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Abstract
In the Bayes paradigm, given a loss function and an n-sample, we present the con-
struction of a new type of posterior distribution, that extends the classical Bayes one.
The loss functions we have in mind are either those derived from the total variation
and Hellinger distances or some L j -ones for j > 1. We prove that, with a probability
close to one, this new posterior distribution concentrates its mass in a neighbourhood
(for the chosen loss function) of the law of the data, provided that this law belongs
to the support of the prior or, at least, lies close enough to it. We therefore establish
that the new posterior distribution enjoys some robustness properties with respect to
a possible misspecification of the prior, or more precisely, its support. We also show
that the posterior distribution is stable with respect to the equidistribution assumption
we started from. Besides, when the model is regular and well-specified and one uses
the squared Hellinger loss, we show that our credible regions possess, at least for n
sufficiently large, the same ellipsoidal shapes and approximately the same sizes as
those we would derive from the classical Bayesian posterior distribution by using the
Bernstein–von Mises theorem. Then we use our Bayesian-like approach to solve the
following problems. We first consider the estimation of a location parameter or both
the location and scale parameters of a density in a nonparametric framework. Then
we tackle the problem of estimating a density, with the squared Hellinger loss, in a
high-dimensional parametric model under some sparsity conditions on the parameter.
Importantly, the results established in this paper are nonasymptotic and provide, as
much as possible, bounds with explicit constants.
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1 Introduction

Observe n i.i.d. randomvariables X1, . . . , Xn with values in ameasurable space (E, E)
and assume that their common distribution P� belongs to a family M of candidate
probabilities, or at least lies close enough to it in a suitable sense. We consider the
problem of estimating P� from the observation of X = (X1, . . . , Xn) and we evaluate
the performance of an estimator with values in M by means of a given loss function
� : P × M → R+, where P denotes a set of probabilities containing P�.

Our approach to solve this estimation problem has a Bayesian flavour. We endow
M with a σ -algebra A and a probability measure π that plays the same role as the
prior in the classical Bayes paradigm. Our aim is to design a posterior distribution π̂X ,
solely based on X and the choice of �, that concentrates its mass, with a probability
close to one, on an �-ball, namely a set of the form

B(P�, r) = {

P ∈ M , �(P�, P) ≤ r
}

with r > 0. (1)

This means that with a probability close to 1, a point ̂P which is randomly drawn
according to our (random) distribution π̂X is likely to estimate P� with an accuracy
(with respect to the chosen loss �) not larger than r . Our objective is to design π̂X in
such a way that this concentration property holds for small values of r and under mild
assumptions on P� and M .

In the literature, many authors have studied the concentration properties of the
classical Bayes posterior distribution on Hellinger balls. We refer to the pioneering
papers by van der Vaart and his co-authors—see for example Ghosal, Ghosh and
van der Vaart [19]. They show that the concentration property around P� holds, as
n tends to infinity, provided that the prior π puts enough mass on sets of the form
K(P�, ε) = {P ∈ M , K (P�, P) < ε} where ε is a positive number and K (P�, P)
the Kullback–Leibler divergence between P� and P . This assumption may, however,
be quite restrictive even in the favorable situation where P� belongs to the model
M . Such sets may indeed be empty, and the condition therefore unsatisfied, when
the probabilities in M are not equivalent. This is for example the case when M is
the set of all uniform distributions Pθ on [θ − 1/2, θ + 1/2], with θ ∈ R, although
the problem of estimating P� ∈ M in this setting is quite easy, even in the Bayesian
paradigm. The assumption appears even more restrictive when the probability P�

does not belong to M , that is when the model is misspecified. For example, if the
distributions in M are all equivalent and R is singular with respect to P ∈ M ,
K(P�, ε) is empty for P� = (1 − 10−10)P + 10−10R although P� and P ∈ M are
statistically indistinguishable from any n-sample of realistic size.

Unfortunately, it is in general impossible to get rid of the restrictive conditions
we have mentioned above. It is well known that the Bayes posterior distribution can
be unstable in case of a misspecification of the model. Examples that illustrate this
weakness have been given in Jiang and Tanner [21] and Baraud and Birgé [6] for
instance. This instability is due to the fact that the Bayes posterior distribution is
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based on the log-likelihood function and similar issues are known for the maximum
likelihood estimator.

In order to obtain the concentration and stability properties we look for, we replace
the log-likelihood function by a more stable one. Substituting another function to
the log-likelihood one is not new in the literature and leads to what is called quasi-
posterior distributions. The resulting estimators, called quasi-Bayesian estimators
or Laplace type estimators, have been studied by various statisticians among which
Chernozhukov and Hong [18] and Bissiri et al. [16] (we also refer to the references
therein). These papers, however, do not address the problem of misspecification. In
contrast, it is addressed in Jiang and Tanner [21] for performing variable selection in
the logistic model. The authors show that the classical Bayesian approach is no longer
reliablewhen themodel is slightlymisspecifiedwhile theirGibbs posterior distribution
performs well and offers thus a much safer alternative. The problem of estimating a
high-dimensional parameter θ ∈ R

d under a sparsity condition was considered in
Atchadé [2]. His quasi-posterior distribution is obtained by replacing the joint density
of the data by a more suitable one and by using some specific prior that forces sparsity.
He proves that the so-defined posterior distribution contracts around the true parameter
θ� at rate

√

(s� log d)/n (where s� is the number of nonzero coordinates of θ�) when
both d and n tend to infinity. A common feature of the papers we have cited above
lies in their asymptotic nature. This is not the case for Bhattacharya et al. [8] who
replaced the likelihood function in the expression of the posterior distribution by the
fractional likelihood, that is a suitable power of the likelihood function. The authors
also consider the situation where the model is possibly misspecified but their result
involves the α-divergence which, as the Kullback one, can be infinite even when the
true distribution of the data is close to the model for the total variation distance or the
Hellinger one.

Baraud and Birgé [6] propose a surrogate to the Bayes posterior distribution that is
called the ρ-posterior distribution in reference to the theory of ρ-estimation that was
developed in Baraud et al. [7] and Baraud and Birgé [5]. In the frequentist paradigm,
this theory aimed at solving the various problems connected to the instability of the
maximum likelihood method. The ρ-posterior distribution preserves some of the nice
features of the classical Bayes one but also possesses the robustness property we
are interested in. The authors show that their posterior distribution concentrates on a
Hellinger ball around P� as soon as the prior puts enough mass around a point which
is close enough to P�. However their approach applies to specific dominated models
M = {P = p · μ, p ∈ M} only. They assume that the family M of densities that
defines their model possesses some special combinatorial structure which is either met
whenM is finite or when it satisfies some VC-type condition (see their Section 5). As
a consequence, the concentration radius they obtain not only depends on the choice
of the prior but also on a complexity term that is linked to this structure. Unlike
theirs, our approach makes no such assumptions on M and we are therefore able to
get rid of this unpleasant complexity term while retaining a similar dependency with
respect to the choice of the prior. Baraud and Birgé’s posterior distribution has also
the drawback to involve the supremum over the family M of an empirical process.
Their posterior distribution is therefore difficult to calculate in practice, unless M is
finite with a reasonable size. From a more theoretical point of view, it also raises some
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unpleasant issues with regard to the measurability of this supremum in the situation
where the family M is uncountable, which is the typical case. Finally, Baraud and
Birgé’s approach restricts to the squared Hellinger loss while ours applies to many
others.

Closer to our approach are the aggregation methods and PAC-Bayesian techniques
that have been popularized by Olivier Catoni in statistical learning (see Catoni [17]).
This approach has mainly been applied for the purpose of empirical risk minimization
and statistical learning (see for example Alquier [1]). Our aim is to extend these
techniques toward a versatile tool that can solve our Bayes-like estimation problem
for various loss functions simultaneously.

The problem of designing a good estimator of P� for a given loss function � was
tackled in the frequentist paradigm in Baraud [4]. There, the author provides a general
framework that enables one to deal with various loss functions of interest, among
which the total variation, 1-Wasserstein, Hellinger, and L j -losses among others. His
approach relies on the construction of a suitable family of robust tests and lies in
the line of the former work of Le Cam [22], Birgé [9] and Birgé [11]. The aim of the
present paper is to transpose this theory from the frequentist to the Bayesian paradigm.
If � is the Kullback–Leibler divergence, our construction recovers the classical Bayes
posterior distribution even though this is not the choice we would recommend for the
reasons we have explained before.

Quite surprisingly, the concentration properties thatwe establish here require almost
no assumption onM and the distribution of the data (apart from independence). They
mostly depend on the choices of the prior π and the loss function �. For a suitable
element P which belongs to the modelM and lies close enough to P�, these concen-
tration properties depend on the minimal value of the radius r over which the log-ratio
V (P, r) = log [π(B(P, 2r))/π(B(P, r))] (withB defined in (1)) increases at most
linearlywith r . This log-ratiowas introduced in Birgé [12] for the purpose of analyzing
the behaviour of the classical Bayes posterior distribution. In our Bayes-like paradigm,
we show that the behaviour of the quantities V (P, r) for P ∈ M and r > 0 completely
encapsulates the complexity of the model M . We prove that our posterior distribu-
tion π̂X concentrates on an �-ball centered at P� and the radius r = r(n) of which
is usually of minimax order as n tends to infinity when the model is well-specified.
From a nonasymptotic point of view, we show that π̂X retains its nice concentration
properties as long as P� remains close enough to an element P in M around which
the prior puts enough mass, that is, even in the situation where the model is slightly
misspecified. Actually, we establish the stronger result that even when the data are
only independent but not i.i.d., the above conclusion remains true for the average P

�

of their marginal distributions in place of P�. We therefore show that the posterior
distribution π̂X enjoys some robustness properties with respect to the equidistribution
assumption we started from. The main theorems involve as much as possible explicit
numerical constants. We illustrate our results with examples which are deliberately
chosen to be as general and simple as possible. Our aim is to give a flavour of the
results that can be established with our Bayes-like posterior, avoiding as much as pos-
sible the technicalities that would result from the choice of ad-hoc priors introduced
to solve specific problems. Instead, we wish to discuss the optimality and robustness
properties of our construction for solving general parametric and nonparametric esti-
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mation problems in the density framework under assumptions that we wish to be as
weak as possible. These posterior distributions will therefore provide a benchmark for
comparison with other methods. Their practical implementation will be the subject of
future work.

Of special interest is the choice of � given by the total variation distance or the
Hellinger one. As we shall see, for such losses the stability of our posterior distribution
automatically leads to estimators ̂P ∼ π̂X that are naturally robust to the presence
of outliers or contaminating data among the sample. These results contrast sharply
with the instability of the classical Bayes posterior distribution we underlined earlier.
Nevertheless, our posterior distribution also shares some similarities with the classical
Bayes one. When the model is well-specified and one uses the squared Hellinger loss,
we show that the credible regions of our posterior distribution asymptotically possess
the same ellipsoidal shapes and approximately the same sizes as the ones we derive
from the classical Bayes posterior by means of the Bernstein–von Mises theorem.
Establishing an analogue of this theorem for our Bayes-like posterior distribution is,
however, beyond the scope of the present paper.

Our paper is organized as follows. We present our statistical setting in Sect. 2. We
consider there independent but not necessarily i.i.d. data in order to analyse later
on the behaviour of our posterior distribution with respect to a possible departure
from equidistribution. The construction of the posterior distribution is described in
Sect. 3. In this section, we also show how more classical constructions based on the
likelihood or the fractional likelihoods are particular cases of ours. We complete this
section with some heuristics which, we hope, help understanding the main ideas of
our approach. In particular, we bridge there the problem of designing robust posterior
distributions to that of testing between two disjoint �-balls. Section4 is devoted to
the main theorems. We describe there the concentration properties of our posterior
distribution. The applications of these results to classical loss functions are presented
in Sect. 5. We put a special emphasis on the cases of the total variation distance and the
squared Hellinger loss. In the remaining part of the paper, we only focus on these two
losses. In Sect. 6 we highlight some similarities and differences between the classical
Bayes posterior and ours for the squared Hellinger loss. In Sect. 7 we explain how our
posterior distribution can be used to solve the problem of estimating a density, or a
parameter associated with it, in several statistical frameworks of interest. We discuss
there how the concentration properties of our posterior distribution deteriorate in the
case of a misspecification of the model by the prior. We also consider the problems
of estimating a density in a location-scale family and a high-dimensional parameter
in a parametric model under a sparsity constraint. We also show how our estimation
strategy leads to unusual rates of convergence for estimating a translation parameter in
a non-regular statisticalmodel. In Sect. 8,we provide an evaluation of the concentration
radius of our posterior distributions in the parametric framework. Finally, Sect. 9 is
devoted to the proofs of the main theorems and Sect. 10 to the other proofs.
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2 The statistical setting

Let X = (X1, . . . , Xn) be an n-tuple of independent random variables with values in a
measurable space (E, E) and joint distributionP� = ⊗n

i=1 P
�
i . Even though thismight

not be true, we pretend that the Xi are i.i.d. and our aim is to estimate their (presumed)
common distribution P� from the observation of X . To do so, we introduce a family
M that consists of candidate probabilities (ormerely finite signedmeasures in the case
of the L j -loss). The reason for considering finite signed measures lies in the fact that
statisticians sometimes estimate probability densities by integrable functions that are
not necessarily densities but elements of a suitable linear space for instance (think of
the case of projection estimators). We endowM with a σ -algebraA and a probability
measure π , that we call a prior by analogy to the classical Bayesian framework, and
we refer to the resulting pair (M , π) as our model. The model (M , π) plays here a
similar role as in the classical Bayes paradigm. It encapsulates the a priori information
that the statistician has on P�. Nevertheless, we do not assume that P�, if it ever exists,
belongs to M nor that the true marginals P�i do. We rather assume that the model
(M , π) is approximately correct in the sense that the average distribution

P
� = 1

n

n
∑

i=1

P�i

is close enough to some point P in M around which the prior π puts enough mass.
We assume that P

�
belongs to a given setP of probability measures on (E, E) and we

measure the estimation accuracy bymeans of a loss function � : (M ∪P)×M → R+
which is not identical to 0 in order to avoid trivialities. Even though � may not be a
genuine distance in general, we assume that it shares some similar features and we
interpret it as if it were. For this reason, we call �-ball (or ball for short) centered at
P ∈ P ∪ M with radius r > 0 the subset of M

B(P, r) = {Q ∈ M , �(P, Q) ≤ r} .
Our aim is to built a posterior distribution (or posterior for short) π̂X on (M ,A),
depending on our observation X , which concentrates with a probability close to 1 on
an �-ball of the formB(P

�
, rn) where we wish the value of rn > 0 to be small.

2.1 The special case of parametrizedmodels

In many situations we consider statistical models M = {Pθ , θ ∈ 
} which are
parametrized via a one-to-one mapping θ �→ Pθ . When (
,B, ν) is a measurable
space, we endow M with the σ -algebra A = {A, {θ ∈ 
, Pθ ∈ A} ∈ B}. This
choice possesses several advantages. First, the mapping θ �→ Pθ is measurable from
(
,B) onto (M ,A) and we may therefore define the prior π on (M ,A) as the
image of ν by this mapping. Besides, a function F is measurable on (M ,A) if and
only if the mapping θ �→ F ◦ Pθ is measurable on (
,B). This property makes the
measurability of F easier to check in general. In particular, the mapping F : Pθ �→ θ

is measurable on (M ,A) because θ �→ F ◦ Pθ = θ is measurable on (
,B) and we
may then define a posterior ν̂X on (
,B) as the image by F of our posterior π̂X on
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(M ,A). By definition of ν̂X , for all θ ∈ 
 and r > 0

π̂X (B(Pθ , r)) = ν̂X
({

θ ′ ∈ 
, �(θ, θ ′) ≤ r
})

(2)

where �(θ, θ ′) denotes, slightly abusively, �(Pθ , Pθ ′) for θ, θ ′ ∈ 
. The concentration
of π̂X on an �-ball centered at Pθ with radius r > 0 is then equivalent to the concentra-
tion of ν̂X on the set {θ ′ ∈ 
, �(θ, θ ′) ≤ r}. Every time we consider a parametrized
model, we assume that it is identifiable and implicitly use the construction that we
presented above as well as its consequences.

2.2 Notation and conventions

Throughout this paper, we use the following notation and conventions. For a, b ∈ R,
a∨b and a∧b denote min{a, b} and max{a, b} respectively. For x ∈ R, (x)+ = x ∨0
while (x)− = (−x)∨ 0. The Euclidean spaces R

k with k ≥ 1 are equipped with their
Borel σ -algebras. The cardinality of a set A is denoted |A| and its complement cA. In
particular, for P ∈ P ∪ M and r > 0, cB(P, r) = {Q ∈ M , �(P, Q) > r}. The
elements of R

k with k > 1 are denoted with bold letters, e.g. x = (x1, . . . , xk) and
0 = (0, . . . , 0). For x ∈ R

k , |x|∞ = maxi∈{1,...,k} |xi |while |x| denotes the Euclidean
norm of x. The inner product of R

k is denoted by 〈·, ·〉 and the closed Euclidean ball
centered at x with radius r ≥ 0 by B(x, r). By convention inf∅ = +∞ unless
otherwise specified. We write f ≡ c when a function f is constant and equals c on its
domain. For all suitable functions f on (En, E⊗n),E [ f (X)]means

∫

En f dP�while for
f on (E, E), ES [ f (X)] denotes the integral

∫

E f dS with respect to the measure S on
(E, E). For j ∈ [1,+∞), we denote byL j (E, E, μ), the set ofmeasurable functions f
on (E, E) such that ‖ f ‖ j,μ = [∫E | f | j dμ]1/ j < +∞ while ‖ f ‖∞ = supx∈E | f (x)|
is the supremum norm of a function f on E . If π ′ is a distribution on (M ,A), Q ∼ π ′
means that Q is a random variable with distribution π ′. Finally, all the measures that
we consider are implicitly assumed to be σ -finite.

3 Construction of the posterior distribution

Throughout this section, the model (M , π) is assumed to be fixed.

3.1 The properties of our loss functions

The construction of the posterior not only depends on the priorπ but also on the choice
of the loss function. We first assume that � satisfies some basic properties which are
described below.

Assumption 1 For all S ∈ P ∪ M , the mapping

�(S, ·) : (M ,A) −→ R+
P �−→ �(S, P)
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is measurable.

Under such an assumption, �-balls are measurable and the quantities π(B(P, r)) for
P ∈ P ∪ M and r > 0 are therefore well-defined.

Assumption 2 There exists a positive number τ such that, for all S ∈ P and P, Q ∈
M ,

�(S, Q) ≤ τ [�(S, P)+ �(P, Q)] (3)

�(S, Q) ≥ τ−1�(P, Q)− �(S, P). (4)

When � is a genuine distance, inequalities (3) and (4) are satisfied with τ = 1 since
they correspond to the triangle inequality. When � is the square of a distance, these
inequalities are satisfied with τ = 2.

Importantly, we assume that � is associated with a family T (�,M ) = {

t(P,Q),
(P, Q) ∈ M 2

}

of test statistics on (E, E) which possesses the properties below.
We shall see in Sect. 5 that many classical loss functions (among which the total
variation distance, the squared Hellinger distance, etc.) can be associated with families
T (�,M ) satisfying the following assumptions.

Assumption 3 The elements t(P,Q) of T (�,M ) satisfy:

(i) The mapping

t : (E × M × M , E ⊗ A ⊗ A) −→ R

(x, P, Q) �−→ t(P,Q)(x)

is measurable.
(ii) For all P, Q ∈ M , t(P,Q) = −t(Q,P).
(iii) there exist positive numbers a0, a1 such that, for all S ∈ P and P, Q ∈ M ,

ES
[

t(P,Q)(X)
] ≤ a0�(S, P)− a1�(S, Q). (5)

(iv) For all P, Q ∈ M ,

sup
x∈E

t(P,Q)(x)− inf
x∈E t(P,Q)(x) ≤ 1.

Under assumption (ii), t(P,P) = 0 and we deduce from (5) that (a0 − a1)�(S, P) ≥ 0,
hence that a0 ≥ a1 since � is not constantly equal to 0.

Some families T (�,M ) may satisfy the stronger

Assumption 4 Additionally to Assumption 3, there exists a2 > 0 such that

(iv) for all S ∈ P and P, Q ∈ M ,

VarS
[

t(P,Q)(X)
] ≤ a2 [�(S, P)+ �(S, Q)] .

123



From robust tests to Bayes-like posterior distributions 167

3.2 Construction of the posterior

Let T (�,M ) be a family of test statistics that satisfies our Assumption 3 and let β
and λ be two positive numbers such that

λ = (1 + c)β with c > 0 satisfying c0 = (1 + c)− c(a0/a1) > 0. (6)

We set

T(X, P, Q) =
n
∑

i=1

t(P,Q)(Xi ) for all P, Q ∈ M

and define π̃X (·|P) as the probability on (M ,A) with density

dπ̃X (·|P)
dπ

: Q �→ exp [λT(X, P, Q)]
∫

M exp [λT(X, P, Q)] dπ(Q)
.

Then, for P ∈ M we set

T(X, P) =
∫

M
T(X, P, Q)dπ̃X (Q|P)

=
∫

M
T(X, P, Q)

exp [λT(X, P, Q)]
∫

M exp [λT(X, P, Q)] dπ(Q)
dπ(Q).

Finally, we define π̂X as the posterior distribution on (M ,A) with density

dπ̂X
dπ

: P �→ exp [−βT(X, P)]
∫

M exp [−βT(X, P)] dπ(P) . (7)

Our Assumption 3–(i) ensures that dπ̃X (·|P)/dπ is a measurable function of
(X, P, Q) and dπ̂X/dπ a measurable function of (X, P).

The posterior distribution depends on our choice of β and λ (or equivalently c) even
though we drop this dependency with the notation π̂X .

3.3 Monte Carlo computation of functions of the posterior

Even though we focus on the concentration properties of the posterior π̂X , one may
alternatively be interested in some estimators derived from it. For example, estimators
of the form

I =
∫

M
F(P)dπ̂X (P)

where F is a real-valued π -integrable function on (M ,A). For typical choices of F ,
I gives the expected mean, mode or median of the posterior whenever these quantities

123



168 Y. Baraud

make sense. One may also choose F : P �→ 1P∈B(P0,ε) with P0 ∈ M and ε > 0 in
order to compute the (posterior) probability that �(P0, ̂P) is not larger than ε when
̂P ∼ π̂X .

Interestingly, the integral I canbe approximated byMonteCarlo as follows.Assume
that the prior π admits a density of the form C−1� with respect to a given probability
measure m, where � is a nonnegative m-integrable function on (M ,A) and C =
∫

M �(P)dm(P) > 0 a positive normalizing constant (that will not be involved in
our calculation). Let P1, . . . , PN be an N -sample with distribution m and for each

i ∈ {1, . . . , N },Q(1)i , . . . , Q
(N ′)
i an independent N ′-samplewith the samedistribution.

We may approximate I by

̂IN ,N ′ =
N
∑

i=1

F(Pi )
exp

[−βWi,N ′(Pi )
]

�(Pi )
∑N

i ′=1 exp
[−βWi ′,N ′(Pi ′)

]

�(Pi ′)

where for all i ∈ {1, . . . , N },

Wi,N ′(Pi ) =
N ′
∑

j=1

T (X, Pi , Q
( j)
i )

exp
[

λT (X, Pi , Q
( j)
i )

]

�(Q( j)i )

∑N ′
j ′=1 exp

[

λT (X, Pi , Q
( j ′)
i )

]

�(Q( j
′)

i )
.

It is then easy to check that, by the law of large numbers,

lim
N→+∞

[

lim
N ′→+∞

̂IN ,N ′
]

= I .

3.4 Connection with the classical Bayes posterior distribution

The classical Bayes posterior turns out to be a particular case of the posterior-type ones
introduced in Sect. 3.2. As we shall see now, they are associated with the Kullback–
Leibler divergence loss. We recall that the Kullback–Leibler divergence �(P, Q) =
K (P, Q) between two probabilities P, Q on (E, E) is defined by

K (P, Q) =
⎧

⎨

⎩

∫

E
log

(

dP

dQ

)

dP when P � Q;
+∞ otherwise.

Let us consider now a family M of probabilities that satisfy for some a > 0 and
suitable versions of their densities dQ/dP the following inequalities:

e−a ≤ dP

dQ
(x) ≤ ea for all x ∈ E and P, Q ∈ M . (8)
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It follows from Baraud [4, Proposition 12] that the families of functions

T (�,M ) =
{

t(P,Q) = 1

2a
log

(

dQ

dP

)

, P, Q ∈ M

}

(9)

satisfies our Assumptions 3 and 4 with a0 = a1 = 1/(2a) and a2 = 2a/[tanh(a/2)].
Note that given P, Q ∈ M , P �= Q, the test based on the sign of t(P,Q) is the classical
likelihood ratio test between P and Q.

If we apply the construction described in Sect. 3.2 to the familyT (�,M )we obtain
that for all P, Q, P0 ∈ M ,

T(X, P, Q) = T(X, P0, Q)− T(X, P0, P).

For all λ > 0, the density of π̃X (·|P)

Q �→ exp [λT(X, P, Q)]
∫

M exp [λT(X, P, Q)] dπ(Q)
= exp [λT(X, P0, Q)]

∫

M exp [λT(X, P0, Q)] dπ(Q)

is independent of P and writing π̃X (·) in place of π̃X (·|P) we obtain that

T(X, P) =
∫

M
T(X, P, Q)dπ̃X (Q)

=
∫

M
T(X, P0, Q)dπ̃X (Q)− T(X, P0, P)

= C − 1

2a

n
∑

i=1

log

(

dP

dP0

)

(Xi ) with C =
∫

M
T(X, P0, Q)dπ̃X (Q).

Finally, the density of our posterior π̂X at P ∈ M is given by

dπ̂X
dπ

(P) = exp [−βT(X, P)]
∫

M exp [−βT(X, P)] dπ(P) =
[∏n

i=1(dP/dP0)(Xi )
]β/(2a)

∫

M

[∏n
i=1(dP/dP0)(Xi )

]β/(2a)
dπ(P)

.

This is the density of the classical Bayes posterior when β = 2a while for other values
of β it is that of fractional Bayes ones.

Nevertheless, in the present paper we restrict our study to loss functions that satisfy
some triangle-type inequality – see Assumption 2. This excludes the Kullback–Leibler
divergence unless one is ready tomake strong assumptions on the unknowndistribution
of the data, which we do not want to do here.

3.5 Some heuristics

In this section, we present the basic ideas that underline our approach. In particular, we
shall see how the estimation problem we want to solve is linked to the one of testing
between two disjoint �-ballsB(P, r) and B(Q, r) with P, Q ∈ M .
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In order to avoid unnecessary details, we assume here that we observe i.i.d. data
X1, . . . , Xn with distribution P� ∈ P and that we have at disposal a familyT (�,M )

of functions that satisfies ourAssumption 3. In particular it follows fromAssumption 3-
(iii) that

E

[

T(X, P, Q)
n

]

= 1

n

n
∑

i=1

E
[

t(P,Q)(Xi )
] ≤ a0�(P

�, P)− a1�(P
�, Q).

The antisymmetric property required by Assumption 3-(ii) entails that

T(X, P, Q) = −T(X, Q, P)

and leads to the lower bound

E

[

T(X, P, Q)
n

]

≥ a1�(P
�, P)− a0�(P

�, Q).

Assuming for the sake of simplicity that a0 = a1 = 1, these calculations show that
n−1T(X, P, Q) = n−1∑n

i=1 t(P,Q)(Xi ) is an unbiased and consistent estimator of
�(P�, P)− �(P�, Q). In particular, if the two �-balls B(P, r), B(Q, r) are disjoint
and P� belongs to one of them, the sign of n−1T(X, P, Q) = n−1∑n

i=1 t(P,Q)(Xi )

provides a consistent test for deciding which one contains P�. In fact, the test does not
depend on the value of r and consequently chooses the element among {P, Q} which
is the closest to P� (with respect to �), at least when n is large enough. As compared
to the classical likelihood ratio test between P and Q, this test has the advantage not
to assume that P� is either P or Q but only that it lies in a small enough �-vicinity
around one of these two probabilities. The test is said to be robust with respect to the
model {P, Q}. Its nonasymptotic properties have been studied in Baraud [4].

Let us now explain how such families {T(X, P, Q), (P, Q) ∈ M 2} of test statistics
can be used to build robust estimators andnot only tests. In the frequentist paradigm, the
construction of �-estimators is based on the following heuristics. If, with a probability
close to 1, n−1T(X, P, Q) is close to its expectation �(P�, P)− �(P�, Q) uniformly
with respect to (P, Q) ∈ M 2 then n−1T′(X, P) = supQ∈M

[

n−1T(X, P, Q)
]

is
close to

sup
Q∈M

[

�(P�, P)− �(P�, Q)] = �(P�, P)− inf
Q∈M

�(P�, Q).

We therefore expect that aminimizer overM of the function P ∈ M �→ n−1T′(X, P)
be close to a minimizer over M of the function P ∈ M �→ �(P�, P) −
infQ∈M �(P�, Q), that is an element that minimizes the loss �(P�, P) among the
probabilities P ∈ M .

In the Bayesian paradigm, we may argue in a similar way as follows. Replacing
n−1T(X, P, Q) by its expectation �(P�, P) − �(P�, Q), as we did before, amounts
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to replacing T(X,P) by

T(X,P)

= n
∫

M

(

�(P�, P)− �(P�, Q)) exp
[

nλ (�(P�, P)− �(P�, Q))] dπ(Q)
∫

M exp [nλ (�(P�, P)− �(P�, Q))] dπ(Q)

= n�(P�, P)− n
∫

M
�(P�, Q)

exp
[−nλ�(P�, Q)

]

∫

M exp [−nλ�(P�, Q)] dπ(Q)
dπ(Q).

Note that the second term in the right-hand side does not depend on P . Consequently,
replacing T(X,P) by T(X,P) in the expression (7) of the density of π̂X leads to the
density

P �→ exp
[−βT(X, P)]

∫

M exp
[−βT(X, P)] dπ(P) = exp

[−nβ�(P�, P)
]

∫

M exp [−nβ�(P�, P)] dπ(P)
.

We recognize here the density of a Gibbsmeasure associated with the energy �(P�, P)
at point P ∈ M and inverse temperature nβ > 0. We know that when the temperature
goes to 0 (or equivalently nβ to infinity), Gibbs measures concentrate their masses in
vicinities of low energy points in M . In our case, these low energy points are those
for which �(P�, P) is minimal.

Similar ideas can be found inCatoni’swork andmore specifically in his construction
ofGibbs estimators—seeCatoni [17,Chapter 4]. There,Catoni showshow to aggregate
a continuous family of estimators in order to minimize a risk. In the present paper, we
do not aim at aggregating estimators but we use similar ideas and tools that are due to
Catoni and his co-authors for the construction of our robust posterior distribution.

4 Themain results

4.1 Linking the prior to the complexity of themodel

For P ∈ M and r > 0, we recall that

V (P, r) = log

(

π(B(P, 2r))

π(B(P, r))

)

where we use the convention a/0 = +∞ for all a ≥ 0. We said in the Introduction
that such quantities encapsulate in some sense the complexity of the model (M , π)

and we shall now explain why. IfM = {Pθ , θ ∈ R
k} is a parametric model endowed

with a loss � such that �(θ, θ ′) = ∣

∣θ − θ ′∣
∣, so that (M , �) is isometric to (Rk, |·|), and

if the prior ν on 
 = R
k is improper and given by the Lebesgue measure, we obtain

that for all P ∈ M and r > 0

V (P, r) = log

(

π(B(P, 2r))

π(B(P, r))

)

= log

(

(2r)k

rk

)

= k log 2. (10)
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We observe that V (P, r) corresponds in this case to the usual dimension of R
k (up the

factor log 2). For more general models (M , π) and loss functions �, we may interpret
V (P, r) as some notion of dimension (or complexity) associated with the element
P ∈ M at the scale r > 0. As we do not consider improper priors but probability
distributions, limr→+∞ π(B(P, r)) = 1 and consequently limr→+∞ V (P, r) = 0.
This means that the connection with the notion of “dimension” is only relevant for
values of r which are not too large.

Given γ ∈ (0, 1], the set

R(β, P) =
{

r ≥ 1

nβa1
, such that sup

r ′≥r

V (P, r ′)
r ′ ≤ γ nβa1

}

is the subinterval of R+ on which the mapping r �→ V (P, r) is not larger than
r �→ γ nβa1r . We denote by

rn(β, P) = infR(β, P) (11)

the left endpoint of R(β, P). Since R(β, P) is increasing with β with respect to
set inclusion, rn(β, P) is a nonincreasing function of β. For example, in the ideal
situation given in (10) where V (P, r) ≡ k log 2 with k log 2 ≥ 1, rn(β, P) =
(γ a1)−1[k log 2/(nβ)]. When the model M = {Pθ , θ ∈ 
} is parametric and the
parameter space 
 is an open subset of R

k endowed with a prior ν, we shall see in
Sect. 8.2 that under suitable assumptions rn(β, Pθ ) is indeed of order k/(nβ), at least
for n sufficiently large.

The Bayesian paradigm offers the possibility to favour some elements of M as
compared to others. The order of magnitude of rn(β, P) allows one to quantify how
much the prior π advantages or disadvantages P ∈ M . It follows from the definition
of rn(β, P) that

0 < π (B(P, 2r)) ≤ exp (γ nβa1r) π (B(P, r)) for all r > rn(β, P). (12)

Letting r decrease to rn(β, P), we derive that (12) also holds for r = rn(β, P). In
particular, π (B(P, r)) > 0 for r = rn(β, P). If the prior puts no mass on the �-ball
B(P, r), which clearly corresponds to a situation where the prior disadvantages P ,
rn(β, P) > r and rn(β, P) is therefore large if r is large. In the opposite case, if the
prior puts enough mass onB(P, r) in the sense that

π (B(P, r)) ≥ exp (−γ nβa1r) , (13)

then for all r ′ ≥ r ,

π
(

B(P, r ′)
) ≥ exp (−γ nβa1r) ≥ exp

(−γ nβa1r ′)

≥ exp
(−γ nβa1r ′)π

(

B(P, 2r ′)
)
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hence,

π
(

B(P, 2r ′)
)

π (B(P, r ′))
≤ exp

(

γ nβa1r
′) and rn(β, P) ≤ r .

The quantity rn(β, P) is therefore small if r is small. Although (13) is not equivalent
to (12) (it is actually stronger), the previous arguments provide a partial view on the
relationship between π and rn and conditions to decide whether P is favoured by π
or not, according to the size of rn(β, P).

4.2 A general result on the concentration property of the posterior distribution

According to the discussion of Sect. 4.1, we see that, when the set

M (β) =
{

P ∈ M , rn(β, P) ≤ a−1
1 β

}

(14)

is nonempty, it contains the most favoured elements of the model (M , π) at level
a−1
1 β. Since rn(β, P) is nonincreasing with β, the set M (β) is increasing with β
with respect to set inclusion. If a−1

1 β ≥ (nβa1)−1 or equivalently β ≥ 1/
√
n, the set

M (β) can alternatively be defined from V (P, r) as follows:

M (β) =
{

P ∈ M , V (P, r) ≤ γ nβa1r for all r ≥ a−1
1 β

}

. (15)

This set plays a crucial role in our first result.

Theorem 1 Assume that the model (M , π) and the loss � satisfy Assumptions 1 and 2
and the family T (�,M ) Assumption 3. Let γ < (c0 ∧ c)/(2τ) and β ≥ 1/

√
n

be chosen in such a way that the set M (β) defined by (14) is not empty. Then, the
posterior π̂X defined by (7) possesses the following property. There exists κ0 > 0 only
depending on c, τ, γ and the ratio a0/a1 such that, for all ξ > 0 and any distribution
P� with marginals inP ,

E

[

π̂X

(

cB(P
�
, κ0r)

)]

≤ 2e−ξ (16)

with

r = inf
P∈M (β)

�(P
�
, P)+ 1

a1

(

β + 2ξ

nβ

)

. (17)

In particular,

P

[

π̂X

(

cB(P
�
, κ0r)

)

≥ e−ξ/2] ≤ 2e−ξ/2.
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The value of κ0 is given by (119) in the proof. It only depends on the choice of the
family T (�,M ) but not on the prior π . Hence, for a given family T (�,M ), κ0 is a
numerical constant.

Let us now comment on Theorem 1.When X1, . . . , Xn are truly i.i.d. with distribu-
tion P� and the prior puts enough mass around P�, in the sense that P� ∈ M (β), then
r = a−1

1 [β+2ξ/(nβ)] in (17). When this ideal situation is not met, either because the
data are not identically distributed or because P� does not belong toM (β), r increases
by at most an additive term of order inf P∈M (β) �(P

�
, P). When this approximation

term remains small as compared to a−1
1 β, the value of r does not deteriorate too much

as compared to the previous situation.
The value of r given by (17) depends on the choice of the parameter β. Since the

set M (β) is increasing (with respect to set inclusion) as β gets larger, the two terms
inf P∈M (β) �(P

�
, P) and a−1

1 β vary in opposite directions as β increases. The set

M (β) must be large enough to provide a suitable approximation of P
�
while β must

not be too large in order to keep a−1
1 β to a reasonable size. Practically, we recommend

to choose β = β(α) ≥ 1/
√
n such that

π (M (β)) ≥ 1 − α for α ∈ (0, 1/10). (18)

In Example 1 below and in Sect. 7.1, we give some examples of choices of β.

Example 1 Let (M , π) be a model where the prior π satisfies for some k ≥ 1 and
constants 0 < A ≤ (2/e)B,

(Ar)k ∧ 1 ≤ π (B(P, r)) ≤ (Br)k ∧ 1 for all P ∈ M and r > 0. (19)

This means that the prior π behaves like the Lebesgue measure on an Euclidean space
of dimension k for small enough values of r . Then,

V (P, r) = log
π (B(P, 2r))

π (B(P, r))
≤ k log

(

2B

A

)

for all P ∈ M and r > 0 (20)

which implies that for all P ∈ M

rn(P, β) ≤ k

γ a1nβ
log

(

2B

A

)

. (21)

The right-hand side is not larger than a−1
1 β for

β =
√

k log(2B/A)

γ n
(22)

which is larger than 1/
√
n since (2B/A) ≥ e and γ ∈ (0, 1]. For such a value of

β, which does not depend on the distribution of the data, the element P belongs to
M (β) given by (15), and since P is arbitrary we derive that M (β) = M . Applying
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Theorem 1 we conclude that the distribution π̂X concentrates on an �-ball centered at
P
�
with a radius r of order

rn = inf
P∈M

�(P
�
, P)+ 1

a1

(
√

k

n
+ 2ξ√

nk

)

. (23)

4.3 A refined result under Assumption 4

Let us assume now that the family T (�,M ) satisfies the stronger Assumption 4. We
introduce the mapping

φ : (0,+∞) −→ R+
z �−→ φ(z) = 2 (ez − 1 − z)

z2
.

(24)

The function φ is increasing on (0,+∞) and tends to 1 when z tends to 0. Given
β > 0 and a family T (�,M ) that satisfies Assumption 4, we define

c1 = c0 − βa2a−1
1 τ

2φ [β(1 + 2c)] (1 + 2c(1 + c)); (25)

c2 = c − βa2a−1
1 τ

2φ [β(1 + 2c)] c2; (26)

c3 = (2 + c)− βa2a−1
1 τ

2φ [β(3 + 2c)] (2 + c)2. (27)

Note that the value of c1 ∧ c2 ∧ c3 is positive for β = 0 and decreases continuously
to −∞ when β grows to infinity. Consequently, there exists some β0 > 0 for which
c1 ∧ c2 ∧ c3 = 0 and c1 ∧ c2 ∧ c3 is positive for all values β ∈ (0, β0).

Let us now present our second result on the concentration property of our posterior
π̂X .

Theorem 2 Assume that the model (M , π) and the loss � satisfy Assumptions 1 and 2
and the familyT (�,M ) Assumption 4. For β ∈ (0, β0) and γ < (c1 ∧ c2 ∧ c3)/(2τ),
the posterior π̂X defined by (7) satisfies the following property. There exists κ0 > 0 only
depending on a0/a1, a2/a1, c, τ, β and γ such that, for all ξ > 0 and any distribution
P� with marginals inP ,

E

[

π̂X

(

cB(P
�
, κ0r)

)]

≤ 2e−ξ (28)

with

r = inf
P∈M

[

�(P
�
, P)+ rn(β, P)

]

+ 2ξ

nβa1
. (29)

In particular,

P

[

π̂X

(

cB(P
�
, κ0r)

)

≥ e−ξ/2] ≤ 2e−ξ/2.
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The value of κ0 is given by (132) in the proof. Note that the constraints on β and γ ,
that are required in our Theorem 2, and that on c given in (6) only depend on a0, a1 and
a2, hence on the choice of the family T (�,M ). When a0, a1 and a2 do not depend
on M , the value of β can be chosen as a universal constant. In particular, it neither
depends on the model (M , π) nor on the sample size n.

Example 2 (Example 1 continued) Let us go back to the framework of our Example 1
and assume that T (�,M ) satisfies the requirements of Theorem 2, hence Assump-
tion 4. Applying our construction with some numerical value of β which satisfies the
constraint of our Theorem 2, we deduce from (21) that π̂X concentrates on an �-ball
with radius of order

r = inf
P∈M

�(P
�
, P)+ log(2B/A)

γ a1β

k

n
+ 2

a1β

ξ

n
. (30)

When themodel iswell-specified, inf P∈M �(P
�
, P) = 0 and the ballB(P�, κ0r)with

radius r = r(n) contracts at the rate 1/n. Applying ourTheorem1underAssumption 3,
ignoring the fact that the family T (�,M ) also satisfies Assumption 4, would lead to
the weaker result that when the model is well-specified the posterior concentrates on
an �-ball with radius of order

√
k/n, hence at a rate 1/

√
n, as shown by (23).

4.4 Concentrated priors

Theorem 1 and 2 show that starting from a prior π that puts enough mass around most
of the elements ofM , the posterior π̂X concentrates on an �-ball with radius of order
inf P∈M �(P

�
, P)+ rn where rn is small, at least under suitable assumptions and for

n sufficiently large. The situation we want to investigate now is what happens when
the prior is very concentrated on a small �-ball with radius ε > 0 around an element
Q ∈ M that might not be the true distribution of the data. More precisely, assume the
following

Assumption 5 For Q ∈ M and ε > 0,

π
(cB(Q, ε)

) ≤ e−(2ξ+1)π
(

B(Q, ε)
)

with ξ > 0.

In this case, we establish the following result.

Theorem 3 Assume that the model (M , π) and the loss � satisfy Assumptions 1 and 2
and the familyT (�,M )Assumption 3. If Assumption 5 is satisfied, there exists κ0 > 0
only depending on c, τ and the ratio a0/a1 such that for any distribution P� with
marginals in P ,

E

[

π̂X

(

cB(P
�
, κ0r)

)]

≤ 2e−ξ with r = �(P�, Q) ∨ β

a1
∨ ε. (31)

In particular, for the choice β = a1ε, r = �(P�, Q) ∨ ε.
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If furthermore, Assumption 4 is satisfied and β ∈ (0, β0) (where β0 is defined in
Sect.4.3), there exists κ ′

0 > 0 only depending on τ, β, a0/a1 and a2/a1 such that for
any distribution P� with marginals inP ,

E

[

π̂X

(

cB(P
�
, κ ′

0r)
)]

≤ 2e−ξ with r = �(P�, Q) ∨ ε. (32)

This result shows that for a suitable choice of β, the posterior π̂X also concentrates on
an �-ball centred at P

�
with radius of order ε when the model is well-specified, that

is, when the data are i.i.d. with distribution P
� = Q. When the model is misspecified,

the radius of the ball is of order �(P
�
, Q)∨ ε and therefore does not inflate more than

the distance of P
�
to the center Q. This result illustrates the stability of the posterior

π̂X with respect to misspecification.

5 Applications to classical loss functions

The aim of this section is to show how our general construction can be applied to
loss functions � of interest. The propositions contained in this section about the cor-
responding families T (�,M ) have been established in Baraud [4] except for the
squared Hellinger loss for which we refer to Baraud and Birgé [5, Proposition 3]. The
list of loss functions we present here is not exhaustive. Our results also apply to all
loss functions that derive from a variational formula of the form

�(P, Q) = sup
f ∈F

[∫

E
f d P −

∫

E
f dQ

]

whereF is a suitable class of bounded functions. For such losses, we refer the reader
to Baraud [4].

In this section,we considermodelsM = {P = p·μ, p ∈ M}which are dominated
by a measure μ on (E, E) and we denote by M ⊂ L1(E, E, μ) the corresponding
families of densities with respect to μ. Elements P, Q, . . . in M are associated with
their densities inM by using lower case letters p, q, . . .. In all the cases we consider,
t(P,Q)(x) is a measurable function of (p(x), q(x)) for P, Q ∈ M and x ∈ E . In order
to satisfy our measurability Assumption 3-(i), it is therefore sufficient to assume that

(E × M , E ⊗ A) −→ R

(x, P) �−→ p(x)

is measurable. In the case of a parametrized model M = {Pθ = pθ · μ, θ ∈ 
}, as
described in Sect. 2.1, this condition is satisfied as soon as the mapping

p : (E ×
, E ⊗ B) −→ R+
(x, θ) �−→ pθ (x)

is measurable. Throughout this section, we assume that such measurability assump-
tions are satisfied.
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5.1 The case of the total variation distance

In this section, P is the set of all probability measures on (E, E) and

‖P − Q‖ = 1

2

∫

E
|p − q| dμ (33)

denotes the total variation loss (TV-loss for short) between P, Q ∈ P .

Proposition 1 The family T (�,M ) which consists of all the functions t(P,Q) defined
for P = p · μ and Q = q · μ inM by

t(P,Q) = 1

2

[

1q>p − Q(q > p)
] − 1

2

[

1p>q − P(p > q)
]

(34)

satisfies Assumption 2 with τ = 1 and Assumption 3 with a0 = 3/2 and a1 = 1/2.

It follows from Proposition 1 that we may apply our general construction to the
so-defined family T (�,M ) with the values c = c0 = 1/3 (hence λ = 4/3). The
reader can check that the value γ = 1/100 satisfies the requirement of our Theorem 1
and that (16) is satisfied with κ0 = 220. Theorem 1 can therefore be rephrased as
follows.

Corollary 1 Let β ≥ 1/
√
n, c = 1/3 and π̂TV

X be the posterior defined by (7) and
associated with the family T (�,M ) given in Proposition 1. For all ξ > 0 and any
distribution P�, with a probability at least 1 − 2e−ξ/2, the posterior π̂TV

X satisfies

π̂TV
X

({

P ∈ M , �(P
�
, P) ≤ 220

[

inf
P ′∈M (β)

�(P
�
, P ′)+ 2

(

β + 2ξ

nβ

)]})

≥ 1 − e−ξ/2 (35)

where

M (β) =
{

P ∈ M , sup
r≥2β

[

200

nr
log

(

π (B(P, 2r))

π (B(P, r))

)]

≤ β
}

.

By convexity, we may write that

inf
P∈M (β)

∥

∥

∥P − P
�
∥

∥

∥ ≤ inf
P∈M (β)

[

1

n

n
∑

i=1

∥

∥P − P�i
∥

∥

]

and the left-hand side is therefore small when there exists P ∈ M (β) that approxi-
mates well enough most of the marginals of P�. The concentration properties of π̂TV

X
remain thus stable with respect to a possible misspecification of the model and a
departure from the equidistribution assumption.

In fact, as we shall see in our Example 3 below, the average distribution P
�
may

belong to M (β) even when none of the marginals P�i does. This means that in good
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situations, the posterior may concentrate around P
�
, as it would do in the i.i.d. case

when the distribution of the data does belong to M (β), even when the data are non-
i.i.d. and their marginals do not belong to M (β).

Example 3 (Example 1 continued) Going back to Example 1 and taking for � the
TV-loss (then a1 = 1/2), we deduce from (23) that

rn = inf
P∈M

∥

∥

∥P
� − P

∥

∥

∥ + 2

(
√

k

n
+ 2ξ√

nk

)

.

In particular, if for each i ∈ {1, . . . , n}, P�i is the uniform distribution on [(i −
1)/n, i/n] and M contains the uniform distribution U([0, 1]) on [0, 1], M contains
P
� = U([0, 1]), even if none of the marginals P�i belongs toM . We then get that

rn = 2

(
√

k

n
+ 2ξ√

nk

)

and the posterior concentrates around P
�
at a parametric rate.

5.2 Case of theLj-loss

Let j ∈ (1,+∞). We denote by P j the set of all finite and signed measures on
(E, E, μ) which are of the form P = p ·μwith p ∈ L j (E, μ)∩L1(E, μ). Let � j be
the loss defined by � j (P, Q) = ‖p − q‖μ, j for all P = p · μ and Q = q · μ in P j .
In this section, P is the subset that consists of all the probability measures inP j .

Proposition 2 LetM = {P = p · μ, p ∈ M} be a subset ofP j for whichM satis-
fies for some R > 0

‖p − q‖∞ ≤ R ‖p − q‖μ, j for all p, q ∈ M. (36)

Define for P = p · μ and Q = q · μ inM ,

f(P,Q) = (p − q) j−1
+ − (p − q) j−1

−
‖p − q‖ j−1

μ, j

when P �= Q and f(P,P) = 0.

Then, the familyT (� j ,M )which contains the functions t(P,Q) defined for P, Q ∈ M
by

t(P,Q) = 1

2R j−1

[∫

E
f(P,Q)

dP + dQ

2
− f(P,Q)

]

(37)

satisfies Assumption 2 with τ = 1 and Assumption 3 with a0 = 3/(4R j−1) and
a1 = 1/(4R j−1).
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When j = 2, (36) is typically satisfied whenM is a subset of a linear space enjoying
good connections between the L2(μ) and the supremum norms. Many finite dimen-
sional linear spaces with good approximation properties do satisfy such connections
(e.g. piecewise polynomials of a fixed degree on a regular partition of [0, 1], trigono-
metric polynomials on [0, 1) etc.). We refer the reader to Birgé and Massart [14,
Section 3] for additional examples. The property may also hold for infinite dimen-
sional linear spaces as proven in Baraud [4].

It follows from Proposition 2 that one may choose c = c0 = 1/3 in (6) and
γ = 1/100 in Theorem 1. Besides, Theorem 1 applies with κ0 = 220.

Example 4 (Example 1 continued) Let us go back to our Example 1 with � = � j and
T (�,M ) given in Proposition 2. For the choice of β given in (22) and γ = 1/100, we
deduce from (23) (with a1 = 1/(4R j−1)) that the resulting posterior π̂X concentrates
on an � j -ball around P

�
with a radius of order

rn = inf
p∈M

∥

∥

∥

∥

∥

1

n

n
∑

i=1

p�i − p

∥

∥

∥

∥

∥

μ, j

+ 4R j−1

(
√

k

n
+ 2ξ√

nk

)

.

5.3 The case of the squared Hellinger loss

Here, P is the set of all probability measures on (E, E) and

�(P, Q) = h2(P, Q) = 1

2

∫

E

(√
p − √

q
)2

dμ, (38)

is the squared Hellinger distance between two probabilities P, Q ∈ P .

Proposition 3 Let ψ be the function defined by

ψ : [0,+∞] −→ [−1, 1]

x �−→
⎧

⎨

⎩

x − 1

x + 1
if x ∈ [0,+∞)

1 if x = +∞.

The family T (�,M ) containing the functions t(P,Q) defined for P = p · μ and
Q = q · μ inM by

t(P,Q) = 1

2
ψ

(√

q

p

)

(39)

(with the conventions 0/0 = 1 and x/0 = +∞ for all x > 0) satisfies Assumption 2
with τ = 2 and Assumption 4 with a0 = 2, a1 = 3/16, a2 = 3

√
2/4.

With such a choice of family T (�,M ), (6) is satisfied with c = 1/125, then
c0 ∈ [0.922, 0.923], and the requirements of Theorem 2 are satisfied with β = 2γ =
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1/500. Then the value κ0 = 1694 suits. The definition (11) of rn(β, P) for P ∈ M
becomes

rn(β, P)

= inf

{

r ≥ 8000

3n
,
π
(

B(P, 2r ′)
)

π (B(P, r ′))
≤ exp

(

3nr ′

8.106

)

for all r ′ ≥ r

}

, (40)

with the convention sup∅ = 8000/(3n). Theorem 2 can then be rephrased as follows.

Corollary 2 Let πh
X be the posterior defined by (7) and associated with the family

T (�,M ) given in Proposition 3 and the choices c = 1/125 and β = 1/500. For all
ξ > 0 and any distribution P�, with a probability at least 1 − 2e−ξ/2,

π̂h
X

({

P ∈ M , h2
(

P
�
, P

)

≤ 1694r
})

≥ 1 − e−ξ/2

where

r = inf
P∈M

[

h2
(

P
�
, P

)

+ rn(β, P)
]

+ 5334ξ

n

and rn(β, P) is given by (40).

As for the total variation distance, we may write that

inf
P∈M

h2
(

P
�
, P

)

≤ inf
P∈M

[

1

n

n
∑

i=1

h2
(

P�i , P
)

]

.

The left-hand side is small when there exists an element P ∈ M that approximates
well most of the marginal distribution P�i . If for such a P , the quantity rn(β, P) is

small enough, the posterior concentrates around P
�
just as it would do if the data were

truly i.i.d. with distribution P ∈ M .

Example 5 (Example 1 continued) Let us go back to Example 1, more precisely Exam-
ple 2, with � = h2 and T (�,M ) given in Proposition 3. Inequality (21) is satisfied
with β = 2γ = 1/500 and a1 = 3/16. It follows from (30) that π̂h

X concentrates on
an h2-ball around P

�
with a radius of order

r = inf
P∈M

h2
(

P
�
, P

)

+ k + ξ
n
.

6 Comparing the classical Bayesian approach to ours

In this section, our aim is to highlight some similarities and differences between
the Bayesian posterior and ours. Throughout this section, we consider the squared
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Hellinger loss � = h2 and denote by π̂K
X the Bayes posterior associated with the

model (M , π). The letter K in the notation π̂K
X refers to the fact that the Bayesian

posterior can be obtained from our general construction by using the Kullback–Leibler
divergence as explained in Sect. 3.4. When M = {Pθ , θ ∈ 
} is parametric with

 ⊂ R

k , we denote by ν̂KX the Bayesian posterior on the parameter space 
 and ν̂hX
that associated to π̂h

X .

6.1 Some classical concentration results for the Bayes posterior distribution

Most of the results that have been established about the concentration properties of the
Bayesian posterior are asymptotic in nature. It seems difficult to establish a general
nonasymptotic version of those as we do for our posterior. One of the only exceptions
we are aware of is Birgé [13].

When the data are i.i.d. with a distribution P� ∈ M , a typical asymptotic form
of these results is the following one (see Ghosal et al. [19] Theorems 2.1 and 2.4 for
example). Let εn be a sequence of positive numbers that converges to zero when n
goes to infinity. If P� fulfils some suitable conditions, that we shall discuss later on
and which depend on the prior π and εn , the following convergence in probability
holds true

π̂K
X ({P ∈ M , h2(P�, P) ≥ Mnε

2
n}) P−→

n→+∞ 0 under P�. (41)

In (41), Mn = M denotes some large enough positive constant if nε2n → +∞ as
n → +∞ while Mn is increasing to infinity as n → +∞ if lim inf nε2n > 0 as
n → +∞. The first condition on εn is typically satisfied whenM is a nonparametric
model while the second one generally applies to parametric ones.

In comparison, in this well-specified framework, our Corollary 2 leads to the fol-
lowing result. For all P� ∈ M and ξ > 0

P

[

π̂h
X

({

P ∈ M , h2(P�, P) ≥ κ ′
0

(

rn(β, P
�)+ ξ

n

)})

≥ e−ξ/2
]

≤ 2e−ξ/2 (42)

for some numerical constant κ ′
0 > 0. If P� satisfies rn(β, P�) ≤ ε2n , we recover (41)

by setting ξ = ξn = (Mn/(κ
′
0)− 1)nε2n . However, our condition that rn(β, P�) ≤ ε2n

is not equivalent to that imposed on P� by Ghosal, Ghosh and van der Vaart [19]. It is
actually weaker. In their paper, this condition is fulfilled when the prior puts enough
mass on Kullback–Leibler type balls around P�. Our approach allows one to consider
Hellinger balls only, which are larger and make our assumption weaker. In fact, as
already underlined in the Introduction, these Kullback–Leibler type balls could be
empty, and the condition unsatisfied, while our theorem would still apply.

The result established by Birgé [13] provides an improvement as compared to
the one presented above and established by Ghosal, Ghosh and van der Vaart. Birgé
shows that it is essentially possible to get rid of the Kullback–Leibler divergence (see
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his Theorem 2) but only when the model is parametric and well-specified. Apart for
the nonparametric framework, this result leaves little place for improvement since we
know that the Bayesian posterior may fail to concentrate around the true parameter
when the model becomes slightly ill-specified.

Another consequence of our Corollary 2, as compared to (41), is that it allows one
to control

π̂h
X

({

P ∈ M , h2(P�, P) ≥ κ ′
0

(

ε2n + ξ

n

)})

uniformly over the set {P� ∈ M , rn(β, P�) ≤ ε2n}. For example, in the framework
of Example 2, for the choice ε2n = ck/n with c = log(2B/A)/(γ a1β), we know that
rn(β, P�) ≤ ε2n for all P� ∈ M and we deduce from (42) that

sup
P�∈M

P

[

π̂h
X

({

P ∈ M , h2(P�, P) ≥ κ ′
0

(

ε2n + ξ

n

)})

≥ e−ξ/2
]

≤ 2e−ξ/2.

The concentration properties of our posterior is therefore uniform over the statistical
model M .

6.2 About the shapes and sizes of the credible regions

A nice feature of the Bayesian approach lies in the fact that it allows one to build
credible regions. In practice, they often play the same role as the confidence regions
in the frequentist paradigm. When the data are i.i.d. with distribution P� = Pθ� in
a parametric model M = {Pθ , θ ∈ 
}, 
 ⊂ R

k , a credible set for the parameter
θ� is a subset ̂
n,X ⊂ 
 (only depending on observable quantities) that satisfies
ν̂KX (

̂
n,X ) ≥ 1 − e−ξ for some choice of ξ > 0. When M is a regular parametric
model with a nonsingular Fisher information matrix J, and provided that it satisfies
additional assumptions—see van der Vaart [24]—the Bernstein–von Mises theorem
applies and tells us that

∥

∥

∥̂ν
K
X − N

(

̂θn, (nJ(θ�))−1
)∥

∥

∥

P−→
n→+∞ 0 under Pθ�

wherêθn denotes the Maximum Likelihood Estimator (MLE for short). Denoting by
χ−1
k (ξ) the (1 − e−ξ )-quantile of a chi-square random variable with k degrees of

freedom and


n,X =
{

θ ∈ 
, n
∣

∣

∣J1/2(θ�)
(

̂θn − θ
)

∣

∣

∣

2 ≤ χ−1
k (ξ)

}

, (43)

we deduce that

∣

∣

∣̂ν
K
X

(


n,X
) − (1 − e−ξ )

∣

∣

∣ ≤
∥

∥

∥̂ν
K
X − N

(

̂θn, (nJ(θ�))−1
)∥

∥

∥

P−→
n→+∞ 0
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hence

ν̂KX
(


n,X
) P−→

n→+∞ 1 − e−ξ under Pθ� .

The asymptotic level of “credibility” of the set 
n,X is therefore 1 − e−ξ . This set is
not, however, a genuine credible region since it depends on the unknown parameter
θ�. We would obtain a genuine credible region by replacing θ� bŷθn in the expression
of 
n,X . This substitution would change the level of credibility but not the shape of
the region, which is an ellipsoid centred at̂θn and the axes of which are given by the
eigenvectors of the Fisher information matrix.

The aim of this section is to show that our posterior concentrates its mass on regions
that have the same shape and approximately the same size. The size of
n,X is deter-
mined by the value of the quantileχ−1

k (ξ). The aimof the following lemma is to specify
the order of magnitude of this quantile as a function of k and ξ . In fact, we consider
below the more general case of the quantiles of a gamma distribution γ (s, σ ) with
parameters s, σ > 0, that is, the distribution with density x �→ (xs−1e−s/σ )/(σ s�(s))
with respect to the Lebesgue measure on R+. The proof is postponed to Sect. 10.1.

Lemma 1 For s, σ, ξ > 0, let γ−1
s,σ (ξ) be the (1 − e−ξ )-quantile of the gamma distri-

bution γ (s, σ ) and �
−1
(ξ) that of a standard Gaussian random variable. Then,

γ−1
s,σ (ξ) ≤ σ

(√
s + √

ξ
)2

(44)

and for all s = t + 1 > 1 and ξ ≥ log 2 + 1/(12t),

γ−1
s,σ (ξ) ≥ σ

[

t +
[√

t �
−1

(

ξ − 1

12t

)]

∨
[

ξ + log

(

e−1/(12t)

√
2π t

)]]

. (45)

Since �
−1
(ξ) is equivalent to

√
2ξ for large values of ξ > 0, these two inequali-

ties show that for s and ξ large enough, γ−1
s,σ (ξ) is of order σ [s + ξ ]. In particular,

χ−1
k (ξ) = γ−1

k/2,2(ξ) is of order k + ξ for k and ξ large enough.
To compare ourselves with the classical Bayesian paradigm, we prove in Sect. 10.2

the result below for our posterior. This result is based on the assumption that the statis-
ticalmodelM is regular in the sense that is defined in Ibragimov andHas’minskiı̆ [20].
In order to avoid toomany technicalities here, we refer the reader to our Sect. 8.3, more
precisely Corollary 4, for a complete description of the assumptions on the statistical
model M .

Theorem 4 Assume that the statistical model M satisfies the assumptions of Corol-
lary 4. If X1, . . . , Xn are i.i.d. with distribution Pθ� ∈ M , for all ξ > 0 and n large
enough, with a probability 1 − 2e−ξ ,

ν̂hX

({

θ ∈ 
, n
∣

∣

∣J1/2(θ�)
(

θ − θ�
)

∣

∣

∣

2 ≤ κ� (k + ξ)
})

≥ 1 − e−ξ (46)
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where κ� is a positive numerical constant.

The set

{

θ ∈ 
, n
∣

∣

∣J1/2(θ�)
(

θ − θ�
)

∣

∣

∣

2 ≤ κ� (k + ξ)
}

possesses the same shape and, by Lemma 1, approximately the same size as the set

n,X defined by (43). We deduce from Theorem 4 that the classical Bayes posterior
and ours concentrate both on similar sets. If̂θn is an asymptotically efficient estimator
of θ�, it is therefore reasonable to look for a credible region of the form

{

θ ∈ 
, n
∣

∣

∣J1/2(̂θn)
(

θ −̂θn
)

∣

∣

∣

2 ≤ t

}

, t > 0

for ν̂hX as we would do for the classical Bayes one.

6.3 Robustness

As already mentioned, our approach allows the statistician to design robust posteriors
by choosing as a loss function the squared Hellinger loss or the total variation one. In
this section, we illustrate this property on a concrete example. Consider the statistical
model M = {Pθ = N(θ, 1), θ ∈ R} and the prior π associated with the distribution
ν = N(0, 1) on 
 = R. Then, the Bayes posterior on 
 is ν̂KX = N(m̂n, σ

2
n ) with

m̂n = (n + 1)−1∑n
i=1 Xi and σ 2n = 1/(n + 1). It concentrates on intervals of the

form [m̂n − c/
√
n + 1, m̂n + c/

√
n + 1] for c > 0 large enough. If the distribution of

the data is contaminated so that X1, . . . , Xn are i.i.d. with distribution

P� =
(

1 − 1

n

)

P0 + 1

n
N
(

104(n + 1), 1/n
)

,

then with a probability at least 1 − (1 − 1/n)n ≥ 1 − 1/e > 63%, the posterior
concentrates around m̂n ≈ 104, hence far away from 0, even though P� and P0 are
close: ‖P� − P0‖ ≤ 1/n.

In this specific framework, the modelM is regular, the Fisher information is con-
stant and positive, ν admits a positive density which is continuous at θ� = 0 and for all
θ, θ ′ ∈ 
, h2(θ, θ ′) = 1−e−|θ−θ ′|2/8.We shall see in Sect. 8, more precisely in Corol-
lary 4, that for such regular statistical models rn(β, P0) ≤ κ�/n for some numerical
constant κ� > 0, at least for n large enough. Since h2(P�, P0) ≤ ‖P� − P0‖ ≤ 1/n,
we deduce from Corollary 2 that the posterior ν̂hX concentrates on a set of the form

{

θ ∈ R, h2(θ, 0) ≤ c

n

}

=
{

θ ∈ R, |θ | ≤
√

8 log

(

1

1 − c/n

)

}
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with c > 0. This set is an interval around 0 of approximate length 1/
√
n, at least for

n sufficiently large. Despite the contamination of the data, the concentration property
of ν̂hX remains thus the same as in the well-specified case.

7 Applications

7.1 How to chooseˇ in Theorem 1 for a translationmodel?

In this section, we consider the translation model M = {Pθ = p(· − θ) · μ, θ ∈ R}
where p is a density on R with respect to the Lebesgue measure μ. Our aim is to
estimate the translation parameter θ by using a prior νσ on 
 = R with a density
(with respect to μ) of the form q(·/σ)/σ for some density q and positive number σ .
We evaluate the estimation error by means of the total variation loss. In order to use
our construction we need to tune the parameter β. In Sect. 4.2, we suggested to choose
β ≥ 1/

√
n satisfying (18). In order to find such a value of β = β(α), we may proceed

as follows. Consider a symmetric bounded interval I = [−l/2, l/2] ⊂ R of length
l > 0 satisfying νσ (I ) ≥ 1−α, hence concentrating most of the mass of the prior νσ .
If the set M (β) is large enough to contain {Pθ , θ ∈ I },

π (M (β)) ≥ π ({Pθ , θ ∈ I }) = νσ (I ) ≥ 1 − α (47)

and β satisfies (18). We deduce from our Corollary 1 that the corresponding posterior
π̂TV
X concentrates with a probability at least 1 − 2e−ξ/2 on a TV-ball with a radius of

order

inf
P ′∈M (β)

�(P
�
, P ′)+ 2

(

β + 2ξ

nβ

)

≤ inf
θ∈I �(P

�
, Pθ )+ 2β + 4ξ√

n
= r(β). (48)

The approximation term infθ∈I �(P
�
, Pθ ) is small as soon as P

�
is close enough to

a distribution Pθ� whose parameter θ� belongs to I . If we want to prevent us from
the situation where argminθ∈
�(P

�
, Pθ ) is far from 0, we need to increase I (or

equivalently diminish α). What would be the consequence on the value of β = β(α)?
What if we increase σ , to make the prior distribution flatter, or diminish σ to make it
more picky? Finally, what is the influence of the choice of the density q on the size of
β?

These are the questions we want to answer in this section. In order to simplify the
presentation of our results and avoid technicalities, we make the change of variables
l = 2σ t , or equivalently t = l/(2σ) > 0, and assume the following.

Assumption 6 The density q is positive, symmetric and decreasing on R+. There
exists some nonnegative and nondecreasing function ϕ : [0, 1)→ R+ such that

‖P0 − Pθ‖ ≤ r ⇐⇒ |θ | ≤ ϕ(r) for all r ∈ [0, 1).
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When p is symmetric and nonincreasing on R+, the total variation distance between
P0 and Pθ is given by

‖P0 − Pθ‖ = 2P0 ([0, |θ |/2]) for all θ ∈ R.

Our Assumption 6 is then satisfied with ϕ(r) = F−1
0 [(r + 1)/2] for all r ∈ [0, 1),

where F−1
0 denotes the quantile function of the distribution P0. We set

� = max

{[

sup
0<r≤1/4

ϕ(2r)

ϕ(r)

]

q(0),
1

2ϕ(1/4)

}

(49)

and assume that this quantity is finite. Note that it only depends on q(0) and p. For
example, if p is the density x �→ (1/2)e−|x |,

‖P0 − Pθ‖ = 1 − exp [−|θ |/2] and ϕ : r �→ −2 log(1 − r).

Since the mapping r �→ [ϕ(2r)/ϕ(r)] is increasing, we obtain in this case

� = 1

log(4/3)
max

{

q(0) log 2,
1

4

}

.

If now p : x �→ (s/2)(1 − |x |)s−11|x |<1 with s > 0,

‖P0 − Pθ‖ = 1 − (1 − |θ |/2)s and ϕ : r �→ 2[1 − (1 − r)1/s].

The mapping r �→ ϕ(2r)/ϕ(r) has a continuous extension on [0, 1/4] and is therefore
bounded. Given q(0), � is therefore a finite number.

The following result is proven in Sect. 10.3.

Proposition 4 Assume that Assumption 6 is satisfied and� is finite. Let t be a (1−α/2)-
quantile of q with α ≤ 1/2. The set M (β) contains the subset {Pθ , θ ∈ [−σ t, σ t]}
and therefore satisfies (47) if

β ≥ β =
√

√

√

√

1

nγ
max

{

log

(

� (σ ∨ 1)

q(2t)

)

, log 4

}

. (50)

Let us now comment on this result. The quantity β may be written as C/
√
n with

C =
√

√

√

√

1

γ
max

{

log

(

� (σ ∨ 1)

q(2t)

)

, log 4

}

.

Increasing the value of σ or that of t enlarges the interval I = [−σ t, σ t]. It also
makes the value of C = C(σ, t) larger. Increasing σ makes the prior νσ flatter and for
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a fixed value of t > 0, C = C(σ ) increases as
√
log σ when σ is larger than 1. In the

other case, for a fixed value of σ ,C = C(t) increases as
√

log(1/q(2t)). For example,
when q is the density of a standard Gaussian random variable,

√

log(1/q(2t)) is of
order t , while for the Laplace and the Cauchy distributions it is of order

√
t and

√
log t

respectively. This result illustrates the fact that it is safer to use priors with heavy
tails when the size of the location parameter is uncertain. In case of a light-tailed
prior, it may be wise to introduce a scaling parameter σ > 1. By taking σ = 10, the
concentration radius only increases by a factor less than 1.6, while the interval I is ten
times longer.

7.2 Fast rates

We go back to the statistical framework described in Sect. 7.1 and consider the special
case of the density p : x �→ sxs−11(0,1] with s ∈ (0, 1]. As before, we choose the
TV-loss. In this specific situation,

‖Pθ − Pθ ′ ‖ = ∣

∣θ − θ ′∣
∣

s ∧ 1 for all θ, θ ′ ∈ R (51)

and consequently, ϕ(r) = r1/s for all r ∈ [0, 1). Besides, the family T (�,M ) given
by (34) satisfies not only Assumption 3 but also Assumption 4 with a2 = 1. These
two facts are proven in Baraud [4, Examples 5 and 6]. As a consequence, Theorem 2
applies. The reader can check that the constants c = β = 0.1 and γ = 0.01 satisfy
the requirements of Theorem 2 and that its conclusion holds true with κ0 = 144.

In order to be more specific about the concentration radius of our posterior π̂TV
X , the

following proposition provides an upper bound for the quantity rn(β, Pθ ). The proof
is postponed to Sect. 10.4.

Proposition 5 Let t0 be the third quartile of ν1. If the density q is positive, symmetric
and decreasing on [0,+∞), for all θ ∈ R the quantity rn(β, Pθ ) is not larger than

rn(β, Pθ ) = 2000

n
max

⎧

⎨

⎩

log

⎛

⎝

� (σ ∨ 1)

q
[

2
( |θ |
σ

∨ t0
)]

⎞

⎠ , log 4

⎫

⎬

⎭

. (52)

Then, our Theorem 2 tells us that for all ξ > 0, with a probability at least 1− 2e−ξ/2,
the posterior satisfies

π̂TV
X

(

B(P
�
, 144r)

)

≥ 1 − e−ξ/2

with

r ≤ inf
θ∈R

[∥

∥

∥P
� − Pθ

∥

∥

∥ + rn(β, Pθ )
]

+ 40ξ

n
. (53)
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When the data are i.i.d. with distribution Pθ� , with probability close to 1, a randomized
estimator P̂θ with distribution π̂

TV
X satisfies with high probability

∣

∣θ� −̂θ
∣

∣

s ∧ 1 = ∥

∥Pθ� − P̂θ
∥

∥ ≤ C(ξ, s, q, θ�, σ )

n
.

This inequality implies, at least for n large enough, that

∣

∣θ� −̂θ
∣

∣ ≤ C1/s(ξ, s, q, θ�, σ )

n1/s
,

which means that the parameter θ� is estimated at rate n−1/s . This rate is much faster
than the usual (1/

√
n)-parametric one that is reached by an estimator based on a

moment method for instance. For example, when s = 1/3 and n = 100, a moment
estimator provides an accuracy of order 10−1 while that of ̂θ is of order 10−6. Since
p is unbounded, note that the maximum likelihood estimator for θ� does not exist and
is therefore useless.

It follows from the work of Le Cam that in a translation model M of the form
{Pθ = p(·−θ) ·μ, θ ∈ R}, where p is a density with respect to the Lebesgue measure
μ, it is impossible to estimate a distribution P� ∈ M from an n-sample at a rate
faster than 1/n for the TV-loss. Because of (51), the rate we get is not only optimal for
estimating the distribution Pθ� but also for estimating the parameter θ� with respect
to the Euclidean distance.

An alternative rate-optimal estimator for estimating θ� is that given by the min-
imum of the observations. This estimator is unfortunately obviously non-robust to
the presence of an outlier among the sample. Our construction provides an estimator
which possesses the property of being both rate-optimal and robust.

It also interesting to see how the quantity rn(β, Pθ ) given in (52) deteriorates under
a misspecification of the prior νσ , that is, when the size of the parameter θ� is large
compared to σ . When q is Gaussian, rn(β, Pθ�) increases by a factor of order (θ�/σ )2

while for the Laplace and Cauchy distributions it is of order |θ�|/σ and log(|θ�|/σ)
respectively. From these results, we conclude as before that the Cauchy distribution
possesses some advantages over the other two distributions when little information is
available on the location of the parameter θ�.

7.3 A general result under entropy

In this section, we equip E = R
k with the Lebesgue measure μ and the norm |·|∞.

We consider the TV-loss and the location-scale family

M =
{

P(p,m,σ ) = 1

σ k
p

( · − m
σ

)

· μ, p ∈ M0, m ∈ R
k, σ > 0

}

, (54)

where M0 is a set of densities on R
k . Given independent observations X1, . . . , Xn

with presumed distribution P� = P(p�,m�,σ �) ∈ M , our aim is to estimate the density
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p� ∈ M0, the location parameter m� ∈ R
k and the scale parameter σ� > 0, hence

the parameter θ� = (p�,m�, σ �) ∈ 
 = M0 × R
k × (0,+∞). We assume that the

set of densities M0 satisfies the following conditions.

Assumption 7 Let ˜D be a continuous nonincreasing mapping from (0,+∞) to
[1,+∞) such that limη→+∞ η−2

˜D(η) = 0. For all η > 0, there exists a finite subset
M0[η] ⊂ M0 satisfying

|M0[η]| ≤ exp
[

˜D(η)
]

(55)

such that for all p ∈ M0, there exists p ∈ M0[η] that satisfies
∥

∥P(p,0,1) − P(p,0,1)
∥

∥ = 1

2

∫

R
k
|p − p| dμ ≤ η. (56)

Besides, we assume that there exist A, s > 0 such that for all p ∈ M0, m ∈ R
k and

σ ≥ 1,

∥

∥P(p,0,1) − P(p,m,σ )
∥

∥ ≤
[

A

(

(∣

∣

∣

m
σ

∣

∣

∣∞

)s +
(

1 − 1

σ

)s)]
∧

1. (57)

The first part ofAssumption 7,which corresponds to inequalities (55) and (56), aims
atmeasuring the size of the setM0 bymeans of its entropy.The entropyof a set controls
its metric dimension and usually determines the minimax rate of convergence over it
as shown in Birgé [9]. With the second part of Assumption 7, namely inequality (57),
we require some regularity properties of the TV-loss with respect to the location and
scale parameters. It will be commented on later. We shall see that this condition may
be satisfied even when the densities in M0 are not smooth.

Let us now turn to the choice of our prior. We first consider a countable subset of
the parameter space 
 that will be proven to possess good approximation properties.
Namely, we define for η, δ > 0


[η, δ] =
{(

p, (1 + δ) j0δj, (1 + δ) j0
)

, (p, j0, j) ∈ M0[η] × Z × Z
k
}

and we associate a positive weight Lθ with any element θ = θ(p, j0, j) ∈ 
[η, δ] as
follows

Lθ = (k + 1)L + log |M0[η]| + 2
k
∑

i=0

log(1 + | ji |) (58)

with L = log
[

(π2/3)− 1
]

. It is not difficult to check that
∑

θ∈
[η,δ] e−Lθ = 1, and
we may therefore endow M with the (discrete) prior π defined as

π({Pθ }) = e−Lθ for all θ ∈ 
[η, δ]. (59)
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With such a prior, our posterior π̂TV
X given in Corollary 1 possesses the following

properties.

Corollary 3 Let ξ > 0 K > 1. Assume that M0 satisfies Assumption 7 and define

η = ηn = inf Dn with Dn =
{

η > 0, ˜D(η) ≤ nη2

24

}

(60)

δ = δn =
( ηn

2A

)1/s
, (61)

β = βn = 1

2

[

Kηn + 2

√

18.6(k + 1)

n

]

(62)

and the subset Mn(K ) of M that consists of the elements P(p,m,σ ) for which

| log σ | ∨
∣

∣

∣

m
σ

∣

∣

∣∞
≤ �n = exp

[

(K 2 − 1)nη2n
48(k + 1)

+ log log(1 + δn)
]

. (63)

Then, the posterior π̂TV
X satisfies the following property: there exists a numerical

constant κ ′
0 > 0 such that for all ξ > 0,

E

[

π̂X

(

cB(P
�
, κ ′

0rn)
)]

≤ 2e−ξ (64)

with

rn = inf
P∈Mn(K )

�(P
�
, P)+ Kηn +

√

k + 1

n
+ ξ√

n(k + 1)
∧ ξ

Knηn
. (65)

Let us now comment on this result. The radius rn is the sum of three main terms,
omitting the dependency with respect to ξ . The first one, inf P∈Mn(K ) �(P

�
, P), cor-

responds to the approximation of P
�
by an element of M whose location and scale

parameters satisfy the constraints given in (63). The quantity ηn , involved in the second
term, usually corresponds to the minimax rate for solely estimating a density p ∈ M0
from an n-sample. Finally, the third term

√
(k + 1)/n corresponds to the rate wewould

get for solely estimating the location and translation parameters (m, σ ) ∈ R
k+1 when

the density p is known.
Let us now provide some examples for which our condition (57) is satisfied. We

start with an example where the densities in M0 are smooth.

Lemma 2 Assume that the setM0 consists of densities p that are supported on [0, 1]k ,
satisfy supp∈M0

‖p‖∞ ≤ L0 and

sup
p∈M0

∣

∣p(x)− p(x′)
∣

∣ ≤ L1
∣

∣x − x′∣
∣

s
for all x, x′ ∈ R

k, (66)

with constants L0, L1 > 0 and s ∈ (0, 1]. Then (57) is satisfied with A = L1 ∨ [(1+
L1ks/2 + L0)/2].
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Nevertheless, condition (57) may also be satisfied for families M0 of densities
which are not smooth, as shown in Lemma 3 below. It makes it possible to consider
the following example.

Example 6 We consider here the situation where k = 1 and M0 is the set of all
nonincreasing densities on [0, 1] that are bounded by B > 1. Then,M consists of all
the probabilities whose densities are supported on intervals I with positive lengths,
nonincreasing on I and which are bounded by B/μ(I ). Birman and Solomjak [15]
proved that M0 satisfies Assumption 7 with ˜D(η) of order (1/η) ∨ 1 (up to some
constant that depends on B). We deduce from (60) that ηn is therefore of order n−1/3.
Besides, it follows from Lemma 3 below that (57) is satisfied with A = B and s = 1.
We may therefore apply Corollary 3. For a value of K large enough compared to 1,
�n defined by (63) is larger than exp

[

CK 2n1/3
]

for some constant C > 0 (depending
on A). In particular, if X1, . . . , Xn are i.i.d. with a density of the form

x �→ p�(x) = 1

σ�
p

(

x − m�

σ �

)

where p ∈ M0, |m�/σ �| ≤ exp
[

CK 2n1/3
]

and

exp
[

− exp
[

CK 2n1/3
]]

≤ σ� ≤ exp
[

exp
[

CK 2n1/3
]]

,

(64) is satisfied with rn of order C ′n−1/3 where the constant C ′ > 0 only depends
on ξ, K , B but not on m� and σ�. This means that the concentration properties of π̂X
hold true uniformly over a huge range of translation and scale parameters m and σ
when n is large enough.

Lemma 3 Let p be a nonincreasing density on (0,+∞). For all σ ≥ 1

1

2

∫

R

∣

∣

∣

∣

1

σ
p
( x

σ

)

− p(x)

∣

∣

∣

∣

dx ≤
(

1 − 1

σ

)

. (67)

If, furthermore, p is bounded by B ≥ 1, for all m ∈ R,

1

2

∫

R

|p(x)− p(x − m)| dx ≤ (|m|B) ∧ 1. (68)

In particular, for all m ∈ R and σ ≥ 1,

1

2

∫

R

∣

∣

∣

∣

1

σ
p

(

x − m

σ

)

− p(x)

∣

∣

∣

∣

dx ≤
[

B
∣

∣

∣

m

σ

∣

∣

∣ +
(

1 − 1

σ

)]

∧ 1. (69)

7.4 Estimating a parameter under sparsity

Let us consider a parametric dominated model M = {

Pθ = pθ · μ, θ ∈ R
k} where

the dimension k of the parameters is large. We presume, even though this might not
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be true, that the data are i.i.d. with distribution Pθ� ∈ M and that the coordinates of
the true parameter θ� = (θ�1 , . . . , θ�k ) are all zero except for a small number of them.
Our aim is to estimate Pθ� from the observation of X1, . . . , Xn by using the squared
Hellinger loss.

To tackle this problem, we partition the modelM into the sub-models {Mm, m ⊂
{1, . . . , k}} where Mm consists of those distributions Pθ ∈ M for which the coordi-
nates of θ = (θ1, . . . , θk) are all zero except those with an index i ∈ m. We denote
by 
m the set of such parameters, so that Mm = {Pθ , θ ∈ 
m}, and we use the
conventions 
∅ = {0} and M∅ = {P0}. Given some positive number R > 0, we
equip each parameter space
m , m ⊂ {1, . . . , k}, with the uniform distribution νm on

m(R) = [−R, R]k ∩
m when m �= ∅ and the Dirac mass ν∅ = δ0 at 0 ∈ R

k when
m = ∅. We may then define on R

k = ⋃

m⊂{1,...,k}
m , the hierarchical prior

ν =
∑

m⊂{1,...,k}
e−Lmνm with Lm = |m| log k + k log

(

1 + 1

k

)

. (70)

We endowM with the σ -algebra and the prior π as described in Sect. 2.1. Besides,
we assume that there exists s ∈ (0, 1] and a positive number Bk = Bk(R), possibly
depending on k and R (although we drop the dependency with respect to R), such that

h2
(

Pθ , Pθ ′
) ≤ Bk

∣

∣θ − θ ′∣
∣

s
∞ for all θ , θ ′ ∈ [−R, R]k . (71)

The following result is proven in Sect. 10.8.

Proposition 6 Assume that

p : E × R
k −→ R+

(x, θ) �−→ pθ (x)

is measurable. If RB1/s
k ≥ 1 there exists a numerical constant κ ′

0 > 0 such that for
any distribution P� and ξ > 0

E

[

π̂h
X

(

cB(P
�
, κ ′

0r)
)]

≤ 2e−ξ

where

r = inf
m⊂{1,...,k}

[

inf
θ∈
m (R)

�(P
�
, Pθ )+ |m| log (2kR(nBk)

1/s
) + ξ

n

]

. (72)

Let us now comment on this result. First of all, the mapping

R �→ sup

{

h2
(

Pθ , Pθ ′
)

∣

∣θ − θ ′∣
∣

s
∞
, θ �= θ,′ θ , θ ′ ∈ [−R, R]k

}
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being nondecreasing, our condition RB1/s
k = R[Bk(R)]1/s ≥ 1 is always satisfied for

a value of R sufficiently large.
When Bk does not increase faster than a power of k, the radius r given in (72) only

depends logarithmically on the dimension k of the parameter space, as expected.
Let us now illustrate Proposition 6 by choosing some specific models M =

{Pθ , θ ∈ R
k}. If Pθ is the Gaussian distribution with mean θ ∈ R

k and covariance
matrix σ 2 Ik , where Ik denotes the k × k identity matrix,

h2(Pθ , Pθ ′) = 1 − exp

[

−
∣

∣θ − θ ′∣
∣

2

8σ 2

]

≤
∣

∣θ − θ ′∣
∣

2

8σ 2
≤ k

∣

∣θ − θ ′∣
∣

2
∞

8σ 2
.

Then, inequality (71) is satisfied with Bk = k/(8σ 2) and s = 2. In particular, our
condition RB1/s

k ≥ 1 is equivalent to R ≥ 2σ
√
(2/k). In this case, the value of r

given by (72) is of order

inf
m⊂{1,...,k}

[

inf
θ∈
m (R)

�(P
�
, Pθ )+ |m| log (knR/σ)+ ξ

n

]

.

More generally, ifM = {Pθ , θ ∈ R
k} is a regular statistical model with a nonsingular

Fisher informationmatrixJ(θ) for all θ ∈ R
k ,weknowfrom thebookof Ibragimovand

Has’minskiı̆ [20, Theorem7.1, p. 81] that for all θ , θ ′ ∈ R
k such that θ , θ ′ ∈ [−R, R]k

h2(Pθ , Pθ ′) ≤
∣

∣θ − θ ′∣
∣

2

8
sup

θ ′′∈R
k ,|θ ′′|∞≤R

tr
(

J(θ ′′)
)

.

Then, Assumption (71) holds with s = 2 and we may take

Bk = k2

8
sup

θ ′′∈R
k ,|θ ′′|∞≤R

�
(

J(θ ′′)
)

where �
(

J(θ ′′)
)

denotes the largest eigenvalue of the matrix J(θ ′′). This value is
independent of θ ′′ when M is a translation model.

Finally note that the second term in (72) only increases logarithmically with respect
to R, at least when Bk = Bk(R) does not increase faster than a power of R. By taking
larger values of R one may therefore considerably enlarge the sizes of the cubes

m(R), and therefore diminish the approximation term in (72), while only slightly
increasing the second term [|m| log(2kR(nBk)

1/s)+ ξ ]/n.

8 Some tools for evaluating rn(ˇ,P)

The aim of this section is to provide somemathematical results that allow one to bound
the quantity rn(β, P) from above, or at least evaluate its order of magnitude, when n is
sufficiently large. Throughout this section, we consider a parametric statistical model
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M = {Pθ , θ ∈ 
} where the parameter space 
 ⊂ R
k is endowed with a prior ν

which admits a density q with respect to the Lebesgue measure on R
k . In order to

use the definition (11) of the quantity rn(β, P), we assume that we have at disposal a
family T (�,M ) that satisfies our Assumption 3, which provides us with a value of
a1 > 0, as well as a value γ that satisfy the requirements of our main theorems. Our
aim is to bound rn(β, P) as a function of a1, γ, β, k and n under suitable assumptions
on the density q and the behaviour of the loss �. Once � and T (�,M ) are given,
a1 and γ can be considered as fixed numerical constants. The value of β can also
be considered as a numerical constant when Theorem 2 applies. Otherwise, it can be
chosen of order

√
k/n as in our Example 1.

8.1 Bounding rn(ˇ, P�) in parametric models

Inwhat follows, |·|∗ denotes somearbitrary normonR
k andB∗(x, z) the corresponding

closed ball centered at x ∈ R
k with radius z ≥ 0.

Assumption 8 Let θ� be an element of 
 ⊂ R
k .

(i) There exist positive numbers a, a and s such that

a
∣

∣θ − θ�
∣

∣

s
∗ ≤ �(θ , θ�) ≤ a

∣

∣θ − θ�
∣

∣

s
∗ for all θ ∈ 
. (73)

(ii) There exists a positive nonincreasing function υθ on R+ such that

ν(B∗(θ�, 2x)) ≤ υθ� (x)ν(B∗(θ�, x)) for all x > 0. (74)

Under Assumption 8-(i), the loss function behaves like a power of a norm between
the parameters.

The following result is an extension of Proposition 10 in Baraud and Birgé [6]. It
was established there for the special case of the squared Hellinger loss and we provide
here an extension to an arbitrary one. Since the proof follows the same lines, we omit
it.

Proposition 7 Under Assumption 8,

rn(β, Pθ� ) ≤ inf

{

r ≥ 1

nβa1
, r ≥ �0 log

[

υθ�
([r/a]1/s)]

γ nβa1

}

(75)

with �0 = 1 + log(2a/a)/[s log 2]. If υθ� ≡ υ > 0, then

rn(β, Pθ� ) ≤ (�0 log υ) ∨ 1

a1nγβ
. (76)

If Assumption 8-(i) is satisfied and if the parameter space
 is convex and q satisfies

b ≤ q(θ) ≤ b for all θ ∈ 
 with 0 < b ≤ b, (77)
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then Assumption 8-(ii) holds with υθ� ≡ 2k(b/b). Consequently,

rn(β, Pθ� ) ≤ �1

a1γ

k

nβ
with �1 =

[

�0 log
(

2
[

b/b
]1/k

)]

∨ 1. (78)

When Assumption 8-(i) is satisfied and ν admits a density which is bounded away
from 0 and infinity on a convex parameter space 
 ⊂ R

k , rn(β, Pθ ) is of order
k/(nβ) for all θ ∈ 
. This result may also hold true when the density is not bounded
away from infinity as shown in the following example. If k = 1, 
 = [−1, 1] and
q : θ �→ (t/2)|θ |t−11[−1,1](θ) with t ∈ (0, 1), Assumption 8-(ii) holds with υθ ≡
21+t

(

2t − 1
)−1 for all θ ∈ [−1, 1]—see Baraud and Birgé [6, Proposition 11]. Then

(76) still applies. In the other direction,when the densityq takes very small values in the
neighbourhood of the parameter θ , the functionυθ may take large values around 0. This
is for example the case when q is proportional to θ �→ exp

[−1/
(

2|θ |t)]1[−1,1](θ),
t > 0, and θ = 0. It follows from Baraud and Birgé [6, Proposition 12] (and its proof)
that Assumption 8-(ii) is satisfied with υθ : x �→ exp(c(t)/xt ) for some quantity
c(t) > 0. Applying (75) leads to an upper bound on rn(β, Pθ ) of order (nβ)−s/(s+t).

8.2 Some asymptotic order of magnitude

In Sect. 8.2, we have given some general tools for controlling the quantity rn(β, Pθ )

for a given value of n. In this section, we present some sufficient conditions under
which rn(β, Pθ ) is of order k/(nβ) at least when n is large enough. These conditions
are not the weakest possible ones but they have the advantage to be relatively easy to
check on many examples.

Assumption 9 The density q is continuous and positive at θ� ∈ 
. The loss function
� satisfies the following properties for some positive number s > 0 and a norm |·|∗ on
R
k .

(i) For all ε > 0, there exists z = z(ε) > 0 such that

(1 − ε) ∣∣θ − θ�
∣

∣

s
∗ ≤ �(θ, θ�) ≤ (1 + ε) ∣∣θ − θ�

∣

∣

s
∗ for all θ ∈ B∗(θ�, z).

(ii) There exists a subset K ⊂ 
, the interior of which contains θ�, that satisfies for
some positive numbers aK and η:

aK
∣

∣θ − θ�
∣

∣

s
∗ ≤ �(θ, θ�) for θ ∈ K and for θ /∈ K �(θ, θ�) ≥ η > 0. (79)

Under these assumptions, we establish the following proposition, the proof of which
is postponed to Sect. 10.10.

Proposition 8 Under Assumption 9, at least for n sufficiently large,

rn (β, Pθ� ) ≤ (1 + 1/s)

a1γ

k

nβ
. (80)
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8.3 The case of the squared Hellinger loss on a regular statistical model

Of particular interest is the situation where the statistical model M = {Pθ , θ ∈ 
},

 ⊂ R

k , is regular. There exist several ways of defining a regular model in statistics
and we adopt here the definition of Ibragimov and Has’minskiı̆ [20].

Definition 1 Let μ be a measure on (E, E) and
 an open subset of R
k . The statistical

model M = {Pθ = pθ · μ, θ ∈ 
} is said to be regular if the family of functions
{ζθ = √

pθ , θ ∈ 
} ⊂ L2(E, E, μ) satisfies the following properties.

(i) For μ-almost all x ∈ E , θ �→ ζθ (x) is continuous.
(ii) For all θ ∈ 
, there exists ζ̇ θ = (ζ̇θ ,1, . . . , ζ̇θ ,k) : E → R

k such that

∫

E

∣

∣ζ̇ θ (x)
∣

∣

2
dμ(x) < +∞

and
∫

E

∣

∣ζθ+ε(x)− ζθ (x)− 〈ζ̇ θ (x), ε〉
∣

∣

2
dμ(x) = o(|ε|2) when |ε| → 0.

(iii) For all i ∈ {1, . . . , k}, the mapping θ �→ ζ̇θ ,i is continuous inL2(E, E, μ).
When the model is regular, the matrix

J(θ) =
(

4
∫

E
ζ̇θ ,i (x)ζ̇θ , j (x)dμ(x)

)

1≤i≤k
1≤ j≤k

,

is called the Fisher information matrix.

The matrix J(θ) is symmetric and nonnegative and we may therefore consider its
square root J1/2(θ), that is, the symmetric (k × k)-nonnegative matrix that satisfies
J1/2(θ)J1/2(θ) = J(θ).

Regular statistical models enjoy nice metric properties that are described in Propo-
sition 9 below. For a proof we refer the reader to Ibragimov and Has’minskiı̆ [20]—
Lemma 7.1 page 65, Theorem 7.6 page 81 and its proof.

Proposition 9 Let 
 be an open subset of R
k and θ� ∈ 
. If M = {Pθ = pθ ·

μ, θ ∈ 
} is regular and the Fisher information matrix J(θ�) nonsingular at θ� ∈ 
,
Assumption 9-(i) is satisfied with � = h2, s = 2 and for the norm |·|∗ defined by

|x|∗ = 1√
8

∣

∣

∣J1/2(θ�)x
∣

∣

∣ for all x ∈ R
k . (81)

Besides, for any compact subsetK ⊂ 
 there exist positive numbers aK, aK such that

aK
∣

∣θ − θ�
∣

∣

2
∗ ≤ h2

(

θ , θ�
) ≤ aK

∣

∣θ − θ�
∣

∣

2
∗ for all θ ∈ K. (82)
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Using Proposition 8, we immediately infer the following result.

Corollary 4 Let
 be an open subset of R
k . Assume thatM = {Pθ = pθ ·μ, θ ∈ 
}

is regular and the Fisher information matrix J(θ�) nonsingular at θ� ∈ 
 ⊂ R
k .

Assume that there exists a compact set K ⊂ 
, containing θ� in its interior, such that
h(θ, θ�) ≥ η > 0 for all θ /∈ K. Assume furthermore that the density q is continuous
and positive at θ�. Then, rn(β, Pθ� ) ≤ [3/(2a1γβ)](k/n), at least for n sufficiently
large.

9 Proofs of Theorems 1, 2 and 3

Throughout this proof we fix some Q ∈ M , r , β > 0 and use the following notation:
c1 = 1 + c, c2 = 2 + c,

V(π, Q) = {

r > 0, π
(

B(Q, r)
)

> 0
}

and for r ∈ V(π, Q), B = B(Q, r) and πB = [π(B)]−1 1B · π .

9.1 Main parts of the proofs of Theorems 1 and 2

Throughout the proofs of these two theorems we fix some positive number z, that will
be chosen later on, r ≥ rn(β, Q) and set

A =
{∫

M
exp [−βT(X, P)] dπ(P) > z

}

.

It follows from the definition (7) of π̂X that for all J ∈ N

E

[

π̂X

(

cB(Q, 2J r)
)]

= E

[

π̂X

(

cB(Q, 2J r)
)

1cA

]

+ E

[

π̂X

(

cB(Q, 2J r)
)

1A

]

≤ P(cA)+ 1

z
E

[∫

cB(Q,2J r)
exp [−βT(X, P)] dπ(P)

]

= P(cA)+ 1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P).
(83)

In a first step, we prove that for some well chosen values of β, z, r and for J large
enough, each of the two terms in the right-hand side of (83) is not larger than e−ξ . To
achieve this goal, we bound the first term of the right-hand side of (83) by applying
Markov’s inequality

P(cA) = P

[∫

M
exp [−βT(X, P)] dπ(P) ≤ z

]

= P

[

[∫

M
exp [−βT(X, P)] dπ(P)

]−1

≥ z−1

]
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≤ zE

[

1
∫

M exp [−βT(X, P)] dπ(P)
]

and then by using Lemma 6, we obtain that

P(cA) ≤ z

π2(B)

[∫

B2
exp [−L(P, Q)] dπB(P)dπB(Q)

]−1

. (84)

We therefore have a control of P(cA) by choosing z small enough. We bound the
second term of (83) by using Lemma 5.

We then finish the proofs of Theorems 1 and 2 as follows. In the context of Theo-
rem 1, we finally establish that for a suitable value of J and all Q ∈ M (β),

E

[

π̂X

(

cB(Q, 2J r)
)]

≤ 2e−ξ with r = r(Q) = �(P�, Q)+ a−1
1

(

β + 2ξ

nβ

)

.

By (3),B(Q, 2J r) ⊂ B(P
�
, τ�(P

�
, Q)+τ2J r) for all Q ∈ M (β), and consequently

E

[

π̂X

(

cB(P
�
, r
)]

≤ 2e−ξ with

r = r(Q) = τ
[

�(P
�
, Q)+ 2J r

]

= τ
[

(1 + 2J )�(P
�
, Q)+ 2J a−1

1

(

β + 2ξ

nβ

)]

.

We obtain (16) bymonotone convergence, taking a sequence (QN )N≥0 ⊂ M (β) such
that �(P

�
, QN ) is nonincreasing to inf P∈M (β) �(P

�
, P), so that

lim
N→+∞ r(QN ) = τ

[

(1 + 2J ) inf
Q∈M (β)

�(P
�
, Q)+ 2J a−1

1

(

β + 2ξ

nβ

)

]

≤ τ(1 + 2J )

[

inf
Q∈M (β)

�(P
�
, Q)+ a−1

1

(

β + 2ξ

nβ

)

]

and (16) holds provided that κ0 ≥ τ(2J + 1).
In the context of Theorem 2, we show that for some suitable value of J and all

Q ∈ M ,

E

[

π̂X

(

cB(Q, 2J r)
)]

≤ 2e−ξ with r = �(P�, Q)+ rn(Q, β)+ 2ξ

nβa1
,

and we get (28) by arguing similarly.
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9.2 Preliminary results

In the proofs of Theorems 1 and 2, we use the following consequence of our Assump-
tion 3. We may write

1

n

n
∑

i=1

E
[

t(P,Q)(Xi )
] = ES

[

t(P,Q)(X)
]

with S = P
� = 1

n

n
∑

i=1

P�i ∈ P

and we deduce from (5) that for all P, Q ∈ M ,

1

n

n
∑

i=1

E
[

t(P,Q)(Xi )
] ≤ a0�(P

�
, P)− a1�(P

�
, Q). (85)

Besides, using the antisymmetry property (ii) we also obtain that

1

n

n
∑

i=1

E
[

t(P,Q)(Xi )
] ≥ a1�(P

�
, P)− a0�(P

�
, Q). (86)

For the proof of Theorems 2, we additionnally use the following consequence of
our Assumption 4. By taking S = P

�
and using the convexity of the mapping u �→ u2,

we deduce that for all P, Q ∈ M

1

n

n
∑

i=1

Var
[

t(P,Q)(Xi )
] = ES

[

t2(P,Q)(X)
]

− 1

n

n
∑

i=1

(

E
[

t(P,Q)(Xi )
])2

≤ ES

[

t2(P,Q)(X)
]

− (

ES
[

t(P,Q)(X)
])2

= VarS
[

t(P,Q)(X)
]

and it follows then from Assumption 4 (iv) that for all P, Q ∈ M

1

n

n
∑

i=1

Var
[

t(P,Q)(Xi )
] ≤ a2

[

�(P
�
, P)+ �(P�, Q)

]

. (87)

The proofs of our main results rely on the following lemmas.

Lemma 4 Let (U , V ) be a pair of random variables with values in a product space
(E×F, E⊗F) andmarginal distributions PU and PV respectively. For all measurable
function h on (E × F, E ⊗ F),

EU

[

1

EV
[

exp [−h(U , V )]
]

]

≤
[

EV

[

1

EU
[

exp [h(U , V )]
]

]]−1

.

This lemma is proven in Audibert and Catoni [3, Lemma 4.2, p. 28].
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Lemma 5 For P, Q ∈ M , we set

M(P, Q) = log

[∫

M
E
[

exp
[

β
(

cT(X, P, Q′)− c1T(X, P, Q)
)]

dπ(Q′)
]

]

.

For all r ∈ V(π, Q) and P ∈ M ,

E
[

exp [−βT(X, P)]] ≤ 1

π(B)

[∫

B
exp [−M(P, Q)] dπB(Q)

]−1

. (88)

Proof Let r ∈ V(π, Q). For P, Q ∈ M , we set

I (X, P, Q) = c1βT(X, P, Q)− log
∫

M
exp

[

cβT(X, P, Q′)
]

dπ(Q′).

Then,

E
[

exp [−I (X, P, Q)]
]

= E

[

exp

[

−c1βT(X, P, Q)+ log
∫

M
exp

[

cβT(X, P, Q′)
]

dπ(Q′)
]]

= E

[∫

M
exp

[

cβT(X, P, Q′)− c1βT(X, P, Q)
]

dπ(Q′)
]

= exp [M(P, Q)] . (89)

Since λ = c1β = (1 + c)β, it follows from the convexity of the exponential that

E
[

exp [−βT(X, P)]] = E

[

exp

[∫

M
[−βT(X, P, Q)]dπ̃X (Q|P)

]]

≤ E

[∫

M
exp [−βT(X, P, Q)] dπ̃X (Q|P)

]

= E

[
∫

M exp [cβT(X, P, Q)] dπ(Q)
∫

M exp [c1βT(X, P, Q)] dπ(Q)

]

≤ E

[
∫

M exp [cβT(X, P, Q)] dπ(Q)
∫

B exp [c1βT(X, P, Q)] dπ(Q)

]

.

Hence,

E
[

exp [−βT(X, P)]] ≤ E

[

1
∫

B exp [I (X, P, Q)] dπ(Q)

]

= 1

π(B)
E

[

1
∫

B exp [I (X, P, Q)] dπB(Q)

]

.

123



202 Y. Baraud

Applying Lemma 4 with U = X , V = Q with distribution πB , and h(U , V ) =
−I (X, P, Q), we obtain that

E
[

exp [−βT(X, P)]] ≤ 1

π(B)

[

∫

B

1

E
[

exp [−I (X, P, Q)]
]dπB(Q)

]−1

and (88) follows from (89). ��
Lemma 6 For P, Q ∈ M , we set

L(P, Q) = log
∫

M
E
[

exp
[

β
(

c2T(X, P, Q′)− c1T(X, P, Q)
)]]

dπ(Q′).

For all r ∈ V(π, Q),

E

[

1
∫

M exp [−βT(X, P)] dπ(P)
]

≤ 1

π2(B)

[∫

B2
exp [−L(P, Q)] dπB(P)dπB(Q)

]−1

.

Proof For P, Q ∈ M , we set

H(X, P, Q) = βc1T(X, P, Q)− log

[∫

M
exp

[

c2βT(X, P, Q′)
]

dπ(Q′)
]

.

Then,

E
[

exp [−H(X, P, Q)]
]

= E

[

exp [−βc1T(X, P, Q)]
∫

M
exp

[

c2βT(X, P, Q′)
]

dπ(Q′)
]

= E

[∫

M
exp

[

β
(

c2T(X, P, Q′)− c1T(X, P, Q)
)]

dπ(Q′)
]

= exp [L(P, Q)] . (90)

It follows from the convexity of the exponential and the fact that λ = c1β that for
all P ∈ M ,

E
[

exp [βT(X, P)]
] = E

[

exp

[∫

M
[βT(X, P, Q)]dπ̃X (Q|P)

]]

≤ E

[∫

M
exp [βT(X, P, Q)] dπ̃X (Q|P)

]

= E

[
∫

M exp [c2βT(X, P, Q)] dπ(Q)
∫

M exp [c1βT(X, P, Q)] dπ(Q)

]
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= E

[

1
∫

M exp [H(X, P, Q)] dπ(Q)

]

.

Applying Lemma 4 with U = X , V = Q with distribution π , and h(U , V ) =
−H(X, P, Q) we obtain that

E
[

exp [βT(X, P)]
] ≤

[

∫

M

1

E
[

exp [−H(X, P, Q)]
]dπ(Q)

]−1

.

We deduce from (90) that for all P ∈ M

E
[

exp [βT(X, P)]
] ≤

[∫

M
exp [−L(P, Q)] dπ(Q)

]−1

≤ 1

π(B)

[∫

B
exp [−L(P, Q)] dπB(Q)

]−1

. (91)

Applying Lemma 4 with U = X , V = P with distribution π and h(U , V ) =
βT(X, P), gives

E

[

1
∫

M exp [−βT(X, P)] dπ(P)
]

≤
[

∫

M

1

E
[

exp [βT(X, P)]
]dπ(P)

]−1

≤ 1

π(B)

[

∫

B

1

E
[

exp [βT(X, P)]
]dπB(P)

]−1

which together with (91) leads to the result. ��
The proofs of Theorems 1 and 2 rely on suitable bounds on the Laplace transforms

of sums of independent random variables and on a summation lemma. These results
are presented below.

Lemma 7 For all β ∈ R and random variable U with values in an interval of length
l ∈ (0,+∞),

logE
[

exp [βU ]
] ≤ βE [U ] + β2l2

8
. (92)

Lemma 8 Let U be a squared integrable random variable not larger than b > 0. For
all β > 0,

logE
[

exp [βU ]
] ≤ βE [U ] + β2E

[

U 2
] φ(βb)

2
, (93)

where φ is defined by (24).
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The proofs of Lemmas 7 and 8 can be found on pages 21 and 23 inMassart [23] (where
our function φ is defined as twice his).

Lemma 9 Let J ∈ N, γ > 0 and Q ∈ M . If r satisfies nβa1r ≥ 1 and (12), for all
γ0 > 2γ

∫

cB(Q,2J r)
exp

[−γ0nβa1�(Q, P)
]

dπ(P)

≤ π (B) exp
[

�− (γ0 − 2γ ) nβa12
J r
]

(94)

with

� = −γ + log

[

1

1 − exp
[− (γ0 − 2γ )

]

]

Besides,

∫

M
exp

[−γ0nβa1�(Q, P)
]

dπ(P) ≤ π(B) exp [�′] (95)

with

�′ = log

[

1 + exp
[− (γ0 − γ )]

1 − exp
[− (γ0 − 2γ )

]

]

.

Proof From (12), we deduce by induction that for all j ≥ 0

π
(

B(Q, 2 j+1r)
)

≤ exp

⎡

⎣γ nβa1r
j

∑

k=0

2k

⎤

⎦π (B)

= exp
[

(2 j+1 − 1)γ nβa1r
]

π (B)

Consequently,

∫

cB(Q,2J r)
exp

[−γ0nβa1�(Q, P)
]

dπ(P)

=
∑

j≥J

∫

B(Q,2 j+1r)\B(Q,2 j r)
exp

[−γ0βna1�(Q, P)
]

dπ(P)

≤ π (B)
∑

j≥J

π
(

B(Q, 2 j+1r)
)

π (B)
exp

[

−γ0nβa12 j r
]

≤ π (B)
∑

j≥J

exp
[

γ nβa1(2
j+1 − 1)r − γ0nβa12 j r

]
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= π (B) exp [−γ nβa1r
]
∑

j≥J

exp
[

− (γ0 − 2γ ) nβa12
j r
]

= π (B) exp [−γ nβa1r
]
∑

j≥0

exp
[

− (γ0 − 2γ ) nβa12
j2J r

]

.

Since 2 j ≥ j + 1 for all j ≥ 0 we obtain that

∫

cB (Q,2J r)
exp

[−γ0nβa1�(Q, P)
]

dπ(P)

≤ π (B) exp [−γ nβa1r
]
∑

j≥0

exp
[

− (γ0 − 2γ ) nβa1( j + 1)2J r
]

≤ π (B) exp
[

−γ nβa1r − (γ0 − 2γ ) nβa12
J r
]
∑

j≥0

exp
[

− j (γ0 − 2γ ) nβa12
J r
]

= π (B) exp
[−γ nβa1r

]

1 − exp
[− (γ0 − 2γ ) nβa12J r

] exp
[

− (γ0 − 2γ ) nβa12
J r
]

.

which leads to (94) since nβa12J r ≥ nβa1r ≥ 1. Finally, by applying this inequality
with J = 0 we obtain that

∫

M
exp

[−γ0βna1�(Q, P)
]

dπ(P)

=
∫

B
exp

[−γ0βna1�(Q, P)
]

dπ(P)+
∫

cB
exp

[−γ0βna1�(Q, P)
]

dπ(P)

≤ π(B)
[

1 + exp
[−γ − (γ0 − 2γ ) nβa1r

]

1 − exp
[− (γ0 − 2γ )

]

]

≤ π(B)
[

1 + exp
[− (γ0 − γ )]

1 − exp
[− (γ0 − 2γ )

]

]

,

which is (95). ��

9.3 Proof of Theorem 1

For all i ∈ {1, . . . , n} and P, Q, Q′ ∈ M , let us set

Ui = c
(

t(P,Q′)(Xi )− E
[

t(P,Q′)(Xi )
])

− c1
(

t(P,Q)(Xi )− E
[

t(P,Q)(Xi )
])

(96)

Vi = c2
(

t(P,Q′)(Xi )− E
[

t(P,Q′)(Xi )
])

− c1
(

t(P,Q)(Xi )− E
[

t(P,Q)(Xi )
])

. (97)

The random variables Ui are independent and under Assumption 3-(iv), they takes
their values in an interval of length l1 = c+ c1 = 1+ 2c. The Vi are also independent
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and they takes their values in an interval of length l2 = c1 + c2 = 3 + 2c. Applying
Lemma 7, we obtain that

n
∏

i=1

E
[

exp [βUi ]
] ≤ exp

[

l21nβ
2

8

]

(98)

and

n
∏

i=1

E
[

exp [βVi ]
] ≤ exp

[

l22nβ
2

8

]

. (99)

By using Assumption 2 and the fact that c0 = c1 − ca0/a1 > 0,

c
(

a0�(P
�
, P)− a1�(P

�
, Q′)

)

− c1
(

a1�(P
�
, P)− a0�(P

�
, Q)

)

= − (c1a1 − ca0) �(P
�
, P)− ca1�(P

�
, Q′)+ c1a0�(P

�
, Q)

≤ −c0a1
[

τ−1�(Q, P)− �(P�, Q)
]

− ca1
[

τ−1�(Q, Q′)− �(P�, Q)
]

+ τc1a0
[

�(P
�
, Q)+ �(Q, Q)

]

= e0a1�(P
�
, Q)− τ−1c0a1�(Q, P)− τ−1ca1�(Q, Q

′)+ τc1a0�(Q, Q) (100)

with

e0 = c0 + c + τc1a0
a1

. (101)

It follows from (100) and Assumptions 3-(iii), more precisely its consequences (85)
and (86), that

n−1 {cE
[

T(X, P, Q′)
] − c1E [T(X, P, Q)]

}

≤ c
[

a0�(P
�
, P)− a1�(P

�
, Q′)

]

− c1
[

a1�(P
�
, P)− a0�(P

�
, Q)

]

≤ e0a1�(P
�
, Q)− τ−1c0a1�(Q, P)− τ−1ca1�(Q, Q

′)+ τc1a0�(Q, Q). (102)

Since a0 ≥ a1 and c2 > c1, c′
0 = c2(a0/a1)− c1 > 0 and by arguing as above, we

obtain similarly that

n−1 {c2E
[

T(X, P, Q′)
] − c1E [T(X, P, Q)]

}

≤ c2
(

a0�(P
�
, P)− a1�(P

�
, Q′)

)

− c1
(

a1�(P
�
, P)− a0�(P

�
, Q)

)

= c′
0a1�(P

�
, P)− c2a1�(P

�
, Q′)+ c1a0�(P

�
, Q)

≤ τc′
0a1

[

�(P
�
, Q)+ �(Q, P)

]

− c2a1
[

τ−1�(Q, Q′)− �(P�, Q)
]

+ τc1a0
[

�(P
�
, Q)+ �(Q, Q)

]
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≤ (e1 + c2) a1�(P
�
, Q)+ τc′

0a1�(Q, P)

− τ−1c2a1�(Q, Q
′)+ τc1a0�(Q, Q), (103)

with

e1 = τ [c′
0 + c1a0/a1

] = τ [c2(a0/a1)+ c1 (a0/a1 − 1)] . (104)

Using (98) and (102), we deduce that for all P, Q, Q′ ∈ M

E
[

exp
[

β
(

cT(X, P, Q′)− c1T(X, P, Q)
)]]

=
n
∏

i=1

E
[

exp
[

β
(

ct(P,Q′)(Xi )− c1t(P,Q)(Xi )
)]]

= exp
[

β
(

cE
[

T(X, P, Q′)
] − c1E [T(X, P, Q)]

)]

n
∏

i=1

E
[

exp [βUi ]
]

≤ exp
[

nβ
[

 1(P, Q)− τ−1ca1�(Q, Q
′)
]]

(105)

with

 1(P, Q) = e0a1�(P
�
, Q)+ τc1a0�(Q, Q)+ l21β

8
− τ−1c0a1�(Q, P). (106)

Using (99) and (103), we obtain similarly that for all P, Q, Q′ ∈ M

E
[

exp
[

β
(

c2T(X, P, Q′)− c1T(X, P, Q)
)]]

≤ exp
[

nβ
[

 2(P, Q)− τ−1c2a1�(Q, Q
′)
]]

(107)

with

 2(P, Q) = (e1 + c2) a1�(P
�
, Q)+ τc′

0a1�(Q, P)+ τc1a0�(Q, Q)

+ l22β

8
. (108)

Since 2γ < τ−1c < τ−1c2, we may apply Lemma 9 with γ0 = τ−1c and γ0 =
τ−1c2 successively which leads to

∫

M
exp

[

−τ−1cnβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) exp [�1] (109)

and
∫

M
exp

[

−τ−1c2nβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) exp [�1] (110)
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with

�1 = log

[

1 + exp
[− (

τ−1c − γ )]

1 − exp
[− (

τ−1c − 2γ
)]

]

≥ log

[

1 + exp
[− (

τ−1c2 − γ )]

1 − exp
[− (

τ−1c2 − 2γ
)]

]

. (111)

Putting (107) and (110) together leads to

exp [L(P, Q)] =
∫

M
E
[

exp
[

β
(

c2T(X, P, Q′)− c1T(X, P, Q)
)]]

dπ(Q′)

≤ exp [nβ 2(P, Q)]
∫

M
exp

[

−τ−1c2nβa1�(Q, Q
′)
]

dπ(Q′)

≤ π (B) exp [�1 + nβ 2(P, Q)] ,

and since, for all (P, Q) ∈ B2, by definition (108) of  2(P, Q),

 2(P, Q) ≤ (e1 + c2) a1�(P
�
, Q)+ [

τc′
0a1 + τc1a0

]

r + l22β

8

= (e1 + c2) a1�(P
�
, Q)+ e1a1r + l22β

8
=  2 (112)

we derive that

[∫

B2
exp [−L(P, Q)] dπB(P)dπB(Q)

]−1

≤ π (B) exp [�1 + nβ 2] .

We deduce from (84) that

P(cA) ≤ z

π (B)
exp [�1 + nβ 2] .

In particular, P(cA) ≤ e−ξ for z satisfying

log

(

1

z

)

= ξ + log
1

π(B)
+�1 + nβ 2. (113)

Putting (105) and (109) together, we obtain that

exp [M(P, Q)]

=
∫

M
E
[

exp
[

β
(

cT(X, P, Q′)− c1T(X, P, Q)
)]]

dπ(Q′)

≤ exp [nβ 1(P, Q)]
∫

M
exp

[

−τ−1cnβa1�(Q, Q
′)
]

dπ(Q′)
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≤ π (B) exp [�1 + nβ 1(P, Q)] .

It follows from the definition (106) of 1(P, Q) that for all P ∈ M and for all Q ∈ B,

 1(P, Q) ≤ e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− τ−1c0a1�(Q, P),

and consequently, for all P ∈ M and Q ∈ B

exp [M(P, Q)]

≤ π (B) exp
[

�1 + nβ

(

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− τ−1c0a1�(Q, P)

)]

.

We derive from Lemma 5 that

E
[

exp [−βT(X, P)]]

≤ 1

π(B)

[∫

B
exp [−M(P, Q)] dπB(Q)

]−1

≤ exp

[

�1 + nβ

(

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− τ−1c0a1�(Q, P)

)]

,

hence,

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)

≤ exp

[

�1 + nβ

(

e0a1�(P
�
, Q)+ τc1a0r + l21β

8

)]

×
∫

cB(Q,2J r)
exp

[

−τ−1c0nβa1�(Q, P)
]

dπ(P). (114)

Applying Lemma 9 with γ0 = τ−1c0 > 2γ and setting e2 = τ−1c0 − 2γ , we get

∫

cB(Q,2J r)
exp

[

−τ−1c0nβa1�(Q, P)
]

dπ(P) ≤ π (B) exp
[

�2 − e2nβa12
J r
]

with

�2 = −γ + log

[

1

1 − exp [−e2]

]

, (115)

which together with (114) leads to

log
∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
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≤ log [π (B)] +�1 +�2

+ nβ

[

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− e2a12

J r

]

. (116)

Using the definitions (113) of z and (112) of  2 we deduce from (116) that

log

[

1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
]

≤ log

(

1

z

)

+ log [π (B)] +�1 +�2

+ nβ

[

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− e2a12

J r

]

= ξ + log
1

π(B)
+�1 + nβ 2 + log [π (B)] +�1 +�2

+ nβ

[

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− e2a12

J r

]

= nβ

[

(e1 + c2 + e0) a1�(P
�
, Q)+ e1a1r + l22β

8
+ +τc1a0r + l21β

8

]

+ ξ + 2�1 +�2 − e2nβa12
J r

= nβ

[

(e0 + e1 + c2) a1�(P
�
, Q)+

[

e1 + τc1a0
a1

]

a1r + (l21 + l22)β

8

]

+ ξ + 2�1 +�2 − e2nβa12
J r . (117)

Setting,

C1 = e0 + e1 + c2 and C2 = e1 + τc1a0
a1

,

we see that the right-hand side of (117) is not larger than −ξ , provided that

e2nβa12
J r ≥ 2ξ + 2�1 +�2 + nβ

[

C1a1�(P
�
, Q)+ C2a1r + (l21 + l22)β

8

]

or equivalently if

2J ≥ 1

e2

[

2ξ + 2�1 +�2

βna1r
+ C1�(P

�
, Q)

r
+ C2 +

[

l21 + l22
]

β

8a1r

]

. (118)
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Choosing Q inM (β) and using the inequalities a−1
1 β ≥ rn(β, Q) ≥ 1/(βna1), for

r = �(P�, Q)+ 1

a1

(

β + 2ξ

nβ

)

≥ 1

βna1

we obtain that the right-hand side of (118) satisfies

1

e2

[

2ξ + 2�1 +�2

βna1r
+ C1�(P

�
, Q)+ C2r

r
+

[

l21 + l22
]

β

8a1r

]

≤ 1

e2

[

C2 + 2�1 +�2 + C3

r

(

�(P
�
, Q)+ 1

a1

(

β + 2ξ

nβ

))]

= 1

e2
[C2 + 2�1 +�2 + C3]

with C3 = max{1,C1,
[

l21 + l22
]

/8}. Inequality (118) is therefore satisfied for J ∈ N

such that

2J ≥ C2 + 2�1 +�2 + C3

e2
∨ 1 > 2J−1,

and we may take

κ0 = τ
[

2 (C2 + 2�1 +�2 + C3)

e2
∨ 1 + 1

]

≥ τ
(

2J + 1
)

. (119)

We recall below, the list of constants depending on a0, a1, c, τ and γ and we have
used along the proof.

c0 = 1 + c − ca0
a1
, c1 = 1 + c, c2 = 2 + c,

c′
0 = c2a0

a1
− c1, l1 = 1 + 2c, l2 = 3 + 2c,

e0 = c0 + c + τc1a0
a1

, e1 = τ
[

c′
0 + c1

a0
a1

]

, e2 = τ−1c0 − 2γ,

C1 = e0 + e1 + c2, C2 = e1 + τc1a0
a1

, C3 = max

{

1,C1,
l21 + l22

8

}

,

and

�1 = log

[

1 + exp
[− (

τ−1c − γ )]

1 − exp
[− (

τ−1c − 2γ
)]

]

, �2 = −γ + log

[

1

1 − exp [−e2]

]

.
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9.4 Proof of Theorem 2

The proof follows the same lines as that of Theorem 1. Under Assumption 3-(iv),
the random variables Ui and Vi defined by (96) and (97) are not larger than with
b = c + c1 = l1 and b = c2 + c1 = l2 respectively. Since under Assumption 4, more
precisely its consequence (87), that

1

n

n
∑

i=1

E

[

U 2
i

]

≤ 2

[

c2

n

n
∑

i=1

Var
[

t(P,Q′)(Xi )
] + c21

n

n
∑

i=1

Var
[

t(P,Q)(Xi )
]

]

≤ 2a2
[

(c2 + c21)�(P
�
, P)+ c2�(P

�
, Q′)+ c21�(P

�
, Q)

]

and

1

n

n
∑

i=1

E

[

V 2
i

]

≤ 2a2
[

(c22 + c21)�(P
�
, P)+ c22�(P

�
, Q′)+ c21�(P

�
, Q)

]

we may apply Lemma 8 and using the notation �1 = τφ(βl1), �2 = τφ(βl2) and
Assumption 1, we get

1

nβ
log

[

n
∏

i=1

E
[

exp [βUi ]
]

]

≤ φ(βl1)βa2
[

(c2 + c21)�(P
�
, P)+ c2�(P

�
, Q′)+ c21�(P

�
, Q)

]

≤ 2�1βa2
[

c2 + c21

]

�(P
�
, Q)

+�1βa2
[

(c2 + c21)�(Q, P)+ c2�(Q, Q′)+ c21�(Q, Q)
]

(120)

and similarly

1

nβ
log

[

n
∏

i=1

E
[

exp [βVi ]
]

]

≤ 2�2βa2
[

c22 + c21

]

�(P
�
, Q)

+�2βa2
[

(c22 + c21)�(Q, P)+ c22�(Q, Q
′)+ c21�(Q, Q)

]

. (121)

It follows from (102) that

E1 = n−1 {cE
[

T(X, P, Q′)
] − c1E [T(X, P, Q)]

}

+ 2�1βa2
[

c2 + c21

]

�(P
�
, Q)

+�1βa2
[

(c2 + c21)�(Q, P)+ c2�(Q, Q′)+ c21�(Q, Q)
]
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≤
[

e0a1 + 2�1βa2
(

c2 + c21

)]

�(P
�
, Q)

−
[

τ−1c0a1 −�1βa2(c
2 + c21)

]

�(Q, P)

−
[

τ−1ca1 −�1βa2c
2
]

�(Q, Q′)

+
[

τc1a0 +�1βa2c
2
1

]

�(Q, Q).

Using the definitions (25) of c1 and (26) of c2„ that is,

c1 = c0 − τ�1βa2a
−1
1 (c

2 + c21) and c2 = c − τ�1βa2a
−1
1 c2

and setting

e3 = e0 + 2�1β
a2

(

c2 + c21
)

a1

e4 = 1

a1

[

τc1a0 +�1βa2c
2
1

]

and arguing as in the proof of inequality (105), we deduce from (120) that

logE
[

exp
[

β
(

cT(X, P, Q′)− c1T(X, P, Q)
)]]

≤ nβE1

≤ nβa1
[

e3�(P
�
, Q)− τ−1 [c1�(Q, P)+ c2�(Q, Q

′)
] + e4�(Q, Q)

]

. (122)

It follows from (103) that

E2 = n−1 {c2E
[

T(X, P, Q′)
] − c1E [T(X, P, Q)]

}

+ 2�2βa2
[

c22 + c21

]

�(P
�
, Q)

+�2βa2
[

(c22 + c21)�(Q, P)+ c22�(Q, Q
′)+ c21�(Q, Q)

]

≤ (e1 + c2) a1�(P
�
, Q)+ τc′

0a1�(Q, P)− τ−1c2a1�(Q, Q
′)

+ τc1a0�(Q, Q)+ 2�2βa2
[

c22 + c21

]

�(P
�
, Q)

+�2βa2
[

(c22 + c21)�(Q, P)+ c22�(Q, Q
′)+ c21�(Q, Q)

]

=
[

(e1 + c2) a1 + 2�2βa2
(

c22 + c21

)]

�(P
�
, Q)

+
[

τc′
0a1 +�2βa2(c

2
2 + c21)

]

�(Q, P)

−
[

τ−1c2a1 −�2βa2c
2
2

]

�(Q, Q′)

+
[

τc1a0 +�2βa2c
2
1

]

�(Q, Q).
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Using the definition (27) of c3„ that is,

c3 = c2 − τ�2βa2a
−1
1 c22,

and setting

e5 = e1 + c2 + 2�2β
a2

(

c22 + c21
)

a1
, e6 = τc′

0 +�2β
a2(c22 + c21)

a1

e7 = 1

a1

[

τc1a0 +�2βa2c
2
1

]

,

and arguing as in the proof of (107), we deduce from (121) that

logE
[

exp
[

β
(

c2T(X, P, Q′)− c1T(X, P, Q)
)]] ≤ nβE2

= nβa1
(

e5�(P
�
, Q)+ e6�(Q, P)− τ−1c3�(Q, Q

′)+ e7�(Q, Q)
)

. (123)

Under our assumption on β, we know that the quantities c2 and c3 are positive and
that 2γ < τ−1 (c2 ∧ c3). We may therefore apply Lemma 9 with γ0 = τ−1c2 and
γ0 = τ−1c3 successively and get

∫

M
exp

[

−τ−1c2nβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) exp [�1
]

(124)

and
∫

M
exp

[

−τ−1c3nβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) exp [�1
]

(125)

with

�1 = log

[

1 + exp
[− (

τ−1(c2 ∧ c3)− γ
)]

1 − exp
[− (

τ−1(c2 ∧ c3)− 2γ
)]

]

. (126)

Putting (123) and (125) together, we obtain that for all (P, Q) ∈ B2

exp [L(P, Q)] =
∫

M
E
[

exp
[

β
(

c2T(X, P, Q′)− c1T(X, P, Q)
)]]

dπ(Q′)

≤ exp
[

nβa1
(

e5�(P
�
, Q)+ e6�(Q, P)+ e7�(Q, Q)

)]

×
∫

M
exp

[

−τ−1c3nβa1�(Q, Q
′)
]

dπ(Q′)

≤ π (B) exp
[

�1 + nβa1
(

e5�(P
�
, Q)+ e6�(Q, P)+ e7�(Q, Q)

)]

≤ π (B) exp
[

�1 + nβa1
(

e5�(P
�
, Q)+ (e6 + e7)r

)]

.
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Consequently,

[∫

B2
exp [−L(P, Q)] dπB(P)dπB(Q)

]−1

≤ π (B) exp
[

�1 + nβa1
(

e5�(P
�
, Q)+ (e6 + e7)r

)]

.

We deduce from (84) that

P(cA) ≤ z

π (B)
exp

[

�1 + nβa1
(

e5�(P
�
, Q)+ (e6 + e7)r

)]

.

In particular, P(cA) ≤ e−ξ for z satisfying

log

(

1

z

)

= ξ + log
1

π(B)
+�1 + nβa1

[

e5�(P
�
, Q)+ (e6 + e7)r

]

. (127)

Putting (122) and (124) together, we obtain that for all Q ∈ B

exp [M(P, Q)]

=
∫

M
E
[

exp
[

β
(

cT(X, P, Q′)− c1T(X, P, Q)
)]]

dπ(Q′)

≤ exp
[

nβa1
(

e3�(P
�
, Q)− τ−1c1�(Q, P)+ e4�(Q, Q)

)]

×
∫

M
exp

[

−τ−1c2nβa1�(Q, Q
′)
]

dπ(Q′)

≤ π(B) exp
[

�1 + nβa1
(

e3�(P
�
, Q)+ e4r − τ−1c1�(Q, P)

)]

.

We derive from Lemma 5 that

E
[

exp [−βT(X, P)]]

≤ 1

π(B)

[∫

B
exp [−M(P, Q)] dπB(Q)

]−1

≤ exp
[

�1 + nβa1
(

e3�(P
�
, Q)+ e4r − τ−1c1�(Q, P)

)]

,

and consequently,

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)

≤ exp
[

�1 + nβa1
(

e3�(P
�
, Q)+ e4r

)]

×
∫

cB(Q,2J r)
exp

[

−τ−1c1nβa1�(Q, P)
]

dπ(P). (128)
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Since under our assumptions, c1 > 0 and 2γ < τ−1c1 we may apply Lemma 9 with
γ0 = τ−1c1, and setting e8 = τ−1c1 − 2γ which leads to

∫

cB(Q,2J r)
exp

[

−τ−1c1nβa1�(Q, P)
]

dπ(P) ≤ π (B) exp
[

�2 − e8nβa12
J r
]

.

with

�2 = −γ + log

[

1

1 − exp [−e8]

]

, (129)

which together with (128) leads to

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)

≤ π (B) exp
[

�1 +�2 + nβa1
(

e3�(P
�
, Q)+ e4r − e82

J r
)]

. (130)

Using the definition (127) of z, we deduce that

log

[

1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
]

≤ log

(

1

z

)

+ logπ(B)+�1 +�2 + nβa1
(

e3�(P
�
, Q)+ e4r − e82

J r
)

= ξ + log
1

π(B)
+�1 + nβa1

[

e5�(P
�
, Q)+ (e6 + e7)r

]

+ logπ(B)+�1 +�2 + nβa1
(

e3�(P
�
, Q)+ e4r − e82

J r
)

= ξ + 2�1 +�2 + nβa1
[

(e3 + e5) �(P
�
, Q)+ (e4 + e6 + e7)r

]

− e8nβa12
J r .

The right-hand side is not larger than −ξ provided that

2J ≥ 1

e8

[

2ξ + 2�1 +�2

nβa1r
+
[

(e3 + e5)
�(P

�
, Q)

r
+ e4 + e6 + e7

]]

. (131)

Using the fact that rn(β, Q) ≥ 1/(nβa1), with the choice

r = �(P�, Q)+ rn(β, Q)+ 2ξ

nβa1
≥ �(P�, Q)+ 1 + 2ξ

nβa1
≥ 1

nβa1
,

the right-hand side of (131) satisfies

1

e8

[

2ξ + 2�1 +�2

nβa1r
+
[

(e3 + e5)
�(P

�
, Q)

r
+ e4 + e6 + e7

]]
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≤ 1

e8

[

2�1 +�2 + e4 + e6 + e7 + (e3 + e5) ∨ 1

r

(

�(P
�
, Q)+ 2ξ

nβa1

)]

≤ 2�1 +�2 + e4 + e6 + e7 + (e3 + e5) ∨ 1

e8
.

Inequality (131) holds for J ∈ N such that

2J ≥ 2�1 +�2 + e4 + e6 + e7 + (e3 + e5) ∨ 1

e8
∨ 1 > 2J−1,

and we may take

κ0 = τ
[

2
[

2�1 +�2 + e4 + e6 + e7 + (e3 + e5) ∨ 1
]

e8
∨ 1 + 1

]

≥ τ
(

2J + 1
)

. (132)

In complements to constants listed at the end of the proof of Theorem 1, we recall
that

�1 = τφ(βl1), �2 = τφ(βl2)

c1 = c0 − τ�1β
a2(c2 + c21)

a1
, c2 = c − τ�1β

a2c2

a1
, c3 = c2 − τ�2β

a2c22
a1
,

e3 = e0 + 2�1β
a2

(

c2 + c21
)

a1
, e4 = 1

a1

[

τc1a0 +�1βa2c
2
1

]

,

e5 = e1 + c2 + 2�2β
a2

(

c22 + c21
)

a1
, e6 = τc′

0 +�2β
a2(c22 + c21)

a1
,

e7 = 1

a1

[

τc1a0 +�2βa2c
2
1

]

, e8 = τ−1c1 − 2γ,

and

�1 = log

[

1 + exp
[− (

τ−1(c2 ∧ c3)− γ
)]

1 − exp
[− (

τ−1(c2 ∧ c3)− 2γ
)]

]

,

�2 = −γ + log

[

1

1 − exp [−e8]

]

.
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9.5 Proof of Theorem 3

Let us take r ≥ ε and set ! = 2ξ + 1 so that

π
(cB

) ≤ π (cB(Q, ε)) ≤ e−!π
(

B(Q, ε)
) ≤ e−!π (B) .

In order to prove the first part, let us go back to the proof of Theorem 1. Clearly,

∫

M
exp

[−τ−1cnβa1�(Q, Q
′)
]

dπ(Q′) ≤ 1 = π (B)+ π (cB) ≤ π (B) (1 + e−! )

and similarly,

∫

M
exp

[

−τ−1c2nβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) (1 + e−!).

Inequalities (109) and (110) are therefore satisfied with�1 = log(1+e−1). Moreover,

∫

cB(Q,2J r)
exp

[

−τ−1c0nβa1�(Q, P)
]

dπ(P)

≤ exp
[

−τ−1c0nβa12
J r
]

π
(cB

) ≤ π (B) exp
[

−! − τ−1c0nβa12
J r
]

.

We deduce from (114) that

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)

≤ exp

[

�1 + nβ

(

e0a1�(P
�
, Q)+ τc1a0r + l21β

8

)]

× π (B) exp
[

−! − τ−1c0nβa12
J r
]

,

and consequently,

log
∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
≤ logπ (B)+�1 −!

+ nβ

[

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− τ−1c0a12

J r

]

.

Using the definitions (113) of z and (112) of  2, we deduce that

log

[

1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
]

123



From robust tests to Bayes-like posterior distributions 219

≤ ξ + log
1

π(B)
+�1 + nβ 2 + logπ (B)+�1 −!

+ nβ

[

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− τ−1c0a12

J r

]

= ξ + 2�1 + nβ

[

(e1 + c2) a1�(P
�
, Q)+ e1a1r + l22β

8

]

−!

+ nβ

[

e0a1�(P
�
, Q)+ τc1a0r + l21β

8
− τ−1c0a12

J r

]

= ξ + 2�1 −!

+ nβa1

[

C1�(P
�
, Q)+ C2r + (l21 + l22)β

8a1
− τ−1c02

J r

]

,

where the constantsC1 andC2 are the same as those defined in the proof of Theorem 1.
If we choose r = �(P�, Q)∨ (β/a1)∨ ε and J such that τ−1c02J ≥ C1 +C2 + (l21 +
l22)/8, we obtain that

log

[

1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
]

≤ ξ + 2�1 −! ≤ −ξ

since! = 2ξ + 1 ≥ 2(ξ +�1). We conclude as in the proof of Theorem 1.
In order to prove the secondpart ofTheorem3,wegoback to the proof ofTheorem2.

The arguments are similar. As before,

∫

M
exp

[

−τ−1c2nβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) (1 + e−!)

and
∫

M
exp

[

−τ−1c3nβa1�(Q, Q
′)
]

dπ(Q′) ≤ π (B) (1 + e−!).

Inequalities (124) and (125) are therefore both satisfied with �1 = log(1 + e−1).
Moreover

∫

cB(Q,2J r)
exp

[

−τ−1c1nβa1�(Q, P)
]

dπ(P)

≤ π (B) exp
[

−! − τ−1c1nβa12
J r
]

,

and we deduce from (128) that

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
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≤ exp
[

�1 + nβa1
(

e3�(P
�
, Q)+ e4r

)]

×
∫

cB(Q,2J r)
exp

[

−τ−1c1nβa1�(Q, P)
]

dπ(P)

≤ π (B) exp
[

�1 + nβa1
[

e3�(P
�
, Q)+ e4r − τ−1c12

J r
]

−!
]

.

Using the definition (127) of z, we deduce that

log

[

1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
]

≤ ξ + log
1

π(B)
+�1 + nβa1

[

e5�(P
�
, Q)+ (e6 + e7)r

]

+ logπ (B)+�1 + nβa1
[

e3�(P
�
, Q)+ e4r − τ−1c12

J r
]

−!
= ξ + 2�1 −!

+ nβa1
[

(e3 + e5)�(P
�
, Q)+ (e4 + e6 + e7)r − τ−1c12

J r
]

.

Taking r = �(P�, Q) ∨ ε ≥ ε and J ≥ 0 such that

τ−1c12
J ≥ e3 + e5 + e4 + e6 + e7

we obtain that

log

[

1

z

∫

cB(Q,2J r)
E
[

exp [−βT(X, P)]] dπ(P)
]

≤ −ξ

and we conclude as before.

10 Other proofs

10.1 Proof of Lemma 1

Let Y be a random variable with gamma distribution γ (s, 1). Since σY ∼ γ (s, σ ), it is
sufficient to prove the result for σ = 1. Using the inequality log(1− x) ≥ −x/(1− x)
which holds for all x ∈ [0, 1), we obtain that

logE

[

eβ(Y−s)
]

= −s
[

log(1 − β)+ β] ≤ sβ2

1 − β for all β ∈ [0, 1).

Applying Lemma 8.2 in Birgé [10] with a = √
s and b = 1, we obtain that

P

[

Y ≥ s + 2
√

sξ + ξ
]

≤ e−ξ for all ξ ≥ 0

123



From robust tests to Bayes-like posterior distributions 221

which proves (44). Let us now turn to the lower bound. For x ≥ 0, let us set

g(x) = x − log(1 + x) ≤
(

x2

2

)

∧ x .

For all t, u ≥ 0,

∫ +∞

t+u
xt e−xdx =

∫ +∞

u
(t + y)t e−t−ydy = t t e−t

∫ +∞

u
e−tg(y/t)dy

≥ t t e−t
(∫ +∞

u
e−y2/(2t)dy ∨

∫ +∞

u
e−ydy

)

= t t e−t
[(√

2π t F

(

u√
t

))

∨ e−u
]

,

where F(z) = P [N(0, 1) ≥ z] for all z ∈ R. Using the the following inequalities

t t−1/2e−t
√
2π ≤ �(t) ≤ t t−1/2e−t

√
2π exp[1/(12t)], (133)

that can be found in Whittaker and Watson [25, p. 253], with t = s − 1 > 0, we
deduce that

P [Y ≥ t + u] = 1

�(t + 1)

∫ +∞

t+u
xt e−xdx = 1

t�(t)

∫ +∞

t+u
xt e−xdx

≥
[

F

(

u√
t

)

e−1/(12t)
]

∨
[

e−u−1/(12t)

√
2π t

]

.

Using the fact that F(�
−1
(z)) = e−z for all z ≥ 0, we obtain that for the choice

u =
[√

t �
−1

(

ξ − 1

12t

)]

∨ log

(

eξ−1/(12t)

√
2π t

)

,

which is nonnegative for ξ ≥ log 2 + 1/(12t), the quantity P [Y ≥ t + u] is at least
e−ξ , which proves (45).

10.2 Proof of Theorem 4

Throughout this proof, a0 = 2, a1 = 3/16, β = 2γ = 1/500 and κ denotes a positive
numerical constant that may vary from line to line. It follows from Corollary 4 that
for n large enough, rn(β, Pθ�) ≤ r�n = κk/n. Applying our Corollary 2 with � = h2

(and 2ξ in place of ξ ), we obtain that for n large enough, with a probability at least
1 − 2e−ξ ,

1 − e−ξ ≤ ν̂hX
({

θ ∈ 
, h2(θ, θ�) ≤ rn(ξ)
})

with rn(ξ) = κ(k + ξ)
n

.
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Weknow by Proposition 9 that under the assumptions of Corollary 4, Assumption 9-(i)
is satisfied with s = 2, |·|∗ given by (81) and ε = 1/2. This implies that for n large

{

θ ∈ 
, h2(θ , θ�) ≤ rn(ξ)
}

⊂
{

θ ∈ 
, ∣∣θ − θ�
∣

∣

2
∗ ≤ 2rn(ξ)

}

,

which leads to (46).

10.3 Proof of Proposition 4

Let us denote by Fσ the distribution function of νσ . Throughout this proof, we fix
some θ� ∈ [−σ t, σ t]. Our aim is to prove that Pθ� belongs toM (β).

Since the total variation distance is translation invariant, ‖Pθ − Pθ�‖ =
‖Pθ−θ� − P0‖ = ‖Pθ�−θ − P0‖ and consequently, for all r ∈ [0, 1),

{θ ∈ 
, ‖Pθ − Pθ�‖ ≤ r} = {

θ ∈ 
, ∣∣θ� − θ ∣∣ ≤ ϕ(r)} for all r ∈ [0, 1)

while for r ≥ 1, {θ ∈ 
, ‖Pθ − Pθ�‖ ≤ r} = 
 = R.
We set r0 = sup{r > 0, ϕ(r) ≤ σ t} and distinguish between two cases.

Case 1Assume r0 ≤ 1/4. For all r < r0, ϕ(r) < σ t , 2r < 1, and since q is symmetric,
positive and decreasing on R+,

π(B(Pθ� , 2r))

π(B(Pθ� , r))
= νσ ({θ ∈ R, ‖Pθ − Pθ�‖ ≤ 2r})
νσ ({θ ∈ R, ‖Pθ − Pθ�‖ ≤ r})

= νσ ({θ ∈ R, |θ − θ�| ≤ ϕ(2r)})
νσ ({θ ∈ R, |θ − θ�| ≤ ϕ(r)}) ≤ 2qσ (0)ϕ(2r)

2qσ (|θ�| + ϕ(r))ϕ(r)
≤ qσ (0)ϕ(2r)

qσ (|θ�| + σ t)ϕ(r) ≤ qσ (0)ϕ(2r)

qσ (2σ t)ϕ(r)

= q(0)ϕ(2r)

q(2t)ϕ(r)
≤ �

q(2t)
.

For all r0 < r < 1, |θ�| ≤ σ t < ϕ(r), hence Fσ (|θ�| − ϕ(r)) ≤ Fσ (0) = 1/2 and
Fσ (|θ�| + ϕ(r)) ≥ Fσ (ϕ(r)) ≥ Fσ (σ t) = F1(t) ≥ 3/4 under our assumption on t .
Consequently,

π(B(Pθ� , 2r))

π(B(Pθ� , r))
≤ 1

νσ ({θ ∈ R, |θ − θ�| ≤ ϕ(r)})
= 1

Fσ (|θ�| + ϕ(r))− F(|θ�| − ϕ(r))
≤ 1

3/4 − 1/2
= 4.

Note that the result also holds for r = r0 by letting r decrease to r0.
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Case 2 Assume that r0 > 1/4. Then ϕ(1/4) ≤ σ t and arguing as before, we obtain
that for all r ≤ 1/4 < r0,

π(B(Pθ� , 2r))

π(B(Pθ� , r))
≤ 2qσ (0)ϕ(2r)

2qσ (|θ�| + ϕ(r))ϕ(r) = qσ (0)ϕ(2r)

qσ (|θ�| + ϕ(1/4))ϕ(r)
≤ qσ (0)ϕ(2r)

qσ (2σ t)ϕ(r)
≤ �

q(2t)
.

For all r ∈ (1/4, 1), ϕ(r) ≥ ϕ(1/4) and

π(B(Pθ� , 2r))

π(B(Pθ� , r))
≤ 1

νσ ({θ ∈ R, |θ − θ�| ≤ ϕ(r)})
≤ 1

νσ ({θ ∈ R, |θ − θ�| ≤ ϕ(1/4)})
≤ 1

2qσ (|θ�| + ϕ(1/4))ϕ(1/4)
≤ 1

2qσ (2σ t)ϕ(1/4)
≤ �σ

q(2t)
.

We obtain that in any case, for all r ∈ (0, 1) and θ� ∈ [−σ t, σ t],

log

(

π(B(Pθ� , 2r))

π(B(Pθ� , r))

)

≤ max

{

log

(

� (σ ∨ 1)

q(2t)

)

, log 4

}

. (134)

The inequality is also clearly true for r ≥ 1 since then π(B(Pθ� , 2r)) =
π(B(Pθ� , r)) = 1. Hence, for all r ≥ a−1

1 β

1

nγ a1r
log

(

π(B(Pθ� , 2r))

π(B(Pθ� , r))

)

≤ 1

nγβ
sup
r>0

log

(

π(B(Pθ� , 2r))

π(B(Pθ� , r))

)

≤ 1

nγβ
max

{

log

(

� (σ ∨ 1)

q(2t)

)

, log 4

}

.

The right-hand side is not larger than β provided that it satisfies (50) and this lower
bound is not smaller than 1/

√
n since γ ≤ 1. We conclude by using (15).

10.4 Proof of Proposition 5

Under our assumption on q, Assumption 6 is satisfied and

� = 21/s max
{

q(0), 2(1/s)−1
}

.
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Let t = (|θ |/σ) ∨ t0. Then, θ ∈ [−σ t, σ t], ν1([t,+∞)) ≤ 1/4 and inequality (134)
holds true. We deduce from (11) that

rn(β, Pθ ) ≤ 1

γ na1β
max

{

log

(

� (σ ∨ 1)

q(2t)

)

, log 4

}

and the result follows from our specific choices of a1, γ and β.

10.5 Proof of Corollary 3

We set for short 
 = 
[η, δ] with the parameters η and δ defined by (60) and (61)
respectively and also define

Jn = exp

[

(K 2 − 1)γ τ 4a21nη
2
n

2(k + 1)

]

(135)

so that Mn(K ) contains the elements P = P(p,m,σ ) of M such that

| log σ | ∨
∣

∣

∣

m
σ

∣

∣

∣∞
≤ log(1 + δ)Jn .

Hereafter we fix P = P(p,m,σ ) ∈ Mn(K ). There exist θ = θ(P) = (Q,m, σ ) ∈ 

with σ = (1 + δ) j0 ,m = σδj, ( j0, j) ∈ Z × Z

k such that

σ

(1 + δ) ≤ σ < σ and mi = jiσδ ≤ mi < mi + σδ, (136)

for all i ∈ {1, . . . , k}. Consequently,

0 ≤
(

1 − σ

σ

)

≤ δ

1 + δ < δ and

∣

∣

∣

∣

m − m
σ

∣

∣

∣

∣∞
≤ δ, (137)

and we infer from (56) and (57) and the fact that the total variation loss is translation
and scale invariant that Pθ satisfies

�
(

P(p,m,σ ), Pθ
) ≤ �

(

P(p,m,σ ), P(Q,m,σ )

)

+ �
(

P(Q,m,σ ), P(Q,m,σ )

)

≤ �
(

P(p,0,1), P(Q,0,1)

)

+ �
(

P(Q,0,1), P(Q,m−m
σ
, σ
σ
)

)

≤ η +
[

A

(∣

∣

∣

∣

m − m
σ

∣

∣

∣

∣

s

∞
+
(

1 − σ

σ

)s
)]

∧ 1

≤ η + 2Aδs = 2η.

Besides, the parameters ( j0, j) ∈ Z × Z
k can be controlled in the following way.

Using that σ ≤ σ , the inequality log(1 + δ) ≤ δ and (137), we obtain that for all
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i ∈ {1, . . . , k},

| ji | =
∣

∣

∣

∣

mi

σδ

∣

∣

∣

∣

= 1

σδ
|mi − mi + mi | ≤ 1

σδ

[

σδ + σ
∣

∣

∣

mi

σ

∣

∣

∣

]

≤ 1 + 1

log(1 + δ)
∣

∣

∣

mi

σ

∣

∣

∣ .

Besides,

j0 = log σ

log(1 + δ) = 1

log(1 + δ)
[

− log
(

1 + σ

σ
− 1

)

+ log σ
]

≤ 1

log(1 + δ)
[

− log

(

1 − δ

1 + δ
)

+ | log σ |
]

= 1

log(1 + δ)
[

log (1 + δ)+ | log σ |] ≤ 1 + | log σ |
log(1 + δ)

and using the inequality log(1 + 2x) ≤ 2 log(1 + x), which holds for all x ≥ 0, we
obtain that

j0 ≥ log σ

log(1 + δ) ≥ − | log σ |
log(1 + δ) ≥ −

[

1 + | log σ |
log(1 + δ)

]

.

Putting these inequalities together and using the fact that P ∈ Mn(K ), we get

|( j0, j)|∞ ≤ 1 + 1

log(1 + δ)
[

| log σ | ∨
∣

∣

∣

m
σ

∣

∣

∣∞

]

≤ 1 + Jn . (138)

For all r > 0, e−Lθ ≤ π (B(Pθ , r)) ≤ 1 and these two inequalities together with
the definition (60) of η and Assumption 7 imply that for all r > 0

π (B(Pθ , 2r))

π (B(Pθ , r))
≤ exp [Lθ ] ≤ exp

[

˜D(η)+ 2
k
∑

i=0

[

L

2
+ log(1 + | ji |)

]

]

≤ exp
[

γ τ 4a21nη
2 + (k + 1)

[

L + 2 log(1 + |( j0, j)|∞)
]

]

.

Using (138), the definition (135) of Jn and the fact that log(2+ x) ≤ log 3+ log x for
all x ≥ 1, we derive that

π (B(Pθ , 2r))

π (B(Pθ , r))
≤ exp

[

γ τ 4a21nη
2 + (k + 1)L + 2(k + 1) log(2 + Jn)

]

,

≤ exp
[

K 2γ τ 4a21nη
2 + (k + 1) (L + log 9)

]

and since γ = 1/6 ≤ L ′ = L + log 9 < 3.1,

1

nβa1
≤ rn(β, Pθ ) ≤ 1

γ nβa1

[

K 2γ τ 4a21nη
2 + (k + 1)L ′]
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= 1

a1β

[

K 2τ 4a21η
2 + (k + 1)L ′

γ n

]

.

For the choice of β = βn given by (62),

β ≥
√

K 2τ 4a21η
2 + (k + 1)L ′

γ n
≥
√

k + 1

n
∨ Kη

2

hence, rn(β, Pθ ) ≤ a−1
1 β and Pθ ∈ M (β). This implies that

inf
P ′∈M (β)

�(P
�
, P ′)+ a−1

1 β ≤ �(P�, Pθ )+ a−1
1 β

≤ �(P�, P)+ �(P, Pθ )+ a−1
1 β

≤ �(P�, P)+ 2η +
[

K τ 2η + 1

a1

√

(k + 1)L ′
γ n

]

,

and the result follows by applying Corollary 1 and by using the fact that P is arbitrary
inMn(K ).

10.6 Proof of Lemma 2

For all p ∈ M0, σ ≥ 1 and m ∈ R
k , the supports of the functions x �→ p(x/σ) and

x �→ p((x − m)/σ ) are included in the set K = [0, σ ]k ∪ {m + x, x ∈ [0, σ ]k}
the Lebesgue measure of which is not larger than 2σ k . Consequently, using (66), we
deduce that for all p ∈ M0, σ ≥ 1 and m ∈ R

k ,

∥

∥P(p,0,1) − P(p,m,σ )
∥

∥

≤ ∥

∥P(p,0,1) − P(p,0,σ )
∥

∥ + ∥

∥P(p,0,σ ) − P(p,m,σ )
∥

∥

= 1

2

∫

R
k

∣

∣

∣

∣

p(x)− 1

σ k
p
( x
σ

)

∣

∣

∣

∣

dx + 1

2σ k

∫

R
k

∣

∣

∣

∣

p
( x
σ

)

− p

(

x − m
σ

)∣

∣

∣

∣

dx

≤ 1

2

∫

R
k

∣

∣

∣

∣

p(x)− 1

σ k
p (x)

∣

∣

∣

∣

dx + 1

2σ k

∫

R
k

∣

∣

∣p(x)− p
( x
σ

)∣

∣

∣ dx

+ 1

2σ k

∫

R
k

∣

∣

∣

∣

p
( x
σ

)

− p

(

x − m
σ

)∣

∣

∣

∣

dx

≤ 1

2

∫

R
k

∣

∣

∣

∣

p(x)− 1

σ k
p (x)

∣

∣

∣

∣

dx + 1

2σ k

∫

[0,1]k

∣

∣

∣p(x)− p
( x
σ

)∣

∣

∣ dx

+ 1

2σ k

∫

[0,σ ]k\[0,1]k

∣

∣

∣p
( x
σ

)∣

∣

∣ dx + 1

2σ k

∫

K

∣

∣

∣

∣

p
( x
σ

)

− p

(

x − m
σ

)∣

∣

∣

∣

dx

≤ 1

2

(

1 − 1

σ k

)

+ 1

2σ k

∫

[0,1]k
L1

(

1 − 1

σ

)s

|x|s dx
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+ 1

2

∫

[0,1]k\[0,1/σ ]k
|p(x)| dx + L1

2σ k

∫

K

∣

∣

∣

m
σ

∣

∣

∣

s
dx

≤ 1

2

(

1 − 1

σ k

)

+ L1ks/2

2σ k

(

1 − 1

σ

)s

+ L0

2

(

1 − 1

σ k

)

+ L1

∣

∣

∣

m
σ

∣

∣

∣

s

≤ 1

2

[

1 + L1k
s/2 + L0

]

(

1 − 1

σ

)s

+ L1

∣

∣

∣

m
σ

∣

∣

∣

s

and (57) is therefore satisfied with A = L1 ∨ [(1 + L1ks/2 + L0)/2].

10.7 Proof of Lemma 3

By doing the change of variables u = x −m in (68) if ever necessary, we may assume
with no loss of generality that m > 0. Then, since p is nonincreasing in (0,+∞) and
vanishes elsewhere p(x − m) ≥ p(x) for all x ≥ m and p(x) ≥ p(x − m) = 0 for
all x ∈ (0,m). Consequently,
∫

R

|p(x)− p(x − m)| dx =
∫ m

0
p(x)dx +

∫ +∞

m
[p(x − m)− p(x)] dx

= 2
∫ m

0
p(x)dx +

∫ +∞

m
p(x − m)dx −

∫ +∞

0
p(x)dx

≤ 2mB + 1 − 1,

and we obtain (68).
Since σ ≥ 1, p(x/σ) ≥ p(x) and p(x)/σ ≤ p(x) for all x > 0. Hence,

∫

R

∣

∣

∣

∣

1

σ
p
( x

σ

)

− p(x)

∣

∣

∣

∣

dx

≤
∫

R

∣

∣

∣

∣

1

σ
p
( x

σ

)

− 1

σ
p(x)

∣

∣

∣

∣

dx +
∫

R

∣

∣

∣

∣

1

σ
p (x)− p(x)

∣

∣

∣

∣

dx

= 1

σ

∫

R

(

p
( x

σ

)

− p(x)
)

dx +
∫

R

(

p(x)− 1

σ
p (x)

)

dx

= 2

(

1 − 1

σ

)

,

which leads to (67).
Finally, by combining (68) and (67) we deduce that for all m ∈ R and σ ≥ 1

1

2

∫

R

∣

∣

∣

∣

1

σ
p

(

x − m

σ

)

− p(x)

∣

∣

∣

∣

dx

= 1

2

∫

R

∣

∣

∣

∣

1

σ
p

(

x − m

σ

)

− 1

σ
p
( x

σ

)

∣

∣

∣

∣

dx + 1

2

∫

R

∣

∣

∣

∣

1

σ
p
( x

σ

)

− p(x)

∣

∣

∣

∣

dx

= 1

2

∫

R

∣

∣

∣p
(

u − m

σ

)

− p(u)
∣

∣

∣ du + 1

2

∫

R

∣

∣

∣

∣

1

σ
p
( x

σ

)

− p(x)

∣

∣

∣

∣

dx
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≤ B
∣

∣

∣

m

σ

∣

∣

∣ +
(

1 − 1

σ

)

which yields to (69).

10.8 Proof of Proposition 6

This proposition is a consequence ofCorollary 2. Let us first check that the assumptions
of this corollary are satisfied. For all S ∈ P , the mapping θ �→ h(S, Pθ ) is continuous
because of (71). It is therefore measurable and it follows from the definition of the
algebra A that Assumption 1 is satisfied. Since the mapping (x, θ) �→ p(x, θ) is
measurable, so are the mappings

p : (Rk × E × E −→ R+
(x, θ , θ ′) �−→ (pθ (x), pθ ′(x)).

and (x, θ , θ ′) �→ ψ
(√

pθ ′(x)/pθ (x)
)

, since ψ is measurable. We deduce that
(x, P, P ′) �→ t(P,P ′)(x) is measurable on (E ×M ×M , E⊗A⊗A) which proves
that Assumption 3-(i) holds true. The requirements of Corollary 2 are therefore satis-
fied and we may apply it. In order to evaluate the quantity rn(β, Pθ ) for θ ∈ R

k , we
use the following lemma the proof of which is postponed to Sect. 10.9.

Lemma 10 Let θ ∈ [−R, R]k . For all m ⊂ {1, . . . , k} and r > 0

νm

({

θ ′ ∈ R
k,

∣

∣θ ′ − θ
∣

∣∞ ≤ r
})

=

⎧

⎪

⎨

⎪

⎩

1

2|m|
∏

i∈m

[(

1 − |θi |
R

)

∧ r

R
+
(

1 + |θi |
R

)

∧ r

R

]

if |θi | ≤ r for all i /∈ m

0 otherwise,

with the convention
∏

∅
= 1. In particular, if θ ∈ 
m(R) and

νm

({

θ ′ ∈ R
k,

∣

∣θ ′ − θ
∣

∣∞ ≤ r
})

≥ 1

2|m|
( r

R
∧ 1

)|m|
(139)

and for all K > 1

νm
({

θ ′ ∈ R
k,

∣

∣θ ′ − θ
∣

∣∞ ≤ Kr
})

νm
({

θ ′ ∈ R
k,

∣

∣θ ′ − θ
∣

∣∞ ≤ r
}) ≤ K |m|. (140)

Let us set B = Bk for short and definem� as the subset of {1, . . . , k} that minimizes
over those m ⊂ {1, . . . , k} the mapping

m �→ inf
θ∈
m (R)

�(P
�
, Pθ )+ |m| log (2kR(nB)1/s) + 1

γ nβa1
.
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Finally, let θ� for some arbitrary element of 
m� (R). It follows from (71) and (139)
that for all r > 0,

1 ≥ πm (B(Pθ� , r))

= νm
({

θ ∈ R
k, h2(Pθ� , Pθ ) ≤ r

})

≥ νm
({

θ ∈ R
k,

∣

∣θ − θ�
∣

∣∞ ≤ (r/B)1/s
})

≥ 1

2|m|

(

(r/B)1/s

R
∧ 1

)|m|
≥ 1

2|m|

(

(r ∧ 1)1/s

RB1/s

)|m|
, (141)

where the last inequality holds true under the assumption that RB1/s ≥ 1.
We deduce from (141) that for all r > 0

π (B(Pθ� , 2r))

π (B(Pθ� , r))
≤ 1

π (B(Pθ� , r))

≤ 1
∑

m⊂{1,...,k} e−Lmνm
({

θ ∈ R
k,

∣

∣θ − θ�
∣

∣∞ ≤ (r/B)1/s})

≤ eLm�

νm�
({

θ ∈ 
m� ,
∣

∣θ − θ�
∣

∣∞ ≤ (r/B)1/s})

≤ exp

[

Lm� + |m�| log
(

2RB1/s

(r ∧ 1)1/s

)]

= exp

[

|m�| log
(

2kRB1/s
)

+ k log

(

1 + 1

k

)

+ |m�|
s

log

(

1

r
∨ 1

)]

. (142)

Provided that

r ≥ |m�| log (2kR(nB)1/s) + 1

γ nβa1
≥ 1

n
,

we obtain

|m�| log
(

2kRB1/s
)

+ k log

(

1 + 1

k

)

+ |m�|
s

log

(

1

r
∨ 1

)

≤ |m�| log
(

2kRB1/s
)

+ k log

(

1 + 1

k

)

+ |m�| log
(

n1/s
)

≤ |m�| log
(

2kR(nB)1/s
)

+ 1 ≤ γ nβa1r

and deduce from (142) that rn(β, Pθ� ) defined by (11) satisfies

1

nβa1
≤ rn(β, Pθ� ) ≤ |m�| log (2kR(nB)1/s) + 1

γ nβa1
.
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Applying Corollary 2, we obtain that for some numerical constant κ ′
0 > 0,

E

[

π̂X

(

cB(P
�
, κ ′

0r(m
�, θ�))

)]

≤ 2e−ξ

with

r(m�, θ�) = �(P�, Pθ� )+
|m�| log (2kR(nB)1/s) + ξ

γ nβa1
.

Finally, the conclusion follows from the definition ofm� and the fact that θ� is arbitrary
in 
m� (R).

10.9 Proof of Lemma 10

Let θ ∈ R and ν be the uniform distribution on [−R, R]. For all θ ∈ [−R, R] and
r > 0,

ν ([θ − r , θ + r ]) = 1

2R
[(θ + r) ∧ R − (θ − r) ∨ (−R)]+

= 1

2R
[(r + θ) ∧ R + (r − θ) ∧ R]+

= 1

2R
[(r + |θ |) ∧ R + (r − |θ |) ∧ R]+

= 1

2

[(

1 − |θ |
R

)

∧ r

R
+
(

1 + |θ |
R

)

∧ r

R

]

.

Let now θ ∈ R
k such that |θ |∞ ≤ R. For all m ⊂ {1, . . . , k}, m �= ∅,

νm
({

θ ′ ∈ 
m,
∣

∣θ ′ − θ
∣

∣∞ ≤ r
}) = 0

if there exists i /∈ m such that |θi | > r . Otherwise

νm

({

θ ′ ∈ R
k ,

∣

∣θ ′ − θ
∣

∣∞ ≤ r
})

= νm
({

θ ′ ∈ 
m , max
i∈m

∣

∣θ ′
i − θi

∣

∣ ≤ r

})

=
∏

i∈m
ν ([θi − r , θi + r ])

= 1

2|m|
∏

i∈m

[(

1 − |θi |
R

)

∧ r

R
+
(

1 + |θi |
R

)

∧ r

R

]

.

If m = ∅,

ν∅

({

θ ′ ∈ R
k,

∣

∣θ ′ − θ
∣

∣∞ ≤ r
})

= 1|θ |∞≤r .
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Let us now turn to the proof of (140). Since θ ∈ 
m(R), for all K ′ ∈ {1, K }

νm

({

θ ′ ∈ R
k,

∣

∣θ ′ − θ
∣

∣∞ ≤ K ′r
})

= νm
({

θ ′ ∈ 
m, max
i∈m

∣

∣θ ′
i − θi

∣

∣ ≤ K ′r
})

=
∏

i∈m
ν
([θi − K ′r , θi + K ′r ]) ,

It is therefore enough to show that for all r > 0 and θ ∈ [0, R]

 (r) = ν ([θ − Kr , θ + Kr ])

ν ([θ − r , θ + r ])
≤ K .

This is what we do now by distinguishing between several cases.
When θ + Kr ≤ R, θ − Kr ≥ 2θ − R ≥ −R and consequently, (r) = K . When

θ + Kr > R and −R ≤ θ − Kr ,

 (r) = R − (θ − Kr)

(θ + r) ∧ R − (θ − r)
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R − θ + Kr

R − θ + r
when θ + r > R

R − θ + Kr

2r
when θ + r ≤ R,

and the conclusion follows from the facts that 0 ≤ R − θ ≤ Kr . When θ + Kr > R
and θ − Kr < −R, r ≥ (θ + R)/K ≥ R/K , hence R+ r − θ ≥ 2R/K and R ≤ Kr .
Consequently,

 (r) = 2R

(θ + r) ∧ R − (θ − r) ∨ (−R)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2R

2R
= 1 when θ + r > R and θ − r < −R

2R

R + r − θ ≤ K when θ + r > R and θ − r ≥ −R

2R

2r
≤ K when θ + r ≤ R,

which concludes the proof.

10.10 Proof of Proposition 8

Let ε be a small enough positive number. Since q is continuous and positive at θ� and
since K has a nonempty interior, there exists z� > 0 such that
� = B∗(θ�, z�) ⊂ K,

0 < b� ≤ q(θ) ≤ b
�

with b
�
/b� ≤ 1 + ε, (143)
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for all θ ∈ 
� and

(1 − ε)|θ − θ�|s∗ ≤ �(θ , θ�) ≤ (1 + ε)|θ − θ�|s∗. (144)

In particular, ν(
�) > 0 and we may define the distribution ν� = ν(· ∩
�)/ν(
�) on

� with density q� = q1
�/ν(
�). Let M � = {Pθ , θ ∈ 
�} and π� be the prior on
M � associated with ν�. The parameter space 
� is convex and it follows fom (144)
that (
�, θ�, �, ν�) satisfy Assumption 8-(i) with a = 1 + ε, a = 1 − ε. Besides, it
follows from (143) that the density q� satisfies condition (77) on 
�. We may apply
Proposition 7 and deduce that for the model (M �, π�), r�n = r�n(β, Pθ� ) is not larger
than κ�0k/(βn) with

κ�0 = 1

a1γ

{[

1 + log [2(1 + ε)/(1 − ε)]
s log 2

]

log (2(1 + ε))
}

∨ 1 <
(1 + s−1)

a1γ

for ε small enough. Consequently, by definition of r�n , for all r ≥ r�n

π� (B(Pθ� , 2r)) = 1

ν(
�)
ν
({θ ∈ 
, �(θ, θ�) ≤ 2r} ∩
�)

≤ exp (γ nβa1r)

ν(
�)
ν
({θ ∈ 
, �(θ, θ�) ≤ r} ∩
�)

≤ exp (γ nβa1r)

ν(
�)
ν
({θ ∈ 
, �(θ, θ�) ≤ r}) . (145)

Let r1 = [(z�)saK) ∧ η]/2. If r ∈ (0, r1) and the parameter θ ∈ 
 satisfies
�(θ , θ�) ≤ 2r , then �(θ , θ�) < η and θ necessarily belongs to K under Assump-
tion 9-(ii). Applying (79) we deduce that for such a parameter θ ∈ 


aK
∣

∣θ − θ�
∣

∣

s
∗ ≤ � (θ, θ�) ≤ 2r < 2r1 ≤ aK(z

�)s,

which implies that θ ∈ 
�. For n large enough, r�n = κ�0k/n < r1 and for r ∈ (r�n , r1)
we may therefore write, using (145),

π (B(Pθ� , 2r)) = ν ({θ ∈ 
, �(θ , θ�) ≤ 2r})

= ν ({θ ∈ 
, �(θ , θ�) ≤ 2r} ∩
�)

≤ exp (γ nβa1r) ν
({θ ∈ 
, �(θ, θ�) ≤ r})

= exp (γ nβa1r) π (B(Pθ� , r)) . (146)

Since q is bounded away from 0 in a neighbourhood of θ�, π (B(Pθ� , r1)) > 0 and
we may also write that for r ≥ r1 and n large enough

π (B(Pθ� , r)) ≥ π (B(Pθ� , r1))

= exp
[

logπ (B(Pθ� , r1))+ γ nβa1r1 − γ nβa1r1
]

≥ exp
[−γ nβa1r1

] ≥ exp
[−γ nβa1r

]
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≥ exp
[−γ nβa1r

]

π (B(Pθ� , 2r)) . (147)

Putting (146) and (147) together we obtain that for n large enough

π (B(Pθ� , 2r)) ≤ exp (γ nβa1r) π (B(Pθ� , r)) for all r ≥ r�n

and consequently that rn(β, Pθ� ) ≤ r�n = κ�0k/n.
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