucial
observationwill be that only homogeneous chaos configurations which share precisely
this property, contribute in the limit ε → 0. This will be the content of Sect. 5. We also
note that because of the particular structure we have found, determining the eventual
limiting contribution is now a simpler task, as we are left with only a time-dependent
integral.

How to rigorously determine or estimate the contribution of contracted trees through
the removal of certain cycles is the content of the next sections. We will formally
introduce contractions (and pairings) and the notion of v-cycles in Sect. 4. In Sect. 5
we will then finally prove Proposition 3.3.

3.2 Proof of Theorem 1.1

We are now ready to prove our main result, given the estimates in Proposition 3.1 and
Proposition 3.4, the proofs of which are postponed to further below in the section.

Proof of Theorem 1.1 Wedefine λ̂fin := 1
10
√
C
, whereC is the positive constant defined

in (3.4). Let λ̂ ∈ (0, λ̂fin) and T > 0 such that (1.5) is satisfied, which equivalently
reads

λ̂em T <
1

10
√
C

. (3.11)

By the triangle inequality, for ε ∈ (0, 1
T ∧ 1

2 ) and (t, x) ∈ (0, T ] × R2

∥∥Uε(t, x) − λ̂ σ
λ̂
P(m)
t η(x)

∥∥
L2(P)

�
√
log 1

ε

∥∥∥uε(t, x) − uNε
ε (t, x)

∥∥∥
L2(P)

+
∥∥∥
√
log 1

ε
uNε

ε (t, x) − λ̂ σ
λ̂
P(m)
t η(x)

∥∥∥
L2(P)

.

The second term on the right-hand side vanishes as ε → 0 by Proposition 3.4, since
(3.11) implies (3.8). On the other hand, by Proposition 3.1, the first term is upper
bounded by

√
log 1

ε

∥∥∥uε(t, x) − uNε
ε (t, x)

∥∥∥
L2(P)

� C0

log 1
ε

(√
C λ̂em T

)Nε

ε
.

The blow-up on the right-hand side must be compensated, and here we will crucially
use that Nε ∼ log 1

ε
as ε → 0, so that we have a compensating effect from the term(√

C λ̂em T
)Nε . More precisely, by the choice of T in (3.11), we have

− log
(√

C λ̂em T ) � log 10 > 1 ,
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thus,

(√
C λ̂em T )Nε � exp

(
log

(√
C λ̂em T ) (log 1

ε
− 1

))
� 10 εlog 10, ∀ε∈(0, 1

T ∧ 1
2 ).

Hence, we obtain that

√
log 1

ε

∥∥∥uε(t, x) − uNε
ε (t, x)

∥∥∥
L2(P)

� 10C0

log 1
ε

ε(log 10)−1 ,

which vanishes in the limit ε → 0. This concludes the proof. �
In the remainder of this section we prove that the truncated Wild expansion uNε

ε

indeed approximates the solution uε (Proposition 3.1) and that
√
log 1

ε
uNε

ε (t, x) is

close to λ̂ σ
λ̂
Ptη(x) in L2(P) (Proposition 3.4). The proof of Proposition 3.3 will be

given at the end of Sect. 5.

Proof of Proposition 3.1 Let T > 0, (t, x) ∈ (0, T ] × R2 and ε ∈ (0, 1
T ∧ 1

2 ). From
(1.4) and (3.1), we obtain that the difference wN

ε = uN
ε − uε solves the equation

∂tw
N
ε = 1

2
�wN

ε +mwN
ε − (uN

ε )3 + u3ε + RN
ε , wN

ε (0, ·) = 0 , (3.12)

with RN
ε defined in (3.2). Defining V N

ε (t, x) := (uNε )3−u3ε
uNε −uε

, we can write (3.12) as

∂tw
N
ε = 1

2
�wN

ε +mwN
ε − V N

ε · wN
ε + RN

ε , wN
ε (0, ·) = 0 .

The Feynman–Kac formula [29, Theorem 5.7.6] then allows to represent wN
ε as

wN
ε (t, x) = Ex

[ ∫ t

0
RN

ε (t − s, β(s)) exp
(
ms −

∫ s

0
V N

ε (s − r , β(r)) dr
)
ds

]
,

where β(·) is a two dimensional Brownian path and Ex is the expectation with respect
to it when the path starts from x ∈ R2. Using the fact that V N

ε � 0, which is due to
the monotonicity of the mapping u �→ u3, we obtain that3

∣∣ uN
ε (t, x) − uε(t, x)

∣∣

� Ex

[ ∫ t

0

∣∣RN
ε (t − s, β(s))

∣∣ exp
(
m s −

∫ s

0
V N

ε (s − r , β(r)) dr
)
ds

]

� Ex

[ ∫ t

0
em s

∣∣RN
ε (t − s, β(s))

∣∣ ds
]

.

3 We note that this estimate, via triangle inequality and dropping part of the exponential term is not expected
to be optimal and is the place where we lose. This leads subsequently to the need of a growing Nε and the
restrictions to the time horizon.
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Writing the latter in terms of the heat kernel we conclude that

∣∣ uN
ε (t, x) − uε(t, x)

∣∣ � em t
∫ t

0

∫

Rd
pt−s(y − x) |RN

ε (s, y)| dy ds .

Taking the L2(P)-norm, we arrive at the bound that we will be working with:

‖uN
ε (t, x) − uε(t, x)‖L2(P) � em t

∫ t

0
‖RN

ε (s, 0)‖L2(P) ds , (3.13)

where we have used that RN
ε is spatially homogeneous. To continue, we use the

definition of RN
ε from (3.2), the triangle inequality and Hölder’s inequality, to obtain

‖RN
ε (s, 0)‖L2(P) �

∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

‖(X τ1
ε X τ2

ε X τ3
ε )(s, 0)‖L2(P)

�
∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

‖X τ1
ε (s, 0)‖L6(P)‖X τ2

ε (s, 0)‖L6(P)‖X τ3
ε (s, 0)‖L6(P) .

(3.14)

At this point we use hypercontractivity, namely estimates of the Lq(P)-norm by the
L p(P)-norm, for q > p > 1, for random variables in a fixed inhomogeneous Wiener
chaos [27, Theorem 5.10]. In our case it is important to quantify the constant appearing
in the hypercontractivity estimates in terms of the chaos level in which the random
variable lies. In particular, we will use the following estimate, which is an immediate
consequence of [27, Remark 5.11]:

‖X τi
ε (s, y)‖L6(P) � 5

�(τi )
2 ‖X τi

ε (s, y)‖L2(P) .

To bound the L2(P)-norm, we will make use of Proposition 3.3 to obtain

‖X τ
ε (s, y)‖L2(P) � c̃(T ,m)√

log 1
ε

|h(τ )(1)|
τ ! s(τ )

(
C λ̂2e2m s

)|τ | λ̂em s

2
√
s + ε2

, (3.15)

with c̃(T ,m) := e2|m| T + 4. The verification of this bound is deferred to the bottom
of this proof. Assuming (3.15) is true, and using the identity �(τi ) = 2|τi | + 1 (which
holds since τ ∈ T3), we obtain

‖X τi
ε (s, y)‖L6(P) � 5|τi |+

1
2
c̃(T ,m)√
log 1

ε

|h(τi )(1)|
τi ! s(τi )

(
C λ̂2e2m s

)|τi | λ̂em s

2
√
s + ε2

. (3.16)
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Combining (3.13) with (3.14) and (3.16), we therefore conclude that

√
log 1

ε
· ‖uN

ε (t, x) − uε(t, x)‖L2(P)

�
√
log 1

ε
· emt

∫ ∞

0
‖Rε(s, 0)‖L2(P) ds

�
(√

5λ̂ c̃(T ,m)
)3
e4m t

8 log 1
ε

{∫ ∞

0

1

(s + ε2)
3
2

ds

}
·

·
∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

3∏
i=1

{
|h(τi )(1)|
τi ! s(τi )

(
5C λ̂2e2m t

)|τi |
}

. (3.17)

At this point we notice that the time integral appearing in the last estimate blows up
polynomially in ε, since

∫ ∞

0

1

(s + ε2)
3
2

ds =
[
−2(s + ε2)−

1
2

]s=∞
s=0

= 2

ε
. (3.18)

On the other hand, for any {τi }3i=1 such that [τ1 τ2 τ3] /∈ TN3 we have that

N < i([τ1 τ2 τ3]) = i(τ1) + i(τ2) + i(τ3) + 1 = |τ1| + |τ2| + |τ3| + 1.

Moreover, by assumption, λ̂ is sufficiently small to satisfy 5
√
C λ̂em t < 1

2 . Therefore,
we can estimate the sum in the last line of (3.17) as follows. First, observe that

∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

3∏
i=1

{
|h(τi )(1)|
τi ! s(τi )

(
5C λ̂2e2m t

)|τi |
}

�
(√

C λ̂em t)N ∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

3∏
i=1

{
|h(τi )(1)|
τi ! s(τi )

(
5
√
C λ̂em t

)|τi |
}

. (3.19)

Then we complete the remaining sums on the right-hand side to Butcher series:

∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

3∏
i=1

{
|h(τi )(1)|
τi ! s(τi )

(
5
√
C λ̂em t

)|τi |
}

�

⎛
⎜⎝
∑

τ∈TN3

|h(τ )(1)|
τ ! s(τ )

(
5
√
C λ̂em t

)|τ |
⎞
⎟⎠

3

�
(
y
(
5
√
C λ̂em t

))3
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= 1

(1− 2 · 5√C λ̂em t )
3
2

,

where y is the solution to the ODE ẏ = y3 with positive initial condition y(0) = 1.
The solution of this ODE is y(ζ ) = (1− 2ζ )−1/2 and so the associated Butcher series
converges for ζ < 1/2, i.e. if (3.3) holds in the present case. Thus, with (3.19), we
have

∑

τ1,τ2,τ3∈TN3
[τ1 τ2 τ3]/∈TN3

3∏
i=1

{
|h(τi )(1)|
τi ! s(τi )

(
5C λ̂2e2m t

)|τi |
}

�
(√

C λ̂em t)N 1

(1− 10
√
C λ̂em t )

3
2

.

(3.20)

Hence, combining (3.17), (3.18) and (3.20), we obtain

√
log 1

ε
· ‖uN

ε (t, ·) − uε(t, ·)‖L2(P) � C0(T ,m, λ̂)

log 1
ε

(√
C λ̂em t

)N
ε

with

C0(T ,m, λ̂) := e4m T

4

( √
5λ̂ c̃(T ,m)√

1− 10
√
C λ̂em T

)3

. (3.21)

This concludes the proof of the proposition, modulo the proof of (3.15). The latter
bound follows simply from the triangle inequality and Proposition 3.3 (which we can
apply in view of the constraint |τ | � �log 1

ε
�):

‖X τ
ε (t, x)‖L2(P)

� |h(τ )(1)|
τ ! s(τ )

⎛
⎝
(
3λ̂2

2π

)|τ | ∥∥∥ ε(t, x)
∥∥∥
L2(P)

+
(
C λ̂2e2m t

)|τ | 2e2|m| T + 4√
log 1

ε

λ̂em t

√
4(t + ε2)

⎞
⎠ ,

(3.22)

where we made use of the crude estimate

e2|m| t + | log (t + ε2)| +
√
log 1

ε

2 log 1
ε

� e2|m| t

2 log 2
+ 2+ 1

2
√
log 2

� e2|m| T + 3,
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which is a consequence of ε ∈ (0, 1
T ∧ 1

2 ) and the uniform estimate

sup
0�t�T

| log(t + ε2)|
2 log 1

ε

= sup
0�t�1−ε2

| log(t + ε2)|
2 log 1

ε

∨ sup
1−ε2<t<T

log(t + ε2)

2 log 1
ε

� 1+ log ( 1
ε
+ 1)

2 log 1
ε

� 2 .

(3.23)

Now the statement follows, since

(
3λ̂2

2π

)|τ | ∥∥∥ ε(t, x)
∥∥∥
L2(P)

=
(
3λ̂2

2π

)|τ | (
λ̂2εe

2m t
∫

R2
pt+ε2(y)

2 dy

) 1
2

= 1√
log 1

ε

(
3λ̂2

2π

)|τ |
λ̂em t

√
4π(t + ε2)

�

(
C λ̂2e2m t

)|τ |
√
log 1

ε

λ̂em t

2
√
t + ε2

,

where C is the constant from (3.4). Thus together with (3.22), we obtain

‖X τ
ε (t, x)‖L2(P) � c̃(T ,m)√

log 1
ε

|h(τ )(1)|
τ ! s(τ )

(
C λ̂2e2m t

)|τ | λ̂em t

2
√
t + ε2

.

with c̃(T ,m) = e2|m| T + 4. This completes the proof. �

Proof of Proposition 3.4 For h(y) = −y3, we introduce the truncated Butcher series

Bε
h(ζ, 1) =

∑

τ∈TNε
�3

h(τ )(1)

τ ! s(τ )
ζ |τ | =

∑

τ∈TNε
3

h(τ )(1)

τ ! s(τ )
ζ |τ | , (3.24)

where the second equality is a consequence of Lemma 2.3. Therefore, Proposition 3.4

will follow if we can show that the following two limits hold true with ζ
λ̂
= 3λ̂2

2π :

lim
ε→0

∥∥∥
√
log 1

ε
uNε

ε (t, x) − λ̂Bε
h(ζλ̂

, 1) em t Pt+ε2η(x)
∥∥∥
L2(P)

= 0, (3.25)

lim
ε→0

∥∥∥λ̂Bε
h(ζλ̂

, 1) em t Pt+ε2η(x) − λ̂ σ
λ̂
P(m)
t η(x)

∥∥∥
L2(P)

= 0. (3.26)
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The limit (3.25) follows from Proposition 3.3, provided (3.8) holds. Indeed, via the
named proposition, we can bound for ε ∈ (0, 1

T ∧ 1
2 )

∥∥∥
√
log 1

ε
uNε

ε (t, x) − λ̂Bε
h(ζλ̂

, 1) em t Pt+ε2η(x)
∥∥∥
L2(P)

�
∑

τ∈TNε
3

∥∥∥∥∥
√
log 1

ε
· X τ

ε (t, x) − λ̂
h(τ )(1)

τ ! s(τ )
ζ
|τ |
λ̂

em t Pt+ε2η(x)

∥∥∥∥∥
L2(P)

�
∑

τ∈TNε
�3

|h(τ )(1)|
s(τ ) τ !

(
C λ̂2e2m t

)|τ | e2|m| t + | log (t + ε2)| +
√
log 1

ε

2 log 1
ε

λ̂em t

√
4(t + ε2)

,

(3.27)

where we used (3.24). Now, (3.25) will follow, if we can show that the series on the
right-hand side is summable, that is if

∑
τ∈T�3

|h(τ )(1)|
s(τ ) τ !

(
C λ̂2e2m t

)|τ |
< ∞. (3.28)

This is the Butcher series associated to the ODE ẏ = y3 with initial condition y(0) =
1, which converges as long as (3.8) holds. See also the discussion in the proof of
Proposition 3.1. Hence, (3.27), and thus (3.25), vanish for arbitrary fixed t ∈ (0, T ],
because the second-to-last ratio on the right-hand side in (3.27) vanishes in the limit
ε → 0.

To complete the proof of the proposition we must now check (3.26). Here we
observe that

∥∥∥ λ̂Bε
h(ζλ̂

, 1) em t Pt+ε2η(x) − λ̂ σ
λ̂
P(m)
t η(x)

∥∥∥
L2(P)

� λ̂ |Bε
h(ζλ̂

, 1) − σ
λ̂
| · ∥∥em t Pt+ε2η(x)

∥∥
L2(P)

+ λ̂ σ
λ̂

∥∥em t Pt+ε2η(x) − P(m)
t η(x)

∥∥
L2(P)

.

The second term is converging to 0 by the continuity properties of the heat semigroup.
Instead, for the first term we observe that Bε

h(ζ, 1) is an approximation to the Butcher
series associated to the solution y(ζ ) of the ODE ẏ = −y3, y(0) = 1, which is given
by y(ζ ) = (1 + 2ζ )−1/2. This solution is analytic for |ζ | < 1/2 and the associated
Butcher series converges (see the discussion in Sect. 2.2). Thus, recalling the form of

σ
λ̂
(3.7), we have that limε→0 |Bε

h(ζλ̂
, 1) − σ

λ̂
| = 0, as long as

3λ̂2fin
2π < 1

2 , which is
implied by (3.8). This concludes the proof. �

123



The Allen–Cahn equation with weakly critical random initial datum

4 Contracted trees, Wiener chaoses and their structure

In Sect. 3.1, and in particular in Sect. 3.1.1, we outlined the structure underlying the
main estimate contained in Proposition 3.3. In this section wewill introduce the notion
of contraction and present estimates on the integration kernels associated to the Wild
expansion terms X τ

ε , which will allow us to analyze them rigorously in Sect. 5.

4.1 Wiener chaos decomposition, contractions and cycles

The multiple stochastic integrals X τ appearing in the Wild expansion (1.4) lie in the
�(τ)-th inhomogeneous Wiener chaos. Elements in a finite inhomogeneous Wiener
chaos can be decomposed into terms belonging to distinct homogeneous Wiener
chaoses. We refer to [27, Chapter 2] and [30, Chapter 1] for a more detailed dis-
cussion about Wiener spaces and their decomposition to homogeneous components.

Our asymptotic analysis builds on a precise understanding of the decomposition of
the components of the Wild expansion into its homogeneous chaos terms. The goal
of this detailed study will be to show that only terms in the first chaos (and not all of
them) contribute to the Gaussian limit in Theorem 1.1.

In our setting, homogeneous components of theWild expansion will be represented
by stochastic integrals indexed by trees with additional contraction in pairs between
elements of a subset of their leaves. A contraction of a given tree is a pairing among the
elements of an arbitrary subset of the leaves of the tree. Unlike the stochastic integrals
indexed by the initial tree, the stochastic integral indexed by a contracted tree lies in a
homogeneous chaos, whose order is given by the number of uncontracted leaves. One
can then recover the integral associated to the original tree by summing over integrals
indexed by the same tree with all possible contractions. Let us now be more precise
and start with the definition of a contraction.

Definition 4.1 For any τ ∈ T we define a contraction to be a subset κ ⊂ (L(τ )
2

)
,

where
(L(τ )

2

)
denotes the set of all unordered pairs of leaves of the tree τ , such that

every v ∈ L(τ ) lies in at most one element of κ . We define the corresponding set of
contractions by

K(τ ) :=
{
κ ⊂

(L(τ )

2

)
: κ is a contraction of τ

}
. (4.1)

Furthermore, we denote a tree τ = (V, E) that is being contracted according to a
contraction κ by τκ :

τκ := (V, E ∪ κ) ,

and call this a κ-contracted tree or simply a contracted tree. We will also denote by
L(τκ) the set of leaves of τκ , namely, the set of leaves of τ which are not included in
the contraction κ .
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If all leaves of τ are contracted via κ we will call κ a complete contraction and
τκ a completely contracted tree. If this is not the case, we will often talk of partial
contraction and a partially contracted tree.

Graphically, a contracted tree τκ is represented by the original graph of τ augmented
with edges connecting the pairs of vertices in κ . We will colour the additional edges
arising from κ in red. For example, the possible contractions of the tree

(4.2)

are (up to symmetries)

∅ , , , , , , ,
(4.3)

where we denoted the tree without any contraction with a subscript ∅ to emphasize the
empty contraction.4 Intuitively, when seen as a stochastic integral, the uncontracted
vertices in τκ will have all assigned space variables being distinct, while the edge
with space variables (yu1 , yu2) connecting a pair of (u1, u2) ∈ κ will be assigned
a weight p2ε2(yu2 − yu1). More precisely, to any contracted tree τκ we associate a
(homogeneous) Wiener integral lying in a homogeneous Wiener chaos through the
following definition:

τκ,ε(t, x) :=
∫

DV(τ )\o
t

K t,x
τκ ,ε(sV(τ ), yV(τ )) dyV(τ )\(o∪L(τκ )) dsV(τ )\o ηε( dyL(τκ )) (4.4)

with Dt = [0, t] × R2 and

K t,x
τκ ,ε(sV(τ ), yV(τ )) :=

∏
u∈V(τ )\o

p(m)
sp(u)−su (yp(u) − yu)

{ ∏
v∈L(τκ )

δ0(sv)

}

×
∏

(u1,u2)∈κ

λ2ε δ0(su1) δ0(su2) p2ε2(yu2 − yu1) , (4.5)

with p(u) denoting the parent of u and (so, yo) = (t, x). To lighten notation, we will
often drop the index t, x that indicates the time-space coordinates of the root, if the
explicit indication is not necessary. We stress the difference in notation of the two
types of stochastic integrals once and for all here: For the homomgeneous Wiener
integral (4.4) we write ηε( dyL(τ )), whereas for the inhomogeneous Wiener integral
(2.15) we use

∏
v∈L(τ ) η( dyv).

4 In the ∅-contracted tree τ∅, the iterated stochastic integral will correspond to a homogeneous chaos, and
the purpose of the ∅ subscript in its graphical depiction is to distinguish it from the graph representation
(4.2), which corresponds to an element of the inhomogeneous chaos. On the other hand, there is no such
danger of confusion in the rest of the graphical depictions of τκ with κ �= ∅ and so we do not use any similar
subscript in order not to overload notation.
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With this definition, τκ,ε lies in the homogeneous Wiener chaos of order �(τk) =
|L(τκ)|. Given the decomposition of an element in a Wiener chaos into its homoge-
neous components, see [27, Remark 7.38], we have that for any τ = [τ1 . . . τn], the
associated stochastic integral τε can be decomposed as follows

τε := [τ1]ε · · · [τn]ε =
∑

κ∈K(τ )

τκ,ε , (4.6)

with [τi ]ε defined in (2.15). In the example of the trees in (4.2) and (4.3), we have that
the decomposition of the inhomogeneous element represented by the tree (4.2) to its
homogeneous components is given by

ε= ε,∅ + ε + 3 ε + 6 ε + 3 ε + 6 ε + 6 ε ,

where the right-hand side corresponds to the homogeneous stochastic integrals indexed
by the contracted trees in (4.3).Herewehave taken into accountmultiplicities of homo-
geneous components due to equivalent contractions. For example, the contractions

, and ,

are all different. However, they correspond to the same stochastic integrals. Lastly,
let us mention that for a planted tree [τ ] we use both notations [τ ]κ and [τκ ] for a
contracted version of that tree.

Contractions between trees and L2(P) estimates.We nowwant to extend the notion
of contraction fromwithin a single tree to a pair of trees. This will be necessary in order
to encode second moments of stochastic integrals of the form (4.4). The Gaussianity
and correlation structure of the white noise, imply viaWick’s theorem, that the second
moment can be expressed as the sum over all possible pairwise contractions over the
(uncontracted) leaves (or precisely over the noise variables that lie on the leaves) of
two copies of the tree, connected to the same root with time-space variables (t, x). In
other words, we look at the stochastic integral [τ, τ ]ε(t, x) corresponding to the tree
[τ, τ ] with root variable (t, x). Let us look at the example of computing the second

moment of the stochastic integral [τ ]ε(t, x) = ε(t, x), evaluated at a time-space
point (t, x). Its second moment will be represented by

E
[[τ ]ε(t, x)2

] = E
[[τ, τ ]ε(t, x)

] = E
[[ ]

ε
(t, x)

]

= 6

(t,x)

+ 9

(t,x)

. (4.7)
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In other words, the computation of the second moment of a stochastic integral [τ ]ε
gives rise to a completely contracted tree [τ, τ ]κ in accordance with the definition
of (4.1). We note that, if we first decompose [τ ]ε(t, x) into its homogeneous Wiener
chaos components, then an alternative computation would yield

E[[τ ](t, x)2] = E

∣∣∣∣ ∅
(t,x)

∣∣∣∣
2

+ E

∣∣∣∣ 3
(t,x)

∣∣∣∣
2

,

where we used the orthogonality between different homogeneous chaos components.
Let us introduce a notation that will allow us to encode contractions between trees

that are glued together, in a way that distinguishes them from the contractions of Defi-
nition 4.1. This will be useful to encode covariances between [τ ]ε(t, x) and [τ ′]ε(t, x).
Definition 4.2 For two rooted trees τ, τ ′ ∈ T define the set of pairings among the
union of leaves as

Y(τ, τ ′) :={
γ ∈K([τ, τ ′]) : γ is a complete contraction

}
.

We also define the subsets of pairings which complete a given pair of contractions
(κ, κ ′) ∈ K(τ ) ×K(τ ′) by

Y(τκ , τ ′κ ′) :=
{
γ ∈ Y(τ, τ ′) : κ ∪ κ ′ ⊂ γ and all pairs in γ \ (κ ∪ κ ′) connect τ to τ ′

}
.

Wewillwrite [τ, τ ′]γ to denote the tree [τ, τ ′]where all leaves are contracted according
to γ ∈ Y(τ, τ ′).

The pictorial representations in (4.7) show all possible elements (up to symmetries)
ofY(τ, τ ) for that example. Furthermore, note that for any two contracted trees τκ , τ ′

κ ′ ,
and γ ∈ Y(τκ , τ ′

κ ′), the pairing [τκ , τ ′
κ ′ ]γ gives rise to a completely contracted tree

and, therefore,Y(τκ , τ ′
κ ′) = ∅, if the number of uncontracted leaves in τκ and τ ′

κ ′ differ.
This agrees with the fact that homogeneous chaoses are orthogonal with respect to
one another. We can now express covariances between contracted trees as follows:

E

[
[τ ]κ,ε [τ ′]κ ′,ε

]
=

∑

γ∈Y(τκ ,τ ′
κ′ )
[ τ, τ ′]γ,ε .

(4.8)

Moreover, it is clear that Y(τκ , τ ′
κ ′) allows to partition Y(τ, τ ′) as

Y(τ, τ ′) =
⊔

(κ,κ ′)∈K(τ )×K(τ ′)
Y(τκ , τ ′κ ′) , (4.9)

where
⊔

denotes a disjoint union. This is clear since, if we want to find all pairwise
contractions of [τ, τ ′], we can first identify the contractions that are internal to each
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τ, τ ′ and then identify the contractions that connect the leaves of one tree to those of
the other. This partitioning then allows us to express covariances in terms of

E

[
[τ ]ε [τ ′]ε

]
=

∑
κ∈K(τ )

∑
κ ′∈K(τ ′)

E

[
[τ ]κ,ε [τ ′]κ ′,ε

]

=
∑

κ∈K(τ )

∑
κ ′∈K(τ ′)

∑

γ∈Y(τκ ,τ ′
κ′ )
[ τ, τ ′]γ,ε

=
∑

γ∈Y(τ,τ ′)
[ τ, τ ′]γ,ε ,

where we used (4.8) in the second step, and (4.9) in the last. Finally, the partitioning
(4.9) allows us to recover the internal contractions associated to a given pairing. This
motivates the following definition.

Definition 4.3 For any τ, τ ′ ∈ T3, let s[τ,τ ′] : Y(τ, τ ′) → K(τ ) × K(τ ′) be the map
that for any γ ∈ Y(τ, τ ′) identifies the unique pair s[τ,τ ′](γ ) := (κ1(γ ), κ2(γ )) such
that

γ ∈ Y(τκ1(γ ), τ
′
κ2(γ )) .

In other words, the map s identifies the subset of edges in γ that only connect within
τ and τ ′, respectively.

4.2 1-cycles and their removal

Let us now introduce the notion of a 1-cycle. Suppose that a contracted tree τκ contains
a component of the form

τκ =

τ1

τ2 τ3
(s1, y1)

(s0, y0)

(s2, y2)

···
,

(4.10)

namely where we observe a cycle consisting of an inner vertex (s1, y1) connected
to two leaves that are themselves connected to one another by a red edge (part of
κ). We call such a cycle a 1-cycle. Let us remark that in the above picture, the point
(s2, y2) denotes the coordinates of the basis of the sub-tree τ1 and (s0, y0) denotes the
coordinates of the parent of the inner vertex with coordinates (s1, y1). A more formal
definition is the following.

Definition 4.4 Given a tree τ and a contraction κ ∈ K(τ ), we call a 1-cycle a connected
component of τκ which consists of two leaves, which are connected by an element of
κ , and the inner vertex, which is the parent of these leaves, as well as the three edges
that connect these three vertices. We call the inner vertex of the cycle the basis of the
1-cycle.
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Given a contracted tree τκ with a 1-cycle C, we write (τ \C)̃κ for the contracted tree
that is obtained by “removing” the cycle C from τκ . That is, the graph that remains
after removing all edges and vertices that belong to C and replacing the remaining two
edges which used to connect to the basis of the 1-cycle by a new single edge, which
connects the only remaining descendant of the basis we removed to the parent of this
basis. The contraction κ̃ is the one induced naturally on τ \ C by κ after the removal
of the element that connects the leaves of C. The removal is simply described by the
following picture:

τκ =

τ1

τ2 τ3
(s1, y1)

(s0, y0)

(s2, y2)

···
�−→ (τ \ C)κ̃ =

τ1 τ2 τ3
(s2, y2)

(s0, y0) ···
.

(4.11)

Observe that if τ ∈ T3, then also τ \ C ∈ T3. An important lemma is the following,
which records the effect of the 1-cycle on the associated stochastic integrals.

Lemma 4.5 Let τ ∈ T be of the form τ = [τ1 · · · τn], τi ∈ T3, and κ ∈ K(τ ). Further,
let C be a 1-cycle in the contracted tree τκ with the coordinates of its root being
(t, x) ∈ (0,∞)× R2. Denote by (s1, y1) the coordinates of the basis of C, by (s0, y0)
the coordinates of the parent of (s1, y1) and by (s2, y2) the coordinates of the only
descendant of (s1, y1) that does not belong to C. Denote also by z3 = (s3, y3) and
z4 = (s4, y4) the coordinates of the leaves of the 1-cycle C (where we recall that the
time coordinates s3 and s4 of the leaves will coincide with 0). Then

∫

D2
t

∫

R2
K t,x

τκ ,ε(sV, yV) dy1 dz3 dz4 = ε(s1)1{s2�s1�s0}K
t,x
τ̃̃κ ,ε(sV\C, yV\C), (4.12)

where the kernel K is defined in (4.5), Dt is defined in (2.16) and

ε(s1) := λ2εe
2m s1 p2(s1+ε2)(0), (4.13)

τ̃ := τ \ C and κ̃ the contraction induced on τ̃ by the removal of C from τκ .

Proof We start by performing the integration over the spatial coordinates y3, y4 of
the part of the kernel K t,x

τκ,ε
(sV, yV) that depends on the variables z3 and z4. This

corresponds to the following integral (recall form (4.5) that the kernel K t,x
τκ,ε

(sV, yV)

contains factors δ0(s3) δ0(s4)):

λ2ε

∫

(R2)2
p(m)
s1 (y3 − y1)p

(m)
s1 (y4 − y1)p2ε2(y3 − y4) dy3 dy4 = λ2εe

2m s1 p2(s1+ε2)(0)

= ε(s1). (4.14)

Next, we integrate the remaining part of the kernel over y1. This reduces to the
Chapman–Kolmogorov identity (refer also to the pictures in (4.10) and (4.11) for
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guidance):

∫

R2
p(m)
s1−s2(y2 − y1)p

(m)
s0−s1(y1 − y0) dy1 = p(m)

s0−s2(y2 − y0).

Combining the results of the two integrations above with the remaining components
of the kernel K t,x

τκ,ε
(sV, yV), yields the expression on the right-hand side of (4.12). �

As it turns out, 1-cycles play an important role in our analysis. We will see that the
contracted trees in the Wild expansion that contribute to the limiting fluctuations, are
exactly those whose contraction consists of only 1-cycles (which may also emerge in
an iterative way, see the second example below). To get an idea of this phenomenon,
let us look at the following examples.

Example 1 Consider the contracted tree ε. Using Lemma 4.5 (or in this case even a
by-hand computation) we find that

ε(t, x) =
∫

[0,t]

∫

R2
p(m)
t−s (y − x) ε(s, y) ε(s) dy ds,

where inside the integral (s, y) are the time-space coordinates associated to the basis
of the trident. We can next compute the spatial integral via Chapman–Kolmogorov as

∫

R2
p(m)
t−s (y − x) ε(s, y) dy =

∫

(R2)2
p(m)
t−s (y − x) p(m)

s (z − y) ηε(z) dy dz

=
∫

R2
p(m)
t (z − x) ηε(z) dz = ε(t, x).

Therefore, we obtain

ε(t, x) = ε(t, x)
∫ t

0
ε(s) ds = ε(t, x) λ2ε

∫ t

0

e2m s

4π(s + ε2)
ds ,

and hence, by Lemma A.1 and definition of λε, for t ∈ (0,∞) we find that

ε(t, x) = λ̂2

2π ε(t, x) · (1+ o(1)) ,

where the o(1) is with respect to ε → 0.

Example 2 This example demonstrates the iterative appearance of 1-cycles, after suc-
cessive extractions, and their overall contribution. Consider the contracted tree

1
2

3

ε
(t, x) ,
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where we have tagged some vertices for reference in the following integrals. In par-
ticular, the coordinates of vertex i will be (si , yi ). First, extracting the 1-cycle with
basis 2, we have that, using Lemma 4.5,

1
2

3

ε
(t, x) =

∫ ∫

[0,t]3×(R2)2

{s2,s3≤s1≤t}

ε(s2) K
1

3(y1, y3; s1, s3) ηε( dy3) dy1 ds2 ds1 ds3 .

Now, applying once more Lemma 4.5 on the kernel, or just the previous example, the
above integral equals

ε(t, x)
∫ t

0

∫ s1

0
ε(s2) ε(s1) ds2 ds1 = 1

2

( λ̂2

2π

)2
ε(t, x) ·

(
1+ o(1)

)
.

Thus, the contribution of this diagram is of the same order as in the previous example
(albeit with a different constant) and will also contribute to the limiting Gaussian
fluctuations.

Following the same steps as above, we can determine similarly the contribution of
the contracted tree

ε(t, x) = 1

2

( λ̂2

2π

)2
ε(t, x) ·

(
1+ o(1)

)
.

4.3 v-cycles and their removal

Contrary to the above two examples, where only 1-cycles appeared, the next example
will demonstrate a different cycle structure, which will lead to lower order contribu-
tions. This will motivate the study of v-cycles of arbitrary length, which will play an
important role in our analysis.

Example 3 Let us look at the order of magnitude of ∅,ε. Its second moment has the
diagrammatic representation in terms of the completely contracted tree

E

∣∣∣∣∣ ∅,ε(t, x)

∣∣∣∣∣
2

= 6

(t, x), ε

,

where the factor 6 counts the number of symmetries of the pairing at hand. Denoting
by (s1, y1) and (s2, y2) the time-space coordinates of the bases of the left and right
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tridents, respectively, we can explicitly write the integral corresponding to the above
diagram as

6λ6ε

∫

D2
t

p(m)
t−s1(y1 − x)

(
em (s1+s2) ps1+s2+2ε2 (y1 − y2)

)3 p(m)
t−s2 (y2 − x) dy1 dy2 ds1 ds2.

Then, using the estimate (em (s1+s2) ps1+s2+2ε2(y1−y2))2 � e4m t (2π(s1+s2+2ε2))−2

together with Chapman–Kolmogorov, we can bound this by

6λ6εe
4m t

∫

D2
t

p(m)
t−s1(y1 − x) em (s1+s2) ps1+s2+2ε2 (y1 − y2) p

(m)
t−s2 (y2 − x)

(
2π(s1 + s2 + 2ε2)

)2 dy1 dy2 ds1 ds2

� 6λ6ε
(2π)2

e6m t p2(t+ε2)(0)
∫

[0,t]2
1

(s1 + s2 + 2ε2)2
ds1 ds2

� 6λ6ε
(2π)2

log(1+ 1
2 tε

−2) e6m t p2(t+ε2)(0) .

Since λ6ε = O((log 1
ε
)−3), we can conclude that E

[ ∣∣∣
√
log 1

ε ∅,ε(t, x)
∣∣∣
2]

� C(t)
log 1

ε

,

for some constant C(t) only depending on t > 0.

In the last example there was no 1-cycle appearing. Instead, the contracted tree
that emerged from the diagrammatic representation of the second moment, presented
cycles containing more than one inner vertex, with every edge of the cycle incident to
at least one leaf. We will call such cycles v-cycles. The emergence of v-cycles and the
quantitative estimate of their contribution will play a crucial role. The key observation
is that contracted trees which do not consist of 1-cycles only, will have their second
moment represented by a paired tree which necessarily contains a v-cycle of length
strictly greater than one. Such trees will turn out to have a lower order contribution.
The main estimates in this section, which provide a quantitative control on v-cycles,
are given in Lemmas 4.9 and 4.10 below. Let us start with the rigorous definition of a
v-cycle.

Definition 4.6 For a given contracted tree τκ , a subgraph C = (VC, EC) ⊆ τκ is a
v-cycle if it is a cycle in τκ (viewed as a graph) in which every edge is incident to
at least one leaf of the tree τ . We define the length of a v-cycle to be the number of
inner vertices of τ contained in C and we also denote by IC and LC the collection of
the inner vertices and leaves of τ that belong to C, respectively. We will call a v-cycle
of length m ∈ N a m-cycle for short.
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A pictorial example of a v-cycle is the one that appears in the following component
of a contracted tree:

τ4τ3

τ1 τ2
.

Note that a 1-cycle (Definition 4.4) is simply a v-cycle of length 1. Consider a v-cycle
of length m and denote its inner vertices by v1, ..., vm , where we will always keep
the convention that in such an encoding we start from the left-most inner vertex of
the cycle, in the graph picture of the tree, and register the following inner vertices as
we trace the cycle clock-wise. Let us also denote the time coordinates of v1, ..., vm
by s1, ..., sm , respectively. We introduce the following kernel, which will play an
important role in our estimates:

ε
⊗m

(s1, . . . , sm) := λ2mε

m∏
k=1

em(sk+sk+1) psk+sk+1+2ε2(0)

=
m∏

k=1

λ2εe
m(sk+sk+1)

2π(sk + sk+1 + 2ε2)
, (4.15)

with the convention that sm+1 = s1. We note that the above kernel is invariant under
cyclic permutation of s1, s2, ..., sm .

The following lemma, which will be proved in Appendix A.3, establishes the exis-
tence of a v-cycle in a completely contracted tree of the form [τ1, τ2].
Lemma 4.7 Let τ1, τ2 ∈ T3 . Then, for every pairing γ ∈ Y(τ1, τ2), the paired tree
[τ1, τ2]γ contains a v-cycle.

An important procedure that we will follow in the remainder of the section, is to
spatially decouple v-cycles from the rest of the integration kernel encoded by the tree.
We will be performing such decoupling estimates sequentially until we exhaust all
v-cycles, including the v-cycles that will emerge through this process. We will call
this process cycle removal. Below we formally define the cycle removal of a single
cycle.

Definition 4.8 (Cycle removal) For any contracted tree τκ , with τ ∈ T of the form
τ = [τ1 · · · τn], τi ∈ T3, and any v-cycle C ⊆ τκ (not passing through the root), we
define the contracted tree (τ \ C)̃κ to be the contracted tree obtained from τκ through
the following procedure:

1. Remove from τκ all the edges and vertices that belong to C.
2. We note that an inner vertex that belongs to C will always have four neighbours

due to the tree being built from ternary trees. Let v be an inner vertex that belongs
to C. We then write v0 = p(v) for its parent and v2 for the unique descendant
which is not connected to v by an edge in C (recall the representation (4.11)). We
then distinguish between the following two cases:
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(a) Both v0 and v2 are not part of C, then we replace the two edges {v0, v} and
{v2, v} by a single edge {v0, v2}.

(b) If v0 (or v2) are part of C, we proceed going down (or up) in the tree until we
find a vertex w0 (or w2) not being part of C. Once, we found such vertices we
remove all edges crossed in this exploration (which don’t belong to C since
they connect inner nodes) and replace them by the edge {w0, w2}.5

The result of this procedure is a tree τ \ C with the contraction κ̃ consisting of the
remaining edges in κ after the above two steps.

For example, consider the following component of a tree

τ4τ3

τ1 τ2

.

In this example there are three v-cycles: one whose contraction-edges consists of only
the blue edges, one whose κ edges consist of the top blue edge and the red one and,
finally, one whose κ edges consists of the red one and the two blue ones below the red.
The process of removing the blue v-cycle is depicted below. The middle step shows
the component after removing the leaves and edges that are part of the v-cycle. The
rightmost tree is the final outcome after also replacing the edges incident to the inner
vertices of the v-cycle by a single edge.

τ4τ3

τ1 τ2

�→ τ4τ3

τ1 τ2
�→

τ4τ3

τ1 τ2 .

The following lemma provides the central estimate that quantifies the contributions
coming from v-cycles.

Lemma 4.9 Let τ ∈ T of the form τ = [τ1 · · · τn], τi ∈ T3, and κ ∈ K(τ ). For any
m ∈ N, let C be an m-cycle in the contracted tree τκ and denote the inner vertices of C
by v1, ..., vm with associated time-space coordinates (sv1, yv1), ..., (svm , yvm ). Recall

5 Note that we will always find vertices w0, w2 (which might agree with v0, v2), since going down we will
always hit the root last (which is not part of C), and going up we can always proceed because the sub-trees
are ternary.
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the kernel Kτκ,ε (sV, yV) from (4.5) associated to a contracted tree. Then

∫

(R2)IC

∫

D
LC
t

Kτκ,ε (sV, yV) dsLC dyVC

� ε
⊗m

(sv1, ..., svm )

⎧⎨
⎩
∏
v∈IC

1sdκ (v)�sv�sp(v)

⎫⎬
⎭ K τ̃̃κ ,ε(sV\C, yV\C), (4.16)

where τ̃ = τ \ C, κ̃ is the contraction induced by κ on τ̃ , p(v) denotes the parent of a
vertex v in τ and dκ(v) denotes the unique descendant of v which is not part of C.

Proof The proof follows the steps of the computation in Example 3 by crucially apply-
ing Chapman–Kolmogorov to the integration over the space variables associated to
the leaves of the v-cycle, combined with a uniform bound over the space variables on
the resulting product of heat kernels. In particular, we have

∫

(R2)LC

∏
{w,v} ∈ EC : v ∈ IC

p(m)
sv (yv − yw)

∏
{w,v} ∈ κ∩EC

λ2ε p2ε2(yw − yv) dyLC

= λ2mε

m∏
k=1

em(svk+svk+1 ) psvk+svk+1+2ε2(yvk+1 − yvk )

� λ2mε

m∏
k=1

em(svk+svk+1 ) psvk+svk+1+2ε2(0)

= ε
⊗m

((svk )k=1,...,m) ,

where we omitted integration over the time variables associated to leaves on the left-
hand side, as sw = 0 for all w ∈ LC, because of the Dirac–δ at zero. Inserting the
above into the left-hand side of (4.16) we obtain the desired estimate. It is useful to
have a pictorial representation of the estimate we have just performed:

τ4τ3

τ1 τ2
= τ4τ3

τ1 τ2

�
︸ ︷︷ ︸

ε

⊗3
((svk )k=1,...,3)

×
{

τ4τ3

τ1 τ2

}
,
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with the equality representing the application of Chapman–Kolmogorov, with the blue
cycle appearing on the right-hand side in the first line representing the weight

λ2mε

m∏
k=1

em(svk+svk+1 ) psvk+svk+1+2ε2(yvk+1 − yvk ) ,

and the inequality depicting the application of the uniform bound

m∏
k=1

em(svk+svk+1 ) psvk+svk+1+2ε2(yvk+1 − yvk ) �
m∏

k=1

em(svk+svk+1 ) psvk+svk+1+2ε2(0) .

The blue cycle appearing in the right-hand side in the second line represents the space-

independent kernel ε
⊗m

((svk )k=1,...,m) (hence we call this a spatial decoupling
from the remaining integral). The small red nodes indicate the remaining spatial inte-
grals associated to inner vertices of the extracted cycle. By another application of
Chapman–Kolmogorov, when integrating over the spatial variables associated to the
small red nodes, we obtain

τ4τ3

τ1 τ2
=

τ4τ3

τ1 τ2 .

This concludes the proof. �
The following lemma is crucial as it demonstrates that v-cycles of length larger

than one have a vanishing contribution, as ε → 0, and in fact, the contribution is even
smaller the larger the cycle is (because of the factor λ2mε ).

Lemma 4.10 The following bound holds for any m � 1

∫

[0,t]m
ε

⊗m
(s1, . . . , sm) ds1,...,m � (λεem t )2m

2m π
log

(
1+ t

ε2

)
, (4.17)

where we recall that m = max{m , 0}.
Proof In the case m = 1, the bound follows from (4.14), since

∫ t

0
ε(s) ds = λ2ε

∫ t

0

e2m s

4π(s + ε2)
ds � λ2εe

2m t

2π
log (1+ t

ε2
) . (4.18)

Thus, we assume m � 2 for the remainder of the proof. First, note that

s1 + sm + 2ε2 � 2
√

(s1 + ε2)(sm + ε2) �
√

(s1 + 2ε2)(sm + 2ε2) .
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Therefore:

∫

[0,t]m
ε

⊗m
(s1, ..., sm) ds1,...,m = λ2mε

(2π)m

∫

[0,t]m

m∏
k=1

em(sk+sk+1)

sk + sk+1 + 2ε2
ds1,...,m

� (λεem t )2m

(2π)m

∫

[0,t]m

1√
s1 + 2ε2

1√
sm + 2ε2

m−1∏
k=1

1

sk + sk+1 + 2ε2
ds1,...,m,

(4.19)

where we additionally used that em sk � em t . Furthermore, for 2 � k � m, using the
change of variables r = sk

sk−1+2ε2
together with the identity

∫∞
0

1√
r(1+r)

dr = π , we
have that

∫ t

0

1√
sk + 2ε2

1

sk−1 + sk + 2ε2
dsk � 1√

sk−1 + 2ε2

∫ t/(sk−1+2ε2)

0

1√
r

1

1+ r
dr

� π√
sk−1 + 2ε2

. (4.20)

Applying (4.20) (m − 1)-times to (4.19), starting from k = m and going down to
k = 2, yields

∫

[0,t]m
ε

⊗m
(s1, ..., sm) ds1,...,m � (λεem t )2m πm−1

(2π)m

∫ t

0

1√
s1 + 2ε2

1√
s1 + 2ε2

ds1

= (λεem t )2m

2m π
log

(
1+ t

2ε2
)
,

which concludes the proof. �
Next we want to define an iterative process of extracting cycles from a paired tree

and record this process via a mapping to an element of the permutation group. We
will call this the cycle extraction map and define it below. To define such algorithm,
it will be convenient to label vertices of trees. For a given tree τ ∈ T3, we fix a
representative ordered version of it and label the inner vertices of [τ, τ ] (excluding
the root) with the numbers {1, . . . , 2i(τ )} in arbitrary order. Once we have labeled
all inner nodes, we label its leaves with the integers {2i(τ ) + 1, . . . , 4i(τ ) + 2}. In
particular, the arguments that follow depend on the ordered structure of the trees
under consideration. Yet, the eventual estimates that we obtain are uniform over all
representatives of a given unordered tree, so this will not cause any problem. Now, it
will be convenient to define an ordering among sequences of labels.

Definition 4.11 (Lexicographic ordering) For two vectors V = (v1, ..., vd) ∈ Nd and
U = (u1, ..., ue) ∈ Ne with d and e not necessarily equal, we say that V precedes U in
lexicographic order and write V ≺ U if

• either there exists a k � d ∧ e such that vz = uz for z � k − 1 and vk < uk ,
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• or d < e and vz = uz for z � d.

The lexicographic order extends naturally to a total order on the set of v-cycles of
a tree. Let C be a v-cycle, represented by the path-vector

VC := (vi1 , v j1 , v j2 , vi2 , ..., vim , v j2m−1 , v j2m ) , such that vik ∈ IC , v jk ∈ LC,

(4.21)

with consecutive vertices in the vector being connected by an edge in the v-cycle.
Here i1 is the minimal label in IC, and v j1 the leaf with minimal label neighbouring
vi1 . This imposes a direction the path-vector is represented in. Now, let C′ be a second
v-cycle represented by the vector VC′ , then

C ≺ C′ if VC ≺ VC′ lexicographically. (4.22)

In this setting we can introduce the cycle extraction map �τ , for any τ ∈ T3.

Definition 4.12 (Cycle extraction map) For any τ ∈ T3 and γ ∈ Y(τ, τ ), we will
define inductively a sequence of v-cycles extracted from [τ, τ ]γ as follows:

1. Start by defining σ1 := [τ, τ ]γ and γ1 := γ and denote by C1 the minimal v-
cycle in σ1 (whose existence is guaranteed by Lemma 4.7) with respect to the
lexicographic order. Define σ2 := σ1 \ C1 and on σ2 the contraction γ2 induced by
γ1 after the cycle removal of C1, according to Definition 4.8.

2. Assume that we have defined the contracted trees (σi )γi , for i = 1, ..., k, as well
as the v-cycles C1, ..., Ck−1 belonging respectively to (σ1)γ1 , ..., (σk−1)γk−1 . Then
proceedbydefiningCk to be theminimal v-cycle belonging toσk ,with respect to the
lexicographic order. Further, define the contracted graph (σk+1)γk+1 := (σk \Ck)γ̃k
via the cycle removal as in Definition 4.8.

3. Stop at K (τ, γ ) := k if σk+1 = .

Definition 4.13 (Permutation extraction map) For n ∈ N, let Sn denote the symmetric
group over n elements, and let τ ∈ T3.We define as follows the permutation extraction
map

�τ : Y(τ, τ ) → S2i(τ ) .

For any γ ∈ Y(τ, τ ) consider the sequence of v-cycles (Ck)K (τ,γ )

k=1 constructed from
[τ, τ ]γ via the cycle extraction map from Definition 4.12. For any Ck belonging to this
sequence let v

i (k)1
, ..., v

i (k)mk
be the vertices in ICk , listed in the same order as in (4.21).

We then map every cycle to a permutation cycle

Ck �→ Ĉk :=
(
i (k)1 i (k)2 · · · i (k)mk

) ∈ S2i(τ ) ,

where we used the cycle notation (i (k)1 i (k)2 · · · i (k)mk ) for the permutation i (k)j �→ i (k)j+1,

for j = 1, . . . ,mk , with i
(k)
mk+1 = i (k)1 . The image of γ under the permutation extraction
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map π = �τ(γ ) is then defined as

π =
K (τ,γ )∏
k=1

(
i (k)1 i (k)2 · · · i (k)mk

)
.

To clarify the tools we have introduced so far, let us discuss an example.

Example 4 Consider the following paired tree

γ =
3

1 2

4
=: (σ1)γ1 ,

where wemarked theminimal v-cycle (with respect to lexicographic ordering) in blue,
whichwill be removed in the first iteration of the cycle extraction. For the sake of clarity
we omitted the labels of the leaves in the diagram above, and merely represent the
corresponding v-cycles by their inner nodes. Removing the blue v-cycle in the diagram
above yields

(σ2)γ2 = 2
and Ĉ1 =

(
1 3 4

)
,

where once more wemarked the newminimal v-cycle in blue. Removing the new blue
cycle then yields

(σ3)γ3 = and Ĉ2 =
(
2
)
.

Overall, for the above example, the permutation extraction map �τ yields

γ �→ (
1 3 4

)(
2
) ∈ S4 . (4.23)

Some remarks on the permutation extraction map are due. First, we note that the
mapping is well defined. This is because once a minimal v-cycle is to be extracted, the
integers indexing its base points are removed from the permutation and the new tree
has inner vertices indexed by the remaining integers. A second observation is that it
is not bijective. To see that the map is not injective, consider the tree from Example 4,
however, now with the pairing

3

1 2

4
,
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where again wemarked the minimal v-cycles in blue. Then�τ maps the above pairing
also to the permutation (4.23). Moreover, the map is not surjective: For example
consider a paired tree [τ, τ ] containing the component

τ1 τ2

2

1

3

and a permutationπ ∈ Sn containing the permutation cycle
(
1 2 3

)
. Then there exists no

pairing γ ∈ Y(τ, τ ) such that�τ(γ ) = π, since it is not possible to construct a v-cycle
according to this permutation cycle. Indeed, let us try to construct a corresponding
v-cycle and see that this fails. Necessarily, γ would contain an edge contracting a leaf
connected to v2 and v3. Moreover, we can only connect a single leaf neighbouring
either v2 or v3 to the isolated leave neighbouring v1, say we choose a leaf at v2. Then
the pairing γ would contain the following edges (in red):

τ1 τ2

2

1

3
.

Now, it is not possible to close a v-cycle with v3, while also crossing v1, v2. Note that
this construction does not depend on the specific leaves we chose. In particular, the
roles of v2 and v3 can be reversed.

The main result of this section is an upper bound on the integral represented by a
paired tree. This bound is obtained via the permutation cycle sequence extracted by
the map �τ . The upper bound will turn out to be sharp when �τ(γ ) = Id, meaning
that only cycles of length one are extracted. Before we state the result, let us introduce
the following notation for the time-simplex induced by a tree. For a tree τ ∈ T we
define

Dτ (t) := {s ∈ [0, t]I(τ )\o : if p(u) = v, then sv ≥ su} , (4.24)

with the usual convention that so = t and p(u) denoting the parent of u.

Lemma 4.14 Let τ ∈ T3 and i(τ ) be the number of internal vertices of τ . Forπ ∈ S2i(τ )

with permutation cycle decomposition {̂Ci }K (π)
i=1 and γ ∈ �−1

τ (π), we have

[τ, τ ]γ,ε(t, x) � λ2ε

( ∫

D[τ,τ ](t)
�π,ε(sI) dsI

)
e2m t p2(t+ε2)(0) , ∀π ∈ Sn,

[τ, τ ]γ,ε(t, x) = λ2ε

( ∫

D[τ,τ ](t)
�π,ε(sI) dsI

)
e2m t p2(t+ε2)(0) , if π = Id,
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where I := I([τ, τ ]) \ o and

�π,ε(s) :=
K (π)∏
i=1

ε
⊗|̂Ci |

(sv; v ∈ ÎCi ) , (4.25)

with ε
⊗n

defined in (4.15). Here IĈ denotes all those inner vertices whose labels
lie in the permutation cycle Ĉ.

Proof Let π ∈ S2i(τ ) and γ ∈ �−1
τ (π). The proof works by extracting cycles succes-

sively from [τ, τ ] and using Lemma 4.9 to obtain a bound on [τ, τ ]γ,ε in terms of these
cycles. We write V = V([τ, τ ]) \ o and I = I([τ, τ ]) \ o. Starting with the extraction
of the minimal v-cycle C1 in [τ, τ ]γ , we have

[τ, τ ]γ,ε(t, x)

�
∫

D
V\C1
t

K t,x
([τ,τ ]\C1)γ̃ (sV\C1, yV\C1)

∫

[0,t]IC1
ε

⊗|IC1 |(sv; v ∈ IC1)
⎧
⎨
⎩

∏
v∈IC1

1sdτ,γ (v)�sv�spτ (v)

⎫
⎬
⎭ dsIC1 dsV\C1 dyV\C1 , (4.26)

where K t,x
([τ,τ ]\C1)γ̃ denotes the kernel corresponding to the fully contracted tree ([τ, τ ]\

C1)γ̃ = (σ1)γ̃ , following the notation in Definition 4.8, and dτ,γ (v) indicates the
unique descendant of v ∈ IC1 not in C1 (see also Lemma 4.9). We can then proceed
iteratively by extracting the v-cycles via the cycle extractionmap fromDefinition 4.12,
until we reach the tree . In this way we obtain the upper bound, using Lemma 4.9,

[τ, τ ]γ,ε(t, x)

� ε(t, x)
∫

[0,t]I

K (τ,γ )∏
i=1⎧⎨

⎩ ε
⊗|ICi |(sv; v ∈ ICi )

⎧⎨
⎩

∏
v∈ICi

1sdσi ,γ (v)�sv�spσi (v)

⎫⎬
⎭

⎫⎬
⎭ dsI , (4.27)

with the sequence of v-cycles (Ck)K (τ,γ )

k=1 and the sequence of reduced trees (σi )
K (τ,γ )

i=1
from the cycle extraction map. Note that K (τ, γ ) equals the number of permutation
cycles K (π). In order to avoid confusion, we added a subindex pσi to the parent map
p (and also to the descendant map dγ ), making clear with respect to which tree the
map is to be interpreted. In Lemma A.5, we will see that the time-integral over the
indicator functions in (4.27) preserves the original ordering imposed by the tree. More
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precisely, it is independent of the chosen pairing γ and equals the integral over the tree
simplex D[τ,τ ](t). Thus, by application of Lemma A.5, the inequality (4.27) reads

[τ, τ ]γ,ε(t, x) � ε(t, x)
∫

D[τ,τ ](t)

K (π)∏
i=1

ε
⊗|ICi |(sv; v ∈ ICi ) dsI

= λ2εe
2m t p2(t+ε2)(0)

( ∫

D[τ,τ ](t)
�π,ε(sI) dsI

)
,

which yields the desired upper bound. If π = Id, then the inequality in the first line
becomes an equality as we are successively removing 1-cycles and apply the identity
in Lemma 4.5, rather than the upper bound in Lemma 4.9. The proof is complete. �

5 Contributing and non-contributing trees and their structure

This section is dedicated to the proof of Proposition 3.3. Obtaining this result requires
a precise quantitative control over the limiting behavior of contracted and paired trees.
Such control will build on a systematic application of the bounds and ideas that we
have introduced in Sect. 4, and in particular it will build on Lemma 4.14 above.

In the previous section we analysed paired trees and found that it was possible to
identify v-cycles and remove them iteratively to obtain an upper bound (or an exact
estimate, in the case when all v-cycles are 1-cycles) on the integral associated to such
a tree. In this section we start instead with an arbitrary contracted ternary tree [τ ]κ .
Our objective is to obtain a bound (or an exact estimate) on the second moment of
the Wiener integral associated to such contracted tree. To obtain such estimate, we
must sum over all possible pairings γ of [τ, τ ] which complete the contraction κ , and
for each such pairing we can follow the procedure described in the previous section.
One of the key points of this section is therefore to keep track of all the combinatorial
factors that appear when counting pairings and contractions associated to arbitrarily
large trees.

This sectionwill be split into two parts. First, we study those contracted trees that do
not vanish in the limit ε → 0 (i.e. that contribute) and identify them using properties
of the underlying graph τκ . We also determine their precise limiting contribution and
the size of the set of all such contractions. In the second part, we will instead state
and prove a uniform upper bound for the rate of convergence of contracted trees that
vanish as ε → 0 (i.e. that do not contribute).

5.1 Contributing contractions

We start by studying those contracted trees that contribute to the fluctuations in the
limit ε → 0, and for which an exact estimate of the contribution is necessary. For this
reason, let us define contributing contractions as follows.
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Definition 5.1 For any tree τ ∈ T3 and contraction κ ∈ K(τ ), we say that κ contributes
if there exist (t, x) ∈ (0,∞) × R2 such that

lim sup
ε→0

(log 1
ε
) · E

[∣∣[τ ]ε,κ (t, x)
∣∣2] > 0 . (5.1)

We denote the set of all contributing contractions by

C(τ ) := {κ such that τκ contributes} ⊆ K(τ ) .

5.1.1 Identifying contributing contractions

Before determining the precise contribution of contracted trees, we show that the
abstract condition in (5.1) can be replaced by a condition on the underlying graph
structure of the contracted tree. More precisely, we will see that the estimates of
Sect. 4.3 imply that contracted trees contribute if and only if the corresponding integrals
lie in the first homogeneousWiener chaos andwe can iteratively remove 1-cycles from
them.

Lemma 5.2 Let τ ∈ T3, then

(i) C(τ ) = {κ ∈ K(τ ) : ∃γ ∈ Y(τκ , τκ) with �τ(γ ) = Id}.
(ii) If κ ∈ C(τ ), then τκ has a single uncontracted leaf. That is, [τ ]κ lies in the first

Wiener chaos and is therefore Gaussian.

We postpone the proof of the lemma to the end of this section. The property of
being contributing, associated to a contracted tree [τ ]κ , is defined using the second
moment condition (5.1). We can express (5.1) by summing [τ, τ ]γ over all pairings
in γ ∈ Y(τκ , τκ), recall (4.8). The paired tree obtained, once we fix an element of
Y(τκ , τκ), can be treated via Lemma 4.14. In particular, it turns out that for contributing
trees τκ and γ ∈ Y(τκ , τκ) the cycle extraction map satisfies �τ(γ ) = Id. As a
consequence, we can determine precisely the limiting behavior of such paired trees
through the last statement of Lemma 4.14, which is the key ingredient in the proof of
Lemma 5.2. This is the content of the following lemma.

Lemma 5.3 Let τ ∈ T3, τ = T (τ ) be the trimmed tree, as in (2.18), and π ∈ S2i(τ ).
Then for every γ ∈ �−1

τ (π) and all (t, x) ∈ (0,∞) × R2

lim
ε→0

(log 1
ε
) · [τ, τ ]γ,ε(t, x) =

⎧
⎪⎨
⎪⎩

λ̂2
{

1
τ !
(

λ̂2

2π

)|τ |}2

p(m)
2t (0) if π = Id ,

0 otherwise .

If the above limit vanishes, we say γ is a non-contributing pairing, and call it a
contributing pairing otherwise.

The proof of Lemma 5.3 uses the following identity.

123



The Allen–Cahn equation with weakly critical random initial datum

Lemma 5.4 Let τ ∈ T3 and τ = T (τ ) be the trimmed tree as in (2.18), then

∫

D[τ ](t)

∏
v∈I(τ )

λ2εe
2m sv

4π(sv + ε2)
dsI(τ ) = 1

τ !
(

λ2ε

4π

∫ t

0

e2m s

s + ε2
ds

)|τ |
=: [τ ]ε(t), (5.2)

with the tree-time-simplex D[τ ](t) introduced in (4.24).

This lemma is a consequence of Lemma A.3, since the integrand on the left-hand
side in (5.2) is a symmetric function over the variables sI(τ ) = sV(τ ).

Proof of Lemma 5.3 Consider τ ∈ T3, π ∈ S2i(τ ) and γ ∈ �−1
τ (π). Then for all

(t, x) ∈ (0,∞) × R2, Lemma 4.14 implies

(log 1
ε
) · [τ, τ ]γ,ε(t, x) � λ̂2

{∫

D[τ,τ ](t)
�π,ε(s) dsI

}
e2m t p2(t+ε2)(0) ,

where we remind that I := I([τ, τ ]) \ o. Extending the domain of integration from
D[τ,τ ](t) to [0, t]I, the right-hand side can be factorised

(log 1
ε
) · [τ, τ ]γ,ε(t, x) � λ̂2

⎧⎨
⎩

K (τ,γ )∏
i=1

∫

[0,t]ICi
ε

⊗|ICi |(sv; v ∈ ICi ) dsICi

⎫⎬
⎭ e2m t

p2(t+ε2)(0) ,

where (Ci )K (τ,γ )

i=1 denotes the sequence of v-cycles constructed from [τ, τ ]γ via the
cycle extraction map (Definition 4.12). For each of the integrals we have

∫

[0,t]ICi
ε

⊗|ICi |
(sv; v ∈ ICi ) dsICi

⎧
⎪⎪⎨
⎪⎪⎩

= λ2ε
4π

∫ t
0

e2m s

s+ε2
ds if |ICi | = 1 ,

� (λεem t )
2|ICi |

2
|ICi | π

log
(
1+ t

ε2

)
if |ICi | � 2 ,

where for the case |ICi | � 2 we used Lemma 4.10. Note that the right-hand side in
the second case vanishes in the limit ε → 0, since λε ∼ (log 1

ε
)−1/2. In particular,

if π �= Id then at least one v-cycle Ci must satisfy |ICi | � 2, which yields that
[τ, τ ]γ,ε(t, x) vanishes as ε → 0.

On the other hand, if π = Id all the v-cycles Ci are 1-cycles and we can replace all
inequalities with identities to obtain

(log 1
ε
) · [τ, τ ]γ,ε(t, x) = λ̂2

{∫

D[τ,τ ](t)

∏
v∈I

ε
⊗1

(sv) dsI

}
e2m t p2(t+ε2)(0)

= λ̂2

⎧
⎨
⎩
∫

D[τ ](t)

∏
v∈I(τ )

λ2εe
2m sv

4π(sv + ε2)
dsI(τ )

⎫
⎬
⎭

2

e2m t p2(t+ε2)(0) .
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Hence, we deduce from Lemma 5.4 and Lemma A.1 that

lim
ε→0

(log 1
ε
) · [τ, τ ]γ,ε(t, x) = λ̂2

⎧⎨
⎩

1

τ !

(
λ̂2

2π

)|τ |⎫⎬
⎭

2

p(m)
2t (0) ,

which concludes the proof. �
Finally,we are ready to show that contributing contractions can be identified as those

that have a single uncontracted leaf and allow for an iterative removal of 1-cycles.

Proof of Lemma 5.2 Let us start by recalling from (4.8) that for any tree τ ∈ T3 and
any contraction κ ∈ K(τ )

(log 1
ε
) · E

[
[τ ]2κ,ε(t, x)

]
=

∑
γ∈Y(τκ ,τκ )

(log 1
ε
) · [τ, τ ]γ,ε(t, x) .

Therefore, to prove the first statement of the lemma, it suffices to prove that

lim
ε→0

(log 1
ε
) · [τ, τ ]γ,ε(t, x) > 0 ,

for all (t, x) ∈ (0,∞)×R2 if and only if�τ(γ ) = Id, which is implied by Lemma 5.3.
For the second statement we instead proceed by induction over the number of inner

vertices i(τ ). We can check that the statement is true for i(τ ) = 0, i.e. τ = , since
|Y(τ, τ )| = 1 and

lim sup
ε→0

(log 1
ε
) · E[∣∣ ε

∣∣2(t, x)] > 0 .

Now, let m ∈ N and assume that the statement holds for all τ ′ ∈ T3 satisfying
i(τ ′) � m. Choose τ ∈ T3 with i(τ ) = m + 1 and let κ ∈ C(τ ). By the first
point of the present Lemma 5.2, which we have just proven, we know there exists a
γ ∈ Y(τκ , τκ) ∩ �−1

τ (Id). In particular, let C1 be the first 1-cycle that is extracted by
the permutation-extraction map applied to the pairing γ , and write (σ2)γ2 = ([τ, τ ] \
C1)γ2 = [τ̂ , τ ]γ2 , with τ̂ := τ \ C1, assuming without loss of generality that we have
removed the cycle from the left tree.

Then via (4.26), we deduce that

[τ, τ ]γ,ε(t, x) �
∫

D
V\C1
t

K t,x
([τ,τ ]\C1)γ2 (sV\C1, yV\C1)

∫ t

0
ε

⊗1
(sv; v ∈ IC1)

⎧⎨
⎩

∏
v∈IC1

1sdγ (v)�sv�sp(v)

⎫⎬
⎭ dsIC1 dsV\C1 dyV\C1 ,

(5.3)
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where we again used V = V([τ, τ ]) \ o. Note that the product in the expression above
only consists of a single term, because C1 is a 1-cycle. Dropping the time-constraint
encoded by 1dγ (v)�sv�sp(v)

, we therefore obtain

[τ, τ ]γ,ε(t, x) � [τ̂ , τ ]γ2,ε(t, x)
{∫ t

0
ε

⊗1
(sv; v ∈ IC1) dsIC1

}
. (5.4)

Now, taking the lim sup over ε → 0 after multiplying both sides with (log 1
ε
) yields

0 < lim sup
ε→0

(log 1
ε
) [τ, τ ]γ,ε(t, x) � λ̂2

2π
lim sup

ε→0
(log 1

ε
) [τ̂ , τ ]γ2,ε(t, x) . (5.5)

Here, the first inequality holds since κ ∈ C(τ ), while the second inequality is a
consequence of (5.4) and Lemma A.1. In particular, the limit on the right-hand side
must be positive. Next, by Definition 4.3 there exists (κ1(γ2), κ2(γ2)) such that γ2 ∈
Y(τ̂κ1(γ2), τκ2(γ2)), with κ2(γ2) = κ , so via an application of the Cauchy–Schwartz
inequality we obtain

[τ̂ , τ ]γ2,ε � E
[[τ̂ ]κ1(γ2),ε [τ ]κ,ε

]
�
(
E

[
[τ̂ ]2κ1(γ2),ε

]) 1
2
(
E

[
[τ ]2κ,ε

]) 1
2

, (5.6)

which together with (5.5) implies κ1(γ2) ∈ C(τ̂ ). By the induction assumption, τ̂κ1(γ2)

(note that i(τ̂ ) = m) has a single uncontracted leaf, which implies that also τκ has a
single uncontracted leaf. This concludes the proof. �

Note that Lemma 5.2, together with the identity from Lemma 5.3, implies that if
κ ∈ C(τ ) then [τ ]ε,κ is (and converges after rescaling to) a mean-zero Gaussian, with
limiting fluctuations

lim
ε→0

√
log 1

ε
· ∥∥[τ ]ε,κ (t, x)

∥∥
L2(P)

= λ̂

τ !

(
λ̂2

2π

)|τ |√
p(m)
2t (0) .

In the next subsection, we will see that a stronger statement holds true, as we will be
able to identify [τ ]κ,ε with ε up to a multiplicative factor.

5.1.2 Determining contributions

In the previous section, we identified contributing pairings (and contractions) to be
the ones mapped by �τ to the identity permutation, i.e. the algorithm defined in
Definition 4.12 only extracts cycles of length one. Precisely this fact will turn out to
be useful, when determining the following identity for contributing contracted trees.

Lemma 5.5 For every τ ∈ T3, κ ∈ C(τ ), ε ∈ (0, 1
2 ) and (t, x) ∈ (0,∞) × R2 we

have that

[τ ]κ,ε(t, x) = 1

τ !
(

λ2ε

4π

∫ t

0

e2m s

s + ε2
ds

)|τ |
ε(t, x) = [τ ]ε(t) ε(t, x) .
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Note that the right-hand side of the identity in the lemma above does not depend
on the particular contraction κ ∈ C(τ ).

Proof Fix τ ∈ T3 and let κ ∈ C(τ ). Choose γ ∈ �−1
τ (Id) ∩ Y(τκ , τκ), which exists

by Lemma 5.2(i). Since γ ∈ �−1
τ (Id), the cycle extraction map, see Definition 4.12,

associates to γ a sequence of 1-cycles (Ci )2i(τ )
i=1 . In order to distinguish between the two

trees generating [τ, τ ], let us write [τ1, τ2] := [τ, τ ]. Now, let (C′i )i(τ )
i=1 be the subset of

cycles whose bases belong to the tree τ1. In other words, (C′i )
i(τ )
i=1 contains all cycles

in (Ci )2i(τ )
i=1 such that ICi ⊂ I(τ1). This yields an iterative rule of removing 1-cycles

from [τ1]κ = [τ ]κ . In particular, each Ci corresponds to a unique inner node vi of τ .
Recall that for v ∈ I(τ ) we write p(v) ∈ I([τ ]) for the parent of v and recall also

the representation of the stochastic integrals in (4.4), which allows us to write

[τ ]κ,ε(t, x) =
∫

DV(τ )
t

K t,x
[τκ ](sV, yV) dsV(τ ) dyV(τ )\� ηε( dy�) ,

where we denote by (s�, y�) the space-time point associated to the single uncontracted
leaf in τκ , cf. Lemma 5.2(ii). We apply Lemma 4.5 with respect to the 1-cycle C′1,
which yields

[τ ]κ,ε(t, x) =
∫

D
V(τ )\C′1
t

{∫ t

0
ε

⊗1
(sv1)1{sdκ (v1)�sv1�sp(v1)} dsv1

}

K [̃τ̃κ ](sV(τ )\C′1 , yV(τ )\C′1) dsV(τ )\C′1 dyV(τ )\(�∪C′1) ηε( dy�) .

Now, by applying Lemma 4.5 successively another i(τ )−1 times with respect to each
of the 1-cycles (C′i )

i(τ )
i=2, we obtain

[τ ]κ,ε(t, x) =
⎧⎨
⎩
∫

[0,t]I(τ )

∏
v∈I(τ )

ε
⊗1

(sv)1{sdκ (v)�sv�sp(v)} dsI(τ )

⎫⎬
⎭

∫

R2
p(m)
t (y� − x) ηε( dy�) .

The stochastic integral on the right-hand side equals ε, whereas the time integral in
the brackets can be rewritten as

∫

[0,t]I(τ )

∏
v∈I(τ )

ε
⊗1

(sv)1{sdκ (v)�sv�sp(v)} dsI(τ )

=
∫

D[τ ](t)

∏
v∈I(τ )

λ2ε e
2m sv

4π(sv + ε2)
dsI(τ ),
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where we used that

∏
v∈I(τ )

1{sdκ (v)�sv�sp(v)} =
∏

v∈I(τ )

1{sv�sp(v)} .

Together with Lemma 5.4, this concludes the proof. �

5.1.3 Counting contributing contractions

In the previous section, we saw that the limit of a contributing contracted tree is
independent of the precise structure of the contraction. Thus, in order to conclude the
limit of X τ , it is only left to determine the size of C(τ ).

Lemma 5.6 Let τ ∈ T3, then |C(τ )| = 3i(τ ).

In order to prove Lemma 5.6, we first need the following result.

Lemma 5.7 Let τ ∈ T3 and κ ∈ C(τ ), then every trident in τκ has an internal
contraction. More precisely, for every v ∈ V (τ ), with

V (τ ) := {v ∈ I(τ ) : there exist exactly three u1, u2, u3 ∈ L(τ ) such that p(ui ) = v} ,

we have {ui , u j } ∈ κ for two distinct i, j ∈ {1, 2, 3}.
Proof Let τ ∈ T3, κ ∈ C(τ ) and consider [τ, τ ]γ for the unique γ ∈ Y(τκ , τκ), see
Lemma 5.2(ii). For any v ∈ V (τ ), we write u1(v), u2(v), u3(v) ∈ L(τ ) for the three
leaves it is connected to (indexing them with 1 to 3 from left to right).

Now, assume there exists a v ∈ V (τ ) without an internal contraction, i.e.
{ui (v), u j (v)} /∈ κ for all 1 � i, j � 3. Graphically, this can be represented as
follows:

τ1 τ2v

u1 u2 u3
, (5.7)

for some τ1, τ2 ∈ T3 (note that possibly one of the leaves could be uncontracted, which
is indicated in the example above by the dotted red line). Then it is immediate to see
that �τ(γ ) �= Id, since otherwise {ui (v), u j (v)} ∈ κ ⊂ γ for some 1 � i, j � 3.
Thus, contradicting the assumption κ ∈ C(τ ) by Lemma 5.2(i). This concludes the
proof. �
Proof of Lemma 5.6 We prove the statement by induction over the number of inner
vertices i(τ ), starting with i(τ ) = 0, i.e. τ = . In this case, |C(τ )| = |K(τ )| =
|Y(τ, τ )| = 1 and the claim holds. Now assume the statement holds true for any
τ̂ ∈ T3 satisfying i (̂τ ) � m.
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Let τ ∈ T3 with i(τ ) = m+ 1 and fix any v ∈ V (τ ). We denote its neighbouring
leaves by u1(v), u2(v), u3(v) ∈ L(τ ) (indexing them with 1 to 3 from left to right):

τ1 τ2v

u1 u2 u3
, (5.8)

for some τ1, τ2 ∈ T3. Again note that possibly one of the leaves could be
uncontracted. Moreover, using Lemma 5.7, we can partition C(τ ) into three sets,
C1,2(τ ),C1,3(τ ),C2,3(τ ), with

Ci, j (τ ) := {
κ ∈ C(τ ) : {ui (v), u j (v)} ∈ κ

}
.

For any contraction κ ∈ C(τ ) we define the tree resulting from τκ after removing the
1-cycle C with IC = {v}:

τ̂κ̃ := (τ \ C)κ̃ , (5.9)

using the cycle removal from Definition 4.8. Expression (5.9) defines a map Kv :
C(τ ) → K(̂τ ) with Kv(κ) := κ̃ . Moreover, we have that κ̃ is contributing for τ̂

(namely κ̃ = Kv(κ) ∈ C(τ̂ )).
In fact, for any choice 1 � i < j � 3, the map Kv|Ci, j (τ ) maps onto C (̂τ ) and

defines a bijection. To see this, consider an arbitrary contraction κ̂ ∈ C (̂τ ) (with
the labeling of τ̂ induced by τ ) and define κ := κ̂ ∪ {ui (v), u j (v)}. For example
we have the following reconstruction of a contraction in C2,3(τ ) using the inverse
(Kv|C2,3(τ ))

−1:

[̂τ ]̂κ = τ1 τ2w �→ τ1 τ2v

w = u1 u2 u3 = [τ ]κ . (5.10)

On the other hand, for the same κ̂ we can also reconstruct the following two contrac-
tions in C1,2(τ ) and C1,3(τ ) , respectively:

τ1 τ2v

u1 u2 u3 = w

and τ1 τ2v

u1 w u3
.

In particular, for each set Ci, j (τ ) there exists a unique κ ∈ Ci, j (τ ) such that Kv(κ) =
κ̂ . As a consequence all three sets Ci, j (τ ) have the same cardinality, which agrees
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with |C (̂τ )|. Lastly, applying the induction hypothesis to |C (̂τ )|, yields

|C(τ )| = |C1,2(τ )| + |C1,3(τ )| + |C2,3(τ )| = 3|C (̂τ )| = 3m+1 .

This concludes the proof. �

5.2 Non-contributing trees

Up to now, we have identified contributing pairings (and contractions) to be the ones
that lie in the pre-image �−1

τ (Id), when considering a fixed tree τ ∈ T3 . Moreover,
we determined their exact contribution. Now, it is only left to control the overall
contribution of the remaining contractions, which we will prove to be negligible, in
a strong summable fashion. We summarise the main findings of this section in the
following lemma.

Lemma 5.8 Let T > 0, then uniformly over any ε ∈ (0, 1
T ∧ 1

2 ), τ ∈ TNε

3 , for
Nε = �log 1

ε
�, x ∈ R2 and uniformly for all t ∈ [0, T ], we have

∥∥∥
∑

κ /∈C(τ )

√
log 1

ε
· [τ ]κ,ε(t, x)

∥∥∥
L2(P)

� 1√
4 log 1

ε

1

τ !

(
6e2+2π λ̂2e2m t

π

)|τ |
λ̂em t

√
4(t + ε2)

,

where τ denotes the trimmed tree T (τ ) as in (2.18). In particular, for a fixed τ ∈ T3
the right-hand side vanishes in the small-ε limit.

Remark 5.9 Our methods in Sect. 4.3 (such as the cycle extraction and the correspond-
ing estimates in Lemma 4.14) also apply to covariances of the form

(
log 1

ε

) ·
∑

κ,κ ′ /∈C(τ )

E
[[τ ]κ,ε(t, x)[τ ]κ,ε(t

′, x ′)
]
,

instead of just second moments as considered in Lemma 5.8. For this we don’t iden-
tify the roots of the trees [τ ]κ and [τ ]κ ′ , when pairing the two trees, but keep them
separate with individual time-space points associated. Thus, instead of stopping the

cycle extraction (Definition 4.12) once we see , we terminate the algorithm once

appears. For this reason, we would see a
√

πe2m t p2(t+ε2)(x − x ′) instead of

em t

√
4(t + ε2)

=
√

πe2m t p2(t+ε2)(0) ,

on the right-hand side of Lemma 5.8. In particular, we expect this to allow for treatment
of the statistics of the corresponding field associated to (1.3) in the Hölder space
C+1−(R2) for fixed t > 0, which we leave for future work.
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For the proof of Lemma 5.8 we need the following two lemmas. The first is an
upper bound of a “symmetrised” integral over v-cycles.

Lemma 5.10 Let T > 0. Then uniformly over any ε ∈ (0, 1
T ∧ 1

2 ), t ∈ [0, T ] and
τ ∈ TNε

3 , Nε = �log 1
ε
�, we have

∑
π∈S2i(τ )\{Id}

( ∫

D[τ,τ ](t)
�π,ε(sI) dsI

)
� 1

log 1
ε

1

(τ !)2
(λ̂em t )4i(τ )

4π2i(τ )−1
e2(2+2π) i(τ ) ,

where I := I([τ, τ ])\o, and τ = T (τ ) denotes the trimmed tree (2.18). Recall (4.25)
for the definition of the function �π,ε.

The next result guarantees that the number of pairings γ of a tree [τ, τ ], which
correspond to a permutation π ∈ S2i(τ ), grows at most exponentially in the number of
inner vertices of a tree.

Lemma 5.11 Let τ ∈ T3 and π ∈ S2i(τ ), then
∣∣�−1

τ (π)
∣∣ � 62i(τ ).

Having both Lemma 5.10 and 5.11 at hand, we can now prove Lemma 5.8. The
proofs of Lemma 5.10 and 5.11 are deferred to the end of this section.

Proof of Lemma 5.8 Consider T > 0, ε ∈ (0, 1
T ∧ 1

2 ) and (t, x) ∈ [0, T ] × R2. By
representing second moments of contracted trees in terms of paired trees, cf. (4.8), we
have

∥∥∥∥∥∥
∑

κ /∈C(τ )

√
log 1

ε
· [τ ]κ,ε(t, x)

∥∥∥∥∥∥

2

L2(P)

= log 1
ε

∑

κ,κ ′ /∈C(τ )

∑
γ∈Y(τκ ,τκ′ )

[τ, τ ]γ,ε(t, x)

� log 1
ε

∑
π∈S2i(τ )\{Id}

∑

γ∈�−1
τ (π)

[τ, τ ]γ,ε(t, x) ,

where we used additionally Lemma 5.3 to identify non-contributing pairings as pre-
cisely the ones that do not map onto Id under �τ

6, and the fact that

∃γ ∈ Y(τκ , τκ ′) lim sup
ε→0

(
log 1

ε

) [τ, τ ]γ,ε(t, x) > 0 ⇔ κ, κ ′ ∈ C(τ ) ,

which is a consequence of the Cauchy–Schwartz inequality, cf. (5.6), and Lemma 5.2.
Thus, Lemmas 4.14 and 5.11 imply

∥∥∥∥
∑

κ /∈C(τ )

√
log 1

ε
· [τ ]κ,ε(t, x)

∥∥∥∥
2

L2(P)

�
(
log 1

ε

)
λ2ε 6

2i(τ )
∑

π∈S2i(τ )\{Id}

( ∫

D[τ,τ ](t)
�π,ε(sI) dsI

)
e2m t p2(t+ε2)(0) .

6 Because on the right-hand side we sum over all non-contributing pairings, which may consist of one
contributing contraction and one contraction that doesn’t contribute, we overestimate the left-hand side,
which is the reason for the inequality.
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Applying Lemma 5.10, this can be further upper bounded by

λ2ε 6
2i(τ ) 1

(τ !)2
(λ̂em t )4i(τ )

4π2i(τ )−1
e2(2+2π) i(τ ) e2m t p2(t+ε2)(0)

= 1

4 log 1
ε

1

(τ !)2
(
6e2+2π λ̂2e2m t

π

)2i(τ )
λ̂2e2m t

4(t + ε2)
.

Since i(τ ) = |τ |, the result follows by taking the square root. �
Now we pass to the proof of Lemma 5.10. Note that this is an improvement of

Lemma 5.3. Indeed, instead of extending the integration domain fromD[τ,τ ](t) to the
box [0, t]I([τ,τ ])\o, as it was done in the proof of the latter lemma, we will make use
of the fact that summation over all permutations in π ∈ Sn \ {Id} has a symmetrising
effect that allows for a more precise control of the integral.

Lemma 5.12 Fix ε ∈ (0, 1
2 ) and n ∈ N. Consider for any π ∈ Sn the function �π,ε

introduced in (4.25). Then the function �ε : [0,∞)n → R defined by

�ε(s1, . . . sn) :=
∑

π∈Sn\{Id}
�π,ε(s1, . . . , sn) ,

is symmetric in the variables s1, · · · , sn.

Proof It suffices to consider the function ϕε given by

(s1, ..., sn) �→
∑
π∈Sn

n∏
i=1

1

si + sπ(i) + 2ε2
,

since the term corresponding to the identity partition is symmetric itself and we have

�ε =
(

λ2ε

2π

)n

e2m
∑n

i=1 si

(
ϕε −

n∏
i=1

1

2si + 2ε2

)
.

Now, for σ ∈ Sn , if we indicate sσ = (sσ(i))
n
i=1, we have

ϕε(sσ) =
∑
π∈Sn

n∏
i=1

1

sσ(i) + sσ(π(i)) + 2ε2
=

∑
π∈Sn

n∏
i=1

1

si + sσπσ−1(i) + 2ε2

=
∑
π∈Sn

n∏
i=1

1

si + sπ(i) + 2ε2
= ϕε(s) ,

since for every σ ∈ Sn we have {σπσ−1 : π ∈ Sn} = Sn . This concludes the proof. �
Now we are ready to prove Lemma 5.10.
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Proof of Lemma 5.10 Fix T > 0, t ∈ [0, T ] and define n := 2i(τ ). Using Lemma A.3
and the definition of �ε in Lemma 5.12, we find that

∫

D[τ,τ ](t)
�ε(sI) dsI = 1

(τ !)2
∑

π∈Sn\{Id}

∫

[0,t]I
�π,ε(sI) dsI , (5.11)

since �ε is symmetric by Lemma 5.12. Recall from (4.25) that �π,ε is a product over
cycles in the permutation π, which allows us to factorise the integral

∫

[0,t]I
�π,ε(sI) dsI =

K (π)∏
i=1

∫

[0,t ]̂Ci
ε

⊗|̂Ci |
(sv; v ∈ Ĉi ) dŝCi ,

with K (π) denoting the number of cycles in the permutation π. Applying Lemma 4.10
to each term in the product yields

∫

[0,t]I
�π,ε(sI) dsI �

K (π)∏
i=1

(
(λεem t )2|̂Ci |

2|̂Ci | π
log

(
1+ t

ε2

))

= (λεem t )2n

2n

( 1

π
log

(
1+ t

ε2

))K (π)

� (λεem t )2n

2n
Mε(t)

K (π) ,

where we introduced

Mε(t) :=
⌈
1

π
log

(
1+ t

ε2

)⌉
.

Therefore, we obtain the following upper bound to (5.11):

∫

D[τ,τ ](t)
�ε(sI) dsI � n!

(τ !)2
(λεem t )2n

2n

(
ESn

[
Mε(t)

K (π)
]
− Mε(t)n

n!
)

, (5.12)

with the expectation taken with respect to the uniform distribution on Sn , which has
probability mass function 1

n! . Here we used the identity

ESn

[
Mε(t)

K (π)
]
= Mε(t)n

n! +
∑

π∈Sn\{Id}

Mε(t)K (π)

n! .

Hence, we have reduced the problem to studying the generating function of a discrete
random variable, namely the total number of cycles in a uniformly at random chosen
permutation. Its distribution is a well studied object and we have the explicit identity

ESn

[
Mε(t)

K (π)
]
=
(
n + Mε(t) − 1

n

)
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at hand, see e.g. [34, Equation (5.14)]. Thus, we can rewrite (5.12) as

∫

D[τ,τ ](t)
�ε(sI) dsI � 1

(τ !)2
(λ̂em t )2n

(2 log 1
ε
)n

(
(n + Mε(t) − 1)!

(Mε(t) − 1)! − Mε(t)
n
)

. (5.13)

Now, we expand the difference on the right-hand side to obtain

(n + Mε(t) − 1)!
(Mε − 1)! − Mε(t)

n =
n−1∑
j=1

j Mε(t)
j

n−1∏
k= j+1

(Mε(t) + k) . (5.14)

Note that for every k = 0, . . . , n − 1

Mε(t) + k

2 log 1
ε

�
1
π
log

(
1+ t

ε2

)+ k + 1

2 log 1
ε

� 1

π

(
1+ | log(t + ε2)| + π(k + 1)

2 log 1
ε

)

� 1

π
exp

(
| log(t + ε2)| + π(k + 1)

2 log 1
ε

)
,

thus, together with (5.13) and (5.14)

∫

D[τ,τ ](t)
�ε(sI) dsI

� 1

(τ !)2
(λ̂em t )2n

2 log 1
ε

n−1∑
j=1

j
Mε(t) j

(2 log 1
ε
) j

n−1∏
k= j+1

Mε(t) + k

2 log 1
ε

� 1

log 1
ε

1

(τ !)2
(λ̂em t )2n

2πn−1

n−1∑
j=1

j exp

⎛
⎝(n − 1)

| log(t + ε2)|
2 log 1

ε

+ π

n−1∑
k= j

k + 1

2 log 1
ε

⎞
⎠ .

(5.15)

The terms in the exponent can be estimated uniformly over ε and t ∈ [0, T ]. For the
first summand, we make use of (3.23), which yields

(n − 1)
| log(t + ε2)|

2 log 1
ε

� 2n .

Moreover, since n ≤ 2Nε = 2�log 1
ε
�

n−1∑
k= j

k + 1

2 log 1
ε

�
n∑

k=1

k

2 log 1
ε

= n(n + 1)

4 log 1
ε

� n .
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Combining the two estimates with (5.15) yields

∫

D[τ,τ ](t)
�ε(sI) dsI � 1

log 1
ε

1

(τ !)2
(λ̂em t )2n

2πn−1

n(n − 1)

2
e(2+π)n

� 1

log 1
ε

1

(τ !)2
(λ̂em t )2n

4πn−1 e(2+2π)n ,

where we used n(n − 1) � e2n � eπn in the last step. This concludes the proof. �
Proof of Lemma 5.11 For convenience let us write n = 2i(τ ). Our aim is to obtain an
upper bound on the total number of parings γ that give rise to a given permutation
π ∈ Sn , via the map �τ(γ ) from Definition 4.13. It will be convenient to represent
π as a product of permutation cycles π = ∏K (π)

i=1 Ĉi , for some K (π) ∈ {1, · · · , n}.
Here we slightly abuse the notation Ĉi , which is already used in Definition 4.13.
Indeed, while the decomposition of a permutation into a product of cycles is unique,
the order in which these cycles are chosen is arbitrary. On the other hand, not every
order of permutation cycles is admissible in Definition 4.13, as for example cycle Ĉ1 is
necessarily a cycle among bases of tridents or cherries (because it is the first cycle we
extract from a paired tree). In our setting, since we start from an arbitrary permutation
π, we assume nothing further on Ĉi other than that they are cycles that decompose π.
We now provide the desired upper bound via the steps that follow.

1. By Lemma 4.7 we know that any pairing γ in �−1
τ (π) must contain a v-cycle

that alternates between leaves and inner vertices of [τ, τ ]. This is because the
first v-cycle we extract must be a v-cycle in the paired tree [τ, τ ]γ (later ones
belong instead to trees that are derived from [τ, τ ]γ by extracting v-cycles).
Therefore, there must exist a cycle Ĉi1 that only runs through inner vertices in
V ∪ V =: W (1). Here V and V denote the set of cherries and tridents in
[τ, τ ], respectively, see Appendix A.3 for their definition.
Indeed, if no such cycle exists, then the given permutation cannot arise from any
paired tree [τ, τ ]γ using the extraction algorithm�τ and the pre-image is the empty
set, so that our upper bound holds true. See the discussion below Example 4 for
an example of this kind.

2. Since Ĉi1 ⊂ V ∪ V , to construct a v-cycle corresponding to Ĉi1 we must
choose for every vertex v with label in Ĉi1 an (outgoing) leaf that connects to the
next vertex of the v-cycle and an (incoming) leaf that connects to the previous
vertex of the v-cycle. Here, which leaf is outgoing and which leaf is incoming
matters, leading to at most 2!(32

) = 6 choices for every vertex (for vertices in V
we have six choices, for nodes in V only two). Thus, there are at most 6|̂Ci1 | ways
to construct a v-cycle through inner vertices labeled by Ĉi1 .

3. Now proceed iteratively. For j > 1, we define the set W ( j) ⊂ I([τ, τ ]) \ o as
follows: An inner vertex v lies in W ( j), if and only if

• there exist at least two distinct paths from v to leaves in L([τ, τ ]), which only
run through descendants of v (away from the root), such that the descendants
have been previously extracted, i.e. they lie in

⋃ j−1
k=1 ÎCik ,
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• and v has not been extracted previously, i.e. v /∈ ⋃ j−1
k=1 ÎCik .

The set W ( j) describes the vertices that became “admissible” after extracting the
cycles {̂Ci }i∈{i1,··· ,i j−1}, meaning that the inner vertices of the next cycle that we
extract must belong to W ( j).

4. Proceed by choosing a cycle Ĉi j with vertices in W ( j) and counting all possible
choices to create a v-cycle with the corresponding nodes as inner nodes.

5. We are done once all cycles have been removed, or we cannot find a cycle that
runs through vertices inW ( j). In the latter case, we again found a permutation that
cannot be obtained as image of the map �τ (so the pre-image is empty and the
bound trivially true).

In this way, we count all possible pairings that lead to π. Overall, either the pre-image
is empty and the stated bound is trivially true, or it is bounded by

6
∑n

i=1 |̂Ci | = 6n ,

which is the desired bound and concludes the proof. �

5.3 Proof of Proposition 3.3

Proof of Proposition 3.3 Fix any T > 0, ε ∈ (0, 1
T ∧ 1

2 ) and τ ∈ TNε

3 . Then by
Lemma 2.4 and identity (4.6), we can write

X τ
ε = h(τ )(1)

s(τ )
[τ ]ε = h(τ )(1)

s(τ )

∑
κ∈K(τ )

[τ ]κ,ε = h(τ )(1)

s(τ )

⎧
⎨
⎩

∑
κ∈C(τ )

[τ ]κ,ε +
∑

κ /∈C(τ )

[τ ]κ,ε

⎫
⎬
⎭ .

By the triangle inequality and the fact that 3|τ | = ∑
κ∈C(τ ) 1, see Lemma 5.6, we have

that for every (t, x) ∈ (0, T ] × R2

∥∥∥∥
√
log 1

ε
· X τ

ε (t, x) − h(τ )(1)

τ ! s(τ )

(
3λ̂2

2π

)|τ |
λ̂em t Pt+ε2η(x)

∥∥∥∥
L2(P)

� |h(τ )(1)|
s(τ )

∑
κ∈C(τ )

∥∥∥∥∥∥
√
log 1

ε
· [τ ]κ,ε(t, x) − 1

τ !

(
λ̂2

2π

)|τ |
λ̂em t Pt+ε2η(x)

∥∥∥∥∥∥
L2(P)

+|h(τ )(1)|
s(τ )

∥∥∥∥∥∥
∑

κ /∈C(τ )

√
log 1

ε
· [τ ]κ,ε(t, x)

∥∥∥∥∥∥
L2(P)

. (5.16)

The second term on the right-hand side can be directly estimated using Lemma 5.8 as
follows:
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∥∥∥∥∥∥
∑

κ /∈C(τ )

√
log 1

ε
· [τ ]κ,ε(t, x)

∥∥∥∥∥∥
L2(P)

� 1

τ !
1√

4 log 1
ε

(
6e2+2π λ̂2e2m t

π

)|τ |
λ̂em t

√
4(t + ε2)

.

(5.17)

For the first term, by applying Lemma 5.5 and Lemma 5.6 together with the identity

ε(t, x) = λ̂(log 1
ε
)− 1

2 em t Pt+ε2η(x), we obtain

∑
κ∈C(τ )

∥∥∥∥∥∥
√
log 1

ε
· [τ ]κ,ε(t, x) − 1

τ !

(
λ̂2

2π

)|τ |
λ̂em t Pt+ε2η(x)

∥∥∥∥∥∥
L2(P)

= 1

τ !

(
3λ̂2

2π

)|τ | ∥∥∥∥∥∥

⎛
⎝
(

1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds

)|τ |
− 1

⎞
⎠ λ̂em t Pt+ε2η(x)

∥∥∥∥∥∥
L2(P)

� 1

τ !

(
9λ̂2e2m t+1

2π

)|τ |
e2|m| t + | log (t + ε2)|

2 log 1
ε

λ̂em t

√
4π(t + ε2)

, (5.18)

where in the last step, we used ‖Pt+ε2η(x)‖L2(P) = √
4π(t + ε2)

−1
and applied

Corollary A.2, which yields

∣∣∣∣∣∣

(
1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds

)|τ |
− 1

∣∣∣∣∣∣
� |τ |

(
3e2m t

)|τ |−1 e2|m| t + | log (t + ε2)|
2 log 1

ε

�
(
3e2m t+1

)|τ | e2|m| t + | log (t + ε2)|
2 log 1

ε

,

whereweused additionally (3.23) in thefirst inequality, aswell as the bound |τ | � 3e|τ |
in the second inequality.

Now, combining (5.16), (5.17) and (5.18) yields

∥∥∥∥
√
log 1

ε
· X τ

ε (t, x) − h(τ )(1)

τ ! s(τ )

(
3λ̂2

2π

)|τ |
λ̂em t Pt+ε2η(x)

∥∥∥∥
L2(P)

� |h(τ )(1)|
τ ! s(τ )

(λ̂em t )2|τ |
((

9 e

2π

)|τ | e2|m| t + | log (t + ε2)|
2 log 1

ε

1√
π

+ 1

2
√
log 1

ε

(
6e2+2π

π

)|τ | )
λ̂em t

√
4(t + ε2)
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� |h(τ )(1)|
τ ! s(τ )

(
C λ̂2e2m t

)|τ | e2|m| t + | log (t + ε2)| +
√
log 1

ε

2 log 1
ε

λ̂em t

√
4(t + ε2)

,

with C being the constant defined in (3.4), satisfying

C = 6e2+2π

π
� max

{
9 e

2π
,
6e2+2π

π

}
.

This concludes the proof. �

6 Link to aMcKean-Vlasov SPDE

This section is dedicated to the proof of Proposition 1.2. Before we do so, we must
clarify the meaning of solution to mean-field SPDEs of the form

∂tv = 1

2
�v +m v − αE

[
v2
]
v , v(0, x) = v0(x) , ∀(t, x) ∈ (0,∞) × R2 ,

(6.1)

for some m ∈ R, α > 0. To simplify the notation in the next definition, let us
write E for the set of functions f : R2 → R such that for some λ( f ) > 0 we have
supx∈R2 | f (x)|e−λ|x | < ∞.

Definition 6.1 We say that v is a solution to (6.1) if – in addition to satisfying the
equation – it is smooth on (0,∞) × R2, and if x �→ sup0�s�T |v(s, x)| ∈ E and
similarly x �→ sup0�s�T E

[
v2(s, x)

] ∈ E for all T ∈ (0,∞), P–almost surely.

In this setting, our first result is uniqueness of solutions to (6.1). We observe that
well-posedness of Mc-Kean–Vlasov SPDEs of this type on finite volume follows for
example through the same arguments as in [33]. Yet the extension to infinite volume
is not entirely trivial, and as a matter of fact we only prove existence of solutions in a
special, Gaussian, case. Instead, our argument for uniqueness works in full generality.

Proposition 6.2 For any v0 ∈ E such that

C0 := sup
x∈R2

E[v20(x)] < ∞ ,

there exists at most one solution v to (6.1) with initial data v0.

Proof Let T > 0. We start by proving the following a priori estimate:

sup
t∈[0,T ] , x∈R2

E
[
v(t, x)2

]
� C0e

2mT =: CT . (6.2)
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To establish the above, we start by observing that since v is smooth in space and time,
v2 solves the initial value problem

∂tv
2 = 1

2
�v2 + 2mv2 − |∇v|2 − 2αE

[
v2
]
v2, (t, x) ∈ (0,∞) × R2 ,

v2(0, x) = v20(x) , x ∈ R2 .

By the maximum principle one can therefore see that for every t � 0 and x ∈ R2 it
holds that

v2(t, x) �
∫

R2
v20(x − y)p(2m)

t (y) dy , x ∈ R2,

and upon taking expectations on both sides we obtain

E[v2(t, x)] � C0

∫

R2
p(2m)
t (y) dy = C0e

2mt ,

which confirms (6.2).
Let us now proceed with the claim of uniqueness. Let u, v be two solutions to

(6.1) with the same initial condition v0. We then show that the difference w(t, x) :=
u(t, x) − v(t, x) is identically equal to zero. The see this, note that w satisfies the
initial value problem

∂tw = 1

2
�w +mw − α

(
E
[
u2
]− E

[
v2
])

u − αE
[
v2
]
w, ∀(t, x) ∈ (0,∞) × R2 ,

w(0, x) = 0 , ∀x ∈ R2 .

(6.3)

Denote by Z(t, x) := E
[
u(t, x)2

] − E
[
v(t, x)2

] = E
[(
u(t, x) − v(t, x)

)(
u(t, x) +

v(t, x)
)]
. From Cauchy–Schwarz, it follows that

|Z(t, x)| � E
[
w(t, x)2

]1/2
E
[
(u + v)2(t, x)

]1/2 � 2
√
CT E

[
w(t, x)2

]1/2
, (6.4)

where in the last we use the triangle inequality and the a priori estimate (6.2). Then,
by the Feynman–Kac formula and in view of the growth assumption on solutions in
Definition 6.1, we can express w from (6.3) through

w(t, x) = α Ex

[∫ t

0
Z(t − s, β(s)) u(t − s, β(s)) ems−α

∫ s
0 E

[
v(s−r ,β(r))2

]
dr ds

]
,

where Ex indicates the expectation over a Brownian motion β (independent from all
other random variables) started in β(0) = x . From here, using (6.4) and bounding the
exponential term in the Feynman–Kac representation, it follows that

|w(t, x)| � 2α
√
CT e

mt Ex

[∫ t

0
E
[
w(t − s, β(s))2

]1/2 |u(t − s, β(s))| ds
]

,
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with m = max{0,m}. Next, by Cauchy–Schwarz, we further have the estimate

|w(t, x)| �2α
√
CT emtEx

[∫ t

0
E
[
w(t − s, β(s))2

]
ds

]1/2

Ex

[∫ t

0
u(t − s, β(s))2 ds

]1/2
,

and then

E
[|w(t, x)|2] � 4α2CT e2mtEx

[∫ t

0
E
[
w(t − s, β(s))2

]
ds

]

Ex

[∫ t

0
E[u(t − s, β(s))2] ds

]

� 4α2tC2
T e

2mt Ex

[∫ t

0
E
[
w(t − s, β(s))2

]
ds

]

= 4α2tC2
T e

2mt
∫ t

0

∫

R2
E
[
w(t − s, y)2

]
ps(y − x) dy ds ,

where in the second inequality we used, again, the a priori bound (6.2). Taking the
supremum over the x variable on both sides we conclude

sup
x∈R2

E[|w(t, x)|2] � 4α2tC2
T e

2mt
∫ t

0
sup
x∈R2

E[|w(t − s, x)|2] ds .

Now, setting F(t) := supx∈R2 E|w(t, x)|2, we conclude that for every T > 0 and
0 < t � T

F(t) � CT

∫ t

0
F(s) ds, where CT := 4α2TC2

T e
2mt .

Since F(0) = 0, it follows that F(t) = 0 for every 0 < t � T and T > 0. �
We are now ready for the main result of this section.

Proof of Proposition 1.2 In the particular case of v0 = pε2�η and α = 3
log 1

ε

, we can

check that the McKean–Vlasov equation (6.1) admits the solution

v
λ̂,ε

(t, x) := λ̂ σ
λ̂,ε

(t)P(m)
t (pε2�η)(x) ,

where σ
λ̂,ε

is the solution to the ODE

∂tσλ̂,ε
= − 3λ̂2

log 1
ε

e2mt

4π(t + ε2)
σ 3

λ̂,ε
, σ

λ̂,ε
(0) = 1. (6.5)
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For this, let us substitute v
λ̂,ε

into the mild formulation of (6.1), which yields

λ̂ σ
λ̂,ε

(t)P(m)
t (pε2�η)(x)

= λ̂ P(m)
t (pε2�η)(x)

− 3λ̂3

log 1
ε

∫ t

0
σ

λ̂,ε
(s)3

∫

R2
p(m)
t−s (y − x)E

[|P(m)
s (pε2�η)(y)|2]

P(m)
s (pε2�η)(y) dy ds

= λ̂ P(m)
t (pε2�η)(x) − 3λ̂3

log 1
ε

{∫ t

0
σ

λ̂,ε
(s)3

e2m s

4π(s + ε2)
ds

}
P(m)
t (pε2�η)(x) ,

where we used that E
[|P(m)

s (pε2�η)(y)|2] = e2m s(4π(s + ε2))−1 and integrated out

the spatial variable using Chapman–Kolmogorov. Now, dividing by λ̂ P(m)
t (pε2�η)(x)

on both sides and taking the temporal derivative yields (6.5). To verify that
v
λ̂,ε

is a solution in the sense of Definition 6.1, it now suffices to check that
sup0�s�T |ps+ε2�η| ∈ E for any ε, T > 0. This follows for example because
E
[
sup|x |∞�1 sup0�s�T |ps+ε2�η(x)|] < ∞ (where |x |∞ = maxi=1,2 |xi |), so that

E

⎡
⎣∑

z∈Z2

sup|x−z|∞�1 sup0�s�T |ps+ε2�η(x)|
1+ |z|3

⎤
⎦ < ∞ ,

which yields the desired result (cf. [24, Lemma 1.1]).
Now, the differential equation (6.5) admits the explicit solution

σ
λ̂,ε

(t) = 1√
1+ 3λ̂2

π
cε(t)

, with cε(t) := 1

2 log 1
ε

∫ t

0

e2ms

s + ε2
ds . (6.6)

Moreover, the solution v
λ̂,ε

to (6.1) is unique, which follows from Proposition 6.2.
Finally, by Lemma A.1, we have that cε(t) → 1 as ε → 0, for every t > 0. Hence,

lim
ε→0

σ
λ̂,ε

(t) = 1√
1+ 3λ̂2

π

= σ
λ̂

∀t > 0 .

This completes the proof. �
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A Appendix

A.1 On the exponential integral

Throughout the paper, a crucial ingredient is to understand the small-ε behaviour of
the integral

∫ t

0
ε(s) ds = λ2ε

4π

∫ t

0

e2m s

s + ε2
ds , t ∈ (0,∞) , ε ∈ (0, 1

2 ) .

In this appendix we will prove some useful estimates concerning this integral.

Lemma A.1 Let m ∈ R and t ∈ (0,∞), then

∣∣∣∣∣
1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds − 1

∣∣∣∣∣ � e2|m| t + | log (t + ε2)|
2 log 1

ε

,

for every ε ∈ (0, 1
2 ), with m = max{m , 0}. In particular, for every t ∈ (0,∞)

lim
ε→0

∫ t

0
ε(s) ds = λ̂2

2π
. (A.1)

Proof First expanding the exponential, we write

∫ t

0

e2m s − 1

s + ε2
ds =

∫ t

0

s

s + ε2

∞∑
k=1

(2m)k sk−1

k! ds .

Thus, we obtain

∣∣∣∣
∫ t

0

e2m s − 1

s + ε2
ds

∣∣∣∣ �
∞∑
k=1

∫ t

0

|2m|k sk−1

k! ds � e2|m| t .

In addition, we have

∣∣∣∣∣
1

2 log 1
ε

∫ t

0

1

s + ε2
ds − 1

∣∣∣∣∣ =
| log (t + ε2)|

2 log 1
ε

,

so that the statement follows from the triangle inequality. The second part of the
statement is now an immediate consequence, since

∫ t

0
ε(s) ds = λ̂2

2π

1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds .

This completes the proof. �
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Corollary A.2 Let m ∈ R, T > 0 and k ∈ N, then

∣∣∣∣∣∣

(
1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds

)k

− 1

∣∣∣∣∣∣
� k

(
3e2m t

)k−1 e2|m| t + | log (t + ε2)|
2 log 1

ε

,

for every t ∈ [0, T ] and ε ∈ (0, 1
T ∧ 1

2 ).

Proof Using a first order Taylor expansion of the monomial of order k around 1, we
have

∣∣∣∣∣∣

(
1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds

)k

− 1

∣∣∣∣∣∣

� k

{
sup

x∈[1,bε(t)∨1]
xk−1

} ∣∣∣∣∣
1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds − 1

∣∣∣∣∣ , (A.2)

with

bε(t) := 1

2 log 1
ε

∫ t

0

e2m s

s + ε2
ds � e2m t

(
1+ | log (t + ε2)|

2 log 1
ε

)
.

In particular, we find that

sup
x∈[1,bε(t)∨1]

xk−1 � e2(k−1)m t

(
1+ | log (t + ε2)|

2 log 1
ε

)k−1

�
(
3e2m t)k−1

,

where we used (3.23) in the last step. The statement follows now by upper bounding
the last term in (A.2) via Lemma A.1. �

A.2 Symmetric functions and trees

Lemma A.3 For a tree τ ∈ T of the form τ = [τ1 · · · τn] such that I := I(τ )\oτ �= ∅
and any symmetric function � : RI → R, we have that

∫

Dτ (t)
�(sI) dsI = 1

τ1! · · · τn !
∫

[0,t]I
�(sI) dsI ,

with the domain Dτ (t) defined in (4.24) and τ = T (τ ) denoting the trimmed tree
defined in (2.18).

Proof We prove the statement by induction over i(τ ) � 2. Note that the case i(τ ) = 1
is excluded as the single inner vertex must necessarily be the root. If i(τ ) = 2, then τ
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must be of the form τ = [ · · · · · · ] and I = {v} for some vertex v. Then

∫

Dτ (t)
�(sI) dsI =

∫ t

0
�(sv) dsv ,

which is the desired statement since T (
· · ·

)! = 1. Now assume that the statement
holds true for any tree τ ′ = [τ ′1 · · · τ ′n′ ] such that i(τ ′) � N , for some N � 2, and
write I′ := I(τ ′) \ o′ with o′ := oτ ′ . Let τ ∈ T be of the form τ = [τ ′ · · · ], so that
τ = [τ ′]. Then

∫

Dτ (t)
�(sI) dsI =

∫ t

0

∫

Dτ ′ (so′ )
�(so′ , sI′) dsI′ dso′

= 1

τ ′1! · · · τ ′n′ !
∫ t

0

∫

[0,so′ ]I′
�(so′ , sI′) dsI′ dso′ ,

where we used the induction hypothesis and the fact that �(so′ , ·) : RI′ → R is a
symmetric function. Using the symmetry of the function �, we further see that the
identification of variable so′ as the maximum variable is irrelevant with regards to the
integration, and the assignment of any of the variables sI as being the maximumwould
result in the same value. Thus, the above is equal to

∫

Dτ (t)
�(sI) dsI = 1

|I| · τ ′1! · · · τ ′n′ !
∫

[0,t]I
�(sI) dsI ,

and the statement follows now for τ because τ ′! = |τ ′| · τ ′1! · · · τ ′n′ ! = |I| · τ ′1! · · · τ ′n′ !.
Furthermore, we notice that

∫

Dτ (t)
�(sI) dsI =

∫

D[τ ′](t)
�(sI(τ ′)) dsI(τ ′) ,

meaning that the additional occurrences of in the grafting of τ do not affect
the integral. Finally, consider the case τ ∈ T such that i(τ ) = N + 1, with
τ = [τ1 · · · τk · · · ], k � 2 and τi �= . Again the extra occurrences of in
the grafting of τ do not affect the value of the integral. Moreover, the integration
domain Dτ (t) can be written as an union of sub-tree-simplices:

∫

Dτ (t)
�(sI) dsI =

∫

D[τ1](t)
· · ·

∫

D[τk ](t)
�(sI) dsI(τk ) · · · dsI(τ1) .

The statement follows from the induction hypothesis, since the restriction of � to a
subset of variables remains a symmetric function. �
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A.3 Proof of Lemma 4.7

Here we prove Lemma 4.7, which guarantees the existence of a v-cycle in the gluing
of two ternary trees. First, let us introduce some notation. For τ ∈ T�3, we partition
the subset of inner vertices neighbouring leaves in L(τ ) as follows. Let

• V (τ ) be the subset of inner vertices v ∈ I(τ ) that is a basis of a trident, i.e. there
exist exactly three u1, u2, u3 ∈ L(τ ) such that p(ui ) = v.

• V (τ ) be the subset of inner vertices v ∈ I(τ ) that is a basis of a cherry, i.e. there
exist exactly two u1, u2 ∈ L(τ ) such that p(ui ) = v.

• V (τ ) be the subset of inner vertices v ∈ I(τ ) that is a basis of a lollipop, i.e.
there exist exactly one u ∈ L(τ ) such that p(u) = v. In the following, we will call
elements in V (τ ) dead-ends.

Proof Let us start by noting that if [τ1, τ2] does not contain any dead-ends, then the
paired tree [τ1, τ2]γ contains a v-cycle. To see this, first notice that every leaf of
[τ1, τ2] belongs either to a cherry or to a trident. Now, consider an arbitrary leaf, call
it v0, and let v1 be the unique leaf in [τ1, τ2], which is connected to v0 via γ . If v1 is
inside the same cherry or trident component as v0, then we have already identified a
v-cycle, which in this case is of length 1. If not, then let v2 be a different leaf inside
the same cherry or trident component as that of v1 and denote by v3 the leaf which is
connected to v2 via γ . Again, if v2 and v3 fall inside the same component (which in
this case would necessarily be a trident), then a v-cycle comprising of leaves v2, v3
and the corresponding base point of the trident is identified. If not, then continue the
procedure. Since there is only a finite number of leaves, we will either encounter
somewhere in the process a v-cycle of length 1, or the path will return to a component
previously visited during this process, thus identifying a v-cycle. Diagrammatically,
we have the following representation:

σ1

· · ·
σ2

· · ·
σ3

· · ·
,

where sub-trees σ1, σ1, σ3 may be identical to just a single leaf, i.e. , and even though
we did not include them, there are γ links emanating from the leaves of these trees.

We will next reduce the case that [τ1, τ2] contains also dead-ends to a situation of
no dead-ends. Dead-ends present a problem: When tracing contractions in γ , we may
hit a dead-end and thus are not able to continue to complete a v-cycle. What we will
show is that by eliminating paths that start from a dead-end, the resulting sub-graph is
one that consists of only cherries and tridents linked through γ . Thus, a v-cycle exists
within this sub-graph by the previous argument.
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Let us start by picking an arbitrary dead-end of [τ1, τ2]. Call v0 its associated leaf
and suppose it connects via γ to another leaf of [τ1, τ2], whichwe call v1. Now, remove
this connection as follows:

σ1 σ2

· · ·
σ3 σ4

· · ·v0 v1

�−→
σ1 σ2

· · ·
σ3 σ4

· · ·v0 v1 ,

where again we understand that, even not shown, there are γ -links emanating from
trees σ1, σ2, σ3, σ4. Moreover, we agree that neither σ1 nor σ2 equals (they might be
∅, though), so that this part of the tree corresponds to a dead-end, while σ3, σ4 might
be comprising a .

In the resulting (contracted) tree on the right-hand side, we distinguish three cases:

1. Neither of σ3 and σ4 are single leaves. In this case we have eliminated two dead-
ends, while not affecting the number of cherries and tridents.

2. Only one of the σ3 and σ4 is a . In this case, we have eliminated a dead-end in the
left part of the tree, while we have also created a new dead-end in the right part,
corresponding to either σ3 or σ4, whichever happens to be the . In this case, we
have also reduced by one the number of cherries (by eliminating the cherry that
was present in the right part of the sub-tree) but, nevertheless, we have not reduced
the number of tridents.

3. Both σ3 and σ4 are . In this case, in the right part of the tree we had, before the
elimination, a trident. Thus, after the elimination we reduced both the number of
dead-ends and tridents by one, while the number of cherries actually increased by
one.

As wewill prove in LemmaA.4 below, the total number of tridents in [τ1, τ2] is strictly
larger than the number of dead-ends. In all three cases above, the elimination procedure
preserves this inequality. Indeed, in Case 1. the number of dead-ends is reduced by 2
while the number of tridents remains the same, in Case 2. both the number of tridents
and dead-ends remain the same (the number of cherries is reduced by one but this has
no effect) and in Case 3. both the number of tridents and dead-ends is reduced by 1
(the number of cherries increases by 1). Thus, continuing to eliminate dead-ends, we
necessarily end up with a sub-tree of [τ1, τ2]γ , which will only contain cherries and
tridents. We can now return to the beginning of the proof and the situation of a (sub-
ternary) tree that consists of only tridents and cherries, which necessarily contains a
v-cycle. �
Lemma A.4 Let τ ∈ T3 \ { }, then |V (τ )| � |V (τ )| − 1.

Proof Clearly the statement is true for τ = . Any larger tree in T3 can be con-
structed from by successively gluing tridents onto leaves. Now, there are three
possibilities for a trident to be glued onto an existing tree in τ ∈ T3, as described in
the table below.
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Pre-gluing Post-gluing |V | |V |

+0 +0

σ1 σ1 +1 +1

σ1 σ2 σ1 σ2 −1 +1

Here, σ1, σ2 ∈ T3 \ { } are placeholders for corresponding sub-trees. In all three cases
the claimed inequality remains true as we can only create a new dead-end by creating
a trident at the same time. �

A.4 Extracting the tree simplex

In the proof of Lemma 4.14, we eventually integrate time over indicator functions
which we collected from the estimate (4.16). The following lemma states that the
restrictions imposed by these indicator functions agree with the corresponding tree-
simplex (4.24). In particular, the cycle removal estimate in Lemma 4.14 is independent
of the chosen pairing.

Lemma A.5 Let t > 0, τ ∈ T3 and write I := I([τ, τ ]) \ o. Then for every pairing
γ ∈ Y(τ, τ ), we have

[0, t]I ∩
K (τ,γ )⋂
i=1

⋂
v∈ICi

{sdσi ,γ (v) � sv � spσi (v)} = D[τ,τ ](t) , (A.3)

where (Ck)K (τ,γ )

k=1 denotes the sequence of v-cycles and (σi )
K (τ,γ )

i=1 the sequence of
reduced trees, constructed from [τ, τ ]γ via the cycle extraction map (Definition 4.12).
The set D[τ,τ ](t) was defined in (4.24).

Proof Let v ∈ I be arbitrary. Then there exists an i = 1, . . . , K (τ, γ ) such that
v ∈ ICi and we define u1 := dσi ,γ (v), w1 := pσi (v). Notably, there exists a unique
path (u1, . . . , um, v, wm′ , . . . , w1) in the tree [τ, τ ] with u j , w j ∈ I, j � 2.

If sI ∈ D[τ,τ ](t), then

0 � sdσi ,γ (v) = su1 � · · · � sum � sv � swm′ � · · · � sw1 = spσi (v) � t ,

which implies in particular that sdσi ,γ (v) � sv � spσi (v).
On the other hand, the vertex p(v) = p[τ,τ ](v) = wm′ lies in ICi ′ for some i ′ =

1, . . . , K (τ, γ ). Thus, if sI lies in the left-hand side of (A.3), then
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• either the parent of v has not been removed by the cycle extraction map in an
earlier iteration, i.e. i ′ � i , in which case

sv � spσi (v) = swm′ = sp(v) ,

• or the parent of v has been removed in a previous iteration, i.e. i ′ < i , then

sv = sdσi ′ ,γ (wm′ ) � swm′ = sp(v) .

As the choice of v was arbitrary, this concludes the proof. �
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