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Abstract
We study a random matching problem on closed compact 2-dimensional Riemannian
manifolds (with respect to the squared Riemannian distance), with samples of random
points whose common law is absolutely continuous with respect to the volume mea-
sure with strictly positive and bounded density. We show that given two sequences of
numbers n and m = m(n) of points, asymptotically equivalent as n goes to infinity,
the optimal transport plan between the two empirical measures μn and νm is quan-
titatively well-approximated by

(
Id, exp(∇hn)

)
#μ

n where hn solves a linear elliptic
PDE obtained by a regularized first-order linearization of the Monge–Ampère equa-
tion. This is obtained in the case of samples of correlated random points for which
a stretched exponential decay of the α-mixing coefficient holds and for a class of
discrete-time sub-geometrically ergodic Markov chains having a unique absolutely
continuous invariant measure with respect to the volume measure.
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1 Introduction and statement of themain results

1.1 The randommatching problem and its asymptotic

The random matching problem is a popular optimization problem at the interface
between analysis and probability with applications in many different fields such as
statistical physics [16, 47], computer science [43] and economics [21, 25]. Within the
mathematical literature, it has been subject of intense studies due to its interactions
with many areas, including for instance graph theory [41] and geometric probability
[55]. In this paperwe focus on one of its simple versions. Let {Xk}1≤k≤n and {Yk}1≤k≤m

(with possibly m > n) be two families of random points on a compact Riemannian
manifold M (endowed with the Riemannian distance d). We are interested in the
quadratic matching problem

min
π∈�nm

n∑

i=1

m∑

j=1

πi j d
2(Xi ,Y j ) (1.1)

where

�nm :=
{
π ∈ [0, 1]n×m

∣∣
∣

n∑

i=1

πi j = 1
m and

m∑

j=1

πi j = 1
n

}
.
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Annealed quantitative estimates for the quadratic 487

Classically, (1.1) can be phrased in terms of a transport problem. Indeed, letting

μn := 1

n

n∑

i=1

δXi and νm := 1

m

m∑

j=1

δY j , (1.2)

be the empiricalmeasures associatedwith the twopoint clouds, the linear programming
problem (1.1) amounts to determine the quadratic Wasserstein distance W 2

2 (μn, νm).
In the special case n = m the Birkhoff–von Neumann Theorem provides a corre-

spondence between (1.1) and the usual bipartite matching

min
σ∈Sn

n∑

i=1

d2(Xi ,Yσ(i)), (1.3)

where Sn denotes the set of injective maps σ : {1, . . . , n} → {1, . . . , n}. Indeed, since
�nn is a convex polytope, minimizers in (1.1) have to be searched among extremal
points. By the Birkhoff–von Neumann Theorem [8, Lemma 2.1.3], the latter are noth-
ing but permutation matrices (up to a factor 1

n ).
A first natural question is to understand the asymptotics of (1.1) as n,m ↑ ∞. For

the same number of samples n = m and independently and identically distributed
(i.i.d.) on the unit square [0, 1]d , the scaling of the cost (1.1) has been well understood
in the mathematical and statistical physics literature. A simple heuristic argument, see
for instance [47], suggests that given a point Xi , we can find a point Y j within a volume
of order O(n−1) with high probability. For this reason, the typical inter-point distance

is of order O(n− 1
d ) suggesting that the scaling of (1.1) is of order O(n− 2

d ). Although
attractive, this heuristic turns out to be unfortunately false in low dimension showing
a critical behavior when d = 2. This critical case is the one on which we focus on
in this paper. Ajtai et al. [1] were the first to show that, for i.i.d. uniform samples, a
logarithmic correction is needed, deriving1

E
[
W 2

2 (μn, νn)
] ∼ log(n)

n
, (1.4)

extended later byTalagrand [58] for clouds of i.i.d. pointswhich are distributed accord-
ingly to more general common law. A recent breakthrough was obtained within the
physics community by Caracciolo et al. [16], and further developed by Caracciolo
and Sicuro [17] and by Sicuro in [54], where the asymptotics of the cost are formally
derived thanks to a novel PDE approach and optimal transport theory rather than com-
binatorics. A couple of years later, in general 2-dimensional compact Riemannian
manifolds without boundary, the first-order asymptotic has been rigorously justified
by Ambrosio et al. [6] for i.i.d. uniform samples and recently extended by Ambrosio et
al. [5] for samples distributed accordingly to more general laws which are absolutely
continuous (with Hölder continuous density) w.r.t. the volume measure dm, leading

1 We use the notation A � B if there exists a global constant C > 0, which may only depend on d, such
that A ≤ CB. We write A ∼ B if both A � B and B � A hold.
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to

lim
n→∞

n

log(n)
E
[
W 2

2 (μn, νn)
] = |M|

2π
, (1.5)

where |M| denotes the Lebesgue measure of M. The case n 	= m with n,m ↑ ∞
with similar rates is also covered, see [5, Theorem 1.2].

The novel approach introduced in [16], later revised in [11], consists in a lineariza-
tion of the Monge–Ampère equation that allows for an explicit description of the
cost thanks to the linearized proxies (see Sect. 1.2 for more details). The aim of this
work is to quantitatively justify the linearization ansatz in terms of convergence of
the approximating minimizers of (1.1) towards the optimal ones. In particular, we are
interested in the case where the points are identically distributed with a common law
ρ dm (where we recall that dm denotes the volume measure) and ρ satisfies for some
λ,
 > 0

λ ≤ ρ ≤ 
. (1.6)

To the best of our knowledge, there are only few results on the asymptotic behavior
of the transport map and they are so far limited to the case of i.i.d. uniform samples
in the study of the semi-discrete matching problem (that is couplings between μn and
dm), see the work of Ambrosio et al. [4]. In connection with this work, quantitative
estimates on the optimal map for the matching between the Lebesgue measure and
Poisson clouds have been obtained byGoldman et al. [31] andGoldman andHuesmann
[30].

Our extension in this paper is fourfold: First, we look at more general distribution of
points and we consider the case of general densities ρ satisfying (1.6). Second, we do
not assume independence and we consider samples which may possess correlations.
Third, we do not restrict the analysis to the semi-discrete matching problem and we
also investigate the ansatz for the full matching problem (1.1). Finally, we investigate
the case where the points are not identically distributed and we extend our result to a
class of sub-geometrically ergodic Markov chains.

We finally mention that the effectiveness of the linearization ansatz introduced in
[16] is not only limited to the case of i.i.d. distributed points on bounded domains, but
it can be employed in many different settings. See for instance [15] for an interesting
application to the matching on unbounded domains, [37–39] for an application to
Gaussianmatching, [35] for an application in randommatrix theory, [34, 64–66] for an
application to a continuous instance of the matching problem, i.e. when the empirical
measure is replaced by the occupation measure of a stochastic process. It is worth
to further mention that these techniques can also be employed when considering the
matching problem with p-costs in higher dimension, see [32] and when considering
a larger class of optimization problems, see [33].
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1.2 Linearization ansatz

We now briefly reproduce the linearization ansatz introduced in [16]. For simplicity,
we consider the case M = T

2, n = m and i.i.d. samples with common distribution
ρ dm. Let T n be an optimal transport map (whose existence is ensured by Brenier’s
Theorem [14]) between μn and νn . Based on the transport relation T n

# μn = νn and a
change of variables, T n solves (formally) the Monge–Ampère equation

(μn ◦ T n) det(∇T n) = νn . (1.7)

Since the cost is quadratic, by [52, Theorem 1.25], there exists a function hn such
that T n = Id + ∇hn . Applying the law of large numbers, we further have the weak
convergencesμn, νn⇀ρ dm as n ↑ ∞ so that we expect T n ≈ Id as n ↑ ∞. Thus, this
suggests that the correction ∇hn is small as n ↑ ∞, allowing to perform (formally)
the Taylor expansions

μn ◦ T n ≈ μn + ∇μn · ∇hn and det(∇T n) ≈ 1 + �hn . (1.8)

Plugging (1.8) into (1.7), neglecting the higher order terms and replacing μn by ρ

yields

− ∇ · ρ∇hn = μn − νn . (1.9)

This formal linearization suggests the following two conjectures

lim
n↑∞

∣∣∣∣E
[
W 2

2 (μn, νn)
] − E

[ ∫

T2
|∇hn|2ρ dm

]∣∣∣∣ = 0 and

lim
n↑∞

∫

T2
|T n − (Id + ∇hn)|2 = 0 a.s. (1.10)

Unfortunately, (1.10) cannot hold as it is, since the solution of (1.9) does not belong to
H1 due to the roughness of the source term. To overcome this, following the strategy
in [6], a regularization using the heat-semigroup at time ∼ 1

n (up to logarithmic
corrections) is made. Doing so, the first item of (1.10) turns out to be true, leading to
the result (1.5) (see for instance [3] for a convergence rate).

1.3 Formulation of themain results

For the remainder of the paper M denotes a 2-dimensional connected and compact
Riemannian manifold without boundary (or the square [0, 1]2) endowed with the
Riemannian distance d. For t > 0 we denote by pt the fundamental solution of the
heat operator ∂t − � on M, where � denotes the Beltrami-Laplace operator. We
define the heat semigroup (Pt )t>0 via its action on probability measures μ ∈ P(M)
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490 N. Clozeau, F. Mattesini

and square integrable functions f ∈ L2(M)

Ptμ :=
∫

M
pt (·, y)dμ(y) and Pt f :=

∫

M
pt (·, y) f (y)dm(y).

We first introduce the class of correlated point clouds that we consider for studying
the matching problem (1.1). This class concerns point clouds {Xi }i for which the
correlations between points decay at an exponential rate, where the correlations are
measured in terms of the α-mixing coefficient given by, for any � ≥ 1

α� := sup
k≥1

sup

{
cov( f , g)

‖ f ‖L∞‖g‖L∞
, f ∈ L∞(σ {X j , j ≤ k}) and

g ∈ L∞(σ {X j , j ≥ � + k})
}
, (1.11)

and the β-mixing coefficient given by2

βi j := sup
|F |≤1

∣∣∣∣

∫

M×M
F d(P(Xi ,X j ) − PXi ⊗ PX j )

∣∣∣∣ for any i, j ≥ 1. (1.12)

Assumption 1.1 (Correlated point clouds) We consider point clouds {Xi }i ⊂ M
which are identically distributed according to ρ dm where ρ satisfies (1.6). We further
assume decay of the correlations in the form of

sup
n≥1

1

n

∑

1≤i< j≤n

βi j < ∞, (1.13)

and there exist a, b > 0 and η ∈ (0,∞] such that

α� ≤ a exp
( − b�η

)
for any � ≥ 1. (1.14)

Assumption 1.1 ismade to ensure good concentration properties of the point clouds.
On the one hand, under (1.13), the cost W 2

2 (μn, νn) behaves as in the i.i.d. case (1.4)
(cf. [12, Theorem 2] and Appendix B). On the other hand, the sub-exponential decay
(1.14) of the α-mixing coefficient ensures sub-exponential concentration properties
(cf. [45, Theorem 1] and Proposition A.1), which is necessary to run our argument.
We refer the reader to Sect. 2 for further technical details.

Our first main result concerns the approximation of transport plans coupling {μn}n
and {νm}m defined in (1.2). We justify the formal linearization of the Monge–Ampère
equation achieved in Sect. 1.2 in an annealed quantitative way (i.e. in expectation): We
show that, a suitable regularization of, the plan

(
Id, exp(∇hn)

)
#μ

n , with hn defined
in (1.9), provides a good approximation when measuring the error with respect to the

2 We denote by PX the law of a random variable X .

123



Annealed quantitative estimates for the quadratic 491

W2-Wasserstein distance in the product space M × M endowed with the metric

δ2
(
(x, y), (z, w)

) := d2(x, z) + d2(y, w). (1.15)

The density ρ will need further regularity in form of fractional Sobolev spaces defined
as, for some ε > 0

Hε :=
{
f : M → R

∣∣∣‖ f ‖2Hε :=
∑

k≥1

λ2εk | f̂ (k)|2 < ∞
}
, (1.16)

where {λk, φk}k denote the eigenvalues and eigenvectors of −� on M and f̂ (k) =∫
M f φk denotes the Fourier modes of f . Finally, we denote by Ḣ

1
the L2-based

Sobolev space

Ḣ
1 :=

{
f : M → R

∣∣∣
∫

M
|∇ f |2 < ∞ with

∫

M
f dm = 0

}
. (1.17)

Theorem 1.2 (Approximation of the transport plan) Let ρ ∈ Hε for some ε > 0
satisfying (1.6) and {μn}n and {νm}m be defined in (1.2) (for m = m(n) with some
given increasing map m : N → N) with point clouds satisfying Assumption 1.1 and
such that there exists q ∈ [1,∞) for which m(n)

n →
n↑∞ q. We consider3 hn,t ∈ Ḣ

1
the

weak solution of

− ∇ · ρ∇hn,t = μn,t − νm,t , (1.18)

for any t ∈ (0, 1) with μn,t := Ptμ
n and νm,t := Ptν

m.
There exist an exponent κ > 0, a deterministic constant C and a random variable

Cn both depending on λ,
 and M for which given t = logκ (n)
n and

γ n,t := (
Id, exp(∇hn,t )

)
#μ

n,t , (1.19)

it holds

inf
π

W 2
2 (π, γ n,t ) ≤ Cn log(n)

n

√
log log(n)

log(n)
with sup

n≥1
E[ 1C Cn] ≤ 1, (1.20)

where the inf runs over all optimal transport plans π between μn and νm.
Furthermore, if (1.14) holds with η > 2, the assumption (1.13) can be dropped

and it holds

inf
π

W 2
2 (π, γ n,t ) ≤ Cn log(n)

n

√
log log(n)

log1−
2
η (n)

with sup
n≥1

E[exp( 1
C C

1
2
n ))] ≤ 2,

(1.21)

3 Where we impose additional Neumann boundary conditions in the case M = [0, 1]2.
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492 N. Clozeau, F. Mattesini

where the inf runs over all optimal transport plans π between μn and νm.

Our second main result concerns the particular case of the semi-discrete matching
problem, i.e. optimal coupling between the common law ρ dm and {μn}n . We know
fromMcCann’s theorem [42] that there exists a unique optimal transport map T n , that
is the optimal transport plan πn can be written as

πn = (
Id, T n)

#μ
n .

We show that T n can be approximated in an annealed quantitative way in L2 by (a
suitable regularized version of) the solution of (1.9) with νm replaced by ρ.

Theorem 1.3 Let ρ ∈ Hε for some ε > 0 satisfying (1.6) and {μn}n be defined in
(1.2) with a point cloud satisfying Assumption 1.1. We consider f n,t ∈ Ḣ1 the weak
solution of

− ∇ · ρ∇ f n,t = μn,t − ρt , (1.22)

where, for all t ∈ (0, 1), we recall that μn,t = Ptμ
n and ρt = Ptρ. Finally, we denote

by T n the optimal transport map from ρ dm to μn.
There exist an exponent κ > 0, a deterministic constant C and a random variable

Cn both depending on λ,
 and M for which given t = logκ (n)
n , it holds

∫

M
d2
(
T n, exp(∇ f n,t )

)
dm ≤ Cn log(n)

n

√
log log(n)

log(n)
with sup

n≥1
E[ 1

C Cn] ≤ 1. (1.23)

Furthermore, if (1.14) holds with η > 2, the assumption (1.13) can be dropped
and it holds

∫

M
d2
(
T n, exp(∇ f n,t )

)
dm ≤ Cn log(n)

n

√
log log(n)

log1−
2
η (n)

with sup
n≥1

E[exp( 1
C C

1
2
n ))] ≤ 2.

(1.24)

We finally mention that in the case where the eigenfunctions {φk}k admit a uniform
bound, the conclusions (1.21) and (1.24) can be improved. We comment on the proof
at the end of Sect. 3.5.

Remark 1.4 Let {μn}n and {νm}m be as in Theorem 1.2. We assume that the family of
eigenfunctions {φk}k satisfies the uniform bound

sup
k≥1

‖φk‖L∞ < ∞. (1.25)

Then, (1.21) and (1.24) hold true for η > 1 with a convergence rate log(n)
n

√
log log(n)

log1−
1
η (n)

and the same stochastic integrability. Note that (1.25) typically holds when the geom-
etry of M is flat, see [60].
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Theorems 1.2 and 1.3 are not restricted to the case of identically distributed point
clouds andwe present in the next section and inAppendixC a possible extension, using
the same techniques, to a class of sub-geometrically ergodic discrete-time Markov
chains.

1.4 Extension to a class of sub-geometrically ergodic Markov chains

We first recall some basic facts on discrete-timeMarkov chains onM. Such aMarkov
process is described by its initial distribution μ0 ∈ P(M) and its transition kernel K ,
that is a measurable map from M to the space of probability measures P(M). We
recall that K acts on P(M) in form of

(Kμ)(A) =
∫

M
K (·, A) dμ for every Borel setA ⊂ M andμ ∈ P(M), (1.26)

and likewise on bounded measurable function ψ in form of

(Kψ)(x) =
∫

M
ψ(y) K (x, dy) for any x ∈ M. (1.27)

Given an initial distribution μ0 ∈ P(M), we recall that the law of a Markov chain
{Xn}n≥0 can be expressed with the help of the transition kernel, namely

Xn ∼ Knμ0 for any n ≥ 0, (1.28)

where Kn stands for the nth-iteration of the kernel K .
We now introduce the class of discrete-time Markov chains we consider.

Assumption 1.5 LetM be a 2-dimensional compact Riemannian manifold. Let μ0 ∈
P(M) and {Xn}n≥1 ⊂ M be a Markov chain with initial law μ0. We assume that the
chain satisfies the two following conditions:

(i) We assume that there exists a measurable function k : M × M → [0,∞) and
λ,
 > 0 such that for any Borel set A ⊂ M

K (x, A) =
∫

A
k(x, ·)dm with λ ≤ k ≤ 
. (1.29)

(ii) We assume that there exist an unique invariant measure μ∞, i.e. Kμ∞ = μ∞,
constants a, b > 0 and η ∈ (0, 1] as well as a map V : M → [1,∞) such that∫
M V dμ∞,

∫
M V dμ0 < ∞, for which for any � ≥ 1 and any φ ∈ L∞(M)

‖K �φ − μ∞(φ)‖V ≤ a exp(−b�η)‖φ‖∞ for any x ∈ M, (1.30)

where

‖φ‖V := sup
|φ|

1 + V
and μ∞(φ) =

∫

M
φ dμ∞.
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494 N. Clozeau, F. Mattesini

We now comment on the consequences of the above assumptions. First, the condition
(1.29) ensures that the invariant measure μ∞ is absolutely continuous with respect to
the volume measure with bounded density, namely

μ∞ = ρ dm with λ ≤ ρ ≤ 
. (1.31)

We briefly give the argument for (1.31). Using the second item of (1.29), we have that
the operator

I : f ∈ L1 �→
∫

M
k(·, y) f (y)dm(y) is compact.

Furthermore, we note that the closed convex set C := { f ∈ L1 | λ ≤ f ≤

 and

∫
M f = 1} is invariant under the action of I. Therefore Schauder’s fixed

point theorem implies that I admits a fixed point in C. Given such a fixed point ρ, it
is clear that μ∞ defined in (1.31) is an invariant measure according to (1.29).

Second, for irreducible and aperiodicMarkovchains, the condition (1.30) is satisfied
when the kernel satisfies the following geometric drift condition: There exist a function
V : M → [1,∞), a petite set P and a constant C > 0 such that supP V < ∞ and

KV + φ ◦ V ≤ V + C1P ,

with for large x ≥ 1, φ(x) = c x
logα(x) for some α ≥ 0 and c > 0 ((1.30) is then

satisfied with η = 1
1+α

), see [22, Theorem 2.8 & Section 2.3] and the references
therein. Moreover, the assumption (1.30) implies the sub-exponential decay of the
β-mixing coefficient (1.12), namely there exists a constant C depending on λ, 
 and
m(M) such that

βi j ≤ C exp(−b|i − j |η) for any i, j, (1.32)

which ensures that (1.13) and (1.14) hold and ensures good concentration property
of the Markov chain, see Proposition A.1. The estimate (1.32) can be seen as a direct
consequence of the combination of the estimate on the β-mixing coefficient in [40,
Proposition 3] and the assumptions (1.29) and (1.30).

Finally, the condition (1.30) quantifies the weak convergence of the law of the
Markov chain to its stationary distribution, namely there exists a constant C > 0 such
that for any f ∈ L∞(M)

|E[ f (Xn)] − μ∞( f )| ≤ C exp(−bnη)‖ f ‖L∞ . (1.33)

We shortly give the argument. We first notice that a direct inductive argument together
with the semigroup property Kn1+n2 = Kn1Kn2 for every n1, n2 > 0 and Fubini’s
theorem gives

∫

M
f dKnμ0 =

∫

M
Kn f dμ0 for anyn ≥ 1. (1.34)
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The combination of (1.28), (1.34) and (1.30) gives

|E[ f (Xn)] − μ∞( f )| (1.28),(1.34)=
∣
∣∣
∫

M
(Kn f − μ∞( f )) dμ0

∣
∣∣

(1.30)≤
( ∫

M
1 + V dμ0

)
a exp(−bnη)‖ f ‖∞.

A classical example of a Markov chain satisfying Assumption 1.5 is given by iterated
function systems with additive noise. For simplicity, let M = T

2. Let {θn}n≥1 be
i.i.d. random variables with common law h dm for some h satisfying λ ≤ h ≤ 
. Let
F : T

2 → T
2 be a contraction, i.e. there exists a constant L < 1 such that

|F(x) − F(y)| ≤ L|x − y| for any x, y ∈ T
d . (1.35)

We define the iterated function system {Xn}n≥1 according to the induction

Xn+1 = F(Xn) + θn for any n ≥ 1.

The kernel is given by

K (x, A) =
∫

T2
1A(F(x) + θ)h(θ)dm(θ),

so that K satisfies (1.29) with

k(x, ·) = h(· − F(x)).

Moreover, the condition (1.35) ensures the validity of (1.30), see for instance [2,
Theorem 3.2]. Thus the Markov process {Xn}n≥1 satisfies Assumption 1.5.

We show in Appendix C that the conclusions of Theorem 1.3 and Theorem 1.2 hold
true for Markov chains satisfying Assumption 1.5.

1.5 Open problems

We conclude this section with open questions that arise in view of our results. Those
concern optimality of our convergence rates, extensions to more general costs and
different type of correlated point clouds. For the latter, we mention two possible
directions concerning the Ginibre ensemble and Coulomb gases that we think are
worth investigating.

(1) Sharpness of the rates. The convergence rate in (1.20) and (1.23) match with
the one obtained for the case of uniformly distributed samples in [4]. However,
even in the latter case, it has not been shown whether the rate is optimal and we
suspect the opposite. A possible way to track the optimal rate could be to perform
a second-order linearization of the Monge–Ampère equation (1.7). Following the

123



496 N. Clozeau, F. Mattesini

same type of computations leading to (1.9) in the case ρ = 1, a second-order
linearization qn should solve

−�qn = det(∇2hn),

where we recall that hn solves (1.9), providing the conjecture

lim
n↑∞

∣∣∣∣

∫

T2
|T n − (Id + ∇hn)|2 −

∫

T2
|∇qn|2

∣∣∣∣ = 0.

(2) Extension to p-costs. A natural question is to investigate if our results hold for
different cost functions as p-cost functions for p > 1. The behavior of the cost has
been optimally quantified in [1, 9, 13, 24]. However, to the best of our knowledge,
quantitative estimates on the transport plan in the setting of general p-costs are not
known, even for uniformly distributed samples. A possible approach would be to
revise the linearization ansatz of [16] for general p-costs. Indeed, if the transport
cost between two points x, y is given by 1

p |x−y|p on the torus, Gangbo-McCann’s
theorem [26, Theorem 1.2] ensures that there exists a map hn such that the optimal
transport map T n takes the form T n = Id+ |∇hn|p′−2∇hn , where p′ denotes the
conjugate exponent. Therefore, following the same typeof computations leading to
(1.9), a first-order linearization should solve the following degenerate p′-Laplace
equation

−∇ · ρ|∇hn|p′−2∇hn = μn − νm,

and we may expect

lim
n↑∞

∫

T2
|T n − (Id + |∇hn|p′−2∇hn)|p = 0.

See also [36] for a justification of this linearisation ansatz down to mesoscopic
scales based on a large-scale regularity theory for the Monge–Ampère equation.

(3) Ginibre ensemble. A (complex) Ginibre ensemble is a non-Hermitian random
matrix with independent complex Gaussian entries. Given a n×n Ginibre ensem-
ble X , we define its empirical spectral distribution as

μn = 1

n

n∑

i=1

δλi ,

where {λi }ni=1 are the eigenvalues of the matrix X√
n
. The so called Circular Law

states that, almost-surely, μn weakly converges to the uniform distribution on
the complex unit disk μ∞ having Lebesgue density 1

π
1B1 , see for instance [59,

Theorem 1.10]. An interesting question is to quantitatively understand the weak
convergence of μn towards μ∞ measured in Wasserstein distance. A possible
approach to this problemwould be to employ the linearization argument discussed
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in Sect. 1.2. Note that the Ginibre ensemble is not covered by our setting as it is
posed on thewhole spaceR

2 and, in general, the eigenvalues {λi }ni=1 possess long-
range correlations and therefore do not satisfy our Assumption 1.1. However, in
[50, Théorème 3.1.1], the linearization argument has been shown to be robust
enough to derive an upper bound on E[W2(μ

n, μ∞)] (see also [35, Theorem 1.3]
for similar results for E[W1(μ

n, μ∞)]). The techniques used in [35, 50] avoid a
quantification of the correlations between the eigenvalues: This is done in [50] by a
decomposition argument together with concentration estimates of theWasserstein
distance around theMoser’s coupling and in [35] by using classical tools fromnon-
Hermitian random matrix theory. A challenging question would be to investigate
the exact asymptotics of the transport cost E[W2(μ

n, μ∞)] in the case of the
Ginibre ensemble complementing, [50, Théorème 3.1.1] and [35, Theorem 1.3]
with a lower bound and consequently quantify the convergence of the linearized
proxies to the optimal transport map.

(4) Planar Coulomb gases. Planar Coulomb gases are many particles systems, in
which the particles {Xi }ni=1 have repulsively Coulomb interactions and are con-
fined by a potential V : T

2 → R. These are modelled by the Hamiltonian

Hn({Xi }ni=1) = −
∑

i 	= j

log |Xi − X j | + n
n∑

i=1

V (Xi ) (1.36)

and the Gibbs measure

dPn,β = 1

Zn,β

exp
( − βHn({Xi }ni=1)

)
dX1 . . . dXn, (1.37)

where Zn,β is the normalizing constant and β denotes the inverse temperature.
In analogy with (1.2), we can define the empirical measure of a Coulomb gas
by μn = 1

n

∑n
i=1 δXi . In this setting the convergence of the empirical measure

exhibits a twofold behavior. On the one hand, for small temperature β � 1
n , the

empirical measure μn weakly converges to the equilibrium measure μ∞
low defined

as the minimizer

μ∞
low := argmin

μ∈P(T2)

{
−

∫

T2×T2
log(x − y) dμ ⊗ μ(x, y) +

∫

T2
V dμ

}
.

On the other hand, for large temperature β � 1
n , a correction term is required and

the empirical measure μn weakly converges to the thermal equilibrium measure
μ∞
high, that is the minimizer

μ∞
high := argmin

μ∈P(T2)

{
−

∫

T2×T2
log(x − y) dμ ⊗ μ(x, y) +

∫

T2
V dμ + 1

nβ

∫

T2
μ logμ

}
.

We refer the reader to [53] for a complete exposition on 2D-Coulomb gases. This
setting can be seen as an extension of the previous Ginibre ensemble on the torus.
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Indeed the law of the spectrum of the Ginibre ensemble is given by the Gibbs
measure (1.37) choosing β = 2 and V (x) = |x |2 in (1.36). Motivated by this
observation and the works [35, 50] on the Ginibre ensemble, we expect that the
linearization approach could be employed also in this setting. First, we could
justify the linearization Ansatz in the spirit of Theorem 1.2 in both temperature
regimes, using available results in the literature. Indeed, concentration inequalities
around the equilibrium measure have been derived in [27] (see also [18]), that
would replace the Bernstein’s type inequality of Proposition A.1 and the matching
cost estimates in Proposition B.1. Second, a more ambitious question would be
to use the linearization argument to derive optimal rates of the convergence to the
equilibrium measure in both temperature regimes.

2 Structure of the proof

This section is devoted to describe the main ideas and how are organized the proofs of
Theorems 1.2 and 1.3. We mainly focus on the proof of Theorem 1.2 since the proof
of Theorem 1.3 follows by the same strategy.

General strategy The proof of Theorem 1.2 follows the strategy employed in [4] to
deal with independent and uniformly distributed random points. The main idea is to
use the quantitative stability result for transport maps in [4, Theorem 3.2], stating that
two transport maps are close in the L2-topology if the target measures are close in the
W2-topology. We restate below the result for reader’s convenience.

Theorem 2.1 (Stability of transport maps) Let ν, μ1, μ2 ∈ P(M) such that ν � m
and let T , S : M → M be the optimal transport maps respectively for the pairs of
measures (ν, μ1) and (ν, μ2). We assume that S = exp(∇ f ) for some f : M → R

with C1,1-regularity.
There exists a constant c > 0 depending on M such that, provided

‖∇ f ‖L∞ + ‖∇2 f ‖L∞ ≤ c, (2.1)

we have
∫

M
d2(S, T ) dν � W 2

2 (μ1, μ2) + W2(μ1, μ2)W2(ν, μ1).

The first step consists of using Theorem 2.1 to deduce a stability estimate (in terms
of the quadratic Wasserstein distance) of transport plans in the special case where
μ1 = νm , μ2 = exp(∇hn,t )#μ

n and ν = μn . In this step, we immediately face the
issue of the lack of regularity of hn,t necessary to ensure the condition (2.1): Indeed,
recalling that hn,t solves (1.18), it does not have the C1,1-regularity condition for
non-smooth densities ρ that we consider here. We overcome this issue introducing an
additional regularization step: We smooth the operator −∇ · ρ∇ and implicitly γ n,t

in form of

γ
n,t
δ := (

Id, exp(∇hn,t
δ )

)
#μ

n,t with − ∇ · ρδ∇hn,t
δ = μn,t − νm,t , (2.2)
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for a regularization parameter δ to be optimized and ρδ := Pδρ. Classical Schauder’s
theory ensures that hn,t

δ owns C∞-regularity. Doing so, we can use Theorem 2.1 to
deduce, provided that

‖∇hn,t
δ ‖L∞ + ‖∇2hn,t

δ ‖L∞ � 1, (2.3)

a stability error estimate which reads

inf
π

W 2
2 (π, γ

n,t
δ ) � W 2

2

(
νm,t , exp(∇hn,t

δ )#μ
n,t ) + W2

(
νm,t , exp(∇hn,t

δ )#μ
n,t )W2(μ

n, νm)

+W 2
2 (νm,t , νm) + W 2

2 (μn,t , μn) + (
W2(ν

m,t , νm)

+W2(μ
n,t , μn)

)
W2(μ

n, νm), (2.4)

where we refer to (3.107) for further details. Our argument then differs from [4] by
splitting the error in two parts

inf
π

W 2
2 (π, γ n,t ) ≤ W 2

2 (γ n,t , γ
n,t
δ )

︸ ︷︷ ︸
regularization error

+ inf
π

W 2
2 (π, γ

n,t
δ )

︸ ︷︷ ︸
stability error

. (2.5)

Our proof then proceeds in two steps, controlling separately the two terms in (2.5).
Control of the regularization error To deal with the regularization error, we look at

the difference en,t
δ := hn,t

δ − hn,t which solves, according to (1.18) and (2.2),

− ∇ · ρδ∇en,t
δ = ∇ · (ρδ − ρ)∇hn,t . (2.6)

Using an energy estimate, we get

∫

M
|∇en,t

δ |2 �
∫

M
|ρ − ρδ|2|∇hn,t |2. (2.7)

On the one hand, since ρ ∈ L∞, we have ρδ → ρ as δ ↓ 0 in every Lq with q < ∞. On
the other hand, we learn fromMeyers’ estimate (recalled in Proposition A.3) that there
exists q̄ > 2 such that ∇hn,t ∈ Lq̄ . Consequently, we can treat (2.7) using Hölder’s
inequality which provides

∫

M
|∇en,t

δ |2 � ‖ρδ − ρ‖2
L2(

q̄
2 )′ ‖∇hn,t‖2

Lq̄
. (2.8)

The next step is to control the averaged Meyers’ norm E
[‖∇hn,t‖2

Lq̄
]
, that we show

in Proposition 3.3 to be of order of

E
[‖∇hn,t‖2

Lq̄
]

� | log(t)| + log
1
η (n)

n
, (2.9)

where we recall that η denotes the correlation length, see Assumption 1.1.
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The combination of (2.8), (2.9) and local Lipschitzianity of the exponential map
yields

E
[
W 2

2 (γ
n,t
δ , γ n,t )

]
� ‖ρδ − ρ‖2

L2(
q̄
2 )′

| log(t)| + log
1
η (n)

n
, (2.10)

where we refer to (3.104) for further details. We emphasize here that the stretched
exponential decay assumption (1.14) of the α-mixing coefficient plays a crucial role
in the estimate (2.9). Indeed, the additional contribution on the numerator of the r.h.s.

of (2.9) is due to the correlations and is only of logarithmic type log
1
η (n) thanks to the

stretched exponential decay (1.14). Finally, the latter appears in the estimate (2.10)
and can be compensated with the choice of δ in (2.11) and the regularity assumption
on ρ in form of (2.16).

Control of the stability error For the stability error, we first need to ensure (2.3).
Our strategy follows the idea in [3] which consists of showing that (2.3) is satisfied
with very high probability. In our case, a new difficulty comes from our regularization
of ρ and the regularization parameter δ has to be carefully optimized. We show that
if δ is taken as an inverse power of log(n), (2.3) becomes very likely as n ↑ ∞. More
precisely, we show in Proposition 3.4 that given two exponents κ1 and υ � κ1, there
exists κ2 such that given the choices

δ = 1

logκ1(n)
and t = logκ2(n)

n
, (2.11)

we have

P

(
‖∇hn,t

δ ‖L∞ + ‖∇2hn,t
δ ‖L∞ > 1

logυ(n)

)
= o

( 1

n�

)
for any � ∈ N. (2.12)

This result is in the spirit of [3, Theorem 3.3] but, in our setting, the proof relies
on Schauder’s theory rather than an explicit formula for hn,t

δ as well as concen-
tration inequalities in form of Proposition A.1 to treat the correlations. For further
details on the strategy, we refer to Sect. 3.3. We emphasize here that, to obtain the
super-polynomial behaviour (2.12), we crucially use the fact that the concentration
inequalities in Proposition A.1 are of sub-exponential type which is itself ensured by
the sub-exponential decay assumption on the α-mixing coefficient (1.14). The reason
lies in the choices of δ and t in (2.11). Indeed, the only room we have when optimiz-
ing t is in the logarithmic growth logκ2(n) (as already mention in Sect. 1.2, the natural
regularization time is t ∼ 1

n up to logarithmic corrections). Furthermore, the quantity
‖(∇hn,t

δ ,∇2 hn,t
δ )‖L∞ can be heuristically estimated by an inverse power of δ and t−1

as it involves powers of ‖(∇ρδ,∇2ρδ)‖L∞ and the norm ‖μn,t − 1‖L∞ by Schauder’s
theory. Hence, in the best case scenario where exponential concentration holds, we
expect

P

(
‖∇hn,t

δ ‖L∞ + ‖∇2hn,t
δ ‖L∞ > λ

)
� exp

( − λn‖(∇hn,t
δ ,∇2hn,t

δ )‖−1
L∞

)
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≤ exp
( − λntδυ̃

) = exp
( − λ logκ2(n)δυ̃

)
,

for some υ̃ > 0, which gives a super-polynomial behavior for the choices δ = 1
logκ1 (n)

and λ = 1
logυ(n)

for large κ2. Weaker properties, as for instance polynomial concen-
tration, would only lead to a decay given by an inverse power of log(n) which is not
enough for our purpose.

With (2.12) in hands, we can restrict the analysis to realizations satisfying
‖∇hn,t

δ ‖L∞ + ‖∇2 hn,t
δ ‖L∞ ≤ 1

logυ(n)
where, for n � 1, (2.3) is satisfied which

puts us in the validity of (2.4). We then treat each terms appearing in (2.4) separately:

• The optimal control of the cost W 2
2 (μn, νm) has been already well studied and

is optimally estimated by

E
[
W 2

2 (μn, νm)
]

� log(n)

n
. (2.13)

We refer to Appendix B for a detailed statement, references and extensions to the
cases of Assumption 1.1 and Assumption 1.5.

• The smoothing errors W 2
2 (μn, μn,t ) and W 2

2 (νm, νm,t ). Classical contractivity
estimates are known and are usually applied to deal with these errors, see for
instance [23, Theorem 3], which bound the errors by t . However, due to the choice
of t in (2.11), this result is of no use since t is much larger than themagnitude of the
cost, namely t � log(n)

n . Instead, we follow the approach in [3], where the authors
showed that in the particular case of empirical measures in dimension 2, we can
improve the rate and obtain the bound log log(n)

n � log(n)
n . We extend this result to

our setting of non-constant densities and correlated points. In Proposition 3.5, we
derive

E
[
W 2

2 (μn, μn,t )
] + E

[
W 2

2 (νm, νm,t )
]

� log log(n)

n
+ t‖ρt+ 1

n
− ρ 1

n
‖L1 .

(2.14)

As opposed to [3], our approach uses Fourier analysis together with additional
cares to handle the correlations and non-constant densities.

• The error in the Moser coupling W 2
2

(
νm,t , exp(∇hn,t

δ )#μ
n,t

)
. We follow the

strategy in [3]. This error can be related to aMoser coupling betweenμn,t and νm,t

(see for instance [62,Appendix p. 16]): The equation (1.18) gives a natural coupling
betweenμn,t and νm,t which can be formulated usingBenamou–Brenier’s theorem
[10],

νm,t = φ(1, ·)#μn,t withφbeing the flow induced bys �→ ρδ∇hn,t
δ

sμn,t + (1 − s)νm,t
.

Then, using the transport plan
(
φ(1, ·), exp(∇hn,t

δ )
)
#μ

n,t as a competitor, we get

W 2
2

(
νm,t , exp(∇hn,t

δ )#μ
n,t) = W 2

2

(
φ(1, ·)#μn,t , exp(∇hn,t

δ )#μ
n,t)
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≤
∫

M
d2
(
φ(1, ·), exp(∇hn,t

δ )
)
,

that we combinewith a quantitative stability result for flows of vector fields, proved
in [3, Proposition A.1], leading to
W 2

2

(
νm,t , exp(∇hn,t

δ )#μ
n,t ) �

(‖ρδ − ρ‖2
L2(

q̄
2 )′ + ‖ρt − ρ‖2

L2(
q̄
2 )′ + 1

logυ (n)

)‖∇hn,t
δ ‖2

Lq̄
,

where we recall that q̄ denotes the Meyers’ exponent introduced in (2.7). For
further details, we refer to (3.115). It then remains to appeal to Meyers’ estimate,
see Proposition A.3, to (2.6) together with (2.9) in form of

E
[‖∇hn,t

δ ‖2
Lq̄
]

� E
[‖∇hn,t‖2

Lq̄
] (2.9)

� | log(t)| + log
1
η (n)

n
,

which finally yields

E
[
W 2

2

(
νm,t , exp(∇hn,t

δ )#μ
n,t)]

�
(‖ρδ − ρ‖2

L2(
q̄
2 )′ + ‖ρt − ρ‖2

L2(
q̄
2 )′ + 1

logυ(n)

) | log(t)| + log
1
η (n)

n
. (2.15)

To conclude, we see that all bounds involve errors in terms of the approximation
of ρ using the heat-semigroup, that we need to quantify. This is where the assumption
ρ ∈ Hε plays a role, in form of the quantitative estimate

‖ρs − ρ‖L2 � ‖ρ‖Hε sε for any s > 0, (2.16)

see (3.94) for a proof. Combining (2.4), (2.5), (2.10), (2.13), (2.14), (2.15), (2.16) with
the choices of δ and t in (2.11), we obtain Theorem 1.2. The proof of Theorem 1.3
is obtained using the same strategy where the first step is simpler, since we apply
directly Theorem 2.1 with μ1 = ρ, ν = μn and μ2 = exp(∇ f n,t

δ )#μ
n where f n,t

solves −∇ · ρδ∇ f n,t = μn,t − ρt .

3 Proofs

3.1 Notations and preliminary results

We provide in this section some notations and preliminary results needed in the proofs
of Theorems 1.2 and 1.3. We recall that throughout the paper, we denote by M a 2-
dimensional compact connected Riemannianmanifold (or the square [0, 1]2) endowed
with the Riemannian distance d.
Wasserstein distance Given μ, ν ∈ P(M), we define the quadratic Wasserstein dis-
tance as

W 2
2 (μ, ν) := min

π∈�(μ,ν)

∫

M×M
d2(x, y) dπ(x, y), (3.1)

123



Annealed quantitative estimates for the quadratic 503

where �(μ, ν) is the set of couplings between μ and ν, that is the set of π ∈
P(M × M) having μ and ν as first and second marginal, respectively. We refer the
reader to the monographs [61, 62] for a detailed overview on the subject of optimal
transport. We recall the following simple, but useful Lipschitz contraction property of
the Wasserstein distance.

Lemma 3.1 (Lipschitz property of theWasserstein metric) Let (D, dD) be a complete
and separable metric space, let μ, ν ∈ P(M) and let T : M → D be a L-Lipschitz
map. It holds

W 2
2 (T#μ, T#ν) ≤ L2W 2

2 (μ, ν). (3.2)

Proof For any coupling π ∈ �(μ, ν), the push-forward (T , T )#π is a coupling
between T#μ and T#ν. Moreover, it holds

∫

D×D
d2(x, y) d((T , T )#π)(x, y) =

∫

M×M
d2(T (x), T (y)) dπ(x, y)

≤ L2
∫

M×M
d2(x, y) dπ(x, y).

Taking the infimum among all possible couplings π ∈ �(μ, ν) leads to (3.2). ��
Heat semigroup and heat kernelWe recall some basic facts on the heat semigroup and
its generator, we refer the reader to [19, Chapter VI] for a more detailed overview. For
t > 0, we denote by pt the fundamental solution of the heat operator ∂t − � on M,
where � denotes the Beltrami-Laplace operator. Classical Schauder’s theory ensures
that pt is smooth and it is known, see for instance [57] and [3, Appendix B], that pt
and its derivatives satisfy for some C > 0 depending on M

|∇N pt (x, y)| � t−1− N
2 exp

(
− 1

C
d2(x,y)

t

)
for anyt > 0, N ≥ 1 andx, y ∈ M. (3.3)

The kernel pt admits the spectral decomposition

pt (x, y) :=
∑

k≥1

e−tλkφk(x)φk(y) for anyt > 0andx, y ∈ M, (3.4)

converging in L2(M×M), where we recall that {λk, φk} denotes the eigenvalues and
eigenvectors of−� onM. Specifying (3.4) on the diagonal and using ‖φk‖L2(M) = 1,
we obtain the trace formula

∑

k≥1

e−tλk =
∫

M
pt (x, x)dm(x) for anyt > 0. (3.5)

We recall that {φk}k≥1 can be estimated in terms of the eigenvalues,

‖φk‖L∞ � λ
1
2
k . (3.6)
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We briefly recall the argument. Applying the Gagliardo-Nirenberg’s interpolation
inequality [7, Theorem 3.70], it holds

‖φk‖L∞ � ‖∇2φk‖
1
2

L2
‖φk‖

1
2

L2
= ‖∇2φk‖

1
2

L2
.

In combination with −�φk = λkφk and elliptic regularity, in form of

‖∇2φk‖L2 � λk‖φk‖L2 = λk,

we obtain (3.6).
We recall that (Pt )t>0 admits the spectral gap property, that is there exists a constant

Csg > 0 such that

‖Pt f ‖L2(M) ≤ e−Csgt‖ f ‖L2(M) for any f ∈ L2 with
∫

M
f dm = 0. (3.7)

Note that equivalently, (3.7) can be formulated in terms of the eigenvalues {λk}k≥1 in
form of

inf
k≥1

λk ≥ Csg, (3.8)

simply by specifying (3.7) on {φk}k≥1. Finally, we recall the Riesz-transform bound

∫

M
|∇ f |4 dm �

∫

M

∣
∣(−�)

1
2 f

∣
∣4 dm for any f such that

∫

M
|∇ f |4 dm < ∞,(3.9)

where (−�)
1
2 can be defined via its spectral representation

(−�)
1
2 f =

∑

k≥1

√
λk

(
φk, f

)
L2φk for any f ∈ H

1
2 , (3.10)

with (·, ·)L2 the inner product in L2. We refer to the monograph [63] for a discussion
of the inequalities (3.7) and (3.9), see Chapter 1 for the case of a Riemannian manifold
without boundary and Chapter 2 for the case of a Riemannian manifold with (convex)
boundary. In connection with the Wasserstein metric, the heat semigroup satisfies the
following classical contraction property.

Lemma 3.2 (Semigroup contraction for absolutely continuous measures) Let ρ ∈ L∞
satisfying (1.6). Given ρt := Ptρ, it holds

W 2
2 (ρt dm, ρ dm) � t‖ρt − ρ‖L1 for any t > 0. (3.11)

Proof Using g defined via−�g = ρt −ρ together with (1.6), [3, Corollary 4.4] yields

W 2
2 (ρt dm, ρ dm) �

∫

M
|∇g|2 dm =

∫

M
(ρt − ρ)g dm.
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Writing g = ∫ ∞
0 Pτ (ρt − ρ) dτ = − ∫ t

0 ρτ dτ together with | ∫ t
0 ρτ dτ | ≤ ‖ρ‖L∞ t

gives (3.11). ��

3.2 Lq-type estimates

As we have seen in (2.8), we need a sharp control of the averaged Meyers’ norm
E
[‖∇hn,t‖2

Lq̄
]
. This will be obtained as an immediate corollary of the following propo-

sition, for more details see (3.101).

Proposition 3.3 (Lq -estimates) Let {μn}n be defined in (1.2) with point clouds sat-
isfying Assumption 1.1. Let q̄ be the Meyers exponent given in Theorem A.3 for the
operator −∇ · ρ∇. The solution4 f n,t ∈ Ḣ1 of

− ∇ · ρ∇ f n,t = μn,t − ρt , (3.12)

satisfies:

( ∫

M
|∇ f n,t |q dm

) 2
q ≤ Cn,t

| log(t)| + log
1
η (n)

n
for any q ∈ [2,min{q̄, 4}],

(3.13)

and a random variable Cn,t satisfying for some generic constant Cq depending on q,

sup
n,t

E[ 1
Cq

Cn,t ] ≤ 1. (3.14)

Furthermore, if (1.14) holds with η ≥ 1 then the assumption (1.13) can be dropped
and the stochastic integrability can be improved up to losing a log(n) factor, namely

( ∫

M
|∇ f n,t |q dm

) 2
q

≤ Dn,t

( log
1
η (n)| log(t)|

n
+ t−1(1 + log2(n)1η 	=∞)

n2

)
for any q ∈ [2,min{q̄, 4}],

(3.15)

and a random variableDn,t satisfying for some generic constant Dq depending on q,

sup
n,t

E[exp( 1
Dq

D
1
2
n,t )] ≤ 2.

Proof We proceed in four steps. In the first step, we prove a representation formula

for (−�)
1
2 that we will use as the core tool in the next steps. In the second step,

we compare the two operators −∇ · ρ∇ and −�, with help of Meyers’ estimate
recalled in Theorem A.3. Doing so, we then have to bound the Lq -norms (2 ≤ q ≤ q̄)
of the gradient of the solution5 to the Poisson equation with r.h.s. μn,t − ρt and

4 With Neumann boundary conditions in case M has a boundary.
5 Which belongs to any Lq for any q < ∞ from Calderón-Zygmund’ theory, see for instance [28].
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Neumann boundary conditions. We control all the norms by the L4-norm that, in turn,
we estimate using the Riesz-transform bound (3.9) and following some ideas from [6,
Lemma3.17]. In the third and fourth steps, we control the bound previously obtained in
expectation where our main tool is Assumption 1.1 and the concentration inequalities
in Proposition A.1.

Step 1. A representation formula for (−�)
1
2 . We show that given f ∈ C2

such that nM · ∇ f = 0 on ∂M we have

(−�)
1
2 f = 1√

π

∫ ∞

0
τ− 1

2 �Pτ f dτ. (3.16)

Note that (−�)
1
2 f , defined in (3.10), is well defined in L2. Indeed, using the fact that

(φk, f )L2 = 1
λk

(φk,� f )L2 and (3.8), we have for any N ≤ M < ∞
∥∥∥
∥

∑

N≤n≤M

√
λn

(
φn, f )L2φn

∥∥∥
∥

2

L2
=

∑

N≤n≤M

λn|(φn, f )L2 |2 =
∑

N≤n≤M

1
λn

|(φn,� f )L2 |2

≤ 1
Csg

∑

n≥N

|(φn,� f )L2 |2,

which vanishes as N ↑ ∞ uniformly in M .
We now justify (3.16). Observe that since nM · ∇ f = 0 on ∂M,

�Ps f = Ps� f for any s ∈ (0,∞), (3.17)

which is a direct consequence of two integration by parts using the heat-kernel repre-
sentation Ps f = ∫

M ps(·, y) f (y) dm(y). Therefore

∫ ∞

0
τ− 1

2 �Pτ f dτ =
∫ ∞

0
τ− 1

2 Pτ� f dτ, (3.18)

where the last integral is well-defined in L2 since from (3.7)

∫ ∞

0
t−

1
2 ‖Pτ� f ‖L2 dτ ≤

∫ ∞

0
t−

1
2 e−Csgτ‖� f ‖L2 dτ < ∞.

We then use the spectral decomposition of the heat semigroup (3.4) to get

Pτ� f =
∑

n

e−λnτ
(
φn,� f

)
L2φn in L2. (3.19)

The combination of (3.18) and (3.19) yields for any η ∈ L2

(∫ ∞

0
τ− 1

2 �Pτ f , η

)

L2
dτ =

∫ ∞

0
τ− 1

2
(
Pτ� f , η

)
L2 dτ
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(3.19)=
∫ ∞

0
τ− 1

2
∑

n

e−λnτ
(
φn,� f

)
L2
(
φn, η

)
L2 dτ.

(3.20)

Using (3.8), we have

∫ ∞

0
τ− 1

2
∑

n

e−λnτ |(φn,� f
)
L2 ||

(
φn, η

)
L2 | dτ

≤
( ∫ ∞

0
τ− 1

2 e−Csgτ dτ
)∑

n

|(φn,� f
)
L2 ||

(
φn, η

)
L2 | < ∞,

so that we can exchange integration and summation in (3.20) to obtain

(∫ ∞

0
τ− 1

2 �Pτ f , η

)

L2
dτ =

∑

n

( ∫ ∞

0
τ− 1

2 e−λnτ dτ
)(

φn,� f
)
L2
(
φn, η

)
L2

= √
π
∑

n

1√
λn

(
φn,� f

)
L2
(
φn, η

)
L2

= √
π
∑

n

√
λn

(
φn, f

)
L2
(
φn, η

)
L2

(3.10)= √
π
(
(−� f )

1
2 , η

)
L2 ,

which gives (3.16) by arbitrariness of η. Finally, note that the r. h. s. integral in (3.16)
is absolutely convergent thanks to the integration by parts �Pτ f = Pτ� f and the
bounds on the heat kernel (3.3), so that it defines a function in C0.

Step 2. Comparison with the solution of the Poisson equation. We
claim that for any q ∈ [2,min{q̄, 4}] and p < ∞

E

[( ∫

M
|∇ f n,t |q dm

) 2p
q
] 1

p

�q

(∫

M
dm

(∫ ∞

0
ds E

[(
(−s�)

1
2 Ps+t (μ

n − ρ)
)2p] 1

p
)2) 1

2

.

(3.21)

Let gn,t ∈ Ḣ
1
be the solution of the following Poisson equation

− �gn,t = μn,t − ρt . (3.22)

Re-expressing the right-hand side of (3.12) as ∇ · ∇gn,t , we apply Meyers’ estimate
recalled in Theorem A.3 and Hölder’s inequality to obtain:

( ∫

M
|∇ f n,t |q dm

) 2
q

�
( ∫

M
|∇gn,t |q dm

) 2
q �q

( ∫

M
|∇gn,t |4 dm

) 1
2

for any q ∈ [2,min{q̄, 4}], (3.23)
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We now introduce the Paley–Littlewood functional

L(g) :=
( ∫ ∞

0
s(∂sPsg)

2 ds
) 1

2
for any g ∈ L4 and

∫

M
g = 0.

We recall that the inverse of L is continuous, see [56], namely

‖g‖L4 � ‖L(g)‖L4 . (3.24)

Combining the Riesz transform bound (3.9) with (3.24) yields

∫

M
|∇gn,t |4 dm �

∫

M

(
L
(
(−�)

1
2 gn,t

))4
dm

=
∫

M
dm

( ∫ ∞

0
ds s(∂sPs(−�)

1
2 gn,t )2

)2
.

(3.25)

We now claim that

∂sPs(−�)
1
2 gn,t = (−�)

1
2 Ps+t (μ

n − ρ) for any s ≥ 0, (3.26)

which requires a special care whenM has a boundary. We use the definition of Ps in
form of ∂sPs = �Ps to get

∂sPs(−�)
1
2 gn,t = �Ps(−�)

1
2 gn,t . (3.27)

Recalling that nM · ∇gn,t = 0, (3.17) implies that �Pτ gn,t = Pτ�gn,t which,
combined with (3.22) and (3.16), gives

(−�)
1
2 gn,t = 1√

π

∫ ∞

0
τ− 1

2 Pτ (μ
n,t − ρt ) dτ. (3.28)

In particular, it implies that nM ·∇(−�)
1
2 gn,t = 0. Therefore, one can use once more

(3.17) and, together with (3.28), (3.27) turns into

∂sPs(−�)
1
2 gn,t = 1√

π

∫ ∞

0
τ− 1

2 Ps�Pτ (μ
n,t − ρt ) dτ. (3.29)

Using a last time (3.17) in form of Ps�Pτ (μ
n,t − ρt ) = �PsPτ (μ

n,t − ρt ) that we
combine with the semigroup property PtPt ′ = Pt+t ′ yields

Ps�Pτ (μ
n,t − ρt ) = �PτPs+t (μ

n − ρ),

which, together with (3.29) and (3.16) leads to (3.26).
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The combination of (3.23), (3.25) and (3.26) together with Minkowski’s inequality
gives

E

[( ∫

M
|∇ f n,t |q dm

) 2p
q
] 1

p (3.23)
� E

[(∫

M
dm

(∫ ∞

0
ds

(
(−s�)

1
2 Ps+t (μ

n − ρ)
)2)2) p

2
] 1

p

≤
(∫

M
dm

(∫ ∞

0
ds E

[(
(−s�)

1
2 Ps+t (μ

n − ρ)
)2p] 1

p
)2) 1

2

,

which is (3.21).
Step 3. Proof of (3.13). The estimate (3.13) is a consequence of (3.21) applied

with p = 1 and

E

[(
(−s�)

1
2 Ps+t (μ

n − ρ)(x)
)2]

� ζ(s, t)

n
(1 + log

1
η (n)s

1
log(n) ζ(s, t)1−

1
log(n) ) for any s ∈ (0,∞), (3.30)

with

ζ(s, t) := min
{
(s + t)−1, (s + t)−2}. (3.31)

Indeed, plugging (3.30) in (3.21) gives

E

[( ∫

M
|∇ f |q dm

) 2
q
]

� 1

n

∫ ∞

0
ζ(s, t)(1 + log

1
η (n)s

1
log(n) ζ(s, t)1−

1
log(n) ) ds.

(3.32)

Using that

∫ ∞

0
ζ(s, t) ds ≤ t−1

∫ t

0
ds +

∫ 1

t
s−1 ds +

∫ ∞

1
s−2 ds � | log(t)|,

and analogously

∫ ∞

0
s

1
log(n) ζ(s, t)1−

1
log(n) ds � 1,

(3.32) implies (3.13).
We now show (3.30). First, using the definition (1.2) of μn , we have

(−s�)
1
2 Ps+t (μ

n − ρ) = 1

n

n∑

k=1

ωs+t (·, Xk) with ωs+t (·, y) := (−s�)
1
2 Ps+t (δy − ρ),

(3.33)
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such that expanding the square gives

(
(−s�)

1
2 Ps+t (μ

n − ρ)(x)
)2

= 1

n2

n∑

k=1

(
ωs+t (x, Xk)

)2 + 2

n2
∑

1≤�<�′≤n

ωs+t (x, X�)ωs+t (x, X�′).

The estimate (3.30) is then a consequence of

E[|ωs+t (x, X1)|2] � min
{
(s + t)−1, (s + t)−2

}
and

sup
y∈M

|ωs+t (x, y)| �
√
smin

{
(s + t)−

3
2 , (s + t)−2

}
. (3.34)

Indeed, the first item of (3.34) immediately implies

E

[ n∑

k=1

(
ωs+t (·, Xk)

)2
]

� nζ(s, t),

while, using the assumption (1.14) and that t−
3

log(n) � 1,

∑

1≤�<�′≤n

E[ωs+t (·, X�)ωs+t (·, X�′)]

=
∑

1≤�<�′≤n

E[ωs+t (·, X�)ωs+t (·, X�′)] 1
log(n) E[ωs+t (·, X�)ωs+t (·, X�′)]1− 1

log(n)

≤
∑

1≤�<�′≤n

α
1

log(n)

�−�′
(
sup
y∈M

|ωs+t (x, y)|
) 2
log(n) E[|ωs+t (x, X1)|2]1−

1
log(n)

(3.34),(1.14)
� n log

1
η (n)s

1
log(n) t−

3
log(n) ζ(s, t)1−

1
log(n) � log

1
η (n)s

1
log(n) ζ(s, t)1−

1
log(n) .

(3.35)

It remains to prove (3.34) and we start with the first item. Here, we use the fact that

‖(−s�)
1
2 P s

2
f ‖L2 � ‖ f ‖L2 for all f ∈ C2 and uniformly ins. (3.36)

This can be seen from (3.10): Using that P s
2
is an auto-adjoint operator in L2 and that

from (3.19) we learn P s
2
φn = e−λn

s
2 φn , we have

‖(−s�)
1
2 P s

2
f ‖2

L2
=

∑

n
(sλn)|

(
φn, P s

2
f
)
L2 |2 =

∑

n
(sλn)e

−sλn |(φn, f
)
L2 |2 � ‖ f ‖2

L2
.

Hence, using the semi-group property Ps+t = P s
2
P s

2+t , we deduce
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E[|ωs+t (x, X1)|2] � ‖(−s�)
1
2 Ps+t (δy − ρ)‖2

L2
= ‖(−s�)

1
2 P s

2
P s

2+t (δy − ρ)‖2
L2

(3.36)
� ‖P s

2+t (δy − ρ)‖2
L2

.

We now bound ‖P s
2+t (δy − ρ)‖2

L2
in two different ways. First, using the bounds (3.3)

of the heat-kernel, we have by the triangle inequality

‖P s
2+t (δy − ρ)‖2

L2
� ‖p s

2+t (·, y)‖2L2
(3.3)
� (s + t)−1,

yielding to the first alternative in the first item of (3.34). Second, applying Poincaré’s
inequality yields

‖P s
2+t (δy − ρ)‖2

L2
� ‖∇ p s

2+t (·, y)‖2L2
(3.3)
� (s + t)−2,

yielding to the second alternative in the first item of (3.34).
We now turn to the second item of (3.34). Here, we make use of the representation

formula (3.16) applied to f = Ps+t (δy −ρ). Using the semi-group property PτPs+t =
Pτ+s+t , this takes the form

ωs+t (x, y) =
√

s

π

∫ ∞

0
τ− 1

2 �Pτ+s+t (δy − ρ)(x) dτ.

A direct application of the heat-kernel bounds (3.3) leads to

sup
y∈M

|ωs+t (x, y)| �
√
s
∫ ∞

0
τ− 1

2 (τ + s + t)−2 dτ �
√
s (s + t)−

3
2 ,

which is the first alternative in the second item of (3.34). For the second alternative,
we write

�Pτ+s+t (δy − ρ)(x) =
∫

M
ρ
(
�pτ+s+t (x, y) − �pτ+s+t (x, ·)

)
dm,

so that, using (3.3),

sup
y∈M

|ωs+t (x, y)| �
√
s
∫ ∞

0
τ− 1

2 sup
y∈M

|∇�pτ+s+t (x, y)| dτ
(3.3)
�

∫ ∞

0
τ− 1

2 (τ + s + t)−
5
2 dτ �

√
s (s + t)−2.

Step 4. Proof of (3.15). Following the same computations done in the previous
step, the estimate (3.15) is a consequence of (3.21) and the moment bounds

E

[(
(−s�)

1
2 Ps+t (μ

n − ρ)(x)
)2p] 1

p
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� p2
(

ζ(s, t)

n
(1 + log

1
η (n)s

1
2 log(n) ζ(s, t)1−

1
log(n) ) + supy∈M |ωs+t (x, y)| + log2(n)

n2

)

for any s ∈ (0,∞), (3.37)

together with the second item of (3.34) and Lemma A.2, where we recall that ζ is
defined in (3.31).

We now show (3.37). Using (3.33) and the assumption η ≥ 1, we apply the con-
centration inequality in Proposition A.1 to the effect of: for any λ ≥ 0

P

(∣
∣∣(−s�)

1
2 Ps+t (μ

n − ρ)(x)
∣
∣∣ ≥ λ

)

� exp

(
− 1

C

n2λ2

nv2 + (
supy∈M |ωs+t (x, y)|

)2 + nλ
(
supy∈M |ωs+t (x, y)|

)
log2(n)

)
,

(3.38)

with

v2 := E[|ωs+t (x, X1)|2] + 2
∑

1≤�<�′≤n

∣∣E[ωs+t (x, X�)ωs+t (x, X�′)]∣∣.

We then obtain (3.37) combining (3.38) with (3.34) and (3.35), together with an
application of the Layer-cake formula. ��

3.3 Fluctuation estimates

This section is devoted to justify (2.12) needed to ensure the condition (2.3) with very
high probability. Our result is in the spirit of [3, Theorem 3.3]. However, our strategy
differs from [3, Theorem 3.3] and is based on Schauder’s theory, with an additional
special care on the dependences on δ. We briefly sketch the main ingredients of the

fluctuation estimates (2.12). By linearity, it is enough to show (2.12) for f n,t
δ ∈ Ḣ

1

being the solution of

− ∇ · ρδ∇ f n,t
δ = μn,t − ρt . (3.39)

We then make use of the chain rule to expand the equation in

− � f n,t
δ = 1

ρδ
∇ρδ · ∇ f n,t

δ + 1
ρδ

(μn,t − ρt ), (3.40)

and we define the auxiliary problem

− �un,t
δ = 1

ρδ
(μn,t − ρt ), (3.41)

such that the difference v
n,t
δ := f n,t

δ −un,t
δ solves−�v

n,t
δ = 1

ρδ
∇ρδ ·∇ f n,t

δ . Doing so,

on the one hand, we can control un,t
δ which can be handled using the explicit formula
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in terms of the heat-kernel, the explicit bounds on the latter, cf (3.3), and the regularity
of 1

ρδ
. On the other hand, we use Schauder’s estimates to control vn,t

δ and f n,t
δ . Using

the fact that those estimates depend polynomially on ‖ρδ‖C0,α , we can keep track on
the dependences on δ that we can optimize later on. We finally mention that in the
case where M has a boundary, un,t

δ cannot be directly defined by (3.41) since the
r. h. s. does not have zero mean. In order to also include this case, we add a zero order
term in the equation, see (3.42).

Proposition 3.4 (Fluctuation estimates) Let {μn}n be defined in (1.2)with point clouds
satisfying Assumption 1.1. For any parameter δ ∈ (0, 1) and υ > 0, we define6

un,t
δ ∈ H1 weak solution of

un,t
δ − �un,t

δ = 1
ρδ

(μn,t − ρt ), (3.42)

and the two events

An :=
{
‖μn,t − ρt‖L∞ ≤ 1

logυ (n)

}
and Bδ,n :=

{∥∥(∇un,t
δ ,∇2un,t

δ )
∥∥
L∞ ≤ 1

logυ (n)

}
.

(3.43)

There exists κ > 0 such that for any κ1 > 0 and the choice

δ = δn := 1
logκ1 (n)

, (3.44)

the solution f n,t
δ ∈ Ḣ

1
of (3.39) satisfies

1An∩Bδ,n

∥∥(∇ f n,t
δ ,∇2 f n,t

δ )
∥∥
L∞ ≤ 1

logυ−(κ+2)κ1(n)
. (3.45)

Furthermore, there exists κ2 > 0 depending on υ such that for the choice t = tn :=
logκ2 (n)

n , we have

P(Ac
n ∪ Bc

δ,n) = o( 1
n� ) for any � ∈ N. (3.46)

Proof The proof of Proposition 3.4 is split into two steps. In the first step, we prove
(3.45)where ourmain tool is Schauder’s theory and an explicit formula for un,t

δ defined
in (3.40). In the second step, we show (3.46), where our main tool is the concentration
inequalities in Proposition A.1 and the explicit formula for un,t

δ used in the first step.

Step 1. Proof of (3.45). We define the difference v
n,t
δ := f n,t

δ −
(
un,t

δ −
∫
M un,t

δ

)
∈ Ḣ

1
and note that from (3.40) and (3.42), it solves

− �v
n,t
δ = 1

ρδ

∇ρδ · ∇ f n,t
δ −

(
un,t

δ −
∫

M
un,t

δ

)
. (3.47)

6 With Neumann boundary conditions in case M has a boundary.
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We claim that there exists κ > 0 such that with the choices of δ in (3.44), we have

1An∩Bδ,n

∥∥(∇v
n,t
δ ,∇2v

n,t
δ )

∥∥
L∞ � 1

logυ−(κ+2)κ1(n)
. (3.48)

The estimate (3.45) then follows from (3.48) and the triangle inequality.
We now prove (3.48). We apply Schauder’s estimate (see for instance [29] and [48,

Chapter 10]) to (3.47) to obtain

∥∥(∇v
n,t
δ ,∇2v

n,t
δ )

∥∥
L∞ � ‖ 1

ρδ
∇ρδ · ∇ f n,t

δ ‖C0,α +
∥
∥∥un,t

δ −
∫

M
un,t

δ

∥
∥∥
C0,α

. (3.49)

While the second r. h. s. term is directly of order of 1
logυ(n)

in Bδ,n , the first r. h. s. term
requires additional attention. Using (1.6) and (3.3), ρδ satisfies

ρδ ≥ λ and δ−1‖∇ρδ‖L∞ + ‖∇2ρδ‖L∞ � δ−2, (3.50)

and together with the algebraic property of ‖ · ‖C0,α , we have

‖ 1
ρδ

∇ρδ · ∇ f n,t
δ ‖C0,α ≤ ‖ 1

ρδ
∇ρδ‖C0,α‖∇ f n,t

δ ‖C0,α � δ−2‖∇ f n,t
δ ‖C0,α .

The latter is bounded using Schauder’s estimate applied this time on (3.39) (knowing
that the dependence on ‖ρδ‖C0,α is at most polynomial): there exists κ > 0 such that

‖∇ f n,t
δ ‖C0,α � ‖ρδ‖κ

C0,α‖μn,t − ρt‖L∞
(3.50)
� δ−κ‖μn,t − ρt‖L∞

(3.44)
� logκκ1(n)‖μn,t − ρt‖L∞,

which yields the following control of the first r. h. s. term of (3.49)

‖ 1
ρδ

∇ρδ · ∇ f n,t
δ ‖C0,α � log(κ+2)κ1(n)‖μn,t − ρt‖L∞ , (3.51)

which is of order of 1
logυ−(κ+2)κ1 (n)

in An .

Step 2. Proof of (3.46). We provide the arguments for (3.46) in case that (1.14)
holds for η < 1 and the event Bc

δ,n that we reduce to {‖∇2un,t
δ ‖L∞ ≤ 1

logυ(n)
}, the

other cases as well as the case of ∇un,t
δ follow by a straightforward adaptation. The

estimate (3.46) is a consequence of

sup
x∈M

P

(
|∂2i j un,t

δ (x)| ≥ 1
2 logυ (n)

)
≤ n exp

(
− 1

C1

( nt

logυ(n)

)η
)

+ exp

(
− 1

C2

n2t log−2υ(n)

t−1 + nδ−4 log
1
η (n)

)

+ exp

(
− 1

C3

nt2

logυ(n)
exp

( 1

C4

( nt

logυ(n)

)η(1−η)

log−1( nt
logυ (n)

)
))

.

(3.52)
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for some constants C1,C2,C3,C4 > 0. To see this, let ηn be defined by

ηn = 1

2 logυ(n)‖∇∂2i j u
n,t
δ ‖L∞

. (3.53)

By compactness of M, we can find a ηn-net {xk}1≤k≤N ⊂ M with N � η−2
n . We

note that

{
‖∂2i j un,t

δ ‖L∞ > 1
logυ(n)

}
⊂

N⋃

k=1

{
|∂2i j un,t

δ (xk)| > 1
2 logυ(n)

}
. (3.54)

Indeed, if for any k ∈ {1, · · · , N }, |∂2i j un,t
δ (xk)| ≤ 1

2 logυ(n)
then for any x ∈ M there

exists j ∈ {1, · · · , N } such that

|∂2i j un,t
δ (x)| ≤ ηn‖∇∂2i j u

n,t
δ ‖L∞ + |∂2i j un,t

δ (x j )|
(3.53)
� 1

logυ(n)
.

Applying P on (3.54) yields

P

(
‖∂2i j un,t

δ ‖L∞ ≥ 1
logυ(n)

)
≤

N∑

k=1

P

(
|∂2i j un,t

δ (xk)| ≥ 1
2 logυ(n)

)

� η−2
n sup

x∈M
P

(
|∂2i j un,t

δ (x)| ≥ 1
2 logυ(n)

)
.

Using (3.52) and

η−2
n � log2υ(n)t−3,

which can be proven following the arguments leading to the second item of (3.59)
below, this yields P({‖∇2un,t

δ ‖L∞ ≤ 1
logυ(n)

}) = o( 1
nm ) for any m ∈ N for the choice

κ2 > 4κ1 + 1
η

+ 2υ.

We now prove (3.52).We first exploit the following explicit representation formula7

for un,t
δ ,

un,t
δ =

∫ ∞

0
e−s Ps

(
1
ρδ

(μn,t − ρt )
)
ds, (3.55)

that we expand, using the definition (1.2) of μn , in form of

un,t
δ = 1

n

n∑

k=1

ω(·, Xk) with ω(·, y) :=
∫ ∞

0
e−s Ps

(
1
ρδ

(pt (·, y) − ρt )
)
ds. (3.56)

7 A simple change of variable gives that the kernel p̃s associated to 1 − � is given by p̃s = e−s ps .
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Then applying the concentration inequalities in Proposition A.1, we get

P

(
|∂2i j un,t

δ (x)| ≥ 1
logυ (n)

)
≤ n exp

(
− 1

C1

( n

M log2(n)

)β
)

+ exp

(
− 1

C2

n2 log−2υ(n)

M2 + nv2

)

+ exp

(
− 1

C3

nλ

M2 logυ(n)
exp

( 1

C4

( n

M logυ(n)

)β(1−β)

log−1( n
M logυ (n)

)
))

,

(3.57)

where

M := sup
y∈M

|∂2i jω(x, y)| and

v2 := E[|∂2i jω(x, X1)|2] + 2 sup
�≥1

∑

k>�

|E[∂2i jω(x, X�)∂
2
i jω(x, Xk)]|. (3.58)

The estimate (3.52) then follows from the three following estimates

E[|∂2i jω(x, X1)|2] � δ−4t−1, sup
y∈M

|∂2i jω(x, y)| � t−1 and v2 � log
1
η (n)δ−4t−1,

(3.59)

that we prove separately in the next three sub-steps.
Sub–step 2.1. Proof of the first item of (3.59). Splitting the time integral

into
∫ t
0 + ∫ ∞

t and subtracting and adding back 1
ρδ(x)

in the first integral as well as
using the semigroup property of {Ps}s in form of

∫ t

0
ds e−s Ps(pt (·, y) − ρt ) =

∫ 2t

t
ds e−(s−t)(ps(·, y) − ρs),

we decompose ω into a regular-part J1 and a singular-part J2:

ω(x, y) = 1

ρδ(x)

∫ 2t

t
ds e−s(ps(·, y) − ρs)(x) +

∫ ∞

t
ds e−sPs

(
1
ρδ

(pt (·, y) − ρt )
)
(x)

︸ ︷︷ ︸
=:J1(x,y)

+
∫ t

0
ds e−sPs

(
( 1
ρδ

− 1
ρδ(x)

)(pt (·, y) − ρt )
)
(x)

︸ ︷︷ ︸
=:J2(x,y)

.

(3.60)

For the regular-part J1, we apply directly the heat-kernel bounds (3.3) and the first
item of (3.50), to obtain from the triangle inequality and Minkowski’s inequality

E[|∂2i jJ1(x, X1)|2] � ‖∂2i jJ1(x, ·)‖2L2 � (‖∇ρδ‖4L∞ + ‖∇2ρδ‖2L∞ )
( ∫ 2t

t
‖ps(x, ·)‖L2 ds

)2
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+‖∇ρδ‖2L∞
( ∫ 2t

t
‖∇ ps(x, ·)‖L2 ds

)2 +
( ∫ 2t

t
‖∇2 ps(x, ·)‖L2 ds

)2

︸ ︷︷ ︸
=:R1(x)

+
(∫ ∞

t
ds

(∫

M
dm(y)

(
∂2i jPs

(
1
ρδ

(pt (·, y) − ρt )
)
(x)

)2)
1
2
)2

︸ ︷︷ ︸
=:R2(x)

.

(3.61)

The first r. h. s. term R1(x) is dominated using directly the heat-kernel bounds (3.3)
and (3.50)

R1(x) � δ−4t
1
2 + δ−2 + t−1 � t−1. (3.62)

For the second r. h. s. side term R2(x), we first simplify the y-integral. Using that

∫

M
|pt (z, w) − ρt (z)| dm(w) � 1 and

∫

M
|pt (w, y) − ρt (w)| dm(w) � 1 for any z, y ∈ M, (3.63)

we have by Jensen’s inequality and the heat-kernel bounds (3.3)

∫

M

(
∂2i jPs

(
1
ρδ

(pt (·, y) − ρt )
)
(x)

)2
dm(y)

=
∫

M

(∫

M
dw ∂2i j ps(x, w) 1

ρδ(w)
(pt (w, y) − ρt (w))

)2

dm(y)

(3.63)
�

∫

M
|∂2i j ps(x, w)|2 dm(w) � s−3.

Thus,

R2(x) � t−1. (3.64)

The combination of (3.61), (3.62) and (3.63) yields

E[|∂2i jJ1(x, X1)|2] � t−1. (3.65)

We now turn to the singular-part J2. We first apply Minkowski’s inequality in form of

E[|J2(x, X1)|2] � ‖∂2i jJ2(x, ·)‖2L2

�
(∫ t

0
ds

(∫

M
dm(y)

(
∂2i jPs

(
( 1
ρδ

− 1
ρδ(x)

)(pt (·, y) − ρt )
)
(x)

)2)
1
2
)2

.

(3.66)
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We then simplify the y-integral. To this aim, we bound the integrand in L∞ using the
heat-kernel bounds (3.3), (3.50) and

∣∣∣ 1
ρδ(y)

− 1
ρδ(x)

∣∣∣
(3.50)
� δ−1d(x, y) for any x, y ∈ M, (3.67)

in form of

∣
∣∣∂2i jPs

(
( 1

ρδ
− 1

ρδ(x)
)(pt (·, y) − ρt )

)
(x)

∣
∣∣ � t−1

∫

M

∣∣
∣
∣∂

2
i j

(
ps(x, w)( 1

ρδ(w)
− 1

ρδ(x)
)
)∣∣
∣
∣ dm(w)

(3.50),(3.67)
� t−1δ−1

(∫

M
|∇2 ps(x, w)|d(x, w) dm(w) +

∫

M
|∇ ps(x, w)| dm(w)

)

+ t−1δ−2
∫

M
|ps(x, w)| dm(w)

(3.3)
� t−1δ−1s− 1

2 + t−1δ−2.

(3.68)

This yields together with (3.66)

E[|J2(x, X1)|2] � δ−4t−1. (3.69)

To conclude, the combination of (3.60), (3.65) and (3.69) shows the first item of (3.59).
Sub–step 2.2. Proof of the second item of (3.59). We use the decompo-

sition (3.60). For the regular-part J1, we argue as in (3.61) for the first term whereas
the second-term is estimated using the heat-kernel bounds (3.3) in form of

∣∣∣∣∂
2
i jPs

(
1
ρδ

(pt (·, y) − ρt )
)
(x)

∣∣∣∣ =
∣∣∣∣

∫

M
dm(w) ∂2i j ps(x, w) 1

ρδ(w)
(pt (w, y) − ρt (w))

∣∣∣∣

(3.3),(3.50)
� s−2

∫

M
dm(w) |pt (w, y) − ρt (w)|

� s−2,

so that
∣∣∣
∣

∫ ∞

t
ds e−s∂2i jPs

(
1
ρδ

(pt (·, y) − ρt )
)
(x)

∣∣∣
∣ � t−1.

Hence,

sup
y∈M

|J1(x, y)| � t−1. (3.70)

For the singular-part J2, we use the bound (3.68) which directly yields

sup
y∈M

|J2(x, y)| � δ−1t−
1
2 . (3.71)
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The combination of (3.60), (3.70) and (3.71) gives the second item of (3.59).
Sub- Step 2.3. Proof of the third item of (3.59). According to the first

item of (3.59), it suffices to give the argument for the second term in the definition
(3.58) of v2. We use the assumption (1.14) together with the two first items of (3.59)
in form of

∑

k>�

|E[∂2i jω(x, Xi )∂
2
i jω(x, X j )]|

=
∑

k>�

|E[∂2i jω(x, X�)∂
2
i jω(x, Xk)]|

1
log(n) |E[∂2i jω(x, X�)∂

2
i jω(x, Xk)]|1−

1
log(n)

�
∑

k>�

α
1

log(n)

k−� ( sup
y∈M

|∂2i jω(x, y)|) 2
log(n) (E[|∂2i jω(x, X1)|2])1−

1
log(n)

(3.59),(1.14)
� δ

−4(1− 1
log(n)

)t−1− 1
log(n)

∞∑

k=0

exp(−b kη

log(n)
)

� δ
4

log(n) t−
1

log(n) log
1
η (n)δ−4t−1,

which concludes since lim supn↑∞ δ
4

log(n) t−
1

log(n) � 1. ��

3.4 Contractivity estimates

This section is devoted to the control of the smoothing errors W 2
2 (μn,t , μn) and

W 2
2 (νm,t , νm) for the particular choice of t given in Proposition 3.4. The first result is

in the spirit of [3, Theorem 5.2] that we extend in the case of non-uniformly distributed
and correlated points. This extension requires a finer analysis of the error and the proof
relies on Berry–Esseen type inequalities in the spirit of [12, Theorem 5].

Proposition 3.5 (Semigroup contraction for empirical measures) Let {μn}n be defined
in (1.2) with point clouds satisfying Assumption 1.1. Given t such that Proposition 3.4
holds, we have

W 2
2 (μn,t , μn) ≤ Cn log log(n)

n
+ t

∥∥ρt+ 1
n

− ρ 1
n

∥∥
L1 , (3.72)

for some random variable Cn satisfying for C < ∞

sup
n≥1

E[ 1C Cn] ≤ 1.

Furthermore, if (1.14) holds with η ≥ 1 then the assumption (1.13) can be dropped
and the stochastic integrability can be improved up to losing a log(n) factor, namely

W 2
2 (μn,t , μn) ≤ Dn

log
1
η (n) log log(n)

n
+ t

∥∥ρt+ 1
n

− ρ 1
n

∥∥
L1 , (3.73)
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for some random variable Dn satisfying for D < ∞

sup
n≥1

E
[
exp( 1

DD
1
2
n )

] ≤ 2.

Proof According to the fluctuation estimates in Proposition 3.4 together with
W 2

2 (μn,t , μn) ≤ (diam(M))2, we can restrict the analysis in An defined in (3.43).
Note that for n large enough, (1.6) yields

λ

2
≤ μn,t ≤ 
 + 1 in An . (3.74)

We split the proof into three steps. In the first step, we prove a Berry–Esseen type
smoothing inequality forW 2

2 (μn,t , μn)which decomposes the error in a deterministic
part involving ρ and a random part involving the Fourier coefficients {μ̂n(k)}k of μn .
In the second step, we prove (3.72). In the third step, we control the fluctuations of
{μ̂n(k)}k using the concentration inequalities in Proposition A.1 and deduce (3.73).

Step 1. Berry- - Esseen type inequality. Recalling that we denote by
{λk, φk}k the eigenvalues and eigenfunctions of −� respectively, we prove that

W 2
2 (μn,t , μn) � 1

n
+

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2 + t‖ρt+ 1
n

− ρ 1
n
‖L1,

(3.75)

where

μ̂n(k) :=
∫

M
φk dμ

n and ρ̂(k) :=
∫

M
ρ φk dm.

We first apply the triangle inequality and use the classical contractivity estimate in
[23, Theorem 3] to get

W 2
2 (μn,t , μn) � W 2

2 (μn, 1n , μn) + W 2
2 (μn,t+ 1

n , μn,t ) + W 2
2 (μn,t+ 1

n , μn, 1n )

� 1

n
+ W 2

2 (μn,t+ 1
n , μn, 1n ). (3.76)

We then apply Peyre’s estimate [49] to the second r. h. s. , which takes the form

W 2
2 (μn,t+ 1

n , μn, 1n )

≤ 4 sup

{∣∣∣
∫

M
(μn,t+ 1

n − μn, 1n ) f dm
∣∣∣
2

with
∫

M
μn,t+ 1

n |∇ f |2 dm ≤ 1

}
.

(3.77)

Now, given an arbitrary f such that
∫

M
μn,t+ 1

n |∇ f |2 dm ≤ 1, (3.78)
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we split

∫

M
(μn,t+ 1

n − μn, 1n ) f dm =
∫

M
(
μn,t+ 1

n − μn, 1n − (ρt+ 1
n

− ρ 1
n
)
)
f dm

+
∫

M
f (ρt+ 1

n
− ρ 1

n
) dm. (3.79)

For the first r. h. s. term of (3.79), we expand the integral using (3.4). Thus, together
with the semigroup property of {Pt }t>0 and Cauchy-Schwarz’s inequality, we get

∫

M
(
μn,t+ 1

n − μn, 1n − (ρt+ 1
n

− ρ 1
n
)
)
f dm

=
∫

M
d
(
μn,t − μn − (ρt − ρ)

)
(y)

∫

M
dm(x) f (x)p 1

n
(x, y)

(3.4)=
∑

k≥1

e− 1
n λk

∫

M
d
(
μn,t − μn − (ρt − ρ)

)
(y)

∫

M
dm(x) f (x)φk(x)φk(y)

=
∑

k≥1

e− 1
n λk f̂ (k)

(̂
μn,t (k) − μ̂n(k) − (ρ̂t (k) − ρ̂(k))

)

≤
(∑

k≥1

λk | f̂ (k)|2
) 1

2
(∑

k≥1

e− 2
n λk

λk
|̂μn,t (k) − μ̂n(k) − (ρ̂t (k) − ρ̂(k))|2

) 1
2

Using that from (3.74) we have μn,t+ 1
n ≥ λ

2 and recalling (3.78), we get

(∑

k≥1

λk | f̂ (k)|2
) 1

2 ≤
( ∫

M
|∇ f |2 dm

) 1
2 ≤ 2

λ

( ∫

M
μn,t+ 1

n |∇ f |2 dm
) 1

2 ≤ 2

λ
.

Furthermore, noticing that Ptφk = e−tλkφk which implies that, since Pt is self-adjoint

μ̂n,t (k) = e−tλk μ̂n(k) and ρ̂t (k) = e−tλk ρ̂(k),

we obtain

∑

k≥1

e− 2
n λk

λk
|̂μn,t (k) − μ̂n(k) − (ρ̂t (k) − ρ̂(k))|2 =

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2.

This leads to

∫

M
d
(
μn,t+ 1

n − μn, 1n − (ρt+ 1
n

− ρ 1
n
)
)
f �

(∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2
) 1

2
.

(3.80)
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For the second r. h. s. of (3.79), we introduce w ∈ Ḣ1 satisfying

−�w = ρt+ 1
n

− ρ 1
n
,

so that from an integration by parts, Cauchy-Schwarz’ inequality and the combination
of (3.74) and (3.78), we obtain

∫

M
f (ρt+ 1

n
− ρ 1

n
) dm =

∫

M
∇ f · ∇w dm �

( ∫

M
|∇w|2 dm

) 1
2
.

Using then the explicit formula w = − ∫ t+ 1
n

1
n

ρτ dτ together with | ∫ t+ 1
n

1
n

ρτ dτ | (1.6)≤

t , we get

∫

M
|∇w|2 dm =

∫
(ρt+ 1

n
− ρ 1

n
)w dm � t‖ρt+ 1

n
− ρ 1

n
‖L1 ,

so that

∣
∣∣
∫

M
f (ρt+ 1

n
− ρ 1

n
) dm

∣
∣∣ �

√
t‖ρt+ 1

n
− ρ 1

n
‖

1
2

L1
. (3.81)

The combination of (3.79), (3.80), (3.81) and (3.76) leads to (3.75).
Step 2. Proof of (3.72). According to (3.75), it remains to show that

E

[∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2
]

� log log(n)

n
. (3.82)

Writing

μ̂n(k) − ρ̂(k) = 1

n

n∑

�=1

(φk(X�) − E[φk(X�)]), (3.83)

we first expand the square in form of

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2

= 1

n2

n∑

�=1

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2(
φk(X�) − E[φk(X�)]

)2

+ 2

n2
∑

1≤�<�′≤n

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2(
φk(X�) − E[φk(X�)]

)(
φk(X�′) − E[φk(X�′)]).

(3.84)
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For the first r. h. s. term of (3.84), we use the normalisation ‖φk‖L2 = 1 together
with (1.6) to the effect of

E
[|φk(X1) − E[φk(X1)]|2

] ≤ 
, (3.85)

and get

E

[ n∑

�=1

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
(φk(X�) − E[φk(X�)])2

]
≤ 
n

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
.

(3.86)

For the second r. h. s. term of (3.84), we use the definition of the β-mixing coefficient
(1.12) together with the assumption (1.13) in form of

E

[ ∑

1≤�<�′≤n

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2(
φk(X�) − E[φk(X�)]

)(
φk(X�′) − E[φk(X�′)])

]

≤
∑

1≤�<�′≤n

β��′ sup
x,y∈M

∣∣∣
∣
∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
φk(x)φk(y)

∣∣∣
∣

(1.13)
� n sup

x,y∈M

∣
∣∣
∣
∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
φk(x)φk(y)

∣
∣∣
∣.

(3.87)

The combination of (3.84), (3.86) and (3.87) yields

E

[∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2
]

� 1

n

(∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2 + sup
x,y∈M

∣∣
∣∣
∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
φk(x)φk(y)

∣∣
∣∣

)
.

It remains to show that

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2 + sup
x,y∈M

∣∣∣
∣
∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
φk(x)φk(y)

∣∣∣
∣ � log log(n).

(3.88)

We only treat the second l. h. s. term of (3.88), the first term is controlled the same
way. For any x, y ∈ M, we expand
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∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
φk(x)φk(y)

=
∑

k≥1

1

λk
e−2( 1n +t)λkφk(x)φk(y) − 2

∑

k≥1

1

λk
e−( 2n +t)λkφk(x)φk(y)

+
∑

k≥1

1

λk
e− 2

n λkφk(x)φk(y).

We then disintegrate using the spectral decomposition of the heat kernel (3.4) in form
of

∑

k≥1

1

λk
e−sλkφk(x)φk(y) =

∫ 1

s
ds ps(x, y) −

∑

k≥1

1

λk
e−λkφk(x)φk(y) for any s > 0,

so that we obtain

sup
x,y∈M

∣∣∣∣
∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2
φk(x)φk(y)

∣∣∣∣

= sup
x,y∈M

∣∣∣∣

∫ 2
n +t

2( 1n +t)
ps(x, y) ds +

∫ 2
n +t

2
n

ps(x, y) ds

∣∣∣∣

�
∫ 2

n +t

2( 1n +t)
s−1 ds +

∫ 2
n +t

2
n

s−1 ds

� log log(n).

Step 3. Proof of (3.73). It is a consequence of the following fluctuation estimates

E
[|μ̂n(k) − ρ̂(k)|2p] 1

p � p2
1

n

(
log

1
η (n)λ

1
log(n)

k + λk(1 + log2(n))

n

)
for any p < ∞,

(3.89)

togetherwithLemmaA.2. Indeed, applyingMinkowski’s inequality followedby (3.89)

and λ
1

log(n)

k e− 2
n λk � e− 1

n λk yield

E

[(∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|μ̂n(k) − ρ̂(k)|2
)p

] 1
p

� p2
1

n

∑

k≥1

e− 1
n λk

λk

(
e−tλk − 1

)2
(
log

1
η (n) + λk(1 + log2(n))

n

)
,
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and (3.73) follows from

∑

k≥1

e− 1
n λk

λk

(
e−tλk − 1

)2 � log log(n) and
∑

k≥1

e− 1
n λk

(
e−tλk − 1

)2 � t−1, (3.90)

which is obtained the same way as in (3.88) using additionally the trace formula (3.5).
We now prove (3.89). It follows from the estimate on the probability tails

P
(|μ̂n(k) − ρ̂(k)| > λ

)
� exp

(
− 1

C

n2λ2

n log
1
η (n)λ

1
log(n)

k + λk + nλλ
1
2
k log2(n)

)

for any λ > 0, (3.91)

for some C > 0, together with a simple application of the layer-cake representation.
To see (3.91), we use (3.83) together with Proposition A.1 to obtain

P
(|μ̂n(k) − ρ̂(k)| > λ

)
� exp

(
− n2λ2

nv2 + ‖φk‖2L∞ + nλ‖φk‖L∞ log2(n)

)
,

with

v2 := E[|φk(X1) − E[φk(X1)]|2]
+2

∑

i< j

∣∣E
[
(φk(Xi ) − E[φk(Xi )])(φk(X j ) − E[φk(X j )])

]∣∣. (3.92)

The estimate (3.91) is then a consequence of

‖φk‖L∞ � λ
1
2
k and v2 � log

1
η (n)λ

1
log(n)

k . (3.93)

The first item of (3.93) has been treated in (3.6). For the second item of (3.93), we
use (3.85) and, combined with (1.14), we obtain

∑

i< j

∣∣E
[
(φk(Xi ) − E[φk(Xi )])(φk(X j ) − E[φk(X j )])

]∣∣ �‖φk‖
1

log(n)

L∞
∑

�≥0

exp
( − b �η

log(n)

)

� log
1
η (n)λ

1
log(n)

k .

��

3.5 Proof of Theorem 1.2: Approximation of the transport plan

We only give the arguments for (1.20), (1.21) is proved the same way using the cor-
responding results (3.15), (3.73) and (B.2) in the case η > 2 (where some additional
comments are given if necessary along the proof). We split the proof into four steps.
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In the first step, we display some preliminary estimates useful all along the proof. In
the second step, we deal with the approximation error that occurs in the process of
regularizing ρ into ρδ . In the third step, we estimate the W2-distance for the regular-
ized quantity using the quantitative stability result in [4, Theorem 3.2], splitting the
estimates in small pieces that we control in the fourth step. We finally comment on the
proof of Remark 1.4 and Theorem 1.3, which are obtained with similar techniques.

Step 1. Preliminary estimates.

Heat kernel regularization The assumption ρ ∈ Hε provides

‖ρs − ρ‖L2 � ‖ρ‖Hε sε for any s > 0. (3.94)

Indeed, using the definition of the heat-kernel,Minkowski’s inequality and the spectral
decomposition (3.4), we have

‖ρs − ρ‖2
L2

=
∫

M
dm(x)

∣∣∣∣

∫

M
ρ(y)dm(y)

∫ s

0
dτ ∂τ pτ (x, y)

∣∣∣∣

2

≤
(∫ s

0
dτ

(∫

M
dm(x)

∣∣∣∣
∑

k≥1

ρ̂(k) λke
−τλkφk(x)

∣∣∣∣

2) 1
2
)2

.

Noticing that

∫

M
dm(x)

∣∣
∣∣
∑

k≥1

ρ̂(k) λke
−τλkφk(x)

∣∣
∣∣

2

=
∑

k≥1

λ2εk |ρ̂(k)|2λ2(1−ε)
k e−2τλk � ‖ρ‖2Hε τ

2(ε−1),

we get that

‖ρs − ρ‖2
L2

� ‖ρ‖2Hε

( ∫ s

0
τ ε−1 dτ

)2
�ε ‖ρ‖2Hε s2ε.

L∞-estimates Let κ1 > 0 and υ > max{(κ + 2)κ1, 1
η
}, where κ is given in Proposi-

tion 3.4. For the given choices

t := logκ2(n)

n
and δ := 1

logκ1(n)
, (3.95)

provided in Proposition 3.4, we define hn,t
δ ∈ Ḣ

1
the weak solution of

− ∇ · ρδ∇hn,t
δ = μn,t − νm,t . (3.96)

Note that by linearity, one can decompose hn,t
δ = h(1)n,t

δ − h(2)n,t
δ with

− ∇ · ρδ∇h(1)n,t
δ = μn,t − ρt and − ∇ · ρδ∇h(2)n,t

δ = νm,t − ρt , (3.97)
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so that, considering un,t
δ as in (3.42) and likewise v

n,t
δ with μn,t replaced by νm,t and

defining

An :=
{
‖μn,t − ρt‖L∞ + ‖νm,t − ρt‖L∞ ≤ 1

logυ(n)

}
(3.98)

as well as

Bδ,n :=
{∥∥(∇(un,t

δ , v
n,t
δ ),∇2(un,t

δ , v
n,t
δ )

)∥∥
L∞ ≤ 1

logυ(n)

}
, (3.99)

we deduce from Proposition 3.4 and m = m(n) ∼
n↑∞ qn that

∥∥(∇hn,t
δ ,∇2hn,t

δ )
∥∥
L∞ � 1

logυ−(κ+2)κ1(n)
in An ∩ Bδ,n . (3.100)

Lq -estimates A similar decomposition as in (3.97) of (1.18) together with (3.13) and
the choice of t in (3.95) yields

( ∫

M
|∇hn,t |q̄ dm

) 2
q̄ ≤ Cn log(n) + log

1
η (n)

n
, (3.101)

where Cn denotes, all along the proof, a random variable which satisfies (3.14) and
may change from line to line.

L2-regularization error Note that from (3.96) and (1.18)

− ∇ · ρδ∇(hn,t
δ − hn,t ) = ∇ · (ρδ − ρ)∇hn,t , (3.102)

so that from an energy estimate, Hölder’s inequality, (3.101) and (1.6), we obtain

∫

M
|∇(hn,t

δ − hn,t )|2 dm ≤ Cn‖ρδ − ρ‖2
L2(

q̄
2 )′

log(n) + log
1
η (n)

n
, (3.103)

where q̄ denotes the Meyers’ exponent of the operator −∇ · ρ∇, see Theorem A.3.
Finally, since infπ W 2

2 (π, γ n,t ) ≤ (diam(M))2 and (3.46) holds, we can restrict
our analysis in An ∩ Bδ,n that we do for the rest of the proof.

Step 2. Regularization error.We show that (3.103) surviveswhenmeasuring
the W2-distance, namely

W 2
2 (γ

n,t
δ , γ n,t ) ≤ Cn‖ρδ − ρ‖2

L2(
q̄
2 )′

log(n) + log
1
η (n)

n
with γ

n,t
δ

:= (
Id, exp(∇hn,t

δ )
)
#μ

n,t . (3.104)
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Using the coupling
(
(Id, exp(∇hn,t

δ )), (Id, exp(∇hn,t )
)
#μ

n,t as a competitor in
(3.1) and the fact that ‖μn,t‖L∞ � 1 in An , we have

W 2
2 (γ

n,t
δ , γ n,t ) ≤

∫

M
μn,td2

(
exp(∇hn,t

δ ), exp(∇hn,t )
)
dm

�
∫

M
d2
(
exp(∇hn,t

δ ), exp(∇hn,t )
)
dm. (3.105)

We then claim that
∫

M
d2
(
exp(∇hn,t

δ ), exp(∇hn,t )
)
dm � ‖∇hn,t

δ − ∇hn,t‖2
L2

+ ‖ρδ − ρ‖2
L(

q̄
2 )′

log(n)

n

‖∇hn,t
δ − ∇hn,t‖2

L2

E[‖∇hn,t
δ − ∇hn,t‖2

L2
] .

(3.106)

which, combined with (3.105) and (3.103) yields (3.104).
We now justify (3.106). The difficulty arises from the fact that exp is not globally

Lipschitz. To overcome this, we define

En :=
{
|∇hn,t

δ − ∇hn,t | ≤ C−1
n E

[‖∇hn,t
δ − ∇hn,t‖2

L2
] 1
2
}

with Cn := ς−1‖ρδ − ρ‖
L(

q̄
2 )′

√
log(n) + log

1
η (n)

n
,

for a given ς fixed later, and we split

∫

M
d2
(
exp(∇hn,t

δ ), exp(∇hn,t )
)
dm

=
∫

M
1End

2( exp(∇hn,t
δ ), exp(∇hn,t )

)
dm +

∫

M
1Ecnd

2( exp(∇hn,t
δ ), exp(∇hn,t )

)
dm

≤
∫

M
1End

2( exp(∇hn,t
δ ), exp(∇hn,t )

)
dm + (diam(M))2m(Ec

n).

For the first right-hand side integral, note that from the choice of Cn and (3.103), we
can choose ς � 1 uniformly in n such that in En the quantity |∇hn,t

δ − ∇hn,t | can be
made arbitrary small. Since exp is Lipschitz-continuous in a neighborhood of the null
vector, we deduce

∫

M
1End

2( exp(∇hn,t
δ ), exp(∇hn,t )

)
dm � ‖∇hn,t

δ − ∇hn,t‖2
L2

.

For the second right-hand side term, we simply apply Markov’s inequality in form of

m(Ec
n) ≤ C2

n

‖∇hn,t
δ − ∇hn,t‖2

L2

E
[‖∇hn,t

δ − ∇hn,t‖2
L2
] .
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The combination of the two previous estimates gives (3.106).
To prove (1.21), we need to control arbitrary p-moments, according to LemmaA.2.

The argument above can be easily adapted in this case by considering

En :=
{
|∇hn,t

δ − ∇hn,t | ≤ C−1
n E

[‖∇hn,t
δ − ∇hn,t‖2p

L2
] 1
2p
}

with Cn := ς‖ρδ − ρ‖
L(

q̄
2 )′

√
log

1
η (n) log(n)

n
.

We then follow the same argument, choosing ς−1 = O(
√
p).

Step 3. Quantitative stability. We show that

inf
π

W 2
2 (π, γ

n,t
δ ) � W 2

2
(
νm,t , exp(∇hn,t

δ )#μ
n,t ) + W2

(
νm,t , exp(∇hn,t

δ )#μ
n,t )W2(μ

n , νm )

+W 2
2 (νm,t , νm ) + W 2

2 (μn,t , μn)

+(
W2(ν

m,t , νm ) + W2(μ
n,t , μn)

)
W2(μ

n , νm ), (3.107)

where we recall that γ n,t
δ is defined in (3.104).

Let π be a coupling between μn and νm . We introduce a regularization parameter
s < 1 and, smoothing the measure μn into μn,s := Psμn , the optimal transport plan
πn,s from μn,s to νm is represented by a transport map T n,s , according to McCann’s
theorem [42], that is

πn,s = (Id, T n,s)#μ
n,s .

We then apply the triangle inequality in form of

W2(π
n,s, γ

n,t
δ ) ≤W2((Id, exp(∇hn,t

δ )#μ
n,s, (Id, exp(∇hn,t

δ )#μ
n,t )

+ W2(π
n,s, (Id, exp(∇hn,t

δ )#μ
n,s).

(3.108)

First, using (3.100), ∇hn,t
δ is Lipschitz-continuous and ‖∇hn,t

δ ‖L∞ can be made as
small as possible for n large. Since exp is Lipschitz-continuous in a neighborhood of
the null vector, we learn from Lemma 3.1 that

W 2
2

(
(Id, exp(∇hn,t

δ ))#μ
n,s, (Id, exp(∇hn,t

δ ))#μ
n,t) � W 2

2 (μn,t , μn,s). (3.109)

Second, we build a competitor for the second right-hand side term of (3.108): Defining

� := (
(Id, T n,s), (Id, exp(∇hn,t ))

)
#μ

n,s,

we have

W 2
2 (πn,s , (Id, exp(∇hn,t )#μ

n,s) ≤
∫

M×M×M×M
δ2
(
(x, z), (y, w)

)
d�

(
(x, y), (z, w)

)
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=
∫

M
δ2
(
(x, T n,s(x)), (x, exp(∇hn,t (x)))

)
μn,s(x) dm(x)

(1.15)=
∫

M
d2
(
T n,s , exp(∇hn,t

δ )
)
μn,s dm.

Using again (3.100) we can apply, for large n, the quantitative stability result of
transport maps, Theorem 2.1, to μ1 = νm , μ2 = exp(∇hn,t

δ )#μ
n,s and ν = μn,s to

the effect of
∫

M
d2
(
T n,s, exp(∇hn,t

δ )
)
μn,s dm �W 2

2

(
νm, exp(∇hn,t

δ )#μ
n,s)

+ W2
(
νm, exp(∇hn,t

δ )#μ
n,s)W2

(
μn,s, νm

)
,

which turns into, using the triangle inequality,

∫

M
d2
(
T n,s , exp(∇hn,t

δ )
)
μn,s dm

� W 2
2

(
νm,t , exp(∇hn,t

δ )#μ
n,t )

+ W2
(
νm,t , exp(∇hn,t

δ )#μ
n,t )W2

(
μn,s , νm

)

+ W 2
2 (νm,t , νm) + W 2

2

(
(Id, exp(∇hn,t

δ )#μ
n,s , (Id, exp(∇hn,t

δ )#μ
n,t )

+ (
W2(ν

m,t , νm) + W2((Id, exp(∇hn,t
δ )#μ

n,s , (Id, exp(∇hn,t
δ )#μ

n,t )
)
W2(μ

n,s , νm).

(3.110)

The combination of (3.108), (3.109) and (3.110) yields

W 2
2 (πn,s , γ

n,t
δ ) �W 2

2

(
νm,t , exp(∇hn,t

δ )#μ
n,t ) + W2

(
νm,t , exp(∇hn,t

δ )#μ
n,t )W2(μ

n,s , νm)

+ W 2
2 (νm,t , νm) + W 2

2 (μn,t , μn,s) + (
W2(ν

m,t , νm)

+ W2(μ
n,t , μn,s)

)
W2(μ

n,s , νm).

(3.111)

Since μn,s⇀
s↓0μ

n , and consequently (up to extracting a subsequence) πn,s⇀
s↓0π , for

someoptimal transport planπ , according to the qualitative stability result [62,Theorem
5.20], we can pass to the limit as s ↓ 0 in (3.111) which leads to (3.107).

Step 4. Proof of (1.20).We now fix κ1 = 1
η
(
q̄
2 ) 1

2ε +1 such that, applying (3.94),
the regularization error (3.104) turns into, recalling that δ is given by (3.95),

W 2
2 (γ

n,t
δ , γ n,t ) ≤ Cnδ

2ε

(
q̄
2 )′ log(n) + log

1
η (n)

n
≤ Cn 1

n
. (3.112)

It remains to show that

inf
π

W2(π, γ
n,t
δ )

≤ Cn log(n)

n

(√
logκ2−1(n)‖ρt+ 1

n
− ρt‖L1 + ‖ρδ − ρ‖2

L2(
q̄
2 )′

+ ‖ρt − ρ‖2
L2(

q̄
2 )′ + 1

logυ(n)
+

√
log log n
log n

)
,

(3.113)
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which together with (3.94) and (3.112) leads to (1.20). To show (3.113), we control
each terms of (3.107) separately.

The three last terms are controlled using the contractivity estimate (3.72) and (B.1)
which gives

W 2
2 (νm,t , νm) + W 2

2 (μn,t , μn) + (
W2(ν

m,t , νm) + W2(μ
n,t , μn)

)
W2(μ

n, νm)

≤ Cn log(n)

n

(√
log log(n)

log(n)
+

√
logκ−1(n)‖ρt+ 1

n
− ρt‖L1

)
.

For the first two terms, we argue that

W 2
2

(
νm,t , exp(∇hn,t

δ )#μ
n,t ) ≤ Cn

(‖ρδ − ρ‖2
L2(

q̄
2 )′ + ‖ρt − ρ‖2

L2(
q̄
2 )′ + 1

logυ (n)

) log(n)

n
,

(3.114)

which combined with (B.1) leads to (3.113).
Let us define the curve η : s ∈ [0, 1] �→ ηs := sμn,t + (1 − s)νm,t and note that

from (1.18) we have

d

ds
ηs + ∇ ·

(
ηs

ρδ∇hn,t
δ

ηs

)
= 0.

Applying Benamou–Brenier’ theorem [10], we learn that

νm,t = φ(1, ·)#μn,t withφis the flow induced bys �→ ρδ∇hn,t
δ

ηs
.

Next, using that

∣∣∣
ρδ∇hn,t

δ

ηs
− ∇hn,t

δ

∣∣∣ �
(
|ρδ − ρ| + |ρt − ρ| + |μn,t − ρt | + |νm,t − ρt |

)
|∇hn,t

δ |

�
(
|ρδ − ρ| + |ρt − ρ| + 1

logυ(n)

)
|∇hn,t

δ |,

and applying [3, Proposition A.1] together with Hölder’s inequality yields

W 2
2

(
νm,t , exp(∇hn,t

δ )#μ
n,t ) = W 2

2

(
φ(1, ·)#μn,t , exp(∇hn,t

δ )#μ
n,t )

�
∫

M

(
|ρδ − ρ| + |ρt − ρ| + 1

logυ(n)

)2|∇hn,t
δ |2

≤ (‖ρδ − ρ‖2
L2(

q̄
2 )′ + ‖ρt − ρ‖2

L2(
q̄
2 )′ + 1

logυ (n)

)( ∫

M
|∇hn,t

δ |q̄
) 2

q̄
.

(3.115)
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Using Meyers’ estimate of Proposition A.3 to (3.102) together with (1.6) and (3.101)
provides

( ∫

M
|∇hn,t

δ |q̄
) 2

q̄ �
( ∫

M
|∇hn,t |q̄

) 2
q̄ (3.101)≤ Cn log(n) + log

1
η (n)

n
,

which, combined with (3.115), yields (3.114).
We finally point out that, in the case η > 2, we use (3.73) and (B.2) and the same

computations lead to (1.21).
Step 5. Proof of Theorem 1.3 and Remark 1.4. The proof of Theorem 1.3

follows the same strategy with the main difference that Step 3 is now dropped and
Theorem 2.1 is directly applied with μ1 = ρ, ν = μn and μ2 = exp(∇ f n,t

δ )#μ
n

where f n,t
δ solves

−∇ · ρδ∇ f n,t = μn,t − ρt .

The improvement of Remark 1.4 follows from the improved contractivity estimate
(3.73): Under the assumption 1.25, we have (keeping the notations as in Proposi-
tion 3.5)

W 2
2 (μn,t , μn) ≤ Dn

log log(n)

n
, (3.116)

i.e. we do not have the loss log
1
η (n) in (3.73). Inspecting the proof of (3.73), the loss

log
1
η (n) comes from estimating v2 defined in (3.92). We obtain (3.116) by simply

using (1.25) and (1.11) to upgrade the second item of (3.93) into

v2 � 1 +
∑

�≥0

exp(−b�η) � 1.
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Appendix A: Probabilistic and PDE tools

This section is devoted to recall some probabilistic and analytical tools needed in the
proofs. We first recall some concentration inequalities for sequences of random vari-
able satisfying Assumption 1.1. Originally proved for i.i.d. samples, see for instance
[20, Theorem 3.6&3.7], the proofs in the correlated case can be found in [45, Theorem
1] and [44, Theorem 2].

Proposition A.1 Let n ∈ N, M > 0, {Xi }i be a family of centred random variables
such that supi≥1 |Xi | ≤ M for which (1.14) holds.

For any λ > 0, it holds for some constants (Ci )i∈{1,·,5} depending on a, b:

(i) If η < 1,

P

(∣∣∣
1

n

n∑

i=1

Xi

∣∣∣ > λ

)
≤ n exp

(
− 1

C1

(nλ

M

)η
)

+ exp

(
− 1

C2

n2λ2

M2 + nv2

)

+ exp

(
− 1

C3

nλ

M2 exp
( 1

C4

(nλ

M

)η(1−η)

log−1( nλ
M )

))
,

with

v2 := sup
i≥1

(
E[X2

i ] + 2
∑

j>i

|E[Xi X j ]|
)
.

(ii) If η = 1,

P

(∣∣∣
1

n

n∑

i=1

Xi

∣∣∣ > λ

)
≤ exp

(
− 1

C5

n2λ2

nv2 + M2 + nλM(log(n))2

)
.

We then recall the link between algebraic moments and exponential moments. The
proof is a direct consequence of the Taylor expansion of the exponential function.

Lemma A.2 Let X be a non-negative random variable. The following two statements
are equivalent:

(i) There exists C1 > 0 such that

E
[
exp( 1

C1
X)

] ≤ 2.

(ii) There exists C2 > 0 such that

E[X p] 1
p ≤ p C2 for any p < ∞.

We conclude this section by recalling the standard Meyers’ estimate for elliptic
equations in divergence form, see for instance the original paper [46].
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Theorem A.3 (Meyers estimate) Let a : M → R
2×2 be measurable and uniformly

elliptic. Consider u ∈ H1 the solution of the Neumann boundary problem

{−∇ · a∇u = ∇ · g inM,

a∇u · nM = 0 on ∂M,

for some g ∈ Lq with q > 2. There exists 2 < q̄ < q such that

∇u ∈ Lq̄ and ‖∇u‖Lq̄ � ‖g‖Lq̄ .

Appendix B: Matching cost for point clouds

This section is devoted to recall the upper bounds on the matching cost, results which
can be found in [12, Theorem 2] under mild β-mixing conditions. The case of Markov
chains have been studied in [24, 51] where sharp upper bounds are obtained. We
include a short proof for convenience.

Proposition B.1 (Matching cost) Let ρ satisfying (1.6) and {μn}n be defined in (1.2)
with point clouds satisfying the Assumption 1.1 or in the class of Markov chains
satisfying the Assumption 1.5. There exists a constant C > 0 such that

W 2
2 (μn, ρ dm) ≤ Cn log(n)

n
with sup

n≥1
E
[ 1
C Cn

] ≤ 1. (B.1)

Furthermore, if (1.14) holds with η ≥ 1 then the assumption (1.13) can be dropped
and the stochastic integrability can be improved up to losing a log(n) factor, namely

W 2
2 (μn, ρ dm) ≤ Dn

log
1
η (n) log(n)

n
with sup

n≥1
E
[
exp( 1

CDn)
] ≤ 1. (B.2)

Proof Note that the proof of (B.1) can be found in [12, Theorem 2] when the point
cloud satisfies the Assumption 1.1. We first show how (B.1) can be extended to point
cloudswhich are sampled from aMarkov chain satisfying theAssumption 1.5. Second,
we show how the stochastic integrability can be improved to (B.2) when (1.14) holds
with η ≥ 1.

Step 1. Markov chains case. Recall that a Markov chain satisfying the
Assumption 1.5 admits an absolutely continuous invariant measure of the form
μ∞ = ρ dm with ρ satisfying (1.6), that is λ ≤ ρ ≤ 
. Recalling that we denote
by {λn, φn}n the set of eigenvalues and normalized eigenfunctions of the Laplace-
Beltrami operator −� on M, we have by definition (1.2) of μn , for any k ≥ 1

μ̂n(k) − ρ̂(k) = 1

n

n∑

�=1

(φk(X�) − E[φk(X�)]) + 1

n

n∑

�=1

(E[φk(X�)] − μ∞(φk)),

(B.3)
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where we use interchangeably the notation ρ̂(k) = ∫
φkρ dm = μ∞(φk). Using the

Berry–Esseen smoothing inequality [12, Theorem 5] together with (B.3), we get

E[W 2
2 (μn, μ∞)] �1

n
+

∑

k≥1

e− 1
n λk

λk
E

[(
1

n

n∑

�=1

(φk(X�) − E[φk(X�)])
)2]

+
∑

k≥1

e− 1
n λk

λk
E

[(
1

n

n∑

�=1

(E[φk(X�)] − μ∞(φk))

)2]
.

(B.4)

We now estimate the last two terms of (B.4) separately and we start with the third one.
Using (1.33) and (3.93), we have

|E[φk(X�)] − μ∞(φk)|
(1.33)
� exp(−b�η)‖φk‖L∞

(3.93)
� exp(−b�η)λ

1
2
k ,

Thus, using in addition (3.5), we get

∑

k≥1

e− 1
n λk

λk
E

[(
1

n

n∑

�=1

(φk(X�) − E[φk(X�)])
)2]

� 1

n2
∑

k≥1

e− 1
n λk (3.5)= 1

n2

∫

M
p 1

n
(x, x) dm(x) � 1

n
. (B.5)

We now turn to the second term of (B.4). Expanding the square provides

∑

k≥1

e− 1
n λk

λk

(1
n

n∑

�=1

(φk(X�) − E[φk(X�)])
)2

= 1

n2
∑

k≥1

n∑

�=1

e− 1
n λk

λk
|φk(X�) − E[φk(X�)]|2

+ 2

n2
∑

k≥1

∑

1≤�<�′≤n

e− 1
n λk

λk
(φk(X�) − E[φk(X�)])(φk(X�′) − E[φk(X�′)]).

(B.6)

We now estimate the two terms on the right hand side of (B.6). For the first term,
an easy induction argument combining (1.29) and (1.28) show that for any n ≥ 1,
PXn � m with λ ≤ dPXn

dm ≤ 
. Therefore, we have

E
[|φk(X�) − E[φk(X�)]|2

] ≤ 
,

and we deduce

1

n2
∑

k≥1

n∑

�=1

e− 1
n λk

λk
E
[|φk(X�) − E[φk(X�)]|2

]
� 1

n

∑

k≥1

e− 1
n λk

λk
. (B.7)
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For the second term, we use (1.32) to obtain

2

n2
E

[∑

k≥1

∑

1≤�<�′≤n

e− 1
n λk

λk
(φk(X�) − E[φk(X�)])(φk(X�′) − E[φk(X�′)])

]

� 1

n2
∑

1≤�<�′≤n

β��′ sup
x,y∈M

∣∣∣∣
∑

k≥1

e− 1
n λk

λk
φk(x)φk(y)

∣∣∣∣

� 1

n
sup

x,y∈M

∣∣∣
∣
∑

k≥1

e− 1
n λk

λk
φk(x)φk(y)

∣∣∣
∣.

Combining the latter with (B.4), (B.5), (B.6) and (B.7) yields

E[W 2
2 (μn, μ∞)] � 1

n
+ 1

n

∑

k≥1

e− 1
n λk

λk
+ 1

n
sup

x,y∈M

∣∣∣
∣
∑

k≥1

e− 1
n λk

λk
φk(x)φk(y)

∣∣∣
∣. (B.8)

We finally conclude similarly as for (3.88).
Step 2. Higher stochastic integrability. We now prove (B.2). We argue

using the moment estimate (3.89) which, together with Minkowski’s inequality and

λ
1

log(n)

k e− 1
n λk

<∼ e− 1
2n λk implies

E

[(∑

k≥1

e− 1
n λk

λk
|μ̂n(k) − ρ̂(k)|2

)p] 1
p

� p2
1

n

∑

k≥1

e− 1
2n λk

λk

(
log

1
η (n) + λk(1 + log2(n))

n

)
.

Finally, combining the latter with the Berry–Esseen smoothing inequality [12, The-
orem 5] and arguing similarly as for (3.88) yields (B.2) thanks to Proposition A.2.

��

Appendix C. Proof for the class of Markov chains

We provide in this Section the arguments for extending Theorems 1.2 and 1.3 to the
class of Markov chains introduced in Sect. 1.4. The proof follows the lines of the proof
of Theorem 1.2, where the main difference is that we drop the assumption that the
point clouds is identically distributed. That affects the proofs of the main ingredients
(we recall that the scaling of the cost has already be proven in Proposition B.1), namely
the Lq estimates in Proposition 3.3, the fluctuation estimates in Proposition 3.4 and the
contractivity estimates in Proposition 3.5. We show in the following how to adapt the
proofs for a given Markov chain {Xn}n≥1 satisfying Assumption 1.5. In the following,
we recall that μ∞ = ρ dm denotes the unique invariant measure of the chain. We split
the proof into three steps.
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Step 1. Lq
estimates. We have to understand the extra error term coming from

the deviation of E[μn] from μ∞. In view of (3.21), it is

(∫

M
dm

( ∫ ∞

0
ds

(
(−s�)

1
2 Ps+t (E[μn] − μ∞)

)2)2
) 1

2

.

Using the definition (1.2) of μn , the convergence to equilibrium (1.33) applied to

f = (−s�)
1
2 ps+t (x, ·) and the heat-kernel estimates (3.3), we have for any s ≥ 0

and x ∈ M

(−s�)
1
2 Ps+t

(
E[μn] − ρ

)
(x)

= 1

n

n∑

�=1

(E[(−s�)
1
2 ps+t (x, X�)] − μ∞((−s�)

1
2 ps+t (x, ·))

(1.33)
� ‖(−s�)

1
2 ps+t (x, ·)‖L∞

n

(3.3)
� s

1
2 (s + t)− 3

2

n
,

(C.1)

so that, recalling t = logκ (n)
n ,

(∫

M
dm

( ∫ ∞

0
ds

(
(−s�)

1
2 Ps+t (E[μn] − μ∞)

)2)2
) 1

2

� 1

n2

∫ ∞

0
s(s + t)−3

� 1

n logκ(n)
� log(n)

n
.

Step 2. Fluctuation estimates.Here, the distribution of theMarkov chain affects
the concentration estimate (3.52). We show that, defining

ūn,t
δ :=

∫ ∞

0
e−sPs

(
1
ρδ

(μn,t − E[μn,t ])
)
ds, (C.2)

we have

P

(
|∂2i j un,t

δ (x)| ≥ 1
2 logν (n)

)
≤ P

(
|∂2i j ūn,t

δ (x)| ≥ 1
4 logν (n)

)
for any x ∈ M, (C.3)

where the r.h.s can be estimated following the lines of the proof of (3.52). As before,
we investigate the extra term coming from the deviation of E[μn] from μ∞. The
estimate (C.3) follows from

‖∂2i j (un,t
δ − ūn,t

δ )‖L∞ � 1

logν(n)
. (C.4)
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We argue as in (3.60), decomposing un,t
δ − ūn,t

δ into a regular-part and a singular part:
for any x ∈ M

(un,t
δ − ūn,t

δ )(x) = 1

ρδ(x)

∫ ∞

0
e−s (

E[μn,t+s] − ρt+s
)
(x) ds

+
∫ ∞

0
e−s Ps

(( 1
ρδ

− 1
ρδ(x)

)(
E[μn,t ] − ρt

))
(x) ds.

(C.5)

To estimate the second r.h.s integral of (C.5), we use (3.68). For the first r.h.s integral,
that we denote by J , we use the definition (1.2) ofμn , the convergence to equilibrium
(1.33) and the heat-kernel bounds (3.3) to obtain

|∂2i jJ (x)| =
∣∣∣
∣
1

n

n∑

k=1

∂2i j

(
1

ρδ(·)
∫ ∞

0
e−s (

E[pt+s(·, Xk)] − μ∞(pt+s(x, ·))
)
ds

)
(x)

∣∣∣
∣

�1

n

n∑

k=1

(
‖∇2 1

ρδ
‖L∞

∫ ∞

0
|E[ps+t (·, Xk)] − μ∞(pt+s(x, ·))|

+
∫ ∞

0
|E[∇2 ps+t (·, Xk)] − μ∞(∇2 pt+s(x, ·))|

+ ‖∇ 1
ρδ

‖L∞
∫ ∞

0
|E[∇ ps+t (·, Xk)] − μ∞(∇ pt+s(x, ·))|

)

(1.33),(3.3)(3.50)
� 1

n

(
δ−2

∫ ∞

0
min{(s + t)−1, (s + t)−

3
2 } ds

+
∫ ∞

0
(s + t)−2 ds + δ−1

∫ ∞

0
(s + t)−

3
2 ds

)

�1

n
(δ−2t−

1
2 + t−1 + δ−1t−

1
2 ) � 1

logν(n)
.

Step 3. Contractivity estimate. Here, the law of the Markov chain affects the
estimate (3.82). The extra error term coming from the deviation of E[μn] from μ∞
reads

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|E[μ̂n(k)] − μ∞(φk)|2.

Using the definition (1.2) of μn and the convergence to equilibrium (1.33) applied
with f = φk and the bound on the eigenfunctions (3.6), we have for any k ≤ n

|E[μ̂n(k)] − μ∞(φk)| =1

n

∣∣∣
∣

n∑

�=1

(E[φk(X�)] − μ∞(φk))

∣∣∣
∣

2 (1.33)
� 1

n
‖φk‖L∞

(3.6)
� 1

n
λ

1
2
k ,
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so that, using the trace formula (3.5) and the heat-kernel estimates (3.3), we deduce

∑

k≥1

e− 2
n λk

λk

(
e−tλk − 1

)2|E[μ̂n(k)] − μ∞(φk)|2

� 1

n2
∑

k≥1

e− 2
n λk (e−tλk − 1)2

(3.5),(3.3)
� 1

n
� log log(n)

n
.
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