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Abstract
We establish high probability estimates on the eigenvalue locations of Brownian
motion on the N -dimensional unitary group, as well as estimates on the number of
eigenvalues lying in any interval on the unit circle. These estimates are optimal up to
arbitrarily small polynomial factors in N . Our results hold at the spectral edges (show-
ing that the extremal eigenvalues are within O(N−2/3+) of the edges of the limiting
spectral measure), in the spectral bulk, as well as for times near 4 at which point the
limiting spectral measure forms a cusp. Our methods are dynamical and are based on
analyzing the evolution of the Cauchy transform of the empirical spectral measure
along the characteristics of the PDE satisfied by the limiting spectral measure, that of
the free unitary Brownian motion.

Mathematics Subject Classification 60H05 · 22C05

1 Introduction andmain results

In this work we study Brownian motion on the unitary group U(N ) of dimension N .
One can define Brownian motion on U(N ) by considering the left-invariant Rieman-
nian metric induced by the inner product 〈A, B〉 = N tr(AB∗) on the Lie algebra
of skew-Hermitian matrices. Unitary Brownian motion is then the Markov diffusion
process starting from the identity matrix with generator given by the Laplacian on
U(N ) associated to this metric.
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754 A. Adhikari, B. Landon

It will be more convenient for us to consider the following equivalent definition of
Ut as the solution of the Itô stochastic differential equation,

dUt = iUtdWt − 1

2
Utdt, U0 = 1 (1.1)

where Wt is a standard complex Hermitian Brownian motion. That is, if Xt and X ′
t

are N × N matrices of independent standard Brownian motions, then,

Wt = 1√
4N

(
Xt + XT

t + i(X ′
t − (X ′

t )
T )

)
. (1.2)

The process (1.1) admits strong solutions by standard results (see, e.g., Theorem 8.3
of [35]).

Unitary Brownian motion is well-studied in random matrix theory as well as in
the context of free probability due to its connection with an object called free unitary
Brownian motion. Of particular interest is the empirical spectral measure ofUt , which
is a random, time-dependent measure on the unit circle defined by,

dνN ,t (x) := 1

N

N∑
i=1

δλi (t)(x)dx . (1.3)

In the work [10], Biane showed that for fixed t , the measure νN ,t converges almost
surely to a measure on the unit circle which we will denote by νt . Identifying the unit
circle with the angular coordinates θ ∈ (−π, π ], the measure νt has a density ρt (θ)

for any t > 0. For t < 4 the support of ρt is given by,

It := [−�t ,�t ], �t := 1

2

√
(4 − t)t + 2 arcsin

(√
t

4

)
, (1.4)

whereas for t ≥ 4, the support is the entire unit circle. Moreover, for t ≥ 4 the density
is everywhere non-zero unless t = 4 in which case ρt vanishes only at π . In fact, ρt
can be described as the spectral measure of free unitary Brownian motion, an object
appearing in free probability. The limit of the νN ,t was also derived independently by
Rains in [43].

Since Biane’s paper, there have been many works studying the convergence of νN ,t

to ρt . Concentration estimates and convergence for the empirical averages
∫

f dνN ,t

were established by Kemp [31] for various classes of f of low regularity. Meckes and
Melcher [42] established explicit convergence rates in terms of the L1-Wasserstein
metric. For 0 < t < 4, the convergence of the spectral edge of Ut to ±�t was
established by Collins, Dahlqvist and Kemp [17]. This work also established a multi-
time, multi-matrix version of this result. The asymptotic Gaussian fluctuations of the
empirical averages of

∫
f dνN ,t were established byLévy andMaida [38].Multivariate

fluctuations for trace polynomials of a two parameter family of diffusion processes
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Local law and rigidity for unitary Brownian motion 755

(including unitary Brownian motion as a special case) were studied by Cébron and
Kemp [13].

The main contribution of the present work is to establish almost-optimal rates (i.e.,
up to polynomial N ε factors) of convergence of νN ,t to the limiting distribution ρt
on the almost-shortest possible scales, as well as almost-optimal estimates on the
eigenvalue locations. In the random matrix literature, these estimates are known as
local laws and rigidity estimates, respectively. Our local laws are stated in Theorem1.2
and in Corollary 1.3 below, showing that the number of eigenvalues in any sub-interval
I of the unit circle is given by Nρt (I ) + O(N ε) for any ε > 0.

For times t < 4 we establish almost-optimal rates of convergence of the spectral
edge ofUt to ±�t . That is, the extremal eigenvalues are within distanceO(N−2/3+ε)

of ±�t (what is usually termed edge rigidity in the literature). Given the square-root
behavior of the spectral measure at the edges, this is expected to be optimal up to the
N ε factor.We also derive almost-optimal edge rigidity results up to t = 4−N−1/2+ε at
which point the measure ρt forms a cusp (i.e., vanishes like a cube root) near θ = ±π .
This is expected to be optimal as at later times, the natural inter-particle distance at
the spectral edges exceeds the distance between +�t and −�t . Our rigidity estimates
are formulated in Corollaries 1.5 and 1.7 below. The scaling behaviors in the various
parameter regimes will be given as the results are introduced.

To our knowledge, our results are the strongest available estimates on eigenvalue
locations for unitary Brownian motion. Our methods are completely different from
prior works on rates of convergence to ρt , relying on the method of characteristics
from PDEs. Previous works were based on moment calculations and/or concentration
estimates for heat kernels on Lie groups.

1.1 Discussion of methodology

There are many approaches in the literature for proving local laws and rigidity in
random matrix theory. For Wigner matrices and related mean-field random matrices
W , a multi-scale approach to analyzing the resolvent (W−z)−1 giving estimates down
to the optimal scalewas developed byErdős, Schlein andYau [21–23]. For pedagogical
overviews of this strategy see [9, 26]. Earlier local laws for random matrices on short
scales appeared in [8, 28].

While powerful, the resolvent method makes heavy use of the matrix structure and
independence between different entries; whileUt is associated with a matrix process,
the correlation structure between entries is complicated and renders this approach
intractable. Instead, the processUt somewhat resembles what is known as (Hermitian)
Dyson Brownian motion, whose definition we now recall. In the work [19], Dyson
showed that the eigenvalues of V +Wt for any Hermitian V (andWt as in (1.2)) obey
the system of SDEs,

dμi =
√

2

Nβ
dBi + 1

N

∑
j 	=i

1

μi − μ j
dt − 1

2
μidt, (1.5)
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756 A. Adhikari, B. Landon

where β = 2. Moreover, at the level of formal calculation, Dyson showed that the
eigenvalues λi (t) of the matrix Ut satisfy the closed system of SDEs,

dλi = 1√
N
iλidBi − 1

N

∑
j 	=i

λ jλi

λi − λ j
dt − 1

2
λidt, (1.6)

where the {Bi (t)}Ni=1 are a family of independent standard Brownian motions. We
will not make use of this SDE, but mention that well-definedness of this process was
studied in [14].

Given the similar form of these two processes, it is therefore useful to recall how
rigidity has been established in the study of DBM (1.5) for general β. Given Dyson’s
original derivation of (1.5)we see that for the special valuesβ = 1, 2, 4, this eigenvalue
process in fact comes from a matrix-valued Brownian motion that can be thought of
as an additively deformed Gaussian Orthogonal/Unitary/Symplectic ensemble. In the
case that the initial data is the 0 matrix, this is just a scaled Gaussian matrix, and so
the local laws and rigidity follow from those for Wigner matrices. For general initial
data, local laws and rigidity were developed by Lee and Schnelli [36, 37] as well as the
second author with Yau [33, 34] still using resolvent methods, as the additive structure
inherent in DBM allows this approach to work. However, for general β, the process
(1.5) is no longer naturally associated with any matrix process and so no resolvent
methods can work.

Nonetheless, the second author with Huang [30] showed that local laws and rigidity
in fact hold for DBM with general β as well as a general potential (the equation (1.5)
being associated with quadratic V ′(μ) = 1

2μ). This was further developed by the first
author with Huang to study the spectral edges [1]. The method in these works is our
starting point and so we review it here.

The works [1, 30] were based on a PDE-style approach to studying the Stieltjes
transform,

m(z, t) := 1

N

N∑
i=1

1

μi (t) − z
, (1.7)

of the empirical eigenvalue measure associated to the Hermitian DBM (1.5), on short
scales Im[z] ∼ N−1. For β = 2, this quantity satisfies,

dm(z, t) =
(
m(z, t) + z

2

)
∂zm(z, t)dt + 1

2
m(z, t)dt + dNt , (1.8)

for some Martingale Nt which turns out to be lower-order. This leads to the limiting
complex Burger’s equation,

∂t m̃(z, t) =
(
m̃(z, t) + z

2

)
∂zm̃(z, t) + 1

2
m̃(z, t). (1.9)

These equations were considered by Rogers and Shi [45] and general potential ana-
logues by Li, Li and Xie [39, 40]. The complex Burger’s equation may be solved by
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Local law and rigidity for unitary Brownian motion 757

the elementary method of characteristics. The works [1, 30] were based on tracking
the difference between m̃(zt , t) andm(zt , t) along characteristics zt . Note that for any
fixed z, it is relatively straightforward to see that the limitingm(z, t)must satisfy (1.9).
The main challenge in [1, 30] is to extend this to short scales and obtain optimal error
estimates.

Thenatural analogueof theStieltjes transformm(z, t) above formeasures supported
on the unit circle is the following transform,

f (z, t) := 1

N
tr

(
Ut + z

Ut − z

)
=

∫
eiθ + z

eiθ − z
dνN ,t (θ). (1.10)

We will refer to this as the “Cauchy transform” although the Cauchy transform is
usually defined slightly differently [15] (the usual definition differs from ours only
by an affine transformation). Our choice of f is to match the work of Biane [10, 11]
discussed in more detail below.

An application of Itô’s formula starting from (1.1) shows that f (z, t) obeys the
SDE,

d f (z, t) = − z f (z, t)

2
∂z f (z, t)dt + dMt (z) (1.11)

where Mt (z) is a complex-valued Martingale defined via,

dMt (z) = −2iz

N
tr

(
Ut

(Ut − z)2
dWt

)
= −2iz

N

N∑
i, j=1

[
Ut

(Ut − z)2

]

i j
d(Wt )i j ,

(1.12)

where the second equality explicitlywrites out the trace in terms of thematrix elements
of Ut (Ut − z)−2 and the matrix of stochastic differentials of the Hermitian Brownian
motion Wt . The covariation process of Mt is easily calculated,

〈dM, dM〉 = −4z2

N 3 tr

(
U 2
t

(Ut − z)4

)
dt

〈dM, dM̄〉 = 4|z|2
N 3 tr

( |Ut |2
|Ut − z|4

)
dt . (1.13)

Based on this, one sees that the limiting Cauchy transform should be the solution to,

∂t f̃ (z, t) = − z f̃ (z, t)

2
∂z f̃ (z, t), f̃ (z, 0) = 1 + z

1 − z
, (1.14)

the analogue of the complex Burger’s equation (1.9). Indeed, these equations were
found by Biane [10, 11], and the Cauchy transform f̃ (z, t) characterizes the limiting
spectral measure νt . We collect properties of this measure and its density ρt (θ) in
Appendix A.

123



758 A. Adhikari, B. Landon

In the present work, we will analyze the equation (1.11) through the characteristics
associated to (1.14). That is, if z(t) is a time-dependent curve in C satisfying,

d

dt
z(t) = z(t) f̃ (z(t), t)

2
, (1.15)

then,

d

dt
f̃ (z(t), t) = 0. (1.16)

In fact, Biane’s work [11] shows that for any t the map z → z(t) is a conformal map
of some domain onto the complement of the unit circle in C, which allows one to
construct f̃ (z, t) from the characteristics.

At a superficial level, we are translating the methods of [1, 30] from the real line to
the unit circle.However, the translation is not at all straightforward and there are serious
obstacles to be overcome once one moves to our new setting. We briefly mention a
few now; they will be presented in more detail below as we discuss our results. First,
it is not a-priori clear that this method could even work in the first place. In particular,
it is crucial that the Martingale term Mt (z) above can be controlled by the empirical
Cauchy transform f (z, t) itself. The precise form of the quadratic variation of Mt is
therefore important. Similar considerations hold for controlling the term ∂z f (z, t) by
f (z, t). In fact, getting precise constants here is crucial due to the use of Gronwall’s
inequality in our proof.

One of the new novelties of our work is to deal with times close to t ≈ 4 where the
spectral measure ρt (θ) forms a cusp singularity near θ = ±π . Local laws near a cusp
are in general delicate (see e.g., [6, 16, 20]) and in the random matrix setting have
not been dealt with via the characteristics approach before our work (but see the work
[29] which studies non-intersecting random walks via characteristics in a different
context). Secondly, the works [1, 30] dealt only with short times t = o(1) whereas we
are interested in times of order 1. Coupled with the curvature of the unit circle, this
requires amore detailed understanding of the behavior of the characteristics, especially
near the spectral edges and cusps than was required before. Here, we partially rely on
the semi-explicit form of the spectral measure and Cauchy transform f̃ (z, t). Finally,
the results of [1] make somewhat strong assumptions on the initial data. This was
primarily due to the treatment of general potentials in that work, which allowed for an
analysis of the movement of the spectral edge. Here, our initial data is a delta function,
falling outside the assumptions of [1]. In particular, our short-time analysis is more
involved.

The characteristic approach has appeared in a few other works on the short-scale
behavior of eigenvalues. Bourgade used characteristics to analyze a “stochastic advec-
tion equation” derived from a certain coupling between DBMs and obtained fine
estimates on the local eigenvalue behavior of general Wigner matrices, including
universality of the extreme gaps [12]. Von Soosten and Warzel used random charac-
teristics to prove local laws for Wigner matrices [49] and to study delocalization in
the Rosenzweig–Porter model [48].
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Local law and rigidity for unitary Brownian motion 759

1.2 Statement of main results

Cauchy transforms of measures μ on the unit circle fμ(z) are traditionally studied for
z in the open unit disc, {|z| < 1}. Due to the identity,

fμ(reiθ ) = − fμ(r−1eiθ ), (1.17)

this is equivalent to studying the behavior for |z| > 1, and it is somewhat conceptually
simpler for our techniques to treat |z| > 1. Based on this, our first main result is the
following, identifying the rate of convergence of the empirical spectral measure of
unitary Brownian motion down to the optimal scale (up to polynomial factors). In
order to state our results we introduce the notion of overwhelming probability.

Definition 1.1 If Ai are events indexed by some set i ∈ I (and may depend on N )
then we say that the family of eventsAi hold with overwhelming probability if for all
D > 0 there is a C > 0 so that,

sup
i∈I

P[Ac
i ] ≤ N−D, (1.18)

for all N ≥ C .

Theorem 1.2 Let T > 0 and ε, δ, c > 0. For any 0 < t < T , we define the domain,

Bt :=
{
z ∈ C : 5 > log |z| >

N δ

N |Re[ f̃ (z, t)]| ∨ N−c

}
. (1.19)

Then, with overwhelming probability we have uniformly for all 0 < t < T and z ∈ Bt

that,

| f (z, t) − f̃ (z, t)| ≤ N ε

N log |z| . (1.20)

Let us now explain the connection between the Cauchy transform and the spectral
measure. For a general probability measure μ on the unit circle, one may recover μ

via the weak limits,

(2π)dμ(θ) = lim
r↑1

(
Re

[∫
eiθ

′ + reiθ

eiθ ′ − reiθ
dθ ′

])
dθ

= − lim
r↓1

(
Re

[∫
eiθ

′ + reiθ

eiθ ′ − reiθ
dθ ′

])
dθ. (1.21)

However, this is not useful in order to obtain effective estimates on, e.g., the number
of eigenvalues in an interval. The Helffer–Sjöstrand formula [18] for measures on R

allows one to relate empirical averages of test functions to integrals of the Stieltjes
transform over C, turning estimates on the Stieltjes transform into effective estimates
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760 A. Adhikari, B. Landon

on the eigenvalues [9]. In Sect. 6.1 we quickly develop a version of the Helffer–
Sjöstrand formula for measures on the unit circle (like the usual HS formula, it is
a consequence of Green’s theorem). Similar formulas have appeared before in the
literature [41], but the form given here is well-adapted to our purposes. Using this and
the above theorem as input, we obtain the following.

Corollary 1.3 Let T > 0 and ε > 0. With overwhelming probability, the following
holds uniformly over all intervals I ⊂ (−π, π ], and all 0 < t < T ,

∣∣∣∣
∣∣∣{λi (t) = eiθi (t) : θi ∈ I }

∣∣∣ − N
∫

I
ρt (θ)dθ

∣∣∣∣ ≤ N ε + t−1/2N−1/ε, (1.22)

for N large enough.

The above corollary shows that as long as t ≥ N−C for some C > 0 then the
number of eigenvalues in any interval is given by the limiting spectral measure up to
an arbitrarily small polynomial error, with very high probability. This is the optimal
scaling up to perhaps replacing the N ε error by some sort of logarithmic error.

Theorem 1.2 is proven in Sect. 2, and Corollary 1.3 is derived in Sect. 6.2. This
is the most straightforward of our results as it is the most literal translation of the
methods of [1, 30] to the unitary setting. Nonetheless, estimates as sharp as those of
Corollary 1.3 were not known before this work.

Our method relies on an application of Gronwall’s inequality to the the function
t → f (z(t), t) − f̃ (z(t), t) where z(t) is a characteristic as above. The most delicate
estimates are associated with estimating the martingale term Mt (z(t)) defined above,
as well as the argument around (2.23) and (2.24). The integral form of Gronwall’s
inequality we apply involves an exponential termwhich this latter argument estimates.
Here, we cannot lose any constants or else the error term would be far too large to
close our argument.

Recall that for t < 4 the support of ρt is not yet the entire unit circle and is instead
the interval It := [−�t ,�t ] where �t is as in (1.4). The estimates of Theorem 1.2
are insufficient to address the natural question of whether or not there are eigenvalues
outside of It , or their typical distance from the edges of It .

As mentioned above, Collins, Dahlqvist and Kemp [17] showed that with high
probability there are no eigenvalues outside any open set containing It . However, such
a statement does not yield the correct order of fluctuations of the extremal eigenvalues
of Ut .

Before stating our results regarding the extremal eigenvalues, let us first ascertain
what we expect for the order of magnitude of the fluctuations. For δ < t < 4 − δ, we
show in Appendix A that for E > 0 sufficiently small,

ρt (�t − E) = ct E
1/2(1 + O(E)). (1.23)

That is, the spectral measure vanishes like a square-root at the edges of its spectrum.
The square-root behavior near spectral edges is generic in randommatrix theory and is
associated with limiting Tracy-Widom fluctuations on the order of O(N−2/3). While
not explicitly formulated, we expect that the estimates of [17] in fact show that the
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Local law and rigidity for unitary Brownian motion 761

extremal eigenvalues of Ut are no more than O(N−c) from the edges of It for some
small, explicit c > 0. However, the interparticle distance associated with the square-
root behavior is O(N−2/3) and so such an estimate nonetheless falls short.

Our next result shows that with overwhelming probability, the extremal eigenvalues
are in fact within O(N−2/3+ε) of the edges of the support It . These are analogues of
the well-known rigidity results in random matrix theory at the edge (see, e.g., [27] for
the first such estimates for generalized Wigner matrices). This is also the analogue of
the results of [1] on the Hermitian DBM in the unitary setting.

Theorem 1.4 Let δ > 0 and ε > 0 be sufficiently small. With overwhelming probabil-
ity, the following holds uniformly for all t satisfying δ < t < 4 − δ,

∣∣∣
{
i : λi (t) = eiθ , θ ∈ [−π, π ]\[−�t − N−2/3+ε,�t + N−2/3+ε]

}∣∣∣ = 0,

(1.24)

and for all 0 ≤ t ≤ δ,

∣∣∣
{
i : λi (t) = eiθ , θ ∈ [−π, π ]\[−�t − N−ε/6,�t + N−ε/6]

}∣∣∣ = 0. (1.25)

For short times t � 1, themeasure ρt looks like an approximate semicircle centered
at θ = 0 of width

√
t and ρt (0) � t−1/2. One therefore expects a different scaling

of the interparticle distance for short times t . The error we obtain is not optimal for
short times t , but this regime is not the main focus of our work and so we do not try
to optimize our approach here.

Together with Corollary 1.3, we can then deduce the following rigidity estimates.
To introduce them, we require some further notation. Note that for all times t > 0 the
joint law of the eigenvalues of Ut has a density with respect to Haar measure, and so
for each fixed time t0 > 0, the eigenvalues are almost surely distinct. On the other
hand, it follows from [14] that for distinct initial data, the solution to (1.6) exists as
a strong solution for all times t > t0 and moreover the eigenvalues do not intersect.
Taking t0 → 0 it follows that with probability 1, the eigenvalues are distinct for all
times t > 0. Since the eigenvalue locations are continuous functions of time and all
start at the location z = 1 at t = 0 it follows that there is a labelling {λi (t)}Ni=1 so that
we can write λi = eiθi (t) for continuous θi (t) starting at 0 and for all t > 0 satisfying,

θ1(t) < θ2(t) < · · · < θN (t) < θ1(t) + 2π. (1.26)

Note that it is possible forλi (t) = eiθi (t) towrapmany times around the unit circle. E.g.,
each θi (t) can take any value inR such that the above ordering is respected. However,
since the statement of Theorem 1.4 holds on an event of overwhelming probability for
all t simultaneously, we can rule out any eigenvalues passing through the point θ = π

on this event (this could also be concluded by passing from estimates holding on a
sufficiently finely-spaced grid of times to all t using theHoffman-Wielandt inequality).
This observation allows us to formulate the following rigidity estimates.
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762 A. Adhikari, B. Landon

Denote by γi (t) the quantiles of ρt ,

i

N
=

∫ γi (t)

−π

ρt (θ)dθ, (1.27)

with the convention that γN is either the right spectral edge or π for t ≥ 4. We have
the following.

Corollary 1.5 Let δ > 0 and ε > 0. The following holdswith overwhelming probability
uniformly for all t satisfying δ < t < 4 − δ and all 1 ≤ i ≤ N. We have,

|θi (t) − γi (t)| ≤ N ε 1

N 2/3 min{i1/3, (N + 1 − i)1/3} . (1.28)

Theorem 1.4 is proven in Sect. 3. Corollary 1.5 follows in a straightforward manner
from Corollary 1.3 and Theorem 1.4 and so we omit the proof (see, e.g., Section 3.3
of [30]).

Compared to the work [1], we encounter several new difficulties in our unitary
setting in establishing these edge rigidity results. These mostly have to do with the
fact that establishing the above results heavily depends on detailed analysis of the
behavior of characteristics near the spectral edge. This behavior depends especially
on the distance along the unit circle of characteristic from the location±�t (the angular
coordinate) as well as the distance from the unit circle. However, these coordinates
introduce curvature whereas in the real line setting these are flat Cartesian coordinates
of the real and imaginary part of the characteristic. This is further complicated by the
fact that for short times t , the spectral measure is very peaked and that for long times t ,
the characteristics will leave the small neighbourhoods of the spectral edges for which
we can develop expansions of f̃ (z, t).

We overcome the short-time difficulties mainly by sacrificing obtaining optimal
estimates for short times; i.e., for short times we consider only characteristics that are
somewhat far from the spectral edge. The second fact we use to overcome the difficul-
ties associated with curvature and long times is monotonicity of the radial coordinate
of the characteristics in time. This second fact is lacking for the general potential pro-
cesses considered in [1, 30], and is one of the sources of the short-time restrictions in
those works (“shocks” can develop for these processes). Essentially, monotonicity of
the characteristics allows us to split the paths into “short” and “long” time regimes. In
the short-time regimes, we can use a combination of analytic approaches to square-
root measures and the semi-explicit formulas for f̃ (z, t) to control the behavior of
characteristics close to spectral edges. In the long time regime, things are far away
from the spectrum and so relevant quantities can usually be bounded by constants.

We now turn our attention to times t ∼ 4. This is a critical time for unitary Brownian
motion, as at t = 4, the two spectral edges±�t merge, and the support of the density of
states becomes the entire unit circle for later times t . In fact, aswe show inAppendixA,
the spectral measure at t = 4 has a cusp singularity,

ρ4(π + E) = c|E |1/3(1 + O(|E |1/3)), (1.29)
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Local law and rigidity for unitary Brownian motion 763

for some constant c > 0. Moreover, for times t near 4, the spectral measure undergoes
a transition where the two edges gradually form a “near-cusp”, become a cusp, and
then form a small local minimum as t ranges from slightly less than 4 to slightly larger
than 4.

This behavior is identical to that found in the theory of the so-called quadratic
vector equation. The quadratic vector equation is a generic equation characterizing the
density of states of certain classes of mean field self-adjoint random matrix models.
In a series of works [3–5], Ajanki, Erdős and Krüger carried out a systematic study
of the solutions to the quadratic vector equation. In particular, they found that the
only possible singularities that may occur are cusps, where the density of states of
vanishes like a cube root, and square roots, occurring at either external or internal
edges.Moreover, they characterized transitional regimeswhere intervals of the density
of states merge or split. In such regimes, they showed that the leading order of the
density of states is always given by universal shape functions arising from Cardano’s
formula for the roots of third-degree polynomials. There are two such functions; the
first, e corresponds to the case when two separate intervals merge and describe a
transition from square-root to cubic behavior. The second, m describes what occurs
after the cusp forms, when the density of states has a small minimum.

In fact, in Appendix A we show that for times t < 4 that the density of states ρt of
unitary Brownian motion is described by e and for times t > 4 by m , the universal
shape functions of [3]. On the one hand, this is remarkable as there is no quadratic
equation describing the density of states of unitary Brownian motion and moreover
that the eigenvalues are on the unit circle instead of the real line. On the other hand, the
universal shape functions arise from expansions of the Cauchy or Stieltjes transform
near critical points (i.e., the spectral edges or minima) as soon as one is guaranteed
that either the coefficients of the quadratic or cubic terms is non-degenerate and so
this behavior is somewhat expected.

Theorems 1.2 and 1.4 above do not capture the behavior of the extremal eigenvalues
in the case of the near-cusp, when times t are very close to 4. Using the formula for
�t above, we have for t < 4 that the gap between the two spectral edges scales like,

�t := 2(π − �t ) = 1

3
(4 − t)3/2(1 + O(4 − t)). (1.30)

By our calculations of ρt and the asymptotics of the shape function e we have that
in a vicinity of the edge, the density of states behaves like a re-scaled square-root,1

ρt (�t − E) � E1/2

(4 − t)1/4
� E1/2

�
1/6
t

, 0 ≤ E ≤ �t . (1.31)

From the behavior of ρt it follows that the natural fluctuation scale of the extremal
eigenvalues is�

1/9
t N−2/3. This is of the same order of magnitude as�t when 4− t =

N−1/2. It follows that for t � 4−N−1/2 one expects that the extremal eigenvalues are

1 The notation�means that for two positive possibly N -dependent quantities, aN � bN implies that there
is a constant C > 0 so that C−1aN ≤ bN ≤ CaN .
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764 A. Adhikari, B. Landon

still located near their respective edges. For larger t , the fluctuations of the extremal
eigenvalues is larger than �t and so no such rigidity estimate is expected. The first
statement is the content of the following theorem.

Theorem 1.6 Let δ > 0 and let ε > 0. With overwhelming probability the following
holds. Uniformly for all t satisfying 2 < t < 4 − N−1/2+δ we have that,

∣∣∣
{
i : λi (t) = eiθ , θ ∈ [−π, π ]\[−�t − N−2/3+ε�

1/9
t ,�t + �

1/9
t N−2/3+ε]

}∣∣∣ = 0

(1.32)

The above theorem is proven in Sect. 4. In principle, its proof could be absorbed into
the proof of Theorem 1.4. However, handling the three separate scaling regimes, when
t is small, of intermediate size, and close to 4, would require significant additional
notation and burden the reader by overly complicating the proofs. We have chosen
instead to treat the “short” and “long” time regimes separately; in fact we will use
the result of Theorem 1.4 in our proof of Theorem 1.6, initializing the dynamics at an
intermediate time 0 � t � 4, conditional on the results of Theorem 1.4 holding.

Local laws and rigidity for random matrices exhibiting cusps were established
in [20] using resolvent methods. The work [16] also establishes rigidity results for
certain interpolating ensembles using a dynamical, PDE-based approach not related
to our approach, although both works study the formation of cusps under eigenvalue
dynamics.

The main obstacle in proving the above theorem is to understand how the cusp
scaling affects the behavior of the characteristics. In particular, we must understand
how the angular and radial coordinates of the characteristics are affected by this new
scaling. Luckily, in the regime where we expect to prove edge rigidity, there is still a
small interval where the density of states behaves like a square root, albeit rescaled
by a factor involving �t . The characteristics relevant to edge rigidity start close to the
spectral edge, and some of our calculations of square-root behavior in the earlier short-
time regime of Theorem 1.4 are applicable here, after finding appropriate re-scalings
by �t of the angular and radial characteristic coordinates. Nonetheless, we still need
to handle the behavior of the characteristics for times of order 1, and so more analysis
of the characteristics is required. This is further complicated by the curvature of our
coordinate system as well as the fact that the scaling factor�t is itself time-dependent
and will in general differ by several orders of magnitude over the time intervals we
consider.

We can useTheorem1.6 togetherwithCorollary 1.3 to deduce the following rigidity
estimates, in a similar manner to Corollary 1.5. We omit the proof.

Corollary 1.7 Let δ > 0 and ε > 0. For N−1/2+δ ≤ 4 − t ≤ 10−1 we have that the
following estimates hold with overwhelming probability. Uniformly for all i satisfying
1 ≤ i ≤ N (4 − t)2 we have,

|θi (t) − γi (t)| ≤ N ε(4 − t)1/6
1

N 2/3i1/3
(1.33)
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and for N (4 − t)2 ≤ i ≤ N/2 we have,

|θi (t) − γi (t)| ≤ N ε 1

N 3/4i1/4
. (1.34)

Analogous estimates hold for indices i near N.

Remark The reason for the two regimes of indices less than or greater than N (4− t)2

is due to the behavior of the limiting spectral measure near −1 = eiπ for times t
close to 4. With s = 4 − t , we have that ρt (�t − E) � E1/2/s1/4 for E ≤ s3/2 and
ρt (�t −E) � E1/3 for 0.1 ≥ E ≥ s3/2 (see Proposition A.5 and (A.28)). The form of
the RHS of the estimates (1.33) and (1.34) reflect the different interparticle distances
in each of these regimes. ��

For larger times t � 4 − N−1/2, the optimal estimates for the Cauchy transform
are in fact included in Theorem 1.2; compare with, e.g., the local laws of [20]. Note
that Theorem 1.2 alone is insufficient to conclude rigidity estimates similar to Corol-
laries 1.5 or 1.7. In particular, the above results cannot rule out the case that after time
t ∼ 4, that all of the eigenvalues wrap around the unit circle many times.

However, due to the fact that θN (t) and θ1(t) cannot cross, the “winding number”
(we use this term loosely) can be determined from the behavior of the center of mass,

θ̄ (t) := 1

N

N∑
i=1

θi (t). (1.35)

From either (1.1) or (1.6) one can check that formally dθ̄ = N−1dB for a Brownian
motion B. In Sect. 5we justify this using a careful application of the analytic functional
calculus.

Proposition 1.8 For any t > 0 we have almost surely that,

θ̄ (t) = 1

N
tr(Wt ) (1.36)

where Wt is the standard complex Hermitian Brownian motion in (1.1).

We expect that a version of the above statement could also be deduced from Lemma
5 of [42] but we provide a direct proof, aspects of whichmay be useful in other settings.

This allows us to deduce the following. Let us denote the extended quantiles γ̃i (t)
of ρi (t) as follows. For 1 ≤ i ≤ N we let γ̃i (t) = γi (t). For i > N we

γ̃i (t) = 2π + γi−N (t) (1.37)

and for i < 1 we let

γ̃i (t) = −2π + γi+N (t). (1.38)
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766 A. Adhikari, B. Landon

Corollary 1.9 Let ε > 0 and δ > 0. With overwhelming probability we have uniformly
for all t satisfying δ < t < δ−1 that,

γ̃i−N ε (t) ≤ θi (t) ≤ γ̃i+N ε (t). (1.39)

Note that this is weaker for the edge eigenvalues for times t < 4 − N−1/2+ε than
Corollaries 1.5 and 1.7, and is only useful in the regime where we can no longer rule
out the existence of eigenvalues in the gap between the spectral edges, or there is no
longer a gap. Corollary 1.9 is proven in Sect. 6.3.

1.3 Further discussion andmotivation

In addition to being an intrinsic question about the nature of the process Ut , these
local law and rigidity estimates have been well studied in the context of Hermitian
random matrix theory. There, a primary motivation is the study of the universality
of the local eigenvalue statistics: that is, whether or not the limiting local eigenvalue
statistics coincide with those of the Gaussian ensembles, which admit exact formulas.

The short scale behaviors of the repulsive interaction terms of the eigenvalue process
of the Hermitian and Unitary Brownian motions (1.5) and (1.6) are similar. Based on
this and the general belief in the universality of large correlated systems, it is natural
to conjecture that the local eigenvalue statistics of (1.6) should be given by the same
statistics as the GUE in the limit N → ∞.

Indeed, there have been many developments in the universality theory of the local
eigenvalue statistics both within the larger context of randommatrix theory, as well as
that of the Hermitian Dyson Brownian motion started from general initial data. Note
that if the initial data of (1.5) is not the 0 matrix, then the joint eigenvalue distribution
of Xt is no longer that of a re-scaled GUE. Nonetheless, local scaling limits of DBM
with general initial data has been obtained in [25, 32–34].

Universality has been established for wide classes of Hermitian random matrices.
We refer the interested reader to, e.g., the book [26] for an overview of these devel-
opments as well as to the seminal papers of Tao and Vu [46, 47], and Erdős, Schlein
and Yau [24].

Given these advances in the theory of Hermitian random matrices, it is natural to
turn to the question of universality of unitary Brownian motion. An important tool in
many of the proofs of Hermitian universality are the aforementioned rigidity and local
law estimates.

The main contribution of the present work is to establish these results. It is then a
subject of current investigation to use these estimates to prove the local universality
of unitary Brownian motion: that the local eigenvalues statistics ofUt are given by the
Tracy-Widom, and Pearcey and Sine kernels in the various scaling regimes of interest.

1.4 Notation

The notion of overwhelming probability was defined above in Definition 1.1. We let
c > 0 and C > 0 denote small and large constants respectively. In general, we allow
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them to increase or decrease from line to line. For two positive N -dependent quantities
(or quantities depending on some auxiliary parameters, usually time t) the notation
aN � bN means that there is a constant C > 0 so that C−1aN ≤ bN ≤ CaN .
The notation aN � bN means aN/bN → 0 as N → ∞. We will use this notation
sparingly, but somewhat informally. When used we always have an explicit estimate,
e.g., aN ≤ bN/ log(N ). For complex cN and dN , the notation cN = O(dN ) means
|cN | ≤ C |dN | for some C > 0.

1.5 Organization of paper

Sections 2, 3 and 4 are meant to be read in a relatively linear fashion. These sections
prove Theorems 1.2, 1.4 and 1.4, respectively. The analysis in each section directly
builds off that of the previous section. Section2 treats the “bulk” local law (i.e., a local
lawwith an error that is optimal only in the bulk) and the treatment of the characteristics
is relatively straightforward. Section3 treats the cases t < 4−δ where ρt has a regular
square-root edge. Here, the treatment of characteristics (and the resulting estimates of
the quantities such as the Martingale term in evolution equation of f (z, t)) is more
complicated. Finally, Sect. 4 deals with the formation of the cusp.

In the short Sect. 5 we prove Proposition 1.8, that the centre of mass, or averaged
winding number, is described by a Brownianmotion. In Sect. 6 we establish the analog
of the Helffer–Sjöstrand formula and use it to deduce Corollary 1.3. The latter is very
similar to what has appeared in [30] and so not all details are provided.

In Appendix A we establish various properties of the limiting spectral measure ρt .
We use as input its characterization in terms of conformal maps of Biane [11], as well
as arguments of Ajanki, Erdős and Krüger [3] involving solutions of Cauchy/Stieltjes
transforms of approximate cubic equations, Cardano’s formula and the universal shape
functions m and e. Finally, Appendix B collects various calculus-type inequalities
used in the proof.

This is a shortened version prepared for publication in PTRF of the original
manuscript. A longer version, containing all of the proofs omitted here, appears on
the arXiv as arXiv:2202.06714v3, i.e., as the third version v3, and is referenced in the
current work as [2]. Whenever we omit a proof in the present manuscript, we precisely
reference its location in [2].

2 Bulk estimates

In this section we prove Theorem 1.2. Fix a final time T > 0. This time may depend
on N , but stays bounded above. We introduce the characteristic maps via

Ct (z) = z exp

[
− (T − t) f̃ (z, T )

2

]
. (2.1)

That is, the function t → Ct (z) satisfies the characteristic equation (1.15) and has final
condition CT (z) = z.
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From the above, it is clear that the real parts of f (z, t) and f̃ (z, t)will play important
roles. We record here the identity,

Re[ f (z, t)] = 1

N

N∑
i=1

1 − |z|2
|λi − z|2 . (2.2)

We will also have use for,

∂z f (z, t) = 2

N

N∑
i=1

λi (t)

(λi (t) − z)2
, (2.3)

and the inequality

|∂z f (z, t)| ≤ 2

1 − |z|2 Re[ f (z, t)]. (2.4)

In the remainder of the section we will also make use of the spectral domains Bt that
were defined above in (1.19). We collect some elementary properties of the character-
istics.

Lemma 2.1 For any |z| > 1, the map,

t → log |Ct (z)| (2.5)

is decreasing in time. Secondly, there is a constant C > 0 so that for any z ∈ BT we
have,

|Ct (z)| ≤ CeCT . (2.6)

Proof The first claim follows from the fact that Re[ f̃ (z, t)] < 0 for |z| > 1. For the
second, let zt = Ct (z). Note that f̃ (zt , t) = f̃ (z, T ) for all t . If at any time t we have
|zt | > 2, then | f̃ (zt , t)| ≤ 4 and so |Ct (z)| ≤ |z|e2T . So either |zt | < 2 for all t or
|zt | ≤ |z|e2T for all t . This yields the claim. ��

We fix a final point z ∈ BT . We will first prove that Theorem 1.2 holds at a single
z by tracking the evolution of f (z, t) along the characteristic,

zt := Ct (z). (2.7)

The extension to all z and all 0 < t < T will be detailed later. We now introduce the
stopping time τ via,

τ := inf

{
s ∈ [0, T ] : | f (zs, s) − f̃ (zs, s)| >

N ε

N log |zs |
}

∧ T (2.8)
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where we choose ε < δ/10, with δ as in the definition of BT . We first note that,

d
(
f (zt , t) − f̃ (zt , t)

)
= − zt∂z f (zt , t)

2

(
f (zt , t) − f̃ (zt , t)

)
+ dMt (zt ), (2.9)

with the Martingale term defined above in (1.12). Hence,

f (zτ , τ ) − f̃ (zτ , τ ) = E1(τ ) + E2(τ ) (2.10)

where

E1(t) := −
∫ t

0

zs∂z f (zs, s)

2
( f (zs, s) − f̃ (zs, s))ds (2.11)

and

E2(t) :=
∫ t

0
dMs(zs). (2.12)

We first prove the following estimate on the martingale term.

Proposition 2.2 For all ε1 > 0 we have,

P

[
∃t ∈ [0, τ ] : |E2(t)| >

N ε1

N log |zt |
]

≤ C log(N )e−cN ε1
. (2.13)

Proof We fix a sequence of intermediate times tk with k = 1, . . . , M in [0, T ] such
that log |ztk | ≤ 2 log |ztk+1 | and tM = T . Then M ≤ C log(N ) for some C > 0 since
log |z0| is bounded by Lemma 2.1. Let τk = τ ∧ tk . The quadratic variation of E2(τk)
satisfies,

〈E2(τk), Ē2(τk)〉 = 4

N 2

∫ τk

0
|zs |2 1

N

N∑
i=1

1

|λi (s) − zs |4 ds

≤ 4

N 2

∫ τk

0

|zs |2
(|zs | − 1)2

1

N

N∑
i=1

1

|λi (s) − zs |2 ds

≤ C

N 2

∫ τk

0

|Re[ f (zs, s)]|
(log |zs |)3 ds. (2.14)

In the first inequality we used the trivial estimates |λi (s) − zs | ≥ |zs | − 1. In the last
inequality we used Lemma 2.1 to bound |zs | as well as the representation (2.2). We
also used that log(r) ≤ r − 1 for r > 1. For s < τ we have

|Re[ f (zs, s)] − Re[ f̃ (zs, s)]| ≤ N ε

N log |zs | ≤ N ε

N log |zT | . (2.15)
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By definition of BT we see that

N ε

N log |zT | ≤ N ε−δ|Re[ f̃ (zT , T )]| = N ε−δ|Re[ f̃ (zs, s)]| (2.16)

where we used that f̃ is constant along characteristics. Since ε < δ we therefore see
that,

|Re[ f (zs, s)]| ≤ (1 + N ε−δ)|Re[ f̃ (zs, s)]| ≤
(
1 + 1

log(N )

)
|Re[ f̃ (zs, s)]|

(2.17)

for s < τ . Therefore,

∫ τk

0

|Re[ f (zs, s)]|
(log |zs |)3 ds ≤ 2

∫ τk

0

|Re[ f̃ (zs, s)]|
(log |zs |)3 ds ≤ 2

∫ tk

0

|Re[ f̃ (zs, s)]|
(log |zs |)3 ds

≤ 2

(log |ztk |)2
. (2.18)

In the last inequality we used that ∂u log |zu | = − 1
2 |Re[ f̃ (zu, u)]|. By the Burkholder-

Davis-Gundy (BDG) inequality (see, e.g., [44]) and a union bound, we conclude that,

P

[
∃k : sup

0≤t≤τk

|E2(t)| >
N ε1

2N log |ztk |

]
≤ C log(N )e−cN ε1

. (2.19)

Let 0 < t < τ and let k be such that τk ≤ t < τk+1. On the complement of the event
on the LHS of (2.19) we have,

|E2(t)| ≤ N ε1

2N log |ztk |
≤ N ε1

N log |zt | (2.20)

by the choice of the tk’s. This completes the proof. ��
Proof of Theorem 1.2 Let z ∈ BT with characteristic zt as above. Let τ be the stopping
time as defined above. Let ϒ be the event of Proposition 2.2 and define,

g(s) := |zs∂z f (zs, s)|
2

. (2.21)

By Gronwall’s inequality we have for all 0 < t < τ on the event ϒ ,

| f (zt , t) − f̃ (zt , t)| ≤
∫ t

0
g(s) exp

[∫ t

s
g(u)du

]
N ε1

N log |zs |ds + N ε1

N log |zt | .
(2.22)
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We now estimate the integral of the function g that appears above in the argument of
the exponential function. Using first (2.4) we have,

∫ t

s
g(u)du =

∫ t

s

|zu ||∂z f (zu, u)|
2

du ≤
∫ t

s

|zu ||Re[ f (zu, u)]|
|zu |2 − 1

du

≤
∫ t

s

|Re[ f (zu, u)]|
2 log |zu | du. (2.23)

In the last inequality we used the elementary inequality,

x

x2 − 1
≤ 1

2 log(x)
(2.24)

which holds for x > 1 (see Lemma B.1). Using now (2.17) we have,

∫ t

s

|Re[ f (zu, u)]|
2 log |zu | du ≤

(
1 + 1

log(N )

)∫ t

s

|Re[ f̃ (zu, u)]|
2 log |zu | du

=
(
1 + 1

log(N )

)
log

(
log |zs |
log |zt |

)
(2.25)

where we used in the last line that ∂u log |zu | = − 1
2 |Re[ f̃ (zu, u)]|. Therefore,

exp

[∫ t

s
g(u)du

]
≤ C

log |zs |
log |zt | . (2.26)

We used the fact that the assumption C ≥ log |zu | ≥ N−c from the definition of BT

implies that

(
log |zs |
log |zt |

)1/ log(N )

≤ C . (2.27)

Substituting (2.26) into (2.22) yields,

| f (zt , t) − f̃ (zt , t)| ≤ CN ε1

N log |zt |
∫ t

0
g(s)ds + N ε1

N log |zt | . (2.28)

From the definition of g and (2.4) and (2.17) we see that,

g(s) ≤ C
|Re[ f̃ (zs, s)]|

log |zs | (2.29)

for s < τ . Therefore,

∫ t

0
g(s)ds ≤ C log(N ) (2.30)
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using that log |zt | ≥ N−c. We conclude that for all 0 < t < τ that,

| f (zt , t) − f̃ (zt , t)| ≤ C
log(N )N ε1

N log |zt | . (2.31)

Taking ε1 < ε/2, where ε > 0 is in the definition of the stopping time, we see that on
the event ϒ , we must have τ = T for all N large enough. This proves the estimate of
Theorem 1.2 at the final time T and at the point z. The extension to all points z ∈ BT

may be done by first taking a union bound over O(NC ) points and then using

| fμ(z) − fμ(w)| ≤ C |z − w|
(

1

log |z| + 1

log |w|
)2

(2.32)

valid for any Cauchy transform and |z|, |w| in bounded regions of C. The above
estimate is elementary and can be proven directly from the definition

fμ(z) :=
∫ 2π

0

eiθ + z

eiθ − z
dμ(θ)

and the fact that for |z| > 1 we have for the quantity in the denominator |eiθ − z| ≥
|z| − 1 ≥ c log |z|.

The extension to all times t < T is done in a similar manner; one first proves the
estimate for all z ∈ Bt for all times t in a well-spaced grid of [0, T ] of at most size
O(N A), some A > 0 to be determined. Then one notes that the proof also gives that
the estimate holds along the entire characteristic, and along each characteristic, we
have, e.g., |zt − zs | ≤ CNC |t− s|, for someC > 0 depending on c > 0. We need only
take A large enough depending on C > 0. This completes the proof of Theorem 1.2.

��

3 Edge estimates

Fix T < 4. We will need to consider characteristics ending at many times and so we
introduce the characteristic map,

Cs,t (z) = z exp

[
− (t − s) f̃ (z, t)

2

]
(3.1)

for 0 ≤ s ≤ t . We will need to establish several properties about the behavior of
characteristics near the edge �t . The proof of the following lemma, an exercise in
calculus, and can be found in Appendix B of [2].

Lemma 3.1 Let ρ be a measure on [−π, π ] such that ρ(θ) = ρ(−θ) that is supported
in [−E, E] for 0 < E < π . Assume either that ρ(θ) ≤ M or E < π/8. For any ε > 0
there is a cε > 0, depending only on E, M and ε > 0 so that for 0 < r − 1 < cε and
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E < θ < π − ε we have,

Im[ f (reiθ )] < Im[ f (eiθ )] < Im[ f (eiE )] (3.2)

where f (z) is the Cauchy transform of ρ. We also have for E < θ ≤ ϕ ≤ π ,

0 ≤ Im[ f (eiϕ)] ≤ Im[ f (eiθ )], (3.3)

with equality occuring only in trivial cases.

We now prove the following.

Lemma 3.2 Let T < 4 and z = rei(�t+κ) for κ > 0. There is a small c > 0 and d > 0
so that,

Im[ f̃ (z, t)] − Im[ f̃ (ei�t , t)] ≤ −d
√

κ (3.4)

for 0 < t < T and all 0 < r − 1 < c and κ < π − �t .

Proof By Lemma B.3, the desired estimate hold for all κ < ε and 0 < r − 1 < ε for
some ε > 0. In particular,

Im[ f̃ (ei(�t+ε/2), t)] − Im[ f̃ (ei�t , t)] ≤ −c1 (3.5)

for some c1 > 0. Since for t < T the measures are supported away from π we see
that there is a δ > 0 so that

|Im[ f̃ (z, t)] − Im[ f̃ (−1, t)]| ≤ c1
2

, (3.6)

for |z + 1| < δ. It follows that for all |z + 1| < δ,

Im[ f̃ (z, t)] − Im[ f̃ (ei�t )] ≤ c1
2

+ Im[ f̃ (ei(�t+ε/2), t)] − Im[ f̃ (ei�t )] ≤ −c1
2
(3.7)

where we used the second estimate of Lemma 3.1. This proves the desired estimate
for |z + 1| < δ after possibly decreasing the value of d > 0.

On the other hand, by Lemma 3.1 we conclude that there is a c2 > 0 so that for
0 < r − 1 < c2 and ε/2 < κ < π − �t − δ/2 that,

Im[ f̃ (rei(�t+κ), t)] − Im[ f̃ (ei�t )] ≤ Im[ f̃ (ei(�t+ε/2), t)] − Im[ f̃ (ei�t )] ≤ −c1.

(3.8)

This concludes the proof. ��
The following contains the properties of the characteristics that we will need.
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Proposition 3.3 Let T < 4. There is a a > 0 and b > 0 depending on T so that the
following holds. Let zs = Cs,t (z) for any t < T , where z = reiθ satisfies 0 < r−1 < a
and �t < θ < π . Denote zs = rsei(�s+κs ). Let s∗ be,

s∗ = inf{s < t : (rs − 1) < a}. (3.9)

Then for s∗ < s < t we have,

√
κs ≥ √

κt + b(t − s) (3.10)

and for s ≤ s∗ we have rs ≥ 1 + a. Furthermore, let D(s) be a function that obeys,

√
D(s) ≤ √

D(t) + b

2
(t − s), s < t . (3.11)

If κt ≥ D(t) then for s∗ < s < t we have,

κs ≥ D(s) + b

2

√
κt (t − s). (3.12)

Finally, characteristics do not cross the real axis in the complex plane.

Proof We take a so small so that the conclusion of Lemma 3.2 for z = reiθ with
r − 1 < 10a. For s < s∗ we have rs > a because the radial coordinate is decreasing
in time. Let s1 be,

s1 = inf{s < t : κs > 0}. (3.13)

Note that s1 < t as we assume κt > 0. We claim that s1 ≤ s∗. For t > s > s1 ∨ s∗ we
have, the following calculation,

∂sκs = 1

2
Im[ f̃ (zs, s)] − 1

2
Im[ f̃ (ei�s , s)]

= 1

2
Im[ f̃ (zt , t)] − 1

2
Im[ f̃ (ei�t , t)] − 1

2
(

√
4 − s

s
−

√
4 − t

t
)

≤ 1

2
[Im[ f̃ (zt , t)] − 1

2
Im[ f̃ (ei�t , t)]] − c(t − s)

≤ −d
√

κt − c(t − s) (3.14)

The second line is from the fact that f̃ (ei�t , t) = i
√
4t−1 − 1 for all t and that f̃ is

constant along characteristics. The third line is straightforward. The last line follows
from Lemma 3.2. In particular, we see that κs is a decreasing function for s > s∗ ∨ s1.
Since κt > 0 it follows that s1 ≤ s∗. Therefore, the final inequality in (3.14) holds for
all s∗ < s < t . Therefore via integration we obtain,

κs ≥ κt + 2c2(t − s)
√

κt + c2(t − s)2 (3.15)
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for some small c2 > 0 for all s∗ < s < t . This is equivalent to the desired inequality.
For the last inequality of the proposition, we have that

√
κs ≥ √

κt + b(t − s) ≥ √
D(t) + b(t − s) ≥ √

D(s) + b

2
(t − s). (3.16)

We can square this to get κs ≥ D(s)+b(t−s)
√
D(s) aswell as κs ≥ κt+2b(t−s)

√
κt .

If D(s) ≥ κt , we can use the first inequality. Otherwise, we can use the second.
The final claim that characteristics not cross the real axis is due to the fact that the

imaginary part of f̃ (z, t) vanishes for purely real z, due to the symmetry of ρt . ��
The real part of the Cauchy transform f (z, t) can be used to detect the presence of

outlying eigenvalues. In order to use it, we first need the following estimates on how
f̃ (z, t) behaves. The proof is for the most part elementary and is deferred to Appendix
B of the longer version [2].

Lemma 3.4 Let δ > 0. Let z = (1 + η)ei(�t+κ). Uniformly in the region,

0 < η < 5, 0 < κ < π − �t (3.17)

we have for δ < t < 4 − δ that,

c
η√

κ + η
≤ |Re[ f̃ (z, t)]| ≤ C

η√
κ + η

(3.18)

for some c,C > 0. For 0 < t < 1
2 we also have,2

ηc ≤ |Re[ f̃ (z, t)]| ≤ C
η

κ2 . (3.19)

As advertised, the following lemma allows us to use estimates for the Cauchy
transform outside the spectrum to rule out the presence of outlying eigenvalues.

Lemma 3.5 Let δ > 0 and assume δ < t < 4− δ. Let ε > 0 and 0 ≤ k ≤ 2
3 . Suppose

that the estimate,

∣∣∣ f (z, t) − f̃ (z, t)
∣∣∣ ≤ N ε

N
√

η + κ
√

η
(3.20)

holds for all z = reiθ for any r and θ satisfying,

�t + N−2/3+k+5ε ≤ |θ | ≤ π, N−2/3+k/4+ε ≤ r − 1 ≤ c (3.21)

where c > 0 is any positive constant. Then there are no eigenvalues λ = eiθ for
�t + N−2/3+k+5ε ≤ |θ | ≤ π . The same conclusion holds for t < δ if we take
k = 2/3 − 5ε − ε/6.

2 An anonymous referee pointed out that this could be improved to |Re[ f̃ (z, t)]| � t−3/4 η√
κ+η

if |z −
�t | ≤ √

t and � η|z|−2 if |z − �t | >
√
t (at least for z in the upper-half plane and κ > 0) using the

short-time behavior of the spectral measure proved in Proposition A.6.
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Proof Let λ be an eigenvalue in f (z, t). We will show that if z is of the form reiθ with
r > 1 and |θ − arg λ| < r − 1, then Re[ f (z, t)] ≥ 1

N (r−1) . By rotational invariance
along the unit circle, it suffices to consider λ = 1.

We see by direct calculation that

Re

[
z − 1

z + 1

]
= r2 − 1

(r − 1)2 + 2r(1 − cos θ)
≥ r2 − 1

(r − 1)2 + rθ2
≥ r2 − 1

(r − 1)2(1 + r)

≥ 1

r − 1
. (3.22)

To get the second inequality, we used 1−cos θ ≤ θ2

2 . The third inequality comes from
θ < r − 1.

Thus, we see that if z of the form reiθ with r > 1 and |θ − arg λ| < r −1, we know
that Re[ f (z, t)] ≥ 1

N (r−1) provided that λ is an eigenvalue appearing in the empirical
measure for f (z, t).

Now, consider the point z = (1 + N−2/3+k/4+ε)eiθ , where θ is an angle in the
region |θ | ∈ [�t + N−2/3+k+5ε, π ].

Applying the triangle inequality and the estimates (3.20) and (3.18), we see that
for large enough N ,

|Re[ f (z, t)]| ≤ | f (z, t) − f̃ (z, t)| + |Re[ f̃ (z, t)]| < C
η√

κ + η
+ N ε

N
√

η
√

κ + η

<
1

Nη
. (3.23)

Indeed, for the final inequality, we use the hypotheses on η and θ to estimate,

η√
κ + η

≤ N−1/3−k/4−3/2ε,
N ε

N
√

η
√

κ + η
≤ N−1/3−5k/8−2ε,

1

Nη

= N−1/3−k/4−ε (3.24)

This shows |Re[ f (z, t)]| < 1
Nη

and therefore eiθ cannot be an eigenvalue of the
empirical measure associated to f (z, t).

We now consider the case 0 < t < δ and k = 2/3 − 5ε − ε/6. We can instead
apply the trivial bound |Re[ f̃ (z, t)]| ≤ C η

κ2
(3.19). We see that at the same choice of

η and κ , we have

η

κ2 ≤ N−1/2+ε/24,
N ε

N
√

η
√

κ + η
≤ N−3/4+59/48ε,

1

Nη
= N−1/2+7/24ε.

(3.25)

Therefore, for z = reiθ as in the statement of the lemmawe see that |Re[ f (z, t)]| <
1
Nη

. This completes the proof. ��
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With the above results in hand, we can begin our proof of Theorem 1.4. Before
doing so, we need to introduce further notation. Let T < 4. We consider times t < T .
Let a, b > 0 be the constants of Proposition 3.3. Let δ > 0 and ε > 0. Assume
ε < 10−6. These parameters will be fixed until the end of the proof of Theorem 1.4.

Introduce D(t) to be the function

D(t) = N−ε/6, 0 ≤ t ≤ δ, D(t) = max

{
(N−ε/12 − b

10
(t − δ))2, N−2/3+5ε

}
.

(3.26)

The function D(t) satisfies the hypotheses of Proposition 3.3. In fact, with this choice
of D(t) we have for any choices of s < t that

√
D(s) ≤ √

D(t) + b

10
(t − s). (3.27)

Additionally, define k(t) to be the solution of N−2/3+k(t)+5ε = D(t). Define the
spectral domains Gt by,

Gt := {z = reiθ : �t + N−2/3+k(t)+5ε ≤ |θ | ≤ π, N−2/3+k(t)/4+ε ≤ r − 1 ≤ a/2}.
(3.28)

For any characteristic zt = reiθ with r > 1 define κ(zt ) = |θ |−�t and η(zt ) = r −1.
Consider the control parameter,

B(zt ) := 1

N
√

κ(zt ) + η(zt )
√

η(zt )
1κ(zt )>0 + 1

Nη(zt )
1κ(zt )<0. (3.29)

Lemma 3.6 Let 0 < t < T and let zs = Cs,t (z) where z ∈ Gt . Then, for all 0 < s < t
we have,

N εB(zs) ≤ 1

log(N )
|Re[ f̃ (zs, s)]|. (3.30)

Proof Let s∗ be as in Proposition 3.3. For s ≤ s∗ we have that

N εB(zs) ≤ CN ε−1. (3.31)

On the other hand, by Lemma 3.4, |Re[ f̃ (zs, s)]| ≥ c for some c > 0 for such zs . We
now consider s∗ < s < t . By Proposition 3.3 it follows that,

κ(zs) ≥ κ(zt ) ≥ N−2/3+k(t)+5ε (3.32)

and η(zs) ≥ N−2/3+k(t)/4+ε. First consider t ≤ δ. Then, k(t) = 2/3 − 5ε − ε/6 and
so

N εB(zs) ≤ N−3/4+10ε. (3.33)
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Moreover, Re[ f̃ (zs, s)] ≥ cη(zs) ≥ N−1/2−5ε. This proves the estimate for such t .
Consider now t > δ. In this case, the desired inequality can be rewritten as

log(N )N εB(zs) ≤ |Re[ f̃ (zs, s)]| = |Re[ f̃ (zt , t)]|, (3.34)

using the fact that f̃ is constant along characteristics. Since B(zs) ≤ B(zt ) for s > s∗,
this reduces to whether,

η(zt )
3/2 ≥ log(N )N ε−1. (3.35)

But this holds since η(zs) ≥ N−2/3+ε. ��
We introduce a grid of times ti = iT N−10 for i = 1, . . . , N 10. For each such ti we

let {uij }N
10

j=1 be a well-spaced grid of Gti . We then define the characteristics,

zij (s) := Cs,ti (uij ). (3.36)

We define each characteristic zij (s) only for 0 < s < ti . We introduce the stopping
times,

τi j := inf{s ∈ (0, ti ] : | f (zij (s), s) − f̃ (zij (s), s)| > N ε/2B(zij (s))} (3.37)

where the infimum of the empty set is +∞. Then, we introduce

τ := min
i, j

τi j ∧ T . (3.38)

Wewant to prove that τ = T . First observe that since | f̃ (z, t)| ≤ N for any z ∈ Gt , we
have |zs1 − zs2 | ≤ CN |s1 − s2| for any characteristic zs ending in some Gt . It follows
that for each i and s satisfying ti − T N−10 < s ≤ ti that the points {zij (s)}N

10

j=1 are

a well-spaced grid of Gs in the sense that every z ∈ Gs is no further than N−8 away
from the closest of these points. Since f (z, t) and f̃ (z, t) are Lipschitz functions with
Lipschitz constant less than CN for |z| > 1 + N−1 we see that for every s < τ that,

| f (z, s) − f̃ (z, s)| ≤ N εB(z) (3.39)

for any z ∈ Gs . From Lemma 3.5 we conclude that at any time s < τ there are no
eigenvalues of the form λ = eiθ for �s + N−2/3+k(s)+5ε < |θ | ≤ π .

As in the proof of Theorem 1.2 we write, for any t < ti ∧ τ ,

f (zij (t)) − f̃ (zij (t)) = E1(t)ij + E2(t)ij (3.40)

where

E1(t)ij = −1

2

∫ s

0
zij (s)(∂z f )(z

i
j (s), s)( f (z

i
j (s), s) − f̃ (zij (s), s))ds (3.41)
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and

E2(t)ij =
∫ t

0
dMs(z

i
j (s)). (3.42)

We now prove the following estimate on the stochastic term.

Proposition 3.7 Let ε1 > 0. Then for all i, j as above,

P

[
∃t ∈ (0, ti ∧ τ) :

∣∣∣E2(t)ij
∣∣∣ > N ε1+ε/8B(zij (t))

]
≤ C log(N )e−cN ε1

. (3.43)

Proof For simplicity of notation let us denote zt := zij (t). We fix a sequence of
intermediate times 0 < s1, s2, . . . , sM = ti such that,

1

2
B(zsk ) ≤ B(zsk+1) ≤ 2B(zsk ), (3.44)

for every i . We can take M ≤ C log(N ). Recall also the time s∗ < ti defined in
Proposition 3.3. Define also κt = κ(zt ) and ηt = η(zt ). We calculate the quadratic
variation,

〈Ē2(sk ∧ τ)E2(sk ∧ τ)〉 ≤ C

N 2

∫ sk∧τ

0

1

N

N∑
n=1

1

|λi (t) − zt |4 dt

≤ C

N 2

∫ sk∧τ

s∗∧τ

1

N

N∑
n=1

1

|λn − zt |4 dt + C

N 2 (3.45)

where the integral in the last line is interpreted as 0 if sk ≤ s∗. When sk > s∗ we
continue to estimate the integral. For s∗ < t < τ we have,

|λn(t) − zt |2 ≥ c
(
(κt − N−2/3+k(t)+5ε)2 + η2t

)
(3.46)

Note that in particular, we also used that κt ≥ N−2/3+k(t)+5ε = D(t) for s∗ < t < sk
due to (3.12) and the fact that κsk ≥ D(sk). Therefore,

1

N 2

∫ sk∧τ

s∗∧τ

1

N

N∑
n=1

1

|λn − zt |4 dt ≤ C

N 2

∫ sk∧τ

s∗∧τ

|Re[ f (zt , t)]|
ηt

(
(κt − N−2/3+k(t)+5ε)2 + η2t

)dt

≤ C

N 2

∫ sk∧τ

s∗∧τ

|Re[ f̃ (zt , t)]|
ηt

(
(κt − N−2/3+k(t)+5ε)2 + η2t

)dt,
(3.47)

where in the second line we used that Lemma 3.6 together with the definition of the
stopping time τ implies that for t < τ we have,

|Re[ f (zt , t)]| ≤ |Re[ f̃ (zt , t)]| + N ε/2B(zt ) ≤ 2|Re[ f̃ (zt , t)]|.
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We use now,

κt − N−2/3+k(t)+5ε = κt − D(t)

≥ κsk + 2b
√

κsk (sk − t) + b2(sk − t)2 − D(t)

≥ κsk + 2b
√

κsk (sk − t) + b2(sk − t)2

− D(sk) − b
√
D(sk)(sk − t) − b2

4
(sk − t)2

≥ b
√

κsk (sk − t). (3.48)

In the first inequality we used (3.10). In the second inequality we used the square of the
inequality

√
D(t) ≤ √

D(sk)+ b
2 (sk − t). In the last inequality we used κsk ≥ D(sk).

Therefore,

1

N 2

∫ sk∧τ

s∗∧τ

|Re[ f̃ (zt , t)]|
ηt

(
(κt − N−2/3+k(t)+5ε)2 + η2t

)dt ≤ C

N 2

∫ sk

s∗

|Re[ f̃ (zt , t)]|
ηt

(
(κsk (t − sk)2 + η2t

)dt .
(3.49)

We need to consider two cases. First, consider ηsk ≤ κsk . From the fact that κ(sk) ≥
D(sk) and that D(sk) = N−ε/6 if sk < δ we see from (3.18) and (3.19) that,

|Re[ f̃ (zsk , sk)]| ≤ C
ηsk√
κsk

N ε/4. (3.50)

Then using this, as well as that ηt is decreasing and f̃ (zt , t) is constant along charac-
teristics we have,

1

N 2

∫ sk

s∗

|Re[ f̃ (zt , t)]|
ηt

(
(κsk (t − sk) + η2t

)dt ≤ CN ε/4

N 2

1√
κsk + ηsk

∫ sk

s∗
1

κsk (t − sk)2 + η2sk
dt

≤ CN ε/4

N 2

1√
κsk + ηsk

1√
κskηsk

≤ CN ε/4

N 2

1

(κsk + ηsk )(ηsk )
. (3.51)

The second estimate follows via direct integration and in the last inequality we used
the assumption κsk ≥ ηsk . We now consider the case ηsk ≥ κsk . In this case we proceed
similarly to Proposition 2.2,

1

N 2

∫ sk

s∗

|Re[ f̃ (zt , t)]|
ηt

(
(κsk (t − sk) + η2t

)dt ≤ 1

N 2

∫ sk

s∗

|Re[ f̃ (zt , t)]|
η3t

≤ C

N 2η2sk

≤ CN ε/4

N 2ηsk (κsk + ηsk )
. (3.52)
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By the BDG inequality,

P

[
sup

s∈(0,sk )
|E2(s ∧ τ)| > N ε1+ε/8B(zsk )

]
≤ Ce−cN ε1

. (3.53)

Taking a union bound over the O(log(N )) choices of sk and using (3.44) we conclude
the proof, similarly as in the proof of Proposition 2.2. ��

Proof of Theorem 1.4 With Proposition 3.7 in hand, the proof of Theorem 1.4 is similar
to the proof of Theorem 1.2. Let ϒ be the event of Proposition 3.7, after taking an
intersection over all choices of i, j ≤ N 10. Let zt := z(t)ij for notational simplicity.
On the event of ϒ we have the inequality for 0 < t < τ ,

| f (zt , t) − f̃ (zt , t)| ≤
∫ t

0
g(s)| f (zs, s) − f̃ (zs, s)|ds + N ε1+ε/8B(zt ), (3.54)

where we denoted,

g(s) = |zs(∂z f )(zs, s)|
2

.

(3.55)

Hence, via Gronwall’s inequality we obtain for 0 < t < τ ,

| f (zt , t) − f̃ (zt , t)| ≤
∫ t

0
g(s) exp

[∫ t

s
g(u)du

]
N ε1+ε/8B(zs)ds + N ε1+ε/8B(zt ).

(3.56)

Similar to the proof of Theorem 1.2, now using Lemma 3.6, we have

exp

[∫ t

s
g(u)du

]
≤ C

log |zs |
log |zt | (3.57)

as well as

g(s) ≤ C
Re[ f̃ (zs, s)]

ηs
. (3.58)

Therefore,

| f (zt , t) − f̃ (zt , t)| ≤ C
N ε1+ε/8

ηt

∫ t

0
|Re[ f̃ (zs, s)]|B(zs)ds + N ε1+ε/8B(zt ).

(3.59)
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We must consider a few different cases. First, let us consider the case that t < s∗.
Then, we see that

N ε1+ε/8

ηt

∫ t

0
|Re[ f̃ (zs, s)]|B(zs)ds + N ε1+ε/8B(zt ) ≤ C

N ε1+ε/8

N
. (3.60)

So in the remainder of the proof we consider the case t ≥ s∗. We now consider a few
different cases depending on whether or not ti (the end-time of the characteristic zt )
is small or large. First, assume that ti < δ. Then, using (3.19),

|Re[ f̃ (zs, s)]|
ηt

= |Re[ f̃ (zt , t)]|
ηt

≤ C
(
|κt |−2

)
≤ CN ε/3 (3.61)

we have,

N ε1+ε/8

ηt

∫ t

0
|Re[ f̃ (zs, s)]|B(zs)ds ≤ N 11ε/24+ε1B(zt ) (3.62)

because B(zt ) is effectively decreasing along characteristics (it may not be decreasing
for t < s∗ but for such t it is O(N−1)). We take ε1 < ε/100.

Now, we assume that ti > δ. Then for s < δ/2 we have that either ηs ≥ c or κs ≥ c
by Proposition 3.3 depending on whether s is smaller or larger than s∗. Then for such
s we have B(zs) ≤ CN−1η

−1/2
t and so,

N ε1+ε/8

ηt

∫ t∧δ/2

0
|Re[ f̃ (zs, s)]|B(zs)ds ≤ CN ε1+ε/8 1

Nη
1/2
t

|Re[ f̃ (zt , t)]|
ηt

≤ CN ε1+ε/8B(zt ). (3.63)

In the final inequality we used Re[ f̃ (zt , t)]η−1
t ≤ C(κt + ηt )

−1/2 (recall that t ≥ s∗)
if t > δ/2 and (3.18). If t < δ/2 then since t ≥ s∗ we have κt ≥ c since t < ti − δ/2
and so |Re[ f̃ (zt , t)]|η−1

t is bounded.
Now we have still to estimate the integral over [t ∧ δ/2, t] in the case that ti > δ.

Since this integral is 0 if t < δ/2 we may assume that t > δ/2. Then, using freely
(3.18), we have,

N ε1+ε/8

ηt

∫ t

δ/2∨s∗
|Re[ f̃ (zs, s)]|B(zs)ds ≤ C

N

N ε1+ε/8

√
κt + ηt

∫ t

δ/2∨s∗
ηs√

κs + ηsη
3/2
s

ds

≤ C

N

N ε1+ε/8

√
κt + ηt

∫ t

δ/2∨s∗
|Re[ f̃ (zs, s)]|

η
3/2
s

ds ≤ CN ε1+ε/8

N
√

κt + ηt
√

ηt
(3.64)

The integral over [δ/2, δ/2 ∨ s∗] contributes N ε1+ε/8−1(κt + ηt )
−1/2 because ηs ≥ c

here. Therefore, taking ε1 < ε/100 we see that we have proven that,

| f (zt , t) − f̃ (zt , t)| ≤ CN 23ε/48B(zt ) � N ε/2B(zt ). (3.65)
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on the event ϒ . It follows that τ = T . ��

4 Cusp estimates

In this sectionweproveTheorem1.6.Wewill use the following reverse timeparameter-
ization.Wewill denote by uppercase T , and S the usual forward time parameterization,
so that we will consider S and T close to 4. We will the introduce,

T = 4 − t, S = 4 − s (4.1)

so that t and s will usually obey,

N−1/2+δ ≤ s, t ≤ 1

10
. (4.2)

Wewill often substitute in T or t into functions of time.Whenwewrite t it is understood
that we are evaluating the function at 4 − t . For example, the gap between edges is,

�t = �T = 2(π − �T ) = 1

3
t3/2(1 + O(t)). (4.3)

The proof of Theorem 1.6 is similar in structure to the proof of Theorem 1.4. We first
establish analogues of the estimates proven there before proceeding to the main body
of the proof.

Lemma 4.1 There is a constant C > 0 so that the following holds. For 0 < t < 1
10

and z = (1 + η)ei(�t+κ) with η and κ satisfying,

0 < η < �t , 0 < κ < π − �t (4.4)

we have that

1

C

η√
η + κ

≤ �
1/6
t |Re[ f̃ (z, t)]| ≤ C

η√
η + κ

(4.5)

Proof Denoting θ = κ + �t we have,

−Re[ f̃ (z, t)] � η

∫
ρt (x)

η2 + sin2( θ−x
2 )

dx . (4.6)

Due to symmetry of the density,

∫
ρt (x)

η2 + sin2( θ−x
2 )

dx �
∫ π

0

ρt (x)

η2 + sin2( θ−x
2 )

dx . (4.7)
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Changing coordinates and using the fact that sin2(x) � x2 for |x | ≤ π/2 we have,

∫ π

0

ρt (x)

η2 + sin2( θ−x
2 )

dx �
∫ �t

0

ρt (�t − x)

η2 + (κ + x)2
dx . (4.8)

For an upper bound we split the integral into the regions [0,�t ] and [�t ,�t ]. For the
latter region we can bound ρt (�t − x) ≤ Cx1/3,

∫ �t

�t

ρt (�t − x)

η2 + (κ + x)2
dx ≤ C

∫ �t

�t

(�t + x)−5/3dx ≤ C�
−2/3
t ≤ C�

−1/6
t

1√
κ + η

,

(4.9)

where in the last inequality we used the assumption κ +η ≤ 2�t . In the region [0,�t ]
we use ρt (�t − x)�1/6

t ≤ Cx1/2,

∫ �t

0

ρt (�t − x)

η2 + (κ + x)2
dx ≤ C�

−1/6
t

∫ �t

0

x1/2

η2 + (κ + x)2
dx

≤ C�
−1/6
t

∫ �t

0
(x + κ + η)−3/2dx ≤ C�

−1/6
t

1√
κ + η

. (4.10)

This completes the proof of the upper bound. For the lower bound,

∫ �t

0

ρt (�t − x)

η2 + (κ + x)2
dx ≥

∫ 2�t

0

ρt (�t − x)

η2 + (κ + x)2
dx ≥ c�−1/6

t

∫ 2�t

0

√
x

η2 + (κ + x)2
dx

≥ c�−1/6
t

∫ κ+η

κ+η
2

√
x

η2 + (κ + x)2
dx ≥ c�−1/6

t

∫ κ+η

κ+η
2

(κ + η)−3/2dx ≥ c�−1/6
t

1√
κ + η

.

(4.11)

We used above the assumption that κ + η ≤ 2�t . This completes the proof. ��
Lemma 4.2 Recall the convention T = 4− t . There are a, b > 0 so that the following
holds. Let zs = CS,T (z) denote a characteristic ending at a point z = (1+ η)ei(�t+κ)

where 0 < η < a and 0 < κ < �T /2. Let S∗ be defined as,

S∗ = sup{S : |zS| ≥ 1 + a�S}. (4.12)

Then for S∗ ∨ (4 − 10−1) < S < T we have,

�
1/6
S

√
κS > �

1/6
T

√
κT + b(T − S), (4.13)

and also that κS is decreasing. For S < S∗ we have ηS ≥ ηS∗ ≥ a�S∗ ≥ a�T .

Proof We let 100a be the constant from Proposition B.4. For S ∈ (S∗, T ) we can
apply the estimate from this proposition to obtain,

d

dS
κS = 1

2

(
Im[ f̃ (zS, S)] − Im[ f̃ (ei�S , S))]

)
≤ −c�−1/6

S
√

κS, (4.14)
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as long as κS ≥ 0. We see that κS is decreasing so if κT > 0 then κS > 0 for
S > S∗ ∨ (4 − 10−1). Moreover, since �S is decreasing, we see that

d

dS

(
�

1/3
S κS

)
≤ −c

(
�

1/3
S κS

)1/2
. (4.15)

The differential inequality ∂t g ≤ −cg1/2 is solved by considering ∂t g1/2 ≤ −c/2 and
so we see that for S ∈ (S∗ ∨ (4 − 10−1), T ) that

�
1/6
S

√
κS ≥ �

1/6
T

√
κT + c(T − S) (4.16)

for some c > 0 as desired. This completes the proof. ��
The following establishes estimates on the behavior of the characteristics near the

spectral edge.

Proposition 4.3 Let zs = Cs,t (z) be a characteristic ending at a point z at final time
t < 10−1 (recall the reversed time convention T = 4 − t). Assume at the final time t
the estimates,

κt > N−2/3+5ε�
1/9
t , �t ≥ N−3/4+9ε (4.17)

hold. Moreover assume 0 < ηt < a�t . Let,

s∗ = inf{s : ηs > a�s}. (4.18)

Note S∗ = 4 − s∗ where S∗ is as in Lemma 4.2. For t < s < s∗ ∧ 10−1 we have,

∂s(κs − N−2/3+5ε�s) ≥ 0. (4.19)

For the next two estimates, continue to assume t < s < s∗∧10−1. There is furthermore
a constant d > 0 so that the following holds. If s − t ≤ �

1/6
t

√
κt then,

(κs − N−2/3+5ε�
1/9
s )2 ≥ d(s − t)2�−1/3

t κt . (4.20)

If s − t ≥ �
1/6
t

√
κt then,

(κs − N−2/3+5ε�
1/9
s )2 ≥ dκ2

t . (4.21)

Proof By direct calculation, one can see that |∂t�t | ≤ Ct1/2 ≤ C�
1/3
t . Therefore,

proceeding as in the proof of Lemma 4.2 we have for t < s < s∗,

d

ds
(κs − N−2/3+5ε�

1/9
s ) ≥ c�−1/6

s
√

κs − CN−2/3+5ε�
−5/9
s , (4.22)
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for some c,C > 0. Consider the set

A := {s : t ≤ s < s∗ : κs < N−2/3+5ε�
1/9
s }. (4.23)

Note that by assumption there is a small interval around t not contained inA. Assume
thatA is not empty and let F = inf A, so that s∗ > F > t . At F we clearly must have
that

κF = N−2/3+5ε�
1/9
F . (4.24)

We now show that the RHS of (4.22) is strictly positive at s = F . Indeed, we evaluate

�
10/9−1/3
F κF = N−2/3+5ε�

8/9
F ≥ N−2/3+5ε�

8/9
t ≥ N 3ε(N−2/3+5ε)2 (4.25)

which shows that theRHSof (4.22) is strictly positive for N large enough. In particular,
the derivative on the LHS of (4.22) is strictly positive at s = F , showing that κs ≥
N−2/3+5ε�

1/9
s in an open interval containing F . This contradicts the assumption that

F was an infimum, proving that A is empty.
Substituting the lower bound κs ≥ N−2/3+5ε�

1/9
s into the RHS of (4.22) we then

find that,

d

ds
(κs − N−2/3+5ε�

1/9
s ) ≥ c�−1/9

s N−1/3+5ε/2 − CN−2/3+5ε�
−5/9
s . (4.26)

Positivity of the RHS is equivalent to

�
4/9
s ≥ C

c
N−1/3+5ε/2. (4.27)

However, by assumption �
4/9
t ≥ N−1/3+4ε. We conclude the proof of (4.19).

We turn now to the proof of the remaining inequalities. From (4.13) we have

�1/3(s)κ(s) − N−2/3+5ε�4/9(s) ≥ [�1/3(t)κ(t) − N−2/3+5ε�4/9(t)]
+ [N−2/3+5ε�4/9(t) − N−2/3+5ε�4/9(s)]
+ 2c(s − t)�1/6(t)

√
κ(t), (4.28)

for some c > 0. Note that the first term on the RHS is positive. First, assume that
s − t ≤ �

1/6
t

√
κt . From the fact that κt ≤ �t and �t ≤ Ct3/2 we see that s ≤ Ct for

some C > 0. It follows from the mean value theorem that,

N−2/3+5ε|�4/9
t − �

4/9
s | ≤ CN−2/3+5ε(s − t)�−2/9

t

≤ C(s − t)�1/6
t

√
κt N

−3ε/2. (4.29)
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The estimate (4.20) easily follows. Consider now the case s − t ≥ �
1/6
t

√
κt . Let t∗ be

the time such that

t∗ = t + �
1/6
t

√
κt . (4.30)

Applying (4.19) we see that

κs − N−2/3+5ε�s ≥ κt∗ − N−2/3+5ε�t∗ . (4.31)

Since the estimate (4.20) holds at s = t∗ we see that

(κt∗ − N−2/3+5ε�t∗)
2 ≥ cκ2

t (4.32)

for some c > 0. This completes the proof of the proposition. ��
The following is similar to Lemma 3.5 and the proof is deferred to Appendix B of

[2].

Lemma 4.4 Let ε > 0. Consider the domain,

D := {z = (1 + η)eiθ : �
1/9
t N−2/3+ε < η < 2�1/9

t N−2/3+ε,�t + N−2/3+5ε�
1/9
t

< |θ | ≤ π}. (4.33)

Assume for all z ∈ D we have the estimate,

| f̃ (z, t) − f (z, t)| ≤ N ε

N
√

η
√

κ + η
. (4.34)

Then there are no eigenvalues of the form λ = eiθ with �t + N−2/3+5ε�t < |θ | ≤ π .

Lemma 4.5 Let ε > 0 and let t < N−1/10 with �t ≥ N−3/4+9ε. Let zs be a charac-
teristic that ends at time t in the region,

{z = (1 + η)eiθ : N−2/3+ε�
1/9
t ≤ η ≤ 2N−2/3+ε�

1/9
t ,�t + N−2/3+5ε�

1/9
t

≤ |θ | ≤ π}. (4.35)

Then for t < s < 10−1 we have,

ηs ≤ CN−ε/2�s . (4.36)

Proof Define the functions

h1(u) = log |zt | + uN ε/2 ηt

�
1/6
t

√
κt

(4.37)

and

h2(u) = N−ε/2�t + ut1/2N−ε. (4.38)
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By the definition of the characteristics,

log |zs | = log |zt | + (s − t)
|Re[ f̃ (z, t)]|

2
, (4.39)

and so for 0 ≤ u < 10−1 we have,

ηt+u ≤ Ch1(u) (4.40)

for some large C , using Lemma 4.1. Since ∂u�u ≥ cu1/2 we have that

h2(u) ≤ N−ε/2�t+u, (4.41)

for N large enough. Note that h2(0) > h1(0). We claim for u < 10−1 that

h′
2(u) ≥ h′

1(u) (4.42)

which will yield the claim. This is equivalent to,

N 3ε/2ηt ≤ t1/2�1/6
t

√
κt . (4.43)

The LHS is less than 2N 5ε/2−2/3�
1/9
t . The RHS is larger than cN 5ε/2−1/3�

1/2
t �

1/18
t .

But,

�
1/2−1/9+1/18
t = �

4/9
t ≥ N−1/3+4ε (4.44)

by assumption. ��
Lemma 4.6 Fix a time t. Let zs = Cs,t (z) be a characteristic terminating at a point
z = (1 + η)ei(�t+κ) where

N−2/3+ε�
1/9
t < η < 2N−2/3+ε�

1/9
t , N−2/3+5ε�

1/9
t ≤ κ < π − �t .

(4.45)

Let t1 and t2 be two times t ≤ t1 < t2 < 10−1 and assume that for t1 < s < t2 the
estimate

| f̃ (zs, s) − f (zs, s)| ≤ 2|Re[ f̃ (zs, s)]| (4.46)

holds and that at each time s there are no eigenvalues of the form λ = eiθ for �s +
N−2/3+5ε�

1/9
s < |θ | ≤ π . Then,

∫ t2

t1

1

N

N∑
i=1

1

|λi (s) − zs |4 ds ≤ C log(N )B(zt1)
2 (4.47)
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Proof First we consider the case that aκt1 ≤ 10ηt1 . In this case, it suffices to estimate
the integrand by C log(N )η−2

t1 . This argument is similar to that appearing in the proof
of Proposition 2.2 and so we omit it.

For the remainder of the proof we therefore assume that κt1a ≥ 10ηt1 . In particular,
this implies that ηt1 ≤ a�t1/10.

Let s∗ be as in Lemma 4.2, that is

s∗ := inf{s > t : ηs > a�s}. (4.48)

Note that by Lemma 4.5 we have s∗ > t2. For t1 < s < t2 we know from (4.19) that
κs ≥ N−2/3+5ε�

1/9
s because this is satisfied at s = t . In particular, define

t̃ = t1 + �
1/6
t1

√
κt1 . (4.49)

We assume t1 < t̃ < t2. The other cases are easy to deal with, as one has to treat only
one of the regions of integration described below. Then for t1 < s < t̃ we have,

(κs − N−2/3+5ε�
1/9
s )2 ≥ d(s − t1)

2�
−1/3
t1 κt1 (4.50)

and for t̃ < s < t2,

(κs − N−2/3+5ε�
1/9
s )2 ≥ dκ2

t1, (4.51)

by applying Proposition 4.3. We will use the estimate,

∫ t2

t1

1

N

N∑
i=1

1

|λi (s) − zs |4 ds ≤
∫ t2

t1

1

(κs − N−2/3+5ε�
1/9
s )2 + η2s

|Re[ f̃ (zs, s)]|
ηs

ds.

(4.52)

We start with the region s > t̃ . For such s we can apply (4.51) and estimate,

∫ t2

t̃

1

(κs − N−2/3+5ε�
1/9
s )2 + η2s

|Re[ f̃ (zs, s)]|
ηs

ds ≤ C

κ2
t1

∫ t2

t̃

|Re[ f̃ (zs, s)]|
ηs

ds

≤ C

κ2
t1

log(N )

≤ C

ηt1(κt1 + ηt1)
log(N ) (4.53)

We consider now the region s < t̃ . By applying (4.50) and Lemma 4.1 (as well as the
constancy of f̃ along characteristics, and the fact that ηs is increasing in s) we obtain,

∫ t̃

t1

1

(κs − N−2/3+5ε�
1/9
s )2 + η2s

|Re[ f̃ (zs, s)]|
ηs

ds
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≤ C

�
1/6
t1

√
κt1 + ηt1

∫ t̃

t1

1

(s − t)2�−1/3
t1 κt1 + η2t1

ds

≤ C

ηt1
√

κt1
√

κt1 + ηt1
. (4.54)

This completes the proof. ��

Define the domain,

Bs := {z = (1 + η)eiθ : N−2/3+ε�
1/9
s < η < 2N−2/3+ε�

1/9
s , N−2/3+5ε�

1/9
s

+�s < |θ | ≤ π}. (4.55)

We will assume s > N−1/2+9ε so that �s > cN−3/4+10ε. We fix S0 = 4 − s0 with
s0 = 10−1, and the final time,

S f := 4 − s f , s f = N−1/2+9ε (4.56)

Similar to the proof of Theorem 1.4, we introduce a polynomial number of character-
istics as follows. We introduce times Ti by

T0 = S0, Ti = Ti−1 + S f − S0
N 10 , (4.57)

for i = 1, . . . , N 10. At each Ti we introduce a well-spaced mesh of BTi of size N 10

denoted by {uij }10j=1. We introduce the characteristics,

zij (S) := CS,Ti (u
i
j ). (4.58)

Note that each characteristic is defined only for 0 ≤ s ≤ Ti . For i ≥ 1 we introduce
the stopping times,

τi j = inf{S ∈ (S0, Ti ) : | f (zij (S), S) − f̃ (zij (S), S)| > N ε/2B(zij (S))}, (4.59)

with the infimum of the empty set being +∞. Let A0 be the event,

A0 = {∃(i, j) : | f (z ji (S0), S0) − f̃ (z ji (S0), S0)| > N ε1 inf
S0<S<Ti

B(z ji (S))}c

(4.60)

Lemma 4.7 The event A0 holds with overwhelming probability.

Proof We will show that the desired estimates hold on the event of Proposition B.5,
with ε, δ in that proposition statement chosen sufficiently small.
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Fix a single characteristic zS := z ji (S) and let S0 < S < Ti be fixed. By (4.19) and
Lemma 4.5 it follows that κS > 0 for all S and that κS0 ≥ cN−2/3+5ε. From (B.11)
we see that

| f (zS0 , S0) − f̃ (zS0 , S0)| ≤ N ε1B(zS0). (4.61)

Since κS > 0 and κS and ηS are both decreasing in S that,

B(zS) ≥ B(zS0) (4.62)

for S > S0. This yields the claim. ��
We also let τ0 be the stopping time that equals +∞ on A0 and is S0 on Ac

0. We
now introduce the stopping time,

τ =
(
min
i, j

τi j

)
∧ τ0 ∧ S f . (4.63)

Using the Lipschitz continuity of f̃ (z, S) and f (z, S) on the domains BS we have
from Lemma 4.4 that for any S0 < S < τ that there are no eigenvalues of the form
λ = eiθ for �S + N−2/3+5ε�

1/9
S < |θ | ≤ π .

Lemma 4.8 Let zS be a characteristic terminating at time Ti in the domain,

{z = (1 + η)eiθ : N−2/3+ε�
1/9
Ti

≤ η ≤ a�Ti /10,�Ti + N−2/3+5ε�
1/9
Ti

≤ |θ | ≤ π}.
(4.64)

Then for S0 < S < Ti we have,

N εB(zS) ≤ 1

log(N )
|Re[ f̃ (zS, S)]|. (4.65)

Proof Note that f̃ (zS, S) is constant. At S = Ti we have,

N εB(zTi ) = N ε 1

N
√

ηTi (ηTi + κTi )
≤ C

N ε�
1/6
Ti

Nη
3/2
Ti

|Re[ f̃ (zTi , Ti )]|

≤ CN−ε/2|Re[ f̃ (zTi , Ti )]| (4.66)

where we used ηTi ≥ �
1/9
Ti

N−2/3+ε which holds by assumption. Let S∗ be as in
Lemma 4.2. By Lemma 4.2 we have

B(zS) ≤ B(zTi ) (4.67)
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for all S > S∗. If S∗ > S0 then for S < S∗ we have ηS ≥ ηS∗ ≥ c�S∗ ≥ c�Ti ≥ cκTi
and so

B(zS) ≤ (NηS)
−1 ≤ CB(zTi ). (4.68)

This completes the proof. ��
With similar notation as in the other sections we have for any S0 ≤ S ≤ Ti ∧ τ ,

f (zij (S), S) − f̃ (zij (S), S) = f (zij (S0), S0) − f̃ (zij (S0), S0) = E1(S)ij + E2(S)ij ,

(4.69)

where

E1(S)ij = −1

2

∫ S

S0
zij (U )(∂z f )(z

i
j (U ),U )( f (zij (U ),U ) − f̃ (zij (U ),U ))dU

(4.70)

and

E2(S)ij =
∫ S

S0
dMU (zij (U )). (4.71)

For the martingale term we have the following.

Proposition 4.9 For any i, j and ε1 > 0 we have,

P

[
∃S ∈ (S0, Ti ∧ τ) : |E2(S)ij | > N ε1B(zij (S))

]
≤ C log(N )e−cN ε1

. (4.72)

Proof This is proven in an almost identical manner to Proposition 3.7. The quadratic
variation is bounded using Lemma 4.6. Note that the condition (4.46) is a consequence
of Lemma 4.8. ��
Proof of Theorem 1.6 Let ϒ be the intersection of the event of Proposition 4.9 andA0
so that ϒ holds with overwhelming probability. Let zS = zij (S) be a characteristic.
On the event ϒ we have for S0 < S < Ti ∧ τ that,

| f (zS, S) − f̃ (zS, S)| ≤
∫ S

0
g(U )| f (zU ,U ) − f̃ (zU ,U )|dU + 2N ε1B(zS)

(4.73)

by the definition of A0 and (4.69), where

g(U ) = |zU (∂z f )(zU ,U )|
2

. (4.74)
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Hence, via Gronwall’s inequality we obtain,

| f (zS, S) − f̃ (zS, s)| ≤ 2
∫ S

0
g(u) exp

[∫ S

U
g(w)dw

]
N ε1B(zU )du + 2N ε1B(zS).

(4.75)

As in the proofs of Theorems 1.2 and 1.4 we have, using Lemma 4.8,

exp

[∫ S

U
g(w)dw

]
≤ C

ηU

ηS
, (4.76)

as well as

g(U ) ≤ C
|Re[ f̃ (zU ,U )]|

ηU
. (4.77)

Hence,

| f (zS, S) − f̃ (zS, S)| ≤ C
N ε1

ηS

∫ S

0
|Re[ f̃ (zU ,U )]|B(zU )dU + 2N ε1B(zS).

(4.78)

We now split into a few different cases. Suppose first that ηS ≥ κS . Then,

∫ S

0
|Re[ f̃ (zU ,U )]|B(zU )dU ≤ 1

N

∫ S

0
|Re[ f̃ (zU ,U )]|η−1

U dU ≤ CN−1 log(N )

(4.79)

and so,

| f (zS, S) − f̃ (zS, S)| ≤ CN ε1B(zS) + C log(N )N ε1ηS ≤ C log(N )N ε1B(zS)

(4.80)

where we used the assumption that ηS ≥ κS in the last inequality. Now assume that
ηS ≤ κS . Similar to the convention of Lemma 4.2 we define,

S∗ = sup{S0 < U < S : |zU | ≥ 1 + a�U }. (4.81)

with the convention that the supremum of the empty set is −∞. By Lemma 4.5 it
follows that S∗ = −∞. Therefore, for all S0 < U < S we have,

|Re[ f̃ (zU ,U )]| � 1

�
1/6
U

ηU√
κU + ηU

, (4.82)

as κU > 0 for all S0 < U < S.
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Let us define S1 = 4 − 2s. Let us assume that S0 < S1. The other case is easier,
requiring consideration of only one of the regions of integration below. We consider
first the region U ∈ (S1, S). Then, for such U we have �U ≤ C�S , and so

1

ηS

∫ S

S1
|Re[ f̃ (zU ,U )]|N B(zU )dU ≤ 1

√
κS + ηS�

1/6
S

∫ S

S1

1√
κU + ηU

√
ηU

dU

≤ C
1

√
κS + ηS�

1/6
S

∫ S

S1
�

1/6
U |Re[ f̃ (zU ,U )]|η−3/2

U dU

≤ C
1√

κS + ηS

∫ S

S1
|Re[ f̃ (zU ,U )]|η−3/2

U dU

≤ C
1

√
κS + ηSη

1/2
S

. (4.83)

Nowwe considerU ∈ (S0, S1). For suchU , letU = 4−u. Note u ≥ 2s. In particular,
from (4.13) we conclude that

�
1/6
U

√
κU ≥ cu (4.84)

which implies thatC�U ≥ κU ≥ c�U . FromLemma4.1we see that forU ∈ (S0, S1),

c
ηU

�
2/3
U

≤ |Re[ f̃ (zU ,U )]| ≤ C
ηU

�
2/3
U

. (4.85)

Since f̃ (zU ,U ) is constant along characteristics we deduce from this that

�
1/6
U ≤ C

η
1/4
U �

1/6
S1

η
1/4
S1

≤ C
η
1/4
U �

1/6
S

η
1/4
S

(4.86)

The second inequality uses that ηS1 ≥ ηS and that �S1 � �S by the choice of S1.
Hence,

1

ηS

∫ S1

S0
|Re[ f̃ (zU ,U )]|N B(zU )dU ≤ C

√
κS + ηS�

1/6
S

∫ S1

S0

1√
κU + ηU

√
ηU

dU

≤ C
√

κS + ηS�
1/6
S

∫ S1

S0
�

1/6
U |Re[ f̃ (zU ,U )]|η−3/2

U dU

≤ C
√

κS + ηSη
1/4
S

∫ S

S0
|Re[ f̃ (zU ,U )]|η−5/4

U dU

≤ C
1

√
κS + ηSη

1/2
S

. (4.87)
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In the first inequality we used constancy of f̃ along characteristics and Lemma 4.1.
In the second inequality we used Lemma 4.1 again. In the third inequality we used
(4.86).

Summarizing, we see that on the event ϒ we have for any S0 < S < τ ∧ Ti that

| f (zS, S) − f̃ (zS, S)| ≤ C log(N )N ε1B(zS). (4.88)

Taking ε1 < ε/100 we see that we must have τ > Ti for every i . Therefore, τ = T
and we conclude the theorem. ��

5 Center of mass evolution

In this section we prove Proposition 1.8. We will not track dependence of constants
on the parameter N , as Proposition 1.8 is a statement in soft analysis. The reader
should note that we will therefore change notation and consider unitary matrices of
size n instead of N evolving according to (1.1). We do this in order to emphasize the
ineffectiveness of the estimates in the dimension of the system.

Fix some time t0 > 0 and assume that there are no eigenvalues in the set {z = eiθ :
θ ∈ I0} for I0 = [θ0 − L/2, θ0 + L/2] at time t0 and θ0 ∈ [0, 2π). Let τ > t0 be the
first time an eigenvalue enters this set. Let � be the contour,

� := {z = reiθ : 1/2 < r < 3/2, θ = θ0 ± L/4}
∪ {z = reiθ : r = 1/2, 3/2, θ /∈ [θ0 − L/4, θ0 + L/4]}. (5.1)

That is, it encloses all of the eigenvalues on the unit circle but avoids the ray {reiθ0 :
r ≥ 0}. A schematic diagram of the contour � is given in Fig. 1.

We use this contour as we will take a logarithmwith branch cut being this ray. Then
for any time t0 < t1 < τ we have,

iθi (t1) − iθi (t0) = 1

2π i

∫

�

gθ0(z)

(
1

z − λi (t1)
− 1

z − λi (t0)

)
dz (5.2)

where gθ0(z) is the branch of the logarithm holomorphic in C\{z = reiθ0 , r ≥ 0}.
This formula holds due to the fact that no eigenvalue crosses the angle θ0 in this time
interval, and so for this entire time interval, θi (t) = 2πk + θ̃i (t) where k is a constant
integer and θ0 < θ̃i (t) < θ0 + 2π .

Introducing,

m(z, t) = 1

n

n∑
i=1

1

λi (t) − z
= 1

n
tr

1

Ut − z
(5.3)

we therefore have,

θ̄ (t1 ∧ τ) − θ̄ (t0) = 1

2π i

∫

�

−gθ0(z)

i
(m(z, t1 ∧ τ) − m(z, t0))dz. (5.4)
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Fig. 1 Schematic diagram of
contour � defined in (5.1).
Contour in red; unit circle in
black. Eigenvalues are the thick
black dots enclosed by the red
contour (color figure online)

For t0 < t < τ , m(z, t) is well-defined for z ∈ � and so we may apply the Itô
formula. Since,

f (z, t) = 1 + 2zm(z, t) (5.5)

we have from (1.11) that (abbreviating g = gθ0 and m = m(z, t)),

d
1

2π i

∫

�

ig(z)m(z, t)dz = 1

2π i

∫

�

−ig

2
(1 + 2zm)(m + zm′)dzdt

+ 1

2π i

∫

�

g(z)
1

n
tr

(
Ut

(Ut − z)2
dW

)
dz. (5.6)

Observe that by the holomorphic functional calculus,

1

2π i

∫

�

g(z)
1

(Ut − z)2
dz = U−1

t , (5.7)

and so

1

2π i

∫

�

g(z)
1

n
tr

(
Ut

(Ut − z)2
dW

)
dz = 1

n
tr (dW ) . (5.8)

The first line of (5.6) turns out to vanish identically. To see this, we will evaluate all
of the integrals explicitly using the Cauchy integral formula as well as the variants

1

2π i

∫

�

F(z)

(z − a)(z − b)
dz = F(b) − F(a)

b − a
(5.9)
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and

1

2π i

∫

�

F(z)

(z − a)2(z − b)
dz = − F ′(a)

b − a
+ F(b) − F(a)

(b − a)2
(5.10)

valid for F analytic in the appropriate domain and � encircling a, b. We have,

1

2π i

∫
g(z)(1 + 2zm)(m + zm′)dz = 1

2π i

∫
g(z)(m + 2zm2 + zm′ + 2z2mm′)dz

= 1

2π i

∫
dzg(z)

{
1

n

∑
i

1

λi − z
+ 2

z

n2
∑
i 	= j

1

(λi − z)(λ j − z)

+ z(2n−1 + 1)
1

n

∑
i

1

(λi − z)2

+ 2
z2

n2
∑
i 	= j

1

(λi − z)(λ j − z)2
+ 2

z2

n2
∑
i

1

(λi − z)3

}

= −1

n

∑
i

g(λi ) + 2

n2
∑
i 	= j

λi g(λi ) − λ j g(λ j )

λi − λ j
+ 2n−1 + 1

n

∑
i

(g(λi ) + 1)

+ 1

n2
∑
i 	= j

4λ j g(λ j ) + 2λ j

λi − λ j
− 2

n2
∑
i 	= j

λ2i g(λi ) − λ2j g(λ j )

(λi − λ j )2
− 1

n2
∑
i

(2g(λi ) + 3).

(5.11)

Now, note that

2

n2
∑
i 	= j

λ2i g(λi ) − λ2j g(λ j )

(λi − λ j )2
= 0 (5.12)

by symmetry as well as,

− 1

n

∑
i

g(λi ) + 2n−1 + 1

n

∑
i

(g(λi ) + 1) − 1

n2
∑
i

(2g(λi ) + 3) = 1 − 1

n

(5.13)

Finally,

2

n2
∑
i 	= j

λi g(λi ) − λ j g(λ j )

λi − λ j
+ 1

n2
∑
i 	= j

4λ j g(λ j ) + 2λ j

λi − λ j
= 2

n2
∑
i 	= j

λ j

λi − λ j

= −n(n − 1)

n2
(5.14)
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and so indeed the term on the first line of (5.6) vanishes. It follows that for any
t0 < t1 ≤ τ we have

θ̄ (t1) − θ̄ (t0) = 1

n

(
trWt1 − trWt0

)
. (5.15)

Fix a final time T > 1 and a large integer m > 0, and intermediate times ti = iT /m.
Let θk , k = 1, 2, . . . , 4n, be 4n equally spaced points along the unit circle. For any
� > 0 define the arcs,

Zk,� = {z = eiθ : |θ − θk | < �/(100n)}. (5.16)

Throughout the remainder of the proof we will make use of the arcs {Zk,1}k and
{Zk,1/2}k , i.e., the choices � = 1, 1/2.

For each 0 ≤ i ≤ m and 1 ≤ k ≤ 4n define the stopping time τi,k as follows. If
at time ti there is an eigenvalue in Zk,1 let τi,k = ti . Otherwise, τi,k be the first time
ti < t ≤ ti+1 that an eigenvalue hits the set Zk,1/2. If this does not occur, let τi,k = ∞.
Then, let τi = mink τi,k . By the pigeonhole principle we have τi > ti for all i . Finally,
let τ (m) = mini τi .

From the above discussion we have on the event τ (m) = ∞ and by telescoping that
for any 0 < t < T we have

θ̄ (t) = 1

n
tr (Wt ) . (5.17)

The proof of Proposition 1.8 will be complete once we prove that

lim
m→∞P

[
τ (m) = ∞

]
= 1. (5.18)

The remainder of this section is devoted to this. Consider the points,

z±,k = (1 + η) exp

[
i

(
θk ± 3

4

1

100n

)]
. (5.19)

Note that for any k that if Zk,1 contains no eigenvalues at time ti , then

|Re[ f (z±,k, ti )]| ≤ C1n
2η (5.20)

for some C1 > 0. On the other hand, if for this k we have that τi,k < ∞ then there is
some t ∈ [ti , ti+1] such that,

|Re[ f (z+,k, t)]| + |Re[ f (z−,k, t)]| >
c1
nη

. (5.21)

Choosing η small enough so that

c1
nη

> 10C1n
2η (5.22)
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we have that

{τi < ∞} ⊆
4n⋃
k=1

{∃t ∈ [ti , ti+1] : | f (z+,k, t) − f (z+,k, ti )| + | f (z−,k, t)

− f (z−,k, ti )| >
c2

10nη

}
. (5.23)

The parameter η > 0 is fixed for the remainder of the proof. We see by (1.11) that
(abbreviating z = z±,k)

| f (z, t) − f (z, ti )| ≤ CT
1

mη3
+ (Mt − Mti ). (5.24)

By the BDG inequality,

P

[
sup

ti<t<ti+1

|Mti − Mt | > s

]
≤ C exp

[
−csm1/2n−2T−1

]
. (5.25)

So taking s = c2/(100nη) we see that for all m large enough, there are constants
depending on n and η such that

P [τi < ∞] ≤ Ce−m1/2c. (5.26)

This completes the proof of Proposition 1.8. ��

6 Rigidity

6.1 Helffer–Sjöstrand formula

This section establishes an analog of the Helffer–Sjöstrand formula for measures on
the unit circle. Recall,

∂z̄ = 1

2
(∂x + i∂y) (6.1)

as well as Green’s theorem,

F(λ) = 1

π

∫

R2

(∂z̄ F)(x, y)

λ − (x + iy)
dxdy (6.2)

for any F ∈ C2 of compact support. In polar coordinates we recall,

∂z̄ F(r , θ) = eiθ

2

(
∂r F + i

r
∂θ F

)
. (6.3)
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For any F supported in an annulus,

F(λ) = 1

π

∫

R2

∂z̄ F

2z

λ + z

λ − z
dxdy. (6.4)

Let ϕ : [0, 2π ] → R be a function on the unit circle that extends to a smooth 2π -
periodic function on R. We define the quasi-analytic extension of ϕ by,

ϕ̃(r , θ) := (ϕ(θ) − i log(r)ϕ′(θ))χ(r) (6.5)

where χ(r) is a function that is 1 on [3/4, 4/3] and 0 outside of [1/2, 2]. We may also
assume that,

χ(r) = χ(r−1). (6.6)

If μ is any measure on the unit circle with Cauchy transform fμ(z) we see that,

∫
ϕ(θ)dμ(θ) = 1

π

∫

R2

∂z̄ ϕ̃

2z
fμ(z)dxdy

= 1

4π

∫
(ϕ(θ) − i log(r)ϕ′(θ))χ ′(r) fμ(z)drdθ

+ 1

4π

∫
ϕ′′(θ) log(r)χ(r) fμ(z)r−1drdθ. (6.7)

This is the Helffer–Sjöstrand formula we require to establish our eigenvalue estimates
and will be used in the next subsections.

6.2 Proof of Corollary 1.3

We follow Section 3.3 of [30] very closely, as the estimates of Theorem 1.2 and the
formula (6.7) combine in the exactly samemanner there as here to prove Corollary 1.3.
Introduce,

η(θ) = inf
η>1

{(η − 1)|Re[ f̃ (ηeiθ )]| ≥ N ε−1}. (6.8)

Note that from Lemma B.2,

η → (η − 1)|Re[ f̃ (ηeiθ ]| (6.9)

is an increasing function for η > 1. We first assume t < 2. We consider I = [θ0, π ]
for some 0 < θ0 < π . The case −π < θ0 < 0 requires only notational changes.
Define,

η̃ := inf
η:log η≥N1−c

{η : max
θ0≤x≤θ0+η

η(x) ≤ η}. (6.10)
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Let θ̃ be

θ̃ := argmaxθ0−η̃≤x≤θ0
η(x) (6.11)

so that

η(θ̃) = η̃. (6.12)

We let ϕ be a function that is 1 on [θ0, π ] and 0 outside of [θ0− log η̃∧ 1
10 , π +N 2ε−1],

with |ϕ(k)(x)| ≤ Ck(N 1−2ε)k for x near π and |ϕ(k)(x)| ≤ Ck(log η̃)−k for x near θ0.
By (6.7) we have,

∣∣∣∣∣
1

N

∑
i

ϕ(λi (t)) −
∫

ϕ(θ)ρt (θ)dθ

∣∣∣∣∣ ≤ C
∫

(|ϕ(θ)| + |ϕ′(θ)|)|χ ′(r)|S(z)|drdθ

+
∣∣∣∣
∫

ϕ′′(θ) log(r)χ(r)S(z)r−1drdθ

∣∣∣∣ ,
(6.13)

where

S(z) = f (z, t) − f̃ (z, t). (6.14)

On the event that the estimates of Theorem 1.2 hold we see that,

∫
(|ϕ(θ)| + |ϕ′(θ)|)|χ ′(r)|S(z)|drdθ ≤ C

N ε

N
. (6.15)

For the second term, note that the measure r−1dr is invariant under the transformation
r → r−1 so that,

∣∣∣∣
∫

ϕ′′(θ) log(r)χ(r)S(z)r−1drdθ

∣∣∣∣

= 2

∣∣∣∣
∫ 2π

0

∫

r>1
ϕ′′(θ) log(r)|Re[S(z)]|χ(r)r−1drdθ

∣∣∣∣ (6.16)

Recall that ϕ′′(x) = 0 unless x ∈ [π, π + N 2ε−1] or x ∈ [θ0 − log η̃ ∧ 1
10 , θ0]. Note

that for r ≥ ηc where log ηa := N−c we have,

|Re[S(z)]| ≤ C
N ε

N log |z| (6.17)

using Lemma B.2 (see Remark 3.3 of [30] for a similar argument). Therefore,

∫

θ∈[π,π+N2ε−1]

∫

r>1
|ϕ′′(θ)| log(r)|Re[S(z)]|χ(r)r−1drdθ
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≤
∫

θ∈[π,π+N2ε−1]

∫

r>ηc

|ϕ′′(θ)| log(r)|Re[S(z)]|χ(r)r−1drdθ

+ C
∫

θ∈[π,π+N2ε−1]

∫

1<r<ηc

|ϕ′′(θ)|χ(r)drdθ ≤ C
N 3ε

N
+ C

N c
≤ C

N 3ε

N
.

(6.18)

We used (6.17) in the first integral and the estimate |(r − 1)Re[S(reiθ )]| ≤ C for the
second. For the region where θ ∈ [θ0 − log η̃ ∧ 1

10 , θ0] =: J we first bound,

∫

θ∈J

∫

1<r<η̃

| log(r)||Re[S(z)]ϕ′′(θ)χ(r)|drdθ

≤
∫

θ∈J

∫

1<r<ηc

| log(r)||Re[S(z)]ϕ′′(θ)χ(r)|drdθ

+
∫

θ∈J

∫

ηc<r<η̃

| log(r)||Re[S(z)]ϕ′′(θ)χ(r)|drdθ

≤ C
ηc

η̃
+ CN ε

N
≤ CN ε−1. (6.19)

For the first integral we used |(r − 1)Re[S]| ≤ 2 and that η̃ ≥ N 1−c. For the sec-
ond region we used again (6.17). For the contribution of r > η̃ we have, by partial
integration

∫

θ∈J

∫

r>η̃

log(r)ϕ′′(θ)χ(r)Re[S]r−1drdθ

=
∫

θ∈J
θ ′(θ) log(η̃)Im[S]η̃−1dθ

−
∫

θ∈J

∫

r>η̃

ϕ′(θ)∂r (log(r)χ(r)r−1)Im[S]drdθ. (6.20)

By definition of η̃, all z appearing in the above integration lie in Bt . Therefore, we
may apply the estimate on S of Theorem 1.2 and obtain that both of these integrals
are bounded above by C log(N )N ε−1.

When these estimates hold we therefore conclude that,

|{i : θi (t) ∈ I }| ≤ N
∫

ϕ(θ)ρt (θ)dθ + CN 3ε. (6.21)

For t < 2, ρt has no support for |θ − π | < δ some δ > 0. Therefore,

N
∫

ϕ(θ)ρt (θ)dθ ≤ N
∫

I
ρt (θ)dθ + N

∫ θ0

θ0−log η̃∧ 1
10

ρt (θ)dθ. (6.22)
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There are two cases. If η̃ = N−c then the second integral is bounded by η̃/
√
t =

N−ct−1/2. Otherwise,

∫ θ0

θ0−log η̃∧ 1
10

ρt (θ)dθ ≤ C(η̃ − 1)|Re[η̃eiθ̃ ]| ≤ C
N 3ε

N
. (6.23)

The lower bound for the number of θi ∈ I follows similarly. For t > 2, then the
densities ρt all satisfy that inf |θ |<c ρt (θ) > c for some c > 0. In this case, one uses
intervals with one end-point at θ = 0. In (6.22) there is then a second term on the
RHS,

∫ 0

−N2ε−1
ρt (θ)dθ ≤ CN 2ε−1. (6.24)

Everything else is identical. This proves the corollary. ��

6.3 Proof of Corollary 1.9

It follows from Proposition 1.8 that with overwhelming probability,

sup
0≤t≤T

|θ̄ (t)| ≤ N ε

N
(6.25)

for any ε > 0. Next, for each i , we may write,

θi (t) = 2πni (t) + ϕi (t) (6.26)

for ni (t) an integer and −π ≤ ϕi (t) ≤ π . For any fixed t > 0 it follows from the fact
that the eigenvalues never cross that the set {n1(t), n2(t), . . . , nN (t)} contains at most
two consecutive integers whose absolute values we will denote bym(t),m(t)+1. Let
N1(t) be the number of eigenvalues s.t. |ni (t)| = m(t) and N2(t) be the number of
eigenvalues s.t. |ni (t)| = m(t) + 1. Let μ be a probability measure on [−π, π ] with
a density. We have,

∫ π

0
θdμ(θ) =

∫ π

0
μ([t, π ])dt, (6.27)

and since
∫ π

−π
θρt (θ)dθ = 0 we have,

∣∣∣∣∣
1

N

∑
i

ϕi (t)

∣∣∣∣∣ ≤ N ε

N
(6.28)

by Corollary 1.3. From this it follows that,

(1 + m(t))N2(t) + m(t)N1(t) ≤ N ε (6.29)
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with overwhelming probability. In particular,m(t) = 0 and the number of eigenvalues
s.t. |θi (t)| > π is at most N ε with overwhelming probability. Using this, the remainder
of Corollary 1.9 follows from Corollary 1.3 in a straightforward manner similar to the
proof of Corollary 3.2 of [30]. ��

A Density of states calculations

Recall the limiting spectral measure ρt (θ) and its Cauchy transform,

f̃ (z, t) =
∫ 2π

0

eiθ + z

eiθ − z
ρt (θ)dθ. (A.1)

Note that,

f̃ (z, 0) = 1 + z

1 − z
, (A.2)

and that f̃ is constant along characteristics,

t → z exp

[
t

2
f̃ (z, 0)

]
= z exp

[
t

2

1 + z

1 − z

]
. (A.3)

Moreover, define the region,

�t :=
{
z ∈ C : Re[z] > 0 and

∣∣∣∣
z − 1

z + 1
e

t
2 z

∣∣∣∣ < 1

}
. (A.4)

Then, the function f̃ (z, t) is a conformal map of the open unit disc into �t [11]. The
domain �t has the following form. We let x+(t) > 1 be the smallest solution larger
than 1 of

1 − x

x + 1
e

t
2 x = 1, (A.5)

and if t > 4 we let, x−(t) be the largest solution less than 1 of

x − 1

x + 1
e

t
2 x = 1. (A.6)

If t ≤ 4 set x−(t) = 0. For x ∈ (x−(t), x+(t)) set

kt (x) :=
√

(x + 1)2 − (x − 1)2et x

et x − 1
. (A.7)
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If t < 4 the boundary of �t is the union of the vertical line on the imaginary axis,

{z = x + iy : x = 0, |y| ≤
√
4t−1 − 1} (A.8)

and the curves

{z = x ± ikt (x) : 0 < x ≤ x+(t)}. (A.9)

When t ≥ 4 the boundary is the union of the curves,

{z = x ± ikt (x) : x−(t) ≤ x ≤ x+(t)}. (A.10)

Moreover, f̃ (z, t) extends to a bijection of the closed unit disc to the closure of �t . It
is also a conformal map of the complement of the closed unit disc in C to −�t .

For the moment we consider the case t < 4. We have that f̃ (z, t) sends the arc

{z = eiθ : π ≥ |θ | > �t } (A.11)

to the boundary of �t that intersects the imaginary axis. Here,

�t := 1

2

√
(4 − t)t + arccos

(
1 − t

2

)
= 1

2

√
(4 − t)t + 2 arcsin

(√
t

4

)

(A.12)

Using the expansion,

arcsin(1 − x) = π

2
− √

2x1/2 −
√
2

12
x3/2 + O(x5/2) (A.13)

one can check that the gap satisfies,

�t = 2(π − �t ) = s3/2

3
+ O(s5/2) (A.14)

where t = 4 − s. We require the following a-priori bound. First, note that for any
Cauchy transform of a measure on the unit circle and z = reiϕ ,

∫ 2π

0

eiθ + z

eiθ − z
ρ(θ)dθ = (1 − |z|2)

∫ 2π

0

1

|eiθ − z|2 ρ(θ)dθ + i2r
∫ 2π

0

sin(ϕ − θ)

|eiθ − z|2 ρ(θ)dθ.

(A.15)

The proof of the following appears in Appendix A of [2].

Proposition A.1 The following estimate holds for all |z| < 1 and t > 0,

| f̃ (z, t)| ≤ 3
(
1 + t−1/2

)
. (A.16)
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The extension of f̃ to the closed unit disc satisfies,

f̃ (z, t) − 1

f̃ (z, t) + 1
e

t
2 f̃ (z,t) = z. (A.17)

Let,

w0 = i

√
4

t
− 1, z0 = ei�t . (A.18)

Note that this is the value of f̃ (z0, t) = w0. Our goal is now to derive an approximate
cubic equation via Taylor expansion for f̃ (z, t) where z are points on the boundary
of the unit disc close to z0. This will allow for conclusions about the behavior of ρt
near the edge later. In order to facilitate this expansion, we introduce the coordinates
E > 0 and q ∈ C via,

z = ei(�t−E), f̃ (z, t) = w0 − iq (A.19)

so that Im[q] ≥ 0, as Re[ f̃ (z, t)] > 0 on the open unit disc, with strict inequality
extending to points on the boundary inside the support of the spectral measure.

With these coordinates,

ρt (E) = 1

2π
Im[q((1−)eiE )] (A.20)

in the sense of boundary values. In the longer version [2] we implement a Taylor
expansion of the self-consistent equation for f̃ (z, t) to obtain the following.

Proposition A.2 Let 0 < t < 4. Let t = 4 − s. Let f̃ (z + z0, t) = w0 − iq. The
following holds for |q| ≤ t−1/2/10 + 1{t>1}100. First,

z = iq2ei�t
t3/2s1/2

8
+ iq3ei�t

(3 − t)t2

24
+ O(t5/2|q|4) (A.21)

Second, if z = ei(�t−E) then f̃ (z, t) = w0 − iq satisfies,

0 = E − i
E2

2
+ q2

t3/2s1/2

8
+ q3

(3 − t)t2

24
+ O(t5/2|q|4 + |E |3) (A.22)

Remark Due to Proposition A.1, the assumption on q holds for all z for 1 < t < 4.

Using the above expansion, we can derive the square-root behavior for times away
from 0 and 4. A proof appears in Appendix A of [2].

Proposition A.3 Let δ > 0 and assume δ < t < 4 − δ. Then, for |E | ≤ cδ we have,

ρt (�t − E) = E1/2

π

√
2

t3/2(4 − t)1/2
(1 + O(E)) . (A.23)
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Local law and rigidity for unitary Brownian motion 807

At t = 4, the following shows that we have an exact cusp. The proof can be found
in Appendix A of [2] and also serves as a useful warm-up for the near-cusp case.

Proposition A.4 Let t = 4. Then,

ρt (π − E) = E1/3
(
3

2

)1/3 √
3

4π

(
1 + O(|E |1/3)

)
(A.24)

We will now consider the behavior of ρt for times t close to 4. For this, we will
follow relatively closely the arguments of Section 9 of the work [3] of Ajanki, Erdős
and Krüger. There, they showed how one may use Cardano’s formula for roots of
cubics to find expressions for spectral measures. As the coefficients of our equation
are explicit, we are able to short-cut some of the arguments of [3] in adapting them to
our setting.

Following [3], we introduce the universal edge shape function,

e(λ) =
√

(1 + λ)λ)(
1 + 2λ + 2

√
(1 + λ)λ)

)2/3 + (
1 + 2λ − 2

√
(1 + λ)λ

)2/3 + 1

(A.25)

As advertised, we characterize the spectral measure in the case of two nearby edges
in terms of this shape function. A proof of the below Proposition appears in Appendix
A of [2].

Proposition A.5 Let 3.5 < t < 4. Then,

ρt (�t − E) = �
1/3
t

(
�

1/6
t

(t − 3)t5/4

2
√
2s1/4π

)
e

(
E

�t

)
+ O

(
min{E3/2s−5/4, E2/3}

)
,

(A.26)

or equivalently,

ρt (�t − E) = s1/2
(
t5/4(t − 3)

π2
√
6

)
e

(
3E

s3/2

)
+ O

(
min{E3/2s−5/4, E2/3}

)

(A.27)

The asymptotics of the shape function are given in (9.63) of [3],

�
1/3
t e

(
E

�t

)
�

{
E1/2

�
1/6
t

, E ≤ �t

E1/3, E ≥ �t

. (A.28)

The short time regime is as follows. A proof appears in Appendix A of [2].
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808 A. Adhikari, B. Landon

Proposition A.6 There is a δ > 0 so that for all t < 1
10 we have,

ρt (�t − E) =
√
2

πs1/4t1/2

√
E

t1/2

(
1 + O(Et−1/2)

)
(A.29)

for |E | ≤ t1/2δ.

We consider now t > 4. Let w0 = x−(t) := x . This is the value of f̃ (z, t) at
z = −1. Note that it is purely real. The equation defining w0 is

et x/2 = 2

1 − x
− 1. (A.30)

Introducing t = 4 + s we can expand this to find,

x2(4 − t3/24) + −x2s(1 + s/8) − s = O(x3). (A.31)

We see that |x | ≤ Cs1/2, and then that,

x = s1/2(4 − t3/24)−1/2(1 + O(s1/2)) = √
3s1/2/2 + O(s). (A.32)

Similar to the regime t < 4 we derive a self-consistent equation for the Cauchy
transform, but now in the regime t > 4. The proof appears in Appendix A of [2].

Proposition A.7 There is a δ > 0 so that for 4 < t < 4 + δ the following holds. Let
z = ei(π−E) and f̃ (z, t) = w0 − iq. Then,

E + Aq + Biq2 + Cq3 = O(|E |2 + |q|4) (A.33)

where

A = 4w2
0 + sw2

0 − s

2(1 + w0)(1 − w0)
(A.34)

and

B =
(
w0(2t − t2/8) − (t − 4)2/8 + w2

0(t + t2/8) + w3
0t

2/8
) 1

(1 + w0)2(w0 − 1)
(A.35)

and

C = 1

(1 + w0)(w0 − 1)

(
t3

48
(w2

0 − 1) + t2

4
− t

1 + w0
+ 2

(1 + w0)2

)
(A.36)

We have A > 0 and C < 0 and B < 0, and |A| � s and |B| � s1/2 and |C | � 1.
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Local law and rigidity for unitary Brownian motion 809

We now find an expression for ρt near θ = π for t just larger than 4. The proof of
the following may be found in Appendix A of [2], and closely follows Section 9.1 of
[3]. We define,

m(λ) :=
√
1 + λ2

(
√
1 + λ2 + λ)2/3 + (

√
1 + λ2 − λ)2/3 − 1

− 1. (A.37)

Proposition A.8 There is a δ > 0 so that for 4 < t < 4+ δ we have for |E | ≤ δ that,

ρt (π − E) − ρt (π) = s1/2

4π
(1 + J )m

(
6E

s3/2

)
+ O

(
min{|E |s−1/2, |E |2/3}

)

(A.38)

and

ρt (π) =
√
3s1/2

4π
(1 + O(s1/2)), (A.39)

and above

J = 6γ1 + 3γ 2
1 − 2γ2 = O(s1/2) (A.40)

where γi are introduced in the proof below.

The asymptotics of m are,

s1/2m

(
6E

s3/2

)
�

{
|E |2
s5/2

, |E | ≤ s3/2

|E |2/3, |E | ≥ s3/2
. (A.41)

From the characterization of �t we see that the function ρt (θ) is monotonic in
[0, π ]. Hence, we conclude the following.
Lemma A.9 Let δ > 0. Then there is a c > 0 so that if either t > 4+ δ and θ ∈ [0, π ]
or t > δ and 0 ≤ θ ≤ �t − δ (where we set �t = π for t ≥ 4) we have,

ρt (θ) ≥ c. (A.42)

If t < δ and 0 ≤ θ < �t − √
tδ1 some δ1 > 0 then there is a c1 depending on δ and

δ1 such that,

ρt (θ) ≥ c1t
−1/2. (A.43)

B Auxilliary Proofs

This appendix collects a few results from calculus and other routine calculations.
Proofs are all deferred to Appendix B of [2].
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810 A. Adhikari, B. Landon

Lemma B.1 For x > 1 we have,

x log(x) ≤ x2 − 1

2
(B.1)

Lemma B.2 Let fμ(z) be a Cauchy transform of a probability measure μ on the unit
circle. Then the function,

r → (r − 1)|Re[ fμ(reiθ )]| (B.2)

is increasing for r > 1.

Lemma B.3 Let ρt (E) be as above and T < 4. There is an ε > 0 so that with
z = rei(�t+κ) with,

0 ≤ r − 1 < ε, 0 < κ < ε (B.3)

we have,

Im[ f̃ (z, t)] − Im[ f̃ (ei�t , t)] ≤ −d
√

κ. (B.4)

for some d > 0, uniformly in 0 < t < T .

B.1 Cusp calculation

In this section we consider general densities on the unit circle ρ(x)dx with support
[−π + �/2, π − �/2] where 0 < � < 1

100 . We assume that ρ is symmetric,
ρ(x) = ρ(−x). Let � = π − �/2 denote the edge. We moreover assume that
there is a C1 > 0 so that

1

C1

√
x ≤ �1/6ρ(� − x) ≤ C1

√
x, 0 < x < � (B.5)

and

1

C1
x1/3 ≤ ρ(� − x) ≤ C1x

1/3,� < x < �. (B.6)

A proof of the following appears in Appendix B.1 of [2].

Proposition B.4 Under the above assumptions there is a 1
2 > c1 > 0 and a d > 0

depending only on C1 > 0 so that the following holds. For z = (1 + η)ei(�+κ) with
0 < η < c1� and 0 < κ < �/2,

Im[ f (z)] − Im[ f (ei�)] ≤ −d�−1/6√κ. (B.7)
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B.2 Extended spectral domain

The following proposition is used in the Proof of Theorem 1.6. It uses only as inputs
Theorems 1.2 and 1.4, and its proof appears in Appendix B.2 of [2].

Proposition B.5 Let c < t < 4 − c for some c > 0. Let ε, δ > 0. In the domain

D1 := {z = (1 + η)eiθ : N δ−1 < η < δ−1} (B.8)

the estimate

| f̃ (z, t) − f (z, t)| ≤ N ε

Nη
(B.9)

holds with overwhelming probability. In the domain,

D2 := {z = (1 + η)eiθ : N δ−1 < η < δ−1,�t + N−2/3+δ < |θ | ≤ π} (B.10)

the estimate

| f̃ (z, t) − f (z, t)| ≤ N ε

N (η + κ)
(B.11)

holds with overwhelming probability.

C Generalˇ

In this section we discuss extensions of our result to general β > 0. In this case, we
consider the N particles all on R,

dθi (t) =
√

2

Nβ
dWi (t) + 1

2N

∑
j 	=i

cot

(
θi (t) − θ j (t)

2

)
dt (C.1)

where θi (0) = 0 for all i and {Wi }i are a family of independent standard Brownian
motions. We leave aside discussion of the existence of solutions to the above system
for now and proceed at a formal level. Setting, λi (t) = eiθi (t), we find

dλi = iλi

√
2

Nβ
dWi − 1

N

∑
j 	=i

λiλ j

λi − λ j
dt − 1

2
λidt + λi (β − 2)

2βN
dt (C.2)

recovering the dynamics (1.6) when β = 2. Letting now,

f (z, t) := 1

N

N∑
i=1

λi + z

λi − z
(C.3)
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812 A. Adhikari, B. Landon

as before we find,

d f (z, t) = − z f (z, t)

2
∂z f (z, t) + dMβ

t (z) + β − 2

2βN

(
z∂z f (z, t) + z2∂2z f (z, t)

)
.

(C.4)

where

dMβ
t (z) = −

√
2

Nβ

N∑
i=1

2izλi (t)

(λi (t) − z)2
dWi (t) (C.5)

In order to extend our main results, Theorems 1.2, 1.4 and 1.6 to the case of general β
we must examine how the equation (C.4) changes when β 	= 2. First, the martingale
Mβ

t (z) can be handled the exactly the same as β = 2 as the quadratic variations are
the same up to constant factors.

What is at first non-obvious is whether or not the last term on the RHS (C.4)
drastically changes the behavior of f or not. Recall that our proof strategy is to
introduce a stopping time τ which is the first time an inequality of the form | f (zt , t)−
f̃ (zt , t)| ≤ N ε�(zt ) is violated along some collection of characteristics, where�(zt )
is some control parameter. In the proof of Theorem 1.2 we take �(z) = 1/Nη (where
we recall the notation η = |z| − 1) and in the other cases �(z) = B(z) with B(z)
defined in (3.29).

In order for our proofs to go through it suffices to check that for t < τ along any
characteristic zt we consider that,

1

N

∫ t

0

(
|∂z f (zs, s)| + |∂2z f (zs, s)|

)
ds ≤ N ε/2�(zt ) � N ε�(zt ). (C.6)

In all three cases (bulk, edge and cusp) we have that along the characteristics we
consider we have N ε�(zt ) ≤ |Re[ f̃ (zt , t)]| (see Lemma 3.6 and Lemma 4.8 for the
edge and cusp cases; the bulk case is obvious, see e.g., (2.17)) and so we may estimate
the integrand on the LHS by

1

N

(
|∂z f (zt , t)| + |∂2z f (zt , t)|

)
≤ C

|Re[ f̃ (zt , t)]|
ηtdist(z,λ)

(C.7)

where λ denotes the set of eigenvalues. For the bulk case, Theorem 1.2, we can use
simply dist(z,λ) ≥ ηt and find that the integral of the RHS of (C.7) is bounded above
by (Nηt )

−1, which is sufficient.
For the edge regime, Theorem 1.4, one can modify appropriately the part of the

proof of Proposition 3.7 that begins with (3.47) and ends with (3.52) to find an estimate
of CN ε/4 log(N )(N (κt + ηt ))

−1 for the integral of the RHS of (C.7) over the time
interval [0, t]. Similarly, in the cusp regime one can modify the part of the proof of
Lemma 4.6 that starts with (4.52) and ends with (4.54) to arrive at the same estimate
as in the cusp case.
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The conclusion is then that formally the arguments of Sects. 2–4 extend to the more
general (C.4) with only minor changes. However, all of this rests on the definition of
notion of solution of (C.1) which we now briefly discuss.

In the work [14], Cépa and Lépingle have developed a solution theory for the
equation (C.1) and various generalizations. In particular they show that for all choices
of β > 0 and all choices of initial data, the equation (C.1) has a unique strong solution.
The caveat is that when β < 1, the particles may collide. In such cases, the work [14]
shows that the local time of collisions is sufficiently small so that, for example, the
cotangent on the RHS (C.1) is a.s. locally integrable. When β ≥ 1, even if the initial
data has coincident particles, there are no collisions for any t > 0 almost surely. We
expect the methods outlined above apply to the processes constructed in [14].

Alternatively, at least in the case β ≥ 1, one can completely avoid discussion of
collisions as follows. First, note that if the particles are initially distinct then one can
construct a unique strong solution in an elementary way following, e.g., Chapter 4.3
of [7], and substituting in the Lyaponuv function used in the proof of Theorem 3.1 of
[14] to rule out collisions.

Suppose now that we consider (C.1) with initial data θε
i = iε where eventually we

take ε → 0. As long as, say, ε ≤ e−N , it should not be much trouble to recover all of
the results of this paper for the θε process, uniformly in e−N ≥ ε > 0.

Convergence of the sample paths θε
i (t) to some limiting set of sample paths may

then be proven using the maximum principle argument of Lemma 2.3 of [30] which
establishes supi,0<t<T |θε

i (t) − θδ
i (t)| ≤ CT supi |θε

i (0) − θδ
i (0)|. The argument of

Lemma 2.3 of [30] goes through for the process (C.1) after usage of the partial fraction
expansion,

π cot(πx) = lim
n→∞

∑
|i |≤n

1

x + i
. (C.8)
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