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Abstract
We prove that Ising models on the hypercube with general quadratic interactions
satisfy a Poincaré inequality with respect to the natural Dirichlet form corresponding
to Glauber dynamics, as soon as the operator norm of the interaction matrix is smaller
than 1. The inequality implies a control on the mixing time of the Glauber dynamics.
Our techniques rely on a localization procedure which establishes a structural result,
stating that Ising measures may be decomposed into a mixture of measures with
quadratic potentials of rank one, and provides a framework for proving concentration
bounds for high temperature Ising models.

Mathematics Subject Classification 60J10 · 60J27
1 Introduction

In this paper we study the high temperature behavior of the Sherrington–Kirkpatrick
model andmore general Isingmodels, especially with regards tomixing of theGlauber
dynamics (i.e. Gibbs sampling) chain.More precisely, ifμ is the uniformmeasure over
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the hypercube {± 1}n , we consider a general Ising model of the form

dν0

dμ
(x) = 1

Z
exp

(
1

2
〈x, J x〉 + 〈h, x〉

)
(1)

for an arbitrary symmetric quadratic interaction matrix J and external field h ∈ R
n ,

where Z , the partition function, is a normalization constant. Because the evaluation of
the partition function Z is a difficult computational task, in practice samples from (1)
are generally constructed by simulating aMarkov chain such as theGlauber dynamics,
where at each step (in discrete time) a site i is chosen uniformly at random from [n]
and the random spin Xi is resampled from its conditional law given X∼i . (Here and
throughout, we write x∼i for the collections {x j } j �=i , with similar notation for X∼i .)

The behavior of Glauber dynamics in the Ising model is a classical and well-
studied topic with rich connections to structural properties of the Gibbs measure ν and
concentration ofmeasure. As far as sufficient conditions for fast mixing are concerned,
one of the most general and well-known situations where rapid mixing is guaranteed
is under Dobrushin’s uniqueness condition [7], which requires that ‖J‖∞→∞ < 1
or equivalently that

∑
j |Ji j | < 1 for all rows i . Unfortunately, even though there

exist situations where this bound is tight (the mean-field/Curie–Weiss model), in other
situations of interest this bound is far from tight.

One notable model where Dobrushin’s condition is not satisfied at interesting sit-
uations is the celebrated Sherrington–Kirkpatrick (SK) model from spin glass theory
[21]. In the SK model, J is given by a rescaled matrix from the Gaussian Orthog-
onal Ensemble so that J is symmetric with off-diagonal entries Ji j ∼ N (0, β2/n),
where β > 0 is a parameter specifying the inverse temperature of the model. Here the
expected �1 norm of a row of J is on the order of β

√
n, so that Dobrushin’s uniqueness

condition only holds under the restrictive condition β = O(1/
√
n). Nevertheless, it

is expected that in reality the Glauber dynamics are actually fast mixing for all suf-
ficiently small constant β = O(1) (i.e. not shrinking with n). We indeed prove this
below, see Theorem 11 and Sect. 5.

In the classical case of ferromagnetic Ising models on a lattice, it is known that
there are close connections between rapid mixing of the Glauber dynamics and func-
tional inequalities such as the log-Sobolev inequality. In a recent breakthrough result,
Bauerschmidt andBodineau [3] proved a form of the log-Sobolev inequality for the SK
model at sufficiently high temperature (β < 0.25). More precisely, they proved that if
J is a positive semidefinite matrix of operator norm ‖J‖OP , then for any probability
measure ρ on {±1}n ,

D(ρ||ν0) � 1

1 − ‖J‖OP

n∑
i=1

Eν

∣∣∣∣∣∂i
√

dρ

dν0
(X)

∣∣∣∣∣
2

(2)

for anymodel of the form (1), where D(ρ||ν0) = Eρ log
dρ
dν0

is the relative entropy and
∂i f (x) = f (x∼i , xi = 1)− f (x∼i , xi = −1) is the discrete gradient on the hypercube.
By a standard argument (see e.g. [15,23]), this implies the following Poincaré-type
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inequality

Var(ϕ) � 1

1 − ‖J‖OP

n∑
i=1

Eν0 |∂iϕ(X)|2 (3)

as well. Their proof is based upon an explicit decomposition of the measure ν0 into a
mixture of product measures.

However, in the case of the SK model the estimates (2) and (3) are not known to
imply polynomial time bounds on the mixing time (or relaxation time) of Glauber
dynamics. The reason is a subtle discrepancy between different notions of discrete
gradients. A simple example which illustrates this is the uniform measure μeven on
the set of vertices with even parity, {(x1, . . . , xn ∈ {±1}n;∏

i xi = 1}. It is not hard
to check that the right hand side of (3) remains unchanged if the measure μeven is
replaced by the uniform measure μ, therefore, if we apply the law of total variance,
we see that μeven satisfies a Poincaré-type inequality of this form. On the other hand,
the Glauber dynamics with respect to this measure is trapped at one vertex.

For the Glauber dynamics, having spectral gap γ (or equivalently, relaxation time
1/γ ) is equivalent to the following Poincaré inequality (see e.g. [23]):

Var(ϕ) ≤ 1

γ
Eν0(ϕ, ϕ) := 1

γ
Eν0

n∑
i=1

(Eν0 [ϕ(X)|X∼i ] − ϕ(X))2 (4)

where the rhs Eν0(ϕ, ϕ) here is the Dirichlet form corresponding to the continuous
time Glauber dynamics. For distributions with full support on the hypercube {±1}n ,
the right hand side of (3) can be realized as the Dirichlet form for a certain dynam-
ics in continuous time, see [17, Equation (3.6)], but these dynamics can have a rate
that is super-polynomial (see discussion below). Similarly, the canonical log-Sobolev
inequality for the Glauber semigroup in the sense of Gross [10], which implies (4) as
well as rapid mixing, replaces the sum on right hand side of (2) by the Dirichlet form

Eν0

(√
dρ
dν0

,

√
dρ
dν0

)
. For some models, the discrepancy between the rhs of (3) and (4)

is at most a constant factor and so the difference between the Dirichlet form of the
Glauber dynamics and the �2-norm of the usual discrete gradient can be disregarded.

Unfortunately, for the SK model it turns out the right hand side of (3) can be size
e	(β

√
n) larger than the right hand side of (4) in some simple examples. (We give such

an example in “Appendix A”.) On the other hand, it is not hard to show that in the
reverse direction, the rhs of (4) is never bigger than (3) by more than a constant factor,
so that (4) is a stronger estimate. This inequivalence of the two Dirichlet forms reflects
the fact that the rate of the continuous-time dynamics corresponding to (3) can be as
large as e	(β

√
n).

The main result of this paper is a proof of the Poincaré inequality (4) with γ =
1 − ‖J‖OP (for J psd, as before), from which we obtain polynomial bounds on the
mixing time of the Glauber dynamics. It is unclear how to obtain such a result from the
product measure decomposition used to prove (2), so a key technical idea in our work
is the construction of a new decomposition of the measure ν as a mixture of rank-one
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Ising models (i.e. where J has rank one). This can be thought of as a natural analogue
of the needle decomposition used in convex geometry [12]. A structural theorem of
this form, however not used directly in our result, is formulated in Sect. 4 below. The
needle decomposition itself is generated by a natural stochastic process (a version of
stochastic localization [8]) and the smooth nature of the decomposition allows us to
explicitly analyze the evolution of the Dirichlet form along this process, allowing us
to prove the result.

In the next section, we formulate and prove our basic Poincaré inequality, Theorem
1. The related “Appendix A” discusses the inequivalence between the Dirichlet forms
Eν(ϕ, ϕ) and E|∇ϕ(X)|2. Sect. 3 is devoted to the estimate on mixing time, Theorem
11. In Sect. 4 we outline a structural theorem in the spirit of the needle-decompositions
mentioned above. Finally, Sect. 5 is devoted to examples.

2 Poincaré inequality

Recall that μ denotes the uniform measure on {± 1}n , and that for a matrix J and a
vector h, the Ising measure is defined as

dν0(x) = 1

Z
e
1
2 〈x,J x〉+〈h,x〉dμ. (5)

We can clearly assume without loss of generality that J is symmetric and positive
definite, which we do henceforth. For anymeasure ν on {± 1}n , we define theDirichlet
form

Eν(ϕ, ϕ) = Eν

n∑
i=1

(Eν[ϕ(X) | X∼i ] − ϕ(X))2, (6)

where the associated generator of the Glauber dynamics is

(Lνϕ)(x) =
n∑

i=1

(
Eν[ϕ(X) | X∼i = x∼i ] − ϕ(x)

)
.

The main result of this section is a dimension-free Poincaré inequality for ν0 under
the Glauber dynamics, provided that ‖J‖OP < 1.

Theorem 1 For ν0 as in (5) with 0 
 J ≺ Id and any test function ϕ : {±1}n → R,
we have the following inequality:

(1 − ‖J‖OP )Varν0(ϕ(X)) ≤ Eν0(ϕ, ϕ).

Proof The proof proceeds by a dynamical approach. It is clearly enough to consider ϕ

with Lipshitz norm 1 and ϕ(1) = ϕ((1, . . . , 1)) = 0, which implies that ‖ϕ‖∞ ≤ n.
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A spectral condition for spectral gap: fast mixing in… 1039

We will introduce a path of measures

dνt (x) = ect+
1
2 〈x,Jt x〉+〈qt+h,x〉dμ(x) =: Ft (x)dν0(x), (7)

where Jt , qt are processes, adapted to the filtration Ft generated by an n-dimensional
Brownian motion Wt , and ct is a normalization constant. For νt as in (7), introduce
the barycenter

at :=
∫

x dνt (x) (8)

and the test-function adjusted barycenter

Vt :=
∫

ϕ(x)(x − at ) dνt (x). (9)

To define the process Ft (x), we will first need the following technical result. Define
byH the set of all linear subspaces of Rn .

Lemma 2 For every δ > 0, there exists a function C : Rn ×H → Mn×n which attains
the following properties. For any linear subspace H ⊂ R

n,

1. For any v the matrix C(v, H) is positive semidefinite and Im(C(v, H)) ⊆ H.
2. The map v �→ C(v, H) is Lipschitz continuous.
3. If dim(H) = d > 1 then Tr(C(v, H)) ≥ d − 1.
4. For any v we have

|C(v, H)v| ≤ δ (10)

If the continuity assumption is ignored, then one may simple take C(v, H) as the
orthogonal projection onto H ∩ v⊥, and for the sake on intuition, the reader may
think of C this way. Otherwise, the actual construction (and proof of the lemma) is
postponed to Sect. 2.1.

Fix δ � 1 (possibly depending on n), and let C be the function provided by
the above lemma. For a symmetric matrix J , introduce the subspace HJ spanned
by the eigenvectors of J corresponding to positive eigenvalues (when J is positive
semidefinite, this is Im(J )).

We are finally ready to introduce the dynamics for Ft , as the solution to the system
of equations

d Jt
dt

= − C(Vt , HJt )
2, J0 = J (11)

dFt (x) = Ft (x)〈C(Vt , HJt )(x − at ), dWt 〉, F0(x) = 1,∀x ∈ {±1}n, (12)

see (8) and (9) for the definitions of at , Vt . Note that the system in (11)–(12) is
a stochastic differential equation of dimension 2n + n(n + 1)/2. The existence and
uniqueness of solutions to this system follow from the next lemma, whose proof is also
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postponed to Sect. 2.1 below. In the proof of existence, we also show that Jt remains
positive semidefinite, which essentially follows from the fact Im(C(Vt , HJt )) ⊆ HJt .

Lemma 3 For any positive semidefinite matrix J , the system of stochastic differential
equations (11)–(12) admits a unique strong solution. Furthermore, the matrix Jt is
positive semidefinite for all times t ≥ 0, almost surely.

We continue with the Proof of Theorem 1. Define now Ht = HJt and Ct =
C(Vt , Ht ). We start by verifying that the measure νt with density dνt (x) =
Ft (x)dν0(x) is indeed a probability measure on {±1}n . The nonnegativity of Ft (x) is
easily verified (it follows from (17) below) so it remains to check that the total mass
of νt is 1. Note that, due to (8) and (12), we have for the total mass

zt :=
∑

x∈{±1}n
Ft (x)ν0(x) (13)

that

dzt =
∑

x∈{±1}n
Ft (x)〈Ct (x − at ), dWt 〉ν0(x) = 〈Ct (at − ztat ), dWt 〉

and because z0 = 1, by uniqueness of the solution we have zt = 1 for all time, and
hence νt is a probability measure as claimed.

Define now

Mt =
∫

ϕ(x)Ft (x) dν.

We have from (12) that

dMt =
〈∫

ϕ(x)Ct (x − at ) dνt , dWt

〉
= 〈CtVt , dWt 〉 , (14)

where Vt := ∫
ϕ(x)(x − at )dνt . Note that

|d[M]t/dt | = |CtVt |2 ≤ δ2, almost surely, (15)

see (10).
Define the stopping time T = min{t : rank(Jt ) ≤ 1} and let Yt := Varνt [ϕ]. Then

dYt = d

(∫
ϕ2 dνt − M2

t

)
= − d[M]t + martingale.

Consequently, we get from (15) that

|EYT − Y0| = |EYT − Varν0 [ϕ]| ≤ δ2ET . (16)

123



A spectral condition for spectral gap: fast mixing in… 1041

Next, Ito’s formula gives d log Ft (x) = 〈Ct (x − at ), dWt 〉 − (1/2)|Ct (x − at )|2dt so
by integrating, we have

log Ft (x) = ct + 〈qt , x〉 − 〈Bt x, x〉/2 (17)

with ct , qt being some Ito processes and with

Bt =
∫ t

0
C2
s ds (18)

(here we use that the matrix Ct is symmetric). Note that, with Jt as in (7), we obtain
that

Jt = J − Bt , (19)

where J is the original interaction matrix.
We next claim that almost surely, T ≤ 1

2Tr(J0) =: T0. Indeed, d
dt Tr(Jt ) ≤

−2dim(Ht ) + 2 ≤ −2 for all t < T , which means that if T > T0 then Tr(Jt ) < 0,
contradicting the positive semidefiniteness of Jt .We also deduce bymonotonicity that

0 
 JT 
 ‖J‖OP Id.

Thus, (7) implies that

dνT (x) = ecT + 1
2 〈U ,x〉2+〈qT +h,x〉dμ(x) (20)

where |U |2 ≤ ‖J‖OP .
To deduce the final result we use two more facts, proved below: Lemma 8, which

says the Poincaré inequality holds for the rank one model νT , and Lemma 9, which
says the Dirichlet form is a supermartingale under the dynamics (11)–(12). Given
these facts, it follows from (16) that

(1 − ‖J‖OP )Varν0(ϕ) ≤ (1 − ‖J‖OP )EVarνT (ϕ) + δ2T0 ≤ EEνT (ϕ, ϕ)

+δ2T0 ≤ Eν0(ϕ, ϕ) + δ2T0.

Taking δ → 0 proves the result. ��

2.1 Proof of the existence of the process

In this section we prove the technical Lemmas 2 and 3.

Proof of Lemma 2 Introduce a smooth function φ : R+ → [0, 1] satisfying

φ(0) = 1, φ′(0) = 0, sup
z∈R+

zφ(z) ≤ δ. (21)
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1042 R. Eldan et al.

For example, the function

φ(z) = e−z2/2δ2

will do. Given a vector v ∈ R
n and a linear subspace H of Rn , write v = v1 + v2

where v1 ∈ H and v2 ∈ H⊥, write v̂1 = v1/|v1|, and set

C(v, H) = ProjH∩v⊥ + φ(|v1|)v̂1 ⊗ v̂1. (22)

When v1 = 0, C(v, H) is just ProjH , the orthogonal projection onto subspace H . The
function C(v, H) is a smooth approximation to the function A(v, H) = ProjH∩v⊥ ;
the latter is not smooth owing to a discontinuity when |v1| is small. Indeed, when
v = v2 ∈ H⊥, we note that A(v, H) is the projection onto H , while if v = εv̂1 + v2
for ε > 0, then the operator A(v, H) is a projection onto a codimension 1 subspace
of H . On the other hand, C(v, H) smoothes this transition, at the cost that it is not a
projection.

From the definition of C(v, H) we have

|C(v, H)v| = φ(|v1|)|〈v̂1, v〉| ≤ |v1|φ(|v1|) ≤ δ.

which shows the last claim (10) in the lemma.
We now justify the second claim of the lemma; the remaining claimsfollow directly

from the definition. Rewrite C(v, H) = ProjH + (φ(|v1|) − 1)v̂1 ⊗ v̂1 and observe
that the first term is constant and the second term is Lipschitz in v: this is clear away
from zero, and in a neighborhood of zero it follows by rewriting the second term as
φ(|v1|)−1

|v1|2 v1 ⊗ v1 and using that φ(0) = 1, φ′(0) = 1, and φ is smooth. ��

Proof of Lemma 3 Informally, both existence and uniqueness follow from the fact that
HJt will be piecewise constant.

First we note that for a fixed subspace H , the equations

d Jt
dt

= −C(Vt , H)2 (23)

dFt (x) = Ft (x)〈C(Vt , H)(x − at ), dWt 〉 ∀x ∈ {±1}n, (24)

have Lipschitz coefficients (recall that a product of bounded Lipschitz functions is Lip-
schitz). Therefore, for any initial condition, a strong solution exists and is unique [13].
Consider (23)–(24) with H := HJ = Im(J ) and initial conditions J0 = J , F0(x) = 1
and define the stopping time τ1 = inf{t ≥ 0 : dim(HJt ) ≤ dim(HJ0) − 1}. We use
this system of equations to define Jt , Ft on the interval [0, τ1] and observe that this
solution satisfies (11)–(12), provided we show that HJt = H for t < τ1, which we do
next. First, observe that for v ∈ ker J that

Jtv =
(
J +

∫ t

0
−C(Vs, H)2ds

)
v = 0
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A spectral condition for spectral gap: fast mixing in… 1043

where the first equality is by (23), and the second equality uses that Jv = 0
and C(Vs, H)v = (vTC(Vs, H))T = 0 using that C(Vs, H) is symmetric,
Im(C(Vs, H)) ⊆ H , and v is in ker J which is the orthogonal complement of H .
Thus, ker J ⊆ ker Jt for all t ≤ τ1. Next, by the definition of τ1, we have for all t < τ1
that dim(HJt ) = dim(HJ0); by a dimension count, this implies that ker J = ker Jt ,
that HJt has no negative eigenvalues, and finally that HJt = HJ0 since they are both
equal to the orthogonal complement of ker J .

More generally, for all i ≤ rank(J0) we define the stopping times

τi = {t ≥ τi−1 : dim(HJt ) ≤ dim(HJ0) − i}

and define Jt , Ft on t ∈ [τi−1, τi ] by the solution to (23)–(24) with initial condition
Jτi−1 , Fτi−1 at time τi−1 and H = HJτi−1

. Finally, define the solution for t ≥ τrank(J0)
similarly, with H = ∅ (i.e. the solution is constant). This shows existence of the
solution and positive semidefiniteness of Jt and essentially the same argument proves
uniqueness as well. ��

2.2 Rank one inequality

In this sectionweprove the neededPoincaré inequality for rankonemodels (Lemma8).
We use the result of [24], which establishes a Poincaré inequality under a condition on
the influence matrix referred to as the �2-Dobrushin uniqueness regime (also studied
in [11,18]).

Definition 4 For two probability measures P and Q defined over the same measure
space, their Total Variation (TV) Distance is defined to be

‖P − Q‖T V := sup
A

|P(A) − Q(A)|

where A ranges over all measurable events.

Definition 5 Suppose that X is a random vector supported on a finite set X n and dis-
tributed according to ν.Define the influencematrix A to be thematrixwith diag(A) = 0
and

Ai j := max
x∼i ,x ′∼i

‖Pν[Xi= ·|X∼i = x∼i ] − Pν[Xi= ·|X∼i = x ′∼i ]‖T V

where x∼i and x ′∼i in X n−1 are allowed to differ only in coordinate j , and
Pν[Xi= ·|X∼i = x∼i ] denotes the conditional law of Xi under ν given X∼i = x∼i .We
say that (the law of) X satisfies the �2-Dobrushin uniqueness condition if ‖A‖OP < 1.

Note that in contrast to the interactionmatrix J , the influencematrix A has nonnegative
entries. We specialize the following Theorem to the setting of spins valued in {±1},
though it holds in more general settings.
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1044 R. Eldan et al.

Theorem 6 (Theorem2.1 of [24]) Suppose that X ∼ ν is a random vector valued in the
hypercube {±1}n and let A be the corresponding influence matrix (as in Definition 5).
For any test function ϕ : {±1}n → R,

(1 − ‖A‖OP )Var(ϕ) ≤ Eν(ϕ, ϕ)

where Eν(ϕ, ϕ) is the Dirichlet form associated to the Glauber dynamics under ν.

To use this Theorem, we need to upper bound the spectral norm of the influence
matrix for rank one models, which we do in the following Lemma.

Lemma 7 Suppose that

dν(x) = exp

(
1

2
〈x, u〉2 + 〈h, x〉 − c

)
dμ(x) (25)

where μ is the uniform measure on {±1}n. The influence matrix A of ν (from Defini-
tion 5) satisfies ‖A‖OP ≤ |u|2.
Proof First observe that

E[Xi | X∼i ] = tanh(ui 〈X∼i , u〉 + hi ).

Therefore, from the definition of Ai j and since tanh(·) is 1-Lipschitz, we have

Ai j = 1

2
max
x∼i ,x ′∼i

|Eν[Xi |X∼i = x∼i ] − Eν[Xi |X∼i = x ′∼i ]| ≤ |uiu j | (26)

where x∼i , x ′∼i range over vectors in {±1}n differing only in coordinate j . Define
v to be the element-wise absolute value of u, i.e. vi = |ui |. Since A is a matrix
with nonnegative entries, it follows from the Perron-Frobenius Theorem and (26) that
‖A‖OP ≤ ‖vvT ‖OP = |v|2 = |u|2. ��
Combining Lemma 7 and Theorem 6 yields the desired Poincaré inequality for rank
one models.

Lemma 8 Suppose that ν, u are as in (25). Then for any test function ϕ : {±1}n → R,

(1 − |u|2)Var(ϕ) ≤ Eν(ϕ, ϕ)

where Eν is the Dirichlet form associated to the Glauber dynamics under ν.

2.3 The Dirichlet form is a supermartingale

Lemma 9 Let Wt be a Brownian motion adapted to a filtrationFt . Let Ct be a matrix-
valued process adapted to Ft . Let ν0 be an arbitrary measure on {±1}n and suppose
that Ft is a solution to the SDE

dFt (x) = Ft (x)〈Ct (x − at ), dWt 〉, F0(x) = 1,∀x ∈ {±1}n
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A spectral condition for spectral gap: fast mixing in… 1045

where dνt (x) = Ft (x)dν0(x) andat = ∫
xdνt (x). Letϕ : {±1}n → R be an arbitrary

test function. Then the Dirichlet form Eνt (ϕ, ϕ) is a supermartingale.

Proof We use that the Dirichlet form can be rewritten as

Eνt (ϕ, ϕ) =
∑
x∼y

νt (x)νt (y)

νt (x) + νt (y)
(ϕ(x) − ϕ(y))2 (27)

where x ∼ y denotes the adjacency relation on the hypercube, i.e. x and y differ in
exactly one coordinate. To see this, consider arbitrary ν, let X andY be two independent
samples from ν, and observe

Eν(ϕ, ϕ) = Eν

n∑
i=1

Var(ϕ(X) | X∼i )

= 1

2
Eν

n∑
i=1

Eν[(ϕ(Y ) − ϕ(X))2 | Y∼i = X∼i , X∼i ]

= 1

2
Eν

n∑
i=1

(ϕ(Y ) − ϕ(X))2 · 1[Y∼i = X∼i ]
Pν(Y∼i = X∼i | X∼i )

=
∑
x∼y

ν(x)ν(y)(ϕ(x) − ϕ(y))2
n∑

i=1

1[y∼i = x∼i ]
Pν(Y∼i = x∼i )

=
∑
x∼y

ν(x)ν(y)

ν(x) + ν(y)
(ϕ(x) − ϕ(y))2 (28)

where in the second equality we used the identity Var(X) = 1
2E[(X − Y )2] for Y an

independent copy of X .
Given this, it suffices to show that νt (x)νt (y)

νt (x)+νt (y)
is a supermartingale for fixed x ∼ y.

Let us calculate the Ito differential d νt (x)νt (y)
νt (x)+νy(y)

. We have by Ito’s Lemma,

d log νt (x) = 〈dWt , x̃〉 − 1

2
|x̃ |2dt .

and

d log νt (y) = 〈dWt , ỹ〉 − 1

2
|ỹ|2dt .

where x̃ = Ct (x − at ), ỹ = Ct (y − at ). Moreover,

d log (νt (x) + νt (y)) = 〈dWt , α x̃ + β ỹ〉 − 1

2
|α x̃ + β ỹ|2dt
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where α = νt (x)
νt (x)+νt (y)

, β = νt (y)
νt (x)+νt (y)

. Therefore,

d

(
νt (x)νt (y)

νt (x) + νy(y)

)

=
(

νt (x)νt (y)

νt (x) + νy(y)

)
1

2

(
|α x̃ + β ỹ|2 + |β x̃ + α ỹ|2 − |x̃ |2 − |ỹ|2

)
dt + martingale.

So again by Ito’s Lemma, since deSt = eSt dSt + 1
2e

St d[S]t , we have

d

(
νt (x)νt (y)

νt (x) + νy(y)

)
=

(
νt (x)νt (y)

νt (x) + νy(y)

)
1

2

(|αx̃ + β ỹ|2 + |β x̃ + α ỹ|2 − |x̃ |2 − |ỹ|2) dt
+ martingale.

By convexity of | · |2 and since α + β = 1, the above expression is a supermartingale.
��

3 Consequences for mixing time

By standard arguments which we now recall, the Poincaré inequality implies mixing
time estimates for theGlauber dynamics. For aMarkov semigroup Pt = et�, reversible
with respect to ν, a Poincaré inequality

γVarν[ϕ] ≤ Eν(ϕ, ϕ)

is equivalent to a spectral gap estimate:

γ ≤ λ1 − λ2

where λ1, λ2 are the top two eigenvalues of the transition rate matrix� (see e.g. [23]).
The quantity 1/γ is known as the relaxation time of theMarkov chain. As usual, we let
Pt (·, ·) denote the transition kernel of the Markov chain. Linear algebraic arguments
establish the following mixing time estimate:

Theorem 10 (Theorem 20.6 of [16]) Let Pt be a reversible Markov semigroup over
the finite state space �, with stationary measure π and spectral gap γ . Then,

max
x∈�

‖Pt (x, ·) − π‖T V ≤ ε

as long as

t ≥ 1

γ
log

1

ε minx∈� π(x)
.
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Applied to our situation, we have γ = 1 − ‖J‖OP by Theorem 1 and

min
x∈{±1}n ν0(x) ≥ 2−ne−2n‖J‖OP−2|h|1

from the definition andHölder’s inequality. As a result, we obtain the followingmixing
time estimate for Glauber dynamics:

Theorem 11 For Pt the continuous time Glauber dynamics on ν0 defined in (5),

max
x∈{±1}n ‖Pt (x, ·) − ν0‖T V ≤ ε

as long as

t ≥ 1

1 − ‖J‖OP

(
(1 + 2‖J‖OP )n + 2|h|1 + log

1

ε

)
.

One unit of time for the continuous dynamics corresponds to a Poissonian (with
parameter n) number of steps of the discrete-timeGlauber dynamics. Correspondingly,

Theorem 1 implies an O
(
n2+‖h‖1n+n log(1/ε)

1−‖J‖OP

)
mixing time estimate for the discrete

time Glauber dynamics, using Theorem 12.3 of [16] in place of Theorem 10 above.

4 A needle decomposition theorem

In this section we formulate a structural theorem, which follows as a byproduct of
our proof. As mentioned above, this theorem may be thought of as an analogue to
the technique due to Kannan et al. [12] used in convex geometry (this technique was
later generalized to the context of Riemannian manifolds, see [14]). It roughly states
that measures with arbitrary quadratic potentials can be decomposed into mixtures of
measures whose potentials are quadratic of rank one, in a way that: (i) The integral of
some test function ϕ is preserved, and (ii) the operator norm of the quadratic potential
does not increase.

For v, u ∈ R
n , consider the measure wv,u on {±1}n defined as

dwu,v

dμ
(x) = 1

Zu,v

exp

(
1

2
〈u, x〉2 + 〈v, x〉

)

where Zu,v = ∫
{±1}n e

1
2 〈u,x〉2+〈v,x〉dμ.

Following roughly the same lines as the proof of Theorem 1 gives rise to the
following result.

Theorem 12 Let ν0 be a probability measure on {±1}n of the form

dν0

dμ
(x) = 1

Z
exp

(
1

2
〈x, J x〉 + 〈h, x〉

)
, (29)
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where J is positive definite, and letϕ : {±1}n → R. There exists a probability measure
m on R

n × R
n such that ν0 admits the decomposition

ν0(A) =
∫

wu,v(A)dm(u, v), ∀A ⊂ {±1}n,

with the properties that:

1. m-almost surely, (u, v) are such that

∫
ϕdwu,v =

∫
ϕdν0,

2. such that for m-almost every (u, v), we have |u| ≤ ‖J‖OP,
3. and such that for all x ∼ y on the hypercube, we have the following inequality of

conductances:
∫

wu,v(x)wu,v(y)

wu,v(x) + wu,v(y)
dm(u, v) ≤ ν0(x)ν0(y)

ν0(x) + ν0(y)
.

Proof (sketch) The decomposition follows by considering the evolution defined in
(11) and (12) and defining the measure m according to the decomposition implied
by equation (20) above. The last property is a consequence of the corresponding
supermartingale property shown in the proof of Lemma 9. ��

The theorem can be used to reduce the concentration of a test function ϕ over an
Isingmodel to concentration over themeasureswu,v , as demonstrated by the following
corollary.

Corollary 13 Let K > 0 and let ϕ : {±1}n → R be a function such that for all
u, v ∈ R

n with |u| ≤ K one has Varwu,v [ϕ] ≤ 1. Then for every ν0 of the form (29)
with ‖J‖OP ≤ K, one has Varν0 [ϕ] ≤ 1.

Proof Applying Theorem 12, the law of total variance implies that

Varν0 [ϕ] =
∫
Rn×Rn

(∫
ϕdwu,v − Eν0 [ϕ]

)2

dm(u, v) +
∫
Rn×Rn

Varwu,v [ϕ]dm(u, v)

=
∫
Rn×Rn

Varwu,v [ϕ]dm(u, v) ≤ sup
|u|≤K ,v∈Rn

Varwu,v [ϕ].

The result follows readily. ��
Similarly, and analogous to the needle decomposition for convex sets, it allows us

to establish functional inequalities for Ising models by reducing to the case of the rank
one measures wu,v; not just the Poincaré inequality, but also related inequalities such
as the Log–Sobolev inequality. For the (bounded rate) Glauber dynamics, there is no
uniform Log-Sobolev inequality over the class of models we consider, as there is no
such inequality for biased product measures [6] which are a special case. In subsequent
work the Modified Log-Sobolev Inequality has been shown using this reduction [1].
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5 Some examples

5.1 Sherrington–Kirkpatrick (SK) model

This is the Ising model with J symmetric and Ji j ∼ N (0, β2/n), i.e. up to rescaling
J is drawn from the Gaussian Orthogonal Ensemble. Letting the diagonal of J be 0,
the spectrum of a GOE is contained in [−2 − ε, 2 + ε] asymptotically almost surely
for any ε > 0 (see e.g. [2]). Therefore our result implies the Poincaré inequality and
polynomial time mixing for all β < 1/4.

Remark 14 The Poincaré inequality (Theorem 1) applied to linear functions gives

Var(〈w, X〉) ≤ 1

1 − ‖J‖OP
Eν

n∑
i=1

(Eν[〈w, X〉|X∼i ] − 〈w, X〉)2 ≤ 1

1 − ‖J‖OP
|w|2

using (28), and estimate (3) from [3] gives a similar bound with a different constant.
Thus, both results imply that in the SK model for any fixed β < 1/4, ‖�‖OP = O(1)
with high probability, where � = EνXXT is the covariance matrix. This partially
verifies Conjecture 11.5.1 of [22] that ‖�‖OP = O(1) for any β < 1.

5.2 Diluted SKmodel (d-regular)

A variety of spin glass models on sparse graphs have been studied in the literature; one
well-known “diluted” version of the SK model has the interaction matrix J supported
on a sparseErdős–Reyni randomgraph—see [21].Along similar lines,we can consider
a dilution where J is supported on a random d-regular graph with d ≥ 3. If we take a
Rademacher disorder, i.e. Ji j ∼ Uni{±β} for i, j neighbors and otherwise Ji j = 0,
then it follows from a version of Friedman’s Theorem that ‖J‖OP ≤ β(2

√
d − 1+ε)

a.a.s. for any ε > 0—see [4,5,19]. It follows from our results that we have the Poincaré
inequality and fastmixing for allβ < 1

4
√
d−1

,whereas themodel is only inDobrushin’s

uniqueness regime for β = O
( 1
d

)
—note that up to constants the latter bound is tight

for general Ising models on arbitrary d-regular graphs [9,20].

Acknowledgements We would like to thank Fanny Augeri for enlightening discussions. We also thank
Roland Bauerschmidt for some useful comments. We thank Ahmed El Alaoui, Heng Guo, Vishesh Jain,
and the anonymous reviewers for useful feedback.

A Inequivalence of Dirichlet forms

The Dirichlet form Eν(ϕ, ϕ) can be viewed as the expected norm squared for an
appropriate notion of gradient of ϕ. On the other hand, another natural notion of
discrete gradient for functions on the hypercube is given by (∇ϕ)i (x) = ϕ(x∼i , xi =
1)−ϕ(x∼i , xi = −1)which is used in the result ofBauerschmidt andBodineau [3], and
the norm of this discrete gradient squared is the Dirichlet form of a different semigroup
with a variable transition rate [17]. In the case of the SK model, the transition rate of
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the variable-rate chain is sometimes exponentially large in
√
n; in what follows, we

give a simple example of a function ϕ witnessing that the Dirichlet forms similarly
can differ in size by an exponentially large factor in

√
n.

To compare these two Dirichlet forms, we have the following estimates which
follow immediately from (27):

(
min
x∼y

ν(y)

ν(x) + ν(y)

)
Eν‖∇ϕ‖2 � Eν(ϕ, ϕ) � Eν‖∇ϕ‖2.

In the context of the SK Model, the parenthesized term is of size e−	(β
√
n) and both

estimates are tight up to constants. To see this for the lower bound, define a ∈ {±1}n
by a1 = −1 and a j = sgn(J1 j ) otherwise; the significance of this choice is that in the
SK model, it’s exponentially unlikely to see X1 = a1 given X∼1 = a∼1. Let λ be an
atomic measure supported on a, so

dλ

dν
(x) = 1[x = a]

ν(a)
.

If we define ϕ =
√

dλ
dν

then, see (28),

E (ϕ, ϕ) =
∑
x∼y

ν(x)ν(y)

ν(x) + ν(y)
(ϕ(x) − ϕ(y))2 =

∑
y:y∼a

ν(y)

ν(a) + ν(y)
≤ n.

In comparison, for the discrete gradient ∇ϕ we have

E|∇ϕ(X)|2 ≥ ecβ
√
nν(a)

ν(a)
= e	(β

√
n)

where the lower bound follows by considering the a′ which equals a but flipped on
the first coordinate, and which (from the definition of the SK model) is e	(β

√
n) more

likely under ν.
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