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Abstract

This paper is devoted to studying Hamilton-Jacobi-Bellman equations with distribution-
valued coefficients, which are not well-defined in the classical sense and are understood
by using the paracontrolled distribution method introduced in (Gubinelli et al. in
Forum Math Pi 3(6):1, 2015). By a new characterization of weighted Holder spaces
and Zvonkin’s transformation we prove some new a priori estimates, and therefore
establish the global well-posedness for singular HIB equations. As applications, we
obtain global well-posedness in polynomial weighted Holder spaces for KPZ type
equations on the real line, as well as modified KPZ equations for which the Cole—
Hopf transformation is not applicable.
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1 Introduction

Recall that the classical Kardar-Parisi-Zhang equation is given as follows:
Zh= (B — A h = (@:h)*+E,  h(0) = ho, (1.1)

where £ is a Gaussian space-time white noise. This equation was introduced in [36]
as a model for the growth of interfaces represented by a height function 4. In [36]
the authors predicted that under a 1-2-3 scaling the height function must converge
to a scale invariant random field called the KPZ fixed point (see [8, 41, 47] and
references therein). It is conjectured that the large scale behaviour of a large class
of interface growth models is described by the KPZ fixed point. These models are
said to belong to the KPZ universality class and this is referred to as the strong KPZ
universality conjecture. A weaker form of universality which is now called the weak
universality conjecture states that the KPZ equation is itself a universal description
of the fluctuations of weakly asymmetric growth models (see e.g. [3, 32, 34] and
references therein). The main difficulty in solving Eq. (1.1) comes from the singularity
of space-time white noise and the nonlinearity, since (3;4)> cannot be understood in
the classical sense because d,/ is not a function. This problem can be avoided by
using the Cole—Hopf transformation (see [2, 3, 36] and also [7, 28]). In fact, letting
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Singular HJB equations with applications to KPZ 791

w := e’ and formally using Itd’s formula, one sees that
Lw=wt, w) =e, (1.2)

which can be understood in It6’s sense ([52]). In [2, 3] the solutions to (1.1) are
defined by log w, where w is a positive solution to (1.2), now known as the Cole—Hopf
solution. It remained an open problem to clarify in what sense the Cole—Hopf solution
genuinely solves the original KPZ equation.

A revolutionary step was made by Hairer [26] using methods from rough path
theory. He was able to solve the classical KPZ equation on the torus. Later, Hairer
introduced the theory of regularity structures in [27] and Gubinelli, Imkeller and
Perkowski proposed the paracontrolled distribution method in [20, 23], which made it
possible to study a large class of PDEs driven by singular noises. The key idea of these
theories is to use the structure of the solution to give a meaning to the terms which are
not classically well-defined. These terms are well-defined with the help of renormal-
ization for the “enhanced noise”, i.e. the noise and the higher order terms appearing in
the decomposition of the equations. More precisely, (9, /) can be formally understood
as a subtraction of an infinite correction term: (E),JL)2 — 00.

After this breakthrough, an avalanche of excitement and intriguing results followed,
proving local/global existence and uniqueness of solutions to a large class of singular
SPDEs, including the generalized parabolic Anderson model, the dynamical ®* model
and other interesting examples ([9, 29, 30, 55] and references therein). Very recently,
geometric stochastic heat equations with values in a Riemannian manifold M were
studied in [4] via regularity structures theory and in [11, 49] by Dirichlet forms, which
can be written in local coordinates as generalized coupled KPZ equations (see Sect. 6.1
for more details).

Up to now, most of the well-known works in the field of singular SPDEs are con-
sidered with the finite volume case. Since the large scale behavior of the KPZ equation
is related to the important KPZ fixed point (see [41] and below), it is natural to con-
sider the KPZ equation on the real line. In fact, new phenomena may occur in the
infinite volume setting. For example, in [11] it was shown that solutions to geometric
stochastic heat equations exhibit different long-time behavior compared to the finite
volume setting (see [49]). In general, space-time white noise in infinite volume stays
in weighted Besov spaces, as does the solution. Since these spaces are typically not
preserved by the nonlinearity, it obstructs the use of simple fixed point arguments for
constructing local solutions. The first attempt to overcome this difficulty was due to
Hairer and Labbé [29, 30] for the rough linear heat equation by introducing an expo-
nential weight depending on time. For nonlinear equations, suitable a priori estimates
in weighted spaces have been established for the dynamical 6133 model by Mourrat and
Weber [43, 44] and Gubinelli and Hofmanova [18], which rely on the damping term
—¢3. In [45] a priori estimates and paracontrolled solutions to the KPZ equation on
the real line were obtained by using the Cole-Hopf transformation. Moreover, using
the probabilistic notion of energy solutions [21, 22, 24] or studying the associated
infinitesimal generator and Kolmogorov equation [25] it is possible to give a meaning
to the KPZ equation on R, but this is restricted to initial data which is absolutely
continuous w.r.t. the stationary measure. We mention that in [11] martingale solutions
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792 X.Zhang et al.

were constructed for geometric stochastic heat equations in R by using the Dirich-
let form approach, which relies on an integration by parts formula for the invariant
measure.

In the present paper we are concerned with the following KPZ type SPDEs on the
real line:

Lh =“(3:h)* +gh) +&,  h(0) = ho, (1.3)
Lh = G@)“B:h)>” + K (x)d:h + &, h(0) = h, (1.4)

where g, G, K are bounded Lipschitz functions, and & is a Gaussian space-time white
noise on R x R. Equations (1.3) and (1.4) are typical examples of singular SPDEs and
can be viewed as a simplified version of the generalized KPZ equations and geometric
stochastic heat equations in [4, 31]. The emphasis of this article is on deriving an a
priori estimate by PDE arguments and complements the local solution theory by ruling
out the possibility of finite time blow-up. As directly obtaining global well-posedness
to geometric stochastic heat equation by PDE arguments is still an open problem,
we study the simplified version (1.3) and (1.4). Note that neither equations can be
linearized by the Cole—Hopf transformation.

As mentioned above, suitable a priori estimates and global well-posedness have
been established for the dynamical @3 model by using the strong damping term —¢?3
(see[18,43,44]) and for the KPZ equation by the Cole—Hopf transformation (see [25]).
The main aim of this paper is to obtain global well-posedness of singular SPDEs on
the whole space when the strong damping is not at hand and the Cole—Hopf transfor-
mation is not applicable. We obtain global well-posedness of Egs. (1.3) and (1.4) by
suitable a priori estimates. By a renormalization and decomposition procedure, one
can reduce KPZ type SPDEs (1.3), (1.4) to the following singular Hamilton-Jacobi-
Bellman equation in R? (abbreviated as HIB) together with some linear equations (see
Sect. 6 for more details):

Lu =0 —ANu=HNu)+b-Vu+ f, u) =g, (1.5)

where H : RY — R is a locally Lipschitz function of at most quadratic growth, and
for some o € (%, %) and x € (0, 1),

be LPC™(po), feLFC*(po).

Here p,(x) := (x) 7 := (1 + |x|*) 7%/ and C~%(p,) stands for the weighted Holder
(or Besov) space (see Sect. 2.1). We will first derive global well-posedness of Eq. (1.5)
under general assumptions on H (see Sect. 5) and then apply it to Egs. (1.3) and (1.4)
in Sect. 6.

The difficulties that arrive in solving (1.3) and (1.4) also arise in a slightly different
form for (1.5). Concerning (1.5), since b, f € L7C™%(p,) and o € (%, %), the best
regularity space for u is L‘;ocz_“ by Schauder’s estimate. Compared to (1.3) and (1.4)
there is no difficulty defining H (Vu) for (1.5) since f is more regular than space-time
white noise. However, the transport term b - Vu is not well-defined in the classical
sense.
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Singular HJB equations with applications to KPZ 793

We need to use regularity structures theory or paracontrolled distributions to give
a meaning to Eq. (1.5). In this paper we use PDE arguments and paracontrolled dis-
tributions to obtain the global well-posedness of (1.5). Notice that for general H, we
cannot use the Cole—Hopf transformation to transform (1.5) into a linear equation. In
that sense our new approach is much more robust than the previous one.

Finally we also mention that the HIB equation appears originally in optimal control
theory, whose solution represents the value function of a stochastic optimal control
problem (see [17, 37, 53]). More precisely, consider the following stochastic optimal
control problem:

T
Vit x):= irylfﬂ«: [/ L(s, X! (x), y(s))ds + wx;(x))} , (1.6)

t

where the infimum is taken over all controls y in some class of adapted processes, L
is the cost function, v is the final bequest value, and X ty x)=X ;/ is the state process
which solves the following SDE:

dX] = (b(t, X]) + y)dt + V2dW,, X} = x,
where W is a d-dimensional standard Brownian motion. Let

H(,x, Q) = inﬂgd(v - Q+ L(t, x,v)).

By the dynamical programming principle, V solves the following backward HJB
equation:

WV +AV +b-VV+HNVV) =0, V(T,x) = ¥(x).

Moreover, by the verification theorem, the optimal control y is then given by
VV(t, X}), where X} solves the following SDE:

AX* = (b(t, X5) + VV(t, XD)dr + 2dW,, X§ = x.

In particular, the study of singular HIB equations provides a possibility to study the
singular stochastic control problem. By singular, we mean that » may be a distribution.
Recently, there is some interest in studying the control problem with rough drift b (see
[42] and the reference therein). Notice that our conditions on b are automatically
satisfied for b € L%OC_/S (o) with 8 € (0, %). Thus our main results can be applied
to the SDEs in [42], which may give applications to the stochastic control problem
considered in [42] and the references therein. For more singular b € LFC™%(p,)
with @ € (%, %), it could be viewed as a random environment and our condition
allows for spatial white noise in one dimension, which may be derived from averages
of a sequence of i.i.d random variables (see [46, Remark 2.2]). We also mention
that the solution to the classical KPZ equation can be viewed as a stochastic control
problem with singular b € LC}OC"" (pe),a € (%, %) (see [23, 45]), where the solution
is interpreted as a value function defined as in (1.6).
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794 X.Zhang et al.

1.1 Main results

As mentioned above, we concentrate on (1.5) first and to define b - Vu in (1.5) we
need to perform renormalizations by probabilistic calculations. It is not the aim of this
paper to discuss the renormalization terms as this has been done extensively (see e.g.
[23, 26, 45]). For the main result, we suppose that b o V.b € L‘;OCI_M (p2ic) and
boV I f € L‘%OCI_Z" (2, ) are well defined, where .7 := £~ ! ie. (b, f) € BY (o)
(see Sect. 2.3 and Sect. 2.4), which in general can be realized by a probabilistic
calculation (see Sec. 6 for examples). In the following, we are mainly concerned with
the analysis of the deterministic system under the above assumptions.

The following result is a special case of the main Theorem 5.1, where a more general
condition on the nonlinear term H is given (see Remark 5.2 for examples of H).

Theorem 1.1 Let o € (%, %) and k be small enough so that § = 2(% + Dk < 1,
a=a+«kl*e (%, %). Suppose that for some ¢ > 0,

0o H(Q)| < c(1+1Q).

Ifd > 2, we also suppose H has sub-quadratic growth, i.e., for some ¢ € [0, 2),

|H(Q)| < c(IQI° +1).

Then for any (b, f) € B%(py) and initial value ¢ € C'T*T¢(p,s), where € € (0, 1),
there exists a unique paracontrolled solution u € SzT_& (py) to the HIB equation (1.5)
in the sense of (5.4) and (5.5) below, where n = n(k, o, {) < 1%“ converges to zero
as k — 0.

As the main application, we obtain global well-posedness of (1.3) and (1.4). The
regularity of the space-time white noise £ is more rough than the coefficient f given
in (1.5). To apply Theorem 1.1 we need to introduce some random distributions and
use the Da Prato-Debussche trick to reduce (1.3) to (1.5) (see e.g. [13]). This is the
usual pathwise approach to the KPZ equation (cf. [23, 26, 45]). Let Y and YV, a be
random distributions defined in Sect. 6.

Theorem 1.2 Let g : R — R be bounded, Lipschitz continuous, and k > 0 be small

enough, 8 = 40k < 1. For hg = Y(0) + h(0) with h(0) € C2+¢+7 (p,s), where

e €(0,1)and 0 < y < 1/4, there exists a unique paracontrolled solution to (1.3) in
~ 34

the sense thath—Y — YV — YY’ :=heS; - y(,o,i) is the unique paracontrolled

solution to (6.4) with 2(k'/* + 80x) < n < 1/4.

This result improves the weight for the solution space obtained in [45] for g = 0
and is proved in Theorem 6.3. As a further application, we also establish global well-
posedness of Eq. (1.4), which is presented in Theorem 6.7.
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Singular HJB equations with applications to KPZ 795

1.2 Sketch of proofs and structure of the paper

In Sect. 2 we first introduce the basic notations and the spaces used throughout the
paper. The regularization effect of heat semigroups and paracontrolled calculus are
recalled in Sects. 2.2 and 2.3, respectively. The conditions for the coefficient (b, f)
are discussed in Sect. 2.4.

The bulk of our argument is contained in Sections 3-5 and we now proceed to explain
the strategy. We decompose (1.5) into the following two equations: u = u| + us

3 — A ui =b-Vuy + f, (1.7)
(3 — A ur = b - Vusr + H(Vuy + Vun). (1.8)

In Sect. 3 we first establish Schauder’s estimate for (1.7) with sublinear weights (see
Theorem 3.7). This solves the conjecture proposed in [45, Remark 1.1]. The difficulty
to study (1.7) lies in the drift b living in a weighted Besov space, which prevents us from
using a fixed point argument in the same space. It is possible to use the technique in [30]
to solve the problem, by which the solution stays in a Besov space with exponential
weights. This seems not easy to deduce a uniform L°°(ps) estimate for the solution
to (1.8). In Sect. 3 we develop a new technique to establish a sublinear growth bound
for the solutions to equation (1.7). The key idea is to use a new characterization of
the weighted Holder space (see Lemma 3.8) to localize the problem with coefficients
in unweighted Besov spaces, for which we obtain the Schauder estimate depends
polynomially on the norm of the coefficients compared to the exponential dependence
by the usual Gronwall type argument. To this end, we add a new damping term Au
to (1.7) and use the classical maximum principle. We also mention that Eq. (1.7) on
the torus has been studied in [10], where the difficulty with weights does not appear.
In a subsequent work [35], we also apply the localization technique developed in this
paper to singular kinetic equations.

In Sects. 4 and 5, we study (1.8). Compared to (1.5) the distribution-valued f
becomes function-valued. To treat the distribution-valued transport term b - Vu, we
use Zvonkin’s transformation to kill the singular part and transform (1.8) into the
following general HIB equation (see Sect. 5)

orv =tr(a~V2v)+B-Vv+ﬁ(v,Vv), v(0) = ¢, (1.9)

where the matrix a € L‘%OCI_“ is symmetric and uniformly elliptic, B € L5’ (ps, ) for
some §; € (0, 1].
More precisely, assume that u solves

@ —-—A+MNu=>b-(Vu+1). (1.10)
If ®(t, x) = x + u(z, x) is a diffeomorphism in the x variable, then u» (z, &1, x))
will solve (1.9). All the coefficients of (1.9) are function-valued with the cost that (1.9)

is given in a non-divergence form PDE. This procedure is usually called Zvonkin’s
transformation, which was originally used for treating SDEs with irregular drifts (see
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Equation (1.5)
containing b, f and nonlinear term H

ecomposition
Equation (1.7) Equation (1.8)
without nonlinear term| without f
localization Zvonkin’s transform
Section 3 Section 4
Well-posedness of (1.7) Well-posedness of (1.9)
Solution: sublinear growth every term is a function

~ 7

Section 5
Well-posedness of (1.5)

Fig.1 Steps of solving (1.5)

[56]). However, due to the presence of the weights, this argument needs to be refined.
To this end, we use [18, Lemma 2.6] to decompose b into a singular term b~ in
the unweighted Besov space and a function-valued term b< with polynomial growth.
Then we use Zvonkin’s transformation to kill the singular part b-. by subtracting a new
term (see Remark 5.4 for more details on this point). The idea comes from Zvonkin’s
transformation for SDEs, but our Zvonkin’s transformation is different from the normal
one. To the best of our knowledge, it is the first time to use Zvonkin’s transformation
to deal with the nonlinear PDE (1.8) with singular drift b.

Section 4 is devoted to the global well-posedness of Eq. (1.9) (see Theorem 4.2). We
first establish a maximum principle in Sect. 4.1 with the help of Feymann-Kac’s for-
mula. For the subcritical case,! the global estimate follows from the L°°(ps)-estimate
and the L? theory of PDEs. For the critical case, the proof is more involved. In this
case by taking the spatial derivative on both sides of (1.9), we obtain a divergence
PDE, which only holds for d = 1. Then the L°°(ps)-bound and energy estimate yield
the ]HIZT”’ (py)-estimate of the solution to Eq. (1.9). By using this and Zvonkin’s trans-
formation we finally establish a priori global estimates for solutions to (1.8) as well
as the well-posedness of (1.5) in Sect. 5.

In the above Fig. 1, we outline the main idea and steps of solving Eq. (1.5).

In Sect. 6 we apply our main result to the KPZ type Egs. (1.3) and (1.4). Finally, in
Appendix 1, we prove the uniqueness of solutions to (1.5) based on the exponential
weight approach developed in [30]. Appendix 1 is then devoted to an exponential
moment estimate for SDEs used in Sect. 4.

1 We refer to Sect. 4 for the meaning of subcritical and critical, which is different from the meaning in [27].
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1.3 Conventions and notations

Throughout this paper, we use C or ¢ with or without subscripts to denote an unrelated
constant, whose value may change in different places. We also use := as a way of
definition. By A <¢ B and A x¢ B or simply A < B and A < B, we mean that for
some constant C > 1,

A<CB, C"'B<A<CB.

For convenience, we collect some commonly used notations and definitions below.

€* (p): weighted Holder space (Def. 2.3)

B‘;‘q (p): weighted Besov space (Def. 2.5)

C%(p): weighted Holder-Zygmund space (Def. 2.5)
S‘; (p): Paracontrolled solution space (2.3)

IB%"T’ (p): Space of renormalized pair (Def. 2.14)

f =<g,f>g, fog: Paraproduct (Sec. 2.3)

f =< g: Modified paraproduct (Sec. 2.3)

com(f, g, h):=(f <g)oh— f(goh)(Sec.2.3)
Y5 f, V< f: Localization operator (Sec. 2.3)
Pfx) = () ~4/2 foq f(n)e oy /E0gy

TLf@) = [ Per £ x)dr
Commutator: [«7], A1 f = a1 (eh ) — (A f)

EY = EY(1)
B%,q = B%’q(l)
C* :=C*(1)
S :=8%.(1)
BY. := BL(1)

frg=f>g+fog
D=0 — A+ A
So=0— A+ 07!
L =2, I =9

B :={x:|x| <r}

(x) = (1 + xH1/?

Np := NU {0}

2 Preliminaries
2.1 Weighted Besov spaces

In this section we introduce the weighted Besov spaces which will be used in the
sequel. Recall the following definition of admissible weight introduced in [51].

Definition 2.1 A C°-smooth function p : R4 — (0, 00) is called an admissible
weight if for each j € N, there is a constant C; > 0 such that

IV/p(x)| < Cjp(x), Vx € R?,
and for some C, 8 > 0,
p(x) < Co((L+ |x —yD?, Vx,y e R

The set of all the admissible weights is denoted by 7.
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798 X.Zhang et al.

Example 2.2 Let ps(x) = (x)7% = (1 + |x|>)7%/2, where § € R. It is easy to see that
ps € W . Such a weight is called polynomial weight.

We introduce the following weighted Holder space for later use.

Definition 2.3 (Weighted Holder spaces) Let p € # and k € Ny. For « € [0, 1), we
define the weighted Holder space €% (p) by the norm

k ‘ L
j Vv -V
1 gy = DIV (o)L + sup | (pf)(lz)_yla(pf)(yn <00
Jj=0 xX#y

Remark 2.4 Note that the k-order derivative of a function in €% (p) is not necessarily
continuous. By the properties of admissible weights and elementary calculations, it is
easy to see that for some C = C(d, p) > 1,

(o VX £)(x) = (pVE £)()]

k
£ llgrsagpy <c Y 1oV flliLe +  sup

=0 [x—yl=1 lx — yl@
k k k
—c ZII,OijHLOO-F sup PV f(x) — Vi f(y)] @)
=0 [x—y|<1 lx — y[®

Let S(R?) be the space of Schwartz functions on R? and S’ (R?) the space of
tempered distributions, which is the dual space of S(R?). The Fourier transform of
f € S'(RY) is defined through

fz) = @r)~4/? / f(x)e ¥ dx.
Rd

For j > —1, let A; be the usual block operator used in the Littlewood-Paley decom-
position so that for any f € S (RY) (see [1]),

Ajf €S, supp(A;f) C Byj+23\ Byj-1, j € Ny,
and

supp(A_1f) C Bi, f= ) Ajf,

Jj=—1

We also introduce the following weighted Besov spaces (cf. [51]):

Definition 2.5 Let p € # and p,q € [1, o0] and @ € R. The weighted Besov space
B%yq(p) is defined by

1/q
BS (0)i=1F €S ®N N flmg, 0 = | 22748, fllp,y | <oops
J
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Singular HJB equations with applications to KPZ 799

where

I/p
I fllLro) == llo fllp == (/Rd Ip(X)f(x)l”dX) :
The weighted Holder-Zygmund space is defined by

C%(p) :=B% o (0).

Remark2.6 Let p € #.Forany0 < 8 ¢ Nanda € R, p,q € [1, o0], it is well
known that (see [51, Theorem 6.5, Theorem 6.9], [1, page99])

1fllc) = 1F legpye 1£ B, 00 = IL.£ 21l - 22)

For T > 0, @ € R and an admissible weight p € #/, let L‘}OC“ (p) be the space of
space-time distributions with finite norm

[ fllLsecaqpy = sup [ f(@)lce(p) < 00
0<t<T

Fora € (0, 1), we denote by C% L™ (p) the space of a-Holder continuous mappings
f 10, T] — L°°(p) with finite norm

IF @) = F) Iz
I fllcazoeqe) = sup [l O)lleg) + sup L),
0<t<T 0<s#t<T |t — 5]

The following space will be used frequently: for o € (0, 2),
$5(0) = £ 1 Ifllsgn = 1 Fligceen + Wfllgsr gy <00} 23)
We have the following simple fact (see [45, Lemma 2.11]): for @ € (0, 1),
IV Flisg o S 11 f llgast - 24)
For p € [1, 00], k € Ng and T > 0, we also need the following Sobolev space:
Hy? o= { £ 1 gt i= 1Ny + 1V Flly < oo}
T «— . HTJ) — ]LT ]LT )

where, with the usual modification when p = oo,

T 1
1l = (// If(t,x)lpdxdt>l.
r 0 JRd
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For an admissible weight p, we also introduce the weighted Sobolev space

k,
HYP (0) = { £ 2 1F gty = 1Pl < 00),

k,p.

and local space Hfj . :

loc

HEP = {f - fxr € HS?, VTR > 0},

where xr(x) = x(x/R) and x € C?O(Rd) with x = 1 on Bj.

The following interpolation inequality will be used frequently, which is an easy
consequence of Holder’s inequality and the corresponding definition. (see [19, Lemma
A.3] for a discrete version).

Lemma2.7 Letp € # and 6 € [0, 1]. Let a, a1, a2 € R and 8, 81, 63 € R satisfy
§=0681+ (1 —0)0, a=>0a + (1 —-0)a,

and p, q, p1, q1, p2, q2 € [1, 00] satisfy

Then we have

[4 1-6
o < o o . .
(FA O TN i e @.5)
Moreover, forany 0 < o < < 2 with 6 = /B, we also have
. < 0 1-6
1oty S SNy 1 W 2.:6)

2.2 Estimates of Gaussian heat semigroups

We proceed with the Schauder estimate for the heat semigroup. For ¢ > 0, let P, be
the Gaussian heat semigroup defined by

Pf(x) = (1)) / eI £ (yay.
Rd

Let p be an admissible weight. It is well know that there is aconstant C = C(p, d) > 0
such that (see [43, Lemma 2.10])

—22j ;
1A P fllieio Sc e > A fllsg. j = 0.t > 0. 2.7

The following lemma provides some quantified estimates for the Gaussian heat semi-
group in weighted Holder spaces.
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Singular HJB equations with applications to KPZ 801

Lemma 2.8 Let p be an admissible weight and T > 0.

(i) Forany 0 > 0 and o € R, there is a constant C = C(p,d,«,0,T) > 0 such
that forallt € (0, T],

1P fllcosaipy Sc t™21 fllce(p)- (2.8)

(ii) Foranym € Ng and 0 < m, there is a constant C = C(p,d, m,0,T) > 0 such
that forallt € (0, T],

IV™ Py fllzoopy Sc t @721 Flico - 2.9)

(iii) Forany 0 < 0 < 2, there is a constant C = C(p,d, 0, T) > 0 such that for all
1€[0,T]

1P f = fllieoiy Sc t?21 f ey (2.10)

Proof (i) By the definition and (2.7), we have

Jj==

P fllcoragpy = sup 20T AP, fllLoo(p)
1

< sup 20T e 2 A fllLoo (o) + 1 A1 P f oo
J=

i _n2j _
Ssup2%7e 2 flicip) + I fllceioy S 1721 Fllcep)-
j=0

(ii) For m € Ny and 6 < m, by (2.7) we have

IV P fllooiy < D IV AP fllLeqo)

j=—1
Sy 2" e A Flliei) + 1AL fllLeg)
Jj=0
i 02N 0i _
<Y @270 flleo gy + I lleo iy ST 1O f e -
j=0

(iii) By (2.9), we have

t
1P f = flliwi = H/O AP, fds

t
5/ S71+6/2||f||cg(p)ds < t9/2||f||C9(p)'
L*(p) /O

The proof is complete. O

For given A > 0 and f € L®(Ry; L®(R%)), we consider the following heat
equation:

L =0, —A+Mu=f, u0) =0.
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The unique solution to this equation is given by

t
u(t,x) = / e M= P f(s, x)ds =: S f(t, x).
0

In other words, ., is the inverse of .%,.
The following Schauder estimate is well known for ¢ = oo and 6 = 2 (see [18]).
Here we spell out how the implicit constants depend on A.

Lemma 2.9 (Schauder estimates in weighted spaces) Let p € # and
ac 0,11, 0 € (a,2]

Forany q € [ﬁ, oo], T > 0, there is a constant C = C(p,d,«,0,q,T) > 0 such
that forall A > 0 and f € L%C_“(p),

041
175 f llge ) Se AV DTSl g oo )- 2.11)

Proof Let g € [525,00] and % +§ = 1. For tr € (0, T], by (2.7) and Holder’s
inequality, we have for j > 0

t
s0_ s0_ _ 2j e
21D A; 7 () 1oy S 27 M.L e T2 A £ () ooy ds

1 1
<00 ([ e=re+22hiu-o0 g5\ ([ 7 4
N | © s A I1f ()l g-a(,yds

1
t . )
Jo —p+22)s g\ "
5 2 (‘/(‘) € dS) ”f”L?_Cfoz(p)

. . _1 0_1
SYRY AN Py caiy S GV DTN f g ca g
and
! A
IA_1 A f Oy S / eI £ ()l c-apyds
0

t 1
s </ ef)»P(tfs)ds>P ”f”L‘;C—Dt(p)
0

_1
SV D¢ ey

which implies by the definition of Besov spaces that
Q+l_1
195 Fllgecro(oy Se GV D20 Fll g coag- 2.12)
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On the other hand, letu = %, f.For 0 < t; <1, < T, we have

n
u(n) — u(n) = /O (R —eHIT) Py f(5)ds

n
b (P — DI (01) + / e M0 Py F(s)ds
1

=h+ DL+

For I1, by (2.8) and Holder’s inequality, we have

n
11Nl ooy < e~ 027 — 1 / e M| Py £ ()l (p)ds
0
1 «
S (=) A1) [0 5 E ) eagds
0

0 L I3 B B 1/p
< (M2 —1m))2 (2 — 1) z( / e M s)”ds) 11 e
0 T

0

0—a 1
<= 1) TR fll g gy

For I, by (2.10) and (2.12) we have
0—a
I20lL(p) S (22 —11) 2 ”‘])Lf”LCT’,OCg*"‘(p)
0—a 0_1
Se=1)7 0V DT fll g cag.

For I3, by (2.9) and the change of variable, we have

1

1 M=) o, P
’ ~/O e PsT2ds ||f||Lgc—oc(p)

e, 14941
St—1n)72 A 2 q”f”[f;cfa(p)’

NIR

1531l p) S 2

where we used e %P5~ 7% < C5r -1 for all s > 0. Therefore,
041
15 Nl g2 ooy S€ AV DETTTN SNl g oo (2.13)
which together with (2.12) yields (2.11). O

2.3 Paracontrolled calculus
In this subsection we recall some basic ingredients in the paracontrolled calculus

developed by Bony [5] and [20]. The first important fact is that the product fg of two
distributions f € C* and g € CP is well defined if and only if &« + 8 > 0. In terms
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of Littlewood-Paley’s block operator A ;, the product fg of two distributions f and g
can be formally decomposed as

fe=f=<g+tfog+f>g

where

f<g=g>f=> > AifAjg fogi= Y AifAjg

jz—li<j—1 li—jl=1

In the following we collect some important estimates from [18] about the paraprod-
ucts in weighted Besov spaces, that will be used below.

Lemma 2.10 Let p1, p2 be two admissible weights. We have for any B € R,
If =< 8llct o) S ML I8llcs o) (2.14)

and for any « < 0 and B € R,

I1f < glica+p oy pp) S IF lica(on 181t py)- (2.15)

Moreover, for any o, B € Rwitha + 8 > 0,

I1Lf 0 gllcass (pyp) S 1 llceonllEllcs py)- (2.16)

In particular, if @ + B > 0, then

I f8llcers oy p0) S I Ilce (o 1811t (o) (2.17)
Proof See [18, Lemma 2.14]. O

Lemma 2.11 Let p1, p2, p3 be three admissible weights. Foranya € (0, 1)and B, y €
Rwitha+B8+y > 0and B+ y < O, there exists a bounded trilinear operator com
on C%(p1) x CP(p2) x CY (p3) such that

llcom (£, & M)l cess+7 (o papsy S I ceon 1€ 1105 (o 1Bl () (2.18)
where for smooth functions f, g, h,
com(f,g,h):=(f <goh— f(goh).

Proof See [18, Lemma 2.16]. O

Moreover, we will make use of the time-mollified paraproducts as introduced in
[20, Section 5]. Let Q : R — R be a smooth function with support in [—1, 1] and
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]R Q(s)ds = 1.For T > 0 and j > —1, we define an operator Q; : L7C%(p) —
LFC(p) by

Q;f(1):= / 20(2% (t — ) f((s AT) v 0)ds,
R
and the modified paraproduct of f, g € L7?C*(p) by

f<g:=Y (5.90;HAjg withSjf= > Aif.

j=—1 i<j-1
Note that fora < 0, 8 € Rand py, pp € #/,

I =< 8llLsecatbpopn) S I lLseceon 181l Leecs (oy)- (2.19)

Lemma 2.12 Let p1, p2 be two admissible weights and T > 0. For any a € (0, 1) and
B € R, there is a constant C = C(p1, p2,d, o, ) > 0 such that for all A > 0

|12, F <18 ] e cass2on ) S I sgion 181150 CH (- (2.20)
and
”f < g - f < g||L;-oCa+ﬁ(p1p2) fsc ”f”CD‘/zLoo(pl)”g”L%cCﬁ(pz)‘ (221)
Moreover, for any ¢ > 0, we also have for some C = C(e, p1, p2,d, o, B, T),

IV 25 f <18l Leecortrie oy pp) S I s o181l L5t (p)- (2.22)

Proof The estimates (2.20) and (2.21) can be found in [18, Lemma 2.17]. We only
prove (2.22). By definition, we have

[V, f <1g()

t t
= / e TPV (f(s) < g(s))ds — f(1) < f e M=V P, g(s)ds
0

0

_ / S P (V£ (s) < g(s)ds + f [P, f(s) <IVg(s)ds
0

+ / e (f(s) — f(1) < P—sVg(s)ds =: 11 (t) + (1) + ().
0

For I, by (2.12) with & = 2 and ¢ = oo and (2.15), we have

114 (t)||L°0Ca+ﬁ+l(p1p2) IVf < g”LOOCdHf Lp1p2) ~ ||f||L°°C0‘(p1)||g||Loocﬁ(p2)
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For I, by a modification of [9, Lemma A.1] we have by e M=% <

t
112 () | cet+1-¢ () p) S/o t =) F O o 18 0 oy ds

S Iz llglLeecs o)

For I3, by (2.14) and (2.8) we have by e 2% < |

t
IO essi-s (py ) S /0 1£(5) = FONL (o IV Prosg($) s s
t 14t
S o2 o o 18115205 0 /0 (t =)~ *ds.

The proof is complete. O

Finally we recall the localization operators from [18]. Let > ;. _,wx = 1 be a
smooth dyadic partition of unity on R?, where w_1 is supported in a ball containing
zero and there exists an annulus <7 such that for each £ > 0, wy is supported on the
annulus 2% o7 Let (Vm)m>—1 be a smooth dyadic partition of unity on [0, c0) such
that v_; is supported in a ball containing zero and for each m > 0, v,, is supported
on the annulus of size 2. For a given sequence (Lk »)k.m>—1, we define localization
operators 75, < as in [18]

Vo ft,x) =Y wevm@) > AjfE, ),
k,m

I bk (2.23)
Vo f(t.x) =Y we@vm(t) Y Ajf(t, ().
k,m jSLk,m

Lemma 2.13 Let p be an admissible weight. For given L > 0, T > 0, there exists a
(universal) choice of parameters (L m)k,m>—1 such that for all «, B,k € R
andy,s >0

—8L
175 fllLgec—a=s sy S 27 7 I1f e capp)»
L
V= Flliecragppen S 271 f lisoc-agpm.
where the proportional constant depends on «, B, 8, y but is independent of f.

Proof The proof is exactly the same as in [18, Lemma 2.6] although o > 0 is required
therein. o

2.4 Renormalized pairs

In this section we introduce the renormalized pairs, which correspond to the stochastic
objects in the theory of singular SPDEs. Fix o € (%, %) and an admissible weight
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p €W .ForT > 0,leth = (by,--- , byg) and f be (d+1)-distributions in L7C™%(p).
First of all, we introduce two quantities for later use

ﬁ(m:=$%HboVJﬁMh$@4%ﬁ)+HM&$CWQ)+1, (2.24)
A=

and for g € [1, oo],

b.f —
A7 40 = sup b V. f g iy + (bleeir + DIS lrgeoeqey
(2.25)

By (2.16), except for ¢ < %, in general, b(t) o V.%, f(¢) is not well-defined since by

Schauder’s estimate, we only have (see Lemma 2.9)
V.4 f e LC(p).

However, in the probabilistic sense, it is possible to give a meaning for b o V.%, f
when b, f belong to the chaos of Gaussian noise (see Sect. 6 below). This motivates
us to introduce the following notion.

Definition 2.14 We call the above (b, f) € L7°C *(p) a renormalized pair if there
exist by, f € LTE(p) with sup, (Kl}" (p) + ADn (p)) < oo and such that

T,00
(by, fn) converges to (b, f) in L‘;OC’“(,O). Moreover, for each A > 0, there are

functions g, h) € L‘;OCI_Z" (p?) such that

nli)ngo by o VI fu — gx||L;oC1—2a(p2) =0 (2.26)
and
nll)rrgo by, o VA by, — h)L”L?OCl—Za(pZ) = 0. 2.27)

For notational convenience, we shall write
g&. = boV.2 f, hy =:boV.7b.

The set of all the above renormalized pair is denoted by B7. (o).

Remark 2.15 (i) Let b € LY(p) and f € LFPC™%(p). Define b, (t, x) := b(t, ) *
on(x) and f, (¢, x) := f(t, ) * 0, (x) with g, being the usual mollifier. By Definition
2.14 and (2.16), it is easy to see that (b, f) € B (o). Moreover, if (b, f) € B (p)
and b’ € L (p), then (b +b', f) € B (p).

(i1) To make the convergence in (2.26) and (2.27) hold, we need to subtract some
terms containing renormalization constants in the approximation b, o V.#, f, and
by o V4, by. In Definition 2.14, we suppose that the renormalization constants are
zero for simplicity. Indeed in concrete examples we can choose symmetric mollifiers
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for approximations, which make the renormalization constants vanish (see Sect. 6).

In general we only use the uniform bounds sup,, . (61}" (p) + Al}”’ OQ” (,0)) < o0 and

the convergence in (2.26), (2.27). In particular, the renormalization constants do not
affect our analysis and calculations.

An integration by parts allows to eliminate the parameter A in (2.26) and (2.27) as
shown in the following lemma, where the right hand side can be estimated by some
probabilistic calculations (see Sect. 6).

Lemma 2.16 Let 7/ (f) = f; P;_, f(r)dr. For any t > 0, we have

sup [|6(t) o VoI5 f (1) |12y <2 sup [16(t) o VI (Fllgr-2a(py-  (228)
A>0 s€[0,¢]

Proof Note that by integration by parts formula,

. ‘ t s
/ e M=) P s f(s)ds = f P f(s)ds — )»/ eik(ris)‘/ Py f(r)drds
0 0 0

0

t t t
—e M / Pi_s f(s)ds + A / e M=) / P, f(r)drds.
0 0

N

Thus,
t
b(t) o VI f(1) =e Mb(t) o VIS + )\/ e M Ip(r) o VI (f)ds.
0

From this we get the desired estimate. O

The following lemma is used to deal with the localization of renormalized terms.
Lemma2.17 LetT >0, p,p € #, e € (0, 1) and a € (3, %). Suppose that
¢ € CH (%), Y € ST (b, f) € BY(p).

Then there is a constant C > 0 depending only on T, ¢, o, d, p, p such that for all
A>0andt €[0,T],

1((B9) 0 V.I5.(FYND I ci-2a5) S 1D llcuse 2 1¥ llgese Ayl (0). (229

Proof We only prove the estimate (2.29). For simplicity, we drop the time variable.
By using paraproduct, we have

(b¢) o VIL(fY) = (b§) o VI = [) + (bd) o VILY < )
= (bp) o VILW = [) + (bp) o [V I, ¥ <]f

+ com(y, VI, f, bd) + ¥ ((bp) o V.7, f)
= (bg) o VAW = )+ (bp) o [V I, ¥ <]f
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+ com(y, VI, f, b§) + ¥ (¢ = b) o VI, f)
+ ycom(g, b, VI, ) + Yy (bo V.7, f).

Let ¢ > 0 small enough. We estimate each term as follows:

e By (2.16), (2.11) and (2.15), we have

(bg) 0 VI = Pllcozy S 169l c-e o1 IV I = Plleocess(p)
S ||b¢||C’a(ﬁp’I)”1// =f+vyo fllL?OCu7|+g(p)

S @l care 5p-2) 1PN e (o) L f |l Lo (o) 1V | Lot -

By (2.16), (2.17) and (2.22), we have

(Bg) o [VIL, ¥ <1fllcop) S 10D llce (5o IIIV I, ¥ <1f | Leoca+e(p)

S 1@l care o2 1bllca o) ¥ llg2e-re2e [ f | Lo ) -

By (2.18), (2.11) and (2.17), we have

llcom(yy, VIofs bd)cozy S W llaa-1+: IV In fll Loocr-e ) 10P ¢ (51

S IVl er+e | fll Looc—a (o) 1Bl e (o) 19 1l cote 5 o2y -

By (2.17), (2.16), (2.11) and (2.15), we have

V(¢ = b) o VI H)licozy S W lILeelle = Dllce—14e o1y IV Ia Sl cr-e ()
S W llLeeli@llcote (5 p-2) 1Bl c=a () | f Il oo () -

By (2.17) and (2.18), we have

Iy com(@, b, Vo7 llcoy S 1 1L l1@ e tve -2y 1Bl c-a (o | flloeca (p)-

By (2.17), we have

l¥e(bo fof)”clfh(ﬁ) S ||1/f¢||02u71+8(,3p72) b o Vﬂkf”clfh(pz)'

Combining the above calculations, we obtain the desired estimate. O

3 A study of linear parabolic equations in weighted Holder spaces
In this section we consider the following linear parabolic equation:

Lu=0 —A+VNu=b-Vu+ f, u(0)=uge UeoC! T, 3.1
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where A > 0,b = (by, - - - , bg) is a vector-valued distribution and f is a scalar-valued
distribution. Suppose that for some o € (%, %) and admissible weight p € #/,

(b, f)eBf(p), T >0. 3.2)
The aim of this section is to show the well-posedness of PDE (3.1) under (3.2). We
first give the definition of the paracontrolled solutions to (3.1). We then establish the
Schauder estimate with the coefficients in unweighted Besov spaces by choosing A
large enough. Then by a classical maximum principle, we obtain the Schauder estimate
for (3.1) depending polynomially on the coefficients. In Sect. 3.3 we establish global
well-posedness of equation (3.1) under (3.2) and obtain a uniform estimate of solution

to (3.1) in Besov spaces with sublinear weights, where the proofs are based on a new
characterization of weighted Holder spaces and a localization argument.

3.1 Paracontrolled solutions

To introduce the paracontrolled solution of PDE (3.1), by Bony’s decomposition, we
make the following paracontrolled ansatz as in [20]:

u=Vu < Ib+u + .7 f+e M Pu, (3.3)
where u® solves the following PDE in the weak sense
Lt =Vu <b—Vu <b+Vu>b+boVu—[%,Vu <]%5b  (3.4)

with ##(0) = 0. Note that b o Vu is not well-defined in the classical sense. By the
paracontrolled ansatz (3.3), we have

boVu=>boV(Vu < 7b)+boVu* +boV.% f+boVPupe
=boV(Vu < Fb)+comj +boVu* +boV.A f+boVPupe ™
=bo (V2u < Fb) + (b o V.%b) - Vu + com
+com| +boVu* +boV.7 f+boVPuge ™, (3.5)

where
comj :=bo V[Vu < #b— Vu < .%b]
and

com := com(Vu, V.4 b, b).
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Definition 3.1 Let p, p € # be two bounded admissible weights and ¢ > 0. For
given (b, f) € B%(p) and ug € Ue=oC! T for € > 0, with notation (2.3), a pair of
functions

(u, u¥) € ST4(p) x S7(p*** ) (3.6)

is called a paracontrolled solution of PDE (3.1) if (u, u*) satisfies (3.3) and (3.4) in
the weak sense, where b o Vu is well-defined by (3.5) and Lemma 3.3 below.

Remark 3.2 For b, f € L‘;O%z(,o) with p(x) = (x)~!, itis well known that PDE (3.1)
has a unique classical solution. From Definition 3.1, it is not hard to see that classical
solutions are paracontrolled solutions.

The following lemma makes the above definition more transparent.
Lemma3.3 Let T, ¢ > 0and (u, u®) be a paracontrolled solution of (3.1) in the sense

of Definition 3.1. For any y, B € (a,2 — 2a], there is a constant C > 0 depending
onlyonT,e,a,y, B,d, p, p such that forall . > 0 and t € [0, T],

(B o Vu)(®)llcr-2e(p2+e 5y Sc gi)(p)”u”S‘;‘JrV(/;) ++/ g?(ﬁ)||Mﬁ(f)||cﬂ+l(pl+sp)
+ ||(b o Vf)\‘f)(t)||cl—2a(p2+£ﬁ) + ||M()||Cl+ot+e. (37)
Proof Below we drop the time variable 7 and fix
Vs ﬂ € (aa 2— 2“]

Recall 1 — 2o < 0. We now estimate each term in (3.5) as follows:

e By (2.16) and (2.9), we have
b0V Piuglicr-2eqpvey S luollgroesellblic-eoy-
e Since y > «, by (2.15), (2.16) and (2.11), we have

o (Vi =< Zabllici=2a(p2p) S 1PllCe (o) IV 1 < ZablCY (op)
Ibo (Vi < D)l c1-20(p25) S 1Dl I VU < £3b]
S bl e (o) | V2ttll erra2 ) | D | 2 )

S ||b||%[oocfa(p)||M||cr+w(/3) S (o) ull ety ()
e By (2.17), we have

||Vu(b o Vﬂkb)”cl—hz(/ﬁﬁ) S ||Vullcy+a—l(l5) ||b o Vﬂkb”c]—Za(IOZ)

< o) llullcerr -

@ Springer



812 X.Zhang et al.

e Since y > «, by (2.18) and (2.11), we have

leomlci-2ap2) S IBllc=a(p) I Vit grrat 3y IV Fabllcr-a

S oI lullcrreqs) S € (0) il catr -
e By Lemma 2.10, (2.4) (2.21) and (2.11), we have

||C0m1||cl—2a(p2l5) S ||b||Cfot(p)||VI/t < ij —Vu < jkb”c}ﬂrl(pﬁ)

S 1Bllc-(p) IVl o g 12 w2

2 b
,S ”b“L?OC“’(p)”u”Sjyﬂ/(p_) S_, Et (p)||u||sf‘+y('5)

e Since 8 > «, by (2.16), we have

150 Vi || poop2ve gy S bl c-a o) | Vi llcp pie 5y < /2O 1UF I o1 pie gy -

Combining the above calculations and by (3.5), we obtain the estimate. O

3.2 Schauder’s estimate for paracontrolled solutions without weights
As the first step towards the Schauder estimate for (3.1), we assume that the coefficients

are in an unweighted Besov space. More precisely, we assume (b, f) € BT := B%(1),
and for simplicity, we shall write

b, b,
e =eb(1), AT’-Z - AT’J;(I).
The proof will be divided into two steps. We first prove a Schauder estimate depending
polynomially on the coefficients for A large enough. Then by a classical maximum

principle we extend the result to all A > 0. The following Schauder estimate is a
consequence of Lemmas 2.9 and 3.3.

Lemma 3.4 Assume ug = 0. For any 0 € (1 + 37“, 2), q € (ﬁ, oo]and T > 0,

there exist constants cg,c1 > 0 only depending on 0,a,d,q, T such that for all
1

[
A > CO(ZI})I/(l_f_?) and any paracontrolled solution u) = u to PDE (3.1),
b,
lusllgg-« < c1A7]. (3.8)
Moreover, there is a constant ¢y > 0 such that for all A > 0,
_4 b,

luallga-a + i} lgz2e < c2(ef) = (||ux||L;o + AT,’;O)- (3.9)
Proof Below we fix

0 e(l+%,2], qelyg, ool v, Be@b—2al
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By (2.11), (2.15) and (2.14), we clearly have

1-§-1 <
vl ‘7||u||S(;_aN||b<Vu+b>Vu+boVu+f||Lz;C,a

(3.10)

b.f
S Iblec-allVull g g + 1100 Vull g c-a + Ay,

and by Lemma 2.12,

_0_1
(v D' T2 gyt S Vi < b~ Vu < bllgecr-1 + Vi > bll oy
T
+ I3, Vu <173bll ocr-1 + b o Vil pa.cr-1
S IIuIIS;w 18]l L5eca + 1160 Vuull 9 ci-2a

where we used (2.4), (2.21), (2.22) and (2.15) in the second inequality. Moreover, by
(3.7), we also have

b b b,
160 Vullg 1 S Elullgree + /G llull g o + AT

Thus, we obtain that for all A > 0,

1—-2_1
G D' (s + g )
! , (3.11)
S Gllullgra + & lufll s + AT

In particular, letting y = 6 — 2o and B = 20 — 200 — 2, we get for some ¢ =
c,a,d,q,T),

1-5-3 i < b # b.f
AV DI (ullggoa + Nl g2 ) Se € (Nullgg-a + luflgs2an ) + AT

6_ 1
Choosing A such that ATy > cel}, we obtain (3.8).
On the other hand, letting & = 2 and ¢ = oo in (3.11), we obtain that for any
y,B € (o,2 —2a],

b,
lullga-a + 1% ligrr S €7 llullgyre + €7 1% e sen + AR (3.12)

Ifa < B <y < 2—2a, then by (2.6) and Young’s inequality, we have for any
€ (0, 1),

2—a
gz + gy < & (Nullgame + sy ) + Co (€ =75
T r T T T(3.13)

I+y

b,
+ Ce (W) u e + CAT L.
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Note that by (3.3),
lullnge = llu = Vu < F3b — I3 fllLge
S Ml (U4 bl o) + 1 fllgeee S Nullus /€5 + A7 .
Substituting it into (3.13) and taking ¢ = 1/2, we obtain
lullz-a + N lgrer S @77 T (ule + A%L),
which, by choosing y = 2/3 and 8 close to «, yields that

8—3«x

b b,
lullgz-o + e < (U7 (ulle + AT L ).

Moreover, by (3.12) with y =2 — 2« and § = 2/3, we get

b, 4 b, f
g S lllgaea + Il + AT L, < (@) 7% (ullgp + AT L).

T,00

The proof is complete. O

Now we can show the main result of this section, where the key point is to obtain
an estimate depending polynomially on the quantity Zl}. Note that a simple Gronwall
argument will lead to the exponential dependence on El}.

Theorem 3.5 Let T > 0 andug = 0. Forany (b, f) € BY., there is a unique paracon-
trolled solution u) = u to PDE (3.1) in the sense of Definition 3.1. Moreover, there
exist ¢ = q(o) > 1 and a constant c3 = c3(«,d, T) > 0 such that forall . > 0,

_5_ b,
luzllse < e3(eh)=w AT,
9 _ b f
2o + Nk g < c3(€h) 7 AT L.
Proof We first assume that
b, f € L¥Y€*, VT > 0.

Fix A > 0. For any A’ > 0, it is well known that there is a unique classical solution w
to the following PDE:

w=Aw— QX +NDw+b-Vw+ £, w0)=0. (3.14)

In particular, for any 6 € (1 + %oz, 2) and g € (ﬁ, o], by (3.8), we have for

_0_1
R GRS
b,
Il < Iwlpgeeo-e < - AT,
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Now let u be the unique classical solution to PDE (3.1) with ug = 0. Letu = u — w.
Then u solves the following PDE:

Ot = A — At +b - Vi + )M'w, u(0) =0.
By the classical maximum principle, we have
lallee < AT lwlps.

Hence, by taking 6 close to 1 + 37"‘ and ¢q large enough, we obtain

1/a-4-1 b, S b,
lulle < W'T + Dlwlge < (o (€)1 7270 + ey - AF < @)= - A7,

which together with (3.9) yields

9 b,
lullgz-a + lufllgs2e S (€)= AL (3.15)

(Existence) Let b, and f,, be the smoothing approximations of b and f in B. We
consider the following approximation equation:

Oty = Aup — My + by - Vuy + fn, un(0) =0.

By the assumption and (3.15), we have the following uniform estimate:

sup (||un||SH n ||u5||8372a) <1
neN T T

Using this uniform estimate and by a standard compact and weak convergence method,
we can show the existence of a paracontrolled solution (see [18]).

(Uniqueness) Let 1 and u; be two paracontrolled solution of PDE (3.1). Let u :=
u1 — uy. Clearly, u is a paracontrolled solution of

dit = Ait — At +b - Vii, u(0)=0.

Letd € (1 +a,2) and g = 5%;. By (2.11), we have

T
Ny o < C/O (b - V) ()[I{-—dr. (3.16)
0

On the other hand, by (2.14), (2.15) and Lemma 3.3 we have

B - Vi) (@)llc-e = [[(b < Viu)(@) -« + |6 > Vi) (D) [|c-« + [[(b o Vi) (D) || ¢«
SIEOlc-IVu@)lize + 1B o Vi) ()|l c1-2«
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(3.9
S IVa@lize + llallgz-o + Il pocs20 S IVialipe + lillge.

Substituting this into (3.16) and by 6 — @ > 1, we obtain

T
=114 =114
”u”L‘%OCH_" S C‘/é ”u”L;)oc(-)—udtt

which in turn implies that # = 0. The uniqueness is proven. O

Remark 3.6 The polynomial dependence on Zl} in Theorem 3.5 together with a new
characterization for weighted Holder spaces in Lemma 3.8 below shall be used to
establish the Schauder estimate in sublinear weighted Holder spaces (see [45, Remark
1.1]).

3.3 Schauder’s estimate for paracontrolled solutions with weights

In this section we show the well-posedness of PDE (3.1) in weighted Holder spaces.
Recall that for § € R,

ps(@) = (14 [x[H)™% = (1) 7.
Now we give the main result of this section.
Theorem 3.7 Letx € (%, %) and ¥ := %. Choose k > 0 so that

55
8i= (20 +2k =1, 8o = (9 + 4.

Forany T > 0and % > 0, (b, f) € B%(pc) and ug € UesoC' <, there exists a
unique paracontrolled solution (u, u®) to PDE (3.1) in the sense of Definition 3.1 with

b,
lllgza ) + NePllgy-2a,, ) Se A7 (00), (3.17)

where C = C(T, d, a, k, £5.(p¢)) > 0.

To prove the result we first prove a characterization of weighted Holder spaces. To
this end, we introduce the following notations. Let x € CZ° (Rd) with

xx)=1, |x| <1/8, x(x)=0, |x|>1/4,
and forr > 0 and 7 € RY,
sz(x) = x((x — Z)/r)’ ¢;§(x) = sz(l+|z|)(x)'

To show the existence of a paracontrolled solution, we need the following simple
characterization of weighted Holder spaces.
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Lemma3.8 Leta > O andr € (0, 1]. For any §,k € R, there is a constant C =
C(r,a,d,$, ) > 0such that

1 F 55 0) = 5Up (05195 fllgep,)) - (3.18)
Z

Moreover, for any m € Ny, we also have

SUp V97 llgm -1y < 00 (3.19)
Z

Proof Without loss of generality, we may assume k = 0 by noting that

sup (s @1D5 £ llga(py) = sup (ps@IDF pi fllge) < llpspic fllge.
Z Z

First of all, for fixed » € (0,1], § € R and any m € N, we have for some C =
Cm,r,8,d) >0,

losdZllgm Sc ps(z), Yz e R (3.20)

Indeed, let B, (z) be the ball with radius » centered at z. Noting that for any § € R and
X € B(i4z2(2),

ps(x) < 2011+ 1x) 7% < 4Pl(1 4 1270 = 4Pl ps(2), (3.21)

we have by definition and the chain rule,

m k

m
lpseiliem =Y 1VE(ps@D) e S DY IVE ps Vi il oo
k=0 k=0 j=0

m k m k

SO Y s Vi e <43 ps @IV gl S ps(2)-

k=0 j=0 k=0 j=0
(3.22)

Moreover, since the definition of € is local,
I fllge < sup I fllge (B, 16 < Sup 1% 2. f g
Thus by (3.20) and Xf/quf = sz/z’ we have
I fllge(ps) = s fllge S sup 1% 1208 f llge = sup %7 1295 0595 f ll 5

< sup (115 295 s gt 195 F s ) S sup (ps (D15 F i)
Z 4
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818 X.Zhang et al.

and
sup (03 @115 fllw) S sup (o3 @I85 ligrarsillos flligw ) S oo fllige-
Z Z

So, (3.18) is proven. On the other hand, note that for any m € Ny,
IVillgm < (1 412D

As in (3.22), by (3.21) we have (3.19). o

Remark 3.9 Estimate (3.19) provides an extra weight p; and helps us to obtain the a
priori estimate for the solutions in Besov spaces with polynomial weights.

Now we give the proof of Theorem 3.7.

Proof of Theorem 3.7 (Existence). Without loss of generality we may assume A = 0
and uo = 0. In fact, for general initial data ug € Uc-oC'T%+€, by considering it =
u — ug, we can reduce the nonzero initial value to zero initial value with f replaced
by f = f+ Aug+ b - Vug € C"%(p). In this case, by Lemma 2.10,
10 VI (Auo)llLgece(p) S 1
and by Lemma 2.17 with = Vug, f = b, ¢ =1, p = p2e, p = P«
||b o Vj(b . VM())”L’;_O(:I—ZO((IOZK) 5 1.

Hence, we still have

(b, f) € B%(pc).

Now, let T > 0 and by, f, € L7 (p,) be as in the definition of B (o, ). For
every n, define

bu(t, x) 1= by(t, ) xn(X),  fu(t, %) == fu(t, X) g (x),
where x,(x) = x(x/n) and x € Cfo(Rd) equals to 1 on Bj. It is well known that

there is a unique classical solution u, € L(;o‘ﬁz solving (3.1) with (b, f) = (bn, f).
Our main aim is to show that there is a constant C > 0 independent of n such that

boofi
it gz ) + 8 320 ) S AT (0 (3.23)

On the other hand, by (2.29) with p = 02 = poc and ¢ = ¥ = x,,, we also have for
some C independent of n,

l;l‘h _n bll» n I;n bVl
AL ) S AT 0. 00 Se 6 (o).
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Hence,
ft
sgp (”l/ln”S’era(/m) + lu, ”S3fz“(pao)> < 00.

Thus, by a standard compact argument, we can show the existence of a paracontrolled
solution (see [18]).

Now we prove (3.23) by a localization technique. For simplicity, we drop the bar
and subscript n and assume b, f € LOO%Z We fix 0 < r < 1/2. Note that ¢35, = 1
on the support of ¢Z. For each z € Rd it is easy to see that u, := u¢? satisfies the
following PDE:

ity = Auy + b, - Vu, + F,, u,(0) =0,
where b, := b¢5, and

F,:= f¢* —2Vu - V¢! —uAd> —b - Voiu.

Let g be the same as in Theorem 3.5. By Theorem 3.5, there is constant C > 0 such
that for all 7 € R,

luzllgz-o < CUP)TAF I NuzllLy < CUER) AT (3.24)

Too’

Let ¢ > 0 be small enough. By the definition of F, using ¢5,V¢iu = Vpiu and
(2.17), we have

IFllc-o < 19 llc—e + 20 Vi - Vil 1oe + Al oo + 1665, - Voiul e
S oo I8 lgase ety + 1ML (o 1 VGE e
o0 (o) | AGE N e 1y + 1B lCo o0 193, V50l e
S f ool ey + il (o) 1907 g1,y

1Bl (o tlla61 () 195 g 1) 185, g 1,
(3.19)
S I et 9l ety + el oy (1 1Bl on 195, g1, )-
(3.25)

In particular,

||Fz||L‘§C*Ot 5 ||f||L‘%(jfa(pK)||¢f||<gl(p;l)

1/q
+(1 + ”b”L%OC*“(pK)”(pér”Cgl (pK—l)) (/(; ||l/t([)||<€1(p ) ) .
(3.26)
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820 X.Zhang et al.

Similarly, we also have

bz 0 VI 120 < bz 0 VIL(f D12 + [1bz 0 VIAD - Vi)l a2
+ by 0 VI (uAQG: 4 2Vu - Vi)l oo =: [F + I5 + I5.

For If, by (2.29) with p = 1, p = pc and ¥ = ¢7, we have
IF S 05, Nl guse o2y 195 llcose AL 2 (0) S 1105, g 2 A o (o)
1 ~ 1P llcate (pHI1PrIIC 1,00\Pc) S NP2l (p2) 21,00 Prc) -
For I3, by (2.29) with p = 1, p = p, and ¢ = Viu, we have

I3 S 105, gure 2y I VBFt e AT % ()
S 185 legt o2y 1985 g el 7 ()
e 165, 1 (2 1l (1 €7 (01)-
For I3, as in (3.25), since
Ibzllc-a S Nbllc-eqo 105, llgpr (1) (3.27)

by (2.17), we have

I5 < Wbzl IV 55, (A + 2V - V) | e
S 1Bl oo 165, g oty 1 AGE + 29 - VE | o0

S 1B llce o 195, gt (e 1l 221 o) IV 5 g 1

(3.19)

S 1Bllc-agon 185 g oy Nl Lot -

Combining the above calculations, by the definition of Al}z ’qFZ, (3.19), (3.26) and
(3.27), we get

A}}i’sz =sup ||b; o VQ]}LFz“L‘T’_CFZa + 1Lzl Lec— + DI F; s c-e
A
S (165 D12y + 185, 1 U85 1ty + 195, g1 eny) + 185 D, + 1)
x (A7 L0 + €00 ( /0 ' ||u||;%a(pl)dr)l/q)-
By Lemma 3.8, we have

sup e ()15, 1 o1y < 1.
z
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On the other hand, by Lemma 3.8 and (2.29) with p = 1, p = p,, we have
sup P 5 5P O @195, g 2y + 195,151,160 () S €700,
which together with the above estimate implies that for § = 29 + 2)k < 1,
Sup s @) AT < ( sup o7 (z)ﬂ?)l9 sup PRAT

T /g
9+1
< (¢00)"" (A?,Q(pkw(/o ||u||§;a(pl)dr) )

Note that by (2.6) and Young’s inequality,
ltllgaa ) < Ellitllgzo,) + CellllLooop)-
Hence, multiplying both sides of (3.24) by ps(z) we arrive at
b,
”u”S%_a(pg) = 8”“”§%—a(p5) + Cs”“”]L%o(pl) + CSAT’];O(IOK)7

and

T 1/q
bf q
lullLee o) S A7 o (Pi) + (/0 IIMIISIM(pI)dt)

The above two estimates imply that

T 1/q
b, f q
lulinse (o) = lullseon S A7 () + (/0 IIMIIL?o(pl)dt)

Finally, we use Gronwall’s inequality to deduce the first estimate in (3.23).
By (3.3), (2.19) and (2.12) we have for weight p, p € #

||uﬁ||L?°C2’°‘(p,6) S ullpgecrapp + 1IVu < bl Lo pp) + 170 f L cr-e o)

S lull Lgece-a(z) + 1IVullige @ 1bIlLec—«p) + 1 f e
S VGO ull e« + I fllLpe-a()- (3.28)

Next we estimate each term on the right hand side of (3.4) by using Lemma 2.10.

e By (2.21), (2.4) we have

||Vu <b—Vu < b”LthD(:l—Za(pﬁ) S |Iu||§%*“(ﬁ)||bL%°C’a(p)~
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e By (2.15), we have
Vu > b”LIO,OCI*ZD‘(pﬁ) S ”M”LC;CCZ*O‘(,a)”b”L%"C"’(p)'
e By (2.20) and (2.12) we have
ILZ, Vi <1Ibllgeci2eop) S Nutllgoe ) 1Bl gpcagpy.
e By Lemma 3.3 withy =2 —2«a, 8 € («, 2 — 2), we have
b,
|6 o VMHL%O(:I—Za(pZJra/;) 5 ||M||82T—a(15) + ”uﬁ”[‘%ocﬂ+l(pl+£,5) + AT,{XJ('O)

Combining the above calculations and by (3.4) and (2.11) with § = 2 and ¢ = oo, we
obtain

b,
N gy pore 5y S Mtllgzepy + NPl oivey + AT (0): (329)

20—1

On the other hand, for ¢ > 5-3,> One can choose B close to « so that

Thus by interpolation inequality (2.5), Young’s inequality and (3.28), for any § > O,

; PR gy 1-0
||I/t ||L%°Cﬁ+l(pl+5p) ~ ”M ”Lc%oc3—2a(p2+sl5)”u ”L%O(:Z—u(pﬁ)

f b, f
< 81| e aamprrepy + C5<||u||8%_a(b) + AT,OO(,O))

Substituting this into (3.29), we obtain the second estimate in (3.23) by taking p =
pK9 15 = pé-

(Uniqueness). It follows by Theorem A.2 in the appendix. O

4 Hamilton-Jacobi-Bellman equations

The next two sections are devoted to a priori estimates on solutions to Eq. (1.8). The
proof is divided into two steps. First we construct a C!-diffeomorphism and perform a
Zvonkin transformation through this diffeomorphism. After this transform the singular
part in (1.8) disappears and we obtain an HJB equation in non-divergence form. We
then obtain a priori estimates for this HIB equation, which leads to global uniform
bounds for solutions to (1.8). To this end, in this section we consider the following
general HIB equation:

dv =tr(a-V>v) + B - Vv + H(v, Vv), v(0) = v, @.1)
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where a : Ry X RY > RIQRYisa symmetric matrix-valued measurable function,
and B : Ry x RY — R is a vector-valued measurable function, and

H(t,x,v,Q):R+dexRde—>R

is a real-valued measurable function, and continuous in v, Q for each ¢, x.
For instance, for any ¢ € [1, 2], the equation

Lv=|Vv*+B-Vu+ f 4.2)
is a typical HIB equation. Note that for 1 > 0, if we define
v (1, x) i= v(At, Ax), By(t,x) = AB(\%t,Ax), fi(t,x) := A2 f(A%t, Ax),
then
Ly, =225V + B - Vo + fi.

In particular, if { = 2, then the nonlinear term has the same order as the Laplacian
term in scaling level. In this case, we say that HIB Eq. (4.2) is critical. While for
¢ < 2, the nonlinear term can be controlled well by the Laplacian term. In this case,
we say that HIB equation (4.2) is subcritical®.

Throughout this section we use the following polynomial weight function

ps(x) = (x) 0 = A+ k)™ = pf = pys, 8,y €R,

and make the following elliptic assumption on a:

HY) a : Ry x RY - R? @ RY is a symmetric d x d-matrix-valued measurable
function and satisfies that for some ¢ € (0, 1),

d
cole? < Y aij(t, EE; < ¢y &P, VE eRY, (4.3)

ij=1
and for some o € (0, 1) and ¢ > 1,
la(t, x) —a(t, y)| < c1lx —y|*.

About the nonlinear term H, we separately consider two cases: subcritical case for all
d € N and critical case only for d = 1, and assume

(Ha’g) Suppose that for some 8, ¢ € [0,2) and ¢; > O,

sub

|H(t,x,v, Q)] Ser (0)° +10. “4.4)

2 Here the critical and subcritical conditions are different from the meaning in [27].
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(Hﬁ;g ) Suppose thatd = 1 and H can be decomposed as H; + H, with H; satisfying
(Hfﬁi) and H, satisfying for some § € [0, 2) and ¢, > 0,

|He(t, %, v, Q)] Sep ()2 + 101, [8uHe(t, x, v, Q)] Sey ()2 + 0> +10],
4.5)

and for some 8 € (0, 1] and all |x — y| < 1,

|He(t, x, v, Q) — He(t, v, v, Q)] Sep 1x — y1IP ()2 + ()% + v + 101D).
(4.6)

We introduce the following definition of strong solution to HIB Eq. (4.1).

Definition 4.1 We call a function v € ﬂp>2H
Ve CP(RY) and t > 0,

strong solution to (4.1) if for all

loc

t
(), ¥) = (vo, V) + / <(tr(a .V20) + B - Vv + H(v, Vv))(s), 1p>ds
0
where (vg, ¥) : f vor. In particular, for all 7 > 0 and Lebesgue almost all x € R?,

t
v(t, x) = vo(x) +/ (tr(a V20) 4+ B - Vv + H(v, Vv))(s, x)ds.
0

The aim of this section is to establish the following well-posedness for HIB Eq. (4.1).
For simplicity of notation, we introduce the following parameter set for the dependence
of constants:

=(T,d,a, B,¢,98,co,c1,2).

Theorem4.2 Let T > 0,8 € (0,2) and «, B, 81 € (0, 11. Suppose that (Hf), B €
L (ps,) and (Hsub) or (Hmt) hold. Let

n > ;T‘S vV [261 + 6], under (H‘;’li);
.7

cm)

~2 (“*2/3)5 v (81 + 8)v 242D ”), under (H

(Existence) For any initial value vg € ¢? (ps), there exist pg large enough and strong
solution v to HIB Eq. (4.1), which satisfies the following estimate: for any p > po,
there is a constant C = C(®, p, n, 61, ||B||]Lc;o(p51), lvollg2(ps)) > O such that

Il + 130l ) + 00, ) < C. “38)
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In particular, forany 0 < &’ < ¢ <2,

vl

C;//Zcz_g(pn) S C
(Uniqueness) If, in addition, for some C > 0,
10, H(t, x, v, DI"* + [dgH(t,x,v, Q)] Sc (x) + P+ 10", (4.9)

then there is a unique strong solution with regularity (4.8).

Remark 4.3 (i) When a € LTE I, the above regularity result could be obtained by
De-Giorgi’s iteration method since it can be written in the divergence form (cf. [39]).
However, there seems no literature studying this problem when a is only Holder
continuous. Moreover, the unbounded B and H cause some difficulties for obtaining
the global estimates, which is crucial for a-priori estimate for (1.8) and KPZ type
equations. We believe that the above theorem is of its own interest.

(i1) The condition in (4.7) on n comes from the energy estimate and the integrability
of the weights in R4 (see Theorems 4.6 and 4.7 below).

In the following we first establish a maximum principle in Sect. 4.1. The subcritical
case is treated in Sect. 4.2 by using L (ps)-estimate and LP-theory for PDEs. For
the critical case, we take spatial derivative on both sides of (4.1) and obtain a PDE in
divergence form. Then using the L°(ps)-bound and energy estimate we obtain the
Hi’p(,o,,)-estimate in Sect. 4.3.

4.1 Maximum principle in weighted spaces

We first show the following maximum principle in weighted spaces by an exponential
transform and a probabilistic method.

Theorem 4.4 (Maximum principle) Let T > 0 and § € (0, 2). Suppose (4.3) and for
some ca, c3 > 0,

|H(t,x,v, Q)| < e2(x)’ +c3101°, B € LP(p1).

For any vg € L (ps), there is a function C(r) = Cg(r) > 0 with C(0) = 0 such that

for any strong solution v € ﬂpz2H12(;f N L (ps) to (4.1) with initial value vy,

lvllLge (o) = Clez + llvollee(ps))- (4.10)
Proof We use a probabilistic method. For A > 0, define
w(t, x) =9,
By the chain rule, it is easy to see that w satisfies

oyw = tr(a - Vzw) +B-Vw+ kw(H(v, Vv) — Mr(a- Vv @ Vv)).
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For simplicity of notations, we write
F3(x) := ca(x), Uy := )\w(H(v, V) — Atr(a - Vo ® Vo) — Fg).
Next we reverse the time variable. For a space-time function f, we set
FI(t,x) = f(T —1t,x).
It is easy to see that wl(t, x) = w(T —1t, x) solves the following backward equation:
dw! + @’ - viw) + BT vl + Ul + 2w F5 =0, 4.11)
with subjected to the final condition
w (T, x) = w(0, x) = e*W. (4.12)
Under (4.3) and B € IL‘;O(,O]), foreach (¢, x) € [0, T] x R4, it is well known that the

following SDE has a (probabilistically) weak solution starting from x at time ¢ (see
[37, page 87, Theorem 1])

N N
XY =x +/ V2aT (r, XL5)dW, +/ BT (r, X!")dr, Vs e[t,T],
t t

where W is a d-dimensional Brownian motion on some stochastic basis (', 7/, P).
For R > 0, define a stopping time

tg = inf{s > 7 : | X\ > R}.

It is well known that the following Krylov estimate holds ([37, page 52, Theorem 2]):
forany p >d + 1,

T ATR T 1/p
E([ f(s,Xé’x)ds> < Cg (/ / If(s,x)lpdxds> .
1 1 Bg

2,p

Since v € NpxoH, Y

NILE (ps), it is easy to see that

T 2,p T p
w' e mPZZ}HIloc’ dw' € mPZ2H"IOC'

Thus, for each fixed (z, x), by generalized It6’s formula (see [37, page 122, Theorem
1]), we have

dsw’ (s, X%y = @wT +tr(@” - V2wT) + BT - vwT)(s, X!)ds
+ V2aT - VuwT)(s, X15)dW,
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and by (4.11) and (4.12),
j’/ AFs(XE)ds, T o0 yit.x
e/t w (¢, X, )

/

4 rS WX
=w’ (1, x) +/ eli ME(XFArg T (s X5
t
t/ S WX
+/ eli MDA G BTy (s, XI5 ds
t
t/ rS WX
— wT(t, x) _/ e([, )»F(S(X£ )drU{(S, Xﬁ’x)ds + Mt”
t
where
t/ S X
M, :=/ eli MDA (/o T T (s, XI)dW.
t

By (4.3) and |H (v, Q)| < F5 + 3] Q|?, one can choose A = ¢3/c so that
ul < xw(C3|vU|2 _ xc0|w|2) —0.
Hence, for A = (c3/co) V 1,
AT =1) T (o) < i AE XIS T (. X' — My

Since t’ +> M,/ xq, is a martingale, we have

e)\v(Tft,x) < E (eftTMR )LFs(Xé'x)dSwT(T A TR, Xt,x )> )

T ATR
On the other hand, by Lemma B.1 in appendix, for any y > 0 and « € [0, 2),

E (ey supxe[,.mxyxw) < C(y)eC2rive,

)\”U”]L%O(pa)(x

8
Since w’ (t,x) <e ) , letting R — o0 and by the dominated convergence

theorem, we get
eku(T—t,x) <E (esz )‘F‘S(Xé‘x)dsz(T, X;:x)) —F (eftT )\Fg(Xév")dx—Q—)\vo(X;x )
< B (el < c(ggyetot’,
where £o := A(c2T + |[vgll oo (ps))- Hence,
u(T —1,x) < C(Lo){x)°.
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By applying the above estimate to —v, we obtain the desired estimate. O

4.2 Subcritical case

In this section we consider the subcritical case (Hi;j;) and prove some a priori regu-
larity estimates. To this end, we first show the following interpolation inequalities in
weighted spaces, which will play important roles in dealing with the weights.

Lemma4.5 (i) Forany p > 2andr, p € [1, oo] satisfying 2 - %—l—ql, and $, 81,8, €
R with 81 + 82 = 26, there is a constant C = C(p,r, q, 8, 81, 82) > 0 such that

1/2 1/2
IVvoslice Sc IV%v0s, 15 1vos, 114 + llvessillLe. (4.13)

(ii) For any p, q € [2, 00), r € [2, o0] satisfying % =1+ %, and §, 81, 62 € Rwith

§ = qq% + qz%, there is a constant C = C(p, q,r, §, 81, 62) > 0 such that

IVvpslliLr Sc ( / |v2v|2||w|q—2p§,)"iz ||vp52||z% + lvossille.  (4.14)
Proof By definition and the integration by parts, we have
IVvpslly, = / |Vl? psp = / (Vo, Vo[ Vo|P 2 psp)
S [ 1l(I9%v01 sy + 19017 V05, 1). 1)
(i) By Holder’s inequality we have
/ IVl VolP 205 < llps, I 192008, Lo | Vvpsly s
and by [Vps| < ps+1s
/|v||Vv|"‘1|Vpap| < IVvoslyy lvpssilize. (4.16)

Therefore,

14 2 p—2 p—1
IVvosliz, S llves, - IVoves lLalVvosliz, = + IVvpsliz, lves+iliee.

Thus by Young’s inequality, we obtain (4.13).
(ii) On the other hand, by Holder’s inequality we have

1/2 p
— _ p—5—1
/|v||v2v||w|f’ 2p5p < </|V2v|2||vU|‘f 2pslq) IVupslly, > llvos, o
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which together with (4.15) and (4.16) yields (4.14). m]

We now prove the following a priori L”-regularity estimate by the IL3°(p5) estimate
obtained in Theorem 4.4.

Theorem 4.6 Let T > 0, § € (0,2) and a, 81 € (0, 1]. Suppose (HY), B € L3 (ps,)

and (H‘:l’]%). Then for any n > (261 +6) v % and vy € ‘52(,05), there is a pg large
enough so that for all p > po and any strong solution v of HIB (4.1),

19 won)liLy + lvoyllgzr = €.

where C = C(©. 10, p. 81, IBllLg )+ 100 ll52p):
Proof Multiplying both sides of (4.1) by p,, we get

0 (vpy) =tr(a- Vz(vpn)) —Tp+(B-Vv)p, + H(, Vv)py, 4.17)
where
p=tr(a-2Vv ® Vp, + szp,,)).
Fix

@-¢d _,_ d B
P=a=on=cs "n—2s -5 1

By the L?-theory of PDEs (see [38]), there is a constant C = C(®, p) such that
10 vop)llLr + IIanIIH;p Sc 1H @, Vo) oy + (B - Vu)oy = Tplipe + lvoeyll g2.p-

Since p(n — 8) > d, we have

lvopyll g2 S lvopslle? (/Rd p,';_(;(x)dx>1/p S lvollg2 (g
and by (4.4),
I1H (v, Vo)pylipe < log-sllee + ||IVUI§P;;||]L1; S+ IIvan/;IIfL;Tp~
By interpolation inequality (4.13) and using |V p5| < ps+1, we have
IV0o0/cle < IV20nnlEy T0pnere—n Iy + Nopnjcliey.

where ¢ = p¢/(2 — ¢). Since p(n — ¢6/(2 — ¢)) > d, by (4.10), we have

T
oozl = / / (2, )14 pyp (6)dedr
T 0 JR4
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S / ps (x) P70 o, (x)dx
R4
pEs
5/ (14 x> "dx S 1,
R4
and also,
||Upn/{+l||L;p ~ ||pn/§+l 5||]Lgp S L
Thus, for any ¢ € (0, 1), by Young’s inequality,
1H (v, Vo)pyllp < ellV2vpyllp + 1.

Since B € ]L%O(,o(g]) andn > 261 + 6 and p(n — 261 — 8) > d, we also have by (4.13)
and (4.10)

2 1/2 1/2
1B - V)oylie < llog—s 1Vollle < UV2vpyll 5 1vpy—25, 17 + 101 e
T T T T T

S elVopylipp + 1.

Moreover, noting that

|Fp| ,S |Vv||vp7]| + |U||V2pn| 5 p,,|Vv| + ,077|U|v
we have by (4.13) and (4.10)

Tollr S IV < V20,11 + 1

ITollie S IVVpylie +llvegllz < vpnll + 1.
Combining the above calculations, by Young’s inequality, we get
10: (o) lipp + ||v,0n||H2p N

The result now follows. O

4.3 Critical one dimensional case

In this section we consider the critical one dimensional case and prove the following
a priori estimate.

Theorem 4.7 Let T > 0 and a, 81 € (0, 1], 6 € (0, 2). Suppose (HY), B € L3 (ps,)
and (Hcm) Foranyn > 2((14';’6)‘S V(81 +8)V W) and vy € €*(ps), there is
a po large enough so that for all p > po and any strong solution v of HIB (4.1),

19 won)liLy + lvoyllgzr = C.
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Where C= C(®7 n, p, 517 ||B||]L$~o(p51)9 ”UO”%2(,06))

The key point of the proof of this theorem is that we can use the Holder regularity
of H in x and integration by parts to treat the quadratic growth of H in Q for the
equation obtained in divergence form (see (4.20) below) by taking partial derivatives
on both sides of the Eq. (4.1).

Lemma 4.8 Under the assumptions of Theorem 4.7, for any n > % V(146 V

%, there is a pg large enough so that for all p > po and any strong solution v
of HIB (4.1),

T
||8xvpn||L<;OLp +//|8§v|2|8xv|1’_2pé’gc (418)
0

Proof Let p > 2 be fixed, whose value will be determined below. Define
wie,x) = deute,x), A= [ Bl 200,

For given g € [g +1,p+2]and y € R, by (4.14) and (4.10) and |V ps| < ps+1 we
have

e 2ot )7 g |7
(/le"ppn+y> §</|8wa lwl? ppn) lvos, Il - F oy llee

1 2
p+2 2
S (A8) 77 Nosa=s 127 + Nommer 4yl

where

.— w+2=q@)pn | Py — 2
82 = 2q + 2q r = 2—q € [2, OO]

Recalling ps(x) = (x)7% and d = 1, we have for q = p+2and y = 24, or

gels+1,p+2andy > 245+ (1 - pn(l - %) = n,

loss—sllLr 4 llpprer g _gllza < oo.

Thus we always have

AP+ 1, gq=p+2,y =25,
/|w|q:0pn+y S e —Ls » (4.19)
(Ap)p+2+l, gels+1Lp+2).,y >

Now by (4.1), one sees that
0w = 0y (a - 0yw) + 0 (Bw) + 0 H (v, w). (4.20)
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Since n > (#)6 V(1 +d6)V ‘Wﬁ#, we can choose p large enough such that

p+l | pt2 1 2 1
n > ([222 + 525+ 5) v (A + s+ L +5)

v, (P+2{725 + l) v ( p+e (28 — 1)) “.21)
2-Op P 2=0p )

Multiplying both sides of (4.20) by w|w|?~2p py and integrating on R, we obtain

1 _ _
;af/hupnv’ =—/aaxwax(w|w|l’ 2ppn>—/Bwax(whuv’ )

—~ / Hy (v, w)d, (w|w|P~2ppy) — / He(v, w)d, (w|w|”~2ppn)

=L+ DL+ 51+ 1.

For I, since a > cg and > % + 8, by (4.19) with g = p and y = 0, we have

I

IA

—cof 1wl w|P 2,y + C/ 1 wllwlP~

o o
< —3A$ + C/ lw|? ppy < —ZA;) +C.

For I, since | B| < I BllLg(5, )05, and 1 > (14 2)81+ 1 +8, by (4.19) withg = p
and y = —281, we have

125/|axw||w|"—1ppnfal +/|w|p:0pn+1751

12 12
5 (AZ)> (/ |w|pppn261> +/ |w|pppn

(p+1)/(p+2)
< (A;ﬁ) 1

For I since > (fgfg)‘pza 4 %) v ((zf’j)p 25 — l)),by (4.19) withg = p—2+42¢,

y=0andg=p+¢,y=1

I8 5/p_5|ax<w|w|"*2ppn>|+/|w|¢|ax<w|w|f’*2ppn)|

1/2 ) 1/2 |
S (AZ> </ lw]”™ ppn—%) +/ lwl”™" ppy+1-s
1/2 2io 172
+ (A$> (/ Jw| P ippn> + / [w|P* ppy1

(p+¢)/(p+2)
< (A'[f) +1
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Now we treat the most difficult term I4. The key idea is to use regularity of H
w.r.t the spatial variable and integration by parts. To balance the weight, we use a
convolution approximation. Let ¢.(y) = e~ '¢(y/¢), where ¢ € CX({(—1,1)isa
smooth density function. Define for given ¢t € [0, T] and v, Q € R,

Hé‘(ta X, 0, Q) = [ HC(ta yv v, Q)¢5p5/ﬁ(x)(x - y)dy (422)

We make the following decomposition for I4:

I = / (Ho (v, w) — Ho(v, w)ds wlw]?opy)
—(p— 1)/Hg<v,w)axw|w|"*2ppn

— / H: (v, wyw|w|" 23, p,,

= Iy — Iy — Is3.
For 141, noting that by (4.6), (4.22) and (4.10),
|He(x, v, w) — He(x, v, w)| < / |H(y, v, w) — He(x, v, W)|@ep; px) (x — y)dy

< efps(x) / (%) + () + [ + [ Peps ) (x — Y)dy

S0 ()P + 0 +wl) S o5 00 + P ps )l
we have
In < /pg‘|ax<w|w|f’—2ppn>| +eﬂ/paw2|ax(w|w|f’—2ppn>| Iy + .
For 1411, noting that by the chain rule and |V pp,,| S ppp+1,
19 (w2 pp)| S Nwl? 2 wlopn + [wIP ™" ppns1, (4.23)

since n > % + &, we have by (4.19) and Holder’s inequality,

L1y 5/|w|P*2|axw|ppn_a+/|w|P”ppn+1_a

172 5 1/2 .
< (a7) (/|w|f'— ,Opn—za) +f|w|"‘ Ppnt1-s

2
< (A$>p/(p+ ) L1
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For 1417, dueton > % +4, by (4.23), (4.19), Holder’s inequality and Young’s inequal-
ity, we have

141258'3/|w|"|axw|ppn+a+fsﬂ|w|"“ppn+1+a
§8ﬁ/(|w|p_2|3xw|2,0pn+|w|p+2,0pn+25)+f|w|p+l,0pn+1+a
+1 +2
5 8%&? n (A;})(P )/(p+2)

For 147, noting that by the chain rule,

w
H, (v, w)d,wlw|P~2 = 3x</ He (v, r)lrlp_zdr)
0

w
_/ (0xHe (v, 1) + 0y He (v, r)w)|r|p_2dr,
0

by the integration by parts, we have

w
Ip < / ( /0 |H5(v,r>||r|1"2dr)|axpp,,|
w
+/(/ |ast(v,r)||r|P2dr> Ppn
0
w
+/(f |3vHs(U,”)w||"|p_2dr> Ppn
0

=: Iup1 + Lao + I423.

For 1471, by (4.5) and (4.19) we have

w
It S f ( /O (5 +|r|2>|r|"—2dr) Ppn+1

pS /(p;HwV’*‘ + [wlP ) pppi1
P+l
<@ 4L
For 1472, noting that
9 H < -1 -1 s 2
[0x He(x, v, w)| S & pa/ﬂ(x)(<x> +w),

and
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by 4.19) withg =p+ 1,y =—-§/Bandg=p— 1,y = -5 — /B, we have
1 < 1 -1 p+1 < (AY % 1
b IR (,05+3/5|w| bt :05//3|w| )opn S ( p)p + L.
For 1423, by (4.5), (4.10) and (4.19) with ¢ = p, y = —26, we have
p+1 -2 p w ol
I3 S | (wIP™ + py “wlP)ppn S 1+ (A)) 7¥2.
Finally, for 143, by (4.5) and (4.19), we similarly have
_ ptl
In S /(lwlp_lpa " wP™ Y < (A7) P2 +1.

Combining the above calculations, choosing ¢ small enough and by Young’s inequality,
we obtain

1 0
Sollwoyllty S - Ay + 1.

Integrating both sides from 0 to 7', we obtain the desired estimate. O

Now we can give the proof of Theorem 4.7.

Proof of Theorem 4.7 We follow the proof of Theorem 4.6. Fix p > 1/(n — §). By the
LP-theory of PDEs (cf. [38]), we have

18 won)llpy + lvoyllgzy Sc 1H @, V)py + (B - V)poy = Tylipe + llvoeyllg2.r,

with I', defined in the proof of Theorem 4.6. Since p > 1/(n — 8), by |H(v, Q)| <
(x)® +10Q|%, we have

IH @, Vo)pyllpy S llog-sllLe + 1IVolPoylie S 1+ 1Vvp2l2s,
T
We have by Holder’s inequality and Sobolev’s embedding,

19vpn/21ly 20 <IVOP I V00 1

S IIV(van)IILp IIVv,OnOIILooL, + IIVv/OnIILp IIvanOIILooL, :

where 0 € (0, 1/2) and

r=2p(1—0), no= 5150
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Let po be as in Lemma 4.8. Since n > 2(%6 vV (81 +6)V
choose 0 close to zero and p large enough so that

sv(25—1)
S ) one can

— 1+2
no = zragsn > L8V (61 48), 7. p = po.

Thus by (4.18), we obtain
Vo llLgerr + IVvoylipy = C,
and therefore,
IH @, Vol < el V2 @pp)llps +C.
Moreover, as in the proof of Theorem 4.6, one has
I(B - Vv)p, = Tyl = C.

Thus we obtain the desired estimate as in the proof of Theorem 4.6. O

4.4 Proof of Theorem 4.2
The existence proof follows by the previous a priori estimates and standard compact
method. For the uniqueness part we use a probabilistic method.
(Existence). Let T > 0. For fixed m € N, let x,"(x) := x"(x/n),n € N be the
cutoff function in R™, and ¢! (x) := n™ 0" (nx), n € N be the mollifiers in R, where
x™ e C(R™) with x™ = 1for |x| < land x™ = O for |x| > 2, and o € C°(R™)
is a density function. Define
By (1, x) = B(t, ) ljxj<n, 9 (x) 1= v0(x) x5 (X).
For nonlinear term H, we construct the approximation H,, as follows:
Hy(t,x,0, Q) i= (H(t, x, - )y P o P, O ). (4.24)

We consider the following approximation equation:

3 = tr(a - VZv,) + By - Vo, + Hy (v, Vup), 1,(0) = @y. (4.25)
Note that by the assumptions of Theorem 4.2,

By € Npett ool ¢n € Npert oot H>Y,

and

[ HnllLge 4 110y Hy llge + 190 Hnllge < oo.
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It is well known that the approximation Eq. (4.25) admits a unique strong solution
v, €N pzszT’p (cf. [38]). Moreover, by definition, we have the following uniform
estimates:

1Brpos llge < 11Bps; lIrge,
and for some C independent of 7, in the subcritical case,
|Ha(v, Q)] Sc (0)° + 101,
and in the critical case d = 1,

|Hy(, %, v, Q)] Sc ()2 + Q1% 18,Hu(t, x, v, Q)] Sc (x)° + [vf* + 10,
|Hy (2, x, v, Q) — Hy(t, y,v, Q) Sc Ix — P + (02 + [v* + 1017,

Thus by Theorems 4.4, 4.6 and 4.7, we have the following uniform estimates: for n
being as in (4.7) and p large enough,

lonslinge + 10 Wapn) Ly + lvnoyllg2r = C.

where C is independent of n. By Sobolev’s embedding (cf. [12, Lemma 2.3]), for any

2 _ B 1
,B’E(O,Z—F)andy_l—j—z,

lonoyllcreo-am S Nvnpnllcr gop

S 18 wapp)lipe + lon oy llg2r + llvopnll go.p = €.

Thus by Ascolli-Arzela’s lemma, there are subsequence n; and v € L (,o,;)ﬂ]H[zT’p (oy)
such that for all ¢, x,

Vi, (t, x) = Vv, x), j=0,1, (4.26)
and for any R > 0,
Vv, — VZv weakly in L%([0, T] x Bg). (4.27)

By taking limits for (4.25), one finds that v is a strong solution to (4.1) in the sense of
Definition 4.1. Indeed, for any ¥ € C°(RY), by (4.27) we have

t t
lim (tr(a-Vzv,l),lp)ds=/ (tr(a - VZv), ¥)ds
0

n—oo 0

and by (4.26) and the dominated convergence theorem,
t t

lim (B - Vo, ¥)ds = / (B - Vv, ¥)ds
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Moreover, since for each (¢, x) € [0, T] x R4 and R > 0,

lim  sup |H,(t,x,v,Q)—H(, x,v,0)| =0,

"= (w,0)|<R

by (4.26) and the dominated convergence theorem, we also have

t t

lim (Hy (s, -, vy, Vop), ¥)ds = / (H(s, -, v, Vv), ¥)ds.
0

n—oo 0

Thus we obtain the existence of a strong solution.

(Uniqueness). We prove the uniqueness on the time interval [0, 1] by a probabilisitic
method. Let v1, v2 be two strong solutions of HIB Eq. (4.1) with the same initial value
vo. By (4.8), we have

vi, v2 € L(05) N LYE (o). (4.28)
Let V := vy — v2. Then V is a strong solution of the following linear PDE:
B,V=tr(a~V2V)+B-VV+G-VV+K~V, V() =0,

where
1
G = / 3QH(U1, Vv 4+ 6V (v — v1))do,
0
and
1
K = / 8y H (v + 6 (v2 — v1), Vuo)de.
0

By (4.28) and (4.9), there is a constant Cy > 0 such that for all (¢, x) € [0, 1] x R4,
G, 0)| Sco (), 1K (0] Sy ()2 (4.29)
Let T € (0, 1] be fixed and determined below. For a space-time function F, let
FT(t,x):= F(T —t,x).

Thus under (HY) and B € L§°(ps,), for each (1, x) € [0, T] x R?, the following SDE
admits a unique weak solution starting from x at time ¢ (see [37]):

S s
XY =x +/ V2aT (r, X1%)dW, +/ (BT +GTY(r, X'%)dr, Vs e[, T].
t t
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As in the proof of Theorem 4.4, by It&’s formula, we have

ol KM@XiNasyT (ot X035y = yT (1 x) 4 My, £ € [1, T,

where M} is a continuous local martingale. Note that by (4.29) and [54, Lemma 2.2],
for T = T(Cy, d, co, ||B||]Lfc>(p51)) small enough,

T 1, 1x )2
Re2 /i K'(s.Xg")ds < Ee2C0o suPscin,7) X5~ a0,

By using stopping time technique as in the proof of Theorem 4.4 and taking expecta-
tions, we find that for 7' being small enough, 0 <t < T

T t,x
VT, x) = Eel K1 6:XNdsy @ x1¥) = 0,

Thus we obtain the uniqueness on small time interval [0, T]. We can proceed to
consider [T, 2T'] and so on. The proof is complete.

5 HJB equations with distribution-valued coefficients

In this section we focus on Eq. (1.5). Our strategy is summarized as follows: we
first decompose Eq. (1.5) into two equations: the linear one with singular f and the
nonlinear one without f. For the linear equation, we can obtain the desired estimate
by Theorem 3.7. For the nonlinear equation, we introduce Zvonkin’s transformation to
kill the singular part so that we can use the results in Sect. 4 to deduce a priori estimates
for solutions to the nonlinear equation. Finally we employ the standard compactness
argument to construct a solution to (1.5).
Now we fix o € (%, %) and « € (0, 1) being small enough so that

@=a+Fe (3 3), Fi=«"" 8:=2(% + Dk < L. (5.1

N[—

We consider the following singular HIB equation:
Lu=0;—Nu=b-Vu+Hu,Vu)+ f, u) =g, 5.2)
where (b, f) € N7-0B% (o) and
H(t,)c,u,Q):R+ xRIExRxRY > R
satisfies (H>¢) or (H>£) with ¢ € [0, 2), 8 € (0, 1] and for some C > 0,

sub crit

0uH (1, x,u, Q) + 100 H(t, x,u, Q)| Sc (x)° + lul +10). (5.3)
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To understand HIB Eq. (5.2), we use the paracontrolled calculus:
u:Vu«fb—i—ff—i—un—i—P,(p, 5.4
where u* solves the following equation

Lut =Vu<b—Vu<b+Vus>b+boVu
+ H(u, Vu) — [ £, Vu <].9b, (5.5
u*(0) =0,
with b o Vu being defined by (3.5) for A = 0.
Our aim of this section is to prove the following result.
Theorem5.1 Let T > 0, 8 € (0,1 — ], ¢ € [0,2) and o, &, k, 8 be as in (5.1).
Suppose that (b, ) € BT (o,) and (Ha,g) or (H(S’ﬁ) as well as (5.3) hold. Let

sub crit

n > 355 v 2% + 28], under (H”;%):;
(5.6)

n>2 [207& vV (®+28) v %] . under (HyP).

Fix ¢ € (0, 1). For any initial value ¢ € Cltate (pes), there is a paracontrolled
solution (u, u®) solving (5.4) and (5.5) with regularity

u & ST (o) NLF (029, 4 € ST (p2g) NLF (023:41)-

Moreover, if n < 1_70‘ then the paracontrolled solution (u, u’j) is unique.
8.8

Remark 5.2 (i) Typical examples satisfying (H_; ) as well as (5.3) are given by

H(x,u) = g1 (0)|Vul* + (g2(x) + Fw)Vuu + g3(u) + ga(x),

where g1 € CP, g2 € L™ (ps,), 80 < 8, 84 € L™(ps), and g3, F € €.
(i1) By (5.6), one sees that i can be arbitrarily small as long as « is small.

To show the existence of a paracontrolled solution, we use the approximation
method. More precisely, since (b, ) € B"T‘ (p«), by the very definition, there is a
sequence of (b, fp) € L7 (pc) with

bn bn’ n
sup (€7 (po) + AT (p0)) = co.
n
and such that for A > 0,

Jim (lon = bllgcegp + 1o = Fligcegn) = 0.
n]Ln;o by o VIiby —bo v'ﬂkb”L?Cl*Zﬂ(pK) =0, 5.7
1im |6y 0 VI fu = b o VoI5 fll ot = 0.
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Moreover, let ¢, be the the convolution of ¢ with smooth mollifier so that
sup ||§0n||cl+ut+£(p£6) S ||§0||Cl+a+£(pea).
n

We consider the following approximation equation:
Lup =by - Vuy + H@uy, Vug) + fu, un(0) = @ (5.8)

By Theorem 4.2, it is well known that approximation equation (5.8) admits a unique
strong solution u, with

”un”]l,?o(pg) + ”atun”]L’T’(pn) + ”Mn”H%:P(p”) < Cy.

Our aim is of course to establish the following uniform estimate:

sup (||un||S;-&(pn> + llnllge o) + e llgz2a ,,  + Nl ||L;o<p25+K)) <C, (59

where uﬁ is defined by (5.4) with (b, f) being replaced by (b,,, f,,).

To show the uniform estimate (5.9), our approach is to transform (5.8) into HIB
equation studied in Sect. 4. In the following, for simplicity, we drop the subscript
n and use the convention that all the constants appearing below only depend on the
parameter set

@ = (T7 d’ o, :35 7, é‘a K, Cg, &, ||§0||C1+l¥+5(p85))'

First of all, by Lemma 2.13, one can make the following decomposition for the initial
value ¢ € C!H*+¢(p,s): for eg € (0, £9),

=91 +¢. @1 €CHF g e G (py).
Next we make the following decomposition for u:
u=uy+u,
where u solves the following linear equation with non-homogeneous term f
Luy=b-Vur+ f, u1(0) =g, (5.10)
while u5 solves the following HIB equation
Luy=>b-Vuy+ Hui +uz, Vuy + Vuy), uz(0) = . (5.11)

Clearly, the linear Eq. (5.10) can be uniquely solved by Theorem 3.7 with the solution
up € Ssz"‘ (ps). Thus it remains to solve (5.11). However, since b is a distribution,

@ Springer



842 X.Zhang et al.

we cannot directly apply Theorem 4.2. We use (2.23) and Zvonkin’s transformation
to kill the singular part of b.

5.1 Zvonkin's transformation for HJB equations

In this section we introduce a transformation of phase space to kill the distributional
part in the drift of the HIB equation (5.11) so that we can apply the result in Sect.
4. Such a transformation was firstly used by Zvonkin in [56] to study the SDEs with
singular drifts. In the literature, it is also called Zvonkin’s transformation. Below we
always assume

be LP(E™(po). Lh(p) < co. (5.12)
The key step for Zvonkin’s transform is to construct a C'-diffeomorphism such that
the solutions to Eq. (5.11) composed with this diffeomorphism satisfy a new equation
without the singular part of the drift . However, a diffeomorphism does not allow
polynomial growth for C'-norm as |x| — oo. To this end, we decompose b into two
parts by Lemma 2.13. By Lemma 2.13 we make the following decomposition:

b =b> +b§ = 4//>b+4//§b,

We are goint to construct a C!-differmophism to kill the b part. Furthermore, we
define

b:=b. oV.Ib., b :="V.b, be:=Vb. (5.13)

Lemma5.3 Foranym € Nand ¢ > 0, it holds that
b- € L¥E™, b< € LYEC" (p2ute)- (5.14)

For some C = C(d, a, k) > 0, it holds that

1651l e c-a—% + I1b<llLg (o) ScC V(P (5.15)
where i = «1/*, and
1511 oo 0120y + 1B Il o127 + 1Bl (o) S €7 (o) (5.16)

Proof (i) Since b € L7¢*°(p«), by Lemma 2.13 one sees that (5.14) holds.
(i1) We use Lemma 2.13 with weight p,.1,2 to conclude

16> llpc-ot S 1Bl e maetiz S IBlLsrcagp = €7 (00).
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Since @ < 1, we can choose ¢ > 0 being small enough so that
Fi=k+xPa+e)<k'?—k < %?—K.
Noting that

120172 1/2
,O,Z(X) — <x> K2 Hate) :pl( 2-‘:—0{-"-8()6)7

K1/

by Lemma 2.13 again, we have

1b<llLee (or) = Nb<llLe(pe) = ”bSHL;P(p;llZ*"”)
< IIbllL?oC,a(pkKllg) = 161l Lgec—a(p,)-
(iii) Note that by definition (5.13),
b=boV.Ahb—boV.9(b)—bcoV.Ib.
and
b o VIibll o c1-22(pyyy < £7-(p)-
By (2.16), (2.12) and (5.15), we have for ¢ € (0, 1 — «),
160 VI Lo p ) S 1o D=l L5 care=1(pe) S (o),
and
1b< 0 VI (b))l oci-a—7 (o) S I1b<llLgeop) 16> | Lo c—o—7 S &.(pe).
Combining the above estimate we get
151l oo ci-2 gy S WDl oci-20p, 1) S €7 (00)-

(iii) As for the other two estimates in (5.16), we use Lemma 2.13 with the weight pg
to have

h A h b
”b>”L%°C1_2"‘_7 < ||b>|| l—2a—‘%¥" < ”b”L‘;cCl‘z“(pH;) ,S ET(/OK)’

Ly¥C
and for ¢ > 0 small enough

A A A b
”bS”L?O(p;) = ”bS”L?O(PHHV(Za—Hs)) S ||b||L;°C1*2°‘(pK+k) S €1 (po)-

The proof is complete. O
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To construct a C'-diffeomorphism for killing the singular b-, we consider the
following vector-valued parabolic equation:

Lu=(b. —bs)-(Vu+1), u0) =0¢cR’ (5.17)

Remark 5.4 The reason for considering b-. — 55 rather than b- is the following: in
order to use (5.17) to construct a C ' -diffeomorphism, the solution u to (5.17) must be in
unweighted spaces, which requires E? (1) < co.However, by (5.16), b= b.oV.%b.
stays in a weighted space. Hence, we shall use b to cancel the weight contained in
the decomposition of renormalizing b-. o Vu. It should also be also noticed that since
b. — 155 still stays in some weighted space, one cannot directly use Lemma 3.4 to
construct a C!-diffeomorphism. Fortunately, one still has the following result.

Lemma5.5 Leto € (5, 3) andk € (0, (3 —a)*). Under (5.12), for@ = a +&, there
exist A = A(®) large enough and a constant C = C(®) > 0 such that

lullgr <172, fuljg-a < C. (5.18)

Proof We use the paracontrolled ansatz as in (3.3) and write

u=Vu< b + .%b. +ub,
where

v = (Vu< b —Vu < b +Vu> b + It — 1%, Vu <1.%.b-.)

with

I2:=b. o Vu—be - (Vu+D.
Recalling that b=b. oV.%b.,asin (3.5), we have

Ib=b. o (V2u < Sb-) +bo o (Vu < V.I5bo) 4 bo o V.I5be
+com; + b~ o vu® — 155 -(Vu+1)
=b. o (Vzu < Sbs) +com(Vu, V.4, b, b))
+ com; + b o VU +b- - (Vu+1),

where
comj :=b. o V[Vu < % b. —Vu < % b-.].
Let

v, B e (@2 —2al.
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Except for the last term b~ - (Vu + 1), we estimate each term of Ffj as in Lemma 3.3
and obtain

b 2
IT ez S 1621 o lulgir + b=l | VUl e

+ b=+ (Vu+ Dl i
< o (Iullzr + 1) + € () 10 oo,

where we have used (5.15), (5.16) and (2.17). Asin Lemma 3.4, forany 6 € (l—i—%, 2),
there is a constant C > 0 independent of A such that for all A > 1,

_0
W72 (lullgo-a + ufllgo-2a-1) < (o) (ullgr-a + 07 lg20-26-1 + 1).

Taking A large enough, we get the first estimate in (5.18). The second estimate follows
from the same argument as in Lemma 3.4. O

Now, let us define
O(t, x) ;== x +u(t, x).
By Lemma 5.5, it is easy to see that foreacht € [0, T]and x, y € R4,
3X =y <1, x) — D@, Y)| < 31x -yl (5.19)
and
P =AD —ru+ (b —bs) - V. (5.20)
In particular,
xH— O, x) isa Cl—diffeomorphism.
Let ®~1(z, x) be the inverse of x — ®(¢, x) and define
v(t, x) 1= ua(t, @7 (t, X)) = v(t, D, x)) = us(t, x),
where 1, solves HIB Eq. (5.11).
In the rest of this subsection, if there is no confusion, we also use o to denote the
composition of two functions. By the chain rule, we have
0vo P+ 09;,d - (Vvo ®D) =0dupy, Vup =V>P - (Vvo d)
and

Auy = AD - (Vv o ®) + tr(@ - V>v o ),
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where &@;j := Y¢_ (3¢ @8, ®7), which implies by (5.11) and (5.20) that

0v)o® =tr(@- Vv o @) + H(uy + uz, Vi + Vuz)
+ ((b< +b<) - VO +u) - (Voo d).

Thus we obtain the following key lemma for solving HIB equation (5.11).

Lemma 5.6 The v defined above solves the following HJB equation:
v =tr (a-V2v> +B-Vo+ Hw, Vv), v(0) =g, (5.21)

where a;j := ZZZI(E)k@inCI)f) o ® ! and
B:=((b<+bs)-V®+ru)od !,
and for (t, x,v, Q) € [0, T] x R x R x RY,
H(t,x,v,0):= H(t, -, ur(t,") + v, Vui (1, ) + VO, ) - Q) 0 &1 (1, x).

Moreover, a satisfies (H;_&), B e L (pr), and under (H(S’C) or (Ha’ﬂ)forﬂ <l-—gq,

v ; o sub crit
H still satisfies ( Hsjlf ) or (Hcri}ﬂ) .

Proof (i) By (5.19) and (5.18), we have %]I <da <2land

la(t, x) —a(t, y)| < [Vu(r, @71z, x)) — Vu(, @711, y))|
Sl ) =7 )" S -yl

(ii) Note that for some C > 1,
C N x) < (®(t,x)) < C(x), Vt € [0, T]. (5.22)

The assertion B € LC}O (pz) follows by (5.18) and Lemma 5.3.

(iii) We only check that under (Hi;ﬁ), H satisfies (Hgfi’[’3 ). For simplicity, we drop the

time variable and we only consider H, part. By (4.5), we have

|He(x, u1(x) + v, Vui (x) + VO (x) - Q)|
< e (x) + GUOP + [Vur (0) %) < &hx)? + 51012,

where we used u; € Ssz"‘(p(;).By (4.6) and (5.3), wehavefor [x —y| < 1,8 < 1—«a

| Helir, 11 ()40, Vi1 (x) + VO) - 0) = Hely, 11 (3) + v, Vir () + V() - 0)|
S = P (07 + 09 + i () + 0 + Vi () + V() - OF )
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1) = i I(0) + ol + (@) + 1 0+ [V ()] + 121
+ (Vi1 () = Vi ()] + V() = VO()I1QD)
X () + L] + o]+ [Van (0] + Vi1 ()] + 121
S b= P + )% + i+ 1)

Furthermore, we have

10y He (x, u1(x) + v, Vi (x) + VO (x) - Q)]
S )° + w1 ()] + v + Vi ()] + 101 S (x)° + o] + QL.
Therefore, H satisfies (H-,” ) by definition and (5.19), (5.22). o

5.2 Proof of Theorem 5.1

By Lemma 5.6 and Theorem 4.2 we can derive the following a priori estimate for the
solution to (5.2).

Lemma 5.7 Under (5.12), there is a constant C = C(®) > 0 such that
“u”]lf}o(pza) + ”u”S%ﬂi(pn) <C. (5.23)

Proof Recall u = u| + up, where u; solves Eq. (5.10) and u; solves Eq. (5.11). By
Theorem 3.7, one has

- <
fluy ”SZT_O[(PS) S L
Hence, to prove (5.23), due to n > 24, it suffices to prove that
2l (o) + I2llga, ) S 1. (5.24)

Note that by Lemma 5.6, v = u3(®) solves (5.21). In particular, by Lemma 5.6 and
Theorem 4.2, for p large enough and 7 satisfying (5.6),

Ioligiom + 1301z + M0l ) S 1. (5.25)
which implies by [12, Lemma 2.3],
||v||C<T2—&>/2Loo(pn) S L (5.26)
By (5.22), we have

lu2llLse (pos) = 0 (P)p2sllge = [[0(P) 25 (P)lILge = NVlILse (s
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and by (2.17), (5.25) and (5.18),

”VMZHL%OCI*&(,OU) =||Vvo®- VCD”Lf;Ocl—&(pn)
S ”vv(CD)HLC;CCl*&(pn)”V(D”L%OCI*&

S IVl eeci-a(p,) (0l Lo c2-a + 1) <1
where in the second inequality, we have used that for |x — y| < I,
(5.22)
Py ()IVU(P (X)) = Vo(@ ()] S pp(@x)IVU(P(x) — Vo(P(y))]
(2.1),(5.19) _
S 1P = DIVl ci-a )
Moreover, by (5.22), we also have
lua(t) = u2()ll 200 S N0, D)) = 0(E, D) 10, + [0(E) = VS| L2%(0y)
= [@@) = P(s)llee /01 IV (e, Tl Lo o, dr
+ [[v(@) —v($) (o)
where 2% (x) := ré(t, x)+(1—r)d(s, x).Since forany r € [0, 1]and ¢, s € [0, T,
'L (x) = x + ru(t, x) + (1 — rus, x),
by (5.18), we have
Py (1) = py (x).

Hence, by (5.18) and (5.26),

llua (r) — ua(s)llLoe(py)

g < 1.
[t — s]|@=®)/2 ~
Combining the above estimates, we obtain (5.24). The proof is complete. O

Next we apply (5.23), (5.4) and (5.5) to derive the following a priori estimate for ut
as done in Lemma 3.3.

Lemma 5.8 Under (5.12), there is a constant C = C(®) > 0 such that
ft _
1150 ) + 1l g3, ) < C- (5.27)
Proof First of all, by (5.4) and (5.23), we have
152 ons ) + 16 Lo, S 1- (5.28)
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Next we estimate each term on the right hand side of (5.5) by using Lemma 2.10.

e By (2.21), (2.4), and @ = a + &, we have

Vi <b = Vu < bllpeci-acp,, ) S lullg-ag, 1bllLrcep) S 1-

By (2.15) we have

||VM > b”LC}OC]_m(anrK) g ”u”L?f’CZ_E‘(pn)”b”L%OC*O‘(pK) S 1.

By (2.20) and (2.12) we have

I, Vi <1l 220, ) S Ntllg2oa g 1Bl cu( S 1.

By the growth of H and (5.23), we have
2
IH @, Vi)l oy, S 14 I1Vligee(, ) S 1
e BylLemma33withy =2 —2a, 8 € (a, 2 — 2&), we have
b o Vullseci-2ap,,) S lullgz-ay, o+ 145 lgcmin, ) + 1.

n—2k
n—«

and by interpolation inequality (2.5) with 6 = ,(5.28) and Young’s inequality,

ft < 10 . gyl-6
”M ”L;’-OC/S*l(pzn,K) ~ ||M ”L%O(:S—Za(pzn)”u ”Lg;oc2—a(pn+l()

5 5||"‘ﬁ”L?°C3—25‘(,02,7) + 1,

where we choose 8 such that 8 < (1 — @)(0 + 1) since « is small enough.

Combining the above calculations and by (2.11) with & = 2 and ¢ = 0o, we obtain
||uﬁ||S3T—za(p2n) S ellufll oo sy, + 1,

which in turn implies the desired estimate. O

Now we are in a position to give the proof of Theorem 5.1.

Proof of Theorem 5.1 (Existence) By (5.23) and (5.27), we obtain the uniform estimate
(5.9). Now by Ascoli-Arzela’s lemma, there are a subsequence still denoted by n and

(u, ) € S7%(py) x S7 2% (p2y)
such that for each y > 0,
Ry 3-2a—
(s ) = (@, uF)in ST (0yiy) X S7 7 (2049
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By (5.7) and taking weak limits for approximation equation (5.4) and (5.5) with (b, f)
being replaced by (b,, f,), one sees that (u, u?) solves (5.4) and (5.5) (see [18] for
more details).

(Uniqueness) Let u, i be two paracontrolled solutions to (5.2) in the sense of Theorem
5.1 starting from the same initial value. Let U := u — u. It is easy to see that U is a
paracontrolled solution to the following linear equation

QU =AU+B+R)-VU+K -U, U®©O) =0, (5.29)

where
1
R = / VoH(u,Vu +sV(u — u))ds,
0

1
K::f duH (1 + s(ii — u), Vii)ds.
0

Note that by (5.3) and u, it € S5 %(py),
IRI+ K| < py "+ lul + lii] + [Vid + |Vul < o, "

Then uniqueness follows from Theorem A.2. O

6 Applications

In this section we apply the main results in Sect. 5 to the KPZ type Eqgs. (1.3) and
(1.4).

6.1 KPZ type equations

Consider the following KPZ type equation:
ZLh= @00 +gh)+&, h(0)=ho (6.1)

where g € €' and £ is a space-time white noise on R x R on some stochastic
basis (2, .Z, (Z:);>0, P). Here the nonlinear term (3,4)°? = “(3,h)*> — 00" with
00 = lim,_, o ¢ forc; and the approximation &, being defined below.

For g = 0 Eq. (6.1) is the classical KPZ equation. The motivation for adding the
nonlinear term g comes from geometric stochastic heat equations with values in a
Riemannian manifold M studied in [4] via regularity structure theory and in [11, 49]
by Dirichlet form, which, in local coordinates, can be written as

du® = 0u” + T%, (w)duP du” + h® ) + of (W&, 6.2)
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where I" denotes the Christoffel symbols for the Levi-Civita connection and &; are i.i.d.
space-time white noises and o; are a collection of vector fields on the manifold. We
use Einstein’s convention of summation over repeated indices. The first three terms
in (6.2) correspond to Eells-Sampson’s harmoic map flow [14] and 2% corresponds to
the %VR with R the scalar curvature of M. For more background on (6.2) we refer to
[4] and [11, 49]. As (6.2) is driven by multiplicative noise, there are more than forty
terms required for renormalization and regularity structure theory is required to derive
local well-posedness of (6.2). It is also interesting to study (6.2) on the whole line (see
[11] for different long time behavior compared to the finite volume case). As directly
obtaining global well-posedness to Eq. (6.2) by PDE argument is out of reach by the
techniques so far, we study (6.1) and apply our main result.
We define the 2n periodization of £ by

En(¥) = £(W) where Y, (1, X) = @) Y Yt x +).

ye2nZ

Let ¢ € C2°(R) be even and such that ¢(0) = 1 and define the spatial regularization
of &,

£ = o '0)E = F N o) FE,).

The regularity of the space-time white noise £ is more rough than the coefficient f
given in (1.5). To apply Theorem 5.1 we need to introduce the following random
fields and use Da Prato-Debussche trick (cf. [13]) to decompose (6.1) into (1.5) and
the following equations, which is the usual way for the KPZ equation (cf. [23, 26,
45]):

an = gn LY = 5

277 = (0, Y — ¢! ,i”Y,}’ =20,Y,8,Y,
(6.3)

2v," =200 oy, 4 e 2vY =@y - Y

LY =3 Yy,

all with zero initial conditions except Y (0)(x) = Cx + B(x) and Y,(0) defined
similarly as &, with £ replaced by Cx + B (x), where B is a two sided Brownian motion,
which is independent of space-time white noise £, and C € R. The choice of the initial
condition is due to our interest in the KPZ equation starting from its invariant measure
(cf. [48, Section 1.4] and [16]). Here CZ and cy are renormalization constants. For
simplicity of notation we also set

X, =0,Y,, X=0Y, XO =370,

where (-) stands for the above trees. In the following we draw a table for the regularity
of each Y. For y > 0 the homogeneities a; € R are given by
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tl=| v |y Y y e | yv
= t-y[1-y] 3-v [2-v[2-¥
=l x | v axY’oaxY.,?YY{’ 2y
al=[-3-v[3-v] —v [-r |-

Lemma 6.1 With the above notations, there exist random distributions
Y = {YV,YY’,YYQ,YW,X, Y, oy oaxY,fY\Q’,ZYW}

v

n

and divergence constants ¢}, , ¢, such that for every t € ¥,

T € ﬂK>OS§lJ (Pi)s

for a; given in the above table. Moreover, for t, defined in (6.3) T, — Tt in
Lf’(Q,SO}r (p)) for every p € [1,00) and every k > 0. Furthermore, Y, — Y

1_
in LP(2, S y(,o1+,()f0r every p € [1, 00). Finally, there exist random distribution
V.#1(X) o X such that

sup VI (Xp) 0 Xy (1) = VIH(X) 0 X(D)|lc-v(p,y) — 0in LP(R).

0<s<t<T

Proof Most terms except £Y % L YW in (6.3) have been considered in [45, The-
orem 3.6]. These two terms can also been obtained by similar calculation as in [23,
Theorem 9.3] (see also [55, Section 3.3.1, Section A.2]). The last convergence result
for V.#!(X) o X(#) can be obtained similarly as in [45, Lemma C.1]. For reader’s
convenience we spell out more details for completeness and we follow the notation of
[23, Section 9].

Let W be the space-time white noise in Fourier space. We write st’ (X))o X, (1)
as

VI (Xn) 0 Xu(t) = f Mo (ky ko) HY (k1)

t
x f do H;—o (k2) Hy _, (k2) W (dn1) W (dnp),

with H, (k) = ike 1,20, H' (k) = Hi()@n™" k), mi = (si. ki) 5= = si,k—j =
ki, dn;i = dsidk;, kjio) = ki + ko, Yokt ko) = 37, ;<1 0i(k1)0 (ko) for 6; being
the dyadic partition of unity. By Wiener chaos decomposition the term in the zeroth
order chaos is given by

t
/ HY ) [ doHy o (—k)H2, (~k)dns.
s
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which is zero by using the fact that the integrand is antisymmetric under the change
of variables k; — —kj. For the second order chaos we calculate for0 <s <r <t¢

E|Ay (VI (Xy) 0 Xy — VI (X)) 0 X))

< f 16, (kpiap) P Wo ke, k2)? [ Hy—g, (k1) [

r 2
/ do Hy o (k) B2 (k)| s

S
S —slf / X 10, (kpap Pwo (kr, k) (ko] + 1) T2 dk ko
E

2
< |r—s|f279%,

where the implicit constant is independent of n. The rest of the proof follows by
standard arguments as in [23]. |

We make the following decomposition
h=Y+Y" +Y" +7,
where /1 satisfies the following equation

LR =20 KX+ X" + X))+ 0,1 + zy% +2vY

X2 4oxT XY 4 2XXT —XoX T
%

6.4)
+gY+Y" +Y" +h),
h(0) = ho — Y (0).
Here we use (6.3).
Using Lemma 6.1, we obtain the following lemma.

Lemma 6.2 There exists a measurable set Qo with P(Q20) = 1 such that for every
Kk >0,y €0 1) andw e Q

bi=2X+ X" +X7) e LPC 1 (po),

= 27 L v kT i axY kY faxx® —xexT) e LEC 377 (py).

Proof By Lemma 2.10 and (2.11) we have that

<X,

1x )2 L
C277(pej2)

Il i
C277(pe)

XX e S 1K Uty X ey

and

XXT CXoX' =X X' X <XV,
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to have
AG AG Y
XX —XoX 1 <X 1 X 1 .
| ”C*Ty(px) ~ “C*TV(pK/z) | Ilcry(pk/z)
Other terms follows directly from Lemma 6.1. O

Asaresulth satisfies (1.5) with b, f given above. We say that  is a paracontrolled
solution to (6.1) if & is a paracontrolled solution to (6.4) in the sense of (5.4) and (5.5).
Since y can be arbitrary small, we apply Theorem 5.1 to obtain the following result.

Theorem 6.3 Suppose g € €. For every initial condition h(0) € Crtety (pss) where
0<e<l,y € (0, ‘—11),0 < § := 40k < 1, there exists a unique paracontrolled
solution

221/

-~ 314
(h, h*) € (S} " (o) "L (025), S 2V(pzn) NLF (025+«))

to (6.4), where
2 * 4+ 80k) < n < }t.

Proof In the following we check other conditions of Theorem 5.1. The condition for
H = H_. + H; is satisfied easily by Lemma 6.1 where H, = 0% H, = g¥Y +YV +

Y Y + Q). In the following we prove (b, f) € ]B%"; (p«)- The approximation {(by,, fn)}n
for (b, f) is given as in Lemma 6.2 with the corresponding tree t replaced by 7, in
Lemma 6.1. In the following we prove that for every k > 0

sup(fz (o) + AT (p)) < 00, (6.5)

with Z (p) and Ab” o (pi)) defined in (2.25) and (2.24), respectively. In the following

we omlt the subscrlpt n for simplicity and all the following bounds are uniform in n
and A. Note that

1
JVAB) 0b = VAKX + X +X 7)o (X4 X7 +X7).
By the last result in Lemma 6.1 and Lemma 2.16 we deduce the first term

IVAX o XllLzec—vp) S 1-

Other terms on the right hand side can be calculated by Lemma 2.10 and (2.11) to
have

IVAKXT +X7) 0 bllizcr (pme)
< (1Y 1l ot \ ) <
S (7 e + 170 o, NP g yor, ) S
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and

IVAX 0 (X7 + X ) l1socr )

<) U7 pseerr o + 177

1 3., S
LFCI 7 (po) LFCT 7 (po)

On the other hand, note that
VI fob=VIflob+VI((X' <X)o2(X+X" +X7),
with fi = f — X" < X € LC2(p,). By Lemma 2.10 and (2.11) we know

IVILfioblliLec—(pmo S ||f1IIL;ocfZV(pK)IIbIIL%OC,%,V(pK) S

and

VAKX <X) 0 (X7 + X ) e

< 1x7y 1X|

X e+ 1X 7 )<L

1 1 1
LPC2Z7 (pes2) LPC™ 27 (pep2 LPC27 (p)
It remains to consider the term V.%, (XY’ < X) o X and we use the commutator

introduced in Lemma 2.11 and Lemma 2.12 to have

VIXT <X)oX = (V.5 X <]X) 0 X
+eom(X? . V.I5X. X) + X (V.IX o X).

By Lemmas 2.12, 2.11 and Lemma 6.1 we have

VAKX < X) 0 Xllpscrip S 1

where we used time regularity of X A , which follows from (2.4). Combining all the
above estimates, we deduce (6.5) follows. Furthermore, we know that the convergence
in Definition 2.14 also holds by Lemma 6.1 and Lemma 2.16, which gives that (b, f) €
BY (o«). Then the result follows from Theorem 5.1. O

Remark 6.4 1. The exponent n of the weight could be arbitrarily small since « is
arbitrarily small. This result improves the weight for the solution to the KPZ
equation obtained in [45].

2. In the finite volume case, the initial value ¢ could be more rough, and the fixed
point argument allows ¢ € U,~oC? (see [26]). In the infinite volume case, the
singularity near t = 0 seems to break the energy estimate in Lemma 4.8. We shall
study this problem in the future.
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3. We may also consider the following more general singular SPDEs
oth = th + 19ch)? + g(h) + K (h)dch + &, (6.6)
forg, K € %!. We have the decomposition
h=Y+Y" +Y7 4,
with & satisfying

W =b-Vi+ f+ @) +e¥ +Y +Y +7)

AG G

+KY+Y +Y )@k + X+ X +X7), 6.7)

forb, f givenin Lemma 6.2. Since K(Y +YV +Y v +mX requires further renor-
malization and in this paper we mainly concentrate on the singular renormalized
terms from |, /|2, we consider the following simplified equation

IR =b-Vhi+ f+ @)’ +e¥ +Y" 477 +7)

RO 4T Y M@k + X7, 6.8)

where K,g € € 1" and the most singular terms coming from (E)xh)2 in (6.6) have
been included. We can apply Theorem 5.1 to obtain the same global well-posedness
for Eq. (6.8).

4. A challenging question is whether PDE arguments can be used to deduce global
well-posedness of vector-valued generalized KPZ equations since it is not clear
whether the maximum principle can be extended to cover such a situation. We
leave this for our future work.

6.2 Modified KPZ equations

In this subsection we consider the following modified KPZ equation:
Lh = g(x)@x)* + K (x)d:h + £, h(0) = ho (6.9)

where g, K € ¢! and & is a space-time white noise on R* x R on some stochastic
basis (2, .#, (%)r>0, P). This model can be derived similarly like KPZ equation
as surface growth model where the growth rate also depending on position x (c.f.
[36]). We emphasize that for this model we cannot use Cole-Hopf’s transformation to
directly obtain the well-posedness since for w = 8" there exists some new nonlinear
terms in the equation of w which cannot be cancelled.

Here the nonlinear term requires renormalization and we define the spatial regu-
larization of £ as in Sect. 6.1. To apply Theorem 5.1 we also introduce the following
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random fields as in Sect. 6.1 and use Da Prato-Debussche trick to decompose (6.9)
into (1.5) and the following equations:

gYn = Sn LY = é;-'

LYY = gl(0:Y)? = ¢} ] LV = g[20,Y,0, 7 ]

%, (6.10)

LT, = g20, 7 00:Yy + g%l 1 LTY = gl@:7")? — g% |
LY = 3V,

all with zero initial conditions except Y (0)(x) = B(x)+Cux, C € R, and Y}, (0) defined
similarly as &, with & replaced by B(x)+ Cx, where B is a two sided Brownian motion,

\

,, arerenormalization

which is independent of space-time white noise £. Here ¢}, and ¢
constants as in (6.3). We also set

X, =0,Y,, X=0Y, XO=037Y",

where (-) stands for the above tree. The regularity and the homogeneities of each Y )
are the same as the corresponding ¥ ) if the trees in the superscript are the same.

Lemma 6.5 With the above notations, there exist random distributions
TR AR AR S RN N2 A2 4

and divergence constants c,, cnw such that for every t € ¥/,

TE ﬂK>OS(;"T (0c),

for a; given in the above table. Moreover, for t, defined in (6.10) t, — 7T in
LP(S2, SOT“ (pi)) for every p € [1, 00) and every k > Q.

Proof If terms in the bracket of (6.10) converge in the corresponding space as n — 00,
we can obtain results easily by Schauder estimate. However, [ (0 Y,)? — c;’ ] does not
converge in spatial distribution space and we have to do probabilistic calculation again.
We follow the method and notation in [15]. Let K; ((y) = 2/K (27 (x — y)) be the
kernel associated with the j-th Littlewood-Paley block A ; on R. For a function f we
write A f(x) = f K; x(y) f(y)dy. We also use P to denote the heat kernel on R x R,

e _
ie. P(t,x) = (4mt)” 2e 4 l;>¢. For fixed ¢ = (¢, x) and for j > —1 define the
measure

1) = [ KystoP@ =s.x =y sod
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. 1
with ¢ = (s, y). For & = (si, xi), set [{1 — &2 := |s1 — 52]2 + |x1 — x2|. Then by
similar calculation as in [27, Section 10] and using [27, Lemma 10.14] we know

E|A; Y, |2 S/Ié“l — 1171 (e g (g (6.11)

By [15, (87)] we find

2—(-¢/2)j
(%= >l + | = si[ 12 270"

‘/Kj,x(X)P(t—sl,x—x])dx‘ <

which combined with (6.11) and [27, Lemma 10.14] implies that E|A;YY |* could
be controlled by 2=~/ for & > 0 small enough. Then the desired estimate for ¥,
follows by standard techniques (c.f. [23, Lemma 9.8]).

We also give more details for the most complicated term 9, Y:f’ 00,Y, + gzcn‘O’ (see
also [55, Section 3.3.1] for the calculation of a similar term). For fixed { = (¢, x) €
R x R3 and q € Z,q > —1, define the measure

@ dey) = [ Kyst 3 KicK P =51,y = m)dxdy]

li—jl<l1
3(t — 52)15,>0d81d22,

with & = (si, x;)) €e R xR fori =1, 2. i,(d¢y, dgp) is defined similarly with 9, P
replaced 0, P * 0y P

We decompose 9, )?,f’ 0 d Y, + g%c, U L+ D+ Iy with I; in the space of i-th
Wiener chaos. Then by similar calulatlon asin [27, Section 10] and using [27, Lemma
10.14] we know

ElA L / 161 — /17 18 — &1 g (dgr, doo)llig (def, dg3)l,

which by [15, Lemma A.19]3 can be contolled by 29¢ for ¢ > 0 small. For I, we have
the decomposition

L=2v"+7) +21] Z[zj,

where we refer to [27, Section 10], [23, Section 9] for the meaning of the graph. We
use [27, Lemmas 10.14, 10.16] to have

E|Ag b1l < / 161 — 17 816 — &1 Mg (dr, deo) g (g1, dg)l,

3 In [15] the result is proved for d = 3, which could be extended to d = 1 by exactly the same argument.
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and use [27, Lemma 10.16] to have

E|Aq122|25/ 161 —¢{ 17181 — 71 — 17 T g (der, o) llig (def, dg3),

and use [27, Lemma 10.14, (10.37 a)] to have

E|Aybs)* < / 151 = (172181 — Ll 5 1g] — &1 % g (dr, &) 1ig (dg], dgs)
+f|;1 — 1726 = ol Ne = &1 g (der, dea) g (dgf, g3

Then by [15, Lemma A.19] ]ElAq12i|2, i = 1,2, 3, can be contolled by 2%¢ for ¢ > 0
small.

Different from the classical case in Sect. 6.1, I contains g. We use g € € to have

lg(x) — g(»)| < |x — y|. Then we can shift g to the vertex x, and use [27, Lemmas
10.14, 10.16] to obtain

n-gel 151+ 3 [ | [ Kiwwipe = sy -aa

li—jl=<1
8(1 — $2)|Kjx(x2)||g%(x2) — g (0)1¢1 — &1~ dg1de.

By [15, Lemma A.16], we find for § € (0, 1)
|/ Kix (Pt = s1,y —x0)dyl S 2701 — 11" + e — D727,

which combined with |g2(x2) — g2(x)| < |x —x1| 4 |x2 — x| and [15, Lemma A.16],
[27, Lemmas 10.14] implies that |Io — g2c | < 1.
Then the required regularity of .ZY % follows by standard argument (c.f. [23]). O

We make the following decomposition
h=Y+7" +7¢ +7,
where /1 satisfies the following equation

Lh =280 (X + X" + X))+ g(@:)? + .,%YYQ + 7Y

oK) 420X XY 420(XXT — X0 X7 6.1
FROX + X + X0 + 0.7,

R(0) = ho — Y (0).

Using Lemma 6.5, we obtain the following lemma.
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Lemma 6.6 There exists a measurable set Qo with P(Q20) = 1 such that for every
k>0, >0andw e Q

b:=2¢g(X+X" + )_(Y’) +K € L?C_%_y(pk),

G G

Fim 2T 1 27 X% 420 %Y R 420X KT — x 0 %Y

FRKX 4+ X+ X7 e LPC T (po).

Proof The proof follows from the proof of Lemma 6.2, Lemma 6.5 and g, K € ¢'.o

Asaresulth satisfies (1.5) with b, f given above. We say that h is a paracontrolled
solution to (6.9) if & is a paracontrolled solution to (6.12) in the sense of (5.4) and
(5.9).

Since y can be arbitrarily small, we apply Theorem 5.1 to obtain the following
result.

Theorem 6.7 Let g, K € €. For every initial condition h(0) € Citety (pes) wWhere
0<e<l,y e (0, ‘—11),0 < § := 40k < 1, there exists a unique paracontrolled
solution

~ o~ 3_ /4 _n /4
(7% e S27° 7 (py) NLE (025), S5 7 (pay) NLEF (025.104))

to (6.12), where

2 * 4+ 80k) < n < }‘.
Proof In the following we check other conditions of Theorem 5.1. The condition for
H is satisfied easily. In the following we prove (b, f) € B (o). The approximation
{(bn, fn)}n for (b, f) is given as in Lemma 6.6 with the corresponding tree 7 replaced

by 7, in Lemma 6.5. In the following we prove that for every k > 0

Sup(£ (o) + A7 L (pe)) < o0, (6.13)
n

with €2 (o, ) and A7 7" (p,)) defined in (2.25) and (2.24), respectively. In the following

T,00
we omit the subscript n for simplicity and all the following bounds are uniform in n

and A. We first consider

VI b)ob=V52eX+X +X)4+K)o2e(X + X" +X7)+K].
(6.14)

For the first term V.7, (g X) o [gX] we use Lemma 2.17 and Lemma 6.1 to have

IV2.(gX) o (8X)lILec— (pp) S 1

@ Springer



Singular HJB equations with applications to KPZ 861

Other terms on the right hand side of (6.14) can be calculated by Lemma 2.10 and
(2.11):

IV5.2g(X" +X7) 4+ K) 0 bll 1w ()
+ Db

N ’

<P N ooc y S
S UY i oo 1Y 7 LPCTI (o)

00 3*}/
LFEC277 (py)
and

IVA.(8X) 0 Qg(X" + X ) + K)ll3ocr (om0

SIY +D 31

~

P v + 177

00 l—l/ 00 Q—V
LPC277 (pe LFPC2 7 (o)

On the other hand, we know
VA fob=VIfiob+V.502eX" <X)+KX)oQe(X+ X" +X7)+K),

with fi = f —g(X? <X)— KX € L$C~% (p,). By Lemma 2.10 and (2.11) we
know

19511 0 bl vipa S I fillie2r oo 0]ty ST

and
V528X < X)+ KX)o 2gX" +28X 7 + K)ll3oc—7 (pme)
X
WXL v,

+1) <1

a4
< (1 X
SOHIX N o,

% (I1X7 17 ooc X
X e o0 + XN b,

We use Lemma 2.17 and Lemma 6.1 to have

IVILKX) 0 (X))l Lec— (o) S 1-

It remains to consider the term V., (g(X v < X)) o(gX) and we use the commutator
introduced in Lemma 2.11 and Lemma 2.12 to have

VA((X" < X))o (gX)
= VA = (X < X))o (@X) + VAi(g < (X7 < X))o (gX)
= VA = (X < X))o (@X)+ (VA g <IXT < X))o (gX)
+ |8 < (V5. X7 <100 (6X) + com(g, X < VA(X). gX)
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+5(1X" < V40010 (8X)).
We have further decomposition for the last term

X" < V.%(X)] 0 (gX)
— com(X", V.7, (X), gX) + X7 (V.75 (X) 0 (gX))
com(XT V.7, (X). gX) + X (VA (X) 0 (g = X))

+gX (VI (X) 0 X) + X T com(g. X, V.95(X)).
By Lemmas 2.12, 2.11 and Lemma 6.1

IVAGEXT < X) 0 (X cr (o S L

where we used time regularity of X v , which follows from (2.4). Combining all the
above estimates, we deduce that (6.13) follows. Furthermore, we know that the con-
vergence in Definition 2.14 also holds by using Lemma 6.1 and Lemma 2.16, which
gives that (b, f) € IB%"T‘ (px). Then the result follows from Theorem 5.1. O
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Appendix A: Uniqueness of paracontrolled solutions

In this subsection we use Hairer and Labbé’s argument [30] to show the uniqueness
of paracontrolled solutions. For this aim, we use the following time-dependent expo-
nential weight: for £ € (0, 1),

ef(x) ;== exp(—(1 + 1) (x)Y), t > 0, x e R%.
We can similarly define the Holder space with weight e’ (see [45]). For instance,
I fllsecaety = sup [1f (s ) llcagetys
FPCeD o cee)

@ Springer



Singular HJB equations with applications to KPZ 863

and for o € (0, 1),

”f(t) - f(s)”Loo(el )
If ety = sup [l f()efllL= + sup y
CrLED 0<t<T ! 0<s#1<T lt —s|®

In particular, for o € (0, 2), we also set
87 = I flpgrcecet + 1 o o ety

By [43, Lemma 2.10], for any T > 0, thereis a C = C(T, £, d) > 0 such that for all
s,t €[0,T]and j > —1,

_92j
AP flloocety S €7 NG £l pqet- (A.1)

Moreover, Lemmas 2.8, 2.10, 2.11 and 2.12 still hold for exponential weight ef (see
[45]). The following result corresponds to Lemma 2.9.

Lemma A.1 Let «, £ € (0, 1), k € (0, (1 = $)O). Forany q € (=g73=77 >l and
T > 0, there is a constant C = C(T,d, o, ¢, 0, k, q) > 0 such that

q 1

1Zf 52 2y Scllfllgac-ey ety
S?r () T (pce)

Proof First of all we have the following simple observation:
ef(x) S () eb) /|t — st 0<s <1 < o0 (A.2)

Let % —l—é = landr € (0, T]. By (A.1) and Holder’s inequality, we have for j > —1,

t
_22j(t—
1878 F Ol mety S fo I INTIO TR

t =22 (1—5)
5/0 mHAjf(S)”LOO(pKef)dS

) t e—p22-j (t—s) 1/p
aj -
S;Z A |t —Slpk/e ds ”f”L?C_"‘(p,(e()

(22 gy
ST fll e ety
which in turn gives that
<
1 71 g% oy S I g cootpuery (A3)
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On the other hand, for 0 < #; < t, < T, we have

17 £2) = £l ey = IPomsy = DI F@) et

l

4]
/ Po_s f(5)ds
n

For I1, by (2.10) and (A.3) we have

K

For I, by (2.8), (A.2) and Holder’s inequality, we have

1) o
IES / (n—5)"2 IIf(S)IIC_a(efz)ds
1

t2 o K
< / (12 = )3 F L F ) gmo ety ds
4]

a_1_«

17
S @@= Tl cager

Combining the above estimates, we obtain the desired estimate.

Now we consider the following linear equation:
Lu=(b+b)-Vu+hu, u)=0,
where b € N7-0B% (0,) and b,h e Nr=>0LF (py). Let
(u, u®) € N7=0ST % (py) X S77%(p2y)
be the paracontrolled solution of PDE (A.4). That is,
u=Vu< Ib+ut,

with u® solving the following PDE in weak sense

LUt =Vu<b—Vu<b+Vu=b+boVu

+b-Vu+hu—[%, Vu <].9b,

where

boVu=bo(V’u < .9b) + (boV.Zb) - Vu + com
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+ com + b o VuF, (A7)

and

comj :=boV[Vu < b —Vu < ¥b]
and
com := com(Vu, V.Zb, b).
Theorem A.2 Let £ € (0, 1) and x € (0, 2295, € (0, '525). Suppose that

b € ﬂT>O]Bg%~(,OK), l;’ h € mT>OH-‘?"O(IOT))’
Be(a, 220~ %)A(—2), ye (22— %)

The unique paracontrolled solution to PDE (A.4) in the sense of Definition 3.1 with
(u, u®) € ST (%) x LPCPH (e
is zero.

Proof Let T > 0. Choose g large enough such that

a<y§2—2a—§—‘%, a<ﬂ§(2—2a—627—67’()/\(1—%).

First of all, by Lemmas A.1 and 2.10, we have
lleell 52 _ac
Si 70 et
S|Ib<Vu+b>=Vu+bo V””LqTC*“(sze‘f) +b-Vu+ h”||LqTL°O(p,1e‘3)
,S ||b||L;°(j—a(pK)||VM||L;L00(ez) + b o VMHL‘;Cfa(pZKel)

1Bl o V2 19 o ety F L5 o 28] 11 o ety

and by the corresponding version of Lemma 2.12 for exponential weight e’ (see [45,
Lemma 2.10])),

ft 00 < —_ —_ K
||u ”LT Ch+(el) S ”VM <b Vu<b+Vu>b [92”, Vu «]fb”ll?‘ocl—mf%f%(m(ez)

+ 160 Vull g c1-2e ety + Ib - Vu+ hullLee ety

S; e

1Bl (o) IVl ety + 10 o Nt ety

<
~ ||b o Vulngcl—Za(pzke() + ”M” Zv—a 2 4

q

< lu 2_4 + |16 o Vul|; 4 ci-2 .
Sl g+ 160 Vulig o

@ Springer



866 X.Zhang et al.

Moreover, by Lemma 3.3 with (p, p) = (o, ef),
1B 0 Vi)l c1-2u ety S Iellgye ey + 11 (Dl et
Combining the above three estimates, we obtain

gy ety + 1° o ety

,S ||V“||L‘;L00(el) + ||u||L‘;L00(eZ) +bo V“”L‘;Cl%a(pzkeé)

T . l/q
5(/0 (1 g+ 1O, f))dr) ,

which implies # = 0 by Gronwall’s inequality. O

Appendix B: Exponential moment estimates for SDEs
In this section we consider the following SDE:
dX; =b(t, X;)dt + o (¢, X))dW;, Xo = x.

We have the following exponential moment estimates for X;.

LemmaB.1 Suppose that o is bounded and b is linear growth. Then for any a € [0, 2)
and T,y > 0, there is a constant C > 0 such that for all x € R,

EeY SUPrefo,r1(X1)* =< ce™

Proof Let 8 € (a, 2). Recall (x)# = (1 4 |x|?)#/2. By It6’s formula, we have

t t
M, =e(X)P = (x)f + f nsds + / EdW,.
0 0
where

nsi=¢€ _“ﬂ[X b(s, X5) +tr(oo™) (s, X )/2]( X,)P2
+ ﬂ(% — De Mo (s, Xo) X |2 (Xs)P™4 — ae ™ (X,)P,

and
& 1= B0 (s, X)X (X) P2,
By the linear growth of b and the boundedness of o, there is a A large enough so that

ns <0
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and
22
|&* < Ce™™ (X)*PD <cmy 7.
Now by [33, Theorem 1.1], we obtain the desired estimate. O
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