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Abstract
We show that the local limit of the uniform spanning tree on any finite, simple, con-
nected, regular graph sequence with degree tending to ∞ is the Poisson(1) branching
process conditioned to survive forever. An extension to “almost” regular graphs and
a quenched version are also given.

Mathematics Subject Classification 05C81

1 Introduction

A spanning tree T of a finite connected graph G is a subset of edges spanning a
connected graph, containing no cycles, and such that every vertex of G is incident to
some edge of T . The uniform spanning tree (UST) of such a graph G is a uniformly
drawn tree from the finite set of spanning trees of G. In this paper we study the local
limit of the UST on regular connected graphs with large degree. This limit, defined
by Benjamini and Schramm [3], is an infinite random rooted tree which encodes the
local structure of the UST viewed from a typical vertex, see further definitions and
discussion below.

Theorem 1.1 Let {Gn} be a sequence of finite, simple, connected, regular graphs with
degree d(n) → ∞. Then the local limit of the UST on Gn is the Poisson(1) branching
process conditioned to survive forever.

The large scale geometry of theUST on regular graphs of high degreemay behave very
differently depending on the underlying graph, see Sect. 7.1. It is therefore surprising
that from the local point of view the UST’s behavior is universal.
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1134 A. Nachmias , Y. Peres

Let us present an equivalent yet more concrete version of this theorem giving
precisely the probability of seeing a fixed rooted tree in a ball of radius r around a
random vertex. Let T be a finite rooted tree of height r ≥ 1, that is, the maximal
graph distance between the root and a vertex of T equals r . Denote by Tr the set of
vertices of T at graph distance precisely r from the root and by StabT the set of graph
automorphisms of T that preserve the root. Given a tree �, an integer r ≥ 0 and a
vertex v we write B�(v, r) for the induced rooted subtree of � on the vertices that are
at graph distance at most r from v in �. Theorem 1.1 can be now restated as follows.

Theorem 1.2 Let {Gn} be a sequence of finite, simple, connected, regular graphs with
degree d(n) → ∞. Let �n be a UST of Gn and X a uniformly chosen vertex of Gn.
Then for any fixed rooted tree T of height r ≥ 1 we have that

lim
n→∞P(B�n (X , r) ∼= T ) = |Tr |e−|V (T )|+|Tr |

|StabT | ,

where ∼= means rooted graph isomorphism.

We also provide a stronger version of Theorem 1.2 (Theorem 1.4) in which the
assumption of regularity can be weakened to “almost regular” graphs of high degree
which include small perturbations of regular graphs and graphs in which the degree of
most vertices are almost equal. Furthermore, in this more general setting we obtain a
quenched version of Theorem1.2 (Theorem1.5) showing thatwith probability 1−o(1)
the number of appearances of a fixed rooted tree T in the UST �n is

(1 + o(1))
|V (Gn)||Tr |e−|V (T )|+|Tr |

|StabT | .

For instance, with high probability the density of leaves in �n is (1 + o(1))e−1 and
the density of leaves attached to a vertex of degree k is (1+ o(1))e−2/(k − 1)!. These
extensions are presented in Sect. 1.3.

When G is the complete graph on n vertices the conclusion of Theorem 1.1 was
established in the pioneering work of Grimmett [6]. The local limit of USTs on dense
graphs (i.e., when the number of edges is proportional to the number of vertices
squared) was recently investigated in [7] where it was shown to be a certain multi-
type branching process that can be described explicitly via the limiting graphon. The
assumption of density of the graph is used in [7] to apply partition theorems in the
spirit of Szemerédi’s Lemma and to use “graph-limit” techniques to explicitly describe
the local limit. These techniques are unavailable in the setting of this paper where the
degree tends to infinity arbitrarily slow.

We remark that Theorem 1.1 recovers the result of [7] in the special case when
the underlying graph is dense and regular (or close to regular). We also remark that
regularity is a necessary assumption for for Theorem 1.1. Indeed, if G is the complete
bipartite graph with n/3 and 2n/3 vertices on each side, respectively, then the local
limit of the UST is a branching process (conditioned to survive) in which the progeny
distribution alternates between Poisson(1/2) and Poisson(2), see [7].
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The local limit of uniform spanning trees 1135

In the rest of this section we formally define the notion of local limits (Sect. 1.1),
discuss the Poisson(1) Galton–Watson tree conditioned to survive and show that The-
orem 1.1 follows from Theorem 1.2 (Sect. 1.2), present the most general versions of
our main theorems as described above (Sect. 1.3) and close with a brief summary of
our notation (Sect. 1.4).

1.1 Local limits

The local limit of finite graphs was first defined in the seminal paper of Benjamini and
Schramm [3], see also [1] for further background.

We denote by G• the space of all locally finite rooted graphs viewed up to root-
preserving graph isomorphisms. In other words, the elements of G• are pairs (G, ρ)

where G is a graph and ρ is a vertex of it, and two elements (G1, ρ1), (G2, ρ2) are
considered equivalent if there is a graph automorphism ϕ : V (G1) → V (G2) for
which ϕ(ρ1) = ρ2. For a pair (G, ρ) and an integer r ≥ 0 we write BG(ρ, r) for the
induced graph of G on the vertex set which is of graph distance at most r from ρ.

We endow G• with a natural metric: the distance between (G1, ρ1) and (G2, ρ2) is
2−R where R is the maximal integer such that there is a root-preserving isomorphism
between BG1(ρ1, R) and BG2(ρ2, R); possibly R = ∞. We consider the Borel σ -
algebra on this space and remark that with this metric G• is a polish space, hence we
can discuss convergence in distribution on it (see [1]).

We say that a law of a random element (G, ρ) of G• is the local limit of a sequence
of (possibly random) finite graphs Gn if for any integer r ≥ 0 the random rooted
graphs BGn (ρn, r) converge in distribution to BG(ρ, r), where ρn is a uniformly drawn
random vertex of Gn that is drawn independently conditioned on Gn .

1.2 Poisson Galton–Watson trees

Let us now describe the local limit of Theorem 1.1. The Poisson(1) Galton–Watson
tree conditioned to survive is defined as the local limit as n → ∞ of a random rooted
tree drawn according to a Poisson(1) Galton–Watson tree conditioned to survive n
generations. It is classical (see [10]) that this limit exists and can be drawn directly
by taking an infinite path starting from the root vertex and hanging a Poisson(1)
unconditional Galton–Watson tree on each vertex of the path; however, we will not
use this fact in this paper.

Proof of heorem 1.1 given Theorem 1.2. Let (�, ρ) be an instance of the Poisson(1)
Galton–Watson tree conditioned to survive and let T be a finite rooted tree of height
r ≥ 1. Our goal is to prove that

P(B�(ρ, r) ∼= T ) = |Tr |e−|V (T )|+|Tr |

|StabT | . (1)

Denote by �u an instance of an unconditional Poisson(1) branching process. We
will prove that
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1136 A. Nachmias , Y. Peres

P(B�u (ρ, r) ∼= T ) = e−|V (T )|+|Tr |

|StabT | , (2)

which implies (1) by the following argument. Let pn denote the probability that �u

survives n generations. It is well known (see [10, TheoremC]) that pn = 2+o(1)
n . Thus,

the probability that B�u (ρ, r) ∼= T and �u survives n generations by (2) is just

e−|V (T )|+|Tr |

|StabT |
(
1 − (1 − pn−r )

|Tr |) = (1 + o(1))
e−|V (T )|+|Tr |

|StabT | |Tr |pn .

Hence, if we condition on the event that �u survives n generations and take n → ∞
we get precisely (1).

We prove (2) by induction on r . When r = 1 we have that StabT = k! where k is
the degree of the root of T and (2) follows. Assume now that r ≥ 2 and let k be again
the degree of the root of T and call its children {u1, . . . , uk}. For 1 ≤ i ≤ k write Tui
for the subtree of T induced on all the descendants of ui (that is, all the vertices of T
for which the unique path to ui does not visit the root of T ). We view Tui as a tree
rooted at ui .

We put an equivalence relation on {u1, . . . , uk} by declaring ui equivalent to u j

if and only if there exists a root-preserving automorphism between Tui and Tu j . Let
� ≤ k denote the number of equivalence classes and put kt for the number of elements
in the t th equivalence class, where 1 ≤ t ≤ �, so that k = k1 +· · ·+ k�. For 1 ≤ t ≤ �

we also denote by T (t) the rooted tree Tui where ui is a representative of the t th
equivalence class. Since T is of height r at least one of the T (t)’s must be at height
r − 1 and all others have height at most r − 1. A moment’s reflection shows that

|StabT | =
�∏

t=1

kt !
k∏

i=1

|StabTui | =
�∏

t=1

kt !|StabT (t) |kt . (3)

Now, for the event B�u (ρ, r) ∼= T to occur, we must first have that the root of �u

has k children (with probability e−1/k!) and that there is a partition of the k children
of the root into � subsets of sizes {kt }�t=1 so that if a child of the root is at the t th set,
the r−1 generations of the branching process emanating from this child is isomorphic
to T (t). Thus, by the induction hypothesis we have that

P(B�u (ρ, r) ∼= T ) = e−1

k!
(

k

k1, k2, . . . , kt

) �∏

t=1

[e−|V (T (t))|+|T (t)
r−1|

|StabT (t) |
]kt

.

Since |V (T )| = 1 + ∑�
t=1 kt |V (T (t))| and |Tr | = ∑�

t=1 kt |T (t)
r−1| and by (3) we get

that (2) holds, concluding our proof. ��
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The local limit of uniform spanning trees 1137

1.3 Extensions

The assumption of regularity in Theorems 1.1 and 1.2 can often be very restrictive.
For instance, the removal of a single edge from the graph violates the assumptions
though it is intuitively clear that the conclusion of the theorems will not be altered.
Moreover, the proof of Theorem 1.5, even in the regular case, requires an extended
version of Theorem 1.2 in which the graphs involved are “close” to being regular. For
these two reasons we now state this extension.

Definition 1.3 A sequence of finite, simple connected graphs {Gn} is called high
degree almost regular if there exists some d(n) → ∞ such that

(1) At least (1−o(1))|V (Gn)| of the vertices of Gn have degree (1±o(1))d(n), and,
(2) The sum of degrees in Gn is (1 ± o(1))d(n)|V (Gn)|.

It is immediately deduced from this definition that the total variation distance
between a uniformly chosen vertex and a vertex drawn according to the stationary
distribution is o(1), indeed,

∑

v

∣∣∣
deg(v)

∑
v deg(v)

− 1

n

∣∣∣ = o(1). (4)

We comment that it is straightforward to see that if the average degree of the graphs
tends to infinity, then (4) in fact implies that the graph sequence is high degree almost
regular. We will not use this direction in our proof though.

Theorem 1.4 Let {Gn} be a sequence of high degree almost regular graphs. Then the
conclusions of Theorems 1.1 and 1.2 hold.

Lastly, the following gives the quenched version of Theorem 1.4

Theorem 1.5 Let {Gn} be a sequence of high degree almost regular graphs. Let �n

be a UST of Gn and T be a fixed rooted tree of height r ≥ 1. Denote by Yn(T ) the
number of vertices v of Gn satisfying B�n (v, r) ∼= T . Then with probability tending
to 1 as n → ∞ we have that

Yn(T ) = (1 + o(1))
|V (Gn)||Tr |e−|V (T )|+|Tr |

|StabT | .

1.4 Notation

• Given a graphG wewrite V (G) and E(G) for its vertex and edge set, respectively.
• For an integer k ≥ 1 we write [k] for {1, . . . , k}.
• We write deg(u) for the degree of a vertex u.
• For vertices u, v ∈ V (G) we write u ∼ v if there is an edge between them.
• For two positive sequences {an}, {bn} we write an = O(bn) when there exists a
constant C such that an ≤ Cbn for all n, and an = o(bn) when an/bn tends to 0.
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1138 A. Nachmias , Y. Peres

2 Preliminaries

2.1 Randomwalks and electric networks

We give here a brief review of the theory of electric networks and refer the reader to
[11, Chapter 2] or [13, Chapter 2] for more details.

A network is a connected graph G equipped with positive edge weights c(u, v) for
any edge (u, v) ∈ E(G). We write π(v) = ∑

u:u∼v c(u, v), where possibly u = v if
there is a loop at v. The network randomwalk on the network is a reversible Markov
chain {Xt }∞t=0 on V (G) with transition probabilities

p(u, v) = c(u, v)

π(u)
.

We write Pu(·) for the probability measure of the chain conditioned on X0 = u and
Eu for the corresponding expectation. We denote by τu and τ+

u the stopping times

τu = min{t ≥ 0 : Xt = u} τ+
u = min{t ≥ 1 : Xt = u},

which are of course equal unless X0 = u.
The effective resistance between two vertices u, v of the network is the voltage

difference between u and v when unit current flows from u to v. We will not use this
definition directly but rather a probabilistic interpretation of it which can serve as its
definition. We define the effective resistance between u and v in the network G by

Reff(u ↔ v;G) = 1

π(u)Pu(τv < τ+
u )

. (5)

We often write Reff(u ↔ v)when the underlying network is evident from the context.
When A ⊂ V (G) we write Reff(u ↔ A) for the electric resistance between u and A
in the graph obtained from G by identifying the vertices of A and keeping all edges.

2.1.1 Nash–Williams inequality

The following is useful method of bounding the resistance from below and is due
to Nash–Williams [14]. We say that a subset of edges of the network separates the
vertices a and z if every path from a to z uses at least one edge of the subset. If
	1, . . . ,	n are disjoint subsets of edges separating a and z, then

Reff(a ↔ z) ≥
n∑

i=1

( ∑

e∈	i

ce
)−1

,

see [11, Chapter 2.5]. An immediate application of this inequality is that

Reff(u ↔ v) ≥ 1

deg(u) + 1
+ 1

deg(v) + 1
, (6)

123



The local limit of uniform spanning trees 1139

whenever u �= v are vertices of a simple graph and all the conductances are unit.
Indeed, if u and v do not share an edge the lower bound can be improved by dropping
the two +1’s in the denominators since the edges emanating from u separate u from v

and similarly for the edge emanating from v. If u and v do share an edge, we replace
that edge with a path of length 2 and assign conductance 2 to the two edges of the path
and apply again Nash–Williams inequality.

2.1.2 The commute-time identity

The commute time between two vertices a �= z in a network is Ea τz +Ez τa . In other
words, it is the expected time it takes to the randomwalk started at a to visit z and then
go back to a. It turns out [4] that this quantity is just the rescaled resistance between
a and z (see also [11, Corollary 2.21]):

Ea τz + Ez τa = 2|E(G)|Reff(a ↔ z), (7)

in any network G with unit conductances.

2.2 Uniform spanning trees

Let G be a finite connected graph. The set of spanning trees of G is non-empty and
finite hencewemay draw one uniformly at random; denote by� the resulting spanning
tree. We call � a uniform spanning tree (UST) of G. In this paper we will only use
two basic properties of the UST.

2.2.1 Kirchhoff’s formula

Kirchhoff [8] discovered a fundamental relation between the uniform spanning tree
and electric networks. Let e = (x, y) ∈ E(G). Then

P(e ∈ �) = Reff(x ↔ y;G). (8)

2.2.2 Spatial Markov property of the UST

Let A, B ⊂ E(G) be two disjoint subset of edges of G. We would like to condition
on the event A ⊂ � and B ∩ � = ∅. For this event to have positive probability we
must have that A does not contain a cycle and that when erasing the edges of B from
G we remain with a connected graph. It turns out that this conditional measure can be
described as drawing a UST on a modified graph, see [11, Chapter 4]. We denote by
G/A − B the graph obtained from G by contracting the edges of A and erasing the
edges of B.

Proposition 2.1 Let G be a finite connected graph and A, B two disjoint subsets of
edges such that G − B is connected and A has no cycles. Then the law of the UST
on G conditioned on the event A ⊂ � and B ∩ T = ∅ equals the law of the UST on
G/A − B, viewed as a random edge subset of G, union the edges of A.
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1140 A. Nachmias , Y. Peres

Lastly we recall the negative correlations of the UST. It is an immediate corollary
of (8) and Proposition 2.1 together with Rayleigh’s monotonicity for electric networks
[11, Chapter 2] that the UST has negative correlations. That is, if e �= f are two edges
of a finite connected graph and � is a UST of G, then

P(e ∈ � f ∈ �) ≤ P(e ∈ �)P( f ∈ �), (9)

see [11, Chapter 4].

3 Foster’s theorem and variants

Recall that Foster’s Theorem [5] (which also follows from (8) immediately) asserts
that on any connected graph G

∑

{x,y}∈E(G)

Reff(x ↔ y) = |V (G)| − 1. (10)

WhenG is a regular graphwith degree d, its number of edges is |V (G)|d
2 . Hence Foster’s

Theorem in this case states that

E Reff(X0 ↔ X1) = 2

d
− 2

|V (G)|d , (11)

where {X0, X1} is a uniformly drawn edge of G, or equivalently, X0 is a uniformly
drawn vertex of G and X1 is an independent uniform neighbor of X0. By (6) the
resistance between twovertices in a d-regular graph is deterministically lower bounded
by 2

d+1 . Since this bound is rather close to the expectation above, it gives a useful
concentration estimate for the random variable Reff(X0 ↔ X1).

Lemma 3.1 On any d-regular graph G and for any ε > 2/d the number of edges
e = (x, y) with Reff(x ↔ y) ≥ ε is at most |V (G)|

εd−2 .

Proof Denote by Nε the number of such edges. By (6) we bound Reff(x ↔ y) ≥
2

d+1 ≥ 2
d − 2

d2
. Hence by Foster’s Theorem (10)

|V (G)| − 1 ≥ Nεε +
( |V (G)|d

2
− Nε

)
(2/d − 2/d2),

giving the required upper bound on Nε. ��
Our first variant is an estimate of the resistance between two endpoints of a longer

random walk.

Lemma 3.2 Let (X0, . . . , Xk) be a k-step random walk, k ≥ 1, on a simple d-regular
graph G starting from a uniformly drawn vertex X0. Then

E Reff(X0 ↔ Xk) ≤ 2

d
+ 2(k − 1)

d2
.
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The local limit of uniform spanning trees 1141

Remark. In fact the proof gives that

E Reff(X0 ↔ Xk) ≤ 2

d
+ 2(k − 1)

d2
− 2k

|V (G)|d
(
1 − 1

d

)k−1

− 2k

|V (G)|d(d − 1)

k−1∑

i=1

(
1 − 1

d

)i
,

which is an equality when k = 1 by (11).

Proof In any irreducible finite Markov chain the expected return time from a state to
itself equals the inverse of its stationary mass. Thus, since G is regular we have that
Ex0 τ+

x0 = |V (G)| for any vertex x0 of G. Hence for any vertex x0 and k ≥ 1

|V (G)| ≥ Ex0 τ+
x01{τ+

x0>k} ≥ 1

dk
∑

(x1,...,xk )
xi �=x0∀i=1,...,k

[
Exk τx0 + k

]
, (12)

where (x1, . . . , xk) is a walk of length k in G starting from a neighbor x1 of x0. On
the other hand we have that

EEXk τx0 = 1

dk
∑

(x1,...,xk )

Exk τx0 .

The last sum contains all the terms on the right hand side of (12) except those for
which there is an i ∈ [k − 1] for which xi = x0 (if xk = x0 the hitting time is 0 so the
case i = k is dismissed). We let i be the last such index and by (12) we get

EEXk τx0 ≤ |V (G)| − k
(
1 − 1

d

)k−1 + 1

dk

k−1∑

i=1

∑

(x1,...,xi )
xi=x0

∑

(xi+1,...,xk )
x j �=x0∀ j=i+1,...,k

Exk τx0 ,(13)

where for the second termon the right hand sidewebounded thenumber of (x1, . . . , xk)
in (12) below by d(d − 1)k−1. By (12) we have that for each i ∈ [k − 1], if xi = x0,
then

∑

(xi+1,...,xk )
x j �=x0∀ j=i+1,...,k

Exk τx0 ≤ |V (G)|dk−i − kd(d − 1)k−i−1.

We put this back into (13) and bound the number of (x1, . . . , xi ) for which xi = x0
by di−1, sum over i and obtain

EEXk τX0 ≤ |V (G)|(1 + k − 1

d

) − k
(
1 − 1

d

)k−1 − k

d − 1

k−1∑

i=1

(
1 − 1

d

)i
.
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1142 A. Nachmias , Y. Peres

Since G is d-regular and X0 is a uniformly drawn vertex we have that (X0, . . . , Xk)

has the distribution as (Xk, . . . , X0), hence

E
[
EX0 τXk + EXk τX0

] ≤ 2|V (G)|(1 + k − 1

d

) − 2k
(
1 − 1

d

)k−1

− 2k

d − 1

k−1∑

i=1

(
1 − 1

d

)i
.

By the commute-time identity (7) we get that

E Reff(X0 ↔ Xk) ≤ 2

d
+ 2(k − 1)

d2
− 2k

|V (G)|d
(
1 − 1

d

)k−1

− 2k

|V (G)|d(d − 1)

k−1∑

i=1

(
1 − 1

d

)i
,

concluding our proof. ��
As in Lemma 3.1 we obtain a concentration estimate using (6).

Corollary 3.3 Let (X0, . . . , Xk) be a k-step random walk on a simple d-regular graph
G starting from a uniformly drawn vertex X0. Then for any ε > 2

d we have that

P
(
Reff(X0 ↔ Xk) ≥ ε

) ≤ 2k

εd2 − 2d
.

Proof Denote the probability above by p. By (6) the resistance between distinct ver-
tices is always at least 2

d − 2
d2
. By Lemma 3.2

2

d
+ 2k − 2

d2
≥ E Reff(X0 ↔ Xk) ≥ εp + (1 − p)

( 2
d

− 2

d2

)
,

and rearranging gives the result. ��
We present now our final variant of Foster’s Theorem. Let T be a fixed rooted tree

with k ≥ 3 vertices and G a d-regular graph with n vertices; we think of n and d as
large and k as fixed. We denote T ’s vertex set by [k] so that 1 is the root and such that
for any 2 ≤ i ≤ k the graph spanned on [i] is a tree and the vertex i is a leaf. For
instance, we can label all vertices according to a breadth-first search (BFS) order.

We say that a k-tuple of vertices (v1, . . . , vk) of G is T -compatible when they are
distinct vertices and for any i, j ∈ [k] such that the pair {i, j} is an edge of T , the pair
{vi , v j } is an edge of G. We draw a random k-tuple in the following iterative fashion.
Let X1 be a uniformly drawn vertex of G; for 2 ≤ i ≤ k − 1 assume we have drawn
(X1, . . . , Xi−1) and let 1 ≤ j ≤ i −1 be the unique index such that the vertex i of the
subtree of T induced on [i] is a leaf hanging on j . We draw Xi to be a random neighbor
of X j . When T is a path with k vertices, the tuple (X1, . . . , Xk) is distributed just as
k − 1 steps of the simple random walk starting from a uniform vertex. Let us remark
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The local limit of uniform spanning trees 1143

that the tuple (X1, . . . , Xk) drawn this way is not necessarily T -compatible since the
vertices are not necessarily distinct, but with high probability it will be T -compatible.

Theorem 3.4 Let G be a simple d-regular graph and T a rooted tree on k ≥ 3 vertices
such that d ≥ 16k logk d. Let {X1, . . . , Xk} be a random k-tuple drawn as described

above. Then with probability at least 1 − 2k3

logk d
we have that (X1, . . . , Xk) are T -

compatible and

∣∣∣Reff
(
Xk ↔ {X1, . . . , Xk−1}

) − k

(k − 1)d

∣∣∣ ≤ 72k logk d

d2
.

We first prove the following lemma.

Lemma 3.5 Let G be a network and [k] are distinct vertices of it with k ≥ 3. Let x > 0
be given and ε > 0 satisfy ε ≤ x

32k . Assume that for any distinct i �= j in [k] one has

|Reff(i ↔ j) − x | ≤ ε. (14)

Then

∣∣∣Reff
(
1 ↔ {2, . . . , k}) − kx

2(k − 1)

∣∣∣ ≤ 72kε. (15)

Proof Let p(i, j) be the probability that the network random walk on G started at i
is at j when it first returns to [k]; possibly i = j . Then p is the transition matrix for
the network random walk on [k] with conductances c(i, j) = π(i)p(i, j) (= c( j, i)
by reversibility). This implies that π(i) remains unchanged in this reduced network
and by (5) we conclude that the pairwise effective resistances as well as the effective
resistance between 1 and {2, . . . , k} also remain unchanged. Hence (14) holds and it
suffices to prove (15) for this reduced chain on [k]. Since loops do not change the
resistance we remove them from this network, and we denote π̃(i) = ∑

j �=i c(i, j)
the modified stationary measure after removing the loops.

Let � be the network Laplacian, that is, � is a k × k symmetric matrix defined
by �(i, i) = π̃(i) for any i ∈ [k] and �(i, j) = −c(i, j) for any distinct i �= j in
[k]. Given a ∈ [k] we write �[a] for the (k − 1) × (k − 1) matrix obtained from �

by erasing the row and column indexed by a.
For three vertices a, i, j ∈ [k] with i, j ∈ [k] \ {a}, we write ga(i, j) =

Ga(i, j)/π̃( j) for the normalized Green’s function of the random walk killed at a,
that is, Ga(i, j) is the expected number of visits to j of a random walk started at i
before it visits a. We view ga(·, ·) as a (k − 1)× (k − 1) matrix. The quantity ga(i, j)
is also the voltage at i when unit current flows from a to j (so that the voltage at a is
zero). Hence, ga(i, j) = Pi (τ j < τa) · Reff(a ↔ j). It is well known that this quantity
can be expressed in terms of the pairwise effective resistances, indeed, by Exercise
2.68 of [11] we get that

ga(i, j) = Reff(a ↔ j) + Reff(a ↔ i) − Reff(i ↔ j)

2
,
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1144 A. Nachmias , Y. Peres

from which we deduce by our assumption (14) that |ga(i, j) − x/2| ≤ 3ε/2 for all
i �= j in [k] \ {a} and |ga(i, i) − x | ≤ ε for all i ∈ [k] \ {a}.

It is classical (see Exercise 2.62(a) in [11]) that ga(·, ·) is an invertible matrix and
that �[a] = [

ga(·, ·)
]−1. Denote by A the (k − 1) × (k − 1) matrix with x on the

diagonal and x/2 in all other entries, so that ga = A + E and ||E ||1 ≤ 3ε
2 (k − 4/3)

where ||E ||1 the maximum �1 norm of the rows of E viewed as vectors in Rk−1.
It is straightforward to verify that A−1 is a matrix with α on the diagonal and β in

all other entries, where

α = 2(k − 1)

kx
β = − 2

kx
,

so that ||A−1||1 = 4k−6
kx . It is a well known fact [15] that if ||A−1||1 · ||E ||1 < 1, then

||(A + E)−1 − A−1||1 ≤ ||A−1||21||E ||1
1 − ||A−1||1||E ||1 .

Since ε ≤ x
32k we learn that ||A−1||1 · ||E ||1 ≤ 1/4 from which we conclude that

||�[a] − A−1||1 ≤ 32kε/x2. Since a was arbitrary for any i, j ∈ [k] with i �= j we
get

∣∣
∣c(i, j) − 2

kx

∣∣
∣ ≤ 32kε

x2

∣∣
∣π̃(i) − 2(k − 1)

kx

∣∣
∣ ≤ 32kε

x2
≤ 1

x
,

since ε ≤ x
32k . Since k ≥ 3 we have that π̃(i) ≥ 1

3x and k
k−1 ≤ 3/2. Thus,

∣
∣∣

1

π̃(i)
− kx

2(k − 1)

∣
∣∣ ≤ 32k2ε/x

2(k − 1)π̃(i)
≤ 72kε,

where we used that if |a − b| ≤ c then | 1a − 1
b | ≤ c/|ab|.

Since there are no loops in our reduced network, the network randomwalk started at
1 visit {2, . . . , k} before returning to 1 with probability 1. Hence Reff(1 ↔ {2, . . . , k})
is just 1

π̃(1) by (5), concluding the proof. ��

Proof of Theorem 3.4 Put ε = 2+ logk d
d

d . For any i, j ∈ [k] with i �= j the random
vertex Xi is uniformly distributed over the vertices of G and X j is the endpoint of a
random walk starting at Xi of length � ≤ k, where � is the length of the path between
i and j in T . By Corollary 3.3

P

(
Reff(Xi ↔ X j ) ≥ 2 + logk d

d

d

)
≤ 2k

logk d
.
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The local limit of uniform spanning trees 1145

By the union bound

P

(
∃i �= j ∈ [k] Reff(Xi ↔ X j ) ≥ 2 + logk d

d

d

)
≤ k3

logk d
.

Furthermore, by (6), if Xi �= X j , then the resistance across them is at least 2
d − 2

d2
.

At each step of the random process of drawing (X1, . . . , Xk), the probability we draw
an already chosen vertex is at most k/d hence the probability that (X1, . . . , Xk) is
compatible with T (in particular they are distinct vertices) is at least 1− k2

d ≥ 1− k3

logk d
by our assumption on d.

We conclude that with probability at least 1 − 2k3/ logk d for all i, j ∈ [k] with
i �= j we have

∣∣
∣Reff(Xi ↔ X j ) − 2

d

∣∣
∣ ≤ logk d

d2
,

from which Theorem 3.5 implies that desired result (we have used our assumption
d ≥ 16k logk d to verify the assumption of Theorem 3.5). ��

Corollary 3.6 Let G be a simple d-regular graph and T a rooted tree on k ≥ 3 vertices
such that d ≥ 16k logk d. Denote by N the number of k-tuples (v1, . . . , vk) that are
T -compatible and such that

∣∣∣Reff(vk ↔ {v1, . . . , vk−1}) − k

(k − 1)d

∣∣∣ ≥ 72k logk d

d2
.

Then

N ≤ 2ndk−1k3

logk d
.

Proof Immediate from Theorem 3.4. ��

4 Tightness

Our goal in this section is to prove Theorem 4.2 showing that, in the setting of Theo-
rem 1.1, for any integer r ≥ 1 the random variables |B�n (X , r)| are a tight sequence.
We remark that for r = 1 this is trivial since the expected degree of a randomly chosen
vertex in any tree is at most 2. This reasoning fails for r ≥ 2, indeed, the behavior
of bigger balls is inherently different, for example, E |B�n (X , 3)| may be unbounded,
see Sect. 7.2 for an example and further discussion.
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1146 A. Nachmias , Y. Peres

Lemma 4.1 Let � be a fixed finite tree, S ⊂ V (�) be a subset of its vertices and X a
uniformly drawn vertex of V (�). Then for any positive integers r ,m, M we have

P

(
B�(X , r − 1) ∩ S �= ∅, |B�(X , r − 1)| ≤ m, |B�(X , r)| ≤ M

)
≤ r |S|mr−2M

|V (�)| .

Proof If x ∈ � is a vertex such that B�(x, r − 1) ∩ S �= ∅, then there exists a
vertex v ∈ S and a simple path in � of length � ≤ r − 1 from x to v. If in addition
|B�(x, r − 1)| ≤ m and |B�(x, r)| ≤ M , then when � < r − 1 all vertex degrees on
this path are at most m and if � = r − 1, then the degrees of the first r − 2 vertices of
the path are at most m and the degree of v is at most M . For each v ∈ S, the number
of such paths of length � < r − 1 is at most m� and the number of such paths when
� = r − 1 is at most Mmr−2. Hence the number of possible x’s is at most

|S|
r−2∑

�=1

m� + |S|mr−2M ≤ r |S|mr−2M,

concluding the proof. ��

Theorem 4.2 (Tightness) Let {Gn} be a sequence of finite, simple, connected, regular
graphs with degree d(n) → ∞. Let �n be a uniformly drawn spanning tree of Gn and
let X be a uniformly chosen random vertex of Gn. Then for any integer r ≥ 0 we have

lim
M→∞ sup

n
P

(
|B�n (X , r)| ≥ M

)
= 0.

Proof To simplify the notation we write Br for the random variable |B�n (X , r)|. Our
proof is by induction. The case r = 0 is obvious since B0 = 1 always. Let r ≥ 1 and
let ε > 0 be arbitrary. By induction we know that there exists some m > 0 such that
for all n we have

P

(
Br−1 ≥ m

)
≤ ε/2. (16)

We fix M ≥ m that we will choose later depending only on m, r and ε. Our goal is to
estimate P(Br ≥ MBr−1 ≤ m). This equals

∞∑

k=0

P

(
Br ∈ [2kM, 2k+1M)Br−1 ≤ m

)
. (17)

For each k ≥ 0 we choose some large Ak ≥ 4 that will also be chosen later (it will
depend only k, r ,m and ε) and apply Lemma 3.1 to obtain that the number of edges
with resistance on them at least Ak/d is at most n/(Ak − 2) ≤ 2n/Ak . Let Sk denote
the set of vertices which touch at least 2k−1M/m edges with resistance at least Ak/d.
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The local limit of uniform spanning trees 1147

Thus, |Sk | ≤ 8nm
Ak2k M

. By Lemma 4.1 we have

P(Br ∈ [2kM, 2k+1M)Br−1 ≤ mB�n (X , r − 1) ∩ Sk �= ∅
)

≤ 16rmr−1

Ak
. (18)

We now upper bound

P

(
Br ∈ [2kM, 2k+1M)Br−1 ≤ mB�n (X , r − 1) ∩ Sk = ∅

)
. (19)

If the event above occurs, then there is a path v0, v1, . . . , vr−1 in �n starting at v0 = X
of length r − 1 such that

(1) All vertices in the path are not in Sk , and,
(2) vr−1 has at least D = 2kM/m edges of �n touching it whose other endpoint is

not in B�n (X , r − 1).

Since vr−1 /∈ Sk at least D/2 of the edges specified above have resistance at most
Ak/d between their endpoints. We enumerate over all the possibilities of the path
(v0, . . . , vr−1) (there are at most ndr−1 choices) and D/2 children of vr−1 (there are( d
D/2

)
choices). We apply (9) and bound the probability of each edge being in �n by

Ak/d. We obtain that (19) is bounded by

dr−1(Ak/d)r−1
(

d

D/2

)
(Ak/d)D/2 ≤ Ar−1

k

(2eAk

D

)D/2
.

We put this bound together with (16), (17) and (18) to obtain that

P(Br ≥ M) ≤ ε

2
+

∞∑

k=0

16rmr−1

Ak
+

∞∑

k=0

Ar−1
k

(2eAk

D

)D/2
, (20)

where D = 2kM/m. We now choose Ak = 2k+7rmr−1ε−1 so that the first sum on
the right hand side is at most ε/4. We then take M = M(m, r , ε) so large such that
for any k ≥ 0 we have

Ar−1
k

(2eAk

D

)D/2 ≤ ε(1/4)k/8,

for example, M can be chosen so that 2eAk/D ≤ ε2r2−r r−rm−r2 and D/2 ≥ 2k+1

so that the third sum in (20) is at most ε/4. We get that P(Br ≥ M) ≤ ε, concluding
the proof. ��

5 Proof of main theorem

We say that a vertex of G is good if it does not touch an edge such that the effective
resistance between its endpoints is at least log d

d . Given a fixed rooted tree T of height
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1148 A. Nachmias , Y. Peres

r on k ≥ 2 vertices, we say that T -compatible k-tuple (v1, . . . , vk) is good if all the
vertices of tree-distance at most r − 1 to the root are good. In other words, if the
vertices (v1, . . . , vk−|Tr |) are good vertices. The following is a key calculation.

Lemma 5.1 Let G be a simple d-regular graph and T a rooted tree on k ≥ 2 vertices.
If d ≥ 72k logk+1 d, then

1

n

∑

(v1,...,vk )
T−compatible

good

k∏

i=2

Reff(vi ↔ {v1, . . . , vi−1}) ≤ k + 4k2k3

log d
, (21)

Proof We prove by induction on k. The base case k = 2 follows (without the second
term on the right hand side of (21)) by Foster’s Theorem (10). We proceed to the
general k ≥ 3 case.

We write C = 2k3. By Corollary 3.6 the number of T -compatible k-tuples
(v1, . . . , vk) for which

Reff(vk ↔ {v1, . . . , vk−1}) ≥ k + 72k logk d
d

(k − 1)d
(22)

is at most Cndk−1/ logk d. For these tuples, we bound each term in the product by
log d
d ; indeed, we may do so since vi has a good neighbor in {v1, . . . , vi−1} for all

i ∈ {2, . . . , k}. This gives us an upper bound of

1

n
× Cndk−1

logk d
×

( log d
d

)k−1 = C

log d
.

For all other tuples we have the opposite inequality at (22). Thus we may bound the
last term in the product by this, sum it over the d possible choices of vk and obtain
that the sum at the left hand side of (21) is bounded above by

C

log d
+

k + 1
log d

(k − 1)
· 1
n

·
∑

(v1,...,vk−1)
T \{vk }−compatible

good

k−1∏

i=2

Reff(vi ↔ {v1, . . . , vi−1}),

where we used our assumption on d to bound 72k logk d
d ≤ 1

log d . We use our induction
hypothesis to bound the last term and get that

1

n

∑

(v1,...,vk )
T−compatible

good

k∏

i=2

Reff(vi ↔ {v1, . . . , vi−1}) ≤ C

log d
+

k + 1
log d

(k − 1)

(
k − 1 + 4k−1C

log d

)
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The local limit of uniform spanning trees 1149

≤ k + 2C

log d
+ 3 · 4k−1C

log d
,

where we bounded
k+ 1

log d
(k−1) ≤ 3. Since 2+ 3 · 4k−1 ≤ 4k we get the desired inequality

and conclude our proof. ��
Proof of Theorem 1.2 Let (v1, . . . , vk) be a T -compatible k-tuple of Gn . We write
T (v1, . . . , vk) for the subset of edges

{{vi , v j } : {i, j} ∈ E(T )} of Gn (by definition
of T -compatible all of these pairs must be edges of Gn). We have that

P(B�n (X , r) ∼= T ) = 1

|V (Gn)||StabT |
∑

(v1,...,vk )
T−compatible

P(B�n (v1, r) = T (v1, . . . , vk)),

since for each root preserving isomorphism σ ∈ StabT the edge subsets T (v1, . . . , vk)

and T (vσ(1), . . . , vσ(k)) are equal so the corresponding events identify as well. Up to
these isomorphisms, all the events are disjoint and hence the |StabT |−1 term above.

Recall that Tr are the vertices at the last level of T viewed from the root. Set
t = k − |Tr | so that by our labeling convention the vertices [t] are the vertices of T
that are not in Tr . Denote by λT (v1, . . . , vk) the event that all edges emanating from
v1, . . . , vt which do not belong to T (v1, . . . , vk) are not in the UST �n . We have

P(B�n (X , r) ∼= T ) = 1

|V (Gn)||StabT |
∑

(v1,...,vk )
T−compatible

P
(
T (v1, . . . , vk) ⊂ �n, λT (v1, . . . , vk)

)
.

By Kirchhoff’s formula (8) together with spatial Markov’s property (Proposi-
tion 2.1) for any T -compatible tuple (v1, . . . , vk), we have that

P(T (v1, . . . , vk) ⊂ �n) =
k∏

i=2

Reff(vi ↔ {v1, . . . , vi−1}). (23)

By the spatial Markov property (Proposition 2.1), the probability of the event
λT (v1, . . . , vk) conditioned on T (v1, . . . , vk) ⊂ �n is the probability that all edges
emanating from {v1, . . . , vt } that do not belong to T (v1, . . . , vk) are not in a UST of
the graph G/(v1, . . . , vk) in which the edges T (v1, . . . , vk) are contracted and loops
erased. The degree in this graph of the vertex corresponding to (v1, . . . , vk) is at least
kd − k2 and at most kd.

Denote by {e1, . . . , eL } the set of edges of G that have precisely one endpoint in
{v1, . . . , vt } and do not belong to T (v1, . . . , vk). Since all degree are d we have that
L ≥ td − k2. For any � satisfying 1 ≤ � ≤ L we have

P(e� /∈ �n | {e1, . . . , e�−1} ∩ �n = ∅, T (v1, . . . , vk) ⊂ �n)

≤ 1 − 1

d − k + 1
− 1

kd − k2 − � + 1
,
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1150 A. Nachmias , Y. Peres

since if e� = (vi , u) for some 1 ≤ i ≤ k and u /∈ {v1, . . . , vk}, then the degree of
u in G/(v1, . . . , vk) − {e1, . . . , e�−1} is at least d − k (since Gn is simple) and the
degree of vi in the same graph is at least kd − k2 − � + 1, and the estimate follows
by the spatial Markov property and our deterministic lower bound (6) on the effective
resistances between two vertices.

We apply this estimate sequentially over {e1, . . . , eL }, use the fact that L ≥ td −
O(1) and obtain that

P
(
λT (v1, . . . , vk) | T (v1, . . . , vk) ⊂ �n

) ≤
L∏

�=1

(
1 − 1

d − k + 1
− 1

dk − k2 − � + 1

)

≤ exp
(

−
td−k2∑

�=1

( 1
d

+ 1

dk − �

))

≤ (1 + O(d−1))
e−t (k − t)

k
,

where the second inequality is a straightforward computation with harmonic series.
The constants in the O-notation depend on k. Thus,

P(B�n (X , r) ∼= T ) ≤ (1 + O(d−1))e−t (k − t)

k|V (Gn)||StabT |
∑

(v1,...,vk )
T−compatible

k∏

i=2

Reff (vi ↔ {v1, . . . , vi−1}).

We now show that the probability that B�n (X , r − 1) contains a vertex that is not
good is negligible. Indeed, by Lemma 3.1 the number of such vertices is at most
Cn/ log d and so by Lemma 4.1 the probability that B�n (X , r) ∼= T and that there

exists a vertex of B�n (X , r − 1) touching such a vertex is bounded by Crkr−1

log d = o(1)
since d(n) → ∞ and k and r are fixed. Hence by Lemma 5.1 we get

P(B�n (X , r) ∼= T ) ≤ e−t (k − t)

|StabT | + o(1). (24)

Denote by TM the set of rooted trees T with |V (T )| ≤ M , viewed up to root
preserving graph isomorphism. Let ε > 0 be arbitrary, apply Theorem 4.2 to obtain a
number M1 = M1(ε) < ∞ so that for all n

∑

T∈TM1

P(B�n (X , r) ∼= T ) ∈ [1 − ε, 1].

By (1) there exists M2 = M2(ε) < ∞ such that

∑

T∈TM2

e−t (k − t)

|StabT | ∈ [1 − ε, 1].
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We put M = max(M1, M2). By (24) we learn that there exists N = N (M, ε) such
that for any T ∈ TM and any n ≥ N one has

P(B�n (X , r) ∼= T ) ≤ e−t (k − t)

|StabT | + ε

|TM | .

If two positive sequences {a�}N�=1 and {b�}N�=1 satisfy a� ≤ b� for all � ∈ [N ] as well
as

∑N
�=1 a� ∈ [1 − ε, 1] and ∑N

�=1 b� ∈ [1 − ε, 1 + ε], then ∑N
�=1 |a� − b�| ≤ 2ε.

Hence

∑

T∈TM

∣∣∣P(B�n (X , r) ∼= T ) − e−t (k − t)

|StabT |
∣∣∣ ≤ 2ε,

concluding our proof. ��

6 The UST on high degree almost regular graphs

In this section we describe the necessary changes to the proof of Theorem 1.2 in order
for it to work when {Gn} is a sequence of high degree almost regular graphs with
d(n) → ∞ (see Definition 1.3), that is, in order to prove Theorem 1.4. Furthermore,
we prove the quenched version Theorem 1.5 which relies on Theorem 1.4 (even in the
purely regular setting of Theorem 1.2).

Wewill need to take into account the rate of decay of the o(1) terms inDefinition 1.3.
Therefore we assume for the rest of this section that {Gn} is a sequence of high degree
almost regular graphs such that

∣∣∣
{
v ∈ V (Gn) : | deg(v) − d(n)| ≤ δnd(n)

}∣∣∣ ≥ (1 − δn)|V (Gn)|, (25)

and
∣∣
∣

∑

v∈V (Gn)

deg(v) − d(n)|V (Gn)|
∣∣
∣ ≤ δnd(n)|V (Gn)|, (26)

where δn = o(1) is some non-negative sequence tending to 0. Without loss of general-
itywe assume that d(n)−1 = O(δn); otherwisewe take the sequencemax(δn, d(n)−1).

For such a sequence we have that

∑

v∈V (Gn)

∣
∣∣

deg(v)
∑

v deg(v)
− 1

|V (Gn)|
∣
∣∣ = O(δn), (27)

or in other words, we may couple the uniformly drawn vertex with a vertex drawn
according to the stationary distribution so that they are equal with probability at least
1 − O(δn), see [9, Proposition 4.7].
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6.1 Almost regular versions of Sections 3 and 4

Let X0 be a vertex drawn according to the stationary distribution and let X1 be a
random neighbor of it so that {X0, X1} is a uniformly drawn edge ofGn . Then Foster’s
Theorem gives the analogue of (11) for high degree almost regular graphs

E Reff(X0 ↔ X1) = 2 + O(δn)

d(n)
.

Lemma 3.1′ Let {Gn} be a high degree almost regular graph satisfying (25) and (26).
For any ε > 2/d the number of edges e = (x, y) ∈ E(Gn) with Reff(x ↔ y) ≥ ε is
at most (1+O(δn))|V (Gn)|

εd−2 .

Proof Similarly to the proof of Lemma 3.1, we denote by Nε the number of such edges.
For every edge (x, y) for which the degree of both its vertices is at most (1+ δn)d(n)

we bound Reff(x ↔ y) ≥ 2−O(δn)
d using (6). By (25) and (26) the number of such

edges is at least (1 − O(δn))|V (Gn)|d/2, so by Foster’s Theorem (10)

|V (Gn)| − 1 ≥ Nεε +
( (1 − O(δn))|V (Gn)|d

2
− Nε

)2 − O(δn)

d
,

giving the required upper bound on Nε. ��
We use Lemma 3.1′to prove tightness in the almost regular setting.

Theorem 4.2′ (Tightness) Let {Gn} be a high degree almost regular graph sequence.
Let �n be a uniformly drawn spanning tree of Gn and let X be a random vertex chosen
according to the stationary distribution of Gn. Then for any integer r ≥ 0 we have

lim
M→∞ sup

n
P

(
|B�n (X , r)| ≥ M

)
= 0.

Proof The proof of Theorem 4.2 applies verbatim with Lemma 3.1′replacing the use
of Lemma 3.1. ��

Next we alter the statement of Lemma 3.2 to the following.

Lemma 3.2′ Let {Gn} be a high degree almost regular graph satisfying (25) and (26)
and let (X0, . . . , Xk) be a k-step random walk on Gn, with k ≥ 1, starting from a
random vertex X0 drawn according to the stationary distribution. Then

E Reff(X0 ↔ Xk) ≤ 2 + O(δn)

d
.

where the implicit constant may depend on k.
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Proof The alterations required in the proof of Lemma 3.2 are changing the stationary
mass of x0 and replacing powers of d into the corresponding products of degrees. So
that (12) now becomes

∑

(x1,...,xk )
xi �=x0∀i=1,...,k

1
∏k−1

i=0 deg(xi )

[
Exk τx0 + k

] ≤ 1

π(x0)
,

where π(x0) = deg(x0)/
∑

v∈V (Gn)
deg(v) is the stationary mass of x0. The analogue

of (13) is now

EEXk τx0 ≤ 1

π(x0)
+

k−1∑

i=1

∑

(x1,...,xi )
xi=x0

1
∏i−1

j=0 deg(x j )

∑

(xi+1,...,xk )
x j �=x0∀ j=i+1,...,k

1
∏k−1

j=i deg(x j )
Exk τx0 .

Hence plugging in the previous estimate yields

EEXk τx0 ≤ 1

π(x0)
+ 1

π(x0)

k−1∑

i=1

P(Xi = x0 | X0 = x0).

We average this inequality over x0 according to the stationary measure of Gn and get
that

EEXk τX0 ≤ |V (Gn)| +
k−1∑

i=1

∑

x0

P(Xi = x0 | X0 = x0).

For each i ∈ [k−1], the corresponding term in the sum on the right hand side, divided
by |V (G)|, is just the probability that P(Xi = X0) when X0 is a uniformly chosen
vertex. It is easier to bound the return probability when X0 is a stationary vertex rather
than a uniform vertex. By (27) the difference between the two probabilities is O(δn).
If X0 is stationary, then Xi−1 is also a stationary vertex, hence the probability that it
is a vertex with degree smaller than d/2 is O(δn) by (25), and if that does not occur
the probability of moving to X0 in the next step is at most 2/d = O(δn). We deduce
that

EEXk τX0 ≤ (1 + O(δn))|V (Gn)|,

and the proof continues precisely as in Lemma 3.2 to give the desired result. ��
Corollary 3.3′ Let {Gn} be a high degree almost regular graph satisfying (25) and
(26) and let (X0, . . . , Xk) be a k-step random walk on Gn, with k ≥ 1, starting from
a random vertex X0 drawn according to the stationary distribution. Then for any
ε > 2/d we have

P
(
Reff(X0 ↔ Xk) ≥ ε

) ≤ O(δn)

εd − 2
.
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Proof Denote the probability that Reff(X0 ↔ Xk) ≥ ε by p. Since X0 is stationary so
is Xk hence by (25) the probability that they both are vertices of degree (1±O(δn))d(n)

is at least 1 − O(δn). In this case we bound the resistance between them from below
by 2−O(δn)

d(n)
using (6). Thus, by Lemma 3.2′we obtain

2 + O(δn)

d
≥ E Reff(X0 ↔ Xk) ≥ εp + (1 − p − O(δn))

2 − O(δn)

d
,

and rearranging gives the result. ��

We are now ready to state the analogue of Theorem 3.4. Given a fixed finite rooted
tree T with k ≥ 3 vertices, the random k-tuple (X1, . . . , Xk) of vertices is drawn
exactly as described above Theorem 3.4 with the only exception that X0 is now a
stationary vertex.

Theorem 3.4′ Let {Gn} be a high degree almost regular graph satisfying (25) and
(26). Let {X1, . . . , Xk} be a random k-tuple drawn as described above. Then there
exists C = C(k) > 0 such that with probability at least 1 − O(δ

1/2
n ) we have that

(X1, . . . , Xk) are T -compatible and

∣∣∣Reff
(
Xk ↔ {X1, . . . , Xk−1}

) − k

(k − 1)d

∣∣∣ ≤ Cδ
1/2
n

d
.

Proof We closely follow the proof of Theorem 3.4. For i �= j as in the beginning of
that proof, we have by Corollary 3.3′that

P

(
Reff(Xi ↔ X j ) ≥ 2 + √

δn

d

)
= O(δ

1/2
n ).

By the union bound

P

(
∃i �= j ∈ [k] Reff(Xi ↔ X j ) ≥ 2 + √

δn

d

)
= O(δ

1/2
n ).

Furthermore, since Xi are stationary, by (25) and (27), with probability at least
1 − O(δn) the degrees of X1, . . . , Xk are all (1 + O(δn))d(n), hence the resistance
between any distinct pair is at least 2−O(δn)

d . Furthermore, as before, the probability
that X1, . . . , Xk are all distinct is 1 − O(d−1) which is 1 − O(δn). We conclude that
with probability at least 1 − O(δ

1/2
n ) for all i, j ∈ [k] with i �= j we have

∣∣∣Reff(Xi ↔ X j ) − 2

d

∣∣∣ ≤ O(δ
1/2
n )

d
,

from which Theorem 3.5 implies that desired result. ��

123



The local limit of uniform spanning trees 1155

6.2 Proof of main theorem, extended version

In the proofs of the rest of this sectionwewill need to discard undesirable T -compatible
k-tuples such as those that have atypical vertex degrees. To that aim we introduce the
following definitions. Recall that our convention is that the vertices [t] where t < k
are the vertices of T at graph distance at most r −1 from the root, while {t +1, . . . , k}
are the vertices at graph distance precisely r from the root.

Definition 6.1 Let {Gn} be a high degree almost regular graph sequence satisfying
(25) and (26).

(1) We say that a T -compatible k-tuple (v1, . . . , vk) has typical degrees if

(1 − δn)d(n) ≤ deg(vi ) ≤ (1 + δn)d(n) ∀i ∈ [t].

(2) We say that a T -compatible k-tuple (v1, . . . , vk) which has typical degrees has
typical neighbor degrees if for each i ∈ [t] the number of neighbors of vi which
have degree at least (1 − δn)d(n) is at least (1 − √

δn)d(n).
(3) We say that a T -compatible k-tuple (v1, . . . , vk) is good if none of the vertices

v1, . . . , vt are incident to edges with resistance at least
δ
− 1
4(k−1)

n
d across them.

In the rest of this section all implicit constants in the O-notation depend on k.

Claim 6.2 Let T be a fixed rooted tree with k vertices, and (X1, . . . , Xk) be a T -
compatible k-tuple drawn as described above Theorem 3.4′. Then with probability at
least 1 − O(

√
δn) the tuple (X1, . . . , Xk) has typical degrees and typical neighbor

degrees. Also, with probability 1 − O(δ
1/4(k−1)
n ) it is good.

Proof Since Xi is distributed according to the stationary distribution for i ∈ [t] it
suffices to prove that X1 satisfies the requirement of Definition 6.1 and use the union
bound to obtain the desired result.

Indeed, firstly, by (25) and (27) we learn that with probability 1− O(δn) the vertex
X1 has degree within (1 ± δn)d(n). Secondly, by Lemma 3.1′the probability that
X1 is not good is O(δ

1/4(k−1)
n ). Thirdly, denote by V1 ⊂ V (Gn) the set of vertices

with degree within (1 ± δn)d(n) and by V2 ⊂ V1 the set of vertices in V1 such
that at least (1 − √

δn)d(n) of their neighbors are in V1. As before we have that
P(X2 ∈ V1) = 1 − O(δn). On the other hand,

P(X2 ∈ V1 | X1 ∈ V1 \ V2) ≤ 1 − O(
√

δn).

Thus

1 − O(δn) ≤ P(X2 ∈ V1) ≤ (1 − O(
√

δn))P(X1 ∈ V1 \ V2) + 1 − P(X1 ∈ V1 \ V2),

and we deduce that P(X1 ∈ V1 \ V2) = O(
√

δn) concluding the proof. ��
The corresponding analogue of Corollary 3.6 requires that we consider k-tuples

having typical degrees.
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Corollary 3.6′ Let {Gn} be a high degree almost regular graph satisfying (25) and
(26). Denote by N the number of k-tuples (v1, . . . , vk) that are T -compatible, have
typical degrees, and such that

∣∣∣Reff(vk ↔ {v1, . . . , vk−1}) − k

(k − 1)d

∣∣∣ ≥ Cδ
1/2
n

d
,

where C is the constant from Theorem 3.4′. Then

N = O(δ
1/2
n |V (Gn)|dk−1).

Proof For any T -compatible k-tuple (v1, . . . , vk) that has typical degrees the prob-
ability that (X1, . . . , Xk) equals (v1, . . . , vk) is 1+O(δn)

|V (Gn)|d(n)k−1 . Furthermore, by

Claim 6.2, the probability that (X1, . . . , Xk) have typical degrees is 1 − O(
√

δn),
hence the total number of T -compatible k-tuples that have typical degrees is (1 +
O(

√
δn))|V (Gn)|dk−1.

Lastly, by Claim 6.2 we learn that the assertion of Theorem 3.4′continues to hold
when we condition on (X1, . . . , Xk) to have typical degrees and the desired assertion
follows. ��

Wemay now proceed to the proof of the main theorem in the almost regular setting.
We first state the analogue of Lemma 5.1.

Lemma of 5.1′ Let {Gn} be a high degree almost regular graph satisfying (25) and
(26). Then

1

|V (Gn)|
∑

(v1,...,vk )
T−compatible

good, typical degrees

k∏

i=2

Reff(vi ↔ {v1, . . . , vi−1}) ≤ k + O(δ
1/4
n ). (28)

Proof We closely follow the proof of Lemma 5.1 and prove by induction on k. By
Corollary 3.6′the number of T -compatible k-tuples (v1, . . . , vk) for which

Reff(vk ↔ {v1, . . . , vk−1}) ≥ k/(k − 1) + C
√

δn

d
(29)

is O(δ
1/2
n |V (Gn)|dk−1). For such tuples, we bound each term in the product by

δ
−1/4(k−1)
n

d . Thus we may bound the sum over such tuples (with the |V (Gn)|−1 fac-
tor) from above by

O(δ
1/2
n dk−1) ×

(δ
−1/4(k−1)
n

d

)k−1 = O(δ
1/4
n ).

For all other tuples we have the opposite inequality at (29). Thus we may bound
the last term in the product by this, sum it over the at most (1+ δn)d possible choices
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of vk and obtain that the left hand side of (28) is bounded above by

O(δ
1/4
n ) + k + O(

√
δn)

k − 1

1

|V (Gn)|
∑

(v1,...,vk−1)
T \{vk }−compatible
good, almost regular

k−1∏

i=2

Reff(vi ↔ {v1, . . . , vi−1}).

We apply our induction hypothesis to the sum on the right hand side, collect the
telescoping terms and get the desired result. ��

Proof of Theorem 1.4 Recall the definitions of the events T (v1, . . . , vk) and
λT (v1, . . . , vk) from the proof of Theorem 1.2. We still have that

P(B�n (X , r) ∼= T ) = 1

|V (Gn)||StabT |
∑

(v1,...,vk )
T−compatible

P(B�n (v1, r) = T (v1, . . . , vk)).

To proceed with the proof we need to discard a larger set of k-tuples than we did in the
proof of Theorem 1.2 and to do so earlier. By Lemma 4.1 and Claim 6.2 the probability
that B(X , r) ∼= T and B(X , r − 1) contains a vertex that is not of typical degree or
not good or does not have typical neighbor degree is o(1). Thus,

P(B�n (X , r) ∼= T ) = 1

|V (Gn)||StabT |
∑

(v1,...,vk )
T−compatible

good, typical degrees,
typical neighbor degrees

P(T (v1, . . . , vk) ⊂ �n, λT (v1, . . . , vk))

+ o(1).

The analysis performed in the proof of Theorem 1.2 shows that for any T -compatible
k-tuple (v1, . . . , vk) that has typical degrees and typical neighbor degrees we have

P(λT (v1, . . . , vk) | T (v1, . . . , vk) ⊂ �n) ≤ (1 + o(1))
e−t (k − t)

k
.

Since (23) holds, by Lemma 5.1′and the above we get that

P(B�n (X , r) ∼= T ) ≤ e−t (k − t)

|StabT | + o(1).

Now the same proof as in Theorem 1.2, below (24), can now be used verbatim, with
the exception that Theorem 4.2′takes the role of Theorem 4.2. ��
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6.3 Proof of Theorem 1.5

The proof by a second moment argument. By Theorem 1.4 we have that

E Yn(T ) = (1 + o(1))
|V (Gn)|Tr |e−|V (T )|+|Tr |

|StabT | .

The second moment can be expressed as

EYn(T )2 =
∑

u,v∈V (Gn)

P(B�n (v, r) ∼= T B�n (u, r) ∼= T ).

Wesplit the last sum to two according towhether the intersection B�n (v, r)∩B�n (u, r),
viewed as a vertex subset, is empty or not. If the intersection is non-empty, then
u ∈ B�n (v, 2r). Hence we bound

E Yn(T )2 ≤
∑

u,v

P(B�n (v, r) ∼= T , B�n (u, r) ∼= T , B�n (v, r) ∩ B�n (u, r) = ∅)

+
∑

v

E
[|B�n (v, 2r)|]. (30)

Theorem 4.2′immediately yields that the second term in (30) is o(|V (Gn)|2) so we
focus on estimating the first sum of the above inequality. To that aim, we condition
on B�n (v, r) ∼= T and on B�n (v, r) itself. That is, in the terminology of the proof of
Theorem 1.2, we condition the T -compatible k-tuple (v1, . . . , vk) and on the edges
T (v1, . . . , vk) being in the UST�n and on the event λT (v1, . . . , vk), i.e., that all edges
touching {v1, . . . , vt }, except for those in T (v1, . . . , vk), are not in �n . Conditioned
on this information, the UST �n restricted to the unconditioned edges is distributed
as a UST on the graph obtained by Gn by contracting the vertices {v1, . . . , vk} to a
single vertex and erasing edges touching {v1, . . . , vt }. Denote the resulting graph by
G ′

n .
It is not hard to verify that G ′

n is high degree almost regular. Indeed, since Gn is
simple, the degrees of all vertices of Gn except {v1, . . . , vk} have dropped by at most
k. The degree of the conjoined vertex {v1, . . . , vk} is at most kn and at least 1 and
the total number of edges that were erased from Gn is at most tn = o(dn). Thus G ′

n
satisfied Definition 6.1 perhaps with a slightly larger δn than the one of Gn , but still
o(1). Denote by �′

n the UST on G ′
n . Then Theorem 1.4 gives

∑

u∈V (G ′
n)

P(B�′
n
(u, r) ∼= T ) = (1 + o(1))

|V (Gn)||Tr |e−|V (T )|+|Tr |

|StabT | .

Therefore, the first sum in (30) is just (1 + o(1))[E Yn(T )]2 while the second sum is
o(E Yn(T )). We deduce that E Yn(T )2 = (1 + o(1))[E Yn(T )2], or in other words,
the variance of Yn(T ) is o([E Yn(T )]2) and the assertion of the theorem follows by
Chebychev’s inequality. ��
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7 Concluding remarks and open problems

7.1 Maximal diameter of the UST on regular graphs

The diameter of the UST, i.e., the maximal graph distance between two vertices, is the
most natural “global” property of theUST.We cannot hope this quantity has a universal
behavior only under the assumption of regularity. Indeed, the complete graph on d+1
vertices is a d-regular graph in which the diameter of the UST is of order

√
d. In

fact, in [12] it shown that that the diameter of the UST on various “high-dimensional”
(such as regular expanders, the hypercube and d-dimensional tori for d > 4) is of
order

√|V (G)|.
On the other hand, takem disjoint copies K1, . . . , Km of complete graphs on d +1

vertices and for each i ∈ [m] let (xi , yi ) be an edge of Ki . Add the edges (yi , xi+1) for
each i ∈ [m − 1] to form the connected graph G—it is easily seen that the diameter
of the UST on G is of order n/

√
d . (We remark that G is not regular, however, it is

not difficult to make small changes to this construction to make it regular, we omit the
details.) Our first question is whether this upper bound is best possible.
Question. Let {Gn} be a sequence of simple, finite, connected d(n)-regular graphs
with d(n) → ∞. Let Dn be the diameter of a UST of Gn . Does it hold that

E Dn = O
( |V (Gn)|√

d(n)

)
?

Remark 1 In [2] it is shown that if G is a simple, finite, connected graph with minimal
degree�(n), then its diameter is�(

√
n). This confirms the question above when d(n)

is linear in |V (Gn)|.
Remark 2 Theorem 1.1 implies that with high probability that diameter of the UST
in the setting of the question above is o(|V (Gn)|). In fact, the following much more
general statement can be made. We thank Jan Hladký for showing this to us.

Proposition 7.1 Let {Gn} be a sequence of graphs with |V (Gn)| → ∞ such that the
uniform spanning tree �n of Gn has a local limit (�, o) that almost surely has no
bi-infinite paths. Then, for any fixed ε > 0 one has

lim
n→∞ P

(
Dn ≥ εV (Gn)

) = 0,

where Dn is the diameter of �n.

Proof Assume by contradiction that there exists some fixed positive number ε1, ε2
such that for infinitely many n′s we have

P
(
Dn ≥ ε1V (Gn)

) ≥ ε2.

By passing to a subsequence we may assume without loss of generality that this
happens for every n. Let X be a uniform vertex of Gn . Then for any positive integer r ,
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the probability that B�n (X , r) contains two disjoint paths of length r emanating from
X is at least ε2(ε1−2r/|V (Gn)|)which is at least ε1ε2/2 > 0 when n is large enough.
This contradicts the fact that (�, o) has no bi-infinite paths almost surely. ��

Corollary 7.2 The conclusion of Proposition 7.1 hold for any sequence {Gn} of simple,
finite, connected d(n)-regular graphs with d(n) → ∞.

Proof It is well-known that the Poisson(1)Galton–Watson tree conditioned to survive
forever has no bi-infinite paths almost surely, see [10]. ��

7.2 Moments of degrees and graph distance balls

The average degree of a finite tree is at most 2 so E deg�n
(X) ≤ 2 where �n is a UST

of some finite graph and X is a uniformly drawn vertex. What can be said about higher
moments?

Without the assumption of regularity no higher moments are necessarily bounded
as can be seen by taking a star on n vertices. In the class of regular graphs we have
the following construction. Assume that d is a large even integer and consider d/2
disjoint copies of complete graphs on d vertices. From each complete graph remove
an edge, add a new vertex to the graph and connect it to each complete graph with two
edges to the two endpoints of the removed edges. In any spanning tree of this graph
the degree of the special vertex must be at least d/2 and the probability that a uniform
vertex is the special one is of order d−2. Thus, the pth moment of the degree for any
p > 2 need not be bounded. However, we can use the techniques of this paper to show
that the pth moment exists for any p ∈ (1, 2).

Lemma 7.3 There exists a constant C < ∞ such that for any finite connected regular
graph G

P(deg�(X) ≥ k) ≤ C

k2
,

where � is a UST of G and X is a uniformly drawn vertex.

Proof Assume that k ≥ 16e. By Lemma 3.1 there are nomore than 8e|V (G)|
k edges with

effective resistance at least k
4ed between their endpoints. So the number of vertices

which touch at least k/2 such edges is at most 32e|V (G)|
k2

. Hence the probability that

X is such a vertex is at most 32e
k2

. If X is not such a vertex and its degree is at least k,
then there are at least k/2 edges that touch X which have effective resistance at most
k

4ed that are in the UST. The probability of this, by (9), is at most

(
d

k/2

)
(k/4ed)k/2 ≤ (2ed/k)k/2(k/4ed)k/2 ≤ 2−k,

concluding the proof. ��
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Question. Does there exist a constant C such that for any finite connected regular
graph G one has E deg2�(X) ≤ C?

A very much related quantity is the size of the graph distance ball of radius r . In
Theorem 4.2 we have proved that its size is tight. The case r = 1 of this statement is
trivial since |B�(X , 1)| = deg�(X) and so their first moment is at most 2.When r = 2
the question above about E deg2�(X) is equivalent to asking whether E |B�(X , 2)| is
bounded. Indeed, it is easy to see by the mass transport principle [11, Chapter 8]
that E deg2�(X) = E |B�(X , 2)|—(each vertex transports its degree in � to all of its
neighbors). The mean of |B�(X , 3)| can already be unbounded—we leave this as an
exercise to the reader.
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