
Probability Theory and Related Fields (2022) 183:789–869
https://doi.org/10.1007/s00440-022-01137-w

Singular HJB equations with applications to KPZ on the real
line

Xicheng Zhang1,2 · Rongchan Zhu2 · Xiangchan Zhu3

Received: 21 July 2020 / Revised: 14 April 2022 / Accepted: 16 April 2022 /
Published online: 13 May 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper is devoted to studyingHamilton-Jacobi-Bellmanequationswith distribution-
valued coefficients,which are notwell-defined in the classical sense and are understood
by using the paracontrolled distribution method introduced in (Gubinelli et al. in
Forum Math Pi 3(6):1, 2015). By a new characterization of weighted Hölder spaces
and Zvonkin’s transformation we prove some new a priori estimates, and therefore
establish the global well-posedness for singular HJB equations. As applications, we
obtain global well-posedness in polynomial weighted Hölder spaces for KPZ type
equations on the real line, as well as modified KPZ equations for which the Cole–
Hopf transformation is not applicable.
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1 Introduction

Recall that the classical Kardar-Parisi-Zhang equation is given as follows:

L h := (∂t −�) h = (∂xh)
2 + ξ, h(0) = h0, (1.1)

where ξ is a Gaussian space-time white noise. This equation was introduced in [36]
as a model for the growth of interfaces represented by a height function h. In [36]
the authors predicted that under a 1–2–3 scaling the height function must converge
to a scale invariant random field called the KPZ fixed point (see [8, 41, 47] and
references therein). It is conjectured that the large scale behaviour of a large class
of interface growth models is described by the KPZ fixed point. These models are
said to belong to the KPZ universality class and this is referred to as the strong KPZ
universality conjecture. A weaker form of universality which is now called the weak
universality conjecture states that the KPZ equation is itself a universal description
of the fluctuations of weakly asymmetric growth models (see e.g. [3, 32, 34] and
references therein). Themain difficulty in solving Eq. (1.1) comes from the singularity
of space-time white noise and the nonlinearity, since (∂xh)2 cannot be understood in
the classical sense because ∂xh is not a function. This problem can be avoided by
using the Cole–Hopf transformation (see [2, 3, 36] and also [7, 28]). In fact, letting
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w := eh and formally using Itô’s formula, one sees that

Lw = wξ, w(0) = eh0 , (1.2)

which can be understood in Itô’s sense ([52]). In [2, 3] the solutions to (1.1) are
defined by logw, wherew is a positive solution to (1.2), now known as the Cole–Hopf
solution. It remained an open problem to clarify in what sense the Cole–Hopf solution
genuinely solves the original KPZ equation.

A revolutionary step was made by Hairer [26] using methods from rough path
theory. He was able to solve the classical KPZ equation on the torus. Later, Hairer
introduced the theory of regularity structures in [27] and Gubinelli, Imkeller and
Perkowski proposed the paracontrolled distribution method in [20, 23], which made it
possible to study a large class of PDEs driven by singular noises. The key idea of these
theories is to use the structure of the solution to give a meaning to the terms which are
not classically well-defined. These terms are well-defined with the help of renormal-
ization for the “enhanced noise”, i.e. the noise and the higher order terms appearing in
the decomposition of the equations.More precisely, (∂x h)2 can be formally understood
as a subtraction of an infinite correction term: (∂xh)2 −∞.

After this breakthrough, an avalanche of excitement and intriguing results followed,
proving local/global existence and uniqueness of solutions to a large class of singular
SPDEs, including the generalized parabolic Andersonmodel, the dynamical�4 model
and other interesting examples ([9, 29, 30, 55] and references therein). Very recently,
geometric stochastic heat equations with values in a Riemannian manifold M were
studied in [4] via regularity structures theory and in [11, 49] by Dirichlet forms, which
can bewritten in local coordinates as generalized coupledKPZ equations (see Sect. 6.1
for more details).

Up to now, most of the well-known works in the field of singular SPDEs are con-
sidered with the finite volume case. Since the large scale behavior of the KPZ equation
is related to the important KPZ fixed point (see [41] and below), it is natural to con-
sider the KPZ equation on the real line. In fact, new phenomena may occur in the
infinite volume setting. For example, in [11] it was shown that solutions to geometric
stochastic heat equations exhibit different long-time behavior compared to the finite
volume setting (see [49]). In general, space-time white noise in infinite volume stays
in weighted Besov spaces, as does the solution. Since these spaces are typically not
preserved by the nonlinearity, it obstructs the use of simple fixed point arguments for
constructing local solutions. The first attempt to overcome this difficulty was due to
Hairer and Labbé [29, 30] for the rough linear heat equation by introducing an expo-
nential weight depending on time. For nonlinear equations, suitable a priori estimates
in weighted spaces have been established for the dynamical�4

d model byMourrat and
Weber [43, 44] and Gubinelli and Hofmanová [18], which rely on the damping term
−φ3. In [45] a priori estimates and paracontrolled solutions to the KPZ equation on
the real line were obtained by using the Cole–Hopf transformation. Moreover, using
the probabilistic notion of energy solutions [21, 22, 24] or studying the associated
infinitesimal generator and Kolmogorov equation [25] it is possible to give a meaning
to the KPZ equation on R, but this is restricted to initial data which is absolutely
continuous w.r.t. the stationary measure. We mention that in [11] martingale solutions
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were constructed for geometric stochastic heat equations in R by using the Dirich-
let form approach, which relies on an integration by parts formula for the invariant
measure.

In the present paper we are concerned with the following KPZ type SPDEs on the
real line:

L h = “(∂xh)
2”+ g(h)+ ξ, h(0) = h0, (1.3)

L h = G(x)“(∂xh)
2”+ K (x)∂xh + ξ, h(0) = h0, (1.4)

where g,G, K are bounded Lipschitz functions, and ξ is a Gaussian space-time white
noise onR

+×R. Equations (1.3) and (1.4) are typical examples of singular SPDEs and
can be viewed as a simplified version of the generalized KPZ equations and geometric
stochastic heat equations in [4, 31]. The emphasis of this article is on deriving an a
priori estimate by PDE arguments and complements the local solution theory by ruling
out the possibility of finite time blow-up. As directly obtaining global well-posedness
to geometric stochastic heat equation by PDE arguments is still an open problem,
we study the simplified version (1.3) and (1.4). Note that neither equations can be
linearized by the Cole–Hopf transformation.

As mentioned above, suitable a priori estimates and global well-posedness have
been established for the dynamical �4

d model by using the strong damping term −φ3
(see [18, 43, 44]) and for theKPZ equation by theCole–Hopf transformation (see [25]).
The main aim of this paper is to obtain global well-posedness of singular SPDEs on
the whole space when the strong damping is not at hand and the Cole–Hopf transfor-
mation is not applicable. We obtain global well-posedness of Eqs. (1.3) and (1.4) by
suitable a priori estimates. By a renormalization and decomposition procedure, one
can reduce KPZ type SPDEs (1.3), (1.4) to the following singular Hamilton-Jacobi-
Bellman equation inR

d (abbreviated as HJB) together with some linear equations (see
Sect. 6 for more details):

L u := (∂t −�) u = H(∇u)+ b · ∇u + f , u(0) = ϕ, (1.5)

where H : R
d → R is a locally Lipschitz function of at most quadratic growth, and

for some α ∈ ( 12 , 23 ) and κ ∈ (0, 1),

b ∈ L∞T C−α(ρκ), f ∈ L∞T C−α(ρκ).

Here ρκ(x) := 〈x〉−κ := (1+ |x |2)−κ/2 and C−α(ρκ) stands for the weighted Hölder
(or Besov) space (see Sect. 2.1). We will first derive global well-posedness of Eq. (1.5)
under general assumptions on H (see Sect. 5) and then apply it to Eqs. (1.3) and (1.4)
in Sect. 6.

The difficulties that arrive in solving (1.3) and (1.4) also arise in a slightly different
form for (1.5). Concerning (1.5), since b, f ∈ L∞T C−α(ρκ) and α ∈ ( 12 , 23 ), the best
regularity space for u is L∞T C2−α by Schauder’s estimate. Compared to (1.3) and (1.4)
there is no difficulty defining H(∇u) for (1.5) since f is more regular than space-time
white noise. However, the transport term b · ∇u is not well-defined in the classical
sense.
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We need to use regularity structures theory or paracontrolled distributions to give
a meaning to Eq. (1.5). In this paper we use PDE arguments and paracontrolled dis-
tributions to obtain the global well-posedness of (1.5). Notice that for general H , we
cannot use the Cole–Hopf transformation to transform (1.5) into a linear equation. In
that sense our new approach is much more robust than the previous one.

Finally we also mention that the HJB equation appears originally in optimal control
theory, whose solution represents the value function of a stochastic optimal control
problem (see [17, 37, 53]). More precisely, consider the following stochastic optimal
control problem:

V (t, x) := inf
γ

E

[∫ T

t
L(s, Xγs (x), γ (s))ds + ψ(XγT (x))

]
, (1.6)

where the infimum is taken over all controls γ in some class of adapted processes, L
is the cost function, ψ is the final bequest value, and Xγt (x) = Xγt is the state process
which solves the following SDE:

dXγt = (b(t, Xγt )+ γt )dt +
√
2dWt , Xγ0 = x,

where W is a d-dimensional standard Brownian motion. Let

H(t, x, Q) := inf
v∈Rd

(v · Q + L(t, x, v)).

By the dynamical programming principle, V solves the following backward HJB
equation:

∂t V +�V + b · ∇x V + H(∇V ) = 0, V (T , x) = ψ(x).

Moreover, by the verification theorem, the optimal control γ is then given by
∇V (t, X∗

t ), where X∗
t solves the following SDE:

dX∗
t = (b(t, X∗

t )+∇V (t, X∗
t ))dt +

√
2dWt , X∗

0 = x .

In particular, the study of singular HJB equations provides a possibility to study the
singular stochastic control problem. By singular, wemean that bmay be a distribution.
Recently, there is some interest in studying the control problem with rough drift b (see
[42] and the reference therein). Notice that our conditions on b are automatically
satisfied for b ∈ L∞T C−β(ρκ) with β ∈ (0, 12 ). Thus our main results can be applied
to the SDEs in [42], which may give applications to the stochastic control problem
considered in [42] and the references therein. For more singular b ∈ L∞T C−α(ρκ)
with α ∈ ( 12 ,

2
3 ), it could be viewed as a random environment and our condition

allows for spatial white noise in one dimension, which may be derived from averages
of a sequence of i.i.d random variables (see [46, Remark 2.2]). We also mention
that the solution to the classical KPZ equation can be viewed as a stochastic control
problem with singular b ∈ L∞T C−α(ρκ), α ∈ ( 12 , 23 ) (see [23, 45]), where the solution
is interpreted as a value function defined as in (1.6).
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1.1 Main results

As mentioned above, we concentrate on (1.5) first and to define b · ∇u in (1.5) we
need to perform renormalizations by probabilistic calculations. It is not the aim of this
paper to discuss the renormalization terms as this has been done extensively (see e.g.
[23, 26, 45]). For the main result, we suppose that b ◦ ∇I b ∈ L∞T C1−2α(ρ2κ) and
b◦∇I f ∈ L∞T C1−2α(ρ2κ) are well defined, whereI := L −1, i.e. (b, f ) ∈ B

α
T (ρκ)

(see Sect. 2.3 and Sect. 2.4), which in general can be realized by a probabilistic
calculation (see Sec. 6 for examples). In the following, we are mainly concerned with
the analysis of the deterministic system under the above assumptions.

The following result is a special case of themain Theorem5.1, where amore general
condition on the nonlinear term H is given (see Remark 5.2 for examples of H ).

Theorem 1.1 Let α ∈ ( 12 , 23 ) and κ be small enough so that δ := 2( 9
2−3α + 1)κ < 1,

ᾱ := α + κ1/4 ∈ ( 12 , 23 ). Suppose that for some c > 0,

|∂QH(Q)| ≤ c(1+ |Q|).

If d ≥ 2, we also suppose H has sub-quadratic growth, i.e., for some ζ ∈ [0, 2),

|H(Q)| ≤ c(|Q|ζ + 1).

Then for any (b, f ) ∈ B
α
T (ρκ) and initial value ϕ ∈ C1+α+ε(ρεδ), where ε ∈ (0, 1),

there exists a unique paracontrolled solution u ∈ S
2−ᾱ
T (ρη) to the HJB equation (1.5)

in the sense of (5.4) and (5.5) below, where η = η(κ, α, ζ ) < 1−α
2 converges to zero

as κ → 0.

As the main application, we obtain global well-posedness of (1.3) and (1.4). The
regularity of the space-time white noise ξ is more rough than the coefficient f given
in (1.5). To apply Theorem 1.1 we need to introduce some random distributions and
use the Da Prato-Debussche trick to reduce (1.3) to (1.5) (see e.g. [13]). This is the

usual pathwise approach to the KPZ equation (cf. [23, 26, 45]). Let Y and Y ,Y be
random distributions defined in Sect. 6.

Theorem 1.2 Let g : R → R be bounded, Lipschitz continuous, and κ > 0 be small

enough, δ := 40κ < 1. For h0 = Y (0) + h̃(0) with h̃(0) ∈ C
3
2+ε+γ (ρεδ), where

ε ∈ (0, 1) and 0 < γ < 1/4, there exists a unique paracontrolled solution to (1.3) in

the sense that h− Y − Y − Y := h̃ ∈ S

3
2−κ1/4−γ
T (ρη) is the unique paracontrolled

solution to (6.4) with 2(κ1/4 + 80κ) < η < 1/4.

This result improves the weight for the solution space obtained in [45] for g ≡ 0
and is proved in Theorem 6.3. As a further application, we also establish global well-
posedness of Eq. (1.4), which is presented in Theorem 6.7.
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1.2 Sketch of proofs and structure of the paper

In Sect. 2 we first introduce the basic notations and the spaces used throughout the
paper. The regularization effect of heat semigroups and paracontrolled calculus are
recalled in Sects. 2.2 and 2.3, respectively. The conditions for the coefficient (b, f )
are discussed in Sect. 2.4.

The bulk of our argument is contained in Sections 3-5 andwenowproceed to explain
the strategy. We decompose (1.5) into the following two equations: u = u1 + u2

(∂t −�) u1 = b · ∇u1 + f , (1.7)

(∂t −�) u2 = b · ∇u2 + H(∇u1 + ∇u2). (1.8)

In Sect. 3 we first establish Schauder’s estimate for (1.7) with sublinear weights (see
Theorem 3.7). This solves the conjecture proposed in [45, Remark 1.1]. The difficulty
to study (1.7) lies in the drift b living in aweightedBesov space,which prevents us from
using a fixed point argument in the same space. It is possible to use the technique in [30]
to solve the problem, by which the solution stays in a Besov space with exponential
weights. This seems not easy to deduce a uniform L∞(ρδ) estimate for the solution
to (1.8). In Sect. 3 we develop a new technique to establish a sublinear growth bound
for the solutions to equation (1.7). The key idea is to use a new characterization of
the weighted Hölder space (see Lemma 3.8) to localize the problem with coefficients
in unweighted Besov spaces, for which we obtain the Schauder estimate depends
polynomially on the norm of the coefficients compared to the exponential dependence
by the usual Gronwall type argument. To this end, we add a new damping term λu1
to (1.7) and use the classical maximum principle. We also mention that Eq. (1.7) on
the torus has been studied in [10], where the difficulty with weights does not appear.
In a subsequent work [35], we also apply the localization technique developed in this
paper to singular kinetic equations.

In Sects. 4 and 5, we study (1.8). Compared to (1.5) the distribution-valued f
becomes function-valued. To treat the distribution-valued transport term b · ∇u, we
use Zvonkin’s transformation to kill the singular part and transform (1.8) into the
following general HJB equation (see Sect. 5)

∂tv = tr(a · ∇2v)+ B · ∇v + H̃(v,∇v), v(0) = ϕ, (1.9)

where the matrix a ∈ L∞T C1−α is symmetric and uniformly elliptic, B ∈ L
∞
T (ρδ1) for

some δ1 ∈ (0, 1].
More precisely, assume that u solves

(∂t −�+ λ)u = b · (∇u+ I). (1.10)

If �(t, x) = x + u(t, x) is a diffeomorphism in the x variable, then u2(t,�−1(t, x))
will solve (1.9). All the coefficients of (1.9) are function-valued with the cost that (1.9)
is given in a non-divergence form PDE. This procedure is usually called Zvonkin’s
transformation, which was originally used for treating SDEs with irregular drifts (see

123



796 X. Zhang et al.

Equation (1.5)
containing b, f and nonlinear term H

Equation (1.8)
without f

Equation (1.7)
without nonlinear term

Section 4
Well-posedness of (1.9)
every term is a function

Section 3
Well-posedness of (1.7)

Solution: sublinear growth

Section 5
Well-posedness of (1.5)

Decomposition

Zvonkin’s transformlocalization

Fig. 1 Steps of solving (1.5)

[56]). However, due to the presence of the weights, this argument needs to be refined.
To this end, we use [18, Lemma 2.6] to decompose b into a singular term b> in
the unweighted Besov space and a function-valued term b≤ with polynomial growth.
Then we use Zvonkin’s transformation to kill the singular part b> by subtracting a new
term (see Remark 5.4 for more details on this point). The idea comes from Zvonkin’s
transformation for SDEs, but our Zvonkin’s transformation is different from the normal
one. To the best of our knowledge, it is the first time to use Zvonkin’s transformation
to deal with the nonlinear PDE (1.8) with singular drift b.

Section 4 is devoted to the global well-posedness of Eq. (1.9) (see Theorem 4.2).We
first establish a maximum principle in Sect. 4.1 with the help of Feymann-Kac’s for-
mula. For the subcritical case,1 the global estimate follows from the L∞(ρδ)-estimate
and the L p theory of PDEs. For the critical case, the proof is more involved. In this
case by taking the spatial derivative on both sides of (1.9), we obtain a divergence
PDE, which only holds for d = 1. Then the L∞(ρδ)-bound and energy estimate yield
the H

2,p
T (ρη)-estimate of the solution to Eq. (1.9). By using this and Zvonkin’s trans-

formation we finally establish a priori global estimates for solutions to (1.8) as well
as the well-posedness of (1.5) in Sect. 5.

In the above Fig. 1, we outline the main idea and steps of solving Eq. (1.5).
In Sect. 6 we apply our main result to the KPZ type Eqs. (1.3) and (1.4). Finally, in

Appendix 1, we prove the uniqueness of solutions to (1.5) based on the exponential
weight approach developed in [30]. Appendix 1 is then devoted to an exponential
moment estimate for SDEs used in Sect. 4.

1 We refer to Sect. 4 for the meaning of subcritical and critical, which is different from the meaning in [27].
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1.3 Conventions and notations

Throughout this paper, we useC or cwith or without subscripts to denote an unrelated
constant, whose value may change in different places. We also use := as a way of
definition. By A �C B and A �C B or simply A � B and A � B, we mean that for
some constant C ≥ 1,

A ≤ CB, C−1B ≤ A ≤ CB.

For convenience, we collect some commonly used notations and definitions below.

C α(ρ): weighted Hölder space (Def. 2.3) C α := C α(1)

Bαp,q (ρ): weighted Besov space (Def. 2.5) Bαp,q := Bαp,q (1)

Cα(ρ): weighted Hölder-Zygmund space (Def. 2.5) Cα := Cα(1)

S
α
T (ρ): Paracontrolled solution space (2.3) S

α
T := S

α
T (1)

B
α
T (ρ): Space of renormalized pair (Def. 2.14) B

α
T := B

α
T (1)

f ≺ g, f � g, f ◦ g: Paraproduct (Sec. 2.3) f � g := f � g + f ◦ g
f ≺≺ g: Modified paraproduct (Sec. 2.3) Lλ := ∂t −�+ λ

com( f , g, h) := ( f ≺ g) ◦ h − f (g ◦ h) (Sec. 2.3) Iλ := (∂t −�+ λ)−1

V> f , V≤ f : Localization operator (Sec. 2.3) L := L0, I := I0

Pt f (x) := (4π t)−d/2 ∫
Rd f (y)e−|x−y|2/(4t)dy Br := {x : |x | ≤ r}

I t
s f (x) := ∫ ts Pt−r f (r , x)dr 〈x〉 := (1+ |x |2)1/2

Commutator: [A1,A2] f := A1(A2 f )−A2(A1 f ) N0 := N ∪ {0}

2 Preliminaries

2.1 Weighted Besov spaces

In this section we introduce the weighted Besov spaces which will be used in the
sequel. Recall the following definition of admissible weight introduced in [51].

Definition 2.1 A C∞-smooth function ρ : R
d → (0,∞) is called an admissible

weight if for each j ∈ N, there is a constant C j > 0 such that

|∇ jρ(x)| ≤ C jρ(x), ∀x ∈ R
d ,

and for some C, β > 0,

ρ(x) ≤ Cρ(y)(1+ |x − y|)β, ∀x, y ∈ R
d .

The set of all the admissible weights is denoted by W .

123
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Example 2.2 Let ρδ(x) = 〈x〉−δ = (1+ |x |2)−δ/2, where δ ∈ R. It is easy to see that
ρδ ∈ W . Such a weight is called polynomial weight.

We introduce the following weighted Hölder space for later use.

Definition 2.3 (Weighted Hölder spaces) Let ρ ∈ W and k ∈ N0. For α ∈ [0, 1), we
define the weighted Hölder space C k+α(ρ) by the norm

‖ f ‖C k+α(ρ) :=
k∑
j=0

‖∇ j (ρ f )‖L∞ + sup
x �=y

|∇k(ρ f )(x)−∇k(ρ f )(y)|
|x − y|α <∞.

Remark 2.4 Note that the k-order derivative of a function in C k(ρ) is not necessarily
continuous. By the properties of admissible weights and elementary calculations, it is
easy to see that for some C = C(d, ρ) ≥ 1,

‖ f ‖C k+α(ρ) �C

k∑
j=0

‖ρ∇ j f ‖L∞ + sup
|x−y|≤1

|(ρ∇k f )(x)− (ρ∇k f )(y)|
|x − y|α

�C

k∑
j=0

‖ρ∇ j f ‖L∞ + sup
|x−y|≤1

ρ(x)|∇k f (x)−∇k f (y)|
|x − y|α . (2.1)

Let S(Rd) be the space of Schwartz functions on R
d and S ′(Rd) the space of

tempered distributions, which is the dual space of S(Rd). The Fourier transform of
f ∈ S ′(Rd) is defined through

f̂ (z) := (2π)−d/2
∫
Rd

f (x)e−i z·xdx .

For j ≥ −1, let � j be the usual block operator used in the Littlewood-Paley decom-
position so that for any f ∈ S ′(Rd) (see [1]),

� j f ∈ S, supp(�̂ j f ) ⊂ B2 j+2/3 \ B2 j−1 , j ∈ N0,

and

supp(�̂−1 f ) ⊂ B1, f =
∑
j≥−1

� j f .

We also introduce the following weighted Besov spaces (cf. [51]):

Definition 2.5 Let ρ ∈ W and p, q ∈ [1,∞] and α ∈ R. The weighted Besov space
Bαp,q(ρ) is defined by

Bαp,q(ρ) :=

⎧⎪⎨
⎪⎩ f ∈ S ′(Rd) : ‖ f ‖Bαp,q (ρ) :=

⎛
⎝∑

j

2α jq‖� j f ‖qL p(ρ)

⎞
⎠

1/q

<∞

⎫⎪⎬
⎪⎭ ,

123



Singular HJB equations with applications to KPZ 799

where

‖ f ‖L p(ρ) := ‖ρ f ‖p :=
(∫

Rd
|ρ(x) f (x)|pdx

)1/p
.

The weighted Hölder-Zygmund space is defined by

Cα(ρ) := Bα∞,∞(ρ).

Remark 2.6 Let ρ ∈ W . For any 0 < β /∈ N and α ∈ R, p, q ∈ [1,∞], it is well
known that (see [51, Theorem 6.5, Theorem 6.9], [1, page99])

‖ f ‖Cβ(ρ) � ‖ f ‖C β(ρ), ‖ f ‖Bαp,q (ρ) � ‖ f ρ‖Bαp,q . (2.2)

For T > 0, α ∈ R and an admissible weight ρ ∈ W , let L∞T Cα(ρ) be the space of
space-time distributions with finite norm

‖ f ‖L∞T Cα(ρ) := sup
0≤t≤T

‖ f (t)‖Cα(ρ) <∞.

Forα ∈ (0, 1), we denote byCα
T L

∞(ρ) the space ofα-Hölder continuousmappings
f : [0, T ] → L∞(ρ) with finite norm

‖ f ‖CαT L∞(ρ) := sup
0≤t≤T

‖ f (t)‖L∞(ρ) + sup
0≤s �=t≤T

‖ f (t)− f (s)‖L∞(ρ)
|t − s|α .

The following space will be used frequently: for α ∈ (0, 2),

S
α
T (ρ) :=

{
f : ‖ f ‖SαT (ρ) := ‖ f ‖L∞T Cα(ρ) + ‖ f ‖

Cα/2T L∞(ρ) <∞
}
. (2.3)

We have the following simple fact (see [45, Lemma 2.11]): for α ∈ (0, 1),

‖∇ f ‖SαT (ρ) � ‖ f ‖
S
α+1
T (ρ)

. (2.4)

For p ∈ [1,∞], k ∈ N0 and T > 0, we also need the following Sobolev space:

H
k,p
T :=

{
f : ‖ f ‖

H
k,p
T

:= ‖ f ‖
L
p
T
+ ‖∇k f ‖

L
p
T
<∞

}
,

where, with the usual modification when p = ∞,

‖ f ‖
L
p
T
:=
(∫ T

0

∫
Rd

| f (t, x)|pdxdt
) 1

p

.
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800 X. Zhang et al.

For an admissible weight ρ, we also introduce the weighted Sobolev space

H
k,p
T (ρ) :=

{
f : ‖ f ‖

H
k,p
T (ρ)

:= ‖ f ρ‖
H
k,p
T
<∞

}
,

and local space H
k,p
loc :

H
k,p
loc :=

{
f : f χR ∈ H

k,p
T , ∀T , R > 0

}
,

where χR(x) = χ(x/R) and χ ∈ C∞
c (R

d) with χ = 1 on B1.
The following interpolation inequality will be used frequently, which is an easy

consequence of Hölder’s inequality and the corresponding definition. (see [19, Lemma
A.3] for a discrete version).

Lemma 2.7 Let ρ ∈ W and θ ∈ [0, 1]. Let α, α1, α2 ∈ R and δ, δ1, δ2 ∈ R satisfy

δ = θδ1 + (1− θ)δ2, α = θα1 + (1− θ)α2,

and p, q, p1, q1, p2, q2 ∈ [1,∞] satisfy
1
p = θ

p1
+ 1−θ

p2
, 1

q = θ
q1
+ 1−θ

q2
.

Then we have

‖ f ‖Bαp,q (ρδ) ≤ ‖ f ‖θ
B
α1
p1,q1 (ρ

δ1 )
‖ f ‖1−θ

B
α2
p2,q2 (ρ

δ2 )
. (2.5)

Moreover, for any 0 < α < β < 2 with θ = α/β, we also have

‖ f ‖SαT (ρδ) � ‖ f ‖θ
S
β
T (ρ

δ1 )
‖ f ‖1−θ

L
∞
T (ρ

δ2 )
. (2.6)

2.2 Estimates of Gaussian heat semigroups

We proceed with the Schauder estimate for the heat semigroup. For t > 0, let Pt be
the Gaussian heat semigroup defined by

Pt f (x) := (4π t)−d/2
∫
Rd

e−|x−y|2/(4t) f (y)dy.

Let ρ be an admissible weight. It is well know that there is a constantC = C(ρ, d) > 0
such that (see [43, Lemma 2.10])

‖� j Pt f ‖L∞(ρ) �C e−22 j t‖� j f ‖L∞(ρ), j ≥ 0, t ≥ 0. (2.7)

The following lemma provides some quantified estimates for the Gaussian heat semi-
group in weighted Hölder spaces.
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Singular HJB equations with applications to KPZ 801

Lemma 2.8 Let ρ be an admissible weight and T > 0.

(i) For any θ > 0 and α ∈ R, there is a constant C = C(ρ, d, α, θ, T ) > 0 such
that for all t ∈ (0, T ],

‖Pt f ‖Cθ+α(ρ) �C t−θ/2‖ f ‖Cα(ρ). (2.8)

(ii) For any m ∈ N0 and θ < m, there is a constant C = C(ρ, d,m, θ, T ) > 0 such
that for all t ∈ (0, T ],

‖∇m Pt f ‖L∞(ρ) �C t (θ−m)/2‖ f ‖Cθ (ρ). (2.9)

(iii) For any 0 < θ < 2, there is a constant C = C(ρ, d, θ, T ) > 0 such that for all
t ∈ [0, T ],

‖Pt f − f ‖L∞(ρ) �C tθ/2‖ f ‖Cθ (ρ). (2.10)

Proof (i) By the definition and (2.7), we have

‖Pt f ‖Cθ+α(ρ) = sup
j≥−1

2(θ+α) j‖� j Pt f ‖L∞(ρ)

� sup
j≥0

2(θ+α) je−22 j t‖� j f ‖L∞(ρ) + ‖�−1Pt f ‖L∞(ρ)

� sup
j≥0

2θ je−22 j t‖ f ‖Cα(ρ) + ‖ f ‖Cα(ρ) � t−θ/2‖ f ‖Cα(ρ).

(ii) For m ∈ N0 and θ < m, by (2.7) we have

‖∇m Pt f ‖L∞(ρ) ≤
∑
j≥−1

‖∇m� j Pt f ‖L∞(ρ)

�
∑
j≥0

2mje−22 j t‖� j f ‖L∞(ρ) + ‖�−1 f ‖L∞(ρ)

�
∑
j≥0
(2mje−22 j t2−θ j )‖ f ‖Cθ (ρ) + ‖ f ‖Cθ (ρ) �T t (θ−m)/2‖ f ‖Cθ (ρ).

(iii) By (2.9), we have

‖Pt f − f ‖L∞(ρ) =
∥∥∥∥
∫ t

0
�Ps f ds

∥∥∥∥
L∞(ρ)

�
∫ t

0
s−1+θ/2‖ f ‖Cθ (ρ)ds � tθ/2‖ f ‖Cθ (ρ).

The proof is complete. ��
For given λ ≥ 0 and f ∈ L∞(R+; L∞(Rd)), we consider the following heat

equation:

Lλu := (∂t −�+ λ)u = f , u(0) = 0.
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802 X. Zhang et al.

The unique solution to this equation is given by

u(t, x) =
∫ t

0
e−λ(t−s)Pt−s f (s, x)ds =: Iλ f (t, x).

In other words, Iλ is the inverse of Lλ.
The following Schauder estimate is well known for q = ∞ and θ = 2 (see [18]).

Here we spell out how the implicit constants depend on λ.

Lemma 2.9 (Schauder estimates in weighted spaces) Let ρ ∈ W and

α ∈ (0, 1], θ ∈ (α, 2].

For any q ∈ [ 2
2−θ ,∞], T > 0, there is a constant C = C(ρ, d, α, θ, q, T ) > 0 such

that for all λ ≥ 0 and f ∈ Lq
TC

−α(ρ),

‖Iλ f ‖Sθ−αT (ρ)
�C (λ ∨ 1)

θ
2+ 1

q−1‖ f ‖Lq
TC

−α(ρ). (2.11)

Proof Let q ∈ [ 2
2−θ ,∞] and 1

p + 1
q = 1. For t ∈ (0, T ], by (2.7) and Hölder’s

inequality, we have for j ≥ 0

2 j(θ−α)‖� jIλ f (t)‖L∞(ρ) � 2 j(θ−α)
∫ t

0
e−(λ+22 j )(t−s)‖� j f (s)‖L∞(ρ)ds

� 2 jθ
(∫ t

0
e−p(λ+22 j )(t−s)ds

) 1
p
(∫ t

0
‖ f (s)‖qC−α(ρ)ds

) 1
q

� 2 jθ
(∫ t

0
e−p(λ+22 j )sds

) 1
p ‖ f ‖Lq

TC
−α(ρ)

� 2 jθ (22 j + λ)
− 1

p ‖ f ‖Lq
TC

−α(ρ) � (λ ∨ 1)
θ
2− 1

p ‖ f ‖Lq
TC

−α(ρ),

and

‖�−1Iλ f (t)‖L∞(ρ) �
∫ t

0
e−λ(t−s)‖ f (s)‖C−α(ρ)ds

�
( ∫ t

0
e−λp(t−s)ds

) 1
p ‖ f ‖Lq

TC
−α(ρ)

� (λ ∨ 1)−
1
p ‖ f ‖Lq

TC
−α(ρ),

which implies by the definition of Besov spaces that

‖Iλ f ‖L∞T Cθ−α(ρ) �C (λ ∨ 1)
θ
2+ 1

q−1‖ f ‖Lq
TC

−α(ρ). (2.12)
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On the other hand, let u = Iλ f . For 0 ≤ t1 < t2 ≤ T , we have

u(t2)− u(t1) =
∫ t1

0
(e−λ(t2−s) − e−λ(t1−s))Pt2−s f (s)ds

+ (Pt2−t1 − I )Iλ f (t1)+
∫ t2

t1
e−λ(t2−s)Pt2−s f (s)ds

=: I1 + I2 + I3.

For I1, by (2.8) and Hölder’s inequality, we have

‖I1‖L∞(ρ) ≤ |e−λ(t2−t1) − 1|
∫ t1

0
e−λ(t1−s)‖Pt2−s f (s)‖L∞(ρ)ds

�
(
(λ(t2 − t1)) ∧ 1

) ∫ t1

0
e−λ(t1−s)(t2 − s)−

α
2 ‖ f (s)‖C−α(ρ)ds

≤ (λ(t2 − t1))
θ
2 (t2 − t1)

− α
2

(∫ t1

0
e−λ(t1−s)pds

)1/p
‖ f ‖Lq

TC
−α(ρ)

� (t2 − t1)
θ−α
2 λ

θ
2− 1

p ‖ f ‖Lq
TC

−α(ρ).

For I2, by (2.10) and (2.12) we have

‖I2‖L∞(ρ) � (t2 − t1)
θ−α
2 ‖Iλ f ‖L∞T Cθ−α(ρ)

� (t2 − t1)
θ−α
2 (λ ∨ 1)

θ
2− 1

p ‖ f ‖Lq
TC

−α(ρ).

For I3, by (2.9) and the change of variable, we have

‖I3‖L∞(ρ) � λ
α
2− 1

p

(∫ λ(t2−t1)

0
e−sps−

α p
2 ds

) 1
p

‖ f ‖Lq
TC

−α(ρ)

� (t2 − t1)
θ−α
2 λ

−1+ θ
2+ 1

q ‖ f ‖Lq
TC

−α(ρ),

where we used e−sps−
α p
2 ≤ s

(θ−α)p
2 −1 for all s > 0. Therefore,

‖Iλ f ‖C(θ−α)/2T L∞(ρ) �C (λ ∨ 1)
θ
2+ 1

q−1‖ f ‖Lq
TC

−α(ρ), (2.13)

which together with (2.12) yields (2.11). ��

2.3 Paracontrolled calculus

In this subsection we recall some basic ingredients in the paracontrolled calculus
developed by Bony [5] and [20]. The first important fact is that the product f g of two
distributions f ∈ Cα and g ∈ Cβ is well defined if and only if α + β > 0. In terms
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of Littlewood-Paley’s block operator� j , the product f g of two distributions f and g
can be formally decomposed as

f g = f ≺ g + f ◦ g + f � g,

where

f ≺ g = g � f :=
∑
j≥−1

∑
i< j−1

�i f� j g, f ◦ g :=
∑

|i− j |≤1
�i f� j g.

In the following we collect some important estimates from [18] about the paraprod-
ucts in weighted Besov spaces, that will be used below.

Lemma 2.10 Let ρ1, ρ2 be two admissible weights. We have for any β ∈ R,

‖ f ≺ g‖Cβ(ρ1ρ2) � ‖ f ‖L∞(ρ1)‖g‖Cβ(ρ2), (2.14)

and for any α < 0 and β ∈ R,

‖ f ≺ g‖Cα+β(ρ1ρ2) � ‖ f ‖Cα(ρ1)‖g‖Cβ(ρ2). (2.15)

Moreover, for any α, β ∈ R with α + β > 0,

‖ f ◦ g‖Cα+β(ρ1ρ2) � ‖ f ‖Cα(ρ1)‖g‖Cβ(ρ2). (2.16)

In particular, if α + β > 0, then

‖ f g‖Cα∧β(ρ1ρ2) � ‖ f ‖Cα(ρ1)‖g‖Cβ(ρ2). (2.17)

Proof See [18, Lemma 2.14]. ��
Lemma 2.11 Let ρ1, ρ2, ρ3 be three admissible weights. For anyα ∈ (0, 1) andβ, γ ∈
R with α+ β + γ > 0 and β + γ < 0, there exists a bounded trilinear operator com
on Cα(ρ1)× Cβ(ρ2)× Cγ (ρ3) such that

‖com( f , g, h)‖Cα+β+γ (ρ1ρ2ρ3) � ‖ f ‖Cα(ρ1)‖g‖Cβ(ρ2)‖h‖Cγ (ρ3), (2.18)

where for smooth functions f , g, h,

com( f , g, h) := ( f ≺ g) ◦ h − f (g ◦ h).

Proof See [18, Lemma 2.16]. ��
Moreover, we will make use of the time-mollified paraproducts as introduced in
[20, Section 5]. Let Q : R → R+ be a smooth function with support in [−1, 1] and
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∫
R
Q(s)ds = 1. For T > 0 and j ≥ −1, we define an operator Q j : L∞T Cα(ρ) →

L∞T Cα(ρ) by

Q j f (t) :=
∫
R

22 j Q(22 j (t − s)) f ((s ∧ T ) ∨ 0)ds,

and the modified paraproduct of f , g ∈ L∞T Cα(ρ) by

f ≺≺ g :=
∑
j≥−1

(S j−1Q j f )� j g with S j f =
∑

i≤ j−1

�i f .

Note that for α < 0, β ∈ R and ρ1, ρ2 ∈ W ,

‖ f ≺≺ g‖L∞T Cα+β(ρ1ρ2) � ‖ f ‖L∞T Cα(ρ1)‖g‖L∞T Cβ(ρ2). (2.19)

Lemma 2.12 Let ρ1, ρ2 be two admissible weights and T > 0. For any α ∈ (0, 1) and
β ∈ R, there is a constant C = C(ρ1, ρ2, d, α, β) > 0 such that for all λ ≥ 0

∥∥[Lλ, f ≺≺]g
∥∥
L∞T Cα+β−2(ρ1ρ2)

�C ‖ f ‖SαT (ρ1)‖g‖L∞T Cβ(ρ2), (2.20)

and

‖ f ≺ g − f ≺≺ g‖L∞T Cα+β(ρ1ρ2) �C ‖ f ‖
Cα/2T L∞(ρ1)‖g‖L∞T Cβ(ρ2). (2.21)

Moreover, for any ε > 0, we also have for some C = C(ε, ρ1, ρ2, d, α, β, T ),

‖[∇Iλ, f ≺]g‖L∞T Cα+β+1−ε(ρ1ρ2) �C ‖ f ‖SαT (ρ1)‖g‖L∞T Cβ(ρ2). (2.22)

Proof The estimates (2.20) and (2.21) can be found in [18, Lemma 2.17]. We only
prove (2.22). By definition, we have

[∇Iλ, f ≺]g(t)
=
∫ t

0
e−λ(t−s)Pt−s∇( f (s) ≺ g(s))ds − f (t) ≺

∫ t

0
e−λ(t−s)∇Pt−sg(s)ds

=
∫ t

0
e−λ(t−s)Pt−s(∇ f (s) ≺ g(s))ds +

∫ t

0
e−λ(t−s)[Pt−s, f (s) ≺]∇g(s)ds

+
∫ t

0
e−λ(t−s)( f (s)− f (t)) ≺ Pt−s∇g(s)ds =: I1(t)+ I2(t)+ I3(t).

For I1, by (2.12) with θ = 2 and q = ∞ and (2.15), we have

‖I1(t)‖L∞T Cα+β+1(ρ1ρ2)
� ‖∇ f ≺ g‖L∞T Cα+β−1(ρ1ρ2)

� ‖ f ‖L∞T Cα(ρ1)‖g‖L∞T Cβ(ρ2).
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For I2, by a modification of [9, Lemma A.1] we have by e−λ(t−s) ≤ 1

‖I2(t)‖Cα+β+1−ε(ρ1ρ2) �
∫ t

0
(t − s)−1+ ε

2 ‖ f (s)‖Cα(ρ1)‖g(s)‖Cβ(ρ2)ds
� ‖ f ‖L∞T Cα(ρ1)‖g‖L∞T Cβ(ρ2).

For I3, by (2.14) and (2.8) we have by e−λ(t−s) ≤ 1

‖I3(t)‖Cα+β+1−ε(ρ1ρ2) �
∫ t

0
‖ f (s)− f (t)‖L∞(ρ1)‖∇Pt−sg(s)‖Cα+β+1−ε(ρ2)ds

� ‖ f ‖
Cα/2T L∞(ρ1)‖g‖L∞T Cβ(ρ2)

∫ t

0
(t − s)−1+ ε

2 ds.

The proof is complete. ��
Finally we recall the localization operators from [18]. Let

∑
k≥−1wk = 1 be a

smooth dyadic partition of unity on R
d , where w−1 is supported in a ball containing

zero and there exists an annulus A such that for each k ≥ 0, wk is supported on the
annulus 2kA . Let (vm)m≥−1 be a smooth dyadic partition of unity on [0,∞) such
that v−1 is supported in a ball containing zero and for each m ≥ 0, vm is supported
on the annulus of size 2m . For a given sequence (Lk,m)k,m≥−1, we define localization
operators V>,V≤ as in [18]

V> f (t, x) =
∑
k,m

wk(x)vm(t)
∑

j>Lk,m

� j f (t, ·)(x),

V≤ f (t, x) =
∑
k,m

wk(x)vm(t)
∑

j≤Lk,m

� j f (t, ·)(x).
(2.23)

Lemma 2.13 Let ρ be an admissible weight. For given L > 0, T > 0, there exists a
(universal) choice of parameters (Lk,m)k,m≥−1 such that for all α, β, κ ∈ R

and γ, δ > 0

‖V> f ‖L∞T C−α−δ(ρβ−δ) � 2−δL‖ f ‖L∞T C−α(ρβ),

‖V≤ f ‖L∞T Cγ−α(ρβ+γ ) � 2γ L‖ f ‖L∞T C−α(ρβ),

where the proportional constant depends on α, β, δ, γ but is independent of f .

Proof The proof is exactly the same as in [18, Lemma 2.6] although α > 0 is required
therein. ��

2.4 Renormalized pairs

In this section we introduce the renormalized pairs, which correspond to the stochastic
objects in the theory of singular SPDEs. Fix α ∈ ( 12 ,

2
3 ) and an admissible weight
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ρ ∈ W . For T > 0, let b = (b1, · · · , bd) and f be (d+1)-distributions in L∞T C−α(ρ).
First of all, we introduce two quantities for later use

�bT (ρ) := sup
λ≥0

‖b ◦ ∇Iλb‖L∞T C1−2α(ρ2) + ‖b‖2L∞T C−α(ρ) + 1, (2.24)

and for q ∈ [1,∞],

A
b, f
T ,q(ρ) := sup

λ≥0
‖b ◦ ∇Iλ f ‖Lq

TC
1−2α(ρ2) + (‖b‖L∞T C−α(ρ) + 1)‖ f ‖Lq

TC
−α(ρ).

(2.25)

By (2.16), except for α < 1
2 , in general, b(t) ◦ ∇Iλ f (t) is not well-defined since by

Schauder’s estimate, we only have (see Lemma 2.9)

∇Iλ f ∈ L∞T C1−α(ρ).

However, in the probabilistic sense, it is possible to give a meaning for b ◦ ∇Iλ f
when b, f belong to the chaos of Gaussian noise (see Sect. 6 below). This motivates
us to introduce the following notion.

Definition 2.14 We call the above (b, f ) ∈ L∞T C−α(ρ) a renormalized pair if there

exist bn, fn ∈ L∞T C∞(ρ) with supn∈N
(
�
bn
T (ρ) + A

bn , fn
T ,∞ (ρ)

)
< ∞ and such that

(bn, fn) converges to (b, f ) in L∞T C−α(ρ). Moreover, for each λ ≥ 0, there are
functions gλ, hλ ∈ L∞T C1−2α(ρ2) such that

lim
n→∞‖bn ◦ ∇Iλ fn − gλ‖L∞T C1−2α(ρ2) = 0 (2.26)

and

lim
n→∞‖bn ◦ ∇Iλbn − hλ‖L∞T C1−2α(ρ2) = 0. (2.27)

For notational convenience, we shall write

gλ =: b ◦ ∇Iλ f , hλ =: b ◦ ∇Iλb.

The set of all the above renormalized pair is denoted by B
α
T (ρ).

Remark 2.15 (i) Let b ∈ L
∞
T (ρ) and f ∈ L∞T C−α(ρ). Define bn(t, x) := b(t, ·) ∗

�n(x) and fn(t, x) := f (t, ·) ∗ �n(x) with �n being the usual mollifier. By Definition
2.14 and (2.16), it is easy to see that (b, f ) ∈ B

α
T (ρ). Moreover, if (b, f ) ∈ B

α
T (ρ)

and b′ ∈ L
∞
T (ρ), then (b + b′, f ) ∈ B

α
T (ρ).

(ii) To make the convergence in (2.26) and (2.27) hold, we need to subtract some
terms containing renormalization constants in the approximation bn ◦ ∇Iλ fn and
bn ◦ ∇Iλbn . In Definition 2.14, we suppose that the renormalization constants are
zero for simplicity. Indeed in concrete examples we can choose symmetric mollifiers
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808 X. Zhang et al.

for approximations, which make the renormalization constants vanish (see Sect. 6).
In general we only use the uniform bounds supn∈N

(
�
bn
T (ρ) + A

bn , fn
T ,∞ (ρ)

)
< ∞ and

the convergence in (2.26), (2.27). In particular, the renormalization constants do not
affect our analysis and calculations.

An integration by parts allows to eliminate the parameter λ in (2.26) and (2.27) as
shown in the following lemma, where the right hand side can be estimated by some
probabilistic calculations (see Sect. 6).

Lemma 2.16 Let I t
s ( f ) =

∫ t
s Pt−r f (r)dr . For any t > 0, we have

sup
λ≥0

‖b(t) ◦ ∇Iλ f (t)‖C1−2α(ρ) ≤ 2 sup
s∈[0,t]

‖b(t) ◦ ∇I t
s ( f )‖C1−2α(ρ). (2.28)

Proof Note that by integration by parts formula,

∫ t

0
e−λ(t−s)Pt−s f (s)ds =

∫ t

0
Pt−s f (s)ds − λ

∫ t

0
e−λ(t−s)

∫ s

0
Pt−r f (r)drds

= e−λt
∫ t

0
Pt−s f (s)ds + λ

∫ t

0
e−λ(t−s)

∫ t

s
Pt−r f (r)drds.

Thus,

b(t) ◦ ∇Iλ f (t) = e−λt b(t) ◦ ∇I t
0 f + λ

∫ t

0
e−λ(t−s)b(t) ◦ ∇I t

s ( f )ds.

From this we get the desired estimate. ��
The following lemma is used to deal with the localization of renormalized terms.

Lemma 2.17 Let T > 0, ρ, ρ̄ ∈ W , ε ∈ (0, 1) and α ∈ ( 12 , 23 ). Suppose that

φ ∈ Cα+ε(ρ̄ρ−2), ψ ∈ S
α+ε
T , (b, f ) ∈ B

α
T (ρ).

Then there is a constant C > 0 depending only on T , ε, α, d, ρ, ρ̄ such that for all
λ ≥ 0 and t ∈ [0, T ],

‖((bφ) ◦ ∇Iλ( fψ))(t)‖C1−2α(ρ̄) �C ‖φ‖Cα+ε(ρ̄ρ−2)‖ψ‖Sα+εt
A
b, f
t,∞(ρ). (2.29)

Proof We only prove the estimate (2.29). For simplicity, we drop the time variable.
By using paraproduct, we have

(bφ) ◦ ∇Iλ( fψ) = (bφ) ◦ ∇Iλ(ψ � f )+ (bφ) ◦ ∇Iλ(ψ ≺ f )

= (bφ) ◦ ∇Iλ(ψ � f )+ (bφ) ◦ [∇Iλ, ψ ≺] f
+ com(ψ,∇Iλ f , bφ)+ ψ((bφ) ◦ ∇Iλ f )

= (bφ) ◦ ∇Iλ(ψ � f )+ (bφ) ◦ [∇Iλ, ψ ≺] f
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+ com(ψ,∇Iλ f , bφ)+ ψ((φ � b) ◦ ∇Iλ f )

+ ψcom(φ, b,∇Iλ f )+ ψφ(b ◦ ∇Iλ f ).

Let ε > 0 small enough. We estimate each term as follows:

• By (2.16), (2.11) and (2.15), we have

‖(bφ) ◦ ∇Iλ(ψ � f )‖C0(ρ̄) � ‖bφ‖C−α(ρ̄ρ−1)‖∇Iλ(ψ � f )‖L∞t Cα+ε(ρ)

� ‖bφ‖C−α(ρ̄ρ−1)‖ψ � f + ψ ◦ f ‖L∞t Cα−1+ε(ρ)

� ‖φ‖Cα+ε(ρ̄ρ−2)‖b‖C−α(ρ)‖ f ‖L∞t C−α(ρ)‖ψ‖L∞t Cα+ε .

• By (2.16), (2.17) and (2.22), we have

‖(bφ) ◦ [∇Iλ, ψ ≺] f ‖C0(ρ̄) � ‖bφ‖C−α(ρ̄ρ−1)‖[∇Iλ, ψ ≺] f ‖L∞t Cα+ε(ρ)

� ‖φ‖Cα+ε(ρ̄ρ−2)‖b‖C−α(ρ)‖ψ‖S2α−1+2ε
t

‖ f ‖L∞t C−α(ρ).

• By (2.18), (2.11) and (2.17), we have

‖com(ψ,∇Iλ f , bφ)‖C0(ρ̄) � ‖ψ‖C2α−1+ε‖∇Iλ f ‖L∞t C1−α(ρ)‖bφ‖C−α(ρ̄ρ−1)

� ‖ψ‖C2α−1+ε‖ f ‖L∞t C−α(ρ)‖b‖C−α(ρ)‖φ‖Cα+ε(ρ̄ρ−2).

• By (2.17), (2.16), (2.11) and (2.15), we have

‖ψ((φ � b) ◦ ∇Iλ f )‖C0(ρ̄) � ‖ψ‖L∞‖φ � b‖Cα−1+ε(ρ̄ρ−1)‖∇Iλ f ‖C1−α(ρ)
� ‖ψ‖L∞‖φ‖Cα+ε(ρ̄ρ−2)‖b‖C−α(ρ)‖ f ‖L∞t C−α(ρ).

• By (2.17) and (2.18), we have

‖ψcom(φ, b,∇Iλ f )‖C0(ρ̄) � ‖ψ‖L∞‖φ‖C2α−1+ε(ρ̄ρ−2)‖b‖C−α(ρ)‖ f ‖L∞t C−α(ρ).

• By (2.17), we have

‖ψφ(b ◦ ∇Iλ f )‖C1−2α(ρ̄) � ‖ψφ‖C2α−1+ε(ρ̄ρ−2)‖b ◦ ∇Iλ f ‖C1−2α(ρ2).

Combining the above calculations, we obtain the desired estimate. ��

3 A study of linear parabolic equations in weighted Hölder spaces

In this section we consider the following linear parabolic equation:

Lλu = (∂t −�+ λ)u = b · ∇u + f , u(0) = u0∈ ∪ε>0C1+α+ε, (3.1)

123



810 X. Zhang et al.

where λ ≥ 0, b = (b1, · · · , bd) is a vector-valued distribution and f is a scalar-valued
distribution. Suppose that for some α ∈ ( 12 , 23 ) and admissible weight ρ ∈ W ,

(b, f ) ∈ B
α
T (ρ), T > 0. (3.2)

The aim of this section is to show the well-posedness of PDE (3.1) under (3.2). We
first give the definition of the paracontrolled solutions to (3.1). We then establish the
Schauder estimate with the coefficients in unweighted Besov spaces by choosing λ
large enough. Then by a classicalmaximumprinciple, we obtain the Schauder estimate
for (3.1) depending polynomially on the coefficients. In Sect. 3.3 we establish global
well-posedness of equation (3.1) under (3.2) and obtain a uniform estimate of solution
to (3.1) in Besov spaces with sublinear weights, where the proofs are based on a new
characterization of weighted Hölder spaces and a localization argument.

3.1 Paracontrolled solutions

To introduce the paracontrolled solution of PDE (3.1), by Bony’s decomposition, we
make the following paracontrolled ansatz as in [20]:

u = ∇u ≺≺ Iλb + u� +Iλ f + e−λt Ptu0, (3.3)

where u� solves the following PDE in the weak sense

Lλu
� = ∇u ≺ b − ∇u ≺≺ b +∇u � b + b ◦ ∇u − [Lλ,∇u ≺≺]Iλb (3.4)

with u�(0) = 0. Note that b ◦ ∇u is not well-defined in the classical sense. By the
paracontrolled ansatz (3.3), we have

b ◦ ∇u = b ◦ ∇(∇u ≺≺ Iλb)+ b ◦ ∇u� + b ◦ ∇Iλ f + b ◦ ∇Ptu0e
−λt

= b ◦ ∇(∇u ≺ Iλb)+ com1 + b ◦ ∇u� + b ◦ ∇Iλ f + b ◦ ∇Ptu0e
−λt

= b ◦ (∇2u ≺ Iλb)+ (b ◦ ∇Iλb) · ∇u + com

+ com1 + b ◦ ∇u� + b ◦ ∇Iλ f + b ◦ ∇Ptu0e
−λt , (3.5)

where

com1 := b ◦ ∇[∇u ≺≺ Iλb −∇u ≺ Iλb]

and

com := com(∇u,∇Iλb, b).
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Singular HJB equations with applications to KPZ 811

Definition 3.1 Let ρ, ρ̄ ∈ W be two bounded admissible weights and ε ≥ 0. For
given (b, f ) ∈ B

α
T (ρ) and u0 ∈ ∪ε>0C1+α+ε for ε > 0, with notation (2.3), a pair of

functions

(u, u�) ∈ S
2−α
T (ρ̄)× S

3−2α
T (ρ2+ερ̄) (3.6)

is called a paracontrolled solution of PDE (3.1) if (u, u�) satisfies (3.3) and (3.4) in
the weak sense, where b ◦ ∇u is well-defined by (3.5) and Lemma 3.3 below.

Remark 3.2 For b, f ∈ L∞T C 2(ρ)with ρ(x) = 〈x〉−1, it is well known that PDE (3.1)
has a unique classical solution. From Definition 3.1, it is not hard to see that classical
solutions are paracontrolled solutions.

The following lemma makes the above definition more transparent.

Lemma 3.3 Let T , ε ≥ 0 and (u, u�) be a paracontrolled solution of (3.1) in the sense
of Definition 3.1. For any γ, β ∈ (α, 2 − 2α], there is a constant C > 0 depending
only on T , ε, α, γ, β, d, ρ, ρ̄ such that for all λ ≥ 0 and t ∈ [0, T ],

‖(b ◦ ∇u)(t)‖C1−2α(ρ2+ερ̄) �C �
b
t (ρ)‖u‖Sα+γt (ρ̄)

+
√
�bt (ρ)‖u�(t)‖Cβ+1(ρ1+ερ̄)

+ ‖(b ◦ ∇Iλ f )(t)‖C1−2α(ρ2+ερ̄) + ‖u0‖C1+α+ε . (3.7)

Proof Below we drop the time variable t and fix

γ, β ∈ (α, 2− 2α].

Recall 1− 2α < 0. We now estimate each term in (3.5) as follows:

• By (2.16) and (2.9), we have

‖b ◦ ∇Ptu0‖C1−2α(ρ2+ερ̄) � ‖u0‖C1+α+ε‖b‖C−α(ρ).

• Since γ > α, by (2.15), (2.16) and (2.11), we have

‖b ◦ (∇2u ≺ Iλb)‖C1−2α(ρ2ρ̄) � ‖b‖C−α(ρ)‖∇2u ≺ Iλb‖Cγ (ρρ̄)
� ‖b‖C−α(ρ)‖∇2u‖Cγ+α−2(ρ̄)‖Iλb‖C2−α(ρ)

� ‖b‖2L∞t C−α(ρ)‖u‖Cγ+α(ρ̄) � �bt (ρ)‖u‖Cα+γ (ρ̄).

• By (2.17), we have

‖∇u(b ◦ ∇Iλb)‖C1−2α(ρ2ρ̄) � ‖∇u‖Cγ+α−1(ρ̄)‖b ◦ ∇Iλb‖C1−2α(ρ2)

� �bt (ρ)‖u‖Cα+γ (ρ̄).
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• Since γ > α, by (2.18) and (2.11), we have

‖com‖C1−2α(ρ2ρ̄) � ‖b‖C−α(ρ)‖∇u‖Cγ+α−1(ρ̄)‖∇Iλb‖C1−α(ρ)

� ‖b‖2L∞t C−α(ρ)‖u‖Cγ+α(ρ̄) � �bt (ρ)‖u‖Cα+γ (ρ̄).

• By Lemma 2.10, (2.4) (2.21) and (2.11), we have

‖com1‖C1−2α(ρ2ρ̄) � ‖b‖C−α(ρ)‖∇u ≺≺ Iλb −∇u ≺ Iλb‖Cγ+1(ρρ̄)

� ‖b‖C−α(ρ)‖∇u‖
C(γ+α−1)/2
t L∞(ρ̄)‖Iλb‖L∞t C2−α(ρ)

� ‖b‖2L∞t C−α(ρ)‖u‖Sα+γt (ρ̄)
� �bt (ρ)‖u‖Sα+γt (ρ̄)

.

• Since β > α, by (2.16), we have

‖b ◦ ∇u�‖L∞(ρ2+ερ̄) � ‖b‖C−α(ρ)‖∇u�‖Cβ(ρ1+ερ̄) ≤
√
�bt (ρ)‖u�‖Cβ+1(ρ1+ερ̄).

Combining the above calculations and by (3.5), we obtain the estimate. ��

3.2 Schauder’s estimate for paracontrolled solutions without weights

As the first step towards the Schauder estimate for (3.1), we assume that the coefficients
are in an unweighted Besov space. More precisely, we assume (b, f ) ∈ B

α
T := B

α
T (1),

and for simplicity, we shall write

�bT = �bT (1), A
b, f
T ,q = A

b, f
T ,q(1).

The proof will be divided into two steps.We first prove a Schauder estimate depending
polynomially on the coefficients for λ large enough. Then by a classical maximum
principle we extend the result to all λ ≥ 0. The following Schauder estimate is a
consequence of Lemmas 2.9 and 3.3.

Lemma 3.4 Assume u0 = 0. For any θ ∈ (1 + 3α
2 , 2), q ∈ ( 2

2−θ ,∞] and T > 0,
there exist constants c0, c1 > 0 only depending on θ, α, d, q, T such that for all

λ ≥ c0(�bT )
1/(1− θ

2− 1
q ) and any paracontrolled solution uλ = u to PDE (3.1),

‖uλ‖Sθ−αT
≤ c1A

b, f
T ,q . (3.8)

Moreover, there is a constant c2 > 0 such that for all λ ≥ 0,

‖uλ‖S2−αT
+ ‖u�λ‖S3−2α

T
≤ c2(�

b
T )

4
2−3α

(
‖uλ‖L∞T + A

b, f
T ,∞
)
. (3.9)

Proof Below we fix

θ ∈ (1+ 3α
2 , 2], q ∈ [ 2

2−θ ,∞], γ, β ∈ (α, θ − 2α].
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By (2.11), (2.15) and (2.14), we clearly have

(λ ∨ 1)1−
θ
2− 1

q ‖u‖
S
θ−α
T

� ‖b ≺ ∇u + b � ∇u + b ◦ ∇u + f ‖Lq
TC

−α

� ‖b‖L∞T C−α‖∇u‖Lq
T L

∞ + ‖b ◦ ∇u‖Lq
TC

−α + A
b, f
T ,q ,

(3.10)

and by Lemma 2.12,

(λ ∨ 1)1−
θ
2− 1

q ‖u�‖
S
θ+γ−1
T

� ‖∇u ≺ b − ∇u ≺≺ b‖L∞T Cγ−1 + ‖∇u � b‖L∞T Cγ−1

+ ‖[Lλ,∇u ≺≺]Iλb‖L∞T Cγ−1 + ‖b ◦ ∇u‖Lq
TC

γ−1

� ‖u‖
S
γ+α
T

‖b‖L∞T C−α + ‖b ◦ ∇u‖Lq
TC

1−2α ,

where we used (2.4), (2.21), (2.22) and (2.15) in the second inequality. Moreover, by
(3.7), we also have

‖b ◦ ∇u‖Lq
TC

1−2α � �bT ‖u‖Sγ+αT
+
√
�bT ‖u�‖Lq

TC
β+1 + A

b, f
T ,q .

Thus, we obtain that for all λ ≥ 0,

(λ ∨ 1)1−
θ
2− 1

q

(
‖u‖

S
θ−α
T

+ ‖u�‖
S
θ+γ−1
T

)

� �bT ‖u‖Sγ+αT
+
√
�bT ‖u�‖L∞T Cβ+1 + A

b, f
T ,q .

(3.11)

In particular, letting γ = θ − 2α and β = 2θ − 2α − 2, we get for some c =
c(θ, α, d, q, T ),

(λ ∨ 1)1−
θ
2− 1

q

(
‖u‖

S
θ−α
T

+ ‖u�‖
S
2θ−2α−1
T

)
�c �

b
T

(
‖u‖

S
θ−α
T

+ ‖u�‖
S
2θ−2α−1
T

)
+ A

b, f
T ,q .

Choosing λ such that λ1−
θ
2− 1

q ≥ c�bT , we obtain (3.8).
On the other hand, letting θ = 2 and q = ∞ in (3.11), we obtain that for any

γ, β ∈ (α, 2− 2α],

‖u‖
S
2−α
T

+ ‖u�‖
S
1+γ
T

� �bT ‖u‖Sγ+αT
+
√
�bT ‖u�‖L∞T Cβ+1 + A

b, f
T ,∞. (3.12)

If α < β < γ < 2 − 2α, then by (2.6) and Young’s inequality, we have for any
ε ∈ (0, 1),

‖u‖
S
2−α
T

+ ‖u�‖
S
1+γ
T

≤ ε
(
‖u‖

S
2−α
T

+ ‖u�‖
S
1+γ
T

)
+ Cε(�

b
T )

2−α
2−γ−2α ‖u‖L∞T

+ Cε(�
b
T )

1+γ
2(γ−β) ‖u�‖L∞T + CA

b, f
T ,∞.

(3.13)

123



814 X. Zhang et al.

Note that by (3.3),

‖u�‖L∞T = ‖u −∇u ≺≺ Iλb −Iλ f ‖L∞T
� ‖u‖L∞T (1+ ‖b‖L∞T C−α )+ ‖ f ‖L∞T C−α � ‖u‖L∞T

√
�bT + A

b, f
T ,∞.

Substituting it into (3.13) and taking ε = 1/2, we obtain

‖u‖
S
2−α
T

+ ‖u�‖
S
1+γ
T

� (�bT )
2−α

2−γ−2α∨( 1+γ
2(γ−β)+ 1

2 )
(
‖u‖L∞T + A

b, f
T ,∞
)
,

which, by choosing γ = 2/3 and β close to α, yields that

‖u‖
S
2−α
T

+ ‖u�‖
S
5/3
T

� (�bT )
8−3α

2(2−3α)

(
‖u‖L∞T + A

b, f
T ,∞
)
.

Moreover, by (3.12) with γ = 2− 2α and β = 2/3, we get

‖u�‖
S
3−2α
T

� �bT ‖u‖S2−αT
+
√
�bT ‖u�‖S5/3T

+ A
b, f
T ,∞ � (�bT )

4
2−3α

(
‖u‖L∞T + A

b, f
T ,∞
)
.

The proof is complete. ��
Now we can show the main result of this section, where the key point is to obtain

an estimate depending polynomially on the quantity �bT . Note that a simple Gronwall
argument will lead to the exponential dependence on �bT .

Theorem 3.5 Let T > 0 and u0 = 0. For any (b, f ) ∈ B
α
T , there is a unique paracon-

trolled solution uλ = u to PDE (3.1) in the sense of Definition 3.1. Moreover, there
exist q = q(α) > 1 and a constant c3 = c3(α, d, T ) > 0 such that for all λ ≥ 0,

‖uλ‖L∞T ≤ c3(�
b
T )

5
2−3α A

b, f
T ,q ,

‖uλ‖S2−αT
+ ‖u�λ‖S3−2α

T
≤ c3(�

b
T )

9
2−3α A

b, f
T ,∞.

Proof We first assume that

b, f ∈ L∞T C 2, ∀T > 0.

Fix λ ≥ 0. For any λ′ > 0, it is well known that there is a unique classical solution w
to the following PDE:

∂tw = �w − (λ′ + λ)w + b · ∇w + f , w(0) = 0. (3.14)

In particular, for any θ ∈ (1 + 3
2α, 2) and q ∈ ( 2

2−θ ,∞], by (3.8), we have for

λ′ ≥ c0(�bT )
1/(1− θ

2− 1
q ),

‖w‖L∞T ≤ ‖w‖L∞T Cθ−α ≤ c1 · Ab, f
T ,q .
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Now let u be the unique classical solution to PDE (3.1) with u0 = 0. Let ū = u −w.
Then ū solves the following PDE:

∂t ū = �ū − λū + b · ∇ū + λ′w, ū(0) = 0.

By the classical maximum principle, we have

‖ū‖L∞T ≤ λ′T ‖w‖L∞T .

Hence, by taking θ close to 1+ 3α
2 and q large enough, we obtain

‖u‖L∞T ≤ (λ′T + 1)‖w‖L∞T ≤ (c0T (�
b
T )

1/(1− θ
2− 1

q ) + 1)c1 · Ab, f
T ,q � (�bT )

5
2−3α · Ab, f

T ,q ,

which together with (3.9) yields

‖u‖
S
2−α
T

+ ‖u�‖
S
3−2α
T

� (�bT )
9

2−3α A
b, f
T ,∞. (3.15)

(Existence) Let bn and fn be the smoothing approximations of b and f in B
α
T . We

consider the following approximation equation:

∂t un = �un − λun + bn · ∇un + fn, un(0) = 0.

By the assumption and (3.15), we have the following uniform estimate:

sup
n∈N

(
‖un‖S2−αT

+ ‖u�n‖S3−2α
T

)
� 1.

Using this uniform estimate and by a standard compact andweak convergencemethod,
we can show the existence of a paracontrolled solution (see [18]).

(Uniqueness) Let u1 and u2 be two paracontrolled solution of PDE (3.1). Let ū :=
u1 − u2. Clearly, ū is a paracontrolled solution of

∂t ū = �ū − λū + b · ∇ū, u(0) = 0.

Let θ ∈ (1+ α, 2) and q = 2
2−θ . By (2.11), we have

‖ū‖q
S
θ−α
T

≤ C
∫ T

0
‖(b · ∇ū)(t)‖qC−αdt . (3.16)

On the other hand, by (2.14), (2.15) and Lemma 3.3 we have

‖(b · ∇ū)(t)‖C−α ≤ ‖(b ≺ ∇ū)(t)‖C−α + ‖(b � ∇ū)(t)‖C−α + ‖(b ◦ ∇ū)(t)‖C−α

� ‖b(t)‖C−α‖∇ū(t)‖L∞ + ‖(b ◦ ∇ū)(t)‖C1−2α
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� ‖∇ū(t)‖L∞ + ‖ū‖
S
2−α
t

+ ‖ū�‖L∞t C3−2α

(3.9)
� ‖∇ū‖L∞t + ‖ū‖L∞t .

Substituting this into (3.16) and by θ − α > 1, we obtain

‖ū‖q
L∞T Cθ−α ≤ C

∫ T

0
‖ū‖q

L∞t Cθ−αdt,

which in turn implies that ū = 0. The uniqueness is proven. ��
Remark 3.6 The polynomial dependence on �bT in Theorem 3.5 together with a new
characterization for weighted Hölder spaces in Lemma 3.8 below shall be used to
establish the Schauder estimate in sublinear weighted Hölder spaces (see [45, Remark
1.1]).

3.3 Schauder’s estimate for paracontrolled solutions with weights

In this section we show the well-posedness of PDE (3.1) in weighted Hölder spaces.
Recall that for δ ∈ R,

ρδ(x) := (1+ |x |2)−δ/2 =: 〈x〉−δ.

Now we give the main result of this section.

Theorem 3.7 Let α ∈ ( 12 , 23 ) and ϑ := 9
2−3α . Choose κ > 0 so that

δ := (2ϑ + 2)κ ≤ 1, δ0 := (
55

27
ϑ + 4)κ.

For any T > 0 and λ ≥ 0, (b, f ) ∈ B
α
T (ρκ) and u0 ∈ ∪ε>0C1+α+ε , there exists a

unique paracontrolled solution (u, u�) to PDE (3.1) in the sense of Definition 3.1 with

‖u‖
S
2−α
T (ρδ)

+ ‖u�‖
S
3−2α
T (ρδ0 )

�C A
b, f
T ,∞(ρκ), (3.17)

where C = C(T , d, α, κ, �bT (ρκ)) > 0.

To prove the result we first prove a characterization of weighted Hölder spaces. To
this end, we introduce the following notations. Let χ ∈ C∞

c (R
d) with

χ(x) = 1, |x | ≤ 1/8, χ(x) = 0, |x | > 1/4,

and for r > 0 and z ∈ R
d ,

χ z
r (x) := χ((x − z)/r), φz

r (x) := χ z
r(1+|z|)(x).

To show the existence of a paracontrolled solution, we need the following simple
characterization of weighted Hölder spaces.
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Singular HJB equations with applications to KPZ 817

Lemma 3.8 Let α ≥ 0 and r ∈ (0, 1]. For any δ, κ ∈ R, there is a constant C =
C(r , α, d, δ, κ) > 0 such that

‖ f ‖C α(ρδρκ ) �C sup
z

(
ρδ(z)‖φz

r f ‖C α(ρκ )

)
. (3.18)

Moreover, for any m ∈ N0, we also have

sup
z
‖∇φz

r ‖C m (ρ−1
1 )

<∞. (3.19)

Proof Without loss of generality, we may assume κ = 0 by noting that

sup
z

(
ρδ(z)‖φz

r f ‖C α(ρκ )

) � sup
z

(
ρδ(z)‖φz

r ρκ f ‖C α

) � ‖ρδρκ f ‖C α .

First of all, for fixed r ∈ (0, 1], δ ∈ R and any m ∈ N, we have for some C =
C(m, r , δ, d) > 0,

‖ρδφz
r ‖C m �C ρδ(z), ∀z ∈ R

d . (3.20)

Indeed, let Br (z) be the ball with radius r centered at z. Noting that for any δ ∈ R and
x ∈ B(1+|z|)/2(z),

ρδ(x) ≤ 2|δ|(1+ |x |)−δ ≤ 4|δ|(1+ |z|)−δ = 4|δ|ρδ(z), (3.21)

we have by definition and the chain rule,

‖ρδφz
r ‖C m =

m∑
k=0

‖∇k(ρδφ
z
r )‖L∞ �

m∑
k=0

k∑
j=0

‖∇k− jρδ∇ jφz
r ‖L∞

�
m∑

k=0

k∑
j=0

‖ρδ∇ jφz
r ‖L∞ ≤ 4|δ|

m∑
k=0

k∑
j=0

ρδ(z)‖∇ jφz
r ‖L∞ � ρδ(z).

(3.22)

Moreover, since the definition of C α is local,

‖ f ‖C α � sup
z
‖ f ‖C α(Br/16(z)) � sup

z
‖χ z

r/2 f ‖C α .

Thus by (3.20) and χ z
r/2φ

z
r = χ z

r/2, we have

‖ f ‖C α(ρδ) = ‖ρδ f ‖C α � sup
z
‖χ z

r/2ρδ f ‖C α = sup
z
‖χ z

r/2φ
z
r ρδφ

z
r f ‖C α

� sup
z

(
‖χ z

r/2φ
z
r ρδ‖C [α]+1‖φz

r f ‖C α

)
� sup

z

(
ρδ(z)‖φz

r f ‖C α

)
,
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and

sup
z

(
ρδ(z)‖φz

r f ‖C α

)
� sup

z

(
ρδ(z)‖φz

r ρ
−1
δ ‖C [α]+1‖ρδ f ‖C α

)
� ‖ρδ f ‖C α .

So, (3.18) is proven. On the other hand, note that for any m ∈ N0,

‖∇φz
r ‖C m � (1+ |z|)−1.

As in (3.22), by (3.21) we have (3.19). ��
Remark 3.9 Estimate (3.19) provides an extra weight ρ1 and helps us to obtain the a
priori estimate for the solutions in Besov spaces with polynomial weights.

Now we give the proof of Theorem 3.7.

Proof of Theorem 3.7 (Existence). Without loss of generality we may assume λ = 0
and u0 = 0. In fact, for general initial data u0 ∈ ∪ε>0C1+α+ε , by considering ū =
u − u0, we can reduce the nonzero initial value to zero initial value with f replaced
by f̄ = f +�u0 + b · ∇u0 ∈ C−α(ρκ). In this case, by Lemma 2.10,

‖b ◦ ∇I (�u0)‖L∞T Cε (ρκ ) � 1,

and by Lemma 2.17 with ψ = ∇u0, f = b, φ = 1, ρ̄ = ρ2κ , ρ = ρκ ,

‖b ◦ ∇I (b · ∇u0)‖L∞T C1−2α(ρ2κ )
� 1.

Hence, we still have

(b, f̄ ) ∈ B
α
T (ρκ).

Now, let T > 0 and bn, fn ∈ L∞T C∞(ρκ) be as in the definition of B
α
T (ρκ). For

every n, define

b̄n(t, x) := bn(t, x)χn(x), f̄n(t, x) := fn(t, x)χn(x),

where χn(x) = χ(x/n) and χ ∈ C∞
c (R

d) equals to 1 on B1. It is well known that
there is a unique classical solution un ∈ L∞T C 2 solving (3.1) with (b, f ) = (b̄n, f̄n).
Our main aim is to show that there is a constant C > 0 independent of n such that

‖un‖S2−αT (ρδ)
+ ‖u�n‖S3−2α

T (ρδ0 )
�C A

b̄n , f̄n
T ,∞ (ρκ) (3.23)

On the other hand, by (2.29) with ρ̄ = ρ2 = ρ2κ and φ = ψ = χn , we also have for
some C independent of n,

A
b̄n , f̄n
T ,∞ (ρκ) �C A

bn , fn
T ,∞ (ρκ), �

b̄n
T (ρκ) �C �

bn
T (ρκ).
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Singular HJB equations with applications to KPZ 819

Hence,

sup
n

(
‖un‖S2−αT (ρδ)

+ ‖u�n‖S3−2α
T (ρδ0 )

)
<∞.

Thus, by a standard compact argument, we can show the existence of a paracontrolled
solution (see [18]).

Now we prove (3.23) by a localization technique. For simplicity, we drop the bar
and subscript n and assume b, f ∈ L∞T C 2. We fix 0 < r < 1/2. Note that φz

2r = 1
on the support of φz

r . For each z ∈ R
d , it is easy to see that uz := uφz

r satisfies the
following PDE:

∂t uz = �uz + bz · ∇uz + Fz, uz(0) = 0,

where bz := bφz
2r and

Fz := f φz
r − 2∇u · ∇φz

r − u�φz
r − b · ∇φz

r u.

Let q be the same as in Theorem 3.5. By Theorem 3.5, there is constant C > 0 such
that for all z ∈ R

d ,

‖uz‖S2−αT
≤ C(�bzT )

ϑ
A
bz ,Fz
T ,∞ , ‖uz‖L∞T ≤ C(�bzT )

ϑ
A
bz ,Fz
T ,q . (3.24)

Let ε > 0 be small enough. By the definition of Fz , using φ
z
2r∇φz

r u = ∇φz
r u and

(2.17), we have

‖Fz‖C−α ≤ ‖ f φz
r ‖C−α + 2‖∇u · ∇φz

r ‖L∞ + ‖u�φz
r ‖L∞ + ‖bφz

2r · ∇φz
r u‖C−α

� ‖ f ‖C−α(ρκ )‖φz
r ‖Cα+ε(ρ−1

κ )
+ ‖∇u‖L∞(ρ1)‖∇φz

r ‖L∞(ρ−1
1 )

+ ‖u‖L∞(ρ1)‖�φz
r ‖L∞(ρ−1

1 )
+ ‖b‖C−α(ρκ )‖φz

2r∇φz
r u‖Cα+ε(ρ−1

κ )

� ‖ f ‖C−α(ρκ )‖φz
r ‖C 1(ρ−1

κ )
+ ‖u‖C 1(ρ1)

‖∇φz
r ‖C 1(ρ−1

1 )

+ ‖b‖C−α(ρκ )‖u‖C 1(ρ1)
‖∇φz

r ‖C 1(ρ−1
1 )

‖φz
2r‖C 1(ρ−1

κ )
,

(3.19)
� ‖ f ‖C−α(ρκ )‖φz

r ‖C 1(ρ−1
κ )

+ ‖u‖C 1(ρ1)

(
1+ ‖b‖C−α(ρκ )‖φz

2r‖C 1(ρ−1
κ )

)
.

(3.25)

In particular,

‖Fz‖Lq
TC

−α � ‖ f ‖Lq
TC

−α(ρκ )‖φz
r ‖C 1(ρ−1

κ )

+
(
1+ ‖b‖L∞T C−α(ρκ )‖φz

2r‖C 1(ρ−1
κ )

)(∫ T

0
‖u(t)‖q

C 1(ρ1)
dt

)1/q
.

(3.26)
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Similarly, we also have

‖(bz ◦ ∇IλFz)‖C1−2α ≤ ‖bz ◦ ∇Iλ( f φ
z
r )‖C1−2α + ‖bz ◦ ∇Iλ(b · ∇φz

r u)‖C1−2α

+ ‖bz ◦ ∇Iλ(u�φ
z
r + 2∇u · ∇φz

r )‖L∞ =: I z1 + I z2 + I z3 .

For I z1 , by (2.29) with ρ̄ ≡ 1, ρ = ρκ and ψ = φz
r , we have

I z1 � ‖φz
2r‖Cα+ε(ρ−2

κ )
‖φz

r ‖Cα+εAb, f
t,∞(ρκ) � ‖φz

2r‖C 1(ρ−2
κ )

A
b, f
t,∞(ρκ).

For I z2 , by (2.29) with ρ̄ ≡ 1, ρ = ρκ and ψ = ∇φz
r u, we have

I z2 � ‖φz
2r‖Cα+ε(ρ−2

κ )
‖∇φz

r u‖Sα+εt
A
b,b
t,∞(ρκ)

� ‖φz
2r‖C 1(ρ−2

κ )
‖∇φz

r ‖C 1(ρ−1
1 )

‖u‖
S
1
t (ρ1)

�bt (ρκ)

(3.19)
� ‖φz

2r‖C 1(ρ−2
κ )

‖u‖
S
1
t (ρ1)

�bt (ρκ).

For I z3 , as in (3.25), since

‖bz‖C−α � ‖b‖C−α(ρκ )‖φz
2r‖C 1(ρ−1

κ )
, (3.27)

by (2.17), we have

I z3 � ‖bz‖C−α‖∇Iλ(u�φ
z
r + 2∇u · ∇φz

r )‖Cα+ε
� ‖b‖C−α(ρκ )‖φz

2r‖C 1(ρ−1
κ )

‖u�φz
r + 2∇u · ∇φz

r ‖L∞t L∞

� ‖b‖C−α(ρκ )‖φz
2r‖C 1(ρ−1

κ )
‖u‖L∞t C 1(ρ1)

‖∇φz
r ‖C 1(ρ−1

1 )

(3.19)
� ‖b‖C−α(ρκ )‖φz

2r‖C 1(ρ−1
κ )

‖u‖L∞t C 1(ρ1)
.

Combining the above calculations, by the definition of A
bz ,Fz
T ,q , (3.19), (3.26) and

(3.27), we get

A
bz ,Fz
T ,q = sup

λ

‖bz ◦ ∇IλFz‖Lq
TC

1−2α + (‖bz‖L∞T C−α + 1)‖Fz‖Lq
TC

−α

�
(
‖φz

2r‖C 1(ρ−2
κ )

+ ‖φz
2r‖C 1(ρ−1

κ )
(‖φz

r ‖C 1(ρ−1
κ )

+ ‖φz
2r‖C 1(ρ−1

κ )
)+ ‖φz

r ‖C 1(ρ−1
κ )

+ 1
)

×
(
A
b, f
T ,∞(ρκ)+ �bT (ρκ)

( ∫ T

0
‖u‖q

S
2α
t (ρ1)

dt
)1/q)

.

By Lemma 3.8, we have

sup
z
ρκ(z)‖φz

2r‖C 1(ρ−1
κ )

� 1.
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On the other hand, by Lemma 3.8 and (2.29) with ρ̄ = 1, ρ̄ = ρκ , we have

sup
z
ρ2κ (z)�

bz
T � sup

z
ρ2κ (z)(‖φz

2r‖C 1(ρ−2
κ )

+ ‖φz
2r‖2C 1(ρ−1

κ )
)�bT (ρκ) � �bT (ρκ),

which together with the above estimate implies that for δ = (2ϑ + 2)κ ≤ 1,

sup
z
ρδ(z)(�

bz
T )

ϑ
A
bz ,Fz
T ,q ≤

(
sup
z
ρ2κ (z)�

bz
T

)ϑ
sup
z
ρ2κ (z)A

bz ,Fz
T ,q

≤ (�bT (ρκ))ϑ+1

(
A
b, f
T ,∞(ρκ)+

(∫ T

0
‖u‖q

S
2α
t (ρ1)

dt

)1/q)
.

Note that by (2.6) and Young’s inequality,

‖u‖
S
2α
t (ρ1)

≤ ε‖u‖
S
2−α
t (ρ1)

+ Cε‖u‖L∞t (ρ1).

Hence, multiplying both sides of (3.24) by ρδ(z) we arrive at

‖u‖
S
2−α
T (ρδ)

≤ ε‖u‖
S
2−α
T (ρδ)

+ Cε‖u‖L∞T (ρ1) + CεA
b, f
T ,∞(ρκ),

and

‖u‖L∞T (ρδ) � A
b, f
T ,∞(ρκ)+

(∫ T

0
‖u‖q

S
2−α
t (ρ1)

dt

)1/q
.

The above two estimates imply that

‖u‖L∞T (ρ1) ≤ ‖u‖L∞T (ρδ) � A
b, f
T ,∞(ρκ)+

(∫ T

0
‖u‖q

L
∞
t (ρ1)

dt

)1/q
.

Finally, we use Gronwall’s inequality to deduce the first estimate in (3.23).
By (3.3), (2.19) and (2.12) we have for weight ρ, ρ̄ ∈ W

‖u�‖L∞T C2−α(ρρ̄) � ‖u‖L∞T C2−α(ρρ̄) + ‖∇u ≺≺ Iλb‖L∞T C2−α(ρρ̄) + ‖Iλ f ‖L∞T C2−α(ρρ̄)

� ‖u‖L∞T C2−α(ρ̄) + ‖∇u‖L∞T (ρ̄)‖b‖L∞T C−α(ρ) + ‖ f ‖L∞T C−α(ρ)

�
√
�bT (ρ)‖u‖L∞T C2−α(ρ̄) + ‖ f ‖L∞T C−α(ρ). (3.28)

Next we estimate each term on the right hand side of (3.4) by using Lemma 2.10.

• By (2.21), (2.4) we have

‖∇u ≺ b − ∇u ≺≺ b‖L∞T C1−2α(ρρ̄) � ‖u‖
S
2−α
T (ρ̄)

‖bL∞T C−α(ρ).
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• By (2.15), we have

‖∇u � b‖L∞T C1−2α(ρρ̄) � ‖u‖L∞T C2−α(ρ̄)‖b‖L∞T C−α(ρ).

• By (2.20) and (2.12) we have

‖[L ,∇u ≺≺]I b‖L∞T C1−2α(ρρ̄) � ‖u‖
S
2−α
T (ρ̄)

‖b‖L∞T C−α(ρ).

• By Lemma 3.3 with γ = 2− 2α, β ∈ (α, 2− 2α), we have

‖b ◦ ∇u‖L∞T C1−2α(ρ2+ερ̄) � ‖u‖
S
2−α
T (ρ̄)

+ ‖u�‖L∞T Cβ+1(ρ1+ερ̄) + A
b, f
T ,∞(ρ).

Combining the above calculations and by (3.4) and (2.11) with θ = 2 and q = ∞, we
obtain

‖u�‖
S
3−2α
T (ρ2+ερ̄) � ‖u‖

S
2−α
T (ρ̄)

+ ‖u�‖L∞T Cβ+1(ρ1+ερ̄) + A
b, f
T ,∞(ρ). (3.29)

On the other hand, for ε > 2α−1
2−3α , one can choose β close to α so that

θ := ε
1+ε = α+β−1

1−α .

Thus by interpolation inequality (2.5), Young’s inequality and (3.28), for any δ > 0,

‖u�‖L∞T Cβ+1(ρ1+ερ̄) � ‖u�‖θL∞T C3−2α(ρ2+ερ̄)‖u�‖1−θL∞T C2−α(ρρ̄)

≤ δ‖u�‖L∞T C3−2α(ρ2+ερ̄) + Cδ
(
‖u‖

S
2−α
T (ρ̄)

+ A
b, f
T ,∞(ρ)

)
.

Substituting this into (3.29), we obtain the second estimate in (3.23) by taking ρ =
ρκ, ρ̄ = ρδ .

(Uniqueness). It follows by Theorem A.2 in the appendix. ��

4 Hamilton–Jacobi–Bellman equations

The next two sections are devoted to a priori estimates on solutions to Eq. (1.8). The
proof is divided into two steps. First we construct aC1-diffeomorphism and perform a
Zvonkin transformation through this diffeomorphism.After this transform the singular
part in (1.8) disappears and we obtain an HJB equation in non-divergence form. We
then obtain a priori estimates for this HJB equation, which leads to global uniform
bounds for solutions to (1.8). To this end, in this section we consider the following
general HJB equation:

∂tv = tr(a · ∇2v)+ B · ∇v + H(v,∇v), v(0) = v0, (4.1)
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where a : R+ × R
d → R

d ⊗ R
d is a symmetric matrix-valued measurable function,

and B : R+ × R
d → R

d is a vector-valued measurable function, and

H(t, x, v, Q) : R
+ × R

d × R × R
d → R

is a real-valued measurable function, and continuous in v, Q for each t, x .
For instance, for any ζ ∈ [1, 2], the equation

L v = |∇v|ζ + B · ∇v + f (4.2)

is a typical HJB equation. Note that for λ > 0, if we define

vλ(t, x) := v(λ2t, λx), Bλ(t, x) := λB(λ2t, λx), fλ(t, x) := λ2 f (λ2t, λx),

then

L vλ = λ2−ζ |∇vλ|ζ + Bλ · ∇vλ + fλ.

In particular, if ζ = 2, then the nonlinear term has the same order as the Laplacian
term in scaling level. In this case, we say that HJB Eq. (4.2) is critical. While for
ζ < 2, the nonlinear term can be controlled well by the Laplacian term. In this case,
we say that HJB equation (4.2) is subcritical2.

Throughout this section we use the following polynomial weight function

ρδ(x) := 〈x〉−δ = (1+ |x |2)−δ/2 ⇒ ρ
γ
δ = ργ δ, δ, γ ∈ R,

and make the following elliptic assumption on a:

(Hα
1 ) a : R+ × R

d → R
d ⊗ R

d is a symmetric d × d-matrix-valued measurable
function and satisfies that for some c0 ∈ (0, 1),

c0|ξ |2 ≤
d∑

i, j=1

ai j (t, x)ξiξ j ≤ c−1
0 |ξ |2, ∀ξ ∈ R

d , (4.3)

and for some α ∈ (0, 1) and c1 ≥ 1,

|a(t, x)− a(t, y)| ≤ c1|x − y|α.

About the nonlinear term H , we separately consider two cases: subcritical case for all
d ∈ N and critical case only for d = 1, and assume

(Hδ,ζ
sub) Suppose that for some δ, ζ ∈ [0, 2) and c2 > 0,

|H(t, x, v, Q)| �c2 〈x〉δ + |Q|ζ . (4.4)

2 Here the critical and subcritical conditions are different from the meaning in [27].
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(Hδ,β
crit ) Suppose that d = 1 and H can be decomposed as Hs + Hc with Hs satisfying

(Hδ,ζ
sub) and Hc satisfying for some δ ∈ [0, 2) and c2 > 0,

|Hc(t, x, v, Q)| �c2 〈x〉δ + |Q|2, |∂vHc(t, x, v, Q)| �c2 〈x〉δ + |v|2 + |Q|,
(4.5)

and for some β ∈ (0, 1] and all |x − y| ≤ 1,

|Hc(t, x, v, Q)− Hc(t, y, v, Q)| �c2 |x − y|β(〈x〉δ + 〈y〉δ + |v|2 + |Q|2).
(4.6)

We introduce the following definition of strong solution to HJB Eq. (4.1).

Definition 4.1 We call a function v ∈ ∩p≥2H2,p
loc strong solution to (4.1) if for all

ψ ∈ C∞
c (R

d) and t ≥ 0,

〈v(t), ψ〉 = 〈v0, ψ〉 +
∫ t

0

〈(
tr(a · ∇2v)+ B · ∇v + H(v,∇v))(s), ψ〉ds,

where 〈v0, ψ〉 :=
∫
v0ψ . In particular, for all t ≥ 0 and Lebesgue almost all x ∈ R

d ,

v(t, x) = v0(x)+
∫ t

0

(
tr(a · ∇2v)+ B · ∇v + H(v,∇v)

)
(s, x)ds.

The aim of this section is to establish the following well-posedness for HJB Eq. (4.1).
For simplicity of notation,we introduce the following parameter set for the dependence
of constants:

� := (T , d, α, β, ζ, δ, c0, c1, c2).

Theorem 4.2 Let T > 0, δ ∈ (0, 2) and α, β, δ1 ∈ (0, 1]. Suppose that (Hα
1 ), B ∈

L
∞
T (ρδ1) and (Hδ,ζ

sub) or (H
δ,β
crit ) hold. Let

⎧⎨
⎩
η >

ζδ
2−ζ ∨ [2δ1 + δ], under (Hδ,ζ

sub);
η > 2

(
(1+2β)δ

β
∨ (δ1 + δ)∨ δ∨(2δ−1)

2−ζ
)
, under (Hδ,β

crit ).
(4.7)

(Existence) For any initial value v0 ∈ C 2(ρδ), there exist p0 large enough and strong
solution v to HJB Eq. (4.1), which satisfies the following estimate: for any p ≥ p0,
there is a constant C = C(�, p, η, δ1, ‖B‖L∞T (ρδ1 ), ‖v0‖C 2(ρδ)

) > 0 such that

‖v‖L∞T (ρδ) + ‖∂tv‖Lp
T (ρη)

+ ‖v‖
H
2,p
T (ρη)

≤ C . (4.8)
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Singular HJB equations with applications to KPZ 825

In particular, for any 0 ≤ ε′ < ε ≤ 2,

‖v‖
Cε

′/2
T C2−ε(ρη)

≤ C .

(Uniqueness) If, in addition, for some C > 0,

|∂vH(t, x, v, Q)|1/2 + |∂QH(t, x, v, Q)| �C 〈x〉 + |v|1/δ + |Q|1/η, (4.9)

then there is a unique strong solution with regularity (4.8).

Remark 4.3 (i) When a ∈ L∞T C 1, the above regularity result could be obtained by
De-Giorgi’s iteration method since it can be written in the divergence form (cf. [39]).
However, there seems no literature studying this problem when a is only Hölder
continuous. Moreover, the unbounded B and H cause some difficulties for obtaining
the global estimates, which is crucial for a-priori estimate for (1.8) and KPZ type
equations. We believe that the above theorem is of its own interest.

(ii) The condition in (4.7) on η comes from the energy estimate and the integrability
of the weights in R

d (see Theorems 4.6 and 4.7 below).

In the following we first establish a maximum principle in Sect. 4.1. The subcritical
case is treated in Sect. 4.2 by using L∞(ρδ)-estimate and L p-theory for PDEs. For
the critical case, we take spatial derivative on both sides of (4.1) and obtain a PDE in
divergence form. Then using the L∞(ρδ)-bound and energy estimate we obtain the
H

2,p
T (ρη)-estimate in Sect. 4.3.

4.1 Maximum principle in weighted spaces

We first show the following maximum principle in weighted spaces by an exponential
transform and a probabilistic method.

Theorem 4.4 (Maximum principle) Let T > 0 and δ ∈ (0, 2). Suppose (4.3) and for
some c2, c3 > 0,

|H(t, x, v, Q)| ≤ c2〈x〉δ + c3|Q|2, B ∈ L
∞
T (ρ1).

For any v0 ∈ L∞(ρδ), there is a function C(r) = C�(r) > 0 with C(0) = 0 such that
for any strong solution v ∈ ∩p≥2H2,p

loc ∩ L
∞
T (ρδ) to (4.1) with initial value v0,

‖v‖L∞T (ρδ) ≤ C(c2 + ‖v0‖L∞(ρδ)). (4.10)

Proof We use a probabilistic method. For λ > 0, define

w(t, x) := eλv(t,x).

By the chain rule, it is easy to see that w satisfies

∂tw = tr(a · ∇2w)+ B · ∇w + λw
(
H(v,∇v)− λtr(a · ∇v ⊗∇v)

)
.
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826 X. Zhang et al.

For simplicity of notations, we write

Fδ(x) := c2〈x〉δ, Uλ := λw
(
H(v,∇v)− λtr(a · ∇v ⊗∇v)− Fδ

)
.

Next we reverse the time variable. For a space-time function f , we set

f T (t, x) := f (T − t, x).

It is easy to see that wT (t, x) = w(T − t, x) solves the following backward equation:

∂tw
T + tr(aT · ∇2wT )+ BT · ∇wT +UT

λ + λwT Fδ = 0, (4.11)

with subjected to the final condition

wT (T , x) = w(0, x) = eλv0(x). (4.12)

Under (4.3) and B ∈ L
∞
T (ρ1), for each (t, x) ∈ [0, T ] ×R

d , it is well known that the
following SDE has a (probabilistically) weak solution starting from x at time t (see
[37, page 87, Theorem 1])

Xt,x
s = x +

∫ s

t

√
2aT (r , Xt,x

r )dWr +
∫ s

t
BT (r , Xt,x

r )dr , ∀s ∈ [t, T ],

where W is a d-dimensional Brownian motion on some stochastic basis (�′,F ′,P).
For R > 0, define a stopping time

τR := inf{s ≥ t : |Xt,x
s | > R}.

It is well known that the following Krylov estimate holds ([37, page 52, Theorem 2]):
for any p ≥ d + 1,

E

(∫ T∧τR

t
f (s, Xt,x

s )ds

)
≤ CR

(∫ T

t

∫
BR

| f (s, x)|pdxds
)1/p

.

Since v ∈ ∩p≥2H2,p
loc ∩ L

∞
T (ρδ), it is easy to see that

wT ∈ ∩p≥2H2,p
loc , ∂tw

T ∈ ∩p≥2Lp
loc.

Thus, for each fixed (t, x), by generalized Itô’s formula (see [37, page 122, Theorem
1]), we have

dsw
T (s, Xt,x

s ) = (∂sw
T + tr(aT · ∇2wT )+ BT · ∇wT )(s, Xt,x

s )ds

+ (
√
2aT · ∇wT )(s, Xt,x

s )dWs,

123



Singular HJB equations with applications to KPZ 827

and by (4.11) and (4.12),

e
∫ t ′
t λFδ(X

t,x
s )dswT (t ′, Xt,x

t ′ )

= wT (t, x)+
∫ t ′

t
e
∫ s
t λFδ(X

t,x
r )drdsw

T (s, Xt,x
s )

+
∫ t ′

t
e
∫ s
t λFδ(X

t,x
r )dr (λFδw

T )(s, Xt,x
s )ds

= wT (t, x)−
∫ t ′

t
e
∫ s
t λFδ(X

t,x
r )drUT

λ (s, X
t,x
s )ds + Mt ′ ,

where

Mt ′ :=
∫ t ′

t
e
∫ s
t λFδ(X

t,x
r )dr (

√
2aT · ∇wT )(s, Xt,x

s )dWs .

By (4.3) and |H(v, Q)| ≤ Fδ + c3|Q|2, one can choose λ = c3/c0 so that

UT
λ ≤ λw

(
c3|∇v|2 − λc0|∇v|2

)
= 0.

Hence, for λ = (c3/c0) ∨ 1,

eλv(T−t,x) = wT (t, x) ≤ e
∫ t ′
t λFδ(X

t,x
s )dswT (t ′, Xt,x

t ′ )− Mt ′ .

Since t ′ �→ Mt ′∧τR is a martingale, we have

eλv(T−t,x) ≤ E

(
e
∫ T∧τR
t λFδ(X

t,x
s )dswT (T ∧ τR, Xt,x

T∧τR )
)
.

On the other hand, by Lemma B.1 in appendix, for any γ ≥ 0 and α ∈ [0, 2),

E

(
eγ sups∈[t,T ]〈Xt,x

s 〉α) ≤ C(γ )eC2γ 〈x〉α .

Since wT (t, x) ≤ e
λ‖v‖

L
∞
T (ρδ)

〈x〉δ
, letting R → ∞ and by the dominated convergence

theorem, we get

eλv(T−t,x) ≤ E

(
e
∫ T
t λFδ(X

t,x
s )dswT (T , Xt,x

T )
)
= E

(
e
∫ T
t λFδ(X

t,x
s )ds+λv0(Xt,x

T )
)

≤ E

(
e�0 sups∈[t,T ]〈X

t,x
s 〉δ) ≤ C(�0)e

�0〈x〉δ ,

where �0 := λ(c2T + ‖v0‖L∞(ρδ)). Hence,

v(T − t, x) ≤ C(�0)〈x〉δ.
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By applying the above estimate to −v, we obtain the desired estimate. ��

4.2 Subcritical case

In this section we consider the subcritical case (Hδ,ζ
sub) and prove some a priori regu-

larity estimates. To this end, we first show the following interpolation inequalities in
weighted spaces, which will play important roles in dealing with the weights.

Lemma 4.5 (i) For any p ≥ 2 and r , p ∈ [1,∞] satisfying 2
p = 1

r + 1
q , and δ, δ1, δ2 ∈

R with δ1 + δ2 = 2δ, there is a constant C = C(p, r , q, δ, δ1, δ2) > 0 such that

‖∇vρδ‖L p �C ‖∇2vρδ1‖1/2Lq ‖vρδ2‖1/2Lr + ‖vρδ+1‖L p . (4.13)

(ii) For any p, q ∈ [2,∞), r ∈ [2,∞] satisfying q+2
p = 1+ 2

r , and δ, δ1, δ2 ∈ R with

δ = qδ1
q+2 + 2δ2

q+2 , there is a constant C = C(p, q, r , δ, δ1, δ2) > 0 such that

‖∇vρδ‖L p �C

(∫
|∇2v|2||∇v|q−2ρ

q
δ1

) 1
q+2 ‖vρδ2‖

2
q+2
Lr + ‖vρδ+1‖L p . (4.14)

Proof By definition and the integration by parts, we have

‖∇vρδ‖pL p =
∫

|∇v|pρδ p =
∫
〈∇v,∇v|∇v|p−2ρδ p〉

�
∫

|v|
(
|∇2v||∇v|p−2ρδ p + |∇v|p−1|∇ρδ p|

)
. (4.15)

(i) By Hölder’s inequality we have

∫
|v||∇2v||∇v|p−2ρδ p ≤ ‖vρδ2‖Lr ‖∇2vρδ1‖Lq‖∇vρδ‖p−2

L p ,

and by |∇ρδ| � ρδ+1,

∫
|v||∇v|p−1|∇ρδ p| ≤ ‖∇vρδ‖p−1

L p ‖vρδ+1‖L p . (4.16)

Therefore,

‖∇vρδ‖pL p � ‖vρδ2‖Lr ‖∇2vρδ1‖Lq‖∇vρδ‖p−2
L p + ‖∇vρδ‖p−1

L p ‖vρδ+1‖L p .

Thus by Young’s inequality, we obtain (4.13).
(ii) On the other hand, by Hölder’s inequality we have

∫
|v||∇2v||∇v|p−2ρδ p ≤

(∫
|∇2v|2||∇v|q−2ρδ1q

)1/2
‖∇vρδ‖p−

q
2−1

L p ‖vρδ2‖Lr ,
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which together with (4.15) and (4.16) yields (4.14). ��
We now prove the following a priori L p-regularity estimate by the L

∞
T (ρδ) estimate

obtained in Theorem 4.4.

Theorem 4.6 Let T > 0, δ ∈ (0, 2) and α, δ1 ∈ (0, 1]. Suppose (Hα
1 ), B ∈ L

∞
T (ρδ1)

and (Hδ,ζ
sub). Then for any η > (2δ1 + δ) ∨ ζ δ

2−ζ and v0 ∈ C 2(ρδ), there is a p0 large
enough so that for all p > p0 and any strong solution v of HJB (4.1),

‖∂t (vρη)‖Lp
T
+ ‖vρη‖

H
2,p
T

≤ C,

where C = C(�, η, p, δ1, ‖B‖L∞T (ρδ1 ), ‖v0‖C 2(ρδ)
).

Proof Multiplying both sides of (4.1) by ρη, we get

∂t (vρη) = tr(a · ∇2(vρη))− �ρ + (B · ∇v)ρη + H(v,∇v)ρη, (4.17)

where

�ρ = tr(a · (2∇v ⊗∇ρη + v∇2ρη)).

Fix

p >
(2− ζ )d

(2− ζ )η − ζ δ
∨ d

η − 2δ1 − δ
=: p0.

By the L p-theory of PDEs (see [38]), there is a constant C = C(�, p) such that

‖∂t (vρη)‖Lp
T
+ ‖vρη‖

H
2,p
T

�C ‖H(v,∇v)ρη + (B · ∇v)ρη − �ρ‖Lp
T
+ ‖v0ρη‖H2,p .

Since p(η − δ) > d, we have

‖v0ρη‖H2,p � ‖v0ρδ‖C 2

(∫
Rd
ρ
p
η−δ(x)dx

)1/p
� ‖v0‖C 2(ρδ)

,

and by (4.4),

‖H(v,∇v)ρη‖Lp
T

� ‖ρη−δ‖L p + ‖|∇v|ζ ρη‖Lp
T

� 1+ ‖∇vρη/ζ ‖ζ
L
ζ p
T

.

By interpolation inequality (4.13) and using |∇ρδ| � ρδ+1, we have

‖∇vρη/ζ ‖ζ
L
ζ p
T

≤ ‖∇2vρη‖ζ/2
L
p
T
‖vρη(2/ζ−1)‖ζ/2

L
q
T
+ ‖vρη/ζ+1‖ζ

L
ζ p
T

,

where q = pζ/(2− ζ ). Since p(η − ζ δ/(2− ζ )) > d, by (4.10), we have

‖vρ2η/ζ−η‖q
L
q
T
=
∫ T

0

∫
Rd

|v(t, x)|qρηp(x)dxdt
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830 X. Zhang et al.

�
∫
Rd
ρδ(x)

−pζ/(2−ζ )ρηp(x)dx

�
∫
Rd
(1+ |x |) pζ δ

2−ζ −ηpdx � 1,

and also,

‖vρη/ζ+1‖ζ
L
ζ p
T

� ‖ρη/ζ+1−δ‖ζ
L
ζ p
T

� 1.

Thus, for any ε ∈ (0, 1), by Young’s inequality,

‖H(v,∇v)ρη‖Lp
T

� ε‖∇2vρη‖Lp
T
+ 1.

Since B ∈ L
∞
T (ρδ1) and η > 2δ1+ δ and p(η− 2δ1− δ) > d, we also have by (4.13)

and (4.10)

‖(B · ∇v)ρη‖Lp
T

� ‖ρη−δ1 |∇v|‖Lp
T

� ‖∇2vρη‖1/2
L
p
T
‖vρη−2δ1‖1/2L

p
T
+ ‖vρη+1‖Lp

T

� ε‖∇2vρη‖Lp
T
+ 1.

Moreover, noting that

|�ρ | � |∇v||∇ρη| + |v||∇2ρη| � ρη|∇v| + ρη|v|,

we have by (4.13) and (4.10)

‖�ρ‖Lp
T

� ‖∇vρη‖Lp
T
+ ‖vρη‖Lp

T
� ‖∇2vρη‖1/2

L
p
T
+ 1.

Combining the above calculations, by Young’s inequality, we get

‖∂t (vρη)‖Lp
T
+ ‖vρη‖

H
2,p
T

� 1.

The result now follows. ��

4.3 Critical one dimensional case

In this section we consider the critical one dimensional case and prove the following
a priori estimate.

Theorem 4.7 Let T > 0 and α, δ1 ∈ (0, 1], δ ∈ (0, 2). Suppose (Hα
1 ), B ∈ L

∞
T (ρδ1)

and (Hδ,β
crit ) . For any η > 2

( (1+2β)δ
β

∨ (δ1 + δ)∨ δ∨(2δ−1)
2−ζ

)
and v0 ∈ C 2(ρδ), there is

a p0 large enough so that for all p > p0 and any strong solution v of HJB (4.1),

‖∂t (vρη)‖Lp
T
+ ‖vρη‖

H
2,p
T

≤ C,
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where C = C(�, η, p, δ1, ‖B‖L∞T (ρδ1 ), ‖v0‖C 2(ρδ)
).

The key point of the proof of this theorem is that we can use the Hölder regularity
of H in x and integration by parts to treat the quadratic growth of H in Q for the
equation obtained in divergence form (see (4.20) below) by taking partial derivatives
on both sides of the Eq. (4.1).

Lemma 4.8 Under the assumptions of Theorem 4.7, for any η > (1+2β)δ
β

∨ (δ1+ δ)∨
δ∨(2δ−1)

2−ζ , there is a p0 large enough so that for all p > p0 and any strong solution v
of HJB (4.1),

‖∂xvρη‖L∞T L p +
∫ T

0

∫
|∂2x v|2|∂xv|p−2ρ p

η ≤ C . (4.18)

Proof Let p ≥ 2 be fixed, whose value will be determined below. Define

w(t, x) := ∂xv(t, x), A
w
p :=

∫
|∂xw|2|w|p−2ρ p

η .

For given q ∈ [ p2 + 1, p + 2] and γ ∈ R, by (4.14) and (4.10) and |∇ρδ| � ρδ+1 we
have

(∫
|w|qρpη+γ

)1/q
�
(∫

|∂xw|2|w|p−2ρpη

) 1
p+2 ‖vρδ2‖

2
p+2
Lr + ‖vρ pη+γ

q +1‖Lq

�
(
A
w
p

) 1
p+2 ‖ρδ2−δ‖

2
p+2
Lr + ‖ρ pη+γ

q +1−δ‖Lq ,

where

δ2 := (p+2−q)pη
2q + (p+2)γ

2q , r := 2q
p+2−q ∈ [2,∞].

Recalling ρδ(x) = 〈x〉−δ and d = 1, we have for q = p + 2 and γ = 2δ, or
q ∈ [ p2 + 1, p + 2) and γ > 2qδ

p+2 + (1− pη)(1− q
p+2 ) =: γ0,

‖ρδ2−δ‖Lr + ‖ρ pη+γ
q +1−δ‖Lq <∞.

Thus we always have

∫
|w|qρpη+γ �

{
A
w
p + 1, q = p + 2, γ = 2δ,

(Aw
p )

q
p+2 + 1, q ∈ [ p2 + 1, p + 2), γ > γ0.

(4.19)

Now by (4.1), one sees that

∂tw = ∂x (a · ∂xw)+ ∂x (Bw)+ ∂x H(v,w). (4.20)
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Since η >
( 1+2β

β

)
δ ∨ (δ1 + δ) ∨ δ∨(2δ−1)

2−ζ , we can choose p large enough such that

η >
([

2 p+1
p + p+2

β p

]
δ + 1

p

)
∨
(
(1+ 2

p )δ1 + 1
p + δ

)

∨
(
p+2ζ−2
(2−ζ )p δ + 1

p

)
∨
(

p+ζ
(2−ζ )p (2δ − 1)

)
.

(4.21)

Multiplying both sides of (4.20) by w|w|p−2ρpη and integrating on R, we obtain

1

p
∂t

∫
|wρη|p = −

∫
a∂xw∂x (w|w|p−2ρpη)−

∫
Bw∂x (w|w|p−2ρpη)

−
∫

Hs(v,w)∂x (w|w|p−2ρpη)−
∫

Hc(v,w)∂x (w|w|p−2ρpη)

=: I1 + I2 + I3 + I4.

For I1, since a ≥ c0 and η > 1
p + δ, by (4.19) with q = p and γ = 0, we have

I1 ≤ −c0

∫
|∂xw|2|w|p−2ρpη + C

∫
|∂xw||w|p−1ρpη

≤ −c0
2

A
w
p + C

∫
|w|pρpη ≤ −c0

4
A
w
p + C .

For I2, since |B| ≤ ‖B‖L∞T (ρδ1 )ρ−1
δ1

and η > (1+ 2
p )δ1+ 1

p + δ, by (4.19) with q = p
and γ = −2δ1, we have

I2 �
∫

|∂xw||w|p−1ρpη−δ1 +
∫

|w|pρpη+1−δ1

�
(
A
w
p

)1/2 (∫ |w|pρpη−2δ1

)1/2
+
∫

|w|pρpη

�
(
A
w
p

)(p+1)/(p+2) + 1.

For I3 since η >
(
p+2ζ−2
(2−ζ )p δ + 1

p

)
∨
(

p+ζ
(2−ζ )p (2δ − 1)

)
, by (4.19) with q = p−2+2ζ ,

γ = 0 and q = p + ζ , γ = 1

I3 �
∫
ρ−δ|∂x (w|w|p−2ρpη)| +

∫
|w|ζ |∂x (w|w|p−2ρpη)|

�
(
A
w
p

)1/2 (∫ |w|p−2ρpη−2δ

)1/2
+
∫

|w|p−1ρpη+1−δ

+
(
A
w
p

)1/2 (∫ |w|p−2+2ζ ρpη

)1/2
+
∫

|w|p+ζ ρpη+1

�
(
A
w
p

)(p+ζ )/(p+2) + 1.
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Now we treat the most difficult term I4. The key idea is to use regularity of H
w.r.t the spatial variable and integration by parts. To balance the weight, we use a
convolution approximation. Let φε(y) = ε−1φ(y/ε), where φ ∈ C∞

c ((−1, 1)) is a
smooth density function. Define for given t ∈ [0, T ] and v, Q ∈ R,

Hε(t, x, v, Q) =
∫

Hc(t, y, v, Q)φερδ/β (x)(x − y)dy. (4.22)

We make the following decomposition for I4:

I4 =
∫
(Hε(v,w)− Hc(v,w))∂x (w|w|p−2ρpη)

− (p − 1)
∫

Hε(v,w)∂xw|w|p−2ρpη

−
∫

Hε(v,w)w|w|p−2∂xρpη

:= I41 − I42 − I43.

For I41, noting that by (4.6), (4.22) and (4.10),

|Hε(x, v, w)− Hc(x, v, w)| ≤
∫

|H(y, v, w)− Hc(x, v, w)|φερδ/β (x)(x − y)dy

� εβρδ(x)
∫
(〈x〉δ + 〈y〉δ + |v|2 + |w|2)φερδ/β(x)(x − y)dy

� εβρδ(x)
(
〈x〉δ + 〈x〉2δ + |w|2

)
� ρ−1

δ (x)+ εβρδ(x)|w|2,

we have

I41 �
∫
ρ−1
δ |∂x (w|w|p−2ρpη)| + εβ

∫
ρδw

2|∂x (w|w|p−2ρpη)| =: I311 + I312.

For I411, noting that by the chain rule and |∇ρpη| � ρpη+1,

|∂x (w|w|p−2ρpη)| � |w|p−2|∂xw|ρpη + |w|p−1ρpη+1, (4.23)

since η > 1
p + δ, we have by (4.19) and Hölder’s inequality,

I411 �
∫

|w|p−2|∂xw|ρpη−δ +
∫

|w|p−1ρpη+1−δ

�
(
A
w
p

)1/2 (∫ |w|p−2ρpη−2δ

)1/2
+
∫

|w|p−1ρpη+1−δ

�
(
A
w
p

)p/(p+2) + 1.
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834 X. Zhang et al.

For I412, due to η > 1
p +δ, by (4.23), (4.19), Hölder’s inequality and Young’s inequal-

ity, we have

I412 � εβ
∫

|w|p|∂xw|ρpη+δ +
∫
εβ |w|p+1ρpη+1+δ

� εβ
∫
(|w|p−2|∂xw|2ρpη + |w|p+2ρpη+2δ)+

∫
|w|p+1ρpη+1+δ

� εβA
w
p +

(
A
w
p

)(p+1)/(p+2) + 1.

For I42, noting that by the chain rule,

Hε(v,w)∂xw|w|p−2 = ∂x

( ∫ w

0
Hε(v, r)|r |p−2dr

)

−
∫ w

0
(∂x Hε(v, r)+ ∂vHε(v, r)w)|r |p−2dr ,

by the integration by parts, we have

I42 �
∫ (∫ w

0
|Hε(v, r)||r |p−2dr

)
|∂xρpη|

+
∫ (∫ w

0
|∂x Hε(v, r)||r |p−2dr

)
ρpη

+
∫ (∫ w

0
|∂vHε(v, r)w||r |p−2dr

)
ρpη

=: I421 + I422 + I423.

For I421, by (4.5) and (4.19) we have

I421 �
∫ (∫ w

0
(ρ−1
δ + |r |2)|r |p−2dr

)
ρpη+1

�
∫
(ρ−1
δ |w|p−1 + |w|p+1)ρpη+1

� (Aw
p )

p+1
p+2 + 1.

For I422, noting that

|∂x Hε(x, v, w)| � ε−1ρ−1
δ/β(x)(〈x〉δ + w2),

and

η >
[
2 p+1

p + p+2
β p

]
δ + 1

p ,
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by (4.19) with q = p + 1, γ = −δ/β and q = p − 1, γ = −δ − δ/β, we have

I422 � ε−1
∫
(ρ−1
δ+δ/β |w|p−1 + ρ−1

δ/β |w|p+1)ρpη � (Aw
p )

p+1
p+2 + 1.

For I423, by (4.5), (4.10) and (4.19) with q = p, γ = −2δ, we have

I423 �
∫
(|w|p+1 + ρ−2

δ |w|p)ρpη � 1+ (Aw
p )

p+1
p+2 .

Finally, for I43, by (4.5) and (4.19), we similarly have

I43 �
∫
(|w|p−1ρ−1

δ + |w|p+1)ρpη+1 � (Aw
p )

p+1
p+2 + 1.

Combining the above calculations, choosing ε small enough andbyYoung’s inequality,
we obtain

1

2
∂t‖wρη‖pL p � −c0

8
A
w
p + 1.

Integrating both sides from 0 to T , we obtain the desired estimate. ��

Now we can give the proof of Theorem 4.7.

Proof of Theorem 4.7 We follow the proof of Theorem 4.6. Fix p > 1/(η− δ). By the
L p-theory of PDEs (cf. [38]), we have

‖∂t (vρη)‖Lp
T
+ ‖vρη‖

H
2,p
T

�C ‖H(v,∇v)ρη + (B · ∇v)ρη − �ρ‖Lp
T
+ ‖v0ρη‖H2,p ,

with �ρ defined in the proof of Theorem 4.6. Since p > 1/(η − δ), by |H(v, Q)| �
〈x〉δ + |Q|2, we have

‖H(v,∇v)ρη‖Lp
T

� ‖ρη−δ‖L p + ‖|∇v|2ρη‖Lp
T

� 1+ ‖∇vρη/2‖2
L
2p
T

.

We have by Hölder’s inequality and Sobolev’s embedding,

‖∇vρη/2‖
L
2p
T
≤‖∇vρη‖θL∞T ‖∇vρη0‖

1−θ
L∞T Lr

� ‖∇(∇vρη)‖θ
L
p
T
‖∇vρη0‖1−θL∞T Lr + ‖∇vρη‖θ

L
p
T
‖∇vρη0‖1−θL∞T Lr ,

where θ ∈ (0, 1/2) and

r = 2p(1− θ), η0 = 1−2θ
2(1−θ)η.
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836 X. Zhang et al.

Let p0 be as in Lemma 4.8. Since η > 2
(
1+2β
β
δ ∨ (δ1 + δ) ∨ δ∨(2δ−1)

2−ζ
)
, one can

choose θ close to zero and p large enough so that

η0 = 1−2θ
2(1−θ)η >

1+2β
β
δ ∨ (δ1 + δ), r , p ≥ p0.

Thus by (4.18), we obtain

‖∇vρη0‖L∞T Lr + ‖∇vρη‖Lp
T
≤ C,

and therefore,

‖H(v,∇v)ρη‖Lp
T
≤ ε‖∇2(vρη)‖Lp

T
+ C .

Moreover, as in the proof of Theorem 4.6, one has

‖(B · ∇v)ρη − �ρ‖Lp
T
≤ C .

Thus we obtain the desired estimate as in the proof of Theorem 4.6. ��

4.4 Proof of Theorem 4.2

The existence proof follows by the previous a priori estimates and standard compact
method. For the uniqueness part we use a probabilistic method.
(Existence). Let T > 0. For fixed m ∈ N, let χm

n (x) := χm(x/n), n ∈ N be the
cutoff function inR

m , and �mn (x) := nm�m(nx), n ∈ N be the mollifiers inR
m , where

χm ∈ C∞
c (R

m)with χm = 1 for |x | ≤ 1 and χm = 0 for |x | > 2, and �m ∈ C∞
c (R

m)

is a density function. Define

Bn(t, x) := B(t, x)1|x |≤n, ϕn(x) := v0(x)χ
d
n (x).

For nonlinear term H , we construct the approximation Hn as follows:

Hn(t, x, v, Q) := ((H(t, x, ·, ·)χd+1
n ) ∗ �d+1

n )(v, Q)χd
n (x). (4.24)

We consider the following approximation equation:

∂tvn = tr(a · ∇2vn)+ Bn · ∇vn + Hn(vn,∇vn), vn(0) = ϕn . (4.25)

Note that by the assumptions of Theorem 4.2,

Bn ∈ ∩p∈[1,∞]Lp
T , ϕn ∈ ∩p∈[1,∞]H2,p,

and

‖Hn‖L∞T + ‖∂vHn‖L∞T + ‖∂QHn‖L∞T <∞.

123



Singular HJB equations with applications to KPZ 837

It is well known that the approximation Eq. (4.25) admits a unique strong solution
vn ∈ ∩p≥2H2,p

T (cf. [38]). Moreover, by definition, we have the following uniform
estimates:

‖Bnρδ1‖L∞T ≤ ‖Bρδ1‖L∞T ,

and for some C independent of n, in the subcritical case,

|Hn(v, Q)| �C 〈x〉δ + |Q|ζ ,

and in the critical case d = 1,

|Hn(t, x, v, Q)| �C 〈x〉δ + |Q|2, |∂vHn(t, x, v, Q)| �C 〈x〉δ + |v|2 + |Q|,
|Hn(t, x, v, Q)− Hn(t, y, v, Q)| �C |x − y|β(〈x〉δ + 〈y〉δ + |v|2 + |Q|2),

Thus by Theorems 4.4, 4.6 and 4.7, we have the following uniform estimates: for η
being as in (4.7) and p large enough,

‖vnρδ‖L∞T + ‖∂t (vnρη)‖Lp
T
+ ‖vnρη‖

H
2,p
T

≤ C,

where C is independent of n. By Sobolev’s embedding (cf. [12, Lemma 2.3]), for any
β ′ ∈ (0, 2− 2

p ) and γ = 1− β ′
2 − 1

p ,

‖vnρη‖CγTCβ′−d/p � ‖vnρη‖CγT Hβ′,p

� ‖∂t (vnρη)‖Lp
T
+ ‖vnρη‖

H
2,p
T

+ ‖v0ρη‖Hβ′,p ≤ C .

Thus byAscolli-Arzela’s lemma, there are subsequencenk and v ∈ L
∞
T (ρδ)∩H

2,p
T (ρη)

such that for all t, x ,

∇ jvnk (t, x)→ ∇ jv(t, x), j = 0, 1, (4.26)

and for any R > 0,

∇2vn → ∇2v weakly in L2([0, T ] × BR). (4.27)

By taking limits for (4.25), one finds that v is a strong solution to (4.1) in the sense of
Definition 4.1. Indeed, for any ψ ∈ C∞

c (R
d), by (4.27) we have

lim
n→∞

∫ t

0
〈tr(a · ∇2vn), ψ〉ds =

∫ t

0
〈tr(a · ∇2v), ψ〉ds

and by (4.26) and the dominated convergence theorem,

lim
n→∞

∫ t

0
〈Bn · ∇vn, ψ〉ds =

∫ t

0
〈B · ∇v,ψ〉ds
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Moreover, since for each (t, x) ∈ [0, T ] × R
d and R > 0,

lim
n→∞ sup

|(v,Q)|≤R
|Hn(t, x, v, Q)− H(t, x, v, Q)| = 0,

by (4.26) and the dominated convergence theorem, we also have

lim
n→∞

∫ t

0
〈Hn(s, ·, vn,∇vn), ψ〉ds =

∫ t

0
〈H(s, ·, v,∇v), ψ〉ds.

Thus we obtain the existence of a strong solution.

(Uniqueness).We prove the uniqueness on the time interval [0, 1] by a probabilisitic
method. Let v1, v2 be two strong solutions of HJB Eq. (4.1) with the same initial value
v0. By (4.8), we have

v1, v2 ∈ L
∞
1 (ρδ) ∩ L∞1 C 1(ρη). (4.28)

Let V := v1 − v2. Then V is a strong solution of the following linear PDE:

∂t V = tr(a · ∇2V )+ B · ∇V + G · ∇V + K · V , V (0) = 0,

where

G :=
∫ 1

0
∂QH(v1,∇v1 + θ∇(v2 − v1))dθ,

and

K :=
∫ 1

0
∂vH(v1 + θ(v2 − v1),∇v2)dθ.

By (4.28) and (4.9), there is a constant C0 > 0 such that for all (t, x) ∈ [0, 1] × R
d ,

|G(t, x)| �C0 〈x〉, |K (t, x)| �C0 〈x〉2. (4.29)

Let T ∈ (0, 1] be fixed and determined below. For a space-time function F , let

FT (t, x) := F(T − t, x).

Thus under (Hα
1 ) and B ∈ L

∞
1 (ρδ1), for each (t, x) ∈ [0, T ]×R

d , the following SDE
admits a unique weak solution starting from x at time t (see [37]):

Xt,x
s = x +

∫ s

t

√
2aT (r , Xt,x

r )dWr +
∫ s

t
(BT + GT )(r , Xt,x

r )dr , ∀s ∈ [t, T ].
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As in the proof of Theorem 4.4, by Itô’s formula, we have

e
∫ t ′
t K T (s,Xt,x

s )dsV T (t ′, Xt,x
t ′ ) = V T (t, x)+ Mt ′ , t

′ ∈ [t, T ],

where Mt ′ is a continuous local martingale. Note that by (4.29) and [54, Lemma 2.2],
for T = T (C0, d, c0, ‖B‖L∞1 (ρδ1 )) small enough,

Ee2
∫ T
t K T (s,Xt,x

s )ds ≤ Ee2C0 sups∈[t,T ] |Xt,x
s |2 <∞.

By using stopping time technique as in the proof of Theorem 4.4 and taking expecta-
tions, we find that for T being small enough, 0 ≤ t ≤ T

V T (t, x) = Ee
∫ T
t K T (s,Xt,x

s )dsV (0, Xt,x
T ) ≡ 0.

Thus we obtain the uniqueness on small time interval [0, T ]. We can proceed to
consider [T , 2T ] and so on. The proof is complete.

5 HJB equations with distribution-valued coefficients

In this section we focus on Eq. (1.5). Our strategy is summarized as follows: we
first decompose Eq. (1.5) into two equations: the linear one with singular f and the
nonlinear one without f . For the linear equation, we can obtain the desired estimate
by Theorem 3.7. For the nonlinear equation, we introduce Zvonkin’s transformation to
kill the singular part so that we can use the results in Sect. 4 to deduce a priori estimates
for solutions to the nonlinear equation. Finally we employ the standard compactness
argument to construct a solution to (1.5).

Now we fix α ∈ ( 12 , 23 ) and κ ∈ (0, 1) being small enough so that

ᾱ := α + κ̃ ∈ ( 12 , 23 ), κ̃ := κ1/4, δ := 2( 9
2−3α + 1)κ < 1. (5.1)

We consider the following singular HJB equation:

L u = (∂t −�) u = b · ∇u + H(u,∇u)+ f , u(0) = ϕ, (5.2)

where (b, f ) ∈ ∩T>0B
α
T (ρκ) and

H(t, x, u, Q) : R
+ × R

d × R × R
d → R

satisfies (Hδ,ζ
sub) or (H

δ,β
crit ) with ζ ∈ [0, 2), β ∈ (0, 1] and for some C > 0,

|∂u H(t, x, u, Q)| + |∂QH(t, x, u, Q)| �C 〈x〉δ + |u| + |Q|. (5.3)
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To understand HJB Eq. (5.2), we use the paracontrolled calculus:

u = ∇u ≺≺ I b +I f + u� + Ptϕ, (5.4)

where u� solves the following equation

⎧⎪⎨
⎪⎩

L u� = ∇u ≺ b −∇u ≺≺ b + ∇u � b + b ◦ ∇u

+ H(u,∇u)− [L ,∇u ≺≺]I b,

u�(0) = 0,

(5.5)

with b ◦ ∇u being defined by (3.5) for λ = 0.
Our aim of this section is to prove the following result.

Theorem 5.1 Let T > 0, β ∈ (0, 1 − ᾱ], ζ ∈ [0, 2) and α, ᾱ, κ, δ be as in (5.1).
Suppose that (b, f ) ∈ B

α
T (ρκ) and (Hδ,ζ

sub) or (H
δ,β
crit ) as well as (5.3) hold. Let

⎧⎨
⎩
η >

2ζ δ
2−ζ ∨ [2̃κ + 2δ], under (Hδ,ζ

sub);
η > 2

[
2(1+2β)δ

β
∨ (̃κ + 2δ) ∨ (2δ)∨(4δ−1)

2−ζ
]
, under (Hδ,β

crit ).
(5.6)

Fix ε ∈ (0, 1). For any initial value ϕ ∈ C1+α+ε(ρεδ), there is a paracontrolled
solution (u, u�) solving (5.4) and (5.5) with regularity

u ∈ S
2−ᾱ
T (ρη) ∩ L

∞
T (ρ2δ), u� ∈ S

3−2ᾱ
T (ρ2η) ∩ L

∞
T (ρ2δ+κ).

Moreover, if η < 1−α
2 , then the paracontrolled solution (u, u�) is unique.

Remark 5.2 (i) Typical examples satisfying (Hδ,β
crit ) as well as (5.3) are given by

H(x, u) = g1(x)|∇u|2 + (g2(x)+ F(u))∇u + g3(u)+ g4(x),

where g1 ∈ Cβ , g2 ∈ L∞(ρδ0), δ0 < δ, g4 ∈ L∞(ρδ), and g3, F ∈ C 1.
(ii) By (5.6), one sees that η can be arbitrarily small as long as κ is small.

To show the existence of a paracontrolled solution, we use the approximation
method. More precisely, since (b, f ) ∈ B

α
T (ρκ), by the very definition, there is a

sequence of (bn, fn) ∈ L∞T C∞(ρκ) with

sup
n

(
�
bn
T (ρκ)+ A

bn , fn
T ,∞ (ρκ)

)
≤ c0,

and such that for λ ≥ 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
n→∞

(
‖bn − b‖L∞T C−α(ρκ ) + ‖ fn − f ‖L∞T C−α(ρκ )

)
= 0,

lim
n→∞‖bn ◦ ∇Iλbn − b ◦ ∇Iλb‖L∞T C1−2α(ρκ )

= 0,

lim
n→∞‖bn ◦ ∇Iλ fn − b ◦ ∇Iλ f ‖L∞T C1−2α(ρκ )

= 0.

(5.7)
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Moreover, let ϕn be the the convolution of ϕ with smooth mollifier so that

sup
n
‖ϕn‖C1+α+ε(ρεδ) � ‖ϕ‖C1+α+ε(ρεδ).

We consider the following approximation equation:

L un = bn · ∇un + H(un,∇un)+ fn, un(0) = ϕn . (5.8)

By Theorem 4.2, it is well known that approximation equation (5.8) admits a unique
strong solution un with

‖un‖L∞T (ρδ) + ‖∂t un‖Lp
T (ρη)

+ ‖un‖
H
2,p
T (ρη)

≤ Cn .

Our aim is of course to establish the following uniform estimate:

sup
n

(
‖un‖S2−ᾱT (ρη)

+ ‖un‖L∞T (ρ2δ) + ‖u�n‖S3−2ᾱ
T (ρ2η)

+ ‖u�n‖L∞T (ρ2δ+κ )
)
≤ C, (5.9)

where u�n is defined by (5.4) with (b, f ) being replaced by (bn, fn).
To show the uniform estimate (5.9), our approach is to transform (5.8) into HJB

equation studied in Sect. 4. In the following, for simplicity, we drop the subscript
n and use the convention that all the constants appearing below only depend on the
parameter set

� := (T , d, α, β, η, ζ, κ, c0, ε, ‖ϕ‖C1+α+ε(ρεδ)).

First of all, by Lemma 2.13, one can make the following decomposition for the initial
value ϕ ∈ C1+α+ε(ρεδ): for ε0 ∈ (0, εα

1−ε ),

ϕ = ϕ1 + ϕ2, ϕ1 ∈ C1+α+ε0 , ϕ2 ∈ C 2(ρδ).

Next we make the following decomposition for u:

u = u1 + u2,

where u1 solves the following linear equation with non-homogeneous term f

L u1 = b · ∇u1 + f , u1(0) = ϕ1, (5.10)

while u2 solves the following HJB equation

L u2 = b · ∇u2 + H(u1 + u2,∇u1 +∇u2), u2(0) = ϕ2. (5.11)

Clearly, the linear Eq. (5.10) can be uniquely solved by Theorem 3.7 with the solution
u1 ∈ S

2−α
T (ρδ). Thus it remains to solve (5.11). However, since b is a distribution,
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we cannot directly apply Theorem 4.2. We use (2.23) and Zvonkin’s transformation
to kill the singular part of b.

5.1 Zvonkin’s transformation for HJB equations

In this section we introduce a transformation of phase space to kill the distributional
part in the drift of the HJB equation (5.11) so that we can apply the result in Sect.
4. Such a transformation was firstly used by Zvonkin in [56] to study the SDEs with
singular drifts. In the literature, it is also called Zvonkin’s transformation. Below we
always assume

b ∈ L∞T (C∞(ρκ)), �bT (ρκ) ≤ c0. (5.12)

The key step for Zvonkin’s transform is to construct a C1-diffeomorphism such that
the solutions to Eq. (5.11) composed with this diffeomorphism satisfy a new equation
without the singular part of the drift b. However, a diffeomorphism does not allow
polynomial growth for C1-norm as |x | → ∞. To this end, we decompose b into two
parts by Lemma 2.13. By Lemma 2.13 we make the following decomposition:

b = b> + b≤ := V>b + V≤b,

We are goint to construct a C1-differmophism to kill the b> part. Furthermore, we
define

b̄ := b> ◦ ∇Iλb>, b̄> := V>b̄, b̄≤ := V≤b̄. (5.13)

Lemma 5.3 For any m ∈ N and ε > 0, it holds that

b> ∈ L∞T C m, b̄≤ ∈ L∞T C m(ρ2κ+ε). (5.14)

For some C = C(d, α, κ) > 0, it holds that

‖b>‖L∞T C−α−κ̃ + ‖b≤‖L∞T (ρκ̃ ) �C

√
�bT (ρκ), (5.15)

where κ̃ = κ1/4, and

‖b̄‖L∞T C1−2α(ρκ̃ )
+ ‖b̄>‖L∞T C1−2α−κ̃ + ‖b̄≤‖L∞T (ρκ̃ ) �C �

b
T (ρκ). (5.16)

Proof (i) Since b ∈ L∞T C∞(ρκ), by Lemma 2.13 one sees that (5.14) holds.
(ii) We use Lemma 2.13 with weight ρκ1/2 to conclude

‖b>‖L∞T C−α−κ̃ � ‖b>‖L∞T C−α−κ1/2 � ‖b‖L∞T C−α(ρκ ) ≤
√
�bT (ρκ).
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Since α < 1, we can choose ε > 0 being small enough so that

κ̄ := κ + κ1/2(α + ε) ≤ κ1/2 − κ < 2
3 κ̃ − κ.

Noting that

ρκ̄ (x) = 〈x〉−κ1/2(κ1/2+α+ε) = ρκ
1/2+α+ε
κ1/2

(x),

by Lemma 2.13 again, we have

‖b≤‖L∞T (ρκ̃ ) ≤ ‖b≤‖L∞T (ρκ̄ ) = ‖b≤‖
L
∞
T (ρ

κ1/2+α+ε
κ1/2

)

� ‖b‖
L∞T C−α(ρκ1/2

κ1/2
)
= ‖b‖L∞T C−α(ρκ ).

(iii) Note that by definition (5.13),

b̄ = b ◦ ∇Iλb − b ◦ ∇Iλ(b≤)− b≤ ◦ ∇Iλb>

and

‖b ◦ ∇Iλb‖L∞T C1−2α(ρ2κ )
≤ �bT (ρκ).

By (2.16), (2.12) and (5.15), we have for ε ∈ (0, 1− α),

‖b ◦ ∇Iλ(b≤)‖L∞T C0(ρκ+κ̄ ) � ‖b‖L∞T C−α(ρκ )‖b≤‖L∞T Cα+ε−1(ρκ̄ )
� �bT (ρκ),

and

‖b≤ ◦ ∇Iλ(b>)‖L∞T C1−α−κ̃ (ρκ̄ ) � ‖b≤‖L∞T (ρκ̄ )‖b>‖L∞T C−α−κ̃ � �bT (ρκ).

Combining the above estimate we get

‖b̄‖L∞T C1−2α(ρκ̃ )
� ‖b̄‖L∞T C1−2α(ρκ+κ̄ ) � �bT (ρκ).

(iii) As for the other two estimates in (5.16), we use Lemma 2.13 with the weight ρκ̃
to have

‖b̄>‖L∞T C1−2α−κ̃ ≤ ‖b̄>‖
L∞T C1−2α− κ̄+κ

κ̃
� ‖b̄‖L∞T C1−2α(ρκ+κ̄ ) � �bT (ρκ),

and for ε > 0 small enough

‖b̄≤‖L∞T (ρκ̃ ) ≤ ‖b̄≤‖L∞T (ρκ̄+κ+κ̃(2α−1+ε)) � ‖b̄‖L∞T C1−2α(ρκ+κ̄ ) � �bT (ρκ).

The proof is complete. ��
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To construct a C1-diffeomorphism for killing the singular b>, we consider the
following vector-valued parabolic equation:

Lλu = (b> − b̄≤) · (∇u+ I), u(0) = 0 ∈ R
d . (5.17)

Remark 5.4 The reason for considering b> − b̄≤ rather than b> is the following: in
order to use (5.17) to construct aC1-diffeomorphism, the solutionu to (5.17)must be in
unweighted spaces,which requires �b>T (1) <∞. However, by (5.16), b̄ = b>◦∇Iλb>
stays in a weighted space. Hence, we shall use b̄≤ to cancel the weight contained in
the decomposition of renormalizing b> ◦ ∇u. It should also be also noticed that since
b> − b̄≤ still stays in some weighted space, one cannot directly use Lemma 3.4 to
construct a C1-diffeomorphism. Fortunately, one still has the following result.

Lemma 5.5 Let α ∈ ( 12 , 23 ) and κ ∈ (0, ( 23 −α)4). Under (5.12), for ᾱ = α+ κ̃ , there
exist λ = λ(�) large enough and a constant C = C(�) > 0 such that

‖u‖C 1 ≤ 1/2, ‖u‖
S
2−ᾱ
T

≤ C . (5.18)

Proof We use the paracontrolled ansatz as in (3.3) and write

u = ∇u ≺≺ Iλb> +Iλb> + u�,

where

u� := Iλ

(∇u ≺ b> −∇u ≺≺ b> +∇u � b> + �b
u − [Lλ,∇u ≺≺]Iλb>

)

with

�b
u := b> ◦ ∇u− b̄≤ · (∇u+ I).

Recalling that b̄ = b> ◦ ∇Iλb>, as in (3.5), we have

�b
u= b> ◦ (∇2u ≺ Iλb>)+ b> ◦ (∇u ≺ ∇Iλb>)+ b> ◦ ∇Iλb>

+com1 + b> ◦ ∇u� − b̄≤ · (∇u+ I)

= b> ◦ (∇2u ≺ Iλb>)+ com(∇u,∇Iλb>, b>)

+ com1 + b> ◦ ∇u� + b̄> · (∇u+ I),

where

com1 := b> ◦ ∇[∇u ≺≺ Iλb> −∇u ≺ Iλb>].

Let

γ, β ∈ (ᾱ, 2− 2ᾱ].
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Except for the last term b̄> · (∇u+ I), we estimate each term of �b
u as in Lemma 3.3

and obtain

‖�b
u‖L∞T C1−2ᾱ � ‖b>‖2L∞T C−ᾱ‖u‖

S
ᾱ+γ
T

+ ‖b>‖L∞T C−ᾱ‖∇u�‖L∞T Cβ

+ ‖b̄> · (∇u+ I)‖L∞T C1−2ᾱ

� �bT (ρκ)
(
‖u‖

S
ᾱ+γ
T

+ 1
)
+
√
�bT (ρκ)‖u�‖L∞T Cβ+1 ,

wherewe have used (5.15), (5.16) and (2.17).As inLemma3.4, for any θ ∈ (1+ 3ᾱ
2 , 2),

there is a constant C > 0 independent of λ such that for all λ ≥ 1,

λ1−
θ
2 (‖u‖

S
θ−ᾱ
T

+ ‖u�‖
S
2θ−2ᾱ−1
T

) ≤ c�bT (ρκ)(‖u‖Sθ−ᾱT
+ ‖u�‖

S
2θ−2ᾱ−1
T

+ 1).

Taking λ large enough, we get the first estimate in (5.18). The second estimate follows
from the same argument as in Lemma 3.4. ��

Now, let us define

�(t, x) := x + u(t, x).

By Lemma 5.5, it is easy to see that for each t ∈ [0, T ] and x, y ∈ R
d ,

1
2 |x − y| ≤ |�(t, x)−�(t, y)| ≤ 3

2 |x − y| (5.19)

and

∂t� = ��− λu+ (b> − b̄≤) · ∇�. (5.20)

In particular,

x �→ �(t, x) is a C1-diffeomorphism.

Let �−1(t, x) be the inverse of x �→ �(t, x) and define

v(t, x) := u2(t,�
−1(t, x))⇒ v(t,�(t, x)) = u2(t, x),

where u2 solves HJB Eq. (5.11).
In the rest of this subsection, if there is no confusion, we also use ◦ to denote the

composition of two functions. By the chain rule, we have

∂tv ◦�+ ∂t� · (∇v ◦�) = ∂t u2, ∇u2 = ∇� · (∇v ◦�)

and

�u2 = �� · (∇v ◦�)+ tr(̃a · ∇2v ◦�),
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where ãi j :=∑d
k=1(∂k�

i∂k�
j ), which implies by (5.11) and (5.20) that

(∂tv) ◦� = tr(̃a · ∇2v ◦�)+ H(u1 + u2,∇u1 + ∇u2)

+ ((b≤ + b̄≤) · ∇�+ λu) · (∇v ◦�).

Thus we obtain the following key lemma for solving HJB equation (5.11).

Lemma 5.6 The v defined above solves the following HJB equation:

∂tv = tr
(
a · ∇2v

)
+ B · ∇v + H̃(v,∇v), v(0) = ϕ2, (5.21)

where ai j :=∑d
k=1(∂k�

i∂k�
j ) ◦�−1 and

B := ((b≤ + b̄≤) · ∇�+ λu) ◦�−1,

and for (t, x, v, Q) ∈ [0, T ] × R
d × R × R

d ,

H̃(t, x, v, Q) := H
(
t, ·, u1(t, ·)+ v,∇u1(t, ·)+ ∇�(t, ·) · Q) ◦�−1(t, x).

Moreover, a satisfies (H1−ᾱ
a ), B ∈ L

∞
T (ρκ̃ ), and under (H

δ,ζ
sub) or (H

δ,β
crit ) for β ≤ 1− ᾱ,

H̃ still satisfies (H2δ,ζ
sub ) or (H2δ,β

crit ) .

Proof (i) By (5.19) and (5.18), we have 1
2 I ≤ ã ≤ 2I and

|a(t, x)− a(t, y)| � |∇u(t,�−1(t, x))− ∇u(t,�−1(t, y))|
� |�−1(t, x)−�−1(t, y)|1−ᾱ � |x − y|1−ᾱ .

(ii) Note that for some C ≥ 1,

C−1〈x〉 ≤ 〈�(t, x)〉 ≤ C〈x〉, ∀t ∈ [0, T ]. (5.22)

The assertion B ∈ L
∞
T (ρκ̃ ) follows by (5.18) and Lemma 5.3.

(iii) We only check that under (Hδ,β
crit ), H̃ satisfies (H2δ,β

crit ). For simplicity, we drop the
time variable and we only consider Hc part. By (4.5), we have

|Hc
(
x, u1(x)+ v,∇u1(x)+ ∇�(x) · Q)|

≤ c2〈x〉δ + c′3(|Q|2 + |∇u1(x)|2) ≤ c′2〈x〉2δ + c′3|Q|2,

where we used u1 ∈ S
2−α
T (ρδ). By (4.6) and (5.3), we have for |x− y| ≤ 1, β ≤ 1− ᾱ

|Hc
(
x, u1(x)+v,∇u1(x)+ ∇�(x) · Q)− Hc

(
y, u1(y)+ v,∇u1(y)+∇�(y) · Q)|

� |x − y|β
(
〈x〉δ + 〈y〉δ + |u1(x)+ v|2 + |∇u1(x)+∇�(x) · Q|2

)
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+ |u1(x)− u1(y)|
(
〈y〉δ + |v| + |u1(x)| + |u1(y)| + |∇u1(x)| + |Q|

)
+ (|∇u1(x)−∇u1(y)| + |∇�(x)−∇�(y)||Q|)
× (〈y〉δ + |u1(y)| + |v| + |∇u1(x)| + |∇u1(y)| + |Q|)

� |x − y|β(〈x〉2δ + 〈y〉2δ + |v|2 + |Q|2).

Furthermore, we have

|∂vHc
(
x, u1(x)+ v,∇u1(x)+ ∇�(x) · Q)|

� 〈x〉δ + |u1(x)| + |v| + |∇u1(x)| + |Q| � 〈x〉δ + |v| + |Q|.

Therefore, H̃ satisfies (H2δ,β
crit ) by definition and (5.19), (5.22). ��

5.2 Proof of Theorem 5.1

By Lemma 5.6 and Theorem 4.2 we can derive the following a priori estimate for the
solution to (5.2).

Lemma 5.7 Under (5.12), there is a constant C = C(�) > 0 such that

‖u‖L∞T (ρ2δ) + ‖u‖
S
2−ᾱ
T (ρη)

≤ C . (5.23)

Proof Recall u = u1 + u2, where u1 solves Eq. (5.10) and u2 solves Eq. (5.11). By
Theorem 3.7, one has

‖u1‖S2−ᾱT (ρδ)
� 1.

Hence, to prove (5.23), due to η ≥ 2δ, it suffices to prove that

‖u2‖L∞T (ρ2δ) + ‖u2‖S2−ᾱT (ρη)
� 1. (5.24)

Note that by Lemma 5.6, v = u2(�) solves (5.21). In particular, by Lemma 5.6 and
Theorem 4.2, for p large enough and η satisfying (5.6),

‖v‖L∞T (ρ2δ) + ‖∂tv‖Lp
T (ρη)

+ ‖v‖
H
2,p
T (ρη)

� 1, (5.25)

which implies by [12, Lemma 2.3],

‖v‖
C(2−ᾱ)/2T L∞(ρη)

� 1. (5.26)

By (5.22), we have

‖u2‖L∞T (ρ2δ) = ‖v(�)ρ2δ‖L∞T � ‖v(�)ρ2δ(�)‖L∞T = ‖v‖L∞T (ρ2δ),
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and by (2.17), (5.25) and (5.18),

‖∇u2‖L∞T C1−ᾱ (ρη) = ‖∇v ◦� · ∇�‖L∞T C1−ᾱ (ρη)

� ‖∇v(�)‖L∞T C1−ᾱ (ρη)‖∇�‖L∞T C1−ᾱ

� ‖∇v‖L∞T C1−ᾱ (ρη)(‖u‖L∞T C2−ᾱ + 1) � 1,

where in the second inequality, we have used that for |x − y| ≤ 1,

ρη(x)|∇v(�(x))−∇v(�(y))|
(5.22)
� ρη(�(x))|∇v(�(x))−∇v(�(y))|

(2.1),(5.19)
� |�(x)−�(y)|1−ᾱ‖∇v‖L∞T C1−ᾱ (ρη).

Moreover, by (5.22), we also have

‖u2(t)− u2(s)‖L∞(ρη) � ‖v(t,�(t))− v(t,�(s))‖L∞(ρη) + ‖v(t)− v(s)‖L∞(ρη)
≤ ‖�(t)−�(s)‖L∞

∫ 1

0
‖∇v(t, �t,s

r )‖L∞(ρη)dr
+ ‖v(t)− v(s)‖L∞(ρη),

where�t,s
r (x) := r�(t, x)+(1−r)�(s, x). Since for any r ∈ [0, 1] and t, s ∈ [0, T ],

�t,s
r (x) = x + ru(t, x)+ (1− r)u(s, x),

by (5.18), we have

ρη(�
t,s
r (x)) � ρη(x).

Hence, by (5.18) and (5.26),

‖u2(t)− u2(s)‖L∞(ρη)
|t − s|(2−ᾱ)/2 � 1.

Combining the above estimates, we obtain (5.24). The proof is complete. ��
Next we apply (5.23), (5.4) and (5.5) to derive the following a priori estimate for u�

as done in Lemma 3.3.

Lemma 5.8 Under (5.12), there is a constant C = C(�) > 0 such that

‖u�‖L∞T (ρ2δ+κ ) + ‖u�‖
S
3−2ᾱ
T (ρ2η)

≤ C . (5.27)

Proof First of all, by (5.4) and (5.23), we have

‖u�‖L∞T (ρ2δ+κ ) + ‖u�‖L∞T C2−ᾱ (ρη+κ ) � 1. (5.28)
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Next we estimate each term on the right hand side of (5.5) by using Lemma 2.10.

• By (2.21), (2.4), and ᾱ = α + κ̃ , we have

‖∇u ≺ b − ∇u ≺≺ b‖L∞T C1−2ᾱ (ρη+κ ) � ‖u‖
S
2−ᾱ
T (ρη)

‖b‖L∞T C−α(ρκ ) � 1.

• By (2.15) we have

‖∇u � b‖L∞T C1−2ᾱ (ρη+κ ) � ‖u‖L∞T C2−ᾱ (ρη)‖b‖L∞T C−α(ρκ ) � 1.

• By (2.20) and (2.12) we have

‖[L ,∇u ≺≺]I b‖L∞T C1−2ᾱ (ρη+κ ) � ‖u‖
S
2−ᾱ
T (ρη)

‖b‖L∞T C−α(ρκ ) � 1.

• By the growth of H and (5.23), we have

‖H(u,∇u)‖L∞T (ρ2η) � 1+ ‖∇u‖2
L
∞
T (ρη)

� 1.

• By Lemma 3.3 with γ = 2− 2ᾱ, β ∈ (ᾱ, 2− 2ᾱ), we have

‖b ◦ ∇u‖L∞T C1−2ᾱ (ρ2η)
� ‖u‖

S
2−ᾱ
T (ρ2η−2κ )

+ ‖u�‖L∞T Cβ+1(ρ2η−κ ) + 1,

and by interpolation inequality (2.5)with θ = η−2κ
η−κ , (5.28) andYoung’s inequality,

‖u�‖L∞T Cβ+1(ρ2η−κ ) � ‖u�‖θL∞T C3−2ᾱ (ρ2η)
‖u�‖1−θ

L∞T C2−ᾱ (ρη+κ )

� ε‖u�‖L∞T C3−2ᾱ (ρ2η)
+ 1,

where we choose β such that β ≤ (1− ᾱ)(θ + 1) since κ is small enough.

Combining the above calculations and by (2.11) with θ = 2 and q = ∞, we obtain

‖u�‖
S
3−2ᾱ
T (ρ2η)

� ε‖u�‖L∞T C3−2ᾱ (ρ2η)
+ 1,

which in turn implies the desired estimate. ��
Now we are in a position to give the proof of Theorem 5.1.

Proof of Theorem 5.1 (Existence) By (5.23) and (5.27), we obtain the uniform estimate
(5.9). Now by Ascoli-Arzelà’s lemma, there are a subsequence still denoted by n and

(u, u�) ∈ S
2−ᾱ
T (ρη)× S

3−2ᾱ
T (ρ2η)

such that for each γ > 0,

(un, u
�
n)→ (u, u�) in S

2−ᾱ−γ
T (ρη+γ )× S

3−2ᾱ−γ
T (ρ2η+γ ).
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By (5.7) and taking weak limits for approximation equation (5.4) and (5.5) with (b, f )
being replaced by (bn, fn), one sees that (u, u�) solves (5.4) and (5.5) (see [18] for
more details).

(Uniqueness)Let u, ū be two paracontrolled solutions to (5.2) in the sense of Theorem
5.1 starting from the same initial value. Let U := u − ū. It is easy to see that U is a
paracontrolled solution to the following linear equation

∂tU = �U + (b + R) · ∇U + K ·U , U (0) = 0, (5.29)

where

R :=
∫ 1

0
∇QH(u,∇u + s∇(ū − u))ds,

K :=
∫ 1

0
∂u H(u + s(ū − u),∇ū)ds.

Note that by (5.3) and u, ū ∈ S
2−ᾱ
T (ρη),

|R| + |K | � ρ−1
δ + |u| + |ū| + |∇ū| + |∇u| � ρ−1

η .

Then uniqueness follows from Theorem A.2. ��

6 Applications

In this section we apply the main results in Sect. 5 to the KPZ type Eqs. (1.3) and
(1.4).

6.1 KPZ type equations

Consider the following KPZ type equation:

L h = (∂xh)
 2 + g(h)+ ξ, h(0) = h0 (6.1)

where g ∈ C 1 and ξ is a space-time white noise on R
+ × R on some stochastic

basis (�,F , (Ft )t≥0,P). Here the nonlinear term (∂xh) 2 = “(∂xh)2 − ∞′′ with
∞ = limn→∞ cn for cn and the approximation ξn being defined below.

For g ≡ 0 Eq. (6.1) is the classical KPZ equation. The motivation for adding the
nonlinear term g comes from geometric stochastic heat equations with values in a
Riemannian manifold M studied in [4] via regularity structure theory and in [11, 49]
by Dirichlet form, which, in local coordinates, can be written as

∂t u
α = ∂2x u

α + �αβγ (u)∂xu
β∂xu

γ + hα(u)+ σαi (u)ξi , (6.2)
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where� denotes the Christoffel symbols for the Levi-Civita connection and ξi are i.i.d.
space-time white noises and σi are a collection of vector fields on the manifold. We
use Einstein’s convention of summation over repeated indices. The first three terms
in (6.2) correspond to Eells-Sampson’s harmoic map flow [14] and hα corresponds to
the 1

8∇R with R the scalar curvature of M . For more background on (6.2) we refer to
[4] and [11, 49]. As (6.2) is driven by multiplicative noise, there are more than forty
terms required for renormalization and regularity structure theory is required to derive
local well-posedness of (6.2). It is also interesting to study (6.2) on the whole line (see
[11] for different long time behavior compared to the finite volume case). As directly
obtaining global well-posedness to Eq. (6.2) by PDE argument is out of reach by the
techniques so far, we study (6.1) and apply our main result.

We define the 2n periodization of ξ by

ξ̃n(ψ) = ξ(ψn) where ψn(t, x) = 1[−n,n)(x)
∑
y∈2nZ

ψ(t, x + y).

Let ϕ ∈ C∞
c (R) be even and such that ϕ(0) = 1 and define the spatial regularization

of ξ̃n

ξn = ϕ(n−1∂x )ξ̃n = F−1(ϕ(n−1·)F ξ̃n).

The regularity of the space-time white noise ξ is more rough than the coefficient f
given in (1.5). To apply Theorem 5.1 we need to introduce the following random
fields and use Da Prato-Debussche trick (cf. [13]) to decompose (6.1) into (1.5) and
the following equations, which is the usual way for the KPZ equation (cf. [23, 26,
45]):

L Yn = ξn L Y = ξ

L Yn = (∂xYn)
2 − cn L Yn = 2∂xYn∂xYn

L Yn = 2∂xYn ◦ ∂xYn + cn L Yn = (∂xYn )
2 − cn

L Yn = ∂xYn,

(6.3)

all with zero initial conditions except Y (0)(x) = Cx + B(x) and Yn(0) defined
similarly as ξn with ξ replaced byCx+B(x), where B is a two sidedBrownianmotion,
which is independent of space-time white noise ξ , andC ∈ R. The choice of the initial
condition is due to our interest in the KPZ equation starting from its invariant measure

(cf. [48, Section 1.4] and [16]). Here cn and cn are renormalization constants. For
simplicity of notation we also set

Xn = ∂xYn, X = ∂xY , X (·) = ∂xY
(·),

where (·) stands for the above trees. In the following we draw a table for the regularity
of each Y (·). For γ > 0 the homogeneities ατ ∈ R are given by
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τ = Y Y Y Y Y
ατ = 1

2 − γ 1− γ 3
2 − γ 2− γ 2− γ

τ = X Y ∂xY ◦ ∂xY L Y L Y
ατ = − 1

2 − γ 3
2 − γ −γ −γ −γ

Lemma 6.1 With the above notations, there exist random distributions

Y :=
{
Y ,Y ,Y ,Y , X ,Y , ∂xY ◦ ∂xY ,L Y ,L Y

}

and divergence constants cn , cn such that for every τ ∈ Y ,

τ ∈ ∩κ>0SατT (ρκ),

for ατ given in the above table. Moreover, for τn defined in (6.3) τn → τ in
L p(�,S

ατ
T (ρκ)) for every p ∈ [1,∞) and every κ > 0. Furthermore, Yn → Y

in L p(�,S
1
2−γ
T (ρ1+κ) for every p ∈ [1,∞). Finally, there exist random distribution

∇I t
s (X) ◦ X such that

sup
0≤s≤t≤T

‖∇I t
s (Xn) ◦ Xn(t)− ∇I t

s (X) ◦ X(t)‖C−γ (ρκ ) → 0 in L p(�).

Proof Most terms except L Y ,L Y in (6.3) have been considered in [45, The-
orem 3.6]. These two terms can also been obtained by similar calculation as in [23,
Theorem 9.3] (see also [55, Section 3.3.1, Section A.2]). The last convergence result
for ∇I t

s (X) ◦ X(t) can be obtained similarly as in [45, Lemma C.1]. For reader’s
convenience we spell out more details for completeness and we follow the notation of
[23, Section 9].

Let W be the space-time white noise in Fourier space. We write ∇I t
s (Xn) ◦ Xn(t)

as

∇I t
s (Xn) ◦ Xn(t) =

∫
eik[12]xψ0(k1, k2)H

n
t−s1(k1)

×
∫ t

s
dσHt−σ (k2)Hn

σ−s2(k2)W (dη1)W (dη2),

with Ht (k) = ike−k2t1t≥0, Hn
t (k) = Ht (k)ϕ(n−1k), ηi = (si , ki ), s−i = si , k−i =

ki , dηi = dsidki , k[12] = k1 + k2, ψ0(k1, k2) = ∑|i− j |≤1 θi (k1)θ j (k2) for θi being
the dyadic partition of unity. By Wiener chaos decomposition the term in the zeroth
order chaos is given by

∫
Hn
t−s1(k1)

∫ t

s
dσHt−σ (−k1)H

n
σ−s1(−k1)dη1,
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which is zero by using the fact that the integrand is antisymmetric under the change
of variables k1 →−k1. For the second order chaos we calculate for 0 ≤ s ≤ r ≤ t

E|�q(∇I t
s (Xn) ◦ Xn −∇I t

r (Xn) ◦ Xn)|2

�
∫

|θq(k[12])|2ψ0(k1, k2)
2|Ht−s1(k1)|2

∣∣∣
∫ r

s
dσHt−σ (k2)Hn

σ−s2(k2)
∣∣∣2dη1dη2

� |r − s|ε
∫
E2
|θq(k[12])|2ψ0(k1, k2)

2(|k2| + 1)−2+2εdk1dk2

� |r − s|ε22qε,

where the implicit constant is independent of n. The rest of the proof follows by
standard arguments as in [23]. ��

We make the following decomposition

h = Y + Y + Y + h̃,

where h̃ satisfies the following equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L h̃ = 2∂x h̃(X + X + X )+ (∂x h̃)
2 +L Y +L Y

+ (X )2 + 2X X + 2(XX − X ◦ X )

+ g(Y + Y + Y + h̃),

h̃(0) = h0 − Y (0).

(6.4)

Here we use (6.3).
Using Lemma 6.1, we obtain the following lemma.

Lemma 6.2 There exists a measurable set �0 with P(�0) = 1 such that for every
κ > 0, γ ∈ (0, 14 ) and ω ∈ �0

b := 2(X + X + X ) ∈ L∞T C− 1
2−γ (ρκ),

f := L Y +L Y + (X )2 + 2X X + 2(XX − X ◦ X ) ∈ L∞T C− 1
2−γ (ρκ).

Proof By Lemma 2.10 and (2.11) we have that

‖(X )2‖
C

1
2−γ (ρκ )

� ‖X ‖2
C

1
2−γ (ρκ/2)

,

‖X X ‖C−γ (ρκ ) � ‖X ‖
C

1
2−γ (ρκ/2)

‖X ‖C−γ (ρκ/2),

and

XX − X ◦ X = X � X − X ≺ X ,
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to have

‖XX − X ◦ X ‖
C− 1

2−γ (ρκ )
� ‖X‖

C− 1
2−γ (ρκ/2)

‖X ‖
C

1
2−γ (ρκ/2)

.

Other terms follows directly from Lemma 6.1. ��
As a result h̃ satisfies (1.5) with b, f given above. We say that h is a paracontrolled

solution to (6.1) if h̃ is a paracontrolled solution to (6.4) in the sense of (5.4) and (5.5).
Since γ can be arbitrary small, we apply Theorem 5.1 to obtain the following result.

Theorem 6.3 Suppose g ∈ C 1. For every initial condition h̃(0) ∈ C
3
2+ε+γ (ρεδ)where

0 < ε < 1, γ ∈ (0, 14 ), 0 < δ := 40κ < 1, there exists a unique paracontrolled
solution

(̃h, h̃�) ∈ (S
3
2−κ1/4−γ
T (ρη) ∩ L

∞
T (ρ2δ),S

2−2κ1/4−2γ
T (ρ2η) ∩ L

∞
T (ρ2δ+κ))

to (6.4), where

2(κ1/4 + 80κ) < η < 1
4 .

Proof In the following we check other conditions of Theorem 5.1. The condition for
H = Hc + Hs is satisfied easily by Lemma 6.1 where Hc = Q2, Hs = g(Y + Y +
Y +Q). In the following we prove (b, f ) ∈ B

α
T (ρκ). The approximation {(bn, fn)}n

for (b, f ) is given as in Lemma 6.2 with the corresponding tree τ replaced by τn in
Lemma 6.1. In the following we prove that for every κ > 0

sup
n
(�

bn
T (ρκ)+ A

bn , fn
T ,∞ (ρκ)) <∞, (6.5)

with �bnT (ρκ) andA
bn , fn
T ,∞ (ρκ))defined in (2.25) and (2.24), respectively. In the following

we omit the subscript n for simplicity and all the following bounds are uniform in n
and λ. Note that

1

4
∇Iλ(b) ◦ b = ∇Iλ(X + X + X ) ◦ (X + X + X ).

By the last result in Lemma 6.1 and Lemma 2.16 we deduce the first term

‖∇IλX ◦ X‖L∞T C−γ (ρκ ) � 1.

Other terms on the right hand side can be calculated by Lemma 2.10 and (2.11) to
have

‖∇Iλ(X + X ) ◦ b‖L∞T C−γ (ρ2κ )

�
(
‖Y ‖L∞T C1−γ (ρκ ) + ‖Y ‖

L∞T C
3
2−γ (ρκ )

)
‖b‖

L∞T C− 1
2−γ (ρκ )

� 1,
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and

‖∇IλX ◦ (X + X )‖L∞T C−γ (ρ2κ )

� ‖Y‖
L∞T C

1
2−γ (ρκ )

(‖Y ‖L∞T C1−γ (ρκ ) + ‖Y ‖
L∞T C

3
2−γ (ρκ )

) � 1.

On the other hand, note that

∇Iλ f ◦ b = ∇Iλ f1 ◦ b +∇Iλ(X ≺ X) ◦ 2(X + X + X ),

with f1 = f − X ≺ X ∈ L∞T C−2γ (ρκ). By Lemma 2.10 and (2.11) we know

‖∇Iλ f1 ◦ b‖L∞T C−γ (ρ2κ ) � ‖ f1‖L∞T C−2γ (ρκ )
‖b‖

L∞T C− 1
2−γ (ρκ )

� 1,

and

‖∇Iλ(X ≺ X) ◦ (X + X )‖L∞T C−γ (ρ2κ )

� ‖X ‖
L∞T C

1
2−γ (ρκ/2)

‖X‖
L∞T C− 1

2−γ (ρκ/2)
(‖X ‖L∞T C−γ (ρκ ) + ‖X ‖

L∞T C
1
2−γ (ρκ )

) � 1.

It remains to consider the term ∇Iλ(X ≺ X) ◦ X and we use the commutator
introduced in Lemma 2.11 and Lemma 2.12 to have

∇Iλ(X ≺ X) ◦ X = ([∇Iλ, X ≺]X) ◦ X

+ com(X ,∇IλX , X)+ X (∇IλX ◦ X).

By Lemmas 2.12, 2.11 and Lemma 6.1 we have

‖∇Iλ(X ≺ X) ◦ X‖L∞T C−γ (ρκ ) � 1,

where we used time regularity of X , which follows from (2.4). Combining all the
above estimates, we deduce (6.5) follows. Furthermore, we know that the convergence
inDefinition 2.14 also holds by Lemma 6.1 andLemma 2.16, which gives that (b, f ) ∈
B
α
T (ρκ). Then the result follows from Theorem 5.1. ��

Remark 6.4 1. The exponent η of the weight could be arbitrarily small since κ is
arbitrarily small. This result improves the weight for the solution to the KPZ
equation obtained in [45].

2. In the finite volume case, the initial value ϕ could be more rough, and the fixed
point argument allows ϕ ∈ ∪ε>0Cε (see [26]). In the infinite volume case, the
singularity near t = 0 seems to break the energy estimate in Lemma 4.8. We shall
study this problem in the future.
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3. We may also consider the following more general singular SPDEs

∂t h = ∂2x h + |∂xh|2 + g(h)+ K (h)∂xh + ξ, (6.6)

for g, K ∈ C 1. We have the decomposition

h = Y + Y + Y + h̃,

with h̃ satisfying

∂t h̃ = b · ∇h̃ + f + (∂x h̃)
2 + g(Y + Y + Y + h̃)

+ K (Y + Y + Y + h̃)(∂x h̃ + X + X + X ), (6.7)

for b, f given in Lemma 6.2. Since K (Y +Y +Y + h̃)X requires further renor-
malization and in this paper we mainly concentrate on the singular renormalized
terms from |∂xh|2, we consider the following simplified equation

∂t h̃ = b · ∇h̃ + f + (∂x h̃)
2 + g(Y + Y + Y + h̃)

+ K (Y + Y + Y + h̃)(∂x h̃ + X ), (6.8)

where K , g ∈ C 1 and the most singular terms coming from (∂xh)2 in (6.6) have
been included.We can applyTheorem5.1 to obtain the sameglobalwell-posedness
for Eq. (6.8).

4. A challenging question is whether PDE arguments can be used to deduce global
well-posedness of vector-valued generalized KPZ equations since it is not clear
whether the maximum principle can be extended to cover such a situation. We
leave this for our future work.

6.2 Modified KPZ equations

In this subsection we consider the following modified KPZ equation:

L h = g(x)(∂xh)
 2 + K (x)∂xh + ξ, h(0) = h0 (6.9)

where g, K ∈ C 1 and ξ is a space-time white noise on R
+ × R on some stochastic

basis (�,F , (Ft )t≥0,P). This model can be derived similarly like KPZ equation
as surface growth model where the growth rate also depending on position x (c.f.
[36]). We emphasize that for this model we cannot use Cole–Hopf’s transformation to
directly obtain the well-posedness since for w = egh there exists some new nonlinear
terms in the equation of w which cannot be cancelled.

Here the nonlinear term requires renormalization and we define the spatial regu-
larization of ξ as in Sect. 6.1. To apply Theorem 5.1 we also introduce the following
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random fields as in Sect. 6.1 and use Da Prato-Debussche trick to decompose (6.9)
into (1.5) and the following equations:

L Yn = ξn L Y = ξ

L Ȳn = g[(∂xYn)2 − cn ] L Ȳn = g[2∂xYn∂x Ȳn ]
L Ȳn = g[2∂x Ȳn ◦ ∂xYn + g2cn ] L Ȳn = g[(∂x Ȳn )2 − g2cn ]
L Yn = ∂xYn,

(6.10)

all with zero initial conditions exceptY (0)(x) = B(x)+Cx ,C ∈ R, andYn(0) defined
similarly as ξn with ξ replaced by B(x)+Cx , where B is a two sidedBrownianmotion,

which is independent of space-timewhite noise ξ . Here cn and cn are renormalization
constants as in (6.3). We also set

Xn = ∂xYn, X = ∂xY , X̄ (·) = ∂x Ȳ
(·),

where (·) stands for the above tree. The regularity and the homogeneities of each Ȳ (·)
are the same as the corresponding Y (·) if the trees in the superscript are the same.

Lemma 6.5 With the above notations, there exist random distributions

Y :=
{
Ȳ , Ȳ , Ȳ , Ȳ , X ,Y , ∂xY ◦ ∂xY ,L Ȳ ,L Ȳ

}

and divergence constants cn , cn such that for every τ ∈ Y ,

τ ∈ ∩κ>0SατT (ρκ),

for ατ given in the above table. Moreover, for τn defined in (6.10) τn → τ in
L p(�,S

ατ
T (ρκ)) for every p ∈ [1,∞) and every κ > 0.

Proof If terms in the bracket of (6.10) converge in the corresponding space as n →∞,
we can obtain results easily by Schauder estimate. However, [(∂xYn)2 − cn ] does not
converge in spatial distribution space andwe have to do probabilistic calculation again.
We follow the method and notation in [15]. Let K j,x (y) = 2 j K (2 j (x − y)) be the
kernel associated with the j-th Littlewood-Paley block� j on R. For a function f we
write� j f (x) =

∫
K j,x (y) f (y)dy. We also use P to denote the heat kernel onR×R,

i.e. P(t, x) = (4π t)−
1
2 e−

|x |2
4t 1t≥0. For fixed ζ̄ = (t, x̄) and for j ≥ −1 define the

measure

μ j (dζ ) :=
[ ∫

K j,x̄ (x)P(t − s, x − y)dx
]
1s≥0dζ,
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with ζ = (s, y). For ζi = (si , xi ), set |ζ1 − ζ2| := |s1 − s2| 12 + |x1 − x2|. Then by
similar calculation as in [27, Section 10] and using [27, Lemma 10.14] we know

E|� j Ȳn |2 �
∫

|ζ1 − ζ ′1|−2|μ j (dζ1)||μ j (dζ
′
1)|. (6.11)

By [15, (87)] we find

∣∣∣
∫

K j,x̄ (x)P(t − s1, x − x1)dx
∣∣∣ � 2−(1−ε/2) j

(|x̄ − x1| + |t − s1|1/2 + 2− j )2−ε/2
,

which combined with (6.11) and [27, Lemma 10.14] implies that E|� j Ȳn |2 could
be controlled by 2−(2−ε) j for ε > 0 small enough. Then the desired estimate for Ȳn
follows by standard techniques (c.f. [23, Lemma 9.8]).

We also give more details for the most complicated term ∂x Ȳn ◦∂xYn+g2cn (see
also [55, Section 3.3.1] for the calculation of a similar term). For fixed ζ̄ = (t, x̄) ∈
R × R

3 and q ∈ Z, q ≥ −1, define the measure

μq(dζ1, dζ2) :=
[ ∫

Kq,x̄ (x)
∑

|i− j |≤1
Ki,x (y)K j,x (x2)∂x P(t − s1, y − x1)dxdy

]

δ(t − s2)1s1≥0dζ1dζ2,

with ζi = (si , xi ) ∈ R × R for i = 1, 2. μ̃q(dζ1, dζ2) is defined similarly with ∂x P
replaced ∂x P ∗ ∂x P .

We decompose ∂x Ȳn ◦ ∂xYn + g2cn = I4 + I2 + I0 with Ii in the space of i-th
Wiener chaos. Then by similar calulation as in [27, Section 10] and using [27, Lemma
10.14] we know

E|�q I4|2 �
∫

|ζ1 − ζ ′1|−1−ε|ζ2 − ζ ′2|−1|μq(dζ1, dζ2)||μq(dζ
′
1, dζ

′
2)|,

which by [15, Lemma A.19]3 can be contolled by 2qε for ε > 0 small. For I2 we have
the decomposition

I2 = 2Ȳn + Ȳn + 2Ȳn :=
3∑
j=1

I2 j ,

where we refer to [27, Section 10], [23, Section 9] for the meaning of the graph. We
use [27, Lemmas 10.14, 10.16] to have

E|�q I21|2 �
∫

|ζ1 − ζ ′1|−1−ε|ζ2 − ζ ′2|−1|μq(dζ1, dζ2)||μq(dζ
′
1, dζ

′
2)|,

3 In [15] the result is proved for d = 3, which could be extended to d = 1 by exactly the same argument.
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and use [27, Lemma 10.16] to have

E|�q I22|2�
∫

|ζ1−ζ ′1|−3ε|ζ1 − ζ2|−1+ε|ζ ′1 − ζ ′2|−1+ε|μq(dζ1, dζ2)||μq(dζ
′
1, dζ

′
2)|,

and use [27, Lemma 10.14, (10.37 a)] to have

E|�q I23|2 �
∫

|ζ1 − ζ ′1|−2|ζ1 − ζ2|−ε|ζ ′1 − ζ ′2|−ε|μq(dζ1, dζ2)||μq(dζ
′
1, dζ

′
2)|

+
∫

|ζ1 − ζ ′1|−2|ζ1 − ζ2|−1|ζ ′1 − ζ ′2|−1|μ̃q(dζ1, dζ2)||μ̃q(dζ
′
1, dζ

′
2|.

Then by [15, Lemma A.19] E|�q I2i |2, i = 1, 2, 3, can be contolled by 2qε for ε > 0
small.

Different from the classical case in Sect. 6.1, I0 contains g. We use g ∈ C 2 to have
|g(x) − g(y)| � |x − y|. Then we can shift g to the vertex x2 and use [27, Lemmas
10.14, 10.16] to obtain

|I0 − g2cn | � 1+
∑

|i− j |≤1

∫ ∣∣∣
∫

Ki,x (y)∂x P(t − s1, y − x1)dy
∣∣∣

δ(t − s2)|K j,x (x2)||g2(x2)− g2(x)||ζ1 − ζ2|−1dζ1dζ2.

By [15, Lemma A.16], we find for δ ∈ (0, 1)

|
∫

Ki,x (y)∂x P(t − s1, y − x1)dy| � 2−iδ(|t − s1|1/2 + |x − x1|)−2−δ,

which combined with |g2(x2)− g2(x)| � |x− x1|+ |x2− x1| and [15, Lemma A.16],

[27, Lemmas 10.14] implies that |I0 − g2cn | � 1.

Then the required regularity of L Ȳ follows by standard argument (c.f. [23]). ��
We make the following decomposition

h = Y + Ȳ + Ȳ + h̃,

where h̃ satisfies the following equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L h̃ = 2g∂x h̃(X + X̄ + X̄ )+ g(∂x h̃)
2 +L Ȳ +L Ȳ

+ g(X̄ )2 + 2gX̄ X̄ + 2g(X X̄ − X ◦ X̄ )

+ K (x)(X + X̄ + X̄ + ∂x h̃),

h̃(0) = h0 − Y (0).

(6.12)

Using Lemma 6.5, we obtain the following lemma.
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Lemma 6.6 There exists a measurable set �0 with P(�0) = 1 such that for every
κ > 0, γ > 0 and ω ∈ �0

b := 2g(X + X̄ + X̄ )+ K ∈ L∞T C− 1
2−γ (ρκ),

f := L Ȳ +L Ȳ + g(X̄ )2 + 2gX̄ X̄ + 2g(X X̄ − X ◦ X̄ )

+ K (X + X̄ + X̄ ) ∈ L∞T C− 1
2−γ (ρκ).

Proof The proof follows from the proof of Lemma 6.2, Lemma 6.5 and g, K ∈ C 1. ��
As a result h̃ satisfies (1.5) with b, f given above. We say that h is a paracontrolled

solution to (6.9) if h̃ is a paracontrolled solution to (6.12) in the sense of (5.4) and
(5.5).

Since γ can be arbitrarily small, we apply Theorem 5.1 to obtain the following
result.

Theorem 6.7 Let g, K ∈ C 1. For every initial condition h̃(0) ∈ C
3
2+ε+γ (ρεδ) where

0 < ε < 1, γ ∈ (0, 14 ), 0 < δ := 40κ < 1, there exists a unique paracontrolled
solution

(̃h, h̃�) ∈ (S
3
2−κ1/4−γ
T (ρη) ∩ L

∞
T (ρ2δ),S

2−2κ1/4−2γ
T (ρ2η) ∩ L

∞
T (ρ2δ+κ))

to (6.12), where

2(κ1/4 + 80κ) < η < 1
4 .

Proof In the following we check other conditions of Theorem 5.1. The condition for
H is satisfied easily. In the following we prove (b, f ) ∈ B

α
T (ρκ). The approximation

{(bn, fn)}n for (b, f ) is given as in Lemma 6.6 with the corresponding tree τ replaced
by τn in Lemma 6.5. In the following we prove that for every κ > 0

sup
n
(�

bn
T (ρκ)+ A

bn , fn
T ,∞ (ρκ)) <∞, (6.13)

with �bnT (ρκ) andA
bn , fn
T ,∞ (ρκ))defined in (2.25) and (2.24), respectively. In the following

we omit the subscript n for simplicity and all the following bounds are uniform in n
and λ. We first consider

∇Iλ(b) ◦ b = ∇Iλ(2g(X + X + X )+ K ) ◦ [2g(X + X + X )+ K ].
(6.14)

For the first term ∇Iλ(gX) ◦ [gX ] we use Lemma 2.17 and Lemma 6.1 to have

‖∇Iλ(gX) ◦ (gX)‖L∞T C−γ (ρ2κ ) � 1.
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Other terms on the right hand side of (6.14) can be calculated by Lemma 2.10 and
(2.11):

‖∇Iλ(2g(X̄ + X̄ )+ K ) ◦ b‖L∞T C−γ (ρ2κ )

� (‖Ȳ ‖L∞T C1−γ (ρκ ) + ‖Ȳ ‖
L∞T C

3
2−γ (ρκ )

+ 1)‖b‖
L∞T C− 1

2−γ (ρκ )
� 1,

and

‖∇Iλ(gX) ◦ (2g(X̄ + X̄ )+ K )‖L∞T C−γ (ρ2κ )

� ‖Y‖
L∞T C

1
2−γ (ρκ )

(‖Ȳ ‖L∞T C1−γ (ρκ ) + ‖Ȳ ‖
L∞T C

3
2−γ (ρκ )

+ 1) � 1.

On the other hand, we know

∇Iλ f ◦ b = ∇Iλ f1 ◦ b +∇Iλ(2g(X̄ ≺ X)+ K X) ◦ (2g(X + X̄ + X̄ )+ K ),

with f1 = f − g(X̄ ≺ X)− K X ∈ L∞T C−2γ (ρκ). By Lemma 2.10 and (2.11) we
know

‖∇Iλ f1 ◦ b‖L∞T C−γ (ρ2κ ) � ‖ f1‖L∞T C−2γ (ρκ )
‖b‖

L∞T C− 1
2−γ (ρκ )

� 1,

and

‖∇Iλ(2g(X̄ ≺ X)+ K X) ◦ (2gX̄ + 2gX̄ + K )‖L∞T C−γ (ρ2κ )

� (1+ ‖X̄ ‖
L∞T C

1
2−γ (ρκ )

)‖X‖
L∞T C− 1

2−γ (ρκ )

× (‖X̄ ‖L∞T C−γ (ρκ ) + ‖X̄ ‖
L∞T C

1
2−γ (ρκ )

+ 1) � 1.

We use Lemma 2.17 and Lemma 6.1 to have

‖∇Iλ(K X) ◦ (gX)‖L∞T C−γ (ρ2κ ) � 1.

It remains to consider the term∇Iλ(g(X̄ ≺ X))◦ (gX) and we use the commutator
introduced in Lemma 2.11 and Lemma 2.12 to have

∇Iλ(g(X̄ ≺ X)) ◦ (gX)
= ∇Iλ(g � (X̄ ≺ X)) ◦ (gX)+ ∇Iλ(g ≺ (X̄ ≺ X)) ◦ (gX)
= ∇Iλ(g � (X̄ ≺ X)) ◦ (gX)+ ([∇Iλ, g ≺](X̄ ≺ X)) ◦ (gX)
+
[
g ≺ ([∇Iλ, X̄ ≺]X)

]
◦ (gX)+ com(g, X̄ ≺ ∇Iλ(X), gX)
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+ g
(
[X̄ ≺ ∇Iλ(X)] ◦ (gX)

)
.

We have further decomposition for the last term

[X̄ ≺ ∇Iλ(X)] ◦ (gX)
= com(X̄ ,∇Iλ(X), gX)+ X̄ (∇Iλ(X) ◦ (gX))
= com(X̄ ,∇Iλ(X), gX)+ X̄ (∇Iλ(X) ◦ (g � X))

+ gX̄ (∇Iλ(X) ◦ X)+ X̄ com(g, X ,∇Iλ(X)).

By Lemmas 2.12, 2.11 and Lemma 6.1

‖∇Iλ(gX̄ ≺ X) ◦ (gX)‖L∞T C−γ (ρκ ) � 1,

where we used time regularity of X̄ , which follows from (2.4). Combining all the
above estimates, we deduce that (6.13) follows. Furthermore, we know that the con-
vergence in Definition 2.14 also holds by using Lemma 6.1 and Lemma 2.16, which
gives that (b, f ) ∈ B

α
T (ρκ). Then the result follows from Theorem 5.1. ��

Acknowledgements Weare very grateful toNicolas Perkowski for proposing this problem to us and sharing
his idea on this problem with us (especially the idea mentioned in Remark 5.4), where we benefit a lot. We
also thank Zimo Hao for useful discussions and thank Scott Smith for checking the English of the whole
paper. The financial supports in part by National Key R&D Program of China (No. 2020YFA0712700)
is greatly acknowledged. X. Zhang is partially supported by NSFC (No. 11731009, 12131019). R.Z. is
grateful to the financial supports of the NSFC (No. 11922103). X.Z. the NSFC (No. 12090014, 11688101)
and the support by key Lab of Random Complex Structures and Data Science, Youth Innovation Promotion
Association (2020003), Chinese Academy of Science. The financial support by the DFG through the CRC
1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and
their applications” is greatly acknowledged.

Appendix A: Uniqueness of paracontrolled solutions

In this subsection we use Hairer and Labbé’s argument [30] to show the uniqueness
of paracontrolled solutions. For this aim, we use the following time-dependent expo-
nential weight: for � ∈ (0, 1),

e�t (x) := exp(−(1+ t)〈x〉�), t ≥ 0, x ∈ R
d .

We can similarly define the Hölder space with weight e� (see [45]). For instance,

‖ f ‖L∞T Cα(e�) := sup
t∈[0,T ]

‖ f (t, ·)‖Cα(e�t ),
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and for α ∈ (0, 1),

‖ f ‖CαT L∞(e�) := sup
0≤t≤T

‖ f (t)e�t ‖L∞ + sup
0≤s �=t≤T

‖ f (t)− f (s)‖L∞(e�t∨s)
|t − s|α .

In particular, for α ∈ (0, 2), we also set

S
α
T (e

�) := ‖ f ‖L∞T Cα(e�) + ‖ f ‖
Cα/2T L∞(e�).

By [43, Lemma 2.10], for any T > 0, there is a C = C(T , �, d) > 0 such that for all
s, t ∈ [0, T ] and j ≥ −1,

‖� j Pt f ‖L∞(e�s ) � e−22 j t‖� j f ‖L∞(e�s ). (A.1)

Moreover, Lemmas 2.8, 2.10, 2.11 and 2.12 still hold for exponential weight e�t (see
[45]). The following result corresponds to Lemma 2.9.

Lemma A.1 Let α, � ∈ (0, 1), κ ∈ (0, (1 − α
2 )�). For any q ∈ ( 1

1−α/2−κ/� ,∞] and
T > 0, there is a constant C = C(T , d, α, �, θ, κ, q) > 0 such that

‖I f ‖
S
2− 2

q − 2κ
�
−α

T (e�)
�C ‖ f ‖Lq

TC
−α(ρκe�).

Proof First of all we have the following simple observation:

e�t (x) � 〈x〉−κe�s (x)/|t − s|κ/�, 0 ≤ s < t <∞. (A.2)

Let 1
p + 1

q = 1 and t ∈ (0, T ]. By (A.1) and Hölder’s inequality, we have for j ≥ −1,

‖� jI f (t)‖L∞(e�t ) �
∫ t

0
e−22 j (t−s)‖� j f (s)‖L∞(e�t )ds

�
∫ t

0

e−22 j (t−s)

|t − s|κ/� ‖� j f (s)‖L∞(ρκe�s )ds

� 2α j
(∫ t

0

e−p22 j (t−s)

|t − s|pκ/� ds
)1/p

‖ f ‖Lq
t C−α(ρκe�)

� 2−(
2
p− 2κ

�
−α) j‖ f ‖Lq

t C−α(ρκe�),

which in turn gives that

‖I f ‖
L∞T C2− 2

q − 2κ
�
−α
(e�)

� ‖ f ‖Lq
TC

−α(ρκe�). (A.3)
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On the other hand, for 0 ≤ t1 < t2 ≤ T , we have

‖I f (t2)−I f (t1)‖L∞(e�t2 ) ≤ ‖(Pt2−t1 − I )I f (t1)‖L∞(e�t2 )
+
∥∥∥∥
∫ t2

t1
Pt2−s f (s)ds

∥∥∥∥
L∞(e�t2 )

=: I1 + I2.

For I1, by (2.10) and (A.3) we have

I1 � (t2 − t1)
1− α

2− 1
q− κ

� ‖I f (t1)‖
C2−α− 2

q − 2κ
� (e�t2 )

� (t2 − t1)
1− α

2− 1
q− κ

� ‖ f ‖Lq
TC

−α(ρκe�).

For I2, by (2.8), (A.2) and Hölder’s inequality, we have

I2 �
∫ t2

t1
(t2 − s)−

α
2 ‖ f (s)‖C−α(e�t2 )

ds

�
∫ t2

t1
(t2 − s)−

α
2− κ

� ‖ f (s)‖C−α(ρκe�s )ds

� (t2 − t1)
1− α

2− 1
q− κ

� ‖ f ‖Lq
TC

−α(ρκe�).

Combining the above estimates, we obtain the desired estimate. ��
Now we consider the following linear equation:

L u = (b + b̄) · ∇u + hu, u(0) ≡ 0, (A.4)

where b ∈ ∩T>0B
α
T (ρκ) and b̄, h ∈ ∩T>0L∞T (ρη). Let

(u, u�) ∈ ∩T>0S
2−α
T (ρη)× S

3−2α
T (ρ2η)

be the paracontrolled solution of PDE (A.4). That is,

u = ∇u ≺≺ I b + u�, (A.5)

with u� solving the following PDE in weak sense

L u� = ∇u ≺ b − ∇u ≺≺ b +∇u � b + b ◦ ∇u

+ b̄ · ∇u + hu − [L ,∇u ≺≺]I b, (A.6)

where

b ◦ ∇u = b ◦ (∇2u ≺ I b)+ (b ◦ ∇I b) · ∇u + com
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+ com1 + b ◦ ∇u�, (A.7)

and

com1 := b ◦ ∇[∇u ≺≺ I b −∇u ≺ I b]

and

com := com(∇u,∇I b, b).

Theorem A.2 Let � ∈ (0, 1) and κ ∈ (0, (2−3α)�
6 ), η ∈ (0, (1−α)�2 ). Suppose that

b ∈ ∩T>0B
α
T (ρκ), b̄, h ∈ ∩T>0L

∞
T (ρη),

β ∈ (α, (2− 2α − 6κ
�
) ∧ (1− 2η

�
)), γ ∈ (α, 2− 2α − 4κ

�
).

The unique paracontrolled solution to PDE (A.4) in the sense of Definition 3.1 with

(u, u�) ∈ S
γ+α
T (e�)× L∞T Cβ+1(e�)

is zero.

Proof Let T > 0. Choose q large enough such that

α < γ ≤ 2− 2α − 2
q − 4κ

�
, α < β ≤ (2− 2α − 2

q − 6κ
�
) ∧ (1− 2η

�
).

First of all, by Lemmas A.1 and 2.10, we have

‖u‖
S
2−α− 2

q − 4κ
�

T (e�)

� ‖b ≺ ∇u + b � ∇u + b ◦ ∇u‖Lq
TC

−α(ρ2κe�) + ‖b̄ · ∇u + hu‖Lq
T L

∞(ρηe�)

� ‖b‖L∞T C−α(ρκ )‖∇u‖Lq
T L

∞(e�) + ‖b ◦ ∇u‖Lq
TC

−α(ρ2κe�)

+ ‖b̄‖L∞T (ρη)‖∇u‖Lq
T L

∞(e�) + ‖h‖L∞T (ρη)‖u‖Lq
T L

∞(e�),

and by the corresponding version of Lemma 2.12 for exponential weight e� (see [45,
Lemma 2.10]),

‖u�‖L∞T Cβ+1(e�) � ‖∇u ≺ b − ∇u ≺≺ b + ∇u � b − [L ,∇u ≺≺]I b‖
L∞T C1−2α− 2

q − 4κ
� (ρκ e�)

+ ‖b ◦ ∇u‖Lq
TC

1−2α(ρ2κ e�) + ‖b̄ · ∇u + hu‖L∞T (ρηe�)
� ‖b ◦ ∇u‖Lq

TC
1−2α(ρ2κ e�) + ‖u‖

S
2−α− 2

q − 4κ
�

T (e�)

+ ‖b̄‖L∞T (ρη)‖∇u‖L∞T (e�) + ‖h‖L∞T (ρη)‖u‖L∞T (e�)
� ‖u‖

S
2−α− 2

q − 4κ
�

T (e�)
+ ‖b ◦ ∇u‖Lq

TC
1−2α(ρ2κ e�).
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Moreover, by Lemma 3.3 with (ρ, ρ̄) = (ρκ, e�t ),

‖(b ◦ ∇u)(t)‖C1−2α(ρ2κe�t )
� ‖u‖

S
γ+α
t (e�) + ‖u�(t)‖Cβ+1(ρκe�t )

.

Combining the above three estimates, we obtain

‖u‖
S
γ+α
T (e�) + ‖u�‖L∞T Cβ+1(e�)

� ‖∇u‖Lq
T L

∞(e�) + ‖u‖Lq
T L

∞(e�) + ‖b ◦ ∇u‖Lq
TC

1−2α(ρ2κe�)

�
(∫ T

0

(
‖u‖q

S
γ+α
t (e�)

+ ‖u�(t)‖q
Cβ+1(ρκe�t )

)
dt

)1/q
,

which implies u ≡ 0 by Gronwall’s inequality. ��

Appendix B: Exponential moment estimates for SDEs

In this section we consider the following SDE:

dXt = b(t, Xt )dt + σ(t, Xt )dWt , X0 = x .

We have the following exponential moment estimates for Xt .

Lemma B.1 Suppose that σ is bounded and b is linear growth. Then for any α ∈ [0, 2)
and T , γ > 0, there is a constant C > 0 such that for all x ∈ R

d ,

Eeγ supt∈[0,T ]〈Xt 〉α ≤ Ce〈x〉α .

Proof Let β ∈ (α, 2). Recall 〈x〉β = (1+ |x |2)β/2. By Itô’s formula, we have

Mt := e−λt 〈Xt 〉β = 〈x〉β +
∫ t

0
ηsds +

∫ t

0
ξsdWs,

where

ηs := e−λsβ
[
Xs · b(s, Xs)+ tr(σσ ∗)(s, Xs)/2

]
〈Xs〉β−2

+ β(
β
2 − 1)e−λs |σ ∗(s, Xs)Xs |2〈Xs〉β−4 − λe−λs〈Xs〉β,

and

ξs := βe−λsσ ∗(s, Xs)Xs〈Xs〉β−2.

By the linear growth of b and the boundedness of σ , there is a λ large enough so that

ηs ≤ 0

123



Singular HJB equations with applications to KPZ 867

and

|ξs |2 ≤ Ce−λs〈Xs〉2(β−1) ≤ CM
2− 2

β
s .

Now by [33, Theorem 1.1], we obtain the desired estimate. ��
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