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Abstract
We study large uniform random bipartite quadrangulations whose genus grows lin-
early with the number of faces. Their local convergence was recently established by
Budzinski and the author [9,10]. Here we study several properties of these objects
which are not captured by the local topology. Namely we show that balls around the
root are planar with high probability up to logarithmic radius, and we prove that there
exist non-contractible cycles of constant length with positive probability.

Keywords Maps · Combinatorics · Probability · High genus · Discrete hyperbolic
geometry

Mathematics Subject Classification 60D05 · 60C05

1 Introduction

Planarmaps Maps are surfaces formed by gluing polygons together. They have been
given a lot of attention in the last decades, especially in the case of planar maps, i.e.
maps of the sphere. They were first approached from the combinatorial point of view,
starting with their exact enumeration by Tutte [29], with generating function methods.
Later on, bijections between maps and decorated trees were discovered, starting with
the Cori–Vauquelin–Schaeffer bijection [28].

More recently, thanks to both enumerative and bijective results, the properties of
large random maps have been studied. More precisely, one can study the geometry of
random maps picked uniformly in certain classes, as their size tends to infinity. In the
case of planar maps, the most notable results are probably the identification of two
types of “limits” (for two well defined topologies on the set of planar maps): the local
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1184 B. Louf

Fig. 1 The three types of curves
on a surface: contractible (in
purple), non-contractible and
separating (in red) and
non-separating (in blue)

limit (the UIPT1 [2] and UIPQ2 [15,19,22]) and the scaling limit (the Brownian map
[20,23]).

Maps on other surfaces Similar results exist for maps of genus greater than 0. It is
possible to study uniform maps with a fixed genus g > 0. Enumerative (asymptotic)
results have been obtained (see for instance [3]), and there are bijections for maps
on any surface (see for instance [14]). On the probabilistic side, equivalents of the
Brownian map in genus g > 0 have been constructed [4].

It is also possible to study maps without constraints on the genus, see [5,8,16] for
three different approaches to this problem.

High genus maps Very recently, yet another regime has been considered: maps
whose genus grows linearly in the size of the map. They exhibit hyperbolic features,
as their average degree (which is directly linked to the average curvature of the map)
is asymptotically higher than in planar (or fixed genus) maps. Some of their geometric
properties have been studied, starting with uniform unicellular maps, i.e. maps with
only one face. Their local limit is a supercritical Galton-Watson tree [1], and their
diameter is logarithmic [27]. These two results rely on a bijection between unicellular
maps and decorated trees [13].

The general case (i.e. uniform maps with various kinds of constraints on the face
degrees) has been studied more recently, starting with uniform high genus triangula-
tions,which converge locally in distribution towards a randomhyperbolic triangulation
of the plane [10]. A larger family ofmaps (bipartitemapswith prescribed face degrees)
is studied in [9], and a similar behaviour is observed.

In this paper, we investigate global geometric features of high genus maps. For
technical reasons, we will study quadrangulations instead of triangulations. More
precisely, for the rest of the paper, fix 0 < θ < 1

2 , and let (gn) be a sequence such that
gn
n → θ . Let q(n) be a uniform bipartite quadrangulation of genus gn with 2n faces.

Curves on a surface In this work, we will give a lot of attention to cycles seen as
curves on a surface. On a surface of genus at least 2, there are three different types of
(simple, closed) curves (see Fig. 1). The first kind is contractible curves, i.e. curves
that can be continuously deformed into a point. There are two types of non-contractible
curves: the separating curves and the non-separating curves. More precisely, given
a connected surface S and a non-contractible curve C on S, then we say that C is
separating if and only if S \ C is disconnected.

1 In the case of triangulations, i.e. maps made out of triangles.
2 In the case of quadrangulations.
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Planarity and non-separating cycles in uniform high genus… 1185

Fig. 2 The red part contains a
non contractible curve of the
grey surface, but it has the
topology of a cylinder, hence it
is planar

Our result In [9], it is proven that the local limit of q(n) is a random infinite quadran-
gulation of the plane. In particular, it implies that for every fixed r , the ball of radius
r around the root is planar with probability 1 − o(1) as n → ∞. This result might
seem counter-intuitive at first, as q(n) is highly non-planar. Actually, here we extend
this result to balls of a much larger radius. More precisely, we define the planarity
radius to be the largest r such that the ball of radius r around the root is planar and
does not contain any non-contractible cycle. Actually, the second condition implies
the first one, but they are not equivalent, see Fig. 2.

We show here that the planarity radius of q(n) is of logarithmic order whp3.

Theorem 1 There exists a constant aθ such that

PR(q(n)) ≥ aθ log n

with probability 1 − o(1) as n → ∞, where PR is the planarity radius.

In terms of the dimensions of q(n), this is very big, as its diameter is also believed to
be of logarithmic order (see Conjecture 1).

The neighbourhood of the root is planar, and there is no short non-contractible
cycle passing near the root. However, if we look at the whole map, then there is a good
chance to find very short non-contractible cycles.

Theorem 2 There exists a constant kθ > 0 such that

P

(
there exists a non-separating cycle of length 2 in q(n)

)
≥ kθ + o(1)

as n → ∞.

The proofs of these theorems rely on asymptotic estimations of the number of high
genus maps. The three main ingredients are the Carrell–Chapuy formula [11], the
bounded ratio lemma of [9], and the following result:

Proposition 1 For all n ≥ 1, g ≥ 1, we have

2gQ(n, g) ≤ (2n)3Q(n, g − 1)

where Q(n, g) is the number of bipartite quadrangulations of genus g with n faces.

This proposition is proven by a combinatorial injective operation.

3 Throughout the paper, we will write whp instead of “with probability 1 − o(1) as n → ∞”.
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1186 B. Louf

Structure of the paper We start with some definitions, then we discuss some natural
developments of this work. In the third section we prove Proposition 1, and the last
two sections are devoted to the proofs of Theorems 1 and 2.

2 Definitions

A map M is the data of the gluing of a finite collection of oriented polygons (the
faces) to form a compact, connected and oriented surface. The vertices and sides of
the polygons become, after the gluing, the vertices and edges of M . The genus g of
the surface formed by the gluing of the polygons is also called the genus of M . A
bipartite map is a map whose vertices are either black or white, and whose edges
always connect a black and a white vertex. We will consider rooted bipartite maps,
i.e. bipartite maps with a distinguished edge, called the root. The white vertex incident
to the root is called the root vertex. We can give a canonical orientation to all edges
(from white to black for instance), and therefore it makes sense to talk about what is
on the left or on the right of an edge.

A map with holes is a bipartite map with a certain number of marked faces called
holes. For any map m, we define the ball of radius r around the root of m (noted
Br (m)) as the map with holes formed by all vertices of m at distance r or less to the
root vertex, all edges of m with both endpoints in Br (m), and every face of m that has
all its incident edges in Br (m).

A (bipartite) quadrangulation4 q is a bipartite map whose faces are quadrangles.
If q has n faces and genus g, it has 2n edges and n + 2 − 2g vertices. We denote
by Q(n, g) the set of triangulations with n faces and genus g, and by Q(n, g) its
cardinality. A quadrangulation with a boundary of size 2p is a map with quadrangular
faces except for one special face, called the boundary, that is a simple5 2p-gon, such
that the boundary sits on the right of the root. We denote by Q(p)(n, g) the set of
bipartite quadrangulation with n quadrangles, a boundary of size p and genus g,
and by Q(p)(n, g) it cardinal. Quadrangulations with two boundaries are defined the
same way. A quadrangulation with two boundaries is a map with two roots with
quadrangular faces except for two special faces, called the boundaries, that are simple
and vertex-disjoint, such that each boundary sits on the right of one root.We require the
boundaries to be distinguishable, i.e. there is a first boundary and a second boundary.
We denote by Q(p,p′)(n, g) the set of bipartite quadrangulations with n quadrangles,
boundaries of size 2p and 2p′, and genus g, and by Q(p,p′)(n, g) its cardinality.

A unicellular map is a map with only one face, with a distinguished oriented edge
called the root. Let U(n, g) be the set of unicellular maps of genus g with n edges.

A simple path of a map M is a list of vertices (v0, v1, ..., v�) and edges
(e1, e2, ..., e�), such that for all 1 ≤ 1 ≤ �, ei joins vi−1 and vi , with the condi-
tion that the vi ’s are all distinct. The size of a simple path P , noted |P|, is the number
of edges it contains. A cycle of a map M is a list of vertices (v0, v1, ..., v�) and edges

4 From now on, all quadrangulations will be bipartite.
5 By simple, we mean that in the construction of the map by gluing polygons, no two sides of the 2p-gon
are glued together.
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Planarity and non-separating cycles in uniform high genus… 1187

(e1, e2, ..., e�), such that for all 1 ≤ 1 ≤ �, ei joins vi−1 and vi , and such that v0 = v�.
The size of a cycle C , noted |C |, is the number of edges it contains. In what follows,
we will only consider simple cycles, that satisfy the extra condition vi �= v j for all
1 ≤ i < j ≤ �. A contractible cycle is a cycle that, seen as a curve on the surface,
is contractible. A contractible simple cycle separates the map M in two parts, one of
them being a planar map with a boundary. On the other hand, a non-contractible cycle
either separates the map in two non-planar parts, in which case it is called separating,
or does not separate the map, in which case it is called non-separating. Note that a
non-separating cycle is necessarily non contractible. Recall that Fig. 1 presents the
three types of curves on a surface.

3 Discussion and conjectures

Before going to the proofs of the main results, we want to compare our model with
pre-existing models of hyperbolic geometry, and present a few problems that would
be a natural extension of this work.

Comparison with hyperbolic geometry High genus maps can be seen as discrete
models of two dimensional hyperbolic geometry. In the continuous setting, several
models of random hyperbolic metrics on surfaces as the genus goes to infinity have
been well studied in the past, two famous examples being the Brooks–Makover model
[7] and theWeil–Petersson measure [18,24]. The results obtained so far about random
uniform high genus maps are equivalent to the results obtained on these continuous
models, and we conjecture that high genus maps will behave similarly as continuous
models when we look at other geometric observables (see the conjectures below).

In particular, concerning the present work, in [24], it is proved that the injectivity
radius around a given point in a surface of genus g with a hyperbolic metric under
the Weil–Petersson measure grows logarithmically in g as g → ∞, and this implies
the same growth rate for the planarity radius of such surfaces. The injectivity radius
is defined as the smallest r such that the ball of radius r around a given point is not
homeomorphic to a disk. Unfortunately, such a result about the injectivity radiuswould
not transfer to maps, as they are not “smooth” enough.

Other models of maps We are quite confident that the proofs in the present article
adapt to many other models of maps (at least triangulations and bipartite maps with
prescribed bounded face degrees). The proof of Proposition 1 would involve objects
called mobiles (see [6]) in lieu of unicellular well-labeled maps, a version of the
bounded ratio lemma holds for many models (see [9,10]), and the Carrell–Chapuy
formula for bipartite quadrangulations can be replaced by other similar formulas [17,
21].

The diameter of high genus maps In Theorem 1, we only give a lower bound
for the radius of the biggest planar ball around the root. We believe that the upper
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bound is also of logarithmic order, and this would be implied by the following
conjecture6:

Conjecture 1 There exist constants mθ and Mθ such that

mθ log(n) ≤ diam(q(n)) ≤ Mθ log(n)

whp.

The lower bound is an immediate corollary of Theorem 1, but we must mention that
there exists a simpler proof of the lower bound (G. Chapuy, private communication).

Convergence of the ratio If we take θ ∈ (0, 1/2), Proposition 1 along with the
Carrell–Chapuy formula (5) imply that

Q(n, gn)

n2Q(n, gn − 1)
= �(1)

as n → ∞. We believe that this result can be made more precise.

Conjecture 2 There exists a function r(θ) such that

Q(n, gn)

n2Q(n, gn − 1)
→ r(θ)

as n → ∞.

Short non contractible cycles The systole of a map is the size of its shortest non-
contractible cycle. Theorem 2 proves that syst(q(n)) = 2 with positive probability as
n → ∞. This leads us to think that the systole is asymptotically almost surely finite,
and this would be coherent with results on continuous models [26].

Conjecture 3 We have

lim
M→∞ lim sup

n→∞
P(syst(q(n)) > M) = 0.

We conjecture that the shortest non-contractible cycle is non-separating, while the
shortest separating non-contractible cycle is actually much bigger.

Conjecture 4 For any map m, let SNC(m) be the size of the shortest separating non-
contractible cycle of m. There exists a constant sθ such that

SNC(q(n)) ≥ sθ log n

whp.

6 We want to stress on the fact that this conjecture is not ours, instead it is attributable to several people in
the community.
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Fig. 3 A well labeled unicellular
map

The motivation for this conjecture might seem a bit more obscure than the previous
ones, it actually comes from (conjectural) asymptotic estimation of the terms of the
Carrell–Chapuy formula (5), and again a similar result exists on continuous models
[24,25].

4 Proof of Proposition 1

Proposition 1 is a quite direct consequence of the bijections of [14] and [12]. We will
only briefly recall the details of these two bijections.

A unicellular map is said to be well-labelled (see Fig. 3) if each of its vertices
carries an integer label, and the two following conditions are verified:

– The minimal label is 1,
– The labels of two adjacent vertices differ by at most 1.

Let U lab(n, g) be the set of well-labeled unicellular maps of genus g with n edges,
and Ulab(n, g) its cardinal.

We know that there is a 2-to-1 correspondence [14] between U lab(n, g) and the set
of maps of Q(n, g) with a distinguished vertex, therefore

2Ulab(n, g) = (n + 2 − 2g)Q(n, g). (1)

A trisection of a unicellular map is a special corner of this map defined in [12].
We do not give the precise definition of a trisection here, as it is not needed, but we
underline two key properties of trisections:

– If c is a trisection of a unicellular mapU ∈ U(n, g), let v be the vertex incident to
c. Then there exist two other corners c1 and c2 incident to v such that v can be split
along c, c1 and c2 as in Fig. 4 and that the resulting map belongs to U(n, g − 1),

– There are 2g trisections in a map of U(n, g).

The first property is explained in Section 2.3 together with Definition 2 of [12].
More precisely, in Section 2.3, it is explained that it is possible to perform a “slicing
operation” (which we call splitting here) around three “intertwined half edges”, and
Definition 2 explains howa trisection involves three intertwined half edges. The second
property is Lemma 3 in [12].

The first point provides an injective operation from the set of maps of U(n, g) with
a marked trisection to the set of maps of U(n, g − 1) with three marked corners. Note
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1190 B. Louf

Fig. 4 Splitting a trisection

that this injection adapts to well-labelled unicellular maps, if we decide that the vertex
incident to the marked trisection is split into three vertices with the same label.

Now, by the second point, and since there are 2n corners in a map with n edges, we
have

2gUlab(n, g) ≤ (2n)3Ulab(n, g − 1). (2)

If we combine Eqs. (1) and (2), we prove Proposition 1.

5 Planar neighbourhoods of the root

In this section, we will prove Theorem 1. We will introduce objects called cycles with
tails, that are close to cycles passing through the root. Proposition 2 gives a lower
bound on the size of these objects in high genus bipartite quadrangulations, and we
will use it to prove Theorem 1.

5.1 Cycles with tails

Theorem 1 is actually a corollary of the following proposition regarding non-
contractible cycles that pass through the root. More precisely, we define a cycle with
tail to be either a simple non-contractible cycle containing the root edge, or a simple
non-contractible cycle attached to a simple path such that the root edge is on one end
of the path, and that the vertex on the other end of the path belongs to the cycle, but the
cycle and the path do not intersect anywhere else. The size of a cycle with tail (P,C),
noted |(P,C)|, is the number of edges it contains, i.e. |(P,C)| = |P| + |C |.
Proposition 2 Let ct(q(n)) be the size of the smallest cycle with tail in q(n). Then there
exists a constant cθ such that

ct(q(n)) ≥ cθ log n

whp.

Before proving this proposition, we first prove that it implies Theorem 1.
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Proof of Theorem 1 Let r such that Br (q(n)) contains a non-contractible cycle C of q(n)

(again, Br (q(n)) might be planar, see Fig. 2). In what follows, we will only focus on
the map Br (q(n)) and not q(n), all the lengths and distances are to be understood inside
Br (q(n)). Assume C is of minimal length. If the root edge of q(n) does not belong to
C, let (u, w) be its endpoints, and take a vertex v ∈ C such that

min(d(v, u), d(v,w))

is minimal. Wlog, say that d(v, u) = min(d(v, u), d(v,w)), and let P be a shortest
path from w to v starting with the root edge (P exists since v is closer to u than it is to
w). This ensures that |P| ≤ r + 1 and that P and C intersect only at v. Hence, (P, C)

is a cycle with tail, and since Br (q(n)) ⊂ q(n), we have |(P, C)| ≥ ct(q(n)). Using
Proposition 2, we can conclude that

|C| ≥ cθ log n − r − 1 (3)

whp.
Now, let v1, v2 be a pair of vertices on C such that d(v1, v2) is maximal. We can

decompose C into two pathsP ′ andP ′′ joining v1 and v2. Then, either |P ′| = d(v1, v2)

or |P ′′| = d(v1, v2). Indeed, if there exists a path P∗ between v1 and v2 satisfying
|P∗| < min(|P ′|, |P ′′|), then either P ′ ∪P∗ or P ′′ ∪P∗ is a non-contractible cycle of
length strictly shorter than C, a contradiction (see Fig. 5 left). Wlog, say that |P ′′| =
d(v1, v2)

Now, let v3 be a vertex onP ′, and say it separatesP ′ intoP1 (containing v1) andP2
(containing v2). Then again, either P1 or P2 ∪P ′′ is a path of minimal length between
v1 and v3. But it cannot be P2 ∪P ′′, because it is strictly longer than d(v1, v2), which
was supposed to be maximal. Therefore, |P1| is less than or equal to d(v1, v2), and
the same goes for |P2| (see Fig. 5 right). Since we are in Br (q(n)), we also have
d(v1, v2) ≤ 2r , therefore

|C| ≤ |P ′′| + |P1| + |P2| ≤ 3d(v1, v2) ≤ 6r . (4)

Combining (3) and (4), we obtain

7r + 1 ≥ cθ log n

whp, which proves Theorem 1 for aθ = cθ
7 .

5.2 Two useful results

Here we present two results proved in previous works that will be useful for the
proof of Proposition 2. First we have the Carrell–Chapuy formula [11], which is
a recurrence formula for enumerating bipartite quadrangulations in any genus. For
every n ≥ 1, g ≥ 0, we have
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1192 B. Louf

Fig. 5 Left: the cycle C contains a shortest path between v1 and v2. Right: any vertex on P ′ splits it into to
shortest paths towards v1 and v2

(n + 1)Q(n, g) = 4(2n − 1)Q(n − 1, g) + (2n − 2)(n − 1)(2n − 1)Q(n − 2, g − 1)

+ 3
∑

n1+n2=n−2
n1,n2≥0

∑
g1+g2=g
g1,g2≥0

(2n1 + 1)Q(n1, g1)(2n2 + 1)Q(n2, g2)

(5)

with initial condition Q(0, g) = 1g=0.
Then we have the bounded ratio lemma [9, Lemma 13], that controls a certain

growth rate for high genus maps:

Lemma 1 (The bounded ratio lemma) For all ε > 0, there exists a constant Cε > 0
such that for all g ≥ 0, n ≥ 1 satisfying g

n ≤ 1
2 − ε, we have

Q(n − 1, g)

Q(n, g)
≥ Cε.

5.3 Technical lemmas

This section regroups a few technical lemmas that we will need to prove Proposition 2.
More precisely, we will use Lemmas 2 and 3, as well as (6). The other lemmas of this
section will only be used to establish (6).

We start with a bound on maps with boundaries.

Lemma 2 We have the following inequalities for all n ≥ 1, g ≥ 0, p ≥ 1, p′ ≥ 1

Q(p)(n, g) ≤ Q(n + p − 1, g) and Q(p,p′)(n, g)

≤ 2(n + p + p′ − 2)Q(n + p + p′ − 2, g).

Proof We will prove the inequalities by an injective operation. Start with a map of
Q(p)(n, g). If p = 1, contract the boundary into the root edge. Otherwise, tessellate
the boundary with p− 1 quadrangles as in Fig. 6 to obtain a map ofQ(n + p− 1, g).

The proof of the second inequality is very similar, except that the second root
becomes a marked edge, hence the factor 2(n + p + p′ − 2).

The next lemma is in some sense the reverse inequality of Proposition 1.
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Fig. 6 Tessellating the boundary. Here p = 4, the root is in red

Lemma 3 If n is large enough and g
n ≤ 1

2 − ε, then the following inequality holds:

Q(n, g) ≥ C2
εn

2Q(n, g − 1),

where Cε is defined in Lemma 1.

Proof From (5), we directly have

Q(n, g) ≥ (2n − 2)(n − 1)(2n − 1)

n + 1
Q(n − 2, g − 1),

and by Lemma 1, we have Q(n − 2, g − 1) ≥ C2
ε Q(n, g − 1), and since for n large

enough we have (2n−2)(n−1)(2n−1)
n+1 ≥ n2, the proof is finished.

Our next goal is to upper bound the sum

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n

Q(n1, h1)Q(n2, h2)

to obtain (6).
Let us introduce the constant εθ = 1

2

( 1
2 − θ

)
. The following two lemmas provide

estimations of the terms of this sum, in two cases. We start with the case where both
n1 and n2 are big enough.

Lemma 4 If n is large enough, we have the following inequality:

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n

n1≥n2≥n1/3

Q(n1, h1)Q(n2, h2) ≤ 2

C2
εθ
n1/3

Q(n, gn).

Proof It follows from (5) (by forgetting certain terms and constants) and Lemma 1,
that

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n
n1,n2≥0

n1Q(n1, h1)n2Q(n2, h2) ≤ nQ(n + 2, gn) ≤ n
1

C2
εθ

Q(n, gn),
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and therefore

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n

n1≥n2≥n1/3

n

2
Q(n1, h1)n

1/3Q(n2, h2) ≤ n
1

C2
εθ

Q(n, gn),

which concludes the proof.

Now we cover the case where n2 is small.

Lemma 5 For n large enough, we have the following inequality

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n
1≤n2≤n1/3

Q(n1, h1)Q(n2, h2) ≤ (1 + o(1))
16

C4
εθ
n
Q(n, gn).

Proof Take h1, h2 such that h1 + h2 = gn and h1, h2 ≥ 1, and n1, n2 such that
n1 + n2 = n and 1 ≤ n2 ≤ n1/3.

Note that h1
n1

≤ gn
n−n1/3

, therefore if n is large enough we have h1
n1

< 1
2 − εθ . By

Lemma 3, we have Q(n1, h1 + 1) ≥ C2
εθ
n21Q(n1, h1) ≥ C2

εθ

4 n2Q(n1, h1).

By Proposition 1, we have Q(n2, h2 − 1) ≥ 1
4n32

Q(n2, h2) ≥ 1
4n Q(n2, h2). There-

fore, by an immediate induction, we have

Q(n1, h1)Q(n2, h2) ≤
(

16

C2
εθ
n

)h2

Q(n1, gn)Q(n2, 0).

If we sum this inequality over all quadruplets n1, n2, h1, h2, then we obtain

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n
1≤n2≤n1/3

Q(n1, h1)Q(n2, h2)

≤ (1 + o(1))
16

C2
εθ
n

∑
n1+n2=n
1≤n2≤n1/3

Q(n1, gn)Q(n2, 0).

But

∑
n1+n2=n
1≤n2≤n1/3

Q(n1, gn)Q(n2, 0) ≤ 1

n + 3

∑
n1+n2=n
1≤n2≤n1/3

(2n1+1)(2n2+1)Q(n1, gn)Q(n2, 0)

≤ Q(n + 2, gn)

≤ 1

C2
εθ

Q(n, gn)
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where the second inequality holds because of (5), and the last holds because of
Lemma 1. Therefore, the proof is complete.

Combining Lemmas 4 and 5, one obtains the following inequality (for n large
enough):

∑
h1+h2=gn
h1,h2≥1

∑
n1+n2=n
n1,n2≥1

Q(n1, h1)Q(n2, h2) ≤ (1 + o(1))
2

C2
εθ
n1/3

Q(n, gn). (6)

5.4 Proof of Proposition 2

There is a bijection between maps with a marked cycle with tail and maps (or pairs of
maps) with boundaries.

Lemma 6 LetQct (n, g, �) be the set of maps ofQ(n, g) with a marked cycle with tail
of size � and Qct (n, g, �) its cardinal. Then, for n ≥ 1, g ≥ 1, � ≥ 1,

Qct (n, g, �) =
∑

p+p′=�

p≥p′≥1

(1 + 1p �=p′)

×

⎛
⎜⎜⎝Q(p,p′)(n, g − 1) +

∑
n1+n2=n
n1,n2≥1

∑
h1+h2=g
h1,h2≥1

Q(p)(n1, h1)Q
(p′)(n2, h2)

⎞
⎟⎟⎠

Proof Let (m, (P, C)) ∈ Qct (n, g, �) where m ∈ Q(n, g) and (P, C) is a cycle with
tail of m. If P �= ∅, wlog, say that P starts with the root vertex (this will explain the
factor 1+1p �=p′ ). Let f be the face that lies on the left of the root ofm. Let p′ = |C|/2.
Now, cut along C (see Fig. 7). There are two possible cases:

Case 1: C is non separating. Then, after cutting, one obtains a map with two marked
simple faces of size 2p′ that we will call f1 and f2, such that f1 is incident to P , or
adjacent to f ifP = ∅. Let e∗ be the unique edge incident to f1 andP (or to f1 and the
root edge ifP = ∅) such that f1 lies on the left of e∗. We call e∗ the gluing edge. Now,
on f2, let e be the edge that was identified with e∗ before cutting along C, note that f2
lies on the right of e, hence we consider it as a root, and now f2 is a boundary. We still
need to deal with f1 and P . If P = ∅, then f1 lies on the right of the root edge, and
can be considered as a boundary as well. Otherwise, by cutting along P as in Fig. 8,
we obtain a boundary of size 2p, with p = p′ + |P|. Notice that the gluing edge e∗
is uniquely determined by the position of the root edge, hence we can forget about
it. Now we have a map of Q(p,p′)(n, g − 1) with p + p′ = � and p ≥ p′ ≥ 1. The
inverse operation consists in closing the path (such that the root edge gets identified
with the other edge of the boundary that is incident to the root vertex) and gluing the
two boundaries together by identifying the second root with the gluing edge.

Case 2: C is separating.We perform the exact same operation: we cut along C, then cut
along P . We obtain a pair of maps of Q(p)(n1, h1) × Q(p′)(n2, h2) with p + p′ = �,
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Fig. 7 Cutting along a non-contractible cycle, the two possible cases

Fig. 8 Extending a boundary by cutting along a path. Here, p′ = 4 and p = 5. The root is in red and the
gluing edge is in blue

p ≥ p′ ≥ 1, n1 + n2 = n, n1, n2 ≥ 1, h1 + h2 = g and h1, h2 ≥ 1. The inverse
operation consists in closing the path and gluing the two boundaries together. 
�

Proof of Proposition 2 We will use the first moment method. More precisely, set

cθ = 1

6 log(1/Cεθ )
.

We will show that for all � ≤ cθ log n, we have Qct (n, gn, �) ≤ Q(n,gn)
n1/7

. Then we
conclude by a union bound on all 1 ≤ � ≤ cθ log n.

By Lemma 6, we have (for n large enough):

Qct (n, gn, �) =
∑

p+p′=�

p≥p′≥1

(1 + 1p �=p′ )
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×

⎛
⎜⎜⎝Q(p,p′)(n, gn − 1) +

∑
n1+n2=n
n1,n2≥1

∑
h1+h2=gn
h1,h2≥1

Q(p)(n1, h1)Q
(p′)(n2, h2)

⎞
⎟⎟⎠

≤ 2�

⎛
⎜⎜⎝2(n + � − 2)Q(n + � − 2, gn − 1) +

∑
n1+n2=n+�−2

n1,n2≥1

∑
h1+h2=gn
h1,h2≥1

Q(n1, h1)Q(n2, h2)

⎞
⎟⎟⎠

≤ 2�

(
2

C2
εθ
n
Q(n + � − 2, gn) + (1 + o(1))

2

C2
εθ
n1/3

Q(n + � − 2, gn)

)

≤ 2cθ log n

(
1

Cεθ

)� (
2

n
Q(n, gn) + 2(1 + o(1))

n1/3
Q(n, gn)

)

≤ Q(n, gn)

n1/7

where in the first inequality we used Lemma 2 and the fact that there are less than
� pairs (p, p′) such that p + p′ = � and p ≥ p′ ≥ 1. In the second inequality, we
used Lemma 3 for the first term and Eq. (6) for the second term. Finally, in the third
inequality we used Lemma 1. 
�
The proof of Proposition 2 finishes the proof of Theorem 1.

6 Short non-contractible cycles

Herewewill prove Theorem 2, namely that non-separating cycles of length two appear
with positive probability. The proof uses the same kind of tools that were used for
Theorem 1. This section is quite technical, but the general idea is simple: we estimate
the number of maps with one or two marked non-separating cycles of length 2, and
apply the second moment method. Unfortunately, the possibility that the two marked
cycles intersect creates a lot of pathological cases that we have to deal with separately,
hence the need for many technical lemmas. We will make a heavy use of the Carrell–
Chapuy formula (5) as an inequality by forgetting certain terms and constants in order
to simplify some expressions as soon as possible. For the sake of simplicity, we will
use very rough bounds, hence we will not obtain an optimal value for kθ in Theorem 2
(we believe that even by being more careful, we cannot find the right value for kθ ).

6.1 Cutting a cycle of length two

Here we introduce a bijective operation that we will use a lot in this section: cutting a
cycle of length two. It consists in taking a marked cycle in a map, and cutting along it.
Depending on whether the cycle was separating or not, we obtain one or two maps as
a result, with two disjoint marked digons (one on each map if the original map is cut
in two), that we contract into two marked edges. See Fig. 9 for an illustration. Note
that in the separating case, one of the maps inherits the original root, and we root the
other one by turning its marked edge into a root. In what follows, when we say we cut
a cycle of length two, we mean we apply this precise operation.
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Fig. 9 Cutting a cycle of length two. Left: the separating case (note that it is possible that both maps are
not planar), right: the non-separating case

Fig. 10 Opening a path of length � into a face of size 2�. Here, � = 3 and the marked edge is in blue

6.2 Technical lemmas

This subsection is devoted to some technical lemmas. The underlying idea is always
the same: cutting a cycle and/or filling a face with quadrangles.

Lemma 7 For any � ≥ 2, the number of maps of Q(n, g) with a marked path of size
� is less than 2(n + � − 1)Q(n + � − 1, g).

Proof We give an injective proof: given such a map, open the path into a face of size
2� (see Fig. 10), and mark an edge incident to this face to remember how to close it.
For instance, say that this marked edge should be glued to the other edge incident to
that face that shares a white vertex with it, this uniquely determines how to close the
face into a path. Then, tessellate this face with � − 1 quadrangles as in the proof of
Lemma 2 to obtain a map of Q(n + � − 1) with a marked edge. 
�

Lemma 8 For any � ≥ 1, the number of maps of Q(n, g) with a marked simple cycle
of size 2� is less than

(n + 2� + 1)Q(n + 2�, g).

Proof The proof uses a similar injective operation as in the proof of Lemma 6, except
that now the cycle we consider might be contractible. Given such a map, cut along this
cycle. There are two cases: either it is separating, or not. If the cycle is not separating,
one obtains one map of genus g − 1 with n quadrangles plus two marked faces of
length 2� with a marked edge on each (to go back, glue the two faces together so that
the marked edges coincide). If the cycle is separating, one obtains two maps with n
quadrangles and genus g in total, with one marked face on each map, and a marked
edge on each face.

Now, as in the proof of Lemma 2, if � = 1, we have marked digons that we close
into marked edges. Otherwise, tessellate these marked faces with � − 1 quadrangles
each. Note that if we obtain two maps, one of them inherits the original root, and in
the other we turn the marked edge into a root. Hence, we have an injective operation
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into a set of size

2(n + 2� − 2)Q(n + 2� − 2, g − 1) +
∑

n1+n2=n+2�−2
n1,n2≥0

∑
g1+g2=g
g1,g2≥0

2n1Q(n1, g1)Q(n2, g2).

Using (5) we can bound the quantity above by (n + 2� + 1)Q(n + 2�, g). 
�
Lemma 9 The number of maps of Q(n, g) with two vertex-disjoint marked cycles of
length 2 is less than

2n(n + 5)Q(n + 4, g).

Proof Let us write Qc(n, g) for the number of maps of Q(n, g) with one marked
cycle of length two. Take a map Q(n, g) with two vertex-disjoint marked cycles of
length 2, and perform the cutting operation on one of them. Since the two cycles were
vertex-disjoint, the second cycle remains a cycle after cutting the first cycle. This is a
bijective operation, that puts the set of mapsQ(n, g) with two disjoint marked cycles
of length 2 in bijection with a set of cardinality

n(2n − 1)Qc(n, g − 1) +
∑

n1+n2=n
n1,n2≥0

∑
g1+g2=g
g1,g2≥0

2n1(Qc(n1, g1)Q(n2, g2)

+Q(n1, g1)Qc(n2, g2)) (7)

(the argument is exactly the same as in Lemma 8, except that in casewe cut a separating
cycle, there are two possibilities, according to where the root and the second cycle
are).

Now, using Lemma 8 with � = 1, we upper bound (7) by

2n(2n − 1)(n + 3)Q(n + 2, g − 1) + 2n
∑

n1+n2=n
n1,n2≥0

∑
g1+g2=g
g1,g2≥0

(n1 + 3)Q(n1 + 2, g1)Q(n2, g2)

+(n2 + 3)Q(n1, g1)Q(n2 + 2, g2),

which, by (5), is less than

2n(n + 5)Q(n + 4, g)

which finishes the proof. 
�

6.3 Proof of Theorem 2

We can now enumerate bipartite quadrangulations with marked non-separating cycles
of length 2. For k = 1, 2, letQ(k)

ns (n, g) be the set of bipartite quadrangulations of size
n, genus g and k marked distinct non separating cycles of length 2, and Q(k)

ns (n, g)
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be its cardinal. The cutting operation applied to a non-separating cycle immediately
implies

Q(1)
ns (n, g) = n(2n − 1)Q(n, g − 1). (8)

Enumerating Q(2)
ns (n, g) is a little trickier because the two cycles might intersect.

We only give an upper bound.

Lemma 10 We have the following inequality

Q(2)
ns (n, g) ≤n(n − 1)(2n − 1)(2n − 3)Q(n, g − 2) + 2(n + 3)Q(n + 3, g − 1)

+ 2(n + 1)(n + 5)Q(n+4, g − 1)+(4n2+15n+7)Q(n + 2, g − 1).
(9)

Proof We need to do a careful analysis of all the cases involved when enumerating
Q(2)

ns (n, g). We only have an inequality because of some pathological cases in which
the two cycles intersect. We will perform the same kind of operation, i.e. cutting a
cycle into two marked digons, but we need to be cautious, because after cutting the
first cycle, the second cycle might not be well defined anymore. All our operations
will be injective.

Let us start with a map m of Q(2)
ns (n, g), we call c1 and c2 its two marked non-

separating cycles of length 2. There are three cases: after we cut c1, c2 might be a
cycle, or not. To these two cases, we need to add the “ambiguous” case where c1 and
c2 share an edge, which we treat separately. Each of these cases contributes to (9).
More precisely, the individual contributions can be found in (10), (11), (12), (13), (14),
(15) and (16).

Case 1: c2 remains a cycle.Let us start with the case where c2 remains a cycle. Recall
that we force c1 and c2 to be edge-disjoint, but they do not have to be vertex-disjoint.
Let m′ be the map obtained after cutting c1. Since c1 and c2 were edge-disjoint in m,
c2 is disjoint from the two marked edges. Now, we can cut c2. However, in m′, it is
possible that c2 became a separating cycle, and maybe even contractible (see Fig. 11).

If c2 is non-separating in m′, we obtain a map of genus g − 2 with n quadrangles
and two distinct unordered pairs of marked edges, which contributes to exactly

n(n − 1)(2n − 1)(2n − 3)Q(n, g − 2) (10)

in (9).
If c2 was separating, then we obtain two maps of total genus g−1 and total number

of quadrangles n, with two distinguishable marked edges on each maps (they are
distinguishable because on each map, one of these edges comes from c1 and the other
comes from c2). One of these two maps contains the root of m, in the second one, we
turn one of its marked edges into a root. Therefore, the contribution of this case in (9)
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Fig. 11 Cutting two short cycles. Above: when the second cycle stays non-separating, below: when it
becomes separating (note that the cyan map doesn’t have to be planar)

is

∑
n1+n2=n
n1,n2≥1

∑
g1+g2=g−1
g1,g2≥0

2n1(2n1 − 1)Q(n1, g2)2n2Q(n2, g2)

If we upper bound n1 by n in the sum above, by (5), we obtain that this contribution
is less than

2n(n + 3)Q(n + 2, g − 1). (11)

Case 2a: c2 is not a cycle anymore, but stays connected.
In this case, c1 and c2 were not vertex-disjoint. When we cut c1, we either obtain a

map of Q(n, g − 1) with a marked path of length 4 (if c1 and c2 shared only vertex,
and the extremities of the path are of the color of the vertex c1 and c2 did not share) or
a marked simple cycle of length 4 (if c1 and c2 shared two vertices). See Fig. 12 for
an illustration. By Lemma 7 (for � = 4) and Lemma 8 (for � = 2), this contributes to
at most

2(n + 3)Q(n + 3, g − 1) + 2(n + 5)Q(n + 4, g − 1) (12)

in (9). The factor 2 in the second term comes from the fact that, in the cycle of length
4, we need to remember which of the edges belonged to c1 and which belonged to c2
(two possibilities).
Case 2b: c2 is not a cycle anymore, and doesn’t stay connected.

In this case, c1 and c2 have to share two vertices. Cut c1 to obtain two marked edges
a1 and b1. Call a2 and b2 the two edges of c2. Say that, wlog, a1 and a2 (resp. b1 and
b2) are incident. What happens (see Fig. 13 for an example) then is we obtain a map
of Q(n, g − 1) with two disjoint marked cycles of length 2 ((a1, a2) and (b1, b2)),
which by Lemma 9 contributes to less than

2n(n + 5)Q(n + 4, g − 1) (13)
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Fig. 12 The case where c2 is not a cycle anymore but remains connected when c1 is cut. Left: when c1 and
c2 share one vertex. Right: when they share two vertices

Fig. 13 An example of the case where c2 gets disconnected when c1 is cut

in (9).
Case 3: c1 and c2 share an edge.

Let us say that c1 = (e1, e) and c2 = (e2, e). There are two cases.

a) (e1, e2) is a separating cycle. We cut it and obtain two mapsm1 with a marked edge
andm2 with a marked edge on a non-separating cycle of length 2 (see Fig. 14). Again,
one of the two maps doesn’t have a root, hence we need to turn one of the marked
edges into a root edge (Fig. 15).

If it is m2 that still has a marked edge, then there are exactly

∑
n1+n2=n
n1,n2≥1

∑
g1+g2=g
g1≥0,g2≥1

Q(n1, g1)2Q
(1)
ns (n2, g2)

=
∑

n1+n2=n
n1,n2≥1

∑
g1+g2=g
g1≥0,g2≥1

Q(n1, g1)2n2(2n2 − 1)Q(n2, g2 − 1)

cases, where the equality comes from (8). We can upper bound n2 by n and use (5) to
bound the expression above by

2n(n + 3)Q(n + 2, g − 1). (14)
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Fig. 14 When c1 and c2 share an edge and (e1, e2) is a separating cycle. Note that the cyan part doesn’t
have to be planar

Fig. 15 When c1 and c2 share an edge and (e1, e2) is non-separating

Otherwise, the root of m2 lies on a non-separating cycle of length 2 and m1 has a
marked edge. By a similar reasoning as in (8), the number of cases is

∑
n1+n2=n
n1,n2≥1

∑
g1+g2=g
g1≥0,g2≥1

2n1Q(n1, g1)2(2n2 − 1)Q(n2, g2 − 1)

which is less than

(n + 3)Q(n + 2, g − 1) (15)

by (5).

b) Finally, the only remaining case is when (e1, e2) is non-separating. Then we cut
it, and by a similar reasoning as in Case 2a, we obtain a map of genus g − 1 with a
marked path of length 3, which by Lemma 7 contributes to less than

2(n + 2)Q(n + 2, g − 1) (16)

in (9). 
�
We are now ready to prove Theorem 2.
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Proof of Theorem 2 Let Xn,g be the number of non-separating cycles of length 2 in
a uniform map m ∈ Q(n, g), then X2

n,g is the number of ordered pairs of distinct
non-separating cycles of length 2, plus Xn,g . Hence

E(Xn,g) = Q(1)
ns (n, g)

Q(n, g)

and

E(X2
n,g) = E(Xn,g) + Q(2)

ns (n, g)

Q(n, g)
.

Now, recall that gn is a sequence such that gn
n → θ ∈ (0, 1/2). We want to prove

P(Xn,gn > 0) ≥ kθ + o(1)

whp. We will use the second moment method, namely the fact that

P(Xn,gn > 0) ≥ E(Xn,gn )
2

E(X2
n,gn )

. (17)

By (8) and Proposition 1, we have

Q(1)
ns (n, gn) = (1 + o(1))2n2Q(n, gn − 1) ≥

(
θ

2
+ o(1)

)
Q(n, gn).

Therefore

E(Xn,gn ) ≥ θ

2
+ o(1). (18)

Now we will upper bound Q(2)
ns (n, gn). First, note by Lemmas 1 and 3 that

2(n + 3)Q(n + 3, gn − 1) = o(Q(n, gn)),

hence

Q(2)
ns (n, gn) ≤ (1 + o(1))

(
4n4Q(n, gn − 2)

+4n2Q(n + 2, gn − 1) + 2n2Q(n + 4, gn − 1)
)

.

Applying Lemmas 1 and 3 to the inequality above, we obtain

Q(2)
ns (n, gn) ≤ (1 + o(1))

(
4

C4
εθ

+ 4

C4
εθ

+ 2

C6
εθ

)
Q(n, gn),
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hence

E(X2
n,gn ) ≤ E(Xn,gn ) + 8

C4
εθ

+ 2

C6
εθ

+ o(1). (19)

Now, by (17), Theorem 2 holds for

kθ =
(
2

θ
+ 32

C4
εθ

θ2
+ 8

C6
εθ

θ2

)−1

.
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