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Abstract
Consider an infinite planar graph with uniform polynomial growth of degree d > 2.
Many examples of such graphs exhibit similar geometric and spectral properties, and
it has been conjectured that this is necessary. We present a family of counterexam-
ples. In particular, we show that for every rational d > 2, there is a planar graph
with uniform polynomial growth of degree d on which the random walk is transient,
disproving a conjecture of Benjamini (Coarse Geometry and Randomness, Volume
2100 of Lecture Notes in Mathematics. Springer, Cham, 2011). By a well-known the-
orem of Benjamini and Schramm, such a graph cannot be a unimodular random graph.
We also give examples of unimodular random planar graphs of uniform polynomial
growth with unexpected properties. For instance, graphs of (almost sure) uniform
polynomial growth of every rational degree d > 2 for which the speed exponent of
the walk is larger than 1/d, and in which the complements of all balls are connected.
This resolves negatively two questions of Benjamini and Papasoglou (Proc Am Math
Soc 139(11):4105–4111, 2011).
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1 Introduction

Say that a graph G has uniform polynomial growth of degree d if the cardinality of all
balls of radius r in the graphmetric lie between crd andCrd for two absolute constants
C > c > 0, for every r > 0. Say that a graph has nearly-uniform polynomial growth
of degree d if the cardinality of balls is trapped between (log r)−Crd and (log r)Crd

for some universal constant C ≥ 1.
Planar graphs of uniform (or nearly-uniform) polynomial volume growth of degree

d > 2 arise in a number of contexts. In particular, they appear in the study of random
triangulations in 2D quantum gravity [1] and as combinatorial approximations to the
boundaries of 3-dimensional hyperbolic groups in geometric group theory (see, e.g.,
[8]).

When the dimension of volume growth disagrees with the topological dimension,
one sometimes witnesses certain geometrically or spectrally degenerate behaviors.
For instance, it is known that random planar triangulations of the 2-sphere have
nearly-uniform polynomial volume growth of degree 4 (in an appropriate statistical,
asymptotic sense) [3]. The distributional limit (see Section 1.1.1) of such graphs is
called the uniform infinite planar triangulation (UIPT). But this 4-dimensional volume
growth does not come with 4-dimensional isoperimetry: With high probability, a ball
in the UIPT of radius r about a vertex v can be separated from the complement of a 2r
ball about v by removing a set of size O(r). And, indeed, Benjamini and Papasoglu [9]
showed that this phenomenon holds generally: such annular separators of size O(r)
exist in all planar graphs with uniform polynomial volume growth.

Similarly, it is known that diffusion on the UIPT is anomalous. Specifically, the
random walk on the UIPT is almost surely subdiffusive. In other words, if {Xt } is
the random walk and dG denotes the graph metric, then E dG(X0, Xt ) ≤ t1/2−ε for
some ε > 0. This was established by Benjamini and Curien [6]. In [14], it is shown
that on any unimodular random planar graph with nearly-uniform polynomial growth
of degree d > 3 (in a suitable statistical sense), the random walk is subdiffusive. So
again, a disagreement between the dimension of volume growth and the topological
dimension results in a degeneracy typical in the geometry of fractals (see, e.g., [4]).

Finally, consider a seminal result of Benjamini and Schramm [10]: If (G, ρ) is
the local distributional limit of a sequence of finite planar graphs with uniformly
bounded degrees, then (G, ρ) is almost surely recurrent. In this sense, any such limit
is spectrally (at most) two-dimensional. This was extended by Gurel-Gurevich and
Nachmias [12] to unimodular random graphs with an exponential tail on the degree
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On planar graphs of uniform polynomial growth 957

of the root, making it applicable to the UIPT. Benjamini [7] has conjectured that this
holds for every planar graph with uniform polynomial volume. We construct a family
of counterexamples. Our focus on rational degrees of growth is largely for simplicity;
suitable variants of our construction should yield similar results for all real d > 2 (see
Remark 3.6).

Theorem 1.1 For every rational d > 2, there is a transient planar graph with uniform
polynomial growth of degree d.

Conversely, it is well-known that any graphwith growth rate d ≤ 2 is recurrent. The
examples underlying Theorem 1.1 cannot be unimodular. Nevertheless, we construct
unimodular examples addressing some of the issues raised above.Angel andNachmias
(unpublished) showed the existence, for every ε > 0 sufficiently small, of a unimodular
random planar graph (G, ρ) on which the random walk is almost surely diffusive, and
which almost surely satisfies

lim
r→∞

log |BG(ρ, r)|
log r

= 3− ε.

Here, BG(ρ, r) is the graph ball around ρ of radius r . In other words, r -balls have an
asymptotic growth rate of r3−ε as r → ∞.

The authors of [9] asked whether in planar graphs with uniform growth of degree
d ≥ 2, the speed of the walk should be at most t1/d+o(1). We recall the following
weaker theorem.

Theorem 1.2 ([14]). Suppose (G, ρ) is a unimodular random planar graph and G
almost surely has uniform polynomial growth of degree d. Then:

E [dG(X0, Xt ) | X0 = ρ] � t1/max(2,d−1).

We construct examples where this dependence is nearly tight.

Theorem 1.3 For every rational d ≥ 2 and ε > 0, there is a constant c(ε) > 0 and
a unimodular random planar graph (G, ρ) such that G almost surely has uniform
polynomial growth of degree d, and

E [dG(X0, Xt ) | X0 = ρ] ≥ c(ε)t1/(max(2,d−1)+ε).

Finally, let us address another question from [9]. In conjunction with the existence
of small annular separators, the authors asked whether a planar graph with uniform
polynomial growth of degree d > 2 can be such that the complement of every ball
is connected. For example, in the UIPT, there are “baby universes” connected to the
graph via a thin neck that can be cut off by removing a small graph ball.

Theorem 1.4 For every rational d ≥ 2, there is a unimodular random planar graph
(G, ρ) such that almost surely:

1. G has uniform polynomial growth of degree d.
2. The complement of every graph ball in G is connected.
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Annular resistances. Our unimodular constructions have the property that the “Ein-
stein relations” (see, e.g., [4]) for various dimensional exponents do not hold. In
particular, this implies that the graphs we construct are not strongly recurrent (see,
e.g., [13]). Indeed, the effective resistance across annuli can be made very small (see
Section 2.3 for the definition of effective resistance).

Theorem 1.5 For every ε > 0 and d ≥ 3, there is a unimodular random planar graph
(G, ρ) that almost surely has uniform polynomial volume growth of degree d and,
moreover, almost surely satisfies

RGeff (BG(ρ, R) ↔ V (G) \ BG(ρ, 2R)) ≤ C(ε)R−(1−ε), ∀R ≥ 1, (1.1)

where C(ε) ≥ 1 is a constant depending only on ε.

Note that the existence of annular separators of size O(R) mentioned previously
gives RGeff (BG(ρ, R) ↔ V (G) \ BG(ρ, 2R)) � R−1 by the Nash-Williams inequal-
ity. Moreover, recall that since the graph (G, ρ) from Theorem 1.5 is unimodular and
planar, it must be almost surely recurrent (cf. [10]). Therefore the electrical flow wit-
nessing (1.1) cannot spread out “isotropically” from BG(ρ, R) to BG(ρ, 2R). Indeed,
if one were able to send a flow roughly uniformly from BG(ρ, 2i ) to BG(ρ, 2i+1),
then these electrical flows would chain to give

RGeff
(
ρ ↔ V (G) \ BG(ρ, 2i )

)
�
∑
j≤i

2−(1−ε) j ,

and taking i → ∞ would show that G is transient.
One formalization of this fact is that the graphs in Theorem 1.5 (almost surely) do

not satisfy an elliptic Harnack inequality. These graphs are almost surely one-ended,
and one can easily pass to a quasi-isometric triangulation that admits a circle packing
whose carrier is the entire plane R2. By a result of Murugan [16], this implies that the
graph metric (V (G), dG) on the graphs in Theorem 1.5 is not quasisymmetric to the
Euclidean metric induced on the vertices by any such circle packing. (This can also
be proved directly from (1.1).)

We remark on one other interesting feature of Theorem 1.5. Suppose that� is a Gro-
mov hyperbolic group whose visual boundary ∂∞� is homeomorphic to the 2-sphere
S
2. The authors of [8] construct a family {Gn : n ≥ 1} of discrete approximations to

∂∞� such that each Gn is a planar graph and the family {Gn} has uniform polynomial
volume growth.1 They show that if there is a constant c > 0 so that the annuli in Gn

satisfy uniform effective resistance estimates of the form

RGn
eff

(
BGn (x, R) ↔ V (Gn) \ BGn (x, 2R)

) ≥ c, ∀1 ≤ R

≤ diam(Gn)/10, x ∈ V (Gn), ∀n ≥ 1,

then ∂∞� is quasisymmetric to S2 (cf. [8, Thm 11.1].)

1 More precisely, for the boundary of a hyperbolic group as above, one can choose a sequence of approxi-
mations with this property.

123



On planar graphs of uniform polynomial growth 959

In particular, if it were to hold that for any (infinite) planar graph G with uniform
polynomial growth we have

RGeff (BG(x, R) ↔ V (G) \ BG(x, 2R)) ≥ c > 0, ∀R ≥ 1, x ∈ V (G),

then it would confirm positively Cannon’s conjecture from geometric group theory.
Theorem 1.5 exhibits graphs for which this fails in essentially the strongest way
possible.

1.1 Preliminaries

We will consider primarily connected, undirected graphs G = (V , E), which we
equip with the associated path metric dG . We will sometimes write V (G) and E(G),
respectively, for the vertex and edge sets of G. If U ⊆ V (G), we write G[U ] for the
subgraph induced on U .

For v ∈ V , let degG(v) denote the degree of v in G. Let diam(G) :=
supx,y∈V dG(x, y) denote the diameter (which is only finite for G finite). For v ∈ V
and r ≥ 0, we use BG(v, r) = {u ∈ V : dG(u, v) ≤ r} to denote the closed ball in G.
For subsets S, T ⊆ V , we write dG(S, T ) := inf{dG(s, t) : s ∈ S, t ∈ T }.

Say that an infinite graph G has uniform volume growth of rate f (r) if there exist
constants C, c > 0 such that

c f (r) ≤ |BG(v, r)| ≤ C f (r) ∀v ∈ V , r ≥ 1.

A graph has uniform polynomial growth of degree d if it has uniform volume growth
of rate f (r) = rd , and has uniform polynomial growth if this holds for some d > 0.

For two expressions A and B, we use the notation A � B to denote that A ≤ CB
for some universal constant C . The notation A �γ B denotes that A ≤ C(γ )B
where C(γ ) is a number depending only on the parameter γ . We write A 
 B for the
conjunction A � B ∧ B � A.

1.1.1 Distributional limits of graphs

We briefly review the weak local topology on random rooted graphs. One may consult
the extensive reference ofAldous andLyons [2], and [5] for the corresponding theory of
reversible randomgraphs. The paper [10] offers a concise introduction to distributional
limits of finite planar graphs. We briefly review some relevant points.

Let G denote the set of isomorphism classes of connected, locally finite graphs; let
G• denote the set of rooted isomorphism classes of rooted, connected, locally finite
graphs. Define a metric on G• as follows: dloc ((G1, ρ1), (G2, ρ2)) = 1/(1 + α),
where

α = sup
{
r > 0 : BG1(ρ1, r) ∼=ρ BG2(ρ2, r)

}
,
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960 F. Ebrahimnejad, J. R. Lee

(a) A tiling of the unit square (b) The associated dual graph

Fig. 1 Tilings and their dual graph

and we use ∼=ρ to denote rooted isomorphism of graphs. (G•,dloc) is a separable,
complete metric space. For probability measures {μn}, μ on G•, write {μn} ⇒ μ

when μn converges weakly to μ with respect to dloc.
A random rooted graph (G, X0) is said to be reversible if (G, X0, X1) and

(G, X1, X0) have the same law, where X1 is a uniformly random neighbor of X0 inG.
A random rooted graph (G, ρ) is said to be unimodular if it satisfies theMass Transport
Principle (see, e.g., [2]). For our purposes, it suffices to note that if E[degG(ρ)] < ∞,
then (G, ρ) is unimodular if and only if the random rooted graph (G̃, ρ̃) is reversible,
where (G̃, ρ̃) has the law of (G, ρ) biased by degG(ρ)

If {(Gn, ρn)} ⇒ (G, ρ), we say that (G, ρ) is thedistributional limitof the sequence
{(Gn, ρn)}, where we have conflated random variables with their laws in the obvious
way. Consider a sequence {Gn} ⊆ G of finite graphs, and let ρn denote a uniformly
random element of V (Gn). Then {(Gn, ρn)} is a sequence of G•-valued random vari-
ables, and one has the following: if {(Gn, ρn)} ⇒ (G, ρ), then (G, ρ) is unimodular.
Equivalently, if {(Gn, ρn)} is a sequence of connected finite graphs and ρn ∈ V (Gn)

is chosen according to the stationary measure of Gn , then if {(Gn, ρn)} �⇒ (G, ρ),
it holds that (G, ρ) is a reversible random graph.

2 A transient planar graph of uniform polynomial growth

We begin by constructing a transient planar graph with uniform polynomial growth of
degree d > 2. Our construction in this section has d = log3(12) ≈ 2.26. In Section 3,
this construction is generalized to any rational d > 2.

2.1 Tilings and dual graphs

Our constructions are based on planar tilings by rectangles. A tile is an axis-parallel
closed rectangle A ⊆ R

2. We will encode such a tile as a triple (p(A), �1(A), �2(A)),
where p(A) ∈ R

2 denotes its bottom-left corner, �1(A) its width (length of its projec-
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On planar graphs of uniform polynomial growth 961

=

Fig. 2 An example of the tiling product S ◦ T

| =

Fig. 3 An example of the tiling concatenation S | T

tion onto the x-axis), and �2(A) its height (length of its projection onto the y-axis).
A tiling T is a finite collection of interior-disjoint tiles. Denote �T� := ⋃

A∈T A. If
R ⊆ R

2, we say that T is a tiling of R if �T� = R. See Fig. 1a for a tiling of the unit
square.

We associate to a tiling its dual graph G(T ) with vertex set T and with an edge
between two tiles A, B ∈ T whenever A ∩ B has Hausdorff dimension one; in other
words, A, B are tangent, but not only at a corner. Denote by T the set of all tilings
of the unit square. See Fig. 1b. For the remainder of the paper, we will consider only
tilings T for which G(T ) is connected.

Definition 2.1 (Tiling product). For S, T ∈ T , define the product S ◦ T ∈ T as
the tiling formed by replacing every tile in S by an (appropriately scaled) copy of
T . More precisely: For every A ∈ S and B ∈ T , there is a tile R ∈ S ◦ T with
�i (R) := �i (A)�i (B), and

pi (R) := pi (A) + pi (B)�i (A),

for each i ∈ {1, 2}. See Fig. 2.
If T ∈ T and n ≥ 0, we will use Tn := T ◦ · · · ◦T to denote the n-fold tile product

of T with itself. The following observation shows that this is well-defined.

Observation 2.2 The tiling product is associative: (S ◦ T ) ◦ U = S ◦ (T ◦ U) for all
S, T ,U ∈ T . Moreover, if I ∈ T consists of the single tile [0, 1]2, then T ◦ I = I ◦T
for all T ∈ T .

Definition 2.3 (Tiling concatenation). Suppose that S is a tiling of a rectangle R and
T is a tiling of a rectangle R′ and the heights of R and R′ coincide. Let R′′ denote the
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962 F. Ebrahimnejad, J. R. Lee

Fig. 4 The tiling H1 | H2 | H3

translation of R′ for which the left edge of R′′ coincides with the right edge of R, and
denote by S | T the induced tiling of the rectangle R ∪ R′′. See Fig. 3.

Let H denote the tiling in Fig. 1a, and define Hn := G(H0 | H1 | · · · | Hn); see
Fig. 4, where we have omitted H0 for ease of illustration. The next theorem represents
our primary goal for the remainder of this section. Note that H0 = {ρ} consists of a
single tile, and that {(Hn, ρ)} forms a Cauchy sequence in (G•,dloc), since (Hn, ρ)

is naturally a rooted subgraph of (Hn+1, ρ). Letting H∞ denote its limit, we will
establish the following.

Theorem 2.4 The infinite planar graph H∞ is transient and has uniform polynomial
volume growth of degree log3(12).

Uniform growth is established in Lemma 2.11 and transience in Corollary 2.17.

2.2 Volume growth

The following lemma shows that a ball of radius r = diam(Hn) in Hn has volume

 r log3(12). Later on, in Lemma 2.10, we will show a similar bound holds for balls of
arbitrary radius 1 ≤ r ≤ diam(Hn) in Hn .

Lemma 2.5 For n ≥ 0, we have |Hn| = 12n, and 3n ≤ diam(Hn) ≤ 3n+1.

Proof The first claim is straightforward by induction. For the second claim, note that
�1(A) = 3−n for every A ∈ Hn .

Moreover, there are 3n tiles touching the left-most boundary of [0, 1]2. Therefore to
connect any A, B ∈ Hn by a path in G(Hn), we need only go from A to the left-most
column in at most 3n steps, then use at most 3n steps of the column, and finally move
at most 3n steps to B. ��

The next lemma is straightforward.

Lemma 2.6 Consider S, T ∈ T and G = G(S ◦ T ). For any X ∈ S ◦ T , it holds that
|BG(X , diam(G(T )))| ≥ |T |.
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On planar graphs of uniform polynomial growth 963

Fig. 5 A tile X ∈ H and its
neighbors are marked. Here we
have NH (X , 1) = {T , B} and
NH (X , 2) = {L, R}

X

B

T

L R

If T is a tiling, let us partition the edge set E(G(T )) = E1(T ) ∪ E2(T ) into
horizontal and vertical edges. For A ∈ T and i ∈ {1, 2}, let NT (A, i) denote the set of
tiles adjacent to A in G(T ) along the i th direction, meaning that the edge separating
them is parallel to the i th axis (see Fig. 5).

Further denote NT (A) := NT (A, 1) ∪ NT (A, 2). Moreover, we define:

αT (A, i) := max

{
� j (A)

� j (B)
: B ∈ NT (A, i), j ∈ {1, 2}

}
, i ∈ {1, 2}

αT (A) := max
i∈{1,2} αT (A, i)

αT := max {αT (A) : A ∈ T }
LT := max {�i (A) : A ∈ T , i ∈ {1, 2}} . (2.1)

We take αT := 1 if T contains a single tile. It is now straightforward to check that αT
bounds the degrees in G(T ).

Lemma 2.7 For a tiling T and A ∈ T , it holds that

degG(T )(A) ≤ 4(1+ αT ) ≤ 8αT .

Proof After accounting for the four corners of A, every other tile B ∈ NT (A, i)
intersects A in a segment of length at least �i (B) ≥ �i (A)/αT . The second inequality
follows from αT ≥ 1. ��
Lemma 2.8 Consider S, T ∈ T and let G = G(S ◦ T ). Then for any X ∈ S ◦ T , it
holds that

|BG(X , 1/(α4
SLT ))| ≤ 192α2

S|T |. (2.2)

Proof For a tile Y ∈ S ◦ T , let Ŷ ∈ S denote the unique tile for which Y ⊆ Ŷ . Let us
also define

ÑS(X̂) := {X̂} ∪ NS(X̂) ∪ NS

(
NS(X̂ , 1), 2

)
∪ NS

(
NS(X̂ , 2), 1

)
,
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964 F. Ebrahimnejad, J. R. Lee

which is the set of vertices of G(S) that can be reached from X̂ by following at most
one edge in each direction.

We will show that
�
BG(X , 1/(α4

SLT ))
�
⊆

�
ÑS(X̂)

�
. (2.3)

It follows that

|BG(X , 1/(α4
SLT ))| ≤ |T | · |ÑS(X̂)| ≤ |T | · 3

(
max
A∈S degG(S)(A)

)2

,

and then (2.2) follows from Lemma 2.7.
To establish (2.3), consider any path 〈X = X0, X1, X2, . . . , Xh〉 in G with X̂h /∈

ÑS(X̂). Let k ≤ h be the smallest index for which X̂k /∈ ÑS(X̂). Then:

X0, X1, . . . , Xk−1 ⊆
�
ÑS(X̂)

�
(2.4)

Xk−1 ∩
(
∂

�
ÑS(X̂)

�
∩ (0, 1)2

)
�= ∅. (2.5)

Now (2.4) implies that

�i (X j ) ≤ LT�i (X̂ j ) ≤ LTα2
S�i (X̂), j ≤ k − 1, i ∈ {1, 2}. (2.6)

And (2.5) shows that for some i ′ ∈ {1, 2},
k−1∑
j=0

�i ′(X j ) ≥ min
{
�i ′(Y ) : Y ∈ ÑS(X̂)

}
≥ �i ′(X̂)/α2

S. (2.7)

To clarify why this is true, note that

X̂ +
[
−�1(X̂)/α2

S, �1(X̂)/α2
S

]
×
[
−�2(X̂)/α2

S, �2(X̂)/α2
S

]
⊆

�
ÑS(X̂)

�
,

where ’+’ here is the Minkowski sum R + S := {r + s : r ∈ R, s ∈ S}. Indeed, this
inclusion motivates our definition of the “�∞ neighborhood” Ñ above.

Combining (2.6) and (2.7) now gives

h ≥ k ≥ 1

α4
SLT

,

completing the proof. ��
We can now finish the analysis of the volume growth in the graphs {Hn : n ≥ 0}.

Lemma 2.9 For n ≥ 1, it holds that αHn ≤ 2.
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Proof Consider A ∈ Hn and B ∈ NHn (A). First note that, as in the proof of
Lemma 2.5, all the tiles in Hn have the same width 3−n , and so �1(A) = �1(B).
Moreover, one can easily verify that every two vertically adjacent tiles in Hn have the
same height, and so we have �2(A) = �2(B) when B ∈ NHn (A, 1). Now we prove
by an induction on n that for all horizontally adjacent tiles A, B ∈ Hn we have

�2(A)

�2(B)
≤ 2.

The base case is clear for n = 1. For n ≥ 2 Let us write Hn = H ◦ Hn−1, and
let Â, B̂ ∈ H be the unique tiles for which A ⊆ Â and B ⊆ B̂. If Â = B̂, then the
claim follows from the induction hypothesis. Otherwise, as B ∈ NHn (A, 2), it holds
that B̂ ∈ NH ( Â, 2) as well. By symmetry, the tiles touching the left and right edges
of Hn−1 have the same height, and therefore it follows that

�2(A)

�2(B)
≤ �2( Â)

�2(B̂)
≤ 2,

completing the proof. ��
Lemma 2.10 For any n ≥ 0, it holds that

∣∣BG(Hn)(A, r)
∣∣ 
 r log3(12), ∀A ∈ Hn, 1 ≤ r ≤ diam(G(Hn)).

Proof Writing Hn = Hn−k ◦Hk and employing Lemma 2.6 together with Lemma 2.5
gives

∣∣∣BG(Hn)(A, 3k+1)

∣∣∣ ≥ |Hk | = 12k, ∀A ∈ Hn, k ∈ {0, 1, . . . , n}.

The desired lower bound now follows using monotonicity of |BG(Hn)(A, r)| with
respect to r .

To prove the upper bound, first note that we have LHk = 3−k (recall the definition
(2.1)). Moreover, by Lemma 2.9 we have αHn ≤ 2. Hence invoking Lemma 2.8 with
S = Hn−k and T = Hk gives

∣∣∣BG(Hn)(A, 3k/16)
∣∣∣ ≤ 768 · 12k, ∀A ∈ Hn, k ∈ {0, 1, . . . , n},

completing the proof. ��
Finally, this allows us to establish a uniform polynomial growth rate for H∞.

Lemma 2.11 It holds that

|BH∞(v, r)| 
 r log3(12) ∀v ∈ V (H∞), r ≥ 1.
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Proof Recall first the natural identification Hn ↪→ V (H∞) under which V (H∞) =⋃
n≥0 H

n is a partition. Consider v ∈ V (H∞) and let n ≥ 0 be such that v ∈ Hn .
Now Lemma 2.10 in conjunction with Lemma 2.5 yields the bounds:

|BH∞ (v, r)| ≥ |BH∞ (v, r) ∩ Hn | � r log3(12) r ≤ 3n+3

|BH∞ (v, r)| ≥ |Hk | = 12k � r log3(12) r ∈ [3k+3, 3k+4), k ≥ n

|BH∞ (v, r)| = |BH∞ (v, r) ∩ Hn−1| + |BH∞ (v, r) ∩ Hn | + |BH∞ (v, r) ∩ Hn+1|
� r log3(12) r ≤ 3n−1

|BH∞ (v, r)| ≤
∑

j≤max(k,n+1)

|H j | ≤ 2 · 12max(k,n+1) � r log3(12) r ∈ [3k−1, 3k), k ≥ n.

These four bounds together verify the desired claim. ��

2.3 Effective resistances

Consider a weighted, undirected graph G = (V , E, c) with edge conductances c :
E → R+. For p ≥ 1, denote �p(V ) := { f : V → R | ∑u∈V | f (u)|p < ∞}, and
equip �2(V ) with the inner product 〈 f , g〉 = ∑

u∈V f (u)g(u).
For s, t ∈ �1(V ) with ‖s‖1 = ‖t‖1, we define the effective resistance

RGeff(s, t) :=
〈
s − t, L†

G(s − t)
〉
,

where LG is the combinatorial Laplacian of G, and L†
G is the Moore-Penrose pseu-

doinverse. Here, LG is the operator on �2(V ) defined by

LG f (v) =
∑

u:{u,v}∈E
c({u, v}) ( f (v) − f (u)) .

If G is unweighted, we assume it is equipped with unit conductances c ≡ 1E(G).
Equivalently, if we considermappings θ : E → R, and define the energy functional

EG(θ) :=
∑
e∈E

c(e)−1θ(e)2,

then RGeff(s, t) is the minimum energy of a flow with demands s− t . (See, for instance,
[15, Ch. 2].) For two finite sets A, B ⊆ V in a graph, we define

RGeff(A ↔ B)

:= inf
{
RGeff(s, t) : supp(s) ⊆ A, supp(t) ⊆ B, s, t ∈ �1(V ), ‖s‖1 = ‖t‖1 = 1

}
,

and we recall the following standard characterization (see, e.g., [15, Thm. 2.3]).
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If we define additionally cv := ∑
u∈V (L) c({u, v}) for v ∈ V , then we can recall

that weighted random walk {Xt } on G with Markovian law

P
[
Xt+1 = v | Xt = u

] = c({u, v})
cu

, u, v ∈ V .

Theorem 2.12 (Transience criterion). A weighted graph G = (V , E, c) is transient
if and only if there is a vertex v ∈ V and an increasing sequence V1 ⊆ · · · ⊆ Vn ⊆
Vn+1 ⊆ · · · of finite subsets of vertices satisfying⋃n≥1 Vn = V and

sup
n≥1

RGeff ({v} ↔ V \ Vn) < ∞.

For a tiling T of a closed rectangle R, letL (T ) and R(T ) denote the sets of tiles
that intersect the left and right edges of R, respectively. We define

ρ(T ) := RG(T )
eff

(
1L (T)/|L (T )|,1R(T )/|R(T )|) ,

Observation 2.13 For any S, T ∈ T , we have |L (S ◦ T )| = |L (S)| · |L (T )| and
|R(S ◦ T )| = |R(S)| · |R(T )|. In particular, |L (Hn)| = |R(Hn)| = 3n .

Lemma 2.14 Suppose that S, T are tilings satisfying the conditions of Definition 2.3.
Suppose furthermore that all rectangles inR(S) have the same height, and the same
is true forL (T ). Then we have

ρ(S | T ) ≤ ρ(S) + ρ(T ) + 1

max(|R(S)|, |L (T )|) .

Proof By the triangle inequality for effective resistances, it suffices to prove that

RGeff
(
1R(S)/|R(S)|,1L (T )/|L (T )|) ≤ 1

max(|R(S)|, |L (T )|) ,

where G = G(S | T ). We construct a flow from R(S) to L (T ) as follows: If
A ∈ R(S), B ∈ L (T ) and {A, B} ∈ E(G), then the flow value on {A, B} is

FAB := len(A ∩ B)

�2(A)

1

|R(S)| .

Denoting m := max(|R(S)|, |L (T )|), we clearly have FAB ≤ 1/m. Moreover,

∑
A∈R(S)

∑
B∈L (T ):

{A,B}∈E(G)

FAB = 1,
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hence

∑
A∈R(S)

∑
B∈L (T ):

{A,B}∈E(G)

F2
AB ≤ 1/m,

completing the proof. ��
Say that a tiling T is non-degenerate if L(T ) ∩ R(T ) = ∅, i.e., if no tile A ∈ T

touches both the left and right edges of �T�. Let �T := maxA∈T degG(T )(A). If S
and T are non-degenerate, we have the simple inequalities ρ(T ) ≥ 1/(�T · |L (T )|)
and ρ(T ) ≥ 1/(�T · |R(T )|). Together with Lemma 2.7, this yields a fact that we
will employ later.

Corollary 2.15 For any two non-degenerate tilings S, T satisfying the assumptions of
Lemma 2.14, it holds that

ρ(S | T ) ≤ ρ(S) + ρ(T ) + 8min(αSρ(S), αT ρ(T ))

�αS ,αT ρ(S) + ρ(T ).

Lemma 2.16 For every n ≥ 1, it holds that

ρ(Hn) � (5/6)n .

Proof Fix n ≥ 2. Recalling Fig. 1b, let us consider Hn as consisting of three (identical)
tilings stacked vertically, and where each of these three tilings is written as Hn−1 |
S | Hn−1 where S consists of two copies of Hn−1 stacked vertically. Applying
Lemma 2.14 to Hn−1 | S | Hn−1 gives

ρ(Hn) ≤ (1/3)2 · 3
(
2ρ(Hn−1) + ρ(S) + 1

max(|R(Hn−1)|, |L (S)|)
+ 1

max(|L (Hn−1)|, |R(S)|)
)

≤ (1/3)2 · 3
(
2ρ(Hn−1) + (1/2)2 · 2ρ(Hn−1) + 2

2 · 3n−1

)

= (5/6)ρ(Hn−1) + 3−n,

where in the second inequality we have employed Observation 2.13. This yields the
desired result by induction on n. ��
Corollary 2.17 The graphs Hn = G(H0 | H1 | · · · | Hn) satisfy

sup
n≥1

ρ(Hn) < ∞. (2.8)

Hence H∞ is transient.
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Proof Employing Lemma 2.14, Observation 2.13, and Lemma 2.16 together yields

ρ(Hn) �
n∑
j=1

[
(5/6) j + 3− j

]
,

verifying (2.8). Now Theorem 2.12 yields the transience of H∞. ��

3 Generalizations and unimodular constructions

Consider a sequence γ = 〈γ1, . . . , γb〉with γi ∈ N. Define a tiling Tγ ∈ T as follows:
The unit square is partitioned into b columns of width 1/b, and for i ∈ {1, 2, . . . , b},
the i th column has γi rectangles of height 1/γi . For instance, the tiling H from Fig. 1a
can be written H = T 〈3,6,3〉.

We will assume throughout this section that min(γ ) = b and γ1 = γb. Let us use
the notation |γ | := γ1 + · · · + γb. The proof of the next lemma follows just as for
Lemma 2.5 using min(γ ) = b so that there is a column in Tn

γ of height bn .

Lemma 3.1 For n ≥ 0, it holds that |Tn
γ | = |γ |n, and bn ≤ diam(Tn

γ ) ≤ 3bn.

Clearly we have αTγ ≤ |γ |/b. The following lemma can be shown using a similar
argument to that of Lemma 2.9. Note that the only symmetry required in the proof of
Lemma 2.9 is that the first and last column of Tγ have the same geometry, and this is
true since γ1 = γb.

Lemma 3.2 For any n ≥ 1, it holds that αTn
γ
≤ αTγ ≤ |γ |/b.

The next lemma also follows from Lemma 3.1 and the same reasoning used in the
proof of Lemma 2.10. The dependence of the implicit constant on |γ |/b comes from
Lemma 3.2.

Lemma 3.3 For any n ≥ 0, it holds that

|BG(A, r)| 
|γ |/b r logb(|γ |) ∀A ∈ Tn
γ , 1 ≤ r ≤ diam(G(Tn

γ )).

3.1 Degrees of growth

Consider b, k ∈ N with k ≥ b ≥ 4, and define the sequence

γ (b,k) :=
〈
b,

⌈
k − 3

b − 3

⌉
b, . . . ,

⌈
k − 3

b − 3

⌉
b

︸ ︷︷ ︸
(k−3) mod (b−3) copies

, b,

⌊
k − 3

b − 3

⌋
b, . . . ,

⌊
k − 3

b − 3

⌋
b

︸ ︷︷ ︸
(b−3)−[(k−3) mod (b−3)] copies

, b

〉
.

Denote T (b,k) := Tγ (b,k) and note that |γ (b,k)| = bk. Define dg(b, k) := logb(bk),

and �b,k := ∑b
i=1 1/γ

(b,k)
i .

123



970 F. Ebrahimnejad, J. R. Lee

Observation 3.4 The following facts hold for k ≥ b ≥ 4 and n ≥ 0:

(a) There are bn tiles in the left- and right-most columns of Tn
(b,k).

(b) If a pair of consecutive columns in Tn
(b,k) have heights h and h′, then min(h, h′)

divides max(h, h′).

Now observe that Lemma 3.3 yields the following.

Corollary 3.5 The family of graphsF = {
G
(
Tn

(b,k)

) : n ≥ 0
}
has uniform polynomial

growth of degree dg(b, k) in the sense that

|BG(x, r)| 
k r
dg(b,k), ∀G ∈ F , x ∈ V (G), 1 ≤ r ≤ diam(G) .

For any rational p/q ≥ 2, one can achieve dg(b, k) = p/q by taking b = 4q and
k = 4p−q .

Remark 3.6 (Arbitrary real degrees d > 2). We note that by considering more general
products of tilings, one can obtain planar graphs of uniform polynomial growth of
any real degree d > 2 for which the main results of this paper still hold. Instead of
working with the family of powers {Tn

γ } for a fixed tiling Tγ , one defines an infinite

sequence 〈γ (1), γ (2), . . .〉, and examines the family of graphs Tγ (n) ◦ · · · ◦ Tγ (1) .
More concretely, fix some real d > 2, and let us consider a sequence {hn : n ≥ 1}

of nonnegative integers. Also define γ (n) := γ (4,4+hn) and T (n) := Tγ (n) ◦ · · · ◦Tγ (1) .

Then |T (n)| = 4n
∏n

j=1(4 + h j ), and diam(T (n)) 
 4n . By a similar argument as in
Lemma 2.10 based on the recursive structure, it holds that for i ∈ {1, 2, . . . , n}, balls of
radius
 4i in T (n) have volume
K 4i

∏i
j=1(4+h j ), where K := max{hn : n ≥ 1}.

Given our choice of {h1, . . . , hn−1}, we choose hn ≥ 0 as large as possible subject to

n∑
j=1

log4(1+ h j/4) ≤ (d − 2)n.

It is straightforward to argue that K �d 1, and

∣∣∣∣∣∣
n∑
j=1

log4(1+ h j/4) − (d − 2)n

∣∣∣∣∣∣
�d 1,

implying that 4n
∏n

j=1(4 + h j ) 
d 4dn for every n ≥ 1. It follows that the graphs

{T (n) : n ≥ 1} have uniform polynomial growth of degree d.

Let us now return to the graphs Tn
(b,k) and analyze the effective resistance across

them.

Lemma 3.7 For every n ≥ 1, it holds that

�n
b,k �k ρ

(
Tn

(b,k)

)
� �n

b,k .
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Proof Fix n ≥ 2 and write Tn
(b,k) = T (b,k) ◦ Tn−1

(b,k) as A1 | A2 | · · · | Ab where,

for 1 ≤ i ≤ b, each Ai is a vertical stack of γ
(b,k)
i copies of Tn−1

(b,k). Since ρ(Ai ) =
ρ(Tn−1

(b,k))/γ
(b,k)
i by the parallel law for effective resistances, applying Lemma 2.14 to

A1 | A2 | · · · | Ab gives

ρ
(
Tn

(b,k)

)
≤

b∑
i−1

ρ(Tn−1
(b,k))/γ

(b,k)
i

+
b−1∑
i=1

1

min (R(Ai ),L (Ai+1))
≤ ρ(Tn−1

(b,k))�b,k + b1−n,

where in the second inequalitywehave employedmin (R(Ai ),L (Ai+1)) ≥ bn which
follows from Observation 3.4(a). Finally, observe that �b,k ≥ 1/γ (b,k)

1 + 1/γ (b,k)
b =

2/b, and therefore the desired upper bound follows by induction.
For the lower bound, note that since the degrees in Tn

(b,k) are bounded by k, the
Nash-Williams inequality (see, e.g., [15, §5]) gives

ρ(Tn
(b,k)) �k

bn−1∑
i=2

1

|Ki | �
bn∑
i=1

1

|Ki | = �n
b,k, (3.1)

where Ki is the i th column of rectangles in Tn
(b,k), and the last equality follows by a

simple induction. ��
The next result establishes Theorem 1.1.

Theorem 3.8 For every k > b, the graphs T (b,k)
n := G

(
T0

(b,k) | T1
(b,k) | · · · | Tn

(b,k)

)

satisfy

sup
n≥1

ρ
(
T (b,k)
n

)
< ∞. (3.2)

Hence the limit graph T (b,k)∞ is transient. Moreover, T (b,k)∞ has uniform polynomial
growth of degree dg(b, k).

Proof Employing Lemma 2.14, Observation 3.4(a), and Lemma 3.7 together yields

ρ
(
T (b,k)
n

)
�

n∑
j=1

(
�

j
b,k + b− j

)
.

For k > b, we have max(γ (b,k)) > b and min(γ (b,k)) = b, hence �b,k < 1, verifying
(3.2). Now Theorem 2.12 yields transience of T (b,k)∞ .

Uniform polynomial growth of degree dg(b, k) follows from Corollary 3.5 as in
the proof of Lemma 2.11. ��
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3.2 The distributional limit

Fix k ≥ b ≥ 4 and take Gn := G(Tn
(b,k)). Since the degrees in {Gn} are uniformly

bounded, the sequence has a subsequential distributional limit, and in all arguments
that follow, we could consider any such limit. But let us now argue that if μn is the
law of (Gn, ρn) with ρn ∈ V (Gn) chosen according to the stationary measure, then
the measures {μn : n ≥ 0} have a distributional limit.

Lemma 3.9 For any k ≥ b ≥ 4, there is a reversible random graph (Gb,k, ρ) such
that {(Gn, ρn)} ⇒ (Gb,k, ρ). Moreover, almost surely Gb,k has uniform polynomial
volume growth of degree dg(b, k).

Proof It suffices to prove that {(Gn, ρn)} has a limit (Gb,k, ρ). Reversibility of the
limit then follows automatically (as noted in Section 1.1.1), and the degree of growth
is an immediate consequence of Corollary 3.5. It will be slightly easier to show that the
sequence {(Gn, ρ̂n)} has a distributional limit, with ρ̂n ∈ V (Gn) chosen uniformly
at random. As noted in Section 1.1.1, the claim then follows from [5, Prop. 2.5]
(the correspondence between unimodular and reversible random graphs under degree-
biasing).

Let μn,r be the law of BGn (ρ̂n, r). It suffices to show that the measures {μn,r : n ≥
0} converge for every fixed r ≥ 1, and then a standard application of Kolmogorov’s
extension theorem proves the existence of a limit.

For a tiling T of a rectangle R, let ∂T denote the set of tiles that intersect some side
of R. Define the neighborhood Nr (∂Tn

(b,k)) := {v ∈ Tn
(b,k) : dGn (v, ∂Tn

(b,k)) ≤ r}
and abbreviate d = dg(b, k). Then |∂Tn

(b,k)| ≤ 4bn , so Corollary 3.5 gives

∣∣∣Nr (∂Tn
(b,k))

∣∣∣ �k b
nrd .

Since |Tn
(b,k)| = (bk)n , it follows that

1− P
[
Er ,n

]
�k k

−nrd,

where Er ,n is the event {BGn (ρ̂n, r) ∩ ∂Tn
(b,k) = ∅}.

Now write Tn
(b,k) = T (b,k) ◦ Tn−1

(b,k), and note that ρ̂n falls into one of the |γ (b,k)| =
bk copies of Gn−1 and is, moreover, uniformly distributed in that copy. Therefore
we can naturally couple (Gn, ρ̂n) and (Gn−1, ρ̂n−1) by identifying ρ̂n with ρ̂n−1.
Moreover, conditioned on the event Er ,n−1, we can similarly couple BGn (ρ̂n, r) and
BGn−1(ρ̂n−1, r).

It follows that, for every r ≥ 1,

dTV
(
μn−1,r , μn,r

) ≤ 1− P[Er ,n−1] �k k
−nrd .

As the latter sequence is summable, it follows that {μn,r } converges for every fixed
r ≥ 1, completing the proof. ��
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3.3 Speed of the randomwalk

Let {Xt } denote the random walk on Gb,k with X0 = ρ. Our first goal will be to prove
a lower bound on the speed of the walk. Define:

dw(b, k) := dg(b, k) + logb(�b,k).

We will show that dw(b, k) is related to the speed exponent for the random walk.

Theorem 3.10 Consider any k ≥ b ≥ 4. It holds that for all T ≥ 1,

E
[
dGb,k (XT , X0) | X0 = ρ

]
�k T 1/dw(b,k). (3.3)

Before proving the theorem, let us observe that it yieldsTheorem1.3. Fix k ≥ b ≥ 4.
Observe that for any positive integer p ≥ 1, we have dg(bp, k p) = dg(b, k). On the
other hand,

dg(bp, k p) − dw(bp, k p) = − logbp (�bp,k p )

≥ − logbp
(
3b−p + (b/k)p

)− op(1)

≥ min
(
1, logb(k) − 1

)− op(1)

≥ min
(
1,dg(bp, k p) − 2

)− op(1) . (3.4)

So for every ε > 0, there is some p = p(ε) such that

dw(bp, k p) ≤ max
(
2,dg(bp, k p) − 1

)+ ε ,

andmoreoverGbp,k p almost surely has uniformpolynomial growth of degreedg(b, k).
Combining this with the construction of Corollary 3.5 for all rational d ≥ 2 yields
Theorem 1.3.

3.3.1 The linearized graphs

Fix integers k ≥ b ≥ 4 and n ≥ 1, and let us consider now the (weighted) graph
L = Ln

(b,k) derived from G = G(Tn
(b,k)) by identifying every column of rectangles

into a single vertex. Thus |V (L)| = bn .
We connect two vertices u, v ∈ V (L) if their corresponding columns Cu and Cv in

G are adjacent, and we define the conductances cuv := |EG(Cu, Cv)|, where EG(S, T )

denotes the number of edges between two subsets S, T ⊆ V (G). Define additionally
cuu := 2|Cu | and

cu := cuu +
∑

v:{u,v}∈E(L)

c({u, v}) .

Let us order the vertices of L from left to right as V (L) = {�1, . . . , �bn }. The series
law for effective resistances gives the following.
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Observation 3.11 For 1 ≤ i ≤ t ≤ j ≤ bn , we have

RLeff(�i ↔ � j ) = RLeff(�i ↔ �t ) + RLeff(�t ↔ � j )

We will use this to bound the resistance between any pair of columns.

Lemma 3.12 If 1 ≤ s < t ≤ bn, then

RLeff(�s ↔ �t ) ·
(
c�s + c�s+1 + · · · + c�t

) 
k (�b,k · bk)logb(t−s) . (3.5)

Proof Let us first establish the upper bound. Denote h := �logb(t − s)�, T := T (b,k),
and � := �b,k . Write Tn = Tn−h ◦ T h and along this decomposition, partition Tn

into bn−h sets of tilesD1, . . . ,Dbn−h , where eachDi is formed from adjacent columns

Di := C(i−1)·bh+1 ∪ · · · ∪ Ci ·bh . (3.6)

Suppose that, for 1 ≤ i ≤ bn−h , the tiling Tn−h has βi tiles in its i th column. Then
Di consists of βi copies of T h stacked atop each other.

Thus we have |Di | = βi |T h |, and furthermore ρ(Di ) ≤ ρ(T h)/βi , hence

ρ(Di ) · |Di | ≤ ρ(T h) · |T h | � �h · (bk)h, (3.7)

where the last inequality uses Lemma 3.7.
Let 1 ≤ i ≤ j ≤ bn−h be such that Cs ⊆ Di and Ct ⊆ D j . Since t ≤ s + bh , and

each set Di consists of bh consecutive columns, it must be that j ≤ i + 1. If i = j ,
then |Cs | + · · · + |Ct | ≤ |Di |, and Observation 3.11 gives

RLeff(�s ↔ �t ) ≤ ρ(Di ),

thus (3.7) yields (3.5), as desired.
Suppose, instead, that j = i + 1. From Lemma 3.2, we have αTn−h ≤ |γ |/b ≤ k.

Therefore 1/k ≤ βi+1/βi ≤ k. Since the degrees in G(Tn
(b,k)) are bounded by k, this

yields the following claim, which we will also employ later.

Claim 3.13 For any �i ∈ V (L), we have

c�i 
k |Ci |, (3.8)

and for any D > 0 and columns Ca ∈ Di and Cb ∈ D j with |i − j | ≤ D, it holds that

c�a 
k |Ca | 
k,D |Cb| 
k c�b . (3.9)

Thus using Corollary 2.15 (and noting that each Di is non-degenerate) along with
(3.7) gives

ρ(Di ∪Di+1) = ρ(Di | Di+1) �k ρ(Di ) + ρ(Di+1) �k ρ(T h)/βi .
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Since it also holds that |Di |+|Di+1| = (βi+βi+1)|T h | ≤ 2kβi |T h |, Observation 3.11
gives

RLeff(�s ↔ �t ) · (|Cs | + · · · + |Ct |) ≤ ρ(Di ∪Di+1)|Di ∪Di+1| �k ρ(T h)|T h |,

and again (3.7) establishes (3.5). Now (3.8) completes the proof of the upper bound.
For the lower bound, define h′ :=  logb(t − s)!− 1 and decompose Tn = Tn−h′ ◦

T h′ . Partition Tn similarly into bn−h′ sets of tiles D1, . . . ,Dbn−h′ . Suppose that Cs ⊆
Di and Ct ⊆ D j , and note that the width of eachDi is bh

′
and bh

′+2 ≥ t − s ≥ bh
′+1,

hence j > i + 1. Therefore using again Observation 3.11 and the Nash-Williams
inequality, we have

RLeff(�s ↔ �t ) ≥
t−1∑

j=s+1

1

c� j

(3.8)

�k

t−1∑
j=s+1

1

|C j | ≥
ibh∑

j=(i−1)bh+1

1

|C j | = 1

βi+1
�n
b,k,

where the final inequality uses (3.1). Note also that

|Cs | + · · · + |Ct | ≥ |Di+1| = βi+1|T h′ | = βi+1(bk)
h′ .

An application of (3.8) completes the proof of the lower bound. ��

3.3.2 Rate of escape in L

Consider again the linearized graph L = Ln
(b,k) with conductances c : E(L) → R+

defined in Section 3.3.1, and let {Yt } be the random walk on L defined by

P[Yt+1 = v | Yt = u] = cuv

cu
, {u, v} ∈ E(L) or u = v. (3.10)

Let πL be the stationary measure of {Yt }.
For a parameter 1 ≤ h ≤ n, consider the decomposition Tn = Tn−h ◦ T h , and let

V1, V2, . . . , Vbn−h be a partition of V (L) into continguous subsets with |V1| = |V2| =
· · · = |V n−h

b | = bh .
Let {Zi : i ∈ {1, 2, . . . , bn−h}} be a collection of independent random variables

with

P[Zi = v] = πL(v)

πL(Vi )
, v ∈ Vi .

Define the random time τ(h) as follows: Given Y0 ∈ Vj , let τ(h) be the first time
τ ≥ 1 at which
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976 F. Ebrahimnejad, J. R. Lee

Yτ ∈ {Z j−2, Z j+2} 3 ≤ j ≤ bn−h − 2

Yτ = Z j+2 j ∈ {1, 2}
Yτ = Z j−2 j ∈ {bn−h − 1, bn−h}.

The next lemma shows that the law of thewalk stopped at time τ(h) is within a constant
factor of the stationary measure.

Lemma 3.14 Suppose Y0 is chosen according to πL . Then for every v ∈ V (L),

P
[
Yτ(h) = v

] 
k πL(v).

Proof Consider some 5 ≤ j ≤ bn−h − 4 and v ∈ Vj . The proof for the other cases is
similar. Let E denote the event {Y0 ∈ {Vj−2, Vj+2}}. The conditional measure is

P[Y0 = u | E] = πL(u)

πL(Vj−2) + πL(Vj+2)
, u ∈ Vj−2 ∪ Vj+2.

Consider three linearly ordered vertices v, u, w ∈ V (L), i.e., such that v,w are in
distinct connected components of L[V (L) \ {u}]). Let pv≺w

u denote the probability
that the random walk, started from Y0 = u hits v before it hits w. Now we have:

P
[
Yτ(h) = v

] = πL(v)

πL(Vj )

⎛
⎝ ∑

u∈Vj−2

πL(u)
∑

w∈Vj−4

πL(w)

πL(Vj−4)
pv≺w
u

+
∑

u∈Vj+2

πL(u)
∑

w∈Vj+4

πL(w)

πL(Vj+4)
pv≺w
u

⎞
⎠ (3.11)

It is a classical fact (see [15, Ch. 2]) that

pv≺w
u = RLeff(u ↔ w)

RLeff(u ↔ v) + RLeff(u ↔ w)
= RLeff(u ↔ w)

RLeff(v ↔ w)
,

where the final equality uses Observation 3.11 and the fact that v, u, w are linearly
ordered.

Thus from Lemma 3.12 and (3.9), whenever w ∈ Vj−4, u ∈ Vj−2, v ∈ Vj or
u ∈ Vj+2, v ∈ Vj , w ∈ Vj+4, it holds that

pv≺w
u 
k 1

Another application of (3.9) gives

πL(Vj−2) 
k πL(Vj−4) 
k πL(Vj ) 
k πL(Vj+2),
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hence (3.11) gives

P
[
Yτ(h) = v

] 
k πL(v),

completing the proof. ��
Lemma 3.15 It holds that E[τ(h) | Y0] �k bh dw(b,k).

Proof Consider a triple of vertices u ∈ Vj , v ∈ Vj−2, w ∈ Vj+2 for 3 ≤ j ≤ bn−h−2.
Let τv,w be the smallest time τ ≥ 0 such that Xτ ∈ {v,w}, and denote

tv,w
u := E[τv,w | Y0 = u].

Then the standard connection between hitting times and effective resistances [11]
yields

tv,w
u ≤ 2

⎛
⎝

j+2∑
i= j−2

∑
x∈Vi

cx

⎞
⎠min

(
RLeff(u ↔ v), RLeff(u ↔ w)

)
�k

(
�b,kbk

)h
,

where the last line employs Lemma 3.12. Recalling that dw(b, k) = logb(bk�b,k),
this yields

E[τ(h) | Y0 = v] �k b
h dw(b,k)

for any v ∈ V3 ∪ V4 ∪ · · · ∪ Vbn−h−2. A one-sided variant of the argument follows in
the same manner for v ∈ Vj when j ≤ 2 or j ≥ bn−h − 1. ��
Lemma 3.16 Let Y0 have law πL . There is a number ck > 0 such that for any T ≤
ckdiam(L)dw(b,k), we have

E [dL(Y0,YT )] �k T 1/dw(b,k).

Proof First, we claim that for every T ≥ 1,

E [dL(Y0,YT )] ≥ 1

2
max
0≤t≤T

E [dL(Y0,Yt ) − dL(Y0,Y1)] . (3.12)

Let s′ ≤ T be such that

E[dL(Y0,Ys′)] = max
0≤t≤T

E[dL(Y0,Yt )].

Then there exists an even time s ∈ {s′, s′ − 1} such that E[dL(Y0,Ys)] ≥
E[dL(Y0,Ys′) − dL(Y0,Y1)]. Consider {Yt } and an identically distributed walk {Ỹt }
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such that Ỹt = Yt for t ≤ s/2 and Ỹt evolves independently after time s/2. By the
triangle inequality, we have

dL(Y0, ỸT ) + dL(ỸT ,Ys) ≥ dL(Y0,Ys).

But since {Yt } is stationary and reversible, (Y0, ỸT ) and (ỸT ,Ys) have the same law
as (Y0,YT ). Taking expectations yields (3.12).

Let h ∈ {1, 2, . . . , n} be the largest value such that E[τ(h)] ≤ T . We may assume
that T is sufficiently large so that E[τ(1)] ≤ T , and Lemma 3.15 guarantees that

bh �k T 1/dw(b,k), (3.13)

as long as h < n (which gives our restriction T ≤ ckbhdw(b,k) = ckdiam(L)1/dw(b,k)

for some ck > 0).
From the definition of τ(h), we have

dL(Y0,Yτ(h)) ≥ bh,

hence the triangle inequality implies

dL(Y0,Y2T ) ≥ 1{τ(h)≤2T }
(
bh − dL(Yτ(h),Y2T )

)
. (3.14)

Again, let {Ỹt } be an independent copy of {Yt }. Then since P(τ (h) ≤ 2T ) ≥ 1/2,
Lemma 3.14 implies

P
[
Yτ(h) = v | {τ(h) ≤ 2T }] ≤ 2P

[
Yτ(h) = v

]
�k P

[
Ỹ0 = v

]
.

Therefore,

E
[
1{τ(h)≤2T } dL(Yτ(h),Y2T )

]
�k E

[
1{τ(h)≤2T } dL(Ỹ0, Ỹ2T−τ(h))

]
.

Define η := b−h max0≤t≤2T E[dL(Y0,Yt )]. Using the above bound yields

E
[
1{τ(h)≤2T } dL(Yτ(h),Y2T )

] ≤ C(k)P(τ (h) ≤ 2T ) ηbh,

for some number C(k). Taking expectations in (3.14) gives

E [dL(Y0,Y2T )] ≥ P(τ (h) ≤ 2T ) (1− ηC(k)) bh ≥ 1

2
(1− ηC(k)) bh .

If η ≤ 1/(2C(k)), thenE[dL(Y0,Y2T )] ≥ bh/4. If, on the other hand, η > 1/(2C(k)),
then (3.12) yields
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Fig. 6 The cylindrical graph G̃
for G = G(T 〈3,6,3〉). The new
edges are dashed

E[dL(Y0,Y2T )] ≥ 1

2

(
ηbh − 1

)
�k b

h .

Now (3.13) completes the proof. ��

3.3.3 Rate of escape in Gb,k

Consider now the graphs Gn := G(Tn
(b,k)) for some k ≥ b ≥ 4 and n ≥ 1. Let us

define the cylindrical version G̃n of Gn with the same vertex set, but additionally and
edge from the top tile to the bottom tile in every column (see Fig. 6). If we choose
ρ̃n ∈ V (G̃n) according to the stationary measure on G̃n , then clearly {(G̃n, ρ̃n)} ⇒
(Gb,k, ρ) as well.

Define also Ln := Ln
b,k . Because of Observation 3.4(b), the graph G̃n has vertical

symmetry: Tiles within a column all have the same degree and, more specifically, have
the same number of neighbors on the left and on the right. Let πn : V (Gn) → V (Ln)

denote the projection map and observe that

dG̃n
(u, v) ≥ dLn (πn(u), πn(v)) , ∀u, v ∈ V (Gn).

Let {X (n)
t } denote the random walk on G̃n with X (n)

0 = ρ̃n , and let {Y (n)
t } be the

stationary random walk on Ln defined in (3.10).
Note that, by construction, {πn(X

(n)
t )} and {Y (n)

t } have the same law, and therefore

E

[
dG̃n

(
X (n)
0 , X (n)

T

)]
≥ E

[
dLn

(
Y (n)
0 ,Y (n)

T

)]
. (3.15)

With this in hand, we can establish speed lower bounds in the limit (Gb,k, ρ).

Proof of Theorem 3.10 Observe that (3.15) in conjunction with Lemma 3.16 gives, for
every T ≤ ck(diam(G̃n)/2)dw(b,k),

E

[
dG̃n

(
X (n)
0 , X (n)

T

)]
�k T 1/dw(b,k)
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Since {(G̃n, ρn)} ⇒ (G, ρ) by Lemma 3.9, it holds that if {Xt } is the random walk on
G with X0 = ρ, then for all T ≥ 1,

E [dG(X0, XT )] �k T 1/dw(b,k).

��

3.4 Annular resistances

We will establish Theorem 1.5 by proving the following.

Theorem 3.17 For any k ≥ b ≥ 4, there is a constant C = C(k) such that for
G = Gb,k , almost surely

RGeff (BG(ρ, R) ↔ V (G) \ BG(ρ, 2R)) ≤ CRlogb(�b,k ), ∀R ≥ 1.

To see that this yields Theorem 1.5, consider some k ≥ b2, corresponding to the
restriction dg(b, k) ≥ 3. Then for all positive integers p ≥ 1, we have dg(bp, k p) =
dg(b, k) and recalling (3.4),

lim
p→∞ logbp

(
�bp,k p

) = −1 .

To prove Theorem 3.17, it suffices to show the following.

Lemma 3.18 For every n ≥ 1, k ≥ b ≥ 4, there is a constant C = C(k) such that for
G = G(Tn

(b,k)), we have

RGeff (BG(x, R) ↔ V (G) \ BG(x, 2R)) ≤ CRlogb(�b,k ), ∀x ∈ V (G), 1 ≤ R

≤ diam(G)/C .

Proof Denote T := T (b,k). Consider some value 1 ≤ R ≤ diam(G)/C , and define
h :=  logb(R/3)!.

Let C1, . . . , Cbn denote the columns of Tn andwriting Tn = Tn−h ◦T h , let us parti-
tion the columns into consecutive setsD1, . . . ,Dbn−h (as in the proof of Lemma 3.12),
where Di = C(i−1)bh+1 ∪ · · · ∪ Cibh . For 1 ≤ i ≤ bn−h , let βi denote the number of
tiles in the i th column of Tn−h so thatDi consists of βi copies of T h stacked vertically.

Fix some vertex x ∈ V (G) and suppose that x ∈ Ds for some 1 ≤ s ≤ bn−h .
Denote � := 9b. By choosing C sufficiently large, we can assume that bn−h > 2�,
so that either s ≤ bn−h − � or s ≥ 1+ �. Let us assume that s ≤ bn−h − �, as the
other case is treated symmetrically. Define t := �s + 2+ 6b� so that t − s ≤ �, and

dG(Ds,Dt ) ≥ bh(t − s − 1) ≥ (t − s − 1)
R

3b
> 2R . (3.16)

Denote ξ := gcd(βs, βs+1, . . . , βt ). We claim that

ξ �k max(βs, βs+1, . . . , βt ) . (3.17)
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This follows because min(βi , βi+1) | max(βi , βi+1) for all 1 ≤ i < bn (cf. Obser-
vation 3.4(b)), and moreover the ratio max(βi , βi+1)/min(βi , βi+1) is bounded by a
function depending only on k. Since t − s �k 1, this verifies (3.17).

Denote D̂ := Ds ∪ · · ·∪Dt . One can verify that D̂ is a vertical stacking of ξ copies
of T̂ := T 〈βs/ξ,...,βt/ξ〉 ◦ T h , and Corollary 2.15 implies that

ρ(T̂ ) �k ρ(T h) � �h
b,k , (3.18)

with the final inequality being the content of Lemma 3.7.
Let Âbe the copyof T̂ that contains x , and let S be the copyofT h inTn = Tn−h◦T h

that contains x . Since ξ dividesβs , it holds that S ⊆ Â andL (S) ⊆ L ( Â).We further
have

|L ( Â)| = |L (T̂ )| = (βs/ξ)|L (T h)| = (βs/ξ)|L (S)| �k |L (S)| .
This yields

RGeff(1L (S)/|L (S)| ↔ R( Â)) �k RGeff(1L ( Â)
/|L ( Â)| ↔ R( Â)), (3.19)

where we have used the hybrid notation: For s ∈ �1(V ),

RGeff(s ↔ U ) := inf
{
RGeff(s, t) : supp(t) ⊆ U , ‖t‖1 = ‖s‖1

}
.

Therefore,

RGeff(L (S) ↔ R( Â)) ≤ RGeff(1L (S)/|L (S)| ↔ R( Â))

(3.19)

�k RGeff(1L ( Â)
/|L ( Â)| ↔ R( Â)) = ρ(T̂ )

(3.18)

�k �h
b,k .

Since diamG(S) ≤ 3bh ≤ R and x ∈ S, it holds that S ⊆ BG(x, R). On the other
hand, since x ∈ S, (3.16) shows that BG(x, 2R) ∩R( Â) = ∅. We conclude that

RGeff(BG(x, R) ↔ V (G) \ BG(x, 2R)) ≤ RGeff(L (S) ↔ R( Â))

�k �h
b,k �k Rlogb(�b,k ),

as desired. ��

3.5 Complements of balls are connected

Let us finally prove Theorem 1.4. Recall the setup from Section 3.3.3: We take k ≥
b ≥ 4, define Gn = G(Tn

(b,k)), and use (G̃n, ρ̃n) to denote the cylindrical version,

which satisfies {(G̃n, ρ̃n)} ⇒ (Gb,k, ρ).
Partition the vertices of G̃n into columns C1, . . . , Cbn in the natural way (as was

done in Sects. 3.3 and 3.4). In what follows, we say that a set S ⊆ V (G̃n) is connected
to mean that G̃n[S] is a connected graph.
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Definition 3.19 Say that a set of vertices U ⊆ V (G̃n) is vertically convex if for all
1 ≤ i ≤ bn , either U ∩ Ci = ∅ or U ∩ Ci is connected.

Observation 3.20 Consider a connected set U ⊆ Ci for some 1 ≤ i ≤ bn . Then for
1 ≤ i ′ ≤ bn with |i − i ′| ≤ 1, the set BG̃n

(U , 1) ∩ Ci ′ is connected.

Momentarily, we will argue that balls in G̃n are vertically convex.

Lemma 3.21 Consider any A ∈ T and R ≥ 0. It holds that BG̃n
(A, R) is vertically

convex.

With this lemma in hand, it is easy to establish the following theorem which, in
conjunction with Lemma 3.9, implies Theorem 1.4.

Theorem 3.22 Almost surely, the complement of every ball in Gb,k is connected.

Proof Since {(G̃n, ρ̃n)} ⇒ Gb,k , it suffices to argue that for every n ≥ 1, x ∈ V (G̃n),
and R ≤ bn/3, the set U := V (G̃n) \ BG̃n

(x, R) is connected.
By Lemma 3.21, it holds that BG̃n

(x, R) is vertically convex. Since the complement

of a vertically convex set is vertically convex (given that every column in G̃n is
isomorphic to a cycle),U is vertically convex as well. To argue thatU is connected, it
therefore suffices to prove that there is a path fromL (Tn

(b,k)) toR(Tn
(b,k)) in G̃n[U ].

In fact, the tiles in Tn
(b,k) have height at most b−n , and therefore the projection of

K :=
�
BG̃n

(x, R)
�
onto {0}×[0, 1] has length at most (2R+1)b−n < 1. Hence there

is some height h ∈ [0, 1] such that a horizontal line � at height h does not intersect K .
The set of tiles {A ∈ V (G̃n) : �∩ �A� �= ∅} therefore contains a path fromL (Tn

(b,k))

toR(Tn
(b,k)) that is contained in G̃n[U ], completing the proof. ��

We are left to prove Lemma 3.21. To state the next lemma more cleanly, let us
denote C0 = Cbn+1 = ∅.
Lemma 3.23 Consider 1 ≤ i ≤ bn and let U ⊆ Ci−1 ∪ Ci ∪ Ci+1 be a connected,
vertically convex subset of vertices. Then BG̃n

(U , 1) ∩ Ci is connected as well.

Proof For i ′ ∈ {i − 1, i, i + 1}, denote Ui ′ := U ∩ Ci ′ . Clearly we have

BG̃n
(U , 1) = BG̃n

(Ui−1, 1) ∪ BG̃n
(Ui , 1) ∪ BG̃n

(Ui+1, 1) .

If Ui = ∅, then as U is connected it should be that either U = Ui−1 or U = Ui+1,
and in either case the claim follows by Observation 3.20.

Now supposeUi �= ∅, and consider some i ′ ∈ {i−1, i+1} such thatUi ′ �= ∅. Then
Observation 3.20 implies that BG̃n

(Ui ′ , 1) ∩ Ci is connected. Furthermore, since U is
connected, it holds that BG̃n

(Ui ′ , 1)∩Ui �= ∅. Now, as we know that Ui is connected
by the assumed vertical convexity of U , we obtain that BG̃n

(U , 1) ∩ Ci is connected,
completing the proof. ��
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Proof of lemma 3.21 We proceed by induction on R, where the base case R = 0 is
trivial, so consider R ≥ 1. Fix some i ∈ {1, 2, . . . , bn}, and suppose BG̃n

(A, R)∩Ci �=
∅. Denote

U := BG̃n
(A, R − 1) ∩ (Ci−1 ∪ Ci ∪ Ci+1) .

Clearly we have BG̃n
(A, R)∩Ci = BG̃n

(U , 1)∩Ci . The setU is manifestly connected
and, by the induction hypothesis, is also vertically convex. Thus from Lemma 3.23,
it follows that BG̃n

(U , 1) ∩ Ci is connected as well. We conclude that BG̃n
(A, R) is

vertically convex, completing the proof. ��
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