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Abstract 
We show that the convergence of finite state space Markov chains to stationarity 
can often be considerably speeded up by alternating every step of the chain with a 
deterministic move. Under fairly general conditions, we show that not only do such 
schemes exist, they are numerous.

Keywords Markov chain · Mixing time · Spectral gap · Cheeger constant

Mathematics Subject Classification  60J10 · 60J22

1 Introduction

This paper started from the following example. Consider the simple random walk on 
ℤn (the integers mod n):

with X0 = 0 , and �1, �2,… i.i.d. with equal probabilities of being 0, 1 or −1 . This 
walk takes order n2 steps to reach its uniform stationary distribution in total variation 
distance. This slow, diffusive behavior is typical of low dimensional Markov chains 
(“Diameter2 steps are necessary and sufficient”—see Diaconis and Saloff-Coste [19] 
for careful statements and many examples). Now change the random walk by deter-
ministic doubling:

This walk has the “same amount of randomness”. Results discussed below show that 
it takes order log n steps to mix (at least for almost all n).

We would like to understand this speedup more abstractly—hopefully to be able 
to speed up real world Markov chains. Our main result shows a similar speedup 
occurs for fairly general Markov chains with deterministic doubling replaced by 
almost any bijection of the state space into itself. We proceed to a careful statement 
in the next section. In Sect. 3 a literature review offers pointers to related efforts to 
beat diffusive behavior. A sketch of the proof is in Sect. 4. Proofs are in Sects. 5 and 
6. A different kind of deterministic speedup,

is analyzed in Sect. 7. The last section has applications and some interesting open 
questions.

2 Speedup by deterministic functions

Let S be a finite set and P = (pij)i,j∈S be a Markov transition matrix on S. We assume 
the following conditions on P: 

Xk+1 = Xk + �k+1 (mod n),

Xk+1 = 2Xk + �k+1 (mod n).

Xk+1 = Xk + Xk−1 + �k+1 (mod n),
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(1) The Markov chain generated by P is irreducible and aperiodic.
(2) If pij > 0 for some i, j ∈ S , then pji > 0.
(3) For each i ∈ S , pii > 0.
(4) The uniform distribution on S is the stationary measure of P. We will call it �.

In addition to the above assumptions, we define

and

Let f ∶ S → S be a bijection. Consider a new Markov chain defined as follows. 
Apply f, and then take one step according to P. This is one step of the new chain. 
The transition matrix for the new chain is

where Π = (�ij)i,j∈S is the permutation matrix defined by f. (That is, �ij = 1 if j = f (i) 
and 0 otherwise.) Clearly, � is a stationary measure for the new chain too. The main 
questions that we will try to answer are the following: (a) Under what conditions on f 
does this new chain mix quickly—let’s say, in time log n ? (b) Is it always possible to 
find f satisfying these conditions? (c) If so, are such functions rare or commonplace?

Our first theorem answers question (a), by giving a sufficient condition for fast 
mixing of Q.

Theorem 2.1 For any A ⊆ S , let E(A) be the set of j ∈ S such that pij > 0 for some 
i ∈ A . Suppose that there is some � ∈ (0, 1) such that for any A with |A| ≤ n∕2,

Let X0,X1,… be a Markov chain with transition matrix Q. For each i ∈ S and k ≥ 1 
let �k

i
 be the law of Xk given X0 = i . Then

where � is the quantity defined in (2.1) and TV stands for total variation distance.

This result shows that if we have a sequence of problems where n → ∞ but � and � 
remain fixed, and the condition (2.2) is satisfied, then the mixing time of the Q-chain 
is of order log n.

Let us now try to understand the condition (2.2). The set E(A) is the ‘one-step 
expansion’ of A, that is, the set of all states that are accessible in one step by the 
P-chain if it starts in A. By the condition that pii > 0 for all i, we see that E(A) is a 
superset of A. The condition (2.2) says that for any A of size ≤ n∕2 , if we apply the 
one-step expansion, then apply f and then again apply the one-step expansion, the 
resulting set must be larger than A by a fixed factor.

n ∶= |S|

(2.1)𝛿 ∶= min{pij ∶ i, j ∈ S, pij > 0}.

Q = ΠP,

(2.2)|E ◦ f ◦ E(A)| ≥ (1 + �)|A|.

‖�k
i
− �‖TV ≤

√
n

2

�
1 −

�2�8

2

�(k−2)∕4

,
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We found it difficult to produce explicit examples of functions that satisfy (2.2) 
with � independent of n. Surprisingly, the following theorem shows that they are 
extremely abundant, even in our general setting, thereby answering both the ques-
tions (b) and (c) posed earlier.

Theorem 2.2 Let all notation be as in Theorem 2.1. There are universal constants 
C1,C2 > 0 and C3 ∈ (0, 1) such that all but a fraction C1n

−C2∕� of bijections f satisfy 
(2.2) with � = C3� . Consequently, for all but a fraction C1n

−C2∕� of bijections f, the 
corresponding Q-chain satisfies, for all i ∈ S and k ≥ 1,

For instance, if the P-chain is the lazy random walk on ℤn with equal probabilities 
of taking one step to the left, or one step to the right, or not moving, then � = 1∕3 . 
So in this example this result shows that for all but a fraction C1n

−3C2 of bijections 
of ℤn , the corresponding Q-chain mixes in time O(log n) . This is a striking improve-
ment over the lazy random walk, which mixes in time O(n2).

Interestingly, the doubling random walk discussed in Sect. 1 does not satisfy the 
expansion condition (2.2) with � independent of n. To see this, take n = 4m − 1 for 
large enough m, and define

Then

So if f is the doubling map, an easy calculation shows that

and therefore

So we have |A| = 2m − 2 ≤ n∕2 and |E ◦ f ◦ E(A)| = 2m + 4 , which means that 
the condition (2.2) cannot hold with 𝜖 > 6∕(2m − 2) . Therefore the speedup of the 
doubling walk is not happening due to expansion, although as Theorem 2.2 shows, 
expansion is the reason for speedup for “most” bijections.

3 Related previous work

The deterministic doubling example comes from work of Chung et  al.  [9]. They 
found that for almost all n, 1.02 log2 n steps suffice. Hildebrand  [32] showed that 
1.004 log2 n steps are not enough for mixing. In a recent tour-de-force, Eber-
hard and Varjú  [23] show that for almost all n, there is a cutoff at c log2 n where 

‖�k
i
− �‖TV ≤

√
n

2

�
1 −

C2
3
�10

2

�(k−2)∕4

.

A = {1, 2,… ,m − 1} ∪ {2m + 1,… , 3m − 1}.

E(A) = {0, 1,… ,m} ∪ {2m,… , 3m}.

f ◦ E (A) = {0, 1, 2,… , 2m + 1},

E ◦ f ◦ E(A) = {0, 1,… , 2m + 2, n − 1}.
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c = 1.01136… . Two companion papers by Breuillard and Varjú  [7, 8] relate this 
problem to irreducibility of random polynomials and very deep number theory. All 
of these authors consider Xk+1 = aXk + �k+1 (mod n) for general a and �i ’s having 
more general distributions. Related work is in Hildebrand [32] and the Ph.D. thesis 
of Neville  [38]. One natural extension is that if G is a finite group with �1, �2,… 
i.i.d. from a probability � on G, the random walk Xk+1 = Xk�k+1 may be changed to 
Xk+1 = A(Xk)�k+1 where A is an automorphism of G. This is studied in Diaconis and 
Graham [15, 16] who treat G = ℤ

n
p
 with a matrix as automorphism. Similar speed-

ups occur.
A very rough heuristic to explain the speedup in our Theorem 2.2 goes as fol-

lows. Composing the original random walk step with a random bijection mimics a 
jump along the edge of a random graph. Since random graphs are usually expand-
ers, and random walks on expanders with n vertices mix in O(log n) steps, we may 
naturally expect something like Theorem 2.2 to be true. Remarkable work has been 
done on rates of convergence of random walks on d-regular expanders. For instance, 
Lubetzky and Sly  [35] show that random walks on d-regular random graphs have 
a cutoff for total variation mixing at d

d−2
logd−1 n . Lubetzky and Peres  [34] prove 

a similar result for Ramanujan graphs, with cutoff at d

d−1
logd−1 n . Related work 

has recently appeared in Hermon et al. [30], who show that if you begin with any 
bounded degree graph on 2n vertices (for which all connected components have size 
at least 3) and add a random perfect matching, the resulting walk has a cutoff and 
mixes in time O(log n).

A setup very similar to ours, with different results, has been considered recently 
by Bordenave et al. [6]. This paper studies a random bistochastic matrix of the form 
ΠP , where Π is a uniformly distributed permutation matrix and P is a given bisto-
chastic matrix. Under sparsity and regularity assumptions on P, the authors prove 
that the second largest eigenvalue of ΠP is essentially bounded by the normalized 
Hilbert–Schmidt norm of P. They apply the result to random walks on random regu-
lar digraphs.

A different, related, literature treats piecewise deterministic Markov processes. 
Here, one moves deterministically for a while, then at a random time (depending 
on the path) a random big jump is made. This models the behavior of biological 
systems and chemical reactions. A splendid overview is in Malrieu  [36] (see also 
Benaïm [3]). There is a wide swath of related work in a non-stochastic setting where 
various extra “stirring” processes are shown to speed up mixing and defeat diffu-
sive behavior. See Constantin et al. [11], Ottino [39] and Rallabandi et al. [41]. The 
papers of Ding and Peres [22], Hermon [28] and Hermon and Peres [29] are Markov 
chain versions of these last results.

There are a host of other procedures that aim at defeating diffusive behavior. For 
completeness, we highlight four:

• Event chain Monte Carlo.
• Hit and run.
• Lifting/non-reversible variants.
• Adding more moves.
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Each of these is in active development; searching for citations to the literature below 
should bring the reader up to date.

While “random walk” type algorithms are easy to implement, it is by now well 
known that they suffer from “diameter2 ” behavior. To some extent that remains true 
for general reversible Markov chains. Indeed, Neal [37] showed that the spectral gap 
of any reversible Markov chain can be improved by desymmetrizing. Of course, the 
spectral gap is a crude measure of convergence. A host of sharpenings are in Diaco-
nis and Miclo [18].

Non-reversible versions of Hamiltonian Monte Carlo introduced in Diaconis 
et  al.  [17] have morphed into a variety of “lifting algorithms” culminating in the 
event chain algorithm of Kapfer and Krauth [33]. This revolutionized the basic prob-
lem of sampling hard disk configurations in statistical mechanics. The hard disk 
problem was the inspiration for three basic tools: The Metropolis algorithm, the 
Gibbs sampler (Glauber dynamics) and molecular dynamics. All gave wrong con-
clusions for the problems of interest; the new algorithms showed that entirely new 
pictures of phase transitions are needed. It is an important open problem to general-
ize these algorithms to more general stationary distributions.

Recent, closely related work is in Bordenave and Lacoin [5] and Conchon–Ker-
jan [10]. Written independently, both papers study ‘lifting’ random walks to cover-
ing graphs to speed up mixing and both prove that most liftings have cutoffs. The 
first paper also studies non-reversible chains. The paper of Gerencsér and Hen-
drickx [25] adds ‘long distance edges’ (as in small world graphs) and non-reversibil-
ity to get speedups. It too has close connections with the present project.

A final theme is “hit and run”: Taking long steps in a chosen direction instead of 
just “going ±1 ”. For a survey, see Anderson and Diaconis [1]. It has been difficult to 
give sharp running time estimates for these algorithms (even though they are “obvi-
ously better”). For a recent success, see the forthcoming manuscript of Boardman 
and Saloff-Coste [4].

It is natural to try to speed up convergence by adding more generators. This is a 
largely open problem. For example, consider the simple random walk on the hyper-
cube ℤd

2
 . The usual generating set is {0, e1,… , ed} , where ei is the i th standard basis 

vector. At each step, one of these vectors is added with probability 1∕(d + 1) . It is 
well known that 1

4
d log d + O(d) steps are necessary and sufficient for mixing (Diac-

onis and Shahshahani  [20]). Suppose you want to add more generators (say 2d + 1 
generators)—what should you choose? Wilson [42] studied this problem and showed 
that almost all generating sets of size 2d + 1 mix in time 0.2458d steps. Mirroring our 
results above, his methods do not give an explicit choice effecting this improvement.

These problems are interesting, and largely open, even for the cyclic group ℤp 
when p is a prime. As above, the generating set {0,±1} take order p2 steps to mix. 
On the other hand, almost all sets of 3 generators mix in order p steps. Green-
halgh [26] found 3 generators (roughly, 1, p1∕3 and p2∕3 ) that do the job. References 
to this literature can be found in a survey by Hildebrand [31].

There has been vigorous work on adding and deleting random edges at each stage 
(dynamical configuration model). See the paper of Avena et al. [2], which also has 
pointers to another well studied potential speedup—the non-backtracking random 
walk.
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Finally we note that natural attempts at speeding things up may fail. Cutting cards 
between shuffles and systematic versus random scan in the Gibbs sampler are exam-
ples. For details, see Diaconis [13].

4 Proof sketch

For the proof of Theorem 2.1, we define an auxiliary chain with kernel R = L2(LT )2 , 
where L ∶= PΠ . This kernel is symmetric and positive semidefinite, and defines a 
reversible Markov chain. The proof has two steps—first, relate the rate of conver-
gence of the R-chain with that of the Q-chain, and second, use the reversibility of 
the R-chain to invoke Cheeger’s bound for the spectral gap. A lower bound on the 
Cheeger constant is then obtained using condition (2.2).

The proof of Theorem 2.2 has its root in a beautiful idea from a paper of Gan-
guly and Peres [24] (see also the related earlier work of Pymar and Sousi [40]). In 
our context, the idea translates to showing the following: Let f be a uniform ran-
dom bijection. First, show that “most” sets A of size ≤ 3n∕4 have the property that 
|E(A)| ≥ (1 + �)|A| for some suitable fixed 𝜖 > 0 . Since |E(B)| ≥ |B| and |f (B)| = |B| 
for all B, this implies that (2.2) is satisfied for “most” A of size ≤ n∕2 . But we want 
(2.2) to hold for all A of size ≤ n∕2 . The Ganguly–Peres idea is to circumvent this 
difficulty in the following ingenious way. Since we know that |E(B)| < (1 + 𝜖)|B| for 
only a small number of B’s of size ≤ 3n∕4 , it is very unlikely that for any given set 
B, f(B) has this property. Consequently, for a given set A such that |E(A)| ≤ 3n∕4 , it 
is very unlikely that f (E(A)) has this property (taking B = E(A) ). Thus, for any such 
set A, it is very likely that

Since the above event is very likely for any given A, it remains very likely if we 
take the intersection of such events over a suitably small set of A’s. So we now take 
this small set to be precisely the set of A’s that did not satisfy |E(A)| ≥ (1 + �)|A|—
that is, our rogue set that spoiled (2.2). By some calculations, we can show that this 
indeed happens, and so (2.2) holds for all A with |A| ≤ n∕2.

In [24], the Ganguly–Peres idea was applied to solve a different problem for a 
random walk on points arranged in a line. As noted above, the key step is to show 
that the set of all A of size ≤ 3n∕4 that violate |E(A)| ≥ (1 + �)|A| is a small set. 
Since we are working in a general setup here, the proof of this step from [24] does 
not generalize; it is proved here by a new method.

5 Proof of Theorem 2.1

Let L ∶= PΠ . Since the uniform distribution on S is the stationary measure of P, 
we deduce that P is a doubly stochastic matrix. Since Π is a permutation matrix, it 
is automatically doubly stochastic. Since the product of doubly stochastic matrices 
is doubly stochastic, we see that L is also doubly stochastic. Thus, L and LT are both 

|E ◦ f ◦ E(A)| ≥ (1 + �)|f (E(A))| ≥ (1 + �)|A|.
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stochastic matrices, and so is any power of either of these matrices. Consequently, 
the matrix

is a stochastic matrix. (This identity explains why we symmetrize L2 instead of L. 
Indeed, LLT = PΠΠTPT = PPT , and the effect of Π disappears.)

Lemma 5.1 The Markov chain with transition matrix R is irreducible, aperiodic and 
reversible, with uniform stationary distribution. Moreover, R is symmetric and posi-
tive semidefinite.

Proof It is evident from the definition of R that R is symmetric and positive semidef-
inite. Since R is symmetric, the Markov chain with transition matrix R is reversible 
with respect to the uniform distribution on the state space.

Since pii > 0 for any i ∈ S , it follows that

Thus, R is aperiodic. Next, note that if pij > 0 , then

Since P is irreducible, this shows that R is also irreducible.   ◻

Corollary 5.2 The principal eigenvalue of R is 1, the principal eigenvector is the vec-
tor of all 1’s (which we will henceforth denote by 1), and the principal eigenvalue 
has multiplicity one. The second largest eigenvalue of R (which we will henceforth 
call �2 ), is strictly less than 1. All eigenvalues of R are nonnegative.

Proof Since the Markov chain defined by R is irreducible and aperiodic (on a finite 
state space), and R is symmetric, all but the last claim follow from the general the-
ory of Markov chains. The eigenvalues are nonnegative because R is a positive sem-
idefinite matrix.   ◻

The information about R collected in the above corollary allows us to prove the 
next lemma.

Lemma 5.3 For any k ≥ 1 , and any x ∈ ℝ
n that is orthogonal to the vector 1,

Proof Take any vector x ∈ ℝ
n that is orthogonal to 1. By the properties of R given in 

Corollary 5.2, it is easy to see that

But notice that

R ∶= L2(LT )2 = PΠPΠΠTPTΠTPT = PΠPPTΠTPT .

(5.1)rii ≥ pii𝜋if (i)pf (i)f (i)pf (i)f (i)𝜋if (i)pii > 0.

(5.2)rij ≥ pij𝜋jf (j)pf (j)f (j)pf (j)f (j)𝜋jf (j)pjj > 0.

‖Lkx‖ ≤ �
(k−1)∕4

2
‖x‖.

xTRx ≤ �2‖x‖2.
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So for any x that is orthogonal to 1,

But if x is orthogonal to 1, then the stochasticity of L implies that

Thus, (LT )2x is also orthogonal to 1. So we can apply (5.3) iteratively to get

for any positive integer k. But LT , being a stochastic matrix, is an �2-contraction. 
Therefore

This completes the proof of the lemma.   ◻

Lemma 5.3 yields the following corollary, which relates the rate of convergence 
of the Q-chain with the spectral gap of the R-chain.

Corollary 5.4 For any k ≥ 2 , and any x ∈ ℝ
n that is orthogonal to the vector 1,

Proof Note that Qk = (ΠP)k = ΠLk−1P . Being stochastic matrices, Π and P are both 
�
2-contractions. Moreover, if 1Tx = 0 , then 1TPx = 1Tx = 0 since P is doubly sto-

chastic. Therefore by Lemma 5.3,

This completes the proof of the corollary.   ◻

Lastly, we need the following upper bound on �2.

Lemma 5.5 Let �2 be the second largest eigenvalue of R. Then

where � is the constant from condition (2.2).

Proof Define a probability measure � on S × S as

xTRx = xTL2(LT )2x = ‖(LT )2x‖2.

(5.3)‖(LT )2x‖2 ≤ �2‖x‖2.

1T (LT )2x = 1Tx = 0.

‖(LT )2kx‖2 ≤ �k
2
‖x‖2

‖(LT )2k+1x‖2 ≤ ‖(LT )2kx‖2 ≤ �k
2
‖x‖2.

‖Qkx‖ ≤ �
(k−2)∕4

2
‖x‖.

‖Qkx‖ = ‖ΠLk−1Px‖ ≤ ‖Lk−1Px‖

≤ �
(k−2)∕4

2
‖Px‖ ≤ �

(k−2)∕4

2
‖x‖.

�2 ≤ 1 −
�2�8

2
,
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Recall that the Cheeger constant for the Markov chain with transition matrix R is

where Ac ∶= S ⧵ A . Since � is the uniform distribution on V, this simplifies to

Now, if rij > 0 , then from the inequality (5.2) and the assumption that pkl ≥ � for all 
nonzero pkl , we get rij ≥ �4 . Therefore, if A′ is the set of all vertices that are attain-
able in one step from some i ∈ A by the Markov chain with transition matrix R, then

where the last identity holds because A ⊆ A′ (by (5.1)). Now, since pij > 0 if and 
only if pji > 0 , the set A′ defined above can be written as

Application of E cannot decrease the size of a set, and application of f −1 does not 
alter the size. Therefore by condition (2.2),

provided that |A| ≤ n∕2 . Plugging this into (5.4), we get Φ ≥ ��4 . By the well-
known bound

this completes the proof of the lemma.   ◻

We are now ready to complete the proof of Theorem 2.1

Proof of Theorem 2.1 Now take any i ∈ S and k ≥ 2 . Let x ∈ ℝ
n be the vector whose 

ith component is 1 − 1∕n and the other components are all equal to −1∕n . Then it is 
easy to see that x is orthogonal to 1, and that (QT )kx is the vector whose jth compo-
nent is �k

i
(j) − �(j) . Thus by Corollary 5.4,

�(i, j) = �(i)rij =
rij

n
.

Φ = min
A⊆S,𝜇(A)≤1∕2

𝜈(A × Ac)

𝜇(A)
,

Φ = min
A⊆S, |A|≤n∕2

1

|A|
∑

i∈A, j∈Ac

rij.

(5.4)
∑

i∈A, j∈Ac

rij ≥ �4|A� ∩ Ac| = �4(|A�| − |A|),

A� = E ◦ f −1 ◦ E ◦ E ◦ f ◦ E(A).

|A�| ≥ |E ◦ f ◦ E(A)| ≥ (1 + �)|A|,

�2 ≤ 1 −
Φ2

2
,
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Since ‖x‖ ≤ 1 , this proves that

Using the bound on �2 from Lemma 5.5, this completes the proof when k ≥ 2 . When 
k = 1 , the bound is greater than 1 and therefore holds trivially.   ◻

6 Proof of Theorem 2.2

For this proof, it will be convenient to define a graph structure on S. Join two dis-
tinct points (vertices) i, j ∈ S by an edge whenever pij > 0 . Since pij > 0 if and only 
if pji > 0 , this defines an undirected graph on S. The irreducibility of the P-chain 
implies that this graph is connected. A path in this graph is simply a sequence of 
vertices such that each is connected by an edge to the one following it.

Define the external boundary of a set A ⊆ S as

The following lemma proves a crucial property of the graph defined above.

Lemma 6.1 Take any A ⊆ S . Then the number of sets B such that �B = A is at most 
2|A|∕�.

The proof of this lemma is divided into several steps. Fix a set A. Define an 
equivalence relation on Ac as follows. Say that two vertices i, j ∈ Ac are equivalent, 
and write i ∼ j , if either i = j , or there is a path from i to j that avoids the set A 
(meaning that there is no vertex in the path that belongs to A). It is easy to see that 
this is an equivalence relation, because it is obviously reflexive and symmetric, and 
if i ∼ j and j ∼ k , then there is a path from i to k that avoids A. To prove Lemma 6.1, 
we need to prove two facts about this equivalence relation.

Lemma 6.2 If B is a set of vertices such that �B = A , then B must be the union of 
some equivalence classes of the equivalence relation defined above.

‖�k
i
− �‖TV =

1

2

�

j∈S

��k
i
(j) − �(j)�

≤
1

2

�
n
�

j∈S

(�k
i
(j) − �(j))2

�1∕2

=

√
n

2
‖(QT )kx‖ ≤

√
n

2
�
(k−2)∕4

2
‖x‖.

(5.5)‖�k
i
− �‖TV ≤

√
n

2
�
(k−2)∕4

2
.

�A ∶= E(A)⧵A.
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Proof Take any B such that �B = A . Take any i ∈ B and j ∈ Ac such that i ∼ j . To 
prove the lemma, we have to show that j ∈ B.

Let m be the length of the shortest path from i to j that avoids A. Since i ∼ j , we 
know that there is at least one such path, and therefore m is well-defined. We will 
now prove the claim that j ∈ B by induction on m. If m = 1 , then j is a neighbor of 
i. Since i ∈ B , j is a neighbor of i and j ∉ �B , the only possibility is that j ∈ B . This 
proves the claim when m = 1.

Let us now assume that the claim holds for all m′ < m . Take a path of length m 
from i to j that avoids A. Let k be the vertex on this path that comes immediately 
before j. Then k ∈ Ac , and k can be reached from i by a path of length m − 1 that 
avoids A. Therefore by the induction hypothesis, k ∈ B . Applying the case m = 1 to 
k, we see that j must be a member of B. This completes the induction step.   ◻

Lemma 6.3 If D is any equivalence class of the equivalence relation defined above, 
then there is at least one element of D that is adjacent to some element of A.

Proof Take any i ∈ D and j ∈ A . Since the graph is connected, there is a path from i 
to j. Along this path, let k be the first vertex that belongs to A. (This is well-defined 
because at least one vertex of the path, namely j, is in A.) Let l be the vertex that 
immediately precedes k in the path. Then we see that there is a path from i to l that 
avoids A, and so i ∼ l . Therefore l ∈ D and l is adjacent to an element of A, which 
proves the lemma.   ◻

Lastly, we need an upper bound on the maximum degree of our graph on S.

Lemma 6.4 The maximum degree of the graph defined on S is at most 1∕�.

Proof Since pij ≥ � for every i and j that are connected by an edge, and

because P is a stochastic matrix, the number of neighbors of i must be ≤ 1∕� .   ◻

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1 Since each equivalence class of our equivalence relation has at 
least one element that is adjacent to an element of A (by Lemma 6.3), the number of 
equivalence classes can be at most the size of �A . But by Lemma 6.4, |�A| ≤ |A|∕� . 
Thus, there are at most |A|∕� equivalence classes.

But by Lemma 6.2, if B is any set such that �B = A , then B must be a union 
of equivalence classes. Consequently, the number of such B is at most the size of 
the power set of the set of equivalence classes. By the previous paragraph, this is 
bounded above by 2|A|∕� .   ◻

∑

j∈S

pij = 1
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Lemma 6.1 has the following corollary, which shows that not too many sets can 
have a small external boundary.

Corollary 6.5 Take any 1 ≤ k ≤ n . The number of sets B ⊆ S such that |�B| = k is at 
most 

(
n

k

)
2k∕�.

Proof We can choose the external boundary of B in at most 
(
n

k

)
 ways. Having chosen 

the external boundary, Lemma 6.1 says that B can be chosen in at most 2k∕� ways. 
Thus, the number of ways of choosing B with the given constraint is at most 

(
n

k

)
2k∕� .  

 ◻

For each 𝜖 > 0 , let A� be the set of all A ⊆ S such that |E(A)| < (1 + 𝜖)|A| . For 
each 1 ≤ m ≤ n , let A�,m be the set of all sets A ∈ A� that are of size m. Let

The following lemma uses the bound from Corollary 6.5 to get a bound on the size 
of A′

�,m
.

Lemma 6.6 For any 𝜖 > 0 and 1 ≤ m ≤ n,

Proof Take any A ∈ A
�
�,m

 . Then note that

The claim is now proved by Corollary 6.5.   ◻

Now fix some � ∈ (0, 1∕2) . Let f be a random bijection chosen uniformly from 
the set of all bijections of S. Define an event

We want to show that E is a rare event. The following lemma is the first step towards 
that.

Lemma 6.7 Let E be the event defined above. Then

Proof Take any A ∈ A� with 1∕� ≤ |A| ≤ n∕2 . Let B = E(A) . Then observe the fol-
lowing about B:

A
�
�,m

∶=
⋃

1≤k≤m

A�,k.

|A�
𝜖,m

| ≤
∑

1≤k<𝜖m

(
n

k

)
2k∕𝛿 .

|𝜕A| = |E(A)| − |A| < 𝜖|A| ≤ 𝜖m.

E ∶= {f ◦ E(A) ∈ A� for someA ∈ A� with 1∕� ≤ |A| ≤ n∕2}.

ℙ(E) ≤
∑

1∕𝜖≤m≤3n∕4

1(
n

m

)

(
∑

1≤k<𝜖m

(
n

k

)
2k∕𝛿

)2

.
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• Since f is a uniform random bijection, the random set f(B) is uniformly distrib-
uted among all subsets of size |B|.

• Since A ∈ A� , � ∈ (0, 1∕2) , and 1∕� ≤ |A| ≤ n∕2 , 

 and |B| ≥ |A| ≥ 1∕�.
These two observations imply that

Since A′
�,m

 is a superset of A�,m , plugging in the bound from Lemma 6.6 completes 
the proof.   ◻

The bound in Lemma 6.7 is not straightforwardly understandable. The following 
lemma clarifies the matter.

Lemma 6.8 There are universal constants C0 , C1 , C2 and C3 such that if � ≤ C0� , 
then

Proof Recall the well-known inequalities

Also, check that the map x ↦ (en∕x)x is increasing in [1, n]. Thus,

|B| < (1 + 𝜖)|A| < 3

2
|A| ≤ 3n

4
,

ℙ(E) ≤
∑

1∕�≤m≤3n∕4

∑

A ∈ A� ,

|E(A)| = m

ℙ(f (E(A)) ∈ A�)

=
∑

1∕�≤m≤3n∕4

∑

A ∈ A� ,

|E(A)| = m

|A�,m|(
n

m

)

≤
∑

1∕�≤m≤3n∕4

|A�
�,m

||A�,m|
(
n

m

) .

�

1∕𝜖≤m≤3n∕4

1�
n

m

�

�
�

1≤k<𝜖m

�
n

k

�
2k∕𝛿

�2

≤ C1e
−C2

√
n + C

1∕𝜖

3
n2−1∕4𝜖 .

nk

kk
≤

(
n

k

)
≤

eknk

kk
.
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Now choose � so small that 1 − 2� ≥ 1∕2 and

Note that this can be ensured by choosing � to be less than some universal constant 
times � (noting that � ≤ 1 ). With such a choice of � , we get

where C1 and C2 are universal constants. On the other hand, if 1∕� ≤ m ≤
√
n , then

and so

Adding up the two parts, we get the required bound.   ◻

We are now ready to finish the proof of Theorem 2.2.

Proof By Lemmas 6.7 and 6.8, we see that there are universal constants C4,C5 > 0 
and C6 ∈ (0, 1) such that if we choose � = C6� , then

∑

1∕𝜖≤m≤3n∕4

1(
n

m

)

(
∑

k<𝜖m

(
n

k

)
2k∕𝛿

)2

≤
∑

1∕𝜖≤m≤3n∕4

mm

nm
n2
(
en21∕𝛿

𝜖m

)2𝜖m

= n2
∑

1∕𝜖≤m≤3n∕4

(
m1−2𝜖

n1−2𝜖
22𝜖∕𝛿e2𝜖(1+log(1∕𝜖))

)m

.

22𝜖∕𝛿e2𝜖(1+log(1∕𝜖)) <

√
8

7
.

n2
�

√
n≤m≤3n∕4

�
m1−2�

n1−2�
22�∕�e2�(1+log(1∕�))

�m

≤ n2
�

√
n≤m≤3n∕4

��
3

4

�
8

7

�m

= n2
�

√
n≤m≤3n∕4

�
6

7

�m∕2

≤ C1e
−C2

√
n,

m1−2�

n1−2�
≤ n−1∕4,

n2
�

1∕�≤m≤
√
n

�
m1−2�

n1−2�
22Δ�e2�(1+log(1∕�))

�m

≤ n2
�

1∕�≤m≤
√
n

�
n−1∕4

�
8

7

�m

≤ C
1∕�

3
n2−1∕4� .
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Suppose that E does not happen. Then for any A ∈ A� with 1∕� ≤ |A| ≤ n∕2 , we 
have f (E(A)) ∉ A� and hence

On the other hand, if A ∉ A� , then

Finally, if |A| ≤ 1∕� and |A| ≤ n∕2 , then since the P-chain is irreducible,

So if E does not happen, then the random bijection f satisfies the condition (2.2). By 
(6.1), this completes the proof of Theorem 2.2.   ◻

7 A different speedup

Going back to the original example (simple random walk on ℤn ), there is a different 
way to speed this up. Define a process X0,X1,… on ℤn by X0 = 0 , X1 = 1 and

where �i are independent, taking values 0, 1 and −1 with equal probabilities. Let 
Pk(j) ∶= ℙ(Xk = j) and U(j) ∶= 1∕n for j ∈ ℤn.

Theorem 7.1 For any n ≥ 22 and k = 5[(log n)2 + c log n],

Remark The best lower bound we have is that at least log n steps are required. It is 
natural to suspect that this is the right answer, but numerical experiments do not 
make a clear case. At any rate, we find it interesting that a simple recurrence speeds 
things up from order n2 to order (log n)2.

By running the recurrence, the chain can be represented as

with Fk the usual Fibonacci numbers 0, 1, 1, 2, 3, 5,… (so F5 = 5 ). The (mod n) Fou-
rier transform of Pk is

We will use the inequality (see Diaconis [12, Chapter 3])

(6.1)ℙ(E) ≤ C4n
−C5∕� .

|E ◦ f ◦ E(A)| ≥ (1 + �)|f ◦ E(A)| ≥ (1 + �)|A|.

|E ◦ f ◦ E(A)| ≥ |E(A)| ≥ (1 + �)|A|.

|E ◦ f ◦ E(A)| ≥ |E(A)| ≥ |A| + 1 ≥ (1 + �)|A|.

Xk+1 = Xk + Xk−1 + �k+1 (mod n),

‖Pk − U‖TV ≤ 1.6e−c∕2.

Xk = Fk + Fk−1�2 + Fk−2�3 +⋯F1�k (mod n),

(7.1)P̂k(a) = �(e2�iaXk∕n) = e2�iaFk∕n

k−1∏

b=1

(
1

3
+

2

3
cos(2�aFb∕n)

)
.
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to obtain an upper bound on the total variation distance between Pk and U. We thus 
need to know about the distribution of Fibonacci numbers mod n. We were surprised 
that we couldn’t find what was needed in the literature (see Diaconis [14]). The fol-
lowing preliminary proposition is needed. Let x0, x1, x2,… be any sequence of inte-
gers satisfying the Fibonacci recursion

Take any n such that at least one xi is not divisible by n. Let bk be the remainder of xk 
modulo n. We will prove the following property of this sequence.

Proposition 7.2 For any j, there is some j ≤ k ≤ j + 8 + 3 log3∕2 n such that 
bk ∈ [n∕3, 2n∕3].

We need several lemmas to prove this proposition.

Lemma 7.3 There cannot exist k such that bk = bk+1 = 0.

Proof If bk = bk+1 = 0 for some k, then xk+1 and xk are both divisible by n. So the 
Fibonacci recursion implies that xj is divisible by n for all j. But we chose n such 
that at least one xi is not divisible by n. Thus, we get a contradiction.   ◻

Lemma 7.4 If bj, bj+1 ∈ [1, n∕3) for some j, then there is some j + 2 ≤ k < j + 2 log2 n 
such that bk ∈ [n∕3, 2n∕3].

Proof Since the bi ’s satisfy the Fibonacci recursion modulo n, it follows that if bi 
and bi+1 are both in [1, n/3) for some i, then bi+2 = bi+1 + bi ∈ [1, 2n∕3) . So there 
exists an index k which is the first index bigger than j + 1 such that bk ∈ [n∕3, 2n∕3) . 
We claim that for any i ∈ [j + 2, k] , bi ≥ 2(i−j)∕2 . To see this, first note that for any 
i ∈ [j + 2, k] , bi = bi−1 + bi−2 . Therefore, since bj, bj+1 ≥ 1 , the claim is true for 
i = j + 2 . Suppose that it is true up to i − 1 . Then

In particular, bk ≥ 2(k−j)∕2 . But we know that bk < 2n∕3 . Combining these two ine-
qualities gives k − j < 2 log2 n .   ◻

Lemma 7.5 If bj, bj+1 ∈ (2n∕3, n − 1] for some j, then there is some j + 2 ≤ k < j + 2 log2 n 
such that bk ∈ [n∕3, 2n∕3].

Proof Define ci ∶= n − bi for each i. Then the ci ’s also satisfy the Fibonacci recur-
sion modulo n. Moreover, cj, cj+1 ∈ [1, n∕3) . Therefore by the proof of Lemma 

(7.2)4‖Pk − U‖2
TV

≤

n−1�

a=1

�P̂k(a)�2

xk = xk−1 + xk−2.

bi = bi−1 + bi−2 ≥ 2(i−1−j)∕2 + 2(i−2−j)∕2

= 2(i−j)∕2(2−1∕2 + 2−1) ≥ 2(i−j)∕2.
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7.4, there exist k < j + 2 log2 n such that ck ∈ [n∕3, 2n∕3] . But this implies that 
bk ∈ [n∕3, 2n∕3] .   ◻

Lemma 7.6 If bj ∈ [1, n∕3) and bj+1 ∈ (2n∕3, n − 1] for some j, then there is some 
j + 2 ≤ k < j + 6 + 3 log3∕2 n such that bk ∈ [n∕3, 2n∕3].

Proof For each i, let

Clearly, the di ’s also satisfy the Fibonacci recursion modulo n, and |di| ≤ n∕2 for 
each i. Take any i such that

• di > 0 , di+1 < 0 , di+2 > 0 , di+3 < 0 and di+4 > 0 , and
• |di| and |di+1| are less than n/3.

Under the above conditions, di ∈ (0, n∕3) and di+1 ∈ (−n∕3, 0) . This implies that 
di + di+1 < di < n∕3 and di + di+1 > di+1 > −n∕3 . Thus, |di + di+1| < n∕3 . But we 
know that di+2 ≡ di + di+1 (mod n) , and |di+2| ≤ n∕2 . Thus, we must have that di+2 
is actually equal to di + di+1 , and therefore also that |di+2| < n∕3 . Similarly, |di+3| 
and |di+4| are also less than n/3, and satisfy the equalities di+3 = di+2 + di+1 and 
di+4 = di+3 + di+2 . Thus,

which gives

Similarly, if di < 0 , di+1 > 0 , di+2 < 0 , di+3 > 0 and di+4 < 0 , and |di| and |di+1| are 
less than n/3, then also all of the absolute values are less than n/3, and

which gives

Now let j be as in the statement of the lemma. Then dj > 0 , dj+1 < 0 , and |dj| and 
|dj+1| are both less than n/3. Let l be an index greater than j such that dj, dj+1,… , dl 
are all nonzero, with alternating signs. Suppose that l ≥ j + 4 . The above deductions 
show that |di| < n∕3 for all i ∈ [j, l] and |di+1| < 2|di|∕3 for all i ∈ [j, l − 4] . Since 
|dl−4| ≥ 1 and |dj| < n∕3 , this proves that l cannot be greater than j + 4 + log3∕2 n . 
Thus, if we define l to be the largest number greater than j with the above properties, 
then l is well-defined and is ≤ j + 4 + log3∕2 n.

di ∶=

{
bi if bi ∈ [0, n∕2],

bi − n if bi ∈ (n∕2, n − 1].

0 < di+4 = 3di+1 + 2di,

|di+1| = −di+1 <
2di

3
=

2|di|
3

.

0 > di+4 = 3di+1 + 2di,

|di+1| = di+1 < −
2di

3
=

2|di|
3

.
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By the definition of l, it follows that either dl+1 = 0 , or dl+1 has the same sign 
as dl . We already know that dl and dl−1 are nonzero, have opposite signs, and are 
in (−n∕3, n∕3) . So, if dl+1 = 0 , then dl+2 = dl+3 = dl ∈ (−n∕3,−1] ∪ [1, n∕3) , and if 
dl+1 is nonzero and has the same sign as dl , then |dl+1| < n∕3 . In the first situation, 
either both bl+2 and bl+3 are in [1, n/3) or both are in (2n∕3, n − 1] . In the second 
situation, we can make the same deduction about bl and bl+1 . The claim now follows 
by Lemmas 7.4 and 7.5.   ◻

Lemma 7.7 If bj ∈ (2n∕3, n − 1] and bj+1 ∈ [1, n∕3) for some j, then there is some 
j + 2 ≤ k < j + 6 + 3 log3∕2 n such that bk ∈ [n∕3, 2n∕3].

Proof The proof is exactly the same as for Lemma 7.6.   ◻

We are now ready to prove Proposition 7.2.

Proof of Proposition 7.2 Take any j. If one of bj and bj+1 is in [n/3,  2n/3], there is 
nothing to prove. If bj and bj+1 are both in [1, n∕3) ∪ (2n∕3, n − 1] , then one of 
Lemmas 7.4–7.7 can be applied to complete the proof. If bj = 0 and bj+1 ≠ 0 , then 
bj+2 = bj+1 ≠ 0 , and so we can again apply one of the four lemmas. If bj ≠ 0 and 
bj+1 = 0 , then bj+2 = bj+3 = bj ≠ 0 , and so again one of the four lemmas can be 
applied. Finally, note that by Lemma 7.3, we cannot have bj = bj+1 = 0 .   ◻

Having proved Proposition 7.2, we can now complete the proof of Theorem 7.1.

Proof of Theorem 7.1 By (7.1) and (7.2), we get

Now take any 1 ≤ a ≤ n − 1 . The sequence aF1, aF2,… satisfies the Fibonacci 
recursion, and the first term of the sequence is not divisible by n since a < n . Thus, 
Proposition 7.2 is applicable to this sequence. Letting m = 8 + 3 log3∕2 n , we get 
that at least [(k − 1)∕m] among aF1,… , aFk−1 are in [n/3, 2n/3] modulo n. Now if 
x ∈ [n∕3, 2n∕3] , then cos(2�x∕n) ∈ [−1,−1∕2] , and so

Combining these observations, we get

It is easy to verify numerically that 30 ≤ m ≤ 10 log n for n ≥ 22 , and also that 
log(9)∕10 ≥ 1∕5 . Thus, for n ≥ 22 and k = 5[(log n)2 + c log n],

4‖Pk − U‖2
TV

≤

n−1�

a=1

k−1�

b=1

�
1

3
+

2

3
cos(2�aFb∕n)

�2

.

1

3
+

2

3
cos(2�aFb∕n) ∈ [−1∕3, 0].

4‖Pk − U‖2
TV

≤ n9−[(k−1)∕m].
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It can now be numerically verified that the claimed bound holds.   ◻

8 Applications and open problems

One class of problems where uniform sampling is needed arises from exponential 
families. Let X  be a finite set and T ∶ X → ℝ

d be a given statistic. For � ∈ ℝ
d , let p� 

be the probability density

where Z(�) is the normalizing constant. The family {p�}�∈ℝd is called an expo-
nential family of probability densities with sufficient statistic T. If X ∼ p� , 
the conditional distribution of X given T(X) = t is the uniform distribution on 
Xt ∶= {x ∈ ℝ

d ∶ T(x) = t} . Such models appear in myriad statistical applications 
such as contingency tables and graphical models. They also appear in physics as 
Ising and related models. Uniform sampling on Xt is required to test if a given data-
set fits the model. An overview is in Diaconis and Sturmfels [21], who introduced 
Gröbner basis techniques to do the sampling. These are typically diffusive and it 
would be wonderful to have speedups. A second use for uniform sampling comes 
from drawing samples from the original p� . For low-dimensional T, this can be done 
by sampling from the marginal distribution of T, and along the way, sampling X 
given T(X) = t.

Our main result shows that almost every bijection gives a speedup. This is not the 
same as having a specific bijection (such as x ↦ ax (mod n) ). Finding these, even in 
simple examples, seems challenging. One case where lots of bijections can be speci-
fied comes from permutation polynomials. Let us work mod p for a prime p. Then a 
permutation polynomial is a polynomial f with coefficients mod p such that j ↦ f (j) 
is one-to-one mod p. Large classes of these are known. The Wikipedia entry is use-
ful and the article by Guralnick and Müller [27] shows how these can be found in 
several variables to map varieties (mod p) to themselves.

As an example, suppose that (3, p − 1) = 1 . Then the map j ↦ j3 (mod p) is one-
to-one. The corresponding walk is

We have no idea how to work with this but (weakly) conjecture that it mixes in order 
log p steps.

Our colleague Kannan Soundararajan has suggested f (0) = 0 , f (j) = j−1 (mod p) 
for j ≠ 0 . Preliminary exploration did not reveal this as an easy problem.

4‖Pk − U‖2
TV

≤ n9−(k−1)∕m+1

≤ n9−k∕m+31∕30 ≤ 931∕30e−c.

p�(x) = Z(�)−1e�⋅T(x),

Xk+1 = X3
k
+ �k+1 (mod p).



397

1 3

Correction to: Speeding up Markov chains with deterministic…

It is natural to try to generalize the Fibonacci recurrence walk further. The fol-
lowing generalization was proved by Jimmy He, who kindly allowed us to include 
his result in this paper.

Let X be a finite set and P be a Markov kernel on X. Let f ∶ Xn
→ X be a function 

such that f (⋅, x2,… , xn) is a bijection for all x2,… , xn ∈ X . Define a Markov chain 
Pf  on Xn by moving from the state (X1,… ,Xn) to the state (X2,… ,Xn, f (X1,… ,Xn)) , 
and then taking a step from P in the last coordinate. Here the last coordinate can be 
viewed as a higher order Markov chain on X, which depends on the previous n steps 
of the walk.

To see that this is a generalization of the Fibonacci walk, note that if n = 2 , 
X = G is a finite Abelian group, P is a random walk on G generated by a measure Q 
on G, and f (x1, x2) = x1 + x2 , then the walk moves from (X1,X2) to (X2,X1 + X2 + �) 
where � is drawn from Q, and this is exactly the original Fibonacci walk.

Proposition 8.1 (Due to Jimmy He, personal communication) Assume that P is lazy 
and ergodic, and has a uniform stationary distribution. Then Pf  is ergodic, and has 
a uniform stationary distribution.

Proof First, note that the assumption that f (⋅, x2,… , xn) is a bijection for all 
x2,… , xn ∈ X implies that the function g ∶ Xn

→ Xn defined by

is a bijection. Then Pf  can be described as applying the function g, followed by a 
step from P in the last coordinate.

Now we describe how to mimic steps from P using Pf  . Note that since g is a 
permutation, gm is the identity permutation for some m. Since P is lazy, we can alter-
nate applying g, and then remaining stationary when taking a step from P. Doing so 
m − 1 times, and then applying g one last time, we can then take a step from P in the 
last coordinate. Thus, it is possible to move from (x1,… , xn−1, xn) to (x1,… , xn−1, x

�
n
) 

in m steps of Pf  , where x�
n
∈ X is some state for which P(xn, x�n) > 0 . We call this 

mimicking a step from P.
To show that Pf  is irreducible, we simply repeat the above procedure. Since P is 

irreducible, we can reach any state in X in the last coordinate, while keeping the first 
n − 1 coordinates fixed. But now, we can apply g once, and then repeat the above 
procedure, and now the last two coordinates can be made arbitrary (since the pro-
cedure described fixes the first n − 1 coordinates). Repeating this n times allows any 
state in Xn to be reached.

Now we show that Pf  is aperiodic. Starting from any state, we can return in m 
steps by mimicking a lazy step from P using the above procedure. But we can also 
first take a single step from Pf  , and then use the same procedure as in the proof of 
irreducibility to return to the initial state, using a path of length km for some k. This 
gives a path from the state to itself of length km + 1 . As m and km + 1 are coprime, 
this implies that Pf  is aperiodic.

g(x1,… , xn) = (x2,… , xn, f (x1,… , xn))
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Finally, it is clear that the stationary distribution is uniform, since g is a bijection 
and so preserves the uniform distribution, and taking a step from P in the last coor-
dinate also preserves the uniform distribution.   ◻

Proposition 8.1 allows us to generalize the Fibonacci walk to finite non-Abelian 
groups. If G is a finite group and Q is a probability on G with support generating G 
and having nonzero mass at the identity, then Proposition 8.1 implies that the sec-
ond order Markov chain which proceeds by Xk+1 = XkXk−1�k+1 (with the �i drawn 
i.i.d. from Q), is ergodic with uniform stationary distribution.

Proposition 8.1 also allows generalization of Fibonacci walks to nonlinear recur-
rences on finite fields. For example, take a prime p such that (3, p − 1) = 1 , and con-
sider the random walk on �p which proceeds as

where �i are i.i.d. uniform from �p . Proposition 8.1 implies that this has uniform sta-
tionary distribution, since f (x, y) = x3 + y is a bijection in x for every fixed y.

Getting rates of convergence in any of the above examples seems like a challeng-
ing problem.
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