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Abstract
Recent work has made substantial progress in understanding the transitions of ran-
dom constraint satisfaction problems. In particular, for several of these models, the
exact satisfiability threshold has been rigorously determined, confirming predictions
of statistical physics. Here we revisit one of these models, random regular k-nae- sat:
knowing the satisfiability threshold, it is natural to study, in the satisfiable regime, the
number of solutions in a typical instance. We prove here that these solutions have a
well-defined free energy (limiting exponential growth rate), with explicit value match-
ing the one-step replica symmetry breaking prediction. The proof develops new tech-
niques for analyzing a certain “survey propagation model” associated to this problem.
We believe that these methods may be applicable in a wide class of related problems.

Mathematics Subject Classification 60K35 · 82B44
1 Introduction

In a random constraint satisfaction problem (csp), we have n variables taking
values in a (finite) alphabet X, subject to a random set of constraints. In previous
works on models of this kind, it has emerged that the space of solutions—a random
subset of Xn—can have a complicated structure, posing obstacles to mathematical
analysis. Major advances in intuition were achieved by statistical physicists, who
developed powerful analytic heuristics to shed light on the behavior of random csps
([31] and references therein). Their insights andmethods are fundamental to the current
understanding of random csps.
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2 A. Sly et al.

One prominent application of the physics heuristic is in giving explicit (non-
rigorous) predictions for the locations of satisfiability thresholds in a large class of
random csps ([36] and others). Recent works have given rigorous proofs for some of
these thresholds: in the random regular nae- satmodel [22,25], in the random k-sat
model [23], and in the independent set model on random regular graphs [24]. How-
ever, the satisfiability threshold is only one aspect of the rich picture that physicists
have developed. There are deep conjectures for the behavior of these models inside
the satisfiable regime, and it remains an outstanding mathematical challenge to prove
them. In this paper we address one part of this challenge, concerning the total number
of solutions for a typical instance in the satisfiable regime.

1.1 Main result

Given a cnf boolean formula, a not-all-equal-SAT (NAE-SAT) solution is an assign-
ment x of literals to variables such that both x and its negation ¬x evaluate to
true—equivalently, such that no clause gives the same evaluation to all its variables.
A k-nae- sat problem is one in which each clause has exactly k literals; it is termed
d-regular if each variable appears in exactly d clauses. Sampling such a formula in
a uniformly random manner gives rise to the random d-regular k-NAE-SAT model.
(The formal definition is given in Sect. 2.) See [3] for important early work on the
closely related model of random (Erdős–Rényi) nae- sat. The appeal of this model
is that it has certain symmetries making the analysis particularly tractable, yet it is
expected to share most of the interesting qualitative phenomena exhibited by other
commonly studied problems, including random k-sat and random graph colorings.

Following convention, we fix k and then parametrize the model by its clause-to-
variable ratio, α ≡ d/k. The partition function, denoted Z ≡ Zn , is the number
of valid nae- sat assignments for an instance on n variables. It is conjectured that
for each k ≥ 3, the model has an exact satisfiability threshold αsat(k): for α < αsat
it is satisfiable (Z > 0) with high probability, but for α > αsat it is unsatisfiable
(Z = 0) with high probability. This has been proved [25, Thm. 1] for all k exceeding
an absolute constant k0, together with an exact formula for αsat which matches the
physics prediction. It can be approximated as

αsat =
(
2k−1 − 1

2
− 1

4 ln 2

)
ln 2+ εk (1)

where εk denotes an error tending to zero as k →∞.
We say the model has free energy f(α) if Z1/n converges to f(α) in probability as

n → ∞. A priori, the limit may not be well-defined. If it exists, however, Markov’s
inequality and Jensen’s inequality imply that it must be upper bounded by the replica
symmetric free energy

frs(α) ≡ (EZ)1/n = 2

(
1− 2

2k

)α
. (2)
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The number of solutions for random regular NAE-SAT 3

(In this model and in other random regular models, the replica symmetry free energy
is the same as the annealed free energy.) One of the intriguing predictions from the
physics analysis [38,44] is that there is a critical valueαcond strictly belowαsat, such that
f(α) and frs(α) agree up to α = αcond and diverge thereafter. In particular, this implies
that the function f(α) must be non-analytic at α = αcond. This is the condensation
transition (or Kauzmann transition), and will be further described below in Sect. 1.2.
For all 0 ≤ α < αsat, the free energy is predicted to be given by a formula

f(α) = f1rsb(α)

{
= frs(α) for 0 ≤ α ≤ αcond,
< frs(α) for α > αcond.

The function f1rsb(α) is quite explicit, although not extremely simple to state; it is
formally presented below in Definition 1.3. The formula for f1rsb(α) is derived via the
one-step replica symmetry breaking (1rsb) heuristic, discussed further below. Our
main result is to prove this prediction for large k:

Theorem 1 In random regular k-nae- sat with k ≥ k0, for all α < αsat(k) the free
energy f(α) exists and equals the predicted value f1rsb(α).

Remark 1.1 We allow for k0 to be adjusted as long as it remains an absolute constant
(so it need not equal the k0 from [25]). It is assumed throughout the paper that k ≥ k0,
even when not explicitly stated. The following considerations restrict the range of
α = d/k that we must consider:

– A convenient upper bound on the satisfiable regime is given by

αsat ≤ αrs ≡ ln 2

− ln(1− 2/2k)
< 2k−1 ln 2 ≡ αubd .

This bound is certainly implied by the estimate (1) from [25], but it follows much
more easily and directly from the first moment calculation (2). Indeed, we see
from (2) that the function frs(α) is decreasing in α and satisfies frs(αrs) = 1,
so (EZ)1/n < 1 for all α > αrs. Thus, by Markov’s inequality, we have that
P(Z > 0) ≤ EZ tends to zero as n → ∞, i.e., the random problem instance is
unsatisfiable with high probability.

– For α > αsat we must have f(α) = 0. On the other hand, we can see by comparing
(1) and (2) that αsat is strictly smaller than αrs, and frs(αsat) is strictly positive.
This suggests that αcond occurs strictly before αsat, since αcond = αsat would mean
that f(α) = frs(α) up to αsat, and in this case we would expect to have αsat = αrs.
Formally, it requires further argument to confirm that αcond < αsat in random
regular nae- sat, and we obtain this as a consequence of results in the present
paper. However, the phenomenon of αcond < αsat was previously confirmed by
[20] and [8] for random hypergraph bicoloring and random regular sat, both of
which are very similar to random regular nae- sat. As for the value of f(α) at the
threshold α = αsat, we point out that α = αsat makes sense in the setting of this
paper only if dsat(k) ≡ kαsat(k) is integer-valued for some k. We have no reason
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4 A. Sly et al.

to think that this ever occurs; however, if it does, then the probability for Z > 0
is bounded away from both zero and one [25, Thm. 1]. In this case, Z1/n does not
concentrate around a single value but rather on two values,

{
0, lim
α↑αsat

f1rsb(α)
}
.

– In [25, Propn. 1.1] it is shown that for 0 ≤ α ≤ αlbd ≡ (2k−1− 2) ln 2 and n large
enough,

E(Z2)

(EZ)2
≤ C ≡ C(k, α) <∞

where Z ≡ Zn and C(k, α) does not depend on n. Thus, for any fixed 0 < ε < 1
and n large enough,

P(Z ≥ εEZ)
�≥ E(Z1{Z ≥ εEZ})2

E(Z2)
≥ (1− ε)

2(EZ)2

E(Z2)
≥ (1− ε)

2

C
≡ δ .

where the step marked� is by the Cauchy–Schwarz inequality. The results of [25,
Sec. 6] imply the stronger statement that for any 0 ≤ α ≤ αlbd,

lim
ε↓0 lim inf

n→∞ P(Z ≥ εEZ) = 1 .

On the other hand we already noted in (2) that E(Z1/n) ≤ (EZ)1/n = frs(α) for
all α ≥ 0 and n ≥ 1. It follows by combining these facts that Z1/n converges in
probability to frs(α) in probability for any 0 ≤ α ≤ αlbd. That is to say, the result
of Theorem 1 is already proved for α ≤ αlbd, with f(α) = frs(α).
This also implies that the condensation transition αcond must occur above αlbd.

In summary, we have αlbd < αsat < αrs < αubd, and it remains to prove Theorem 1
for α ∈ (αlbd, αsat). Thus, we can assume for the remainder of the paper that

(2k−1 − 2) ln 2 = αlbd ≤ α ≤ αubd = 2k−1 ln 2 . (3)

In the course of proving Theorem 1 we will also identify the condensation threshold
αcond ∈ (αlbd, αsat) (characterized in Proposition 1.4 below).

The 1rsb heuristic, along with its implications for the condensation and satisfia-
bility thresholds, has been studied in numerous recent works, which we briefly survey
here. The existence of a condensation transition was first shown in random hypergraph
bicoloring [20], which as wementioned above is a model very similar to random nae-
sat. We also point out [17] which is the first work to successfully analyze solution
clusters within the condensation regime, leading to a very good lower bound on satis-
fiability threshold. This was an important precursor to subsequent works [23–25] on
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The number of solutions for random regular NAE-SAT 5

exact satisfiability thresholds in random regular nae- sat, random sat, and indepen-
dent sets. Condensation has been demonstrated to occur even at positive temperature
in hypergraph bicoloring (which is very similar to nae- sat) [11]. However, determin-
ing the precise location of αcond is challenging, and was first achieved for the random
graph coloring model [10] by an impressive and technically challenging analysis. A
related paper pinpoints αcond for random regular k-sat (which again is very simi-
lar to nae- sat) [8]. Subsequent work [15] characterizes the condensation threshold
in a more general family of models, and shows a correspondence with information-
theoretic thresholds in statistical inference problems. The main contribution of this
paper is to determine for the first time the free energy throughout the condensation
regime (αcond, αsat).

1.2 Statistical physics predictions

According to the heuristic analysis by statistical physics methods, the random regular
nae- satmodel has a single level of replica symmetry breaking (1rsb).We summarize
here some of the key phenomena that are predicted from the 1rsb framework [31,38,
44], referring the reader to [33, Ch. 19] for a full expository account. While much of
the following description remains conjectural, the implications at the free energy level
are rigorously established by the present paper. Throughout the following we write

.=
to indicate equality up to subexponential factors (exp{o(n)}).

Recall that we consider nae- sat with k fixed, parametrized by the clause density
α ≡ d/k. Abbreviate0 ≡ true,1 ≡ false. For smallα, almost all of the solutions lie
in a single well-connected subset of {0,1}n . This holds until a clustering transition
(ordynamical transition)αclust, abovewhich the solution space becomesbrokenup into
many well-separated pieces, or clusters (see [1,2,6,35]). Informally speaking, clusters
are subsets of solutions which are characterized by the property that within-cluster
distances are very small relative to between-cluster distances. Conjecturally, αclust
also coincides with the reconstruction threshold [28,31,39], and is small relative to
αsat when k is large, with αclust/αsat � (ln k)/k.

For α above αclust it is expected that the number of clusters of size exp{ns}
has mean value exp{n�(s;α)}, and is concentrated about this mean. The function
�(s) ≡ �(s;α) is referred to as the “cluster complexity.” The 1rsb framework of
statistical physics gives an explicit conjecture for �, discussed below in Sect. 1.3.
Then, summing over cluster sizes 0 ≤ s ≤ ln 2 gives that the total number Z of
nae- sat solutions has mean

EZ
.=
∑
s

exp{n[s +�(s)]} .= exp{n[s1 +�(s1)]}, (4)

where s1 = argmax[s+�(s)]. It is expected that� is continuous and strictly concave
in s, and also that s + �(s) has a unique maximizer s1 with �′(s1) = −1. For
nae- sat and related models, this explicit calculation reveals a critical value αcond ∈
(αclust, αsat), characterized as

αcond = sup{α ≥ αclust : �(s1(α);α) ≥ 0} .
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6 A. Sly et al.

By contrast, the satisfiability threshold can be characterized as

αsat = sup{α ≥ αclust : max
s
�(s;α) ≥ 0} .

For all α ≥ αclust, the expected partition function EZ is dominated by clusters of
size exp{ns1}. However, for α > αcond, we have �(s1) < 0, so the expected number
of clusters of this size is very small: exp{n�(s1)} tends to zero exponentially fast as
n → ∞. This means that clusters of size exp{ns1} are highly unlikely to appear in
a typical realization of the model. Instead, in a typical realization we only expect to
see clusters of size exp{ns} with �(s) ≥ 0. As a result the solution space should be
dominated (with high probability) by clusters of size smax where

smax ≡ smax(α) ≡ argmax{s +�(s) : �(s) ≥ 0} .

Since� is continuous, smax is the largest root of�, and for α ∈ (αcond, αsat)we should
have

Z
.= exp{nsmax}  EZ = exp{n[s1 +�(s1)]}

(where the approximation for Z holds with high probability). The 1RSB free energy,
formally given by Definition 1.3 below, should be interpreted as an expression for the
function f1rsb(α) = smax(α).

1.3 The tilted cluster partition function

From the discussion of Sect. 1.2 we see that once the function�(s;α) is determined, it
is possible to derive αcond, αsat, and f(α). However, previous works have not taken the
approach of actually computing �. Indeed, αsat was determined [25] by an analysis
involving only maxs �(s;α), which contains less information than the full curve �.
Related work on the exact determination (in a range of models) of αcond [8,10,15] also
avoids computing �, reasoning instead via the so-called “planted model.”

In order to compute the free energy, however, we cannot avoid computing (some
version of) the function �, which we will do by a physics-inspired approach. First
consider the λ-tilted partition function

Z̄λ ≡
∑

γ∈CL(G )
|γ |λ , (5)

where CL(G ) denotes the set of solution clusters of G , and |γ | denotes the number
of satisfying assignments inside the cluster γ . According to the conjectural picture
described above, we should have

EZ̄λ
.=
∑
s

(exp{ns})λ exp{n�(s)} .= exp{nF(λ)}
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The number of solutions for random regular NAE-SAT 7

where F is the Legendre dual of −�:

F(λ) ≡ (−�)�(λ) ≡ max
s

{
λs +�(s)

}
= λsλ +�(sλ) , (6)

where sλ ≡ argmaxs[λs+�(s)]. Moreover, if�(sλ) ≥ 0, then Zλ should concentrate
near EZλ, and in this regime physicists have an exact prediction for F(λ), which will
be further discussed below in Sect. 1.5. In short, the physics approach to computing
� is to first compute F(λ) (in the regime where �(sλ) ≥ 0), and then set � = −F�.
Note that by differentiating F(λ) = n−1 lnEZ̄λ we find that F is convex in λ, so the
resulting � will indeed be concave.

At first glance the reduction to computing F(λ)may not seem to improve matters. It
is not immediately clear how “clusters” should be defined. It turns out that in the regime
we are studying, a reasonable definition is that two nae- sat solutions are connected
if they differ by a single bit, and the clusters are the connected components of the
solution space. A typical nae- sat solution will have a positive density of variables
which are free, meaning their value can be changed without violating any clause;
any such solution must belong in a cluster of exponential size. Each cluster may be
a complicated subset of {0,1}n—changing the value at one free variable may affect
whether its neighbors are free, so a cluster need not be a simple subcube of {0,1}n .
Nevertheless, we wish to sum over the cluster sizes raised to non-integer powers. This
computation is made tractable by constructing more explicit combinatorial models for
the nae- sat solution clusters, as we next describe.

1.4 Modeling solution clusters

In our regime of interest (i.e., k ≥ k0 and αlbd ≤ α ≤ αubd; see Remark 1.1), the
analysis of nae- sat solution clusters is greatly simplified by the fact that in a typ-
ical satisfying assignment the vast majority of variables are frozen rather than free.
The result of this, roughly speaking, is that a cluster γ ∈ CL(G ) can be encoded by
a configuration x ∈ {0,1,f}n (representing its circumscribed subcube, so xv = f
indicates a free variable) with no essential loss of information. This is formalized by
a combinatorial model of “frozen configurations” representing the clusters (Defini-
tion 2.2). These frozen configurations can be viewed as the solutions of a certain csp
lifted from the original nae- sat problem — so the physics heuristics can be applied
again to (the randomized version of) the lifted model. Variations on this idea appear
in several places in the physics literature; in the specific context of random csps we
refer to [13,34,42]. Analyzing the number of frozen configurations, corresponding to
(5) with λ = 0, yields the satisfiability threshold for this model [25].

Analyzing (5) for general λ requires deeper investigation of the arrangement of free
variables in a typical frozen configuration x . For this purpose it is convenient to view
an nae- sat instance as a (bipartite) graph G , where the vertices are given by variables
and clauses, and the edges indicate which variables participate in which clauses (the
formal description appears in Sect. 2). A key piece of intuition is that if we consider the
subgraph of G induced by the free variables, together with the clauses through which
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8 A. Sly et al.

they interact, then this subgraph is predominantly comprised of disjoint components
T of bounded size. (In fact, the majority of free variables are simply isolated vertices;
a smaller fraction occur in linked pairs; a yet smaller fraction occur in components of
size three or more.) Each free component T is surrounded by frozen variables, and
we let z(T ) be the number of nae- sat assignments on T which are consistent with
the frozen boundary. Since disjoint components T , T ′ do not interact, the size of the
cluster represented by x is simply the product of z(T ) over all T .

Another key observation is that the random nae- sat graph has few short cycles,
so almost all of the free components will be trees. As a result, their weights z(T )
can be evaluated recursively by belief propagation (bp), a well-known dynamic pro-
gramming method (see e.g. [33, Ch. 14]). In the rsb heuristic framework, a cluster is
represented by a vectorm of “messages,” indexed by the directed edges of the nae- sat
graph G . Informally, for a given cluster, and for any variable v adjacent to any clause
a,

mv→a represents the “within-cluster law of xv in absence of a′′;
ma→v represents the “within-cluster law of xv in absence of ∂v\a′′, (7)

where ∂v denotes the neighboring clauses of v. Each message is a probability measure
on {0,1}, and the messages are related to one another via local consistency equations,
which are known as the bp equations. A configuration m which satisfies all the local
consistency equations is a BP solution. Thus a cluster γ can be encoded either by a
frozen configuration x or by a bp solution m; the latter has the key advantage that the
size of γ can be easily read off from m, as a certain product of local functions.
For the cluster size raised to power λ, simply raise each local function to power λ.
Thus the configurations m with λ-tilted weights form a spin system (Markov random
field), whose partition function is the quantity of interest (5). This new spin system is
sometimes termed the “auxiliary model” (e.g. [33, Ch. 19]).

1.5 One-step replica symmetry breaking

In Sect. 1.4 we described informally how a solution cluster γ can be encoded by a
frozen configuration x , or a bp solution m. An important caveat is that the converse
need not hold. In the nae- satmodel, for any value of α, a trivial bp solution is always
given by the “replica symmetric fixed point” (also called the “factorized fixed point”),
where every mv→a is the uniform measure on {0,1}. However, above αcond, this is a
spurious solution. Oneway to see this is via the heuristic “cavity calculation” of frs(α),
which we now describe to motivate the more complicated expression for f1rsb(α).

Given a random regular nae- sat instance G on n variables, choose k uniformly
random variables v1, . . . , vk , and assume for simplicity that no two of these share a
clause. Remove the k variables along with their kd incident clauses, producing the
“cavity graph” G ′′. Then add d(k − 1) new clauses to G ′′, producing the graph G ′.
Under this operation (cf. [7]), G ′ is distributed as a random regular nae- sat instance
on n − k variables. If the free energy f(α) = limn→∞ Z1/n exists, then we would
expect it to agree asymptotically with
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The number of solutions for random regular NAE-SAT 9

(
Z(G )

Z(G ′)

)1/k

=
(

Z(G )

Z(G ′′)

)1/k/(
Z(G ′)
Z(G ′′)

)1/k

. (8)

LetU denote the set of “cavity neighbors”: the variables in G ′′ of degree d−1, which
neighbored the clauses that were deleted from G . Then G and G ′ differ from G ′′
only in the addition of a few small subgraphs which are attached to U . Computing
Z(G )/Z(G ′′) or Z(G ′)/Z(G ′′) reduces to understanding the joint law of the spins
(xu)u∈U under the nae- sat model defined by G ′′. Since G is unlikely to have many
cycles, the vertices of U are typically far apart from one another in G ′′. Therefore,
one plausible scenario is that their spins are approximately independent under the
nae- satmodel on G ′′, with xu marginally distributed according to mu→a where a is
the deleted clause that neighbored u in G . If this is the case, then each mu→a must be
uniform over {0,1}, by the negation symmetry of nae- sat. Under this assumption,
we can calculate

(
Z(G )

Z(G ′′)

)1/k

= 2(1− 2/2k)d ,

(
Z(G ′)
Z(G ′′)

)1/k

= (1− 2/2k)α(k−1), (9)

Substituting into (8) gives the replica symmetric free energy prediction f(α)
.= frs(α),

which we know to be false for large α (in particular, it is inconsistent with the known
satisfiability threshold). Thus the replica symmetric fixed point, mu→a = unif({0, 1})
for all u → a, is a spurious bp solution. In reality the xu are not approximately
independent in G ′′, even though the u’s are far apart. This phenomenon of non-
negligible long-range dependence may be taken as a definition of replica symmetry
breaking (rsb) in this setting, and occurs precisely for α larger than αcond.

Since above αcond the partition function cannot be estimated by (9) due to replica
symmetry breaking, a different approach is needed. To this end, the one-step RSB

(1rsb) heuristic posits that even when the original nae- sat model exhibits rsb, the
(seemingly more complicated) “auxiliary model” of λ-weighted bp solutions m is
replica symmetric, for λ small enough: conjecturally, as long as �(sλ) ≥ 0 for
sλ ≡ argmaxs{λs + �(s)} (cf. the discussion below (6)). That is, for such λ, the
auxiliary model is predicted to have correlation decay, in contrast with the long-range
correlations of the original model. This would mean that in the auxiliary model of the
cavity graphG ′′, the spins (mu→a)u∈U are approximately independent,with eachmu→a

marginally distributed according to some law q̇u→a . Themodel has a replica symmetric
fixed point, q̇u→a = q̇λ for all u → a (the analogue of mu→a = unif({0,1}) for all
u → a). If we substitute this assumption into the cavity calculation (the analogues of
(8) and (9)), we obtain the replica symmetric prediction for the auxiliary model free
energy F(λ), expressed as a function of q̇λ. As explained above, from F(λ) we can
derive the complexity function �(s) and the 1rsb nae- sat free energy f1rsb(α).

1.6 The 1RSB free energy prediction

Having described the heuristic reasoning, we now proceed to formally state the 1rsb
free energy prediction. We first describe q̇λ as a certain discrete probability measure
overm. Sincem is a probabilitymeasure over {0,1}, we encode it by x ≡ m(1) ∈ [0, 1].
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10 A. Sly et al.

A measure q on m can thus be encoded by an element μ ∈ P where P denotes the
set of discrete probability measures on [0, 1]. For measurable B ⊆ [0, 1], define

R̂λμ(B) ≡ 1

Ẑ (μ)

∫ (
2−

k−1∏
i=1

xi −
k−1∏
i=1
(1− xi )

)λ
1
{

1−∏k−1
i=1 xi

2−∏k−1
i=1 xi −∏k−1

i=1 (1− xi )
∈ B

} k−1∏
i=1
μ(dxi ) ,

Ṙλμ(B) ≡ 1

Ż (μ)

∫ ( d−1∏
i=1

yi +
d−1∏
i=1
(1− yi )

)λ
1
{ ∏d−1

i=1 yi∏d−1
i=1 yi +∏d−1

i=1 (1− yi )
∈ B

} d−1∏
i=1
μ(dyi ) , (10)

where Ẑ (μ) and Ż (μ) are the normalizing constants such that R̂λμ and Ṙλμ are
also probability measures on [0, 1]. (In the context of λ = 0 we take the convention
that 00 = 0.) Denote Rλ ≡ Ṙλ ◦ R̂λ. The map Rλ : P → P represents the bp
recursion for the auxiliarymodel. The following presents a solution forα in the interval
(αlbd, αubd) which we recall (Remark 1.1) is a superset of (αcond, αsat).

Proposition 1.2 (proved in “Appendix B” ) For λ ∈ [0, 1], let μ̇λ,0 ≡ 1
2δ0+ 1

2δ1 ∈P ,
and define recursively μ̇λ,l+1 = Rλμ̇λ,l ∈ P for all l ≥ 0. Define Sl ≡
(supp μ̇λ,l)\(supp(μ̇λ,0 + . . .+ μ̇λ,l−1)); this is a finite subset of [0, 1]. Regard μ̇λ,l
as an infinite sequence indexed by the elements of S1 in increasing order, followed by
the elements of S2 in increasing order, and so on. For k ≥ k0 and αlbd ≤ α ≤ αubd, in
the limit l →∞, μ̇λ,l converges in the 	1 sequence space to a limit μ̇λ ∈P satisfying
the fixed point equation μ̇λ = Rλμ̇λ, as well as the estimates μ̇λ((0, 1)) ≤ 7/2k and
μ̇λ(dx) = μ̇λ(d(1− x)).

The limit μ̇λ of Proposition 1.2 encodes the desired replica symmetric solution q̇λ
for the auxiliary model. We can then express F(λ) in terms of μ̇λ as follows. Writing
μ̂λ ≡ R̂λμ̇λ, let ẇλ, ŵλ, w̄λ ∈P be defined by

ẇλ(B) = (Żλ)−1
∫ ( d∏

i=1
yi +

d∏
i=1
(1− yi )

)λ
1
{ d∏

i=1
yi +

d∏
i=1
(1− yi ) ∈ B

} d∏
i=1
μ̂λ(dyi ) ,

ŵλ(B) = (Ẑλ)−1
∫ (

1−
k∏

i=1
xi −

k∏
i=1
(1− xi )

)λ
1
{
1−

k∏
i=1

xi −
k∏

i=1
(1− xi ) ∈ B

} k∏
i=1
μ̇λ(dxi ) ,

w̄λ(B) = (Z̄λ)−1
∫∫ (

xy + (1− x)(1− y)

)λ
1
{
xy + (1− x)(1− y) ∈ B

}
μ̇λ(dx)μ̂λ(dy) ,

(11)

with Żλ, Ẑλ, Z̄λ the normalizing constants. The analogue of (9) for this model is

(
Z̄λ(G )

Z̄λ(G ′′)

)1/k

= Żλ(Ẑλ/Z̄λ)
d ,

(
Z̄λ(G ′)
Z̄λ(G ′′)

)1/k

= (Ẑλ)α(k−1),

and substituting into (8) gives the 1rsb prediction Z̄λ
.= exp{F(λ)} where

F(λ) ≡ F(λ;α) ≡ ln Żλ + α ln Ẑλ − kα ln Z̄λ . (12)
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Further, the maximizer of s �→ (λs +�(s)) is predicted to be given by

sλ ≡ sλ(α) ≡
∫

ln(x)ẇλ(dx)+ α
∫

ln(x)ŵλ(dx)− kα
∫

ln(x)w̄λ(dx) . (13)

If s = sλ for λ ∈ [0, 1] then we define

�(s) ≡ �(s;α) ≡ F(λ;α)− λsλ(α) . (14)

We then use (14) to define the thresholds

αcond ≡ sup{α : �(s1;α) > 0} ,
αsat ≡ sup{α : �(s0;α) > 0} .

We can now formally state the predicted free energy of the original nae- sat model:

Definition 1.3 For α ∈ k−1Z, 1rsb free energy prediction f1rsb(α) is defined as

f1rsb(α) =

⎧⎪⎨
⎪⎩
frs(α) = 2(1− 2/2k)α for α ≤ αcond,
exp[sup{s : �(s) ≥ 0}] for αcond ≤ α < αsat
0 for α > αsat.

(15)

(In regular k-nae- sat we must have integer d = kα, so we need not consider α /∈
k−1Z.)

Proposition 1.4 (proved in “Appendix B” ) Assume k ≥ k0 and write A ≡
[αlbd, αubd] ∩ (k−1Z).
a. For each α ∈ A, the function s �→ �(s;α) is well-defined, continuous, and strictly

decreasing in s.
b. For each 0 ≤ λ ≤ 1, the function α �→ �(sλ;α) = F(λ) − λsλ is strictly

decreasing with respect to α ∈ A. There is a unique αλ ∈ A such that �(sλ;α)
is nonnegative for all α ≤ αλ, and is negative for all α > αλ. Taking λ = 0 we
recover the estimate (1); and taking λ = 1 we obtain in addition

αcond = α1 = (2k−1 − 1) ln 2+ εk . (16)

(The main purpose of this proposition is to show that �(s1) < 0 for all α ∈
(αcond, αsat), i.e., that the “condensation regime” is a contiguous range of values
of α. The expansion of αcond matches an earlier result of [20], which was obtained for
a slightly different but closely related model.)

1.7 Proof approach

Since f = f(α) is a priori not well-defined, the statement f ≤ g means formally that
for all ε > 0, P(Z1/n ≥ g + ε) tends to zero as n → ∞. With this notation, we
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12 A. Sly et al.

will prove separately the upper bound f(α) ≤ f1rsb(α) and the matching lower bound
f(α) ≥ f1rsb(α). This implies the main result Theorem 1: the free energy f(α) is indeed
well-defined, and equals f1rsb(α).

The upper bound is proved by an interpolation argument, which we defer to
“Appendix E”. This argument builds on similar bounds for spin glasses on Erdős–
Rényi graphs [26,43], together with ideas from [12,27] for interpolation in random
regular models. Let Zn(β) denote the partition function of nae- sat at inverse tem-
perature β > 0. The interpolation method yields an upper bound on E ln Zn(β)which
is expressed as the infimum of a certain function P(μ;β), with μ ranging over prob-
ability measures on [0, 1]. We then choose μ according to Proposition 1.2, and take
β →∞ to obtain the desired bound f(α) ≤ f1rsb(α).

Most of the paper is devoted to establishing the matching lower bound. The proof
strategy is inspired by the physics picture described above, and at a high level proceeds
as follows. Take any λ such that�(sλ) (as defined by (13) and (14)) is nonnegative, and
let Yλ be the number of clusters of size roughly exp{nsλ}. (As discussed in §1.3, we
shall think of a cluster as a connected component of the solution space.) The informal
statement of what we show is that

Yλ
.= exp{n[λsλ +�(sλ)]} . (17)

Adjusting λ as indicated by (15) then proves the desired bound f(α) ≥ f1rsb(α).
Proving a formalized version of (17) occupies a significant part of the present paper.

We introduce a slightlymodified version of themessagesmwhich record the topologies
of the free trees T . We then restrict to cluster encodings in which every free tree
has fewer than T variables, which limits the distance that information can propagate
between free variables. We prove a version of (17) for every fixed T , and show that
this yields the sharp lower bound in the limit T →∞. The proof of (17) for fixed T
is via the moment method for the auxiliary model, which boils down to a complicated
optimization problem over many dimensions. It is known (see e.g. [25, Lem. 3.6]) that
stationary points of the optimization problem correspond to “generalized” bp fixed
points—these are measures Qv→a(mv→a,ma→v), rather than the simpler “one-sided”
measures qv→a(mv→a) considered in the 1rsb heuristic.

The one-sided property is a crucial simplification in physics calculations (cf. [33,
Proposition 19.4]), but is challenging to prove in general. One contribution of this work
that we wish to highlight is a novel resampling argument which yields a reduction to
one-sided messages, and allows us to solve the moment optimization problem. (We
are helped here by the truncation on the sizes of free trees.) Furthermore, the approach
allows us to bring in methods from large deviations theory. With these we can show
that the objective function has negative-definite Hessian at the optimizer, which is
necessary for the second moment method. This resampling approach is quite general
and should apply in a broad range of models.
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1.8 Open problems

Beyond the free energy, it remains a challenge to establish the full picture predicted by
statistical physicists forα ≤ αsat.We refer the reader to several recentworks targeted at
a broad class of models in the regime α ≤ αcond [9,16,19], and to work on the location
on αcond in a general family of models [14]. In the condensation regime (αcond, αsat),
an initial step would be to show that most solutions lie within a bounded number
of clusters. A much more refined prediction is that the mass distribution among the
largest clusters forms a Poisson–Dirichlet process. Another question is to show that on
a typical problem instance over n variables, if x1, x2 are sampled independently and
uniformly at random from the solutions of that instance, then the normalized overlap
R1,2 ≡ n−1{v : x1v = x2v} concentrates on two values (corresponding roughly to the
two cases that x1, x2 come from the same cluster, or from different clusters)—this
criterion is sometimes taken as the precise definition of 1rsb. During the final revision
stage of this paper, some of the above questions were addressed by a new preprint [40].

Beyond the immediate context of random csps, understanding the condensation
transition may deepen our understanding of the stochastic block model, a model for
random networks with underlying community structure. Here again ideas from statis-
tical physics have played an important role [21]. A great deal is now known rigorously
for the case of two blocks [32,37], where there is no condensation regime. For mod-
els with more than two blocks, however, it is predicted that the condensation can
occur, and may define a regime where detection is information-theoretically possi-
ble but computationally intractable. A condensation threshold has been established
for the anti-ferromagnetic Potts model, corresponding to the disassortative regime of
the stochastic block model. An analogous transition is expected in the ferromagnetic
(assortative) case, and this remains open.

2 Combinatorial model

In this section we formalize a combinatorial model of clusters, which allows us to rig-
orously lower bound the tilted cluster partition function (5).We begin by reviewing the
(standard) graphical depiction of nae- sat. A not-all-equal-SAT (NAE-SAT) problem
instance is naturally represented by a bipartite factor graph G with signed edges, as
follows. The vertex set of G is partitioned into a set V = {v1, . . . , vn} of variables and
a set F = {a1, . . . , am} of clauses; we then have a set E of edges joining variables
to clauses. For each edge e ∈ E we write v(e) for the incident variable, and a(e) for
the incident clause; and we assign an edge literal Le ∈ {0,1} to indicate whether v(e)
participates affirmatively (Le = 0) or negatively (Le = 1) in a(e). We define all edges
to have length one-half, so two variables v �= v′ lie at unit distance if and only if they
appear in the same clause. Throughout this paper we denote G ≡ (V , F, E) for the
bipartite graph without edge literals, and G ≡ (V , F, E,L) ≡ (G,L) for the nae- sat
instance.

Formally we regard the edges E as a permutation, as follows. Each variable v ∈ V
has incident half-edges δv, while each clause a ∈ F has incident half-edges δa. Write
δV for the labelled set of all variable-incident half-edges, and δF for the labelled set of
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14 A. Sly et al.

all clause-incident half-edges; we require that |δV | = |δF | = 	. Then any permutation
m of [	] ≡ {1, . . . , 	} defines E by defining a matching between δV and δF . Note that
any permutation of [	] is permitted, so multi-edges can occur. In this paper we assume
that the graph is (d, k)-regular: each variable has d incident edges, and each clause
has k incident edges, so |E | = nd = mk. A random k-NAE-SAT instance is given
by G = (V , F, E,L) where |V | = n, |F | = m, E is given by a uniformly random
permutation m of [nd], and L is a uniformly random sample from {0,1}E . We write
P and E for probability and expectation over the law of G .

Definition 2.1 (solutions and clusters) A solution of the nae- sat problem instance
G = (V , F, E,L) is any assignment x ∈ {0,1}V such that for all a ∈ F , (Le ⊕
xv(e))e∈δa is neither identically 0 nor identically 1. Let SOL(G ) ⊆ {0,1}V denote
the set of all solutions of G , and define a graph on SOL(G ) by connecting any pair
of solutions at unit Hamming distance. The (maximal) connected components of the
SOL(G ) graph are the solution clusters, hereafter denoted CL(G ).

The aim of this section is to establish that (under a certain restriction) the nae-
sat solution clusters can be represented by a combinatorial model of what we will
term “colorings.” We will describe the correspondence in a few stages. Informally, the
progression is given by

nae- sat solution clusters γ ↔ frozen configurations x ↔
↔ warning configurations y ↔ message configurations τ ↔ colorings σ . (18)

Each step of (18) is formalized below. As mentioned previously, the key feature of the
last model is that the size of a cluster γ can be easily read off from its corresponding
coloring σ , as a product of local functions. Some steps of the correspondence (18)
appear in existing literature (see [13,25,33,34,42]) but we present them here in detail
for completeness.

2.1 Frozen andwarning configurations

We introduce a new value f (free), and adopt the convention 0 ⊕ f ≡ f ≡ 1 ⊕ f.
For l ≥ 1 and x ∈ {0,1,f}l let Inae(x) be the indicator that x is neither identically 0
nor identically 1. Given an nae- sat instance G = (V , F, E,L) and an assignment
x ∈ {0,1,f}V , denote

Inae(x;G ) ≡
∏
a∈F

Inae((Le ⊕ xv(e))e∈δa) .

By Definition 2.1, an nae- sat solution is an assignment x ∈ {0,1}V satisfying
Inae(x;G ) = 1.

Definition 2.2 (frozen configurations)Given an nae- sat instance G = (V , F, E,L),
for any e ∈ E let G ⊕ 1e denote the instance obtained by flipping the edge label Le
to Le ⊕ 1. We say that x ∈ {0,1,f}V is a valid frozen configuration on G if (i) no
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The number of solutions for random regular NAE-SAT 15

nae- sat constraint is violated, meaning Inae(x;G ) = 1; and (ii) for all v ∈ V , xv
takes a value in {0,1} only when forced to do so, meaning there is some e ∈ δv such
that

Inae(x;G ⊕ 1e) = 0 . (19)

If no such e ∈ δv exists then xv = f.

It is well known that on any given G , every nae- sat solution x can be mapped to
a frozen configuration x = x(x) via a “coarsening” or “whitening” procedure [42],
as follows. Initialize x = x. Then, whenever xv ∈ {0,1} but there exists no e ∈ δv
such that (19) holds, update xv to f. Iterate until no further updates can be made; the
result is then a valid frozen configuration. Two nae- sat solutions x, x′ map to the
same frozen configuration x if and only if they lie in the same cluster γ ∈ CL(G ).
Thus, for any given G , we have a well-defined mapping from clusters γ to frozen
configurations x . This map is one-to-one but not necessarily onto: for instance, the
all-free assignment x ≡ f is always trivially a valid frozen configuration, but on many
instances G there is no solution cluster γ ∈ CL(G ) whose coarsening is x ≡ f. Since
the aim is to lower bound the clusters, the lack of surjectivity must be addressed. We
will do so momentarily (Definition 2.4 below), but first we review an useful alternative
representation of frozen configurations:

Definition 2.3 (warning configurations) For the integers l ≥ 1, define functions Ẏ :
{0,1,f}l → {0,1,f,z} and Ŷ : {0,1,f}l → {0,1,f} by

Ẏ (ŷ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if 0 ∈ {ŷi } ⊆ {0,f},
1 if 1 ∈ {ŷi } ⊆ {1,f},
f if {ŷi } = f,

z otherwise;

Ŷ (ẏ) =

⎧⎪⎨
⎪⎩
0 if {ẏi } = {1},
1 if {ẏi } = {0};
f otherwise.

Denote M ≡ {0,1,f}2. We write y ∈ ME if y = (ye)e∈E where ye ≡ (ẏe, ŷe) ∈ M .
If edge e joins variable v to clause a, then ẏe represents a “warning” along e from v
to a, while ŷe represents a “warning” along e from a to v. We say that y ∈ ME is a
valid warning configuration on G if it satisfies the local equations

ye = (ẏe, ŷe) =
(
Ẏ (ŷ

δv(e)\e),Le ⊕ Ŷ ((L⊕ ẏ)δa(e)\e)
)

(20)

for all e ∈ E (with no ẏe = z).

It is well known that on any given G there is a natural bijection

{
frozen configurations

x ∈ {0,1,f}V
}
←→

{
warning configurations

y ∈ ME

}
. (21)

In the forward direction, given a (valid) frozen configuration x , for any variable v and
any edge e ∈ δv such that (19) holds, set ŷe = xv ∈ {0,1}; then in all other cases set
ŷe = f. Then, having defined all the ŷe, the ẏe can only be defined by the local Eq.
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(20). One can check that the resulting assignment y ∈ ME is a warning configuration.
Conversely, given a warning configuration y, a frozen configuration x can be obtained

by setting xv = Ẏ (ŷδv) for all v.

2.2 Message configurations

We return to the question of surjectivity: does a given frozen configuration x encode a
(nonempty) solution cluster γ ∈ CL(G )?Wewill now state an easy sufficient condition
for this to hold. The condition is not in general necessary, but we will show that it
captures enough of the solution space to deliver a sharp lower bound on the free energy.

Definition 2.4 (free cycles) Let x ∈ {0,1,f}V be a valid frozen configuration on
G = (V , F, E,L). We say that a clause a ∈ F is separating (with respect to x) if
there exist e′, e′′ ∈ δa such that Le′ ⊕ xv(e′) = 0while Le′′ ⊕ xv(e′′) = 1. For instance,
a forcing clause is also separating. A cycle in G is a sequence of edges

e1e2 . . . e2	−1e2	e1,

where, taking indices modulo 2	, it holds for each integer i that e2i−1 and e2i are
distinct but share a clause, while e2i and e2i+1 are distinct but share a variable. (In
particular, if v is joined to a by two edges e′ �= e′′, then e′e′′ forms a cycle.) We say
the cycle in G is free (with respect to x) if all its variables are free and all its clauses
are non-separating.

Definition 2.5 (free trees) Let x be a frozen configuration on G = (V , F, E,L) that
has no free cyces. Let H be the subgraph of G induced by the free variables and
non-separating clauses of x . Since x has no free cycles, H must be a disjoint union
of tree components t , which we term the free trees of x . For each t , let T ≡ T (t) be
the subgraph of G induced by t together with its incident variables. The subgraphs T
(which can contain cycles) will be termed the free pieces of x . Each free variable is
covered by exactly one free piece. In the simplest case, a free piece consists of a single
free variable surrounded by d separating clauses.

Let us say that x ∈ {0,1}V extends x ∈ {0,1,f}V if xv = xv for all v such that
xv ∈ {0,1}. If x is a frozen configuration on G with no free cycles, it is easy to extend
x to valid nae- sat solutions x ∈ {0,1}V—we simply extend x on each free tree t ,
since nae- sat on a tree is always solvable; the different free trees do not interact.
Let γ denote the set of all valid nae- sat solutions on G that extend x , and denote
size(x) ≡ |γ |. Meanwhile, let T(x) denote the set of all free pieces of x . For each
T ∈ T(x), let size(x; T ) denote the number of valid nae- sat solutions on T that
extend x |T . It follows from our discussion that γ ∈ CL(G ) with

|γ | = size(x) =
∏

T∈T(x)
size(x; T ) . (22)

That is to say, the absence of free cycles is an easy sufficient condition for a frozen
configuration to encode a nonempty cluster; and it further ensures that the cluster has a
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relatively simple product structure (22). As noted previously, the structure within each
free piece T can be understood by dynamic programming (bp). This is a well-known
calculation (see e.g. [33, Ch. 14]) but we will review the details for our setting. To this
end, we first introduce a combinatorial model of “message configurations” which will
map directly to the natural bp variables.

Recall from Definition 2.3 that a warning configuration is denoted y ∈ ME where

each ye ≡ (ẏe, ŷe) ∈ M . We denote a message configuration by τ ∈M E where each
τe = (τ̇e, τ̂e) ∈M (forM to be defined below). It will be convenient to let e indicate
a directed edge, pointing from tail vertex t(e) to head vertex h(e). If e is the undirected
version of e, then we denote

(ye, τe) =
{
(ẏe, τ̇e) if t(e) is a variable,

(ŷe, τ̂e) if t(e) is a clause.

We will make a definition such that τe either takes the value “�” or is a bipartite factor
tree. The tree is unlabelled except that one vertex is distinguished as the root, and
some edges are assigned 0 or 1 values as explained below. The root of τe is required
to have degree one, and should be thought of as corresponding to the head vertex h(e).

In the context of message configurations τ , we use “0” or “1” to stand for the
tree consisting of a single edge which is labelled 0 or 1 and rooted at the endpoint
corresponding to the head vertex—the root is the incident clause in the case of τ̇ , the
incident variable in the case of τ̂ . We use s to stand for the tree consisting of a single
unlabelled edge, rooted at the incident variable; this will be related to the situation of
separating clauses from Definition 2.4. Given a collection of rooted trees t1, . . . , t	
whose roots o1, . . . , o	 are all of the same type (either all variable or all clauses), we
define t = join(t1, . . . , t‘) by identifying all the oi as a single vertex o, then adding
an edge which joins o to a new vertex o′. The vertex o has the same type (variable or
clause) as the oi ; and the vertex o′ is assigned the opposite type and becomes the root
of t .

Definition 2.6 (message configurations) Start with Ṁ0 ≡ {0,1, �} and M̂0 ≡ ∅,
and suppose inductively that Ṁt , M̂t have been defined. For τ̂ ∈ (M̂t )

d−1 and τ̇ ∈
(Ṁt )

k−1, let us abbreviate {τ̂i } ≡ {τ̂1, . . . , τ̂k−1} and {τ̇i } ≡ {τ̇1, . . . , τ̇d−1}. Define

Ṫ (τ̂ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 0 ∈ {τ̂i } ⊆ M̂t\{1},
1 if 1 ∈ {τ̂i } ⊆ M̂t\{0},
z if {0,1} ⊆ {τ̂i },
� if � ∈ {τ̂i } ⊆ M̂t\{0,1},
join{τ̂i } if {τ̂i } ⊆ M̂t\{0,1, �};

T̂ (τ̇ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if {τ̇i } = {1},
1 if {τ̇i } = {0},
s if {0,1} ⊆ {τ̇i },
� if {0,1} � {τ̇i } and � ∈ {τ̇i },
join{τi } otherwise.

Then, for t ≥ 0, define recursively the sets

M̂t+1 ≡ M̂t ∪ T̂ [(Ṁt )
k−1] ,

Ṁt+1 ≡ Ṁt ∪ Ṫ [(M̂t+1)d−1]\{z}
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Fig. 1 Examples of messages (Definition 2.6). Variables are indicated by circle nodes, clauses by square
nodes, and edges by lines. For simplicity we assume that all edges depicted have literals Le = 0. Each
message is shown with its root as a filled node at the top. The variable-to-clause messages τ̇ are rooted at
clauses, while the clause-to-variable messages τ̂ are rooted at variables. The heavy lines indicates edges
inside the message that are labelled 0 or 1. In our notation we have τ̇0 = 0 and τ̇1 = 1. Next τ̂0 =
T̂ (τ̇1, τ̇1) = 0, while τ̂1 = T̂ (τ̇0, τ̇1) = s. Finally τ̇3 = Ṫ (τ̂1, τ̂1) = join(Oø1,Oø1) and τ̂2 = T̂ (τ̇3, τ̇0) =
join(Pø3,Pø0)

We then let Ṁ be the union of all the Ṁt , let M̂ be the union of all the M̂t , and let
M = Ṁ × M̂ . On G = (V , F, E,L), the assignment τ ∈M E is a valid message
configuration if (i) it satisfies the local equations

τe = (τ̇e, τ̂e) =
(
Ṫ (τ̂ δv(e)\e),Le ⊕ T̂ ((L⊕ τ̇ )δa(e)\e)

)
(23)

for all e ∈ E (with no τ̇e = z), and (ii) if one element of {τ̇e, τ̂e} equals � then the other
element is in {0,1}. In (23), we take the convention that Le ⊕ f = f and Le ⊕ � = �,
and if τ is a tree with labels then Le ⊕ τ is defined by applying Le ⊕ · entrywise to all
labels of τ . See Fig. 1.

Suppose x is a frozen configuration on G , and let y be its corresponding warning
configuration from (21). Given y, we define τ in four stages:

1. If ẏe ∈ {0,1} then set τ̇e = ẏe; likewise if ŷe ∈ {0,1} then set τ̂e = ŷe.
2. If (L⊕ ẏ)δa(e)\e has both 0 and 1 entries, then set τ̂e = s.
3. Apply the local Eq. (23) recursively to define τ̇e, τ̂e wherever possible.
4. Lastly, if any τ̇e or τ̂e remains undefined, then set it to �.

An example with � messages is given in Fig. 2.

Lemma 2.7 The mapping described above defines a bijection

{
frozen configurations x ∈ {0,1,f}V

without free cycles

}
←→

{
message configurations

τ ∈M E

}
.

Proof Let x ∈ {0,1,f}V be a frozen configuration on G = (V , F, E,L) without
free cycles, and let y ∈ ME be the warning configuration which corresponds to x via
(21). We first check that the mapping y �→ τ , as described above, gives a message
configuration which is valid, i.e., satisfies conditions (i) and (ii) of Definition 2.6. In
the first stage, the mapping procedure sets τ̇e = ẏe whenever ẏe ∈ {0,1}, and τ̂e = ŷe
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Fig. 2 Example of how �messages can arise in the mapping from y to τ (§2.2). The figure shows a subgraph
of G with variables indicated by circle nodes, clauses by square nodes, and edges by lines. All edges in the
figure are assumed to have label Le = 0. All variables shown are frozen to 0 or 1, and all clauses shown
are separating. To avoid clutter we did not label the edges with the warnings ye; instead, each variable
v is labeled with its frozen configuration spin xv , according to the x ↔ y bijection (21). The clauses
force the variables along the cycle in the clockwise direction, resulting in � values in the final τ in the
counterclockwise direction of the cycle. (Note also that y can be recovered from τ by changing � to f; cf.
Lemma 2.7)

whenever ŷe ∈ {0,1}. One can argue by induction that the rest of the procedure does
not create any additional 0 or 1 messages, so that in the final configuration the {0,1}
values of τ will match those of y. The second and third stages of the procedure are
clearly consistent with the local Eq. (23). Note in particular that the third stage does
not produce any τ̇e = zmessage, because it would contradict the assumption that y is
a valid warning configuration; it also does not produce any �message. All �messages
are created in the fourth stage, and this is clearly consistent with the mapping of �
messages under Ṫ and T̂ . This concludes the proof that τ satisfies condition (i) of
Definition 2.6. To check condition (ii), suppose τe = �, and let f denote the reversal
of e. From the above construction, it must be that ye = f and τe′ = � for some e′
that points to the tail vertex t(e) but does not equal f. Consequently e must belong
to a directed cycle e1e2 . . . e2ke1 with all the τei equal to �. Whenever e points from
a separating clause a to free variable v, we must have τe = s. As a result, if all
the variables along the cycle are free, then none of the clauses can be separating,
contradicting the assumption that x has no free cycles. Therefore some variable v on
the cycle must take value xv ∈ {0,1}, and by relabelling we may assume v = t(e1).
Let fi denote the reversal of ei : since xv �= f but ye1 = f, it must be that yf1 = xv . This
means that the clause a = h(e1) = t(f1) is forcing to v, so in particular yf2 ∈ {0,1}.
Continuing in this way we see that yfi ∈ {0,1} for all i , and it follows that τ satisfies
condition (ii), and so is a valid message configuration.

The mapping from y to τ is clearly injective. To see that it is surjective, let τ be any

valid message configuration. Projecting Ṁ \{0,1} �→ f and M̂ \{0,1} �→ f yields
a valid warning configuration y, which in turn maps to a valid frozen configuration
x . It remains then to check that x has no free cycles. Indeed, along a free cycle,
all the warnings (in either direction) must be f. This means none of the messages
can be in {0,1}, and as a result none of the messages can be �, by condition (ii) of
Definition 2.6. This means all the messages must be in Ṁ \{0,1, �} or M̂ \{0,1, �}.
Suppose in one direction of the cycle we have the directed edges e1e2 . . . e2ke1. By
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definition of Ṫ and T̂ , τei is a proper subtree of τei+1 for all i , with indices modulo
2k. Going around the cycle we find that τe1 is a proper subtree of τe2k+1 = τe1 , which
gives the contradiction. ��

2.3 Bethe formula

We now describe the dynamic programming (bp) calculation which will ultimately
take a message configuration τ and evaluate a product of local functions to compute
the size of its associated cluster. The first step is to define the dynamic programming
variables; thesewill formalize themeasuresmwhichwere introduced previously in (7).
Recall that for l ≥ 1 and x ∈ {0,1,f}l , we write Inae(x) for the indicator that the
entries of x are not identically 0 or identically 1.

Definition 2.8 Recall that message configuration spins belong to the space M =
Ṁ × M̂ (Definition 2.6). Let P({0,1}) denote the space of probability measures
on {0,1}. Define the mappings ṁ : Ṁ → P({0,1}) and m̂ : M̂ → P({0,1}) as
follows. For τ̇ ∈ {0,1} let ṁ(τ̇ ) be the unit measure supported on τ̇ . Likewise, for
τ̂ ∈ {0,1} let m̂(τ̂ ) be the unit measure supported on τ̂ . For τ̇ ∈ Ṁ \{0,1, �} or
τ̂ ∈ M̂ \{0,1, �}we let ṁ(τ̇ ) and m̂(τ̂ ) be recursively defined: if τ̇ = Ṫ (τ̂1, . . . , τ̂d−1)
where no τ̂ j = �, define

ż(τ̇ ) ≡
∑

x∈{0,1}

d−1∏
i=1
[m̂(τ̂i )](x) , [ṁ(τ̇ )](x) ≡ 1

ż(τ̇ )

d−1∏
i=1
[m̂(τ̂i )](x) . (24)

Note that τ̂1, . . . , τ̂d−1 can be recovered from τ̇ modulo permutation of the indices,
so these quantities are well-defined. We see inductively that for τ̇ ∈ Ṁ \{0,1, �}, the
normalizing factor ż(τ̇ ) is positive, and ṁ(τ̇ ) is a nondegenerate probability measure
on {0,1}. Similarly, if τ̂ ∈ M̂ \{0,1, �} equals T̂ (τ̇1, . . . , τ̇k−1) where none of the τ̇i
are �, then set

ẑ(τ̂ ) ≡
∑

x∈{0,1}

∑
ẋ∈{0,1}k−1

Inae(x, ẋ)
k−1∏
i=1
[ṁ(τ̇i )](ẋi ) = 2−

k−1∏
i=1
[ṁ(τ̇i )](0)−

k−1∏
i=1
[ṁ(τ̇i )](1) ,

[m̂(τ̂ )](x) ≡ 1

ẑ(τ̂ )

∑
ẋ∈{0,1}k−1

Inae(x, ẋ)
k−1∏
i=1
[ṁ(τ̇i )](ẋi ) = 1

ẑ(τ̂ )

(
1−

k−1∏
i=1
[ṁ(τ̇i )](x)

)
. (25)

Again, we see inductively that for τ̂ ∈ M̂ \{0,1, �}, the normalizing factor ẑ(τ̂ ) is
positive, and m̂(τ̂ ) is a nondegenerate probability measure on {0,1}. Finally, we will
see below that for our purposeswe can take ṁ(�) and m̂(�) to be arbitrary nondegenerate
probability measures on {0,1}; we therefore define them both to equal the uniform
measure on {0,1}.

Given a valid message configuration τ on G , define m = (me)e∈E where me ≡
(ṁe, m̂e) with ṁe ≡ ṁ(τ̇e) and m̂e ≡ m̂(τ̂e). It follows from Definition 2.8 that m
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satisfies the following local consistency equations, which are inherited from the Eq.
(23) satisfied by τ , in combination with the above definitions (24) and (25). If τ̇e �= �,
then ṁe is given by the equation

ṁe(x) = 1

ż(τ̇e)

∏
e′∈δv(e)\e

m̂e′(x) (26)

for x ∈ {0,1}. Likewise, if τ̂e �= �, then m̂e is given by the equation

m̂e(x) = 1

ẑ(τ̂e)

∑
ẋδa(e)∈{0,1}d

1{ẋe = x}Inae((ẋ ⊕ L)δa(e))
∏

e′∈δa(e)\e
ṁe′(xe′) (27)

for x ∈ {0,1}. The Eqs. (26) and (27) are known as the BP equations.We now proceed
to the calculation of the cluster size (22). To this end, we define the local functions

ϕ̄(τ̇ , τ̂ ) ≡
{ ∑

x∈{0,1}
ṁ[τ̇ ](x) · m̂[τ̂ ](x)

}−1
,

ϕ̂lit(τ̇1, . . . , τ̇k) ≡
∑

x∈{0,1}k
Inae(x)

k∏
i=1

ṁ[τ̇i ](xi ) = 1

−
∑

x∈{0,1}

k∏
i=1

ṁ[τ̇i ](x) = ẑ(T̂ ((τ̇ j ) j �=i )))
ϕ̄(τ̇i , T̂ ((τ̇ j ) j �=i ))

,

ϕ̇(τ̂1, . . . , τ̂d) ≡
∑

x∈{0,1}

d∏
i=1

m̂[τ̂i ](x) = ż(Ṫ ((τ̂ j ) j �=i )))
ϕ̄(τ̂i , Ṫ ((τ̂ j ) j �=i ))

, (28)

where the last identity in the last two lines holds for any choice of i . The bp calculation
is summarized by the following:

Lemma 2.9 Suppose on G = (V , F, E,L) that x is a frozen configuration with no
free cycles, and let τ be its corresponding message configuration from Lemma 2.7.
Let T ∈ T(x) be a free piece of x, and let t be the free tree inside it. Then the number
of nae- sat extensions of x |T on T is given by

size(x; T ) =
∏
v∈V (t)

{
ϕ̇(τ δv)

∏
e∈δv

ϕ̄(τe)

} ∏
a∈F(t)

ϕ̂lit((τ ⊕ L)δa) (29)

where V (t) and F(t) denote respectively the variables and clauses in t . (An example
calculation is worked out in Fig. 3.)

Proof As we have mentioned before, this calculation is well known (see e.g. [33,
Ch. 14]) but we will review it here, beginning with a minor technical point. As noted
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Fig. 3 Example of correspondence (Lemma 2.7) between frozen and message configurations. Variables
are indicated by circle nodes, clauses by square nodes, and edges by lines. The graph formed by the wavy
lines is a free piece T , with the free tree t in green and T\t in blue (Definition 2.5). Each variable v is
labelled with its frozen configuration spin value xv ∈ {0,1, N }. The four separating clauses are indicated
by filled black squares. The message configuration is only partially shown, with the remaining values given
by the obvious symmetries. The clause-to-variable messages τ̂ are shown in black, and the variable-to-
clause messages τ̇ are shown in purple. Each message is a tree, with root vertex shown as a filled node.
The heavy black and purple lines indicate edges inside the messages that are labeled 1. For instance, the
message coming up out of the bottom variable is a tree consisting of a single edge, labelled 1 (indicated in
the figure by a heavy purple line), rooted at its incident clause. We then calculate on each edge the values
m = (ṁ[τ̇ ](1), m̂[τ̂ ](1)), and use this to determine the factors ϕ̇, ϕ̂lit, ϕ̄ from (28). In this example, t has
two free variables each with ϕ̇ = 1/4, four separating clauses each with ϕ̂lit = 1, and one non-separating
clause with ϕ̂lit = 3/4. There are six edges incident to t , each with ϕ̄ = 2. Multiplying all these factors
together (Lemma 2.9) gives size(x; T ) = 3. Indeed, in this small example it is easy to see that there are
exactly three nae- sat assignments extending the frozen configuration x on T , since the two free variables
cannot both take value 1, but the remaining three possibilities give valid nae- sat assignments (color figure
online)

in Definition 2.5, t is a tree but T has a cycle wherever a variable v ∈ T\t is joined
by more than one edge to t . However, since x |T\t is {0,1}-valued, these cycles play
no role in the question of extending x |T to a valid nae- sat assignment on T—one
can simply duplicate variables in T\t so that each one joins to t by exactly one edge.
We may therefore assume for the rest of the proof that all the free pieces T ∈ T(x)
are acyclic.

For any T ∈ T(x) and any edge e ∈ T , delete from T the edges δa(e)\e, and let Ṫ e

denote the component containing e in what remains, rooted at a(e). Likewise, delete
from T the edges δv(e)\e, and let T̂ e denote the component containing e in what
remains, rooted at v(e). For each variable w ∈ Ṫ e\t , let x́w ∈ {0,1} be the boolean
sum of xw together with all the edge literals L on the path joining w to a(e) in Ṫ e.
Note then that τ̇e encodes the isomorphism class of Ṫ e, labelled with boundary data
x́w (for all the variables w ∈ Ṫ e\t). A similar relation holds between τ̂e and T̂ e. For
each e ∈ T , let ṡe(x; x) count the number of valid nae- sat assignments that extend
x |Ṫ e

on Ṫ e and take value x on v(e). Let ŝe(x; x) count the number of valid nae- sat

assignments that extend x |T̂ e
on T̂ e and take value x on v(e). Denote

ṡe(x) ≡
∑

x∈{0,1}
ṡe(x; x) , ŝe(x) ≡

∑
x∈{0,1}

ŝe(x; x) .
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There are two boundary cases: if edge e joins a free variable in t to a separating clause
in T\t , then we have ŝe(0; x) = ŝe(1; x) = 1. If edge e instead joins a non-separating
clause in t to a frozen variable in T\t , then we have ṡe(x; x) = 1{x = xv(e)}. By
induction started from these boundary cases we find that for all e ∈ T ,

ṁe(x) = ṡe(x; x)
ṡe(x)

, m̂e(x) = ŝe(x; x)
ŝe(x)

.

It follows that for any variable v ∈ t , any clause a ∈ t , and any edge e ∈ T , we have
the identities

size(x; T ) = ϕ̇(τ̂ δv)
∏
e′∈δv

ŝe′(x) = ϕ̂lit(τ̇ δa)
∏
e′∈δa

ṡe′(x) = ṡe(x)ŝe(x)
ϕ̄(τe)

.

Combining the identities and rearranging gives (writing E(t) for the edges of t)

∏
v∈V (t)

{
ϕ̇(τ̂ δv)

∏
e∈δv

ϕ̄(τe)

} ∏
a∈F(t)

ϕ̂lit((τ̇ ⊕ L)δa)

= size(x; T )|V(t)|+|F(t)|
size(x; T )|E(t)| ·

{ ∏
v∈V (t)

∏
e∈δv\t

ṡe(x)
size(x; T )

}/{ ∏
a∈F(t)

∏
e∈δa\t

ṡe(x)
}
.

For a ∈ F(t) and e ∈ δa\t , the variable v(e) is frozen and so we have ṡe(x) =
1. For any v ∈ V (t) and e ∈ δv\t , we have ṡe(x) = size(x; T ). The tree t has
Euler characteristic one. The right-hand side of the above equation then simplifies to
size(x; T ), thereby proving the claim. ��
Corollary 2.10 Suppose on G = (V , F, E,L) that x is a frozen configuration with no
free cycles, and let τ be its corresponding message configuration from Lemma 2.7.
Then the number of valid nae- sat extensions of x is given by the product formula

size(x) =
∏
v∈V
ϕ̇(τ̂ δv)

∏
a∈F
ϕ̂lit((τ̇ ⊕ L)δa)

∏
e∈E
ϕ̄(τe) .

This identity holds as long as m̂(�) and m̂(�) are fixed nondegenerate probability
measures on {0,1}.
Proof Let V ′ denote the set of free variables, and let E ′ denote the set of all edges
incident to V ′. Let F ′ the set of non-separating clauses. From (22) and Lemma 2.9 we
have

size(x) =
∏

T∈T(x)
size(x; T ) =

∏
v∈V ′

ϕ̇(τ̂ δv)
∏
a∈F ′

ϕ̂lit((τ̇ ⊕ L)δa)
∏
e∈E ′

ϕ̄(τe) . (30)

For any edge e ∈ E\E ′, the incident variable v(e) must lie in V \V ′, meaning xv(e) ∈
{0,1}.We now partition E\E ′ into the disjoint union of Er and Eb, as follows. Let Er
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be the set of edges e ∈ E\E ′ such that m̂e is fully supported on xv(e). Let Eb be the set
of edges e ∈ E\E ′ such that m̂e is a nondegeneratemeasure on {0,1}; note that ṁe must
then be fully supported on xv(e). Consider a clause a ∈ F\F ′. If a is non-forcing, then
δa∩ Er = ∅ and ϕ̂lit((τ̇ ⊕L)δa) = 1. Otherwise, a is forcing in the direction of some
edge e ∈ δa, in which case δa∩ Er = {e} and ϕ̂lit((τ̇ ⊕L)δa) = ṁe(xv(e)) = 1/ϕ̄(τe).
We conclude for all a ∈ F\F ′ that

ϕ̂lit((τ̇ ⊕ L)δa)
∏

e∈δa∩Er

ϕ̄(τe) = 1 . (31)

For v ∈ V \V ′, for all e ∈ δv ∩ Eb we have ṁe(xv) = 1 and so ϕ̄(τe) = 1/m̂(xv).
Thus, for all v ∈ V \V ′,

ϕ̇(τ̂ δv)
∏

e∈δv∩Eb

ϕ̄(τe) = 1 . (32)

The identities (31) and (32) remain valid even for vertices incident to � messages,
as long as ṁ(�) and m̂(�) are fixed nondegenerate probability measures on {0,1}.
Combining the identities with (30) proves the claim. ��

2.4 Colorings

We conclude this section by defining the coloring model, building on an encoding
introduced by [18]. It is a simplification of the message configuration model (Defini-
tion 2.6) that takes advantage of some of the cancellations ((31) and (32)) seen above.
In short, following the notation of Corollary 2.10, for edges in E\E ′ it is not necessary
to keep all the information of τe; instead, it suffices to keep track only of whether e
belongs to Er or Eb, along with the value of xv(e) ∈ {0,1}. The colorings encode
precisely this information. The resulting bijection between colorings and message
configurations is the last step of (18).

Recall messages take values τ ≡ (τ̇ , τ̂ ) ∈M ≡ Ṁ × M̂ (Definition 2.6), and let
{f} ⊆M denote the subset of values τ ∈M where we have both τ̇ ∈ Ṁ \{0,1, �}
and τ̂ ∈ M̂ \{0,1, �}. Denote � ≡ {r0,r1,b0,b1} ∪ {f}. Define a projection
S :M → � by

S(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r0 if τ̂ = 0,

r1 if τ̂ = 1,

b0 if τ̂ �= 0 and τ̇ = 0,

b1 if τ̂ �= 1 and τ̇ = 1,

τ otherwise (meaning that τ ∈ {f}).

(33)

(Note that S(τ ) ∈ {r0,r1} includes the case τ̇ = �, and S(τ ) ∈ {b0,b1} includes
the case τ̂ = �.) We define a partial inverse to S as follows. If σ ∈ {f} then define
τ ≡ τ(σ ) ≡ σ ≡ (σ̇ , σ̂ ). If σ = rx for x ∈ {0,1} then define τ̂ ≡ τ̂ (σ ) ≡ x
and leave τ̇ (σ ) undefined. If σ = bx for x ∈ {0,1} then define τ̇ ≡ τ̇ (σ ) ≡ x
and leave τ̂ (σ ) undefined. For σ ∈ {r0,r1,b0,b1} we denote (σ̇ , σ̂ ) ≡ (σ, σ ). The
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coloring model is the image of the message configuration model under the projection
S, formally given by the following:

Definition 2.11 (colorings) For σ ∈ �d , abbreviate {σi } ≡ {σ1, . . . , σd}, and define

İ (σ ) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if r0 ∈ {σi } ⊆ {r0,b0},
1 if r1 ∈ {σi } ⊆ {r1,b1},
1 {σi } ⊆ {f}, and σ̇i = Ṫ ((σ̂ j ) j �=i ) for all i,
0 otherwise.

For σ ∈ �k , abbreviate {σi } ≡ {σ1, . . . , σk}, and define

Î lit(σ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ∃i : σi = r0 and {σ j } j �=i = {b1},
1 if ∃i : σi = r1 and {σ j } j �=i = {b0},
1 if {b0,b1} ⊆ {σi } ⊆ {b0,b1} ∪ {σ ∈ {f} : σ̂ = s},
1 if {σi } ⊆ {b0} ∪ {f}, |{σi } ∩ {f}| ≥ 2, and σ̂i = T̂ ((τ̇ (σ j )) j �=i )

for all i where σi �= b0;
1 if {σi } ⊆ {b1} ∪ {f}, |{σi } ∩ {f}| ≥ 2, and σ̂i = T̂ ((τ̇ (σ j )) j �=i )

for all i where σi �= b1;
0 otherwise.

(In the definition of Î lit(σ )we used that if {σi } ⊆ {b0,b1}∪{f}, then τ̇ (σi ) is defined
for all i .) On an nae- sat instance G = (V , F, E,L), a configuration σ ∈ �E is a
valid coloring if İ (σ δv) = 1 for all v ∈ V , and Î lit((σ ⊕ L)δa) = 1 for all a ∈ F .

Lemma 2.12 On any given nae- sat instance G = (V , F, E,L), we have a bijection
{
message configurations

τ ∈M E

}
←→

{
colorings
σ ∈ �E

}
.

Proof Given a valid message configuration τ , a valid coloring σ is obtained by coordi-
natewise application of the projection map S from (33). In the other direction, given a
valid coloring σ , let xv = 0 if σ δv has any r0 entries, xv = 1 if σ δv has any r1 entries,
and xv = f otherwise. The resulting x ∈ {0,1,f}V is a valid frozen configuration,
and the argument of Lemma 2.7 implies that it has no free cycles. It then maps by
Lemma 2.7 to a valid message configuration τ , which completes the correspondence.

��
Recall the definitions (28) of ϕ̄, ϕ̂lit, and ϕ̇. For σ ∈ �d , let

�̇(σ ) =

⎧⎪⎨
⎪⎩
ϕ̇(σ̂ ) if İ (σ ) = 1 and {σi } ⊆ {f};
1 if İ (σ ) = 1 and {σi } ⊆ {r0,r1,b0,b1};
0 otherwise (meaning that İ (σ ) = 0).

123



26 A. Sly et al.

(Note if {σi } ⊆ {f} then σ̂ = τ̂ and ϕ̇(σ̂ ) is well-defined.) For σ ∈ �k , let

�̂lit(σ ) =

⎧⎪⎨
⎪⎩
ϕ̂lit((τ̇ (σi ))i ) if Î lit(σ ) = 1 and {σi } ⊆ {b0,b1} ∪ {f};
1 if Î lit(σ ) = 1 and {σi } ∩ {r0,r1} �= ∅;
0 otherwise (meaning that Î lit(σ ) = 0).

(34)

(Note if {σi } ⊆ {b1,b1} ∪ {f} then τ̇ (σi ) is well-defined for all i .) Finally, let

�̄(σ ) =
{
ϕ̄(σ ) if σ ∈ {f},
1 if σ ∈ {r0,r1,b0,b1}.

The following is a straightforward consequence of Lemma 2.9:

Lemma 2.13 Suppose on G = (V , F, E,L) that x is a frozen configuration with no
free cycles. Let σ be the coloring that corresponds to x by Lemmas 2.7 and 2.12. Then
the number of valid nae- sat extensions of x is given by size(x) = wlit

G (œ) where we
define

wlit
G (σ ) ≡

∏
v∈V
�̇(σ δv)

∏
a∈F
�̂lit((σ ⊕ L)δa)

∏
e∈E
�̄(σe) . (35)

Proof This is a rewriting of (30). ��
Definition 2.14 (T -colorings) If σ ∈ {f}, then σ̇ is a tree rooted at a clause a incident
to a single edge e(a), while σ̂ is a tree rooted at a variable v incident to a single
edge e(v). Glue σ̇ and σ̂ together by identifying e(a) with e(v), and let |σ | count the
number of free variables in the resulting tree. (Note that |σ | must be finite because
we only consider colorings of finite nae- sat instances G .) Thus |σ | = |σ̇ | + |σ̂ | − 1
where |σ̇ | is the number of free variables in the tree σ̇ , and |σ̂ | is the number of free
variables in the tree σ̂ . If σ ∈ �\{f} = {r0,r1,b0,b1} then define |σ | ≡ 0. If σ is
a valid coloring on G = (V , F, E,L), then |σe| must be finite on every edge e ∈ E ,
by Definition 2.11. For 0 ≤ T ≤ ∞ define �T ≡ {σ ∈ � : |σ | ≤ T }; we then call
σ a T -coloring if σe ∈ �T for all e ∈ E . Define Zλ,T to be the partition function of
λ-tilted T -colorings,

Zλ,T ≡ Zλ,T (G ) ≡
∑

σ∈(�T )
E

wlit
G (σ )

λ . (36)

Denote Zλ ≡ Zλ,∞ and note that as T ↑ ∞ we have Zλ,T ↑ Zλ,∞ ≡ Zλ.

Proposition 2.15 On an nae- sat instance G = (V , F, E,L), recall CL(G ) denotes
the set of solution clusters (connected components of SOL(G )), and define

Z̄λ ≡ Z̄λ(G ) ≡
∑

γ∈CL(G )
|γ |λ . (37)

Then Z̄λ is lower bounded by Zλ, where Zλ is the increasing limit of Zλ,T as defined
by (36).
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Proof On G , the colorings σ are in bijection (Lemma 2.12) with the message configu-
rations τ , which in turn are in bijection (Lemma 2.7) with the frozen configurations x
that do not have free cycles. Each such frozen configuration defines a distinct cluster
γ ∈ CL(G ), of size |γ | = size(x) = wlit

G (œ). The claimed inequality directly follows.��
To summarize what we have obtained so far, note that the quantity Z̄λ of (37) is

a formal definition of the “λ-tilted cluster partition function” introduced in (5). In a
sequence (18) of combinatorial mappings, we have produced in (36) a mathematically
well-defined quantity Zλ,T which lower bounds Z̄λ (Proposition 2.15), and will be
muchmore tractable thanks to the product formula for cluster sizes (Lemma 2.13). The
lower bound of Theorem 1 is based on the second moment method applied to Zλ,T . In
preparation for the moment calculation, we conclude the current section by discussing
some simplifications obtained by averaging over the literals of the nae- sat instance.

2.5 Averaging over edge literals

Our eventual purpose is to calculate EZλ,T and E[(Zλ,T )2], where E is expectation
over the nae- sat instance G . Recall that G = (G,L) where G = (V , F, E) is the
graph without the edge literals L. Then EZλ,T = E(E(Zλ,T |G)) where

E(Zλ,T |G) =
∑

σ∈(�T )
E

E(wlit
G (σ )

λ |G) .

For any l ≥ 1 and any function g : {0,1}l → R, let E
litg denote the average value of

g(L) over all L ∈ {0,1}l . For any σ ∈ �E , we have E(wlit
G (σ )

λ |G) = wG(σ )
λ where

(compare (35))

wG(σ ) ≡
∏
v∈V
�̇(σ δv)

∏
a∈F
�̂(σ δa)

∏
e∈E
�̄(σe) , �̂(σ ) ≡

(
E
lit[�̂lit(σ ⊕ L)λ]

)1/λ
(38)

— that is to say, even after averaging over L, the contribution of each σ ∈ �E is still
given by a product formula. This means that E(Zλ,T |G) is the partition function of a
“factor model”:

Definition 2.16 (factor model) On a bipartite graph G = (V , F, E), the factor model
specified by g ≡ (ġ, ĝ, ḡ) is the probability measure νG on configurations ξ ∈ X E

defined by

νG(ξ) = 1

Z

∏
v∈V

ġ(ξ
δv
)
∏
a∈F

ĝ(ξ
δa
)
∏
e∈E

ḡ(ξe),

with Z the normalizing constant.

A further observation is that for G = (G,L) and σ ∈ �E , as we go over all
possibilities of L while keeping G fixed, the weight wlit

G (σ ) (the size of the cluster
encoded by σ on G , as given by (35)) does not take more than one positive value. In
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other words, we can extract the cluster size without referring to the edge literals. The
precise statement is as follows:

Lemma 2.17 The function �̂lit of (34) can be factorized as �̂lit(σ ⊕ L) = Î lit(σ ⊕
L)F̂(σ ) for

F̂(σ ) ≡
⎧⎨
⎩
1 if σ ∈ {r0,r1,b0,b1}k,
ẑ(σ̂ j )

ϕ̄(σ j )
if σ ∈ �k with σ j ∈ {f}.

As a consequence, the function of (38) satisfies �̂(σ )λ = v̂(σ )F̂(σ )λ where v̂(σ ) ≡
E
lit[ Î lit(σ ⊕ L)].

Proof For σ ∈ �k abbreviate {σi } ≡ {σ1, . . . , σk}. If {σi } ⊆ {r0,r1,b0,b1}, then
the definition (34) implies �̂lit(σ⊕L) = Î lit(σ⊕L) for allL, so the factorization holds
with F̂(σ ) ≡ 1. If {σi } nontrivially intersects both {r0,r1} and {f}, then �̂lit(σ⊕L) =
Î lit(σ ⊕ L) = 0 for all L, so we can set F̂(σ ) arbitrarily. It remains to consider the
case where {σi } nontrivially intersects {f} but does not intersect {r0,r1}. Recalling
the discussion around (33), this means that τ̇i ≡ τ̇ (σi ) ∈ Ṁ \{�} is well-defined for
all i—if σi ∈ {f} then τ̇i = σ̇i ∈ Ṁ \{0,1, �}, and if σi = bx then τ̇i = x ∈ {0,1}.
Following (23), given any L ∈ {0,1}k , let us define τ̂L,i ≡ Li ⊕ T̂ ((τ̇ j ⊕ L j ) j �=i ). If
Î lit(σ ⊕ L) = 1, then it follows from (25), (28), and (34) that

�̂lit(σ ⊕ L) = ϕ̂lit(τ̇ ⊕ L) =
∑

x∈{0,1}k
Inae(x ⊕ L)

k∏
j=1
[ṁ(τ̇ j )](x j )

= ẑ(τ̂L,i )
∑
xi

[ṁ(τ̇i )](xi ) · [m̂(τ̂L,i )](xi ) = ẑ(τ̂L,i )

ϕ̄(τ̇i , τ̂L,i )
. (39)

We will have Î lit(σ ⊕ L) = 1 if and only if it holds for all 1 ≤ i ≤ k that τ̂L,i is
compatible with σi , in the sense that S(τ̇i , τ̂L,i ) = σi . In particular, if σi ∈ {f} (and we
assumed σ has at least one such entry), we must have (τ̇i , τ̂L,i ) = (σ̇i , σ̂i ). It follows
that for any σ ∈ �k having at least one entry in {f}, we can define F̂(σ ) ≡ ẑ(σ̂i )/ϕ̄(σi )
for any i where σi ∈ {f}. This completes the proof. ��
Corollary 2.18 On a bipartite graph G = (V , F, E), suppose σ ∈ �E satisfies
İ (σ δv) = 1 for all v ∈ V . Then, for G = (G,L), it follows from (35) that

wlit
G (σ ) =

{∏
a∈F

Î lit((σ ⊕ L)δa)

}
WG(σ ) , WG(σ ) ≡

∏
v∈V
�̇(σ δv)

∏
a∈F

F̂(σ δa)
∏
e∈E
�̄(σe) .

Combining with (38) gives, with v̂ as defined by Lemma 2.17,

wG(σ )
λ = pG(σ )WG(σ )

λ , pG(σ ) ≡ E

[∏
a∈F

Î lit((σ ⊕ L)δa)

∣∣∣∣G
]
=
∏
a∈F
v̂(σ δa) .
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Proof Immediate consequence of Lemma 2.17. ��

In the notation of Definition 2.16, the conditional first moment E(Zλ,T |,G) is the
partition function of the factor model with specification (�̇, �̂, �̄)λ restricted to the
alphabet�T . Similarly, the conditional second moment E[(Zλ,T )2 |G] is the partition
function of the factor model on the alphabet (�T )

2 with specification (�̇2, �̂2, �̄2)
λ,

where �̇2 ≡ �̇⊗ �̇, �̄2 ≡ �̄⊗ �̄, and for any σ ≡ (σ 1, σ 2) ∈ �2k we have

�̂2(σ ) ≡
(

E
lit
[
�̂lit(σ 1 ⊕ L)λ�̂lit(σ 2 ⊕ L)λ

])1/λ

= v̂2(σ )1/λ(F̂ ⊗ F̂)(σ ) ,

for v̂2(σ ) ≡ E
lit[ Î lit(σ 1 ⊕ L) Î lit(σ 1 ⊕ L)] (by Corollary 2.18). We emphasize that

�̂, �̂2 both depend on λ, although we suppress it from the notation. Moreover, �̂2 �=
�̂ ⊗ �̂ since σ 1 and σ 2 are coupled through their interaction with the same literals
L ∈ {0,1}k . Lastly, we have written σ in the first moment and σ ≡ (σ 1, σ 2) in the
secondmoment—this is a deliberate abuse of notation, which allows us to treat the two
cases in a unified manner. To distinguish the cases we shall refer to the “first-moment”
or “single-copy” model, versus the “second-moment” or “pair” model. We turn next
to the analysis of these models.

3 Proof outline

Having formally set upour combinatorialmodel of nae- sat solution clusters (Sect. 2),
we now give a more detailed outline for the (first and second) moment calculation that
proves the lower bound of Theorem 1. (As we mentioned before, the upper bound of
Theorem 1 is proved by an interpolation argument which builds on prior results in spin
glass theory [12,26,43]. It does not involve the combinatorial model or the moment
method, and is deferred to “Appendix E”.)

3.1 Empirical measures andmoments

We use standard multi-index notations in what follows—in particular, for any ordered
sequence z = (z1, . . . , zl) of nonnegative integers summing to n, we denote

(
n

z

)
≡ n!

/ l∏
i=1

zi ! .

If π is any nonnegative measure on a discrete space, writeH(π) = −〈π, ln π〉 for its
Shannon entropy. It follows from Stirling’s formula that for any fixed π , in the limit
n →∞ we have

(
n

nπ

)
� exp{nH(π)}

n(| suppπ |−1)/2
.
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On a bipartite graph G, we will summarize colorings σ according to some “local
statistics,” as follow:

Definition 3.1 (empirical measures) Given a bipartite graph G = (V , F, E) and σ ∈
�E , define

Ḣ(σ̇ ) = |{v ∈ V : σ δv = σ̇ }|/|V | for σ̇ ∈ �d ,

Ĥ(σ̂ ) = |{a ∈ F : σ δa = σ̂ }|/|F | for σ̂ ∈ �k,

H̄(σ ) = |{e ∈ E : σe = σ }|/|E | for σ ∈ �;

The triple H ≡ H(G, σ ) ≡ (Ḣ , Ĥ , H̄) is the empirical measure of σ on G.

Recall from (38) that wG(σ )
λ is the contribution to E(Zλ |G) from σ ∈ �E . We

saw in Corollary 2.18 that wG(σ )
λ = pG(σ )WG(σ )

λ where pG(σ ) is the probability
(conditional on G) that σ is a valid coloring on (G,L); and WG(σ ) is the size of the
cluster encoded if σ is valid. Now all these quantities can be expressed solely in terms
of H = H(G, σ ): we have pG(σ ) = exp(nv(H)) and WG(σ ) = exp(ns(H)) where

v(H) ≡ (d/k)〈ln v̂, Ĥ〉 = (d/k)
∑
σ∈�k

Ĥ(σ ) ln v̂(σ ) ,

s(H) ≡ 〈ln �̇, Ḣ〉 + (d/k)〈ln F̂, Ĥ〉 + d〈ln �̄, H̄〉 .

GivenG = (G,L), let Zλ,T (H) be the contribution to Zλ,T from colorings σ ∈ (�T )
E

such that H(G, σ ) = H . In what follows we will often suppress the dependence on λ
and T , and write simply Z ≡ Zλ,T .

Definition 3.2 (simplex) For d, k, T fixed, the simplex of empirical measures is the
space � ≡ �(T ) of triples H ≡ (Ḣ , Ĥ , H̄) satisfyng the following conditions: Ḣ
is a probability measure supported within the set of σ ∈ (�T )

d such that İ (σ ) = 1;
Ĥ is a probability measure supported within the set of σ ∈ (�T )

k such that v̂(σ ) is
positive; and both Ḣ and Ĥ must have marginal H̄ , that is,

1

d

∑
σ∈�d

Ḣ(σ )
d∑

i=1
1{σi = σ } = H̄(σ ) = 1

k

∑
σ∈�k

Ĥ(σ )
k∑
j=1

1{σ j = σ } (40)

for all σ ∈ �. It follows that H̄ is a probability measure supported on �T .

It follows fromCorollary 2.18 that ifE is expectation over a (d, k)-regular nae- sat
instance on n variables, then EZ(H) is positive if and only if H ∈ � and (nḢ ,mĤ)
is integer-valued. For such H , it follows from the definition of the random regular
nae- sat graph that

EZ(H) =
[{(

n

nḢ

)(
m

mĤ

)/(
nd

nd H̄

)}
exp{nv(H)}

]
· exp{nλs(H)} . (41)
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In (41), the first factor (in square brackets) is the expected number EZλ=0,T of valid
colorings with empirical profile H . The remaining factor exp{nλs(H)} is explained
by the fact that any such coloring encodes a cluster of size exp{ns(H)}. By Stirling’s
formula, in the limit n →∞ (with T fixed),

EZλ=0,T � exp{n[H(Ḣ)+ (d/k)H(Ĥ)− dH(H̄)+ v(H)]}
n℘(H)/2

≡ exp{n�(H)}
n℘(H)/2

where ℘(H) ≡ | supp Ḣ |+ | supp Ĥ |− | supp H̄ |−1, and the exponential rate �(H)
is a formal analogue of the “cluster complexity” function �(s) appearing in (4). In
analogy with (6) we let

F ≡ Fλ,T ≡ �(H)+ λs(H) . (42)

Then altogether the first moment can be estimated as

EZ(H) �
(
exp{n�(H)}
n℘(H)/2

)
exp{nλs(H)} = exp{nF(H)}

n℘(H)/2
. (43)

Note that � hides a dependence on T , since we keep T fixed throughout our moment
analysis.

3.2 Outline of first moment

For any subset of empirical measures H ⊆ �, we write σ ∈ H to indicate that
H(G, σ ) ∈ H, and write Z(H) ≡ Zλ,T (H) for the contribution to Zλ,T from colorings
σ ∈ H. It then follows from (43) that

EZ(H) =
∑
H∈H

EZ(H) = nO(1) exp
{
nmax{F(H) : H ∈ H}

}
,

for F as in (42). Thus, calculating the first moment EZ essentially reduces to the
problem of maximizing F over �. The physics theory suggests that F is uniquely
maximized at a point H� ∈ �which is given explicitly in terms of a replica symmetric
fixed point for the λ-tilted T -coloring model. (Recall from §1.5 that in the original
nae- sat model, the replica symmetric fixed point was described by the measure
m = unif({0,1}). In the coloring model, with spins σ ≡ (σ̇ , σ̂ ) ∈ �T , the replica
symmetric fixed point will be characterized by ameasure q̇ on the space�T of possible
values for σ̇ .)

There are several obstacles to the rigorous moment computation. From a physics
perspective, the replica symmetric fixed point of the λ-tilted coloring model at T = ∞
is equivalent to the fixed point described by Proposition 1.2, which was used to define
the 1rsb prediction (12). Mathematically, however, we work with T finite so that �

has finite dimension and ℘(H) is defined. Therefore we need to explicitly construct
a replica symmetric fixed point at finite T , and use it to define H� = Hλ,T ∈ �
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(Definition 5.6 below). We must then take T → ∞ and show that the limit matches
the fixed point of Proposition 1.2, so that F(H�) = Fλ,T (Hλ,T ) converges as T →∞
the 1rsb prediction (12). The construction of the fixed point at finite T is stated in
Proposition 5.5 below, and proved in “Appendix A”. The correspondence with (12) in
the T = ∞ limit is stated in Proposition 3.13 below, and proved in “Appendix B”.

A more difficult problem is to show that F is in fact maximized at H�. The function
F is generally not convex, and must be optimized over a space � whose dimension
grows with d, k, T . Moreover, an analogous but even more difficult optimization must
be solved to compute the second moment E(Z2). The main part of this analysis is
carried out in Sects. 4 and 5. In the remainder of this sectionwemake some preparatory
calculations and explain how the pieces will be fit together to prove the main result
Theorem 1. Recall from Remark 1.1 that we can restrict consideration to α satisfying
(3). In this regime, wemake a priori estimates to show that the optimal H satisfy some
basic restrictions. Abbreviate {r} ≡ {r0,r1}, recall {f} ≡ �\{r0,r1,b0,b1}, and
let

N◦ ≡
{
H ∈ � : max{H̄(f), H̄(r)} ≤ 7

2k

}
,

N =
{
H ∈ N◦ : ‖H − H�‖ ≤ 1

n1/3

}
⊆ N◦ , (44)

where ‖·‖ denotes the 	1 norm throughout this paper. We next show that empirical
measures H /∈ N◦ give a negligible contribution to the first moment:

Lemma 3.3 For k ≥ k0, α ≡ d/k satisfying (3), and 0 ≤ λ ≤ 1, EZ(�\N◦) is
exponentially small in n.

Proof Let Zf count the nae- sat solutions x ∈ {0,1}V which map—via coarsening
and the bijection (18)—to warning configurations y with more than 7/2k fraction
of edges e such that ẏe = ŷe = f. Similarly, let Zr count nae- sat solutions x
mapping to warning configurations y with more than 7/2k fraction of edges e such
that ŷe ∈ {0,1}. It follows from Proposition 2.15 that for any 0 ≤ λ ≤ 1 we have
Z(�\N◦) ≤ Zf + Zr. For α satisfying (3), EZf is exponentially small in n by [25,
Propn. 2.2]. As for Zr, let us say that an edge e ∈ E is blocked under x ∈ {0,1}V if
Le ⊕ xv(e) = 1⊕ Le′ ⊕ xv(e′) for all e′ ∈ δa(e)\e. Note that if x maps to y, the only
possibility for ye ∈ {r0,r1} is that e was blocked under x. (The converse need not
hold.) If we condition on x being a valid nae- sat solution, then each clause contains
a blocking edge independently with chance θ = 2k/(2k − 2); note also that a clause
can contain at most one blocking edge. It follows that

EZr ≤ (EZ)P

(
Bin(m, θ) ≥ 7nd/2k

)
.

This is exponentially small in n by a Chernoff bound together with the trivial bound
EZ ≤ 2n . ��
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We assume throughout what follows that k ≥ k0, α satisfies (3), and 0 ≤ λ ≤ 1. In
this regime, Lemma 3.3 tells us that max{F(H) : H /∈ N◦} is negative. On the other
hand, we shall assume that the global maximum of F is nonnegative, since otherwise
EZ is exponentially small in n and there is nothing to prove. From this we have that
any maximizer H of F must lie in N◦. In Sects. 4 and 5 we develop a more refined
analysis to solve the optimization problem for F restricted to N◦:

Proposition 3.4 (proved in Sect. 5) Assuming the globalmaximumof F is nonnegative,
the unique maximizer of F is an explicitly characterized point H� in the interior ofN◦.
Moreover, there is a positive constant ε = ε(k, λ, T ) so that for all ‖H − H�‖ ≤ ε
we have F(H) ≤ F(H�)− ε‖H − H�‖2.

A consequence of the above is that we can compute the first moment of Z up
to constant factors. In the following, let ℘̇ ≡ ℘̇(T ) count the number of d-tuples
σ ∈ (�T )

d for which İ (σ ) > 0. Let ℘̂ ≡ ℘̂(T ) count the number of k-tuples
σ ∈ (�T )

k for which v̂(σ ) > 0. Let ℘̄ ≡ |�T |, and denote ℘ ≡ ℘̇ + ℘̂ − ℘̄ − 1.
Recall from (44) the definition of N.

Corollary 3.5 The coloring partition function Z ≡ Zλ,T has first moment EZ �
exp{nF(H�)}. Moreover the expectation is dominated byN in the sense thatEZ(N) =
(1− o(1))EZ.

Proof Define the ℘̄ × ℘̇ matrix Ṁ with entries

Ṁ(σ ′, σ ) ≡
d∑

i=1
1{σi = σ ′} , σ ′ ∈ �T and σ ∈ (�T )

d ∩ (supp İ ) .

Similarly define the ℘̄ × ℘̂ matrix M̂ with entries

M̂(σ ′, σ ) =
k∑

i=1
1{σi = σ ′} , σ ′ ∈ �T and σ ∈ (�T )

k ∩ (supp v̂) .

Lastly define the ℘̄ × (℘̇ + ℘̂) matrix M ≡ (Ṁ −M̂
)
. It follows from the discussion

after Definition 3.2 that EZ(H) is positive if and only if (i) Ḣ and Ĥ are nonnegative;
(ii) 〈1, Ḣ 〉 = 1; (iii) (k Ḣ , d Ĥ) lies in the kernel of M ; and (iv) (nḢ ,mĤ) is integer-
valued. Conditions (i)–(iii) are equivalent to H ∈ �. One can verify that the matrix M
is of full rank, from which it follows that the space of vectors (Ḣ , Ĥ) satisfying the
conditions (ii) and (iii) has dimension ℘. In Lemma 4.4 we will show that M satisfies
a stronger condition, which implies that the space of (Ḣ , Ĥ) satisfying (ii)–(iv) is
an affine transformation of (n−1Z)℘ , where the coefficients of the transformation are
uniformly bounded. Then, by substituting the result of Proposition 3.4 in to (43), we
conclude

EZ �
∑

z∈(n−1Z)℘

exp{n[F(H�)−�(‖z‖2)]}
n℘/2

� exp{nF(H�)}
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Empirical measures H /∈ N correspond to vectors z ∈ (n−1Z)℘ with norm ‖z‖ ≥
n−1/3. These give a negligible contribution to the above sum which proves the second
claim EZ(N) = (1− o(1))EZ. ��

3.3 Outline of secondmoment

By a similar calculation as above, calculating the secondmomentE(Z2) reduces to the
problem of maximizing a function F2 ≡ F2,λ,T over a space �2 of pair empirical
measures. In fact we will calculate the second moment not of Z itself, but rather of a
more restricted random variable S ≤ Z, defined below. This leads to a more tractable
analysis, as we now explain.

Concretely, �2 is the space of triples H = (Ḣ , Ĥ , H̄) satisfying the following
conditions: Ḣ is a probability measure on (�T )

2d ∩ (supp İ )2, Ĥ is a probability
measure on (�T )

2d ∩ (supp v̂2), and H̄ is a probability measure on (�T )
2 which can

be obtained from both Ḣ and Ĥ as the edge marginal (40). Repeating the derivation
of (43) in the second moment setting, we have the following. For any H ∈ �2, the
expected number of valid coloring pairs (σ , σ ′) ∈ (�T )

2E of type H is

E(Zλ=0,T )2(H) � exp{n[H(Ḣ)+ (d/k)H(Ĥ)− dH(H̄)+ v2(H)]}
n℘(H)/2

≡ exp{n�2(H)}
n℘(H)/2

Given a pair empirical measure H ∈ �2, take the marginal on the first element
of the pair to define the first-copy marginal H1 ∈ �; define likewise the second-
copy marginal H2 ∈ �. The contribution to Z2 from any valid pair is given by
exp{nλs2(H)} where s2(H) ≡ s(H1)+ s(H2). Thus F2 is given explicitly by

EZ2(H) � exp{nF2(H)}
n℘(H)/2

≡ exp{n[�2(H)+ λs2(H)]}
n℘(H)/2

(45)

(cf. (42) and (43)). In view of Corollary 3.5, it would suffice for our purposes to
calculate the second moment of Z(N) rather than Z, which amounts to maximizing
F2 on the restricted set

N2 ≡
{
H ∈ �2 : H1 ∈ N and H2 ∈ N

}
.

Following [18] we can simplify the analysis by a further restriction, as follows:

Definition 3.6 (separability) If σ , σ ′ are valid colorings on G , define their separation
sep(œ,œ′) to be the fraction of variables where their corresponding frozen configu-
rations (from Lemmas 2.7 and 2.12) differ. Write σ ′ � σ if the frozen configuration
of σ ′ has more free variables than that of σ . We say that a coloring is separable if
σ ∈ N (recall this means H(G, σ ) ∈ N) and

|{σ ′ ∈ N : σ ′ � σ and sep(œ,œ′) /∈ Ise}| ≤ exp{(ln n)4},
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where Ise ≡ [(1 − k4/2k/2)/2, (1 + k4/2k/2)/2] and it is implicit that both σ , σ ′
must both be valid on G . Let S ≡ Sλ,T be the contribution to Z(N) from separable
colorings.

Proposition 3.7 (proved in “AppendixD”)The firstmoment is dominated by separable
colorings in the sense that ES = (1− o(1))EZ(N).

We will apply the second moment method to lower bound S; the result will follow
since S ≤ Z(N) ≤ Z. For H ∈ �2, all pairs (σ , σ ′) ∈ H must have the same
separation sep(œ,œ′), which we can thus denote as sep(H). Partition N2 into Nse ≡
{H ∈ N2 : sep(H) ∈ Ise} (the near-uncorrelated regime) and Nns ≡ N2\Nse (the
correlated regime). Denote the corresponding contributions to S2 by S2(Nse) and
S2(Nns).

Corollary 3.8 For separable colorings, the second moment contribution from the cor-
related regime Nns is bounded by E[S2(Nns)] ≤ exp{nλs(H�)+ o(n)}ES.

Proof By the symmetry between the roles ofσ andσ ′, and the definition of separability,
we have

S2(Nns) ≤ 2
∑

(σ ,σ ′)∈Nns,
σ separable

1{σ ′ � σ }wlit
G ,T (σ )

λwlit
G ,T (σ

′)λ

≤ exp{ns(H�)λ+ o(n)}S .

Taking expectations gives the claim. ��
We then conclude the secondmoment calculation by computingE(Z2(Nse)), which

is an upper bound on E(S2(Nse)). Therefore we must maximize the function F2 on
Nse. As in the first moment, the physics theory suggests that the unique maximizer of
F2 onNse is given by a specific pair empirical measure H• which is defined in terms of
H�. In the nae- satmodel there is a small complication in this definition: wewill have
Ḣ• = Ḣ� ⊗ Ḣ� and H̄• = H̄� ⊗ H̄�, but Ĥ• �= Ĥ� ⊗ Ĥ� because the first and second
copies interact via the edge literals. It therefore requires a small calculation to argue
that F2(H•) = 2F2(H�). We address this by giving a simple sufficient condition for
H ∈ �2 to satisfy F2(H) = F(H1) + F(H2) where H j ∈ � are its single-copy
marginal.

Lemma 3.9 Consider H ∈ �2 with single-copy marginals H1, H2 ∈ �. Suppose
there are functions g1, g2 which are invariant to literals in the sense that g j (σ j ) =
g j (σ j ⊕ L) for all σ j ∈ (�T )

k , L ∈ {0,1}k , and

Ĥ j (σ j ) = v̂(σ j )g j (σ ) , Ĥ(σ 1, σ 2) = v̂2(σ 1, σ 2)
∏
j=1,2

g1(σ 1) .

If in addition Ḣ = Ḣ1 ⊗ Ḣ2 and H̄ = H̄1 ⊗ H̄2, then F2(H) = F(H1)+ F(H2).
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Proof Let K j (σ j ,L) ≡ Î lit(σ ⊕ L)g j (σ )/2k . This defines a probability measure on
(�T )

k × {0,1}k where the marginal on (�T )
k is Ĥ j , and the marginal on {0,1}k is

uniform by the assumption on g j . It follows that K j (σ j |L) = Î lit(σ ⊕ L)g j (σ ) and
Ĥ j (σ j ) = E

lit[K j (σ j |L)]. Let (X1, X2, L) be a random variable with law

P((X1, X2, L) = (σ 1, σ 2,L)) = 1

2k
∏
j=1,2

K j (σ j |L) .

Themarginal law of L is uniform on {0,1}k , and the X j are conditionally independent
given L . The marginal law of (X1, X2) is Ĥ , and the marginal law of X j is Ĥ j . The
law of L conditional on X j is uniform over 2k v̂(X j ) possibilities, whereas the law of
L conditional on (X1, X2) is uniform over 2k v̂2(X1, X2) possibilities. It follows that

H(Ĥ) = H(X1, X2) = H(L)−H(L|X1, X2)+
∑
j=1,2

H(X j |L)

= −〈Ĥ , ln v̂2〉 +
∑
j=1,2

H(X j |L)

= −〈Ĥ , ln v̂2〉 +
∑
j=1,2

[H(Ĥ j )+ 〈Ĥ j , ln v̂〉] .

Rearranging gives �2(H) = �(H1)+�(H2), and the result follows. ��
It will be clear from the explicit definition that the measure H� of Proposition 3.4

can be expressed as H�(σ ) = v̂(σ )g�(σ ) where g� is invariant to literals. Let H• =
(Ḣ•, Ĥ•, H̄•) where

Ĥ•(σ 1, σ 2) ≡ v̂2(σ 1, σ 2)
∏
j=1,2

g�(σ
j ) ,

Ḣ• = Ḣ� ⊗ Ḣ�, and H̄• = H̄� ⊗ H̄�. The following is the second moment analogue
of Proposition 3.4.

Proposition 3.10 (proved in Section 5) The unique maximizer of F2 in Nse is H•.
Moreover, there is a positive constant ε = ε(k, λ, T ) so that for ‖H − H•‖ ≤ ε we
have F2(H) ≤ F2(H•)− ε‖H − H•‖2.
Corollary 3.11 For the coloring model, the secondmoment contribution from the near-
uncorrelated regime Nse is given by the estimate E[Z2(Nse)] � exp{2nF(H�)}.
Proof Recall fromCorollary 3.5 the definition of (℘̇, ℘̂, ℘̄) for the single-copymodel,
and define (℘̇2, ℘̂2, ℘̄2) analogously for the pairmodel. Let℘2 ≡ ℘̇2+℘̂2−℘̄2−1. For
any H1, H2 ∈ N, let Nse,H1,H2 denote the set of H ∈ Nse with single-copy marginals
H1, H2. This is a space of dimension ℘2 − 2℘, and it follows from Proposition 3.10
and Lemma 4.4 that

E[Z2(Nse,H1,H2)] � exp{n[F2(H•)−�(‖(H1, H2)− (H�, H�)‖2)]}
n℘

.
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Summing over H1, H2 ∈ N then gives E[Z2(Nse)] � exp{nF2(H•)}, which in turn
equals exp{2nF(H�)} by applying Lemma 3.9. ��

3.4 Conclusion of main result

We now explain that the main theorem follows. We continue to assume, as we have
done throughout the section, that k ≥ k0, α satisfies (3), and 0 ≤ λ ≤ 1. The measure
H� of Proposition 3.4 depends on λ and T , and we now make this explicit by writing
H� ≡ Hλ,T .

Corollary 3.12 For any 0 ≤ λ ≤ 1 and T finite such that �(Hλ,T ) is positive, the
separable contribution to Zλ,T is well-concentrated about its mean:

lim
ε↓0 lim inf

n→∞ P

(
ε(ES) ≤ S ≤ ES

ε

)
= 1 .

Proof The upper bound follows trivially from Markov’s inequality, so the task is
to show the lower bound. In the first moment, we have ES � exp{nF(H�)} by
Corollary 3.5 and Proposition 3.7. In the second moment, since S ≤ Z, we have
E(S2) ≤ E[S2(Nns)] + E[Z2(Nse)]. Combining with Corollaries 3.8 and 3.11 gives

E(S2)
(ES)2

≤ exp{nλs(H�)+ o(n)}
ES

+ O(1) � exp{o(n)}
exp{n�(H�)} + O(1) ,

which immediately implies P(S ≥ δ(ES)) ≥ δ for some positive constant δ. This
can be strengthened to the asserted concentration result by an easy adaptation of the
method described in [25, Sec. 6]. ��
Proposition 3.13 (proved in “Appendix B”) For 0 ≤ λ ≤ 1 and Hλ,T = H� ∈ �

as given by Proposition 3.4, the triple (s(Hλ,T ),�(Hλ,T ), F(Hλ,T )) converges as
T →∞ to (sλ,�(sλ),F(λ)) from Definition 1.3.

Proof of Theorem 1 In “Appendix E” we prove the upper bound, f(α) ≤ f1rsb(α) for
all 0 ≤ α < αsat. For any λ, T such that �(Hλ,T ) is positive, Corollary 3.12 gives

lim inf
n→∞ (Zλ,T (N))

1/n ≥ lim
n→∞(Sλ,T )

1/n = exp{F(Hλ,T )} = exp{�(Hλ,T )+ λs(Hλ,T )} .

On the other hand, Zλ,T (N) consists entirely of clusters of size exp{ns(Hλ,T )+o(n)}.
Therefore, if �(Hλ,T ) is positive, it must be that f(α) ≥ s(Hλ,T ). The lower bound
f(α) ≥ f1rsb(α) then follows by appealing to Proposition 3.13, so the theorem is
proved. ��

The next two sections are devoted to the optimization of F in N◦, and of F2 in
Nse. In Sect. 4 we show that the optimization of F and F2 over small regions can be
reduced to an optimization problem on trees. In Sect. 5 we solve the tree optimization
problem by connecting it to the analysis of the bp recursion for the coloring model.
This allows us to prove Propositions 3.4 and 3.11, thereby completing the proof of the
main result Theorem 1.
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4 Reduction to tree optimization by local updates

In this sectionwe prove the key reduction that ultimately allows us to compute the (first
and second) moments of Z ≡ Zλ,T (Propositions 3.4 and 3.10). As we have already
seen, the calculation reduces to the optimization of functions F and F2 from (42) and
(45). These functions are generally not convex over the entirety of their domains� and
�2, but we expect them to be convex in neighborhoods around their maximizers H�
and H• (as given in Definition 5.6 below). With this in mind, we rely on other means
(a priori estimates and separability) to restrict the domains—from � to N◦ in the first
moment (Lemma 3.3), and from �2 to Nse in the second moment (Corollary 3.8).
Within these restricted regions, we will show that F and F2 can be optimized by a
local update procedure that reduces the (nonconvex) graph optimization to a (convex)
tree optimization.

4.1 Local update

Webeginwith an overview. Throughout this section, we assume 1 ≤ T <∞. Suppose
σ is a T -coloring on G . Sample from G a subset of variables Y , and letN ≡ N (Y )
be the subgraph of G induced by Y , together with the clauses neighboring Y and their
incident half-edges. The half-edges at the boundary of N will be referred to as the
leaf edges of N .

Form a modified instance G ′ (see Fig. 4) by resampling the edge literals on N as
well as the matching betweenN and G \N . In both G and G ′, we will say cut edges
to refer to the edges e = (av) where a is a clause in N and v is a variable in the
complement ofN ; these are the edges cut by the dashed lines in Fig. 4. According to
our terminology, the leaf edges ofN are the half-edges that lie just above the dashed
lines, so each leaf edge ofN is half of a cut edge. The coloring is updated accordingly
to produce η, a T -coloring on G ′ which agrees as much as possible with σ on G \N :
in particular, σ and η will agree in the variable-to-clause colors on the cut edges. We
will define the procedure so that it gives a Markov chain π on triples (G ,Y , σ ) with
reversing measure given by μ(G ,Y , σ ) = P(G )P(Y |G )wlit

G (σ )
λ. (Note that μ is not

normalized to be a probability measure.)
Reversibility implies that for any subset A of the state space, if B is the set of states

reachable in one step from A, then

μ(A) =
∑
a∈A

∑
b∈B
μ(a)ß(a, b) =

∑
a∈A

∑
b∈B

¯(b)ß(b,a) =
∑
b∈B

¯(b)
∑
a∈A

ß(b,a)

=
∑
b∈B
μ(b)ß(b,A) ≤

{∑
b∈B

¯(b)

}{
max
b∈B

ß(b,A)

}
= ¯(B)max

b∈B
ß(b,A) . (46)

We will design the sampling procedure to ensure that (i) the vertices in Y are far from
one another and from any short cycles, and (ii) the empirical measure H sm of σ onN
is close to H sy, a certain symmetrization of the overall empirical measure H(G, σ ).
Then EZ(H) ≈ μ(A) where A is the set of states (G ,Y , σ ) with H sm ≈ H sy. The
update produces a state (G ′,Y , η) ∈ B with possibly different H sm, but with the same
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(a)

(b)

Fig. 4 One step of the local update procedure. In this figure, open circles indicate variable factors �̇, solid
squares indicate clause factors �̂lit, and each variable-clause edge is bisected by a small dot indicating the
edge factor �̄. The initial state (top panel) is a triple (G , Y , σ ) where G is an nae- sat instance, Y is a
subset of variables (blue circles), and σ is a coloring on G (not shown). Let N ≡ N (Y ) be the subgraph
of G induced by the variables in Y , together with the clausees neighboring Y and their incident half-edges
(shown in blue, above the dashed line). The local update procedure resamples the edge literals on N , as
well as the matching between N and G \N , to produce a modified instance G ′. The coloring is updated
accordingly so that we arrive at the new state (G ′, Y , η) (bottom panel). In both G and G ′, the edges cut by
the dashed lines will be referred to as cut edges. The half-edges just above the dashed lines will be referred
to as the leaf edges of N (color figure online)

empirical measure ḣtr(H sm) of variable-to-clause colors σ̇ on the leaf edges of N .
Bounding π(b,A) reduces to calculating the weight of configurations on N with
empirical measure H sm ≈ H sy, relative to the weight of all configurations onN with
empirical measure ḣtr(H sm) ≈ ḣtr(H sy) on the leaf edges of N . Because N is a
disjoint union of trees, this reduces to a convex optimization problem which lends
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itself much more readily to analysis. The purpose of the current section is to formalize
this graphs-to-trees reduction. We begin with the precise definitions of H sy, H sm and
ḣtr(H sm). Recall our notation σ ≡ (σ̇ , σ̂ ) ∈ � from the discussion following (33). As
σ goes over all of �T , write �̇T for the possible values of σ̇ , and �̂T for the possible
values of σ̂ . Let �̇ ≡ �̇∞ and �̂ ≡ �̂∞, so

�̇ ≡ {r0,r1,b0,b1} ∪ (Ṁ \{0,1, �}) ,
�̂ ≡ {r0,r1,b0,b1} ∪ (M̂ \{0,1, �})

Definition 4.1 (sample empirical measures) Given an nae- sat instance G ≡ (G,L),
a T -coloring σ on G , and a nonempty subset of variables Y ⊆ V , we record the
local statistics of “σ around Y ” as follows. Let Ḣ sm be the empirical measure of
variable-incident colorings in Y : for η ∈ (�T )

d ,

Ḣ sm(η) ≡ 1

|Y |
∑
v∈Y

1{σ δv = η} .

Let H̄ sm be the empirical measure of colors on the edges incident to Y : for η ∈ �T ,

H̄ sm(η) ≡ 1

|Y |d
∑
v∈Y

∑
e∈δv

1{σe = η} .

For η ∈ (�T )
k and 1 ≤ j ≤ k define the rotation η( j) ≡ (η j , . . . , ηk, η1, . . . , η j−1).

For any v ∈ Y and e ∈ δv, let j(e) be the index of e in δa(e). For η ∈ (�T )
k let

Ĥ sm(η) ≡ 1

|Y |d
∑
v∈Y

∑
e∈δv

1{(σ δa(e)) j(e) = η} .

Then H sm ≡ (Ḣ sm, Ĥ sm, H̄ sm) is the sample empirical measure for the state
(G ,Y , σ ); we shall write this hereafter as H sm = H sm(G,Y , σ ). Note that H sm

lies in the space �sm which is defined similarly to � but with condition (40) replaced
by

1

d

∑
σ∈�d

Ḣ sm(σ )

d∑
i=1

1{σi = τ } = H̄ sm(τ ) =
∑
σ∈�k

Ĥ sm(σ )1{σ1 = τ } . (47)

We emphasize that (40) and (47) differ on the right-hand side. However, if we have
H = (Ḣ , Ĥ , H̄) ∈ � such that Ĥ is invariant under rotation of the indices 1 ≤ j ≤ k,
then H ∈ �sm as well. With this in mind, for H ∈ �we define H sy ≡ (Ḣ , Ĥ sy, H̄) ∈
�sm where Ĥ sy is the average over all k rotations of Ĥ . Later we will sample Y such
that H sm falls very close to H sy with high probability. Lastly, for any H sm ∈ �sm we

123



The number of solutions for random regular NAE-SAT 41

let ḣtr(H sm) be the measure on �̇T given by

[ḣtr(H sm)](η̇) ≡ 1

k − 1

∑
σ∈(�T )

k

k∑
j=2

1{σ̇ j = η̇}Ĥ sm(σ ) .

Thus ḣtr(H sm) represents the empirical measure of spins σ̇ on the leaf edges of N ,
i.e., the edges cut by the dashed lines in Fig. 4.

For H ∈ �, recall from (43) that F(H) = �(H) + λs(H) where �(H) is the
cluster complexity and s(H) is (the exponential rate of) the cluster size. The tree
analogue of �(H) is �tr(H sm) where

�tr(H) ≡ H(Ḣ)+ dH(Ĥ)− dH(H̄)+ v(H) (48)

— the only difference being that � has coefficient α = d/k on the clause entropy
termH(Ĥ), while�tr has coefficient d. As we see below, this occurs because the ratio
of variables to clauses to edges is 1 : d : d for the disjoint union of trees N , versus
1 : α : d for the full graph G . We will also see that �tr is always concave, though �

need not be. Likewise, the tree analogue of s(H) is str(H sm) where

str(H) ≡ 〈ln �̇, Ḣ〉 + d〈ln F̂, Ĥ〉 + d〈ln �̄, H̄〉 .

The tree analogue of F(H) is �(H sm) where

�(H) ≡ �tr(H)+ λstr(H) . (49)

Recall Definition 4.1: given (G ,Y , σ )with sample empirical measure H sm, the empir-
ical measure of spins σ̇ on the leaf edges ofN (Y ) is given by ḣtr = ḣtr(H sm). Then,
for any probability measure ḣ on �̇T , we let

�op(ḣ) ≡ sup{�(H) : H ∈ �sm with ḣtr(H) = ḣ} ,

where we emphasize that the supremum is taken over�sm rather than�. For H ∈ �sm

we define
�(H) ≡ �λ,T (H) ≡ �op(ḣtr(H))−�(H) . (50)

The interpretation of �, formalized below, is that for any H ∈ �, if A is the set of
states with H sm ≈ H sy and B is the set of states reachable in one step of the chain
from A, then max{π(b,A) : b ∈ B} is approximately exp{−|Y |�(H sy)}, where we
note that �(H sy) ≥ 0 since � is nonnegative on all of �sm, and H sy ∈ � ∩ �sm.
Formally, we have the following bound:

Theorem 4.2 For ε small enough (depending only on d, k, T ), it holds for all H ∈ �

that

F(H) ≤ max
{
F(H ′) : ‖H ′ − H‖ ≤ ε(dk)2T

}
− ε�(Hsy) .
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(a) (b)

Fig. 5 Two types of directed treeT . In each case the root edge e is shown at the top, and the boundary δT
is highlighted in purple. For e ∈W, the unit-radius neighborhood of e in G \N typically looks like the left
panel (color figure online)

The analogous statement holds in the second moment with F2 = F2,λ,T and �2 =
�2,λ,T .

For the sake of exposition, we will give the proof of Theorem 4.2 for F only; the
assertion for F2 follows from the same argument with essentially no modifications.
The first task is to define theMarkov chain that was informally discussed above. There
are a few issues to be addressed: how to sampleY ensuring certain desirable properties;
how to resample the matching between N and G \N ; and how to produce a valid
coloring η on G ′ without changing the spins σ̇ on the cut edges. We address the last
issue next.

4.2 Tree updates

Recall that in the bipartite factor graph G = (V , F, E,L), each edge joins a variable
to a clause and is defined to have length one-half. For the discussion that follows, it
is useful to bisect each edge e ∈ E with an artificial vertex indicating the edge factor
�̄; these are shown as small dots in Fig. 4. Thus an edge e joining a ∈ F to v ∈ V
becomes two quarter-length edges, (ae) and (ev), where e now refers to the artificial
vertex. Given a coloring σ on the original graph, we obtain a coloring on the new
graph by simply duplicating the color on each edge, setting σae = σe = σev . We then
defineN (v) as the (5/8)-neighborhood of variable v, and defineN = N (Y ) as the
union of N (v) for all v ∈ Y : in the top panel of Fig. 4, N is the subgraph shown in
blue, above the dashed line.

Directly below the same dashed line, the small solid orange dots correspond to the
boundary edges, hereafter denotedW, of the cavity graph G∂ ≡ G \N . For e ∈W, let
T be its neighborhood in G \N of some radius 	 > T where 2	 is a positive integer.
Assuming e is not close to a short cycle,T is what we will call a directed tree rooted
at e. In this case we also call T a variable-to-clause tree since the root edge has no
incident clause; a clause-to-variable tree is similarly defined. We always visualize a
directed tree T as in Fig. 5, with the root edge e at the top, so that paths leaving the
root travel downwards. On an edge e = (av), the upward color is σ̇av if a lies above
v, and σ̂av if v lies above a. We let δT denote the boundary edges ofT , not including
the root edge.
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Suppose σ is a valid T -coloring of a directed tree T with root spin σe = σ , and
consider a new root spin η ∈ �T . If σ and η agree on the upward color of the root
edge, then there is a unique valid coloring

η = update(œ, ;T ) ∈ (¨T)E(T )

which has root spin η, and agrees with σ in all the upward colors. Indeed, the only
possibility for σ �= η is that both σ, η ∈ {f}. Then, recalling (23), the coloring
update(œ, ;T ) is uniquely defined by recursively applying the mappings Ṫ and T̂ ,
starting from the root and continuing downwards. Since we assumed that σ was a
valid T -coloring and η ∈ �T , it is easy to verify that the resulting η is also a valid
T -coloring, so the update procedure respects the restriction to �T . From now on we
assume all edge colors belong to �T .

Lemma 4.3 Suppose σ is a valid T -coloring of the directed tree T with root color σ ,
and η ∈ �T agrees with σ on the upward color of the root edge. If η = update(œ, ;T )
agrees with σ on the boundary δT , then wlit

T (σ ) = wlit
T (η).

Proof It follows from the construction that on any edge e in the tree, σe and ηe agree
on the upward color; moreover, if σe �= ηe then we must have σe, ηe ∈ {f}. For each
vertex x ∈ T , let e(x) denote the parent edge of x , that is, the unique edge of T
which lies above x . We then have

wlit
T (σ ) =

∏
e∈δT

�̄(σe)
∏

v∈V (T )

{
�̇(σ δv)�̄(σe(v))

} ∏
a∈F(T )

{
�̂lit((σ ⊕ L)δa)�̄(σe(a))

}
.

For a clause a in T with e(a) = e, if both σe, ηe ∈ {f} then it follows directly from
(39) that

�̂lit((σ ⊕ L)δa)�̄(σe) = ϕ̂lit((τ̇ ⊕ L)δa)ϕ̄(σe) = ẑ(σ̂e) = ẑ(η̂e) = �̂lit((η ⊕ L)δa)�̄(ηe) .

For a variable v in T with e(v) = e, if σe, ηe ∈ {f}, then a similar calculation as (39)
gives

�̇(σ δv)�̄(σe) = ϕ̇(σ̂ δv)ϕ̄(σe) = ż(σ̇e) = ż(η̇e) = �̇(ηδv)�̄(ηe) ,

where we used the fact that necessarily we have σ δv ∈ {f}d . To conclude, we recall
that σ and η agree on δT by assumption, so we have wlit

T (σ ) = wlit
T (η) as claimed.

��
We also use the directed tree as a device to prove the following lemma, which was

used in the proofs of Corollaries 3.5 and 3.11.

Lemma 4.4 Let Ṁ, M̂ be as defined in Corollary 3.5, and let Ṁ2, M̂2 be their ana-
logues in the pair model. For any σ, η ∈ � there exists an integer-valued vector
(Ḣ , Ĥ) so that

〈1, Ḣ〉 = 0 = 〈1, Ĥ〉 and Ṁ Ḣ − M̂ Ĥ = 1σ − 1η ,

123



44 A. Sly et al.

where 1 denotes the all-ones vector, and 1σ denotes the vector which is one in the σ
coordinate and zero elsewhere. The analogous statement holds for (Ṁ2, M̂2).

Proof We define a graph on �T by putting an edge between σ and η if there exist
valid colorings σ , η on some directed tree T which take values σ, η on the root edge,
but agree on the boundary edges δT . If σ, η are connected in this way, then taking

Ḣ(ρ) =
∑

v∈V (T )
1{σ δv = ρ} −

∑
v∈V (T )

1{η
δv
= ρ} , ρ ∈ (�T )

d

Ĥ(ρ) =
∑

a∈F(T )
1{σ δa = ρ} −

∑
a∈F(T )

1{η
δa
= ρ} , ρ ∈ (�T )

k .

gives Ṁ Ḣ − M̂ Ĥ = 1σ − 1η as required. It therefore suffices to show that the graph
we have defined on �T is connected (hence complete). First, if σ̇ = η̇, it is clear that
σ and η can be connected by colorings σ , η of some variable-to-clause tree T , with
η = update(œ, ;T ). Similarly, if σ̂ = η̂, then σ and η can be connected by a clause-
to-variable tree. This implies that {f} is connected. Next, if σ = rx and η = bx , then
they can be connected by a variable-to-clause tree rooted at edge e, containing a single
variable factor v = v(e), with σ δv\e identically equal to rx . If σ = bx and η = (τ̇ ,s)
for any τ̇ ∈ �̇\{r,b}, then they can be connected by a clause-to-variable tree rooted at
edge e, containing a single clause factor a = a(e), with any σ δa\e such that (σ⊕L)δa\e
contains both {b0,b1} entries. It follows that �T is indeed connected, which proves
the assertion concerning (Ṁ, M̂). The proof for (Ṁ2, M̂2) is very similar and we omit
the details. ��

4.3 Markov chain

We now define a Markov chain on tuples (G ,Y , σ ) where G is an nae- sat instance,
σ is a valid T -coloring on G , and Y ⊆ V is a subset of variables such that

the subgraphs B2T (v), for v ∈ Y , are mutually disjoint trees, (51)

where B2T (v) is to the 2T -neighborhood of v in G . Recall that N = N (Y ) is the
5
8 -neighborhood of Y ; we write N = (N,LN) where N is the graph without edge
literals. Write δN for the boundary of N, consisting of clause-incident edges that are
not incident to Y (just above the dashed line in Fig. 4). Write σN for a T -coloring on
N (including δN), and let

wlit
N(σN|LN) ≡ wlit

N (σN) ≡
∏
v∈Y

{
�̇(σ δv)

∏
e∈δv

{
�̂lit((σ ⊕ L)δa(e))�̄(σe)

}}
. (52)

On the other hand we have G \N ≡ G∂ ≡ (G∂ ,L∂ ) where G∂ ≡ (V∂ , F∂ , E∂ ), and
W denotes the boundary of G∂ (just below the dashed line in Fig. 4). Write σ∂ for a
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coloring on G∂ (including W), and let

wlit
∂ (σ ∂) ≡

∏
v∈V∂

�̇(σ δv)
∏
a∈F∂

�̂lit((σ ⊕ L)δa)
∏
e∈E∂

�̄(σe) .

Bymatching δN toW (along the dashed line in Fig. 4), the graphs G∂ andN combine
to form the original instance G . If σ is a valid coloring on G , then σ δN and σW must
agree, and we have

wlit
G (σ ) = wlit

∂ (σ ∂)w
lit
N(σN|LN) . (53)

Let ḣtr(σ δN) = ḣtr be the empirical measure of the spins (σ̇e)e∈δN. Given initial state
(G ,Y , σ ), we take one step of the Markov chain as follows:

1. Detach N from G . On N , sample a new assignment (L′N, ηN) from the proba-
bility measure

p((L′N, ηN) | (LN, σN)) =
1{ḣtr(η

δN
) = ḣtr}wlit

N(ηN
|L′N)λ

z(|Y |, ḣtr) (54)

where the denominator is the normalizing constant obtained by summing over all
possible (L′N, ηN).

2. Form the new graph G ′ by sampling a uniformly random matching of δN withW,
subject to the constraint that e ∈ W must be matched to e′ ∈ δN with σ̇e = η̇e′ .
The number of such matchings depends only on |Y | and ḣtr, so we denote it as
M(|Y |, ḣtr). For each matched pair (e, e′) where σ̂e �= η̂e′ , let T = T (e) be the
radius-2T neighborhood of e in the graph G∂ . Let

η
T
≡ update(œT , e;T )

and note that, since σ is a valid T -coloring, η
T

and σ
T

must agree at the boundary
of T . Finally, on the rest of G∂ outside the radius-2T neighborhood of W, we
simply take η and σ to be the same.

The state of theMarkov chain after one step is (G ′,Y , η)where η is a valid T -coloring
on G ′.

Lemma 4.5 Suppose we have a sampling mechanism for a random subset of variables
Y in G such that, whenever (G ,Y , σ ) and (G ′,Y , η) appear in the same orbit of the
Markov chain, we have

P(Y |G ) = P(Y |G ′) . (55)

A reversing measure for the Markov chain is then given by μ(G ,Y , σ ) =
P(G )P(Y |G )wlit

G (σ )
λ.

Proof Given a = (G ,Y,œ), let b = (G ′,Y, ) be any state reachable from a in a
single step of the chain. By the factorization (53), together with assumption (55) and
the fact that P(G ) = P(G ′),
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Fig. 6 If s ≡ |Y | and
N = N (Y ) = (N,L), the
graph N consists of s disjoint
copies of the tree D shown here.
The boundary δD is highlighted
in purple (color figure online)

μ(a)

μ(b)
= P(G )P(Y |G )wlit

∂ (σ ∂ )
λwlit

N(σN|LN)λ
P(G ′)P(Y |G ′)wlit

∂ (η∂
)λwlit

N(ηN
|L′N)λ

= wlit
∂ (σ ∂ )

λwlit
N(σN|LN)λ

wlit
∂ (η∂

)λwlit
N(ηN

|L′N)λ
= wlit

N(σN|LN)
λ

wlit
N(ηN

|L′N)λ
,

where the last identity is by Lemma 4.3. On the other hand, with π denoting the
transition probabilities for the Markov chain, (54) implies

π(a, b)

π(b,a)
= wlit

N(ηN
|L′N)λ

M(|Y |, ḣtr)z(|Y |, ḣtr)
M(|Y |, ḣtr)z(|Y |, ḣtr)

wlit
N(σN|LN)λ

= μ(b)
μ(a)

.

Rearranging proves reversibility, μ(a)ß(a, b) = ¯(b)ß(b,a). (We remark that since
the Markov chain breaks up into many disjoint orbits, the reversing measure μ is not
unique.) ��

4.4 From graph to tree optimizations

If Y satisfies condition (51) and we define N = N (Y ) = (N,L) as before, then
N consists of |Y | ≡ s disjoint copies of the tree D shown in Fig. 6. Recall from
Definition 4.1 the definition of H sm = H sm(G,Y , σ ), and note H sm depends only on
σN. For any H sm ∈ �sm we let Z(H sm;N ) be the partition function of all colorings
on N with empirical measure H sm—the only randomness comes from the literals
LN. The expected number of valid colorings is

EZλ=0,T (H sm;N ) = exp{sd〈Ĥ sm, v̂〉}
(

s

s Ḣ sm

)(
ds

ds Ĥ sm

)/(
ds

ds H̄ sm

)

which byStirling’s formula is sO(1) exp{s �tr(H sm)} (see (48)).Anyvalid coloringσN
with empirical measure H sm contributes weight wlit

N(σN|LN)λ = exp{sλstr(H sm)},
so altogether

EZ(H sm;N ) = sO(1) exp{s[�tr(H sm)+ λstr(H sm)]} = sO(1) exp{s �(H sm)} ,
(56)

with � as in (49). (This calculation clarifies why we refer to �tr,� as the “tree
analogues” of �, F.)

Fix H sm ∈ �sm and let A(H sm) be the set of all (G ,Y , σ ) with H sm(G,Y , σ ) =
H sm. Let B(H sm) be the set of states reachable in one step from A(H sm). Then, for
all b ∈ B(Hsm),
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π(b,A(Hsm)) = EZ(Hsm;N )∑
H′∈�sm 1{Phtr(H′) = Phtr(Hsm)}EZ(H′;N )

= sO(1) exp{−s�(Hsm)} . (57)

This is the key calculation for Theorem 4.2. To complete the proof, what remains is
to produce a sampling mechanism P(Y |G ) which satisfies our earlier conditions (51)
and (55), together with some concentration bound to ensure that in most cases Y is
large and H sm ≈ H sy. We formalize this as follows:

Definition 4.6 (sampling mechanism) Let P(Y |G ) be the probability of sampling the
subset of variables Y from the nae- sat instance G . We call this a good sampling
mechanism if the following holds: first, whenever (G ,Y , σ ) and (G ′,Y , η) appear
in the same orbit of the Markov chain, we must have P(Y |G ) = P(Y |G ′) (used in
Lemma 4.5 to show reversibility). Next we require that for every G , and for every
Y with P(Y |G ) positive, the neighborhoods B2T (v) for v ∈ Y are mutually disjoint
trees (condition (51), required for defining the Markov chain). Lastly we require that
for all but an exceptional set B of “bad” nae- sat instances, with P(G ∈ B) ≤
exp{−n(ln n)1/2}, we have

∑
Y :nε≤|Y |≤4nε

P(Y |G )1
{∥∥∥H sm(G,Y , σ )− H sy(G, σ )

∥∥∥ ≤ 1

(ln ln n)1/2

}
≥ 1

2
. (58)

for all colorings σ on G .

Proposition 4.7 Assume the existence of a good sampling mechanism in the sense of
Definition 4.6. Then, for ε small enough (depending only on d, k, T ), it holds for all
H ∈ � that

EZ(H)
EZ(NH ,ε)

≤ exp{on(1)}
exp{nε�(Hsy)}

where NH ,ε ≡ {H ′ ∈ � : ‖H − H ′‖ ≤ ε(dk)2T } and Hsy is the symmetrization of
H from Definition 4.1.

Proof Abbreviate δ ≡ 1/(ln ln n)1/2. Given H ∈ � and its symmetrization H sy ∈
� ∩�sm, let

A =
{
(G ,Y , σ ) : |Y | ≥ nε and

∥∥∥H sm(G,Y , σ )− H sy
∥∥∥ ≤ 2δ

}
.

With μ the reversing measure from Lemma 4.5, we have

μ(A) ≥
∑
G /∈B

P(G )
∑
σ

wlit
G (σ )

λ
∑

Y :|Y |≥nε
P(Y |G )1

{ ‖H sm(G, Y , σ )− H sy(G, σ )‖ ≤ δ
and ‖H(G, σ )− H‖ ≤ δ

}
,

using ‖H(G, σ ) − H‖ ≤ ‖H sy(G, σ ) − H sy‖ together with the triangle inequality.
Applying (58) gives
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μ(A) ≥ 1

2

∑
G /∈B

P(G )
∑
σ

wlit
G (σ )

λ1
{
‖H(G, σ )− H‖ ≤ δ

}
≥ E[Z(H);G /∈ B]

2
≥ EZ(H)

4
,

where the last step follows from the bound on P(G ∈ B). If B is the set of states
reachable from A in one step of the Markov chain, then crudely μ(B) ≤ EZ(NH ,ε),
and

max
b∈B

π(b,A) ≤ exp{on(1)}
exp{n�(Hsy)}

by our earlier calculation (57). The result follows by substituting into (46). ��

4.5 Samplingmechanism

Tocomplete the proof ofTheorem4.2, it remains for us to define a samplingmechanism
satisfying the conditions of Definition 4.6. To this end, given a (d, k)-regular graph G,
let Vt ⊆ V be the subset of variables v ∈ V such that the t-neighborhood Bt (v) around
v is a tree. Recall the following form of the Chernoff bound: if X is a binomial random
variable with mean μ, then for all t ≥ 1 we have P(X ≥ tμ) ≤ exp{−tμ ln(t/e)}.
Lemma 4.8 Suppose G is sampled from the (d, k)-regular configuration model on n
vertices. For any fixed t we have P(|V \Vt | ≥ n/(ln ln n)) ≤ exp{−n(ln n)1/2} for n
large enough (depending on d, k, t).

Proof Let γ count the total number of cycles in G of length at most 2t . If v /∈ Vt then
v must certainly lie within distance t of one of these cycles, so crudely we have

|V \Vt | ≤ 2t(dk)tγ . (59)

Consider breadth-first search exploration in G started from an arbitrary variable, say
v = 1. At each step of the exploration we reveal one edge, so the exploration takes
nd steps total. Conditioned on everything revealed in the first t steps, the chance that
the edge revealed at step t + 1 will form a new cycle of length ≤ 2t is upper bounded
by(dk)2t/(nd − t). It follows that the total number of cycles revealed up to time
nd(1− δ) is stochastically dominated by a binomial random variable

γ ′ ∼ Bin

(
nd(1− δ), (dk)

2t

ndδ

)
.

The final ndδ exploration steps form at most ndδ cycles, so γ ≤ γ ′ + ndδ. Applying
the Chernoff bound (as stated above) with δ = 1/(ln ln n)2, we obtain

P(γ ≥ 2ndδ) ≤ P(γ ′ ≥ ndδ) ≤ exp

{
− ndδ ln

(
ndδ2

e(dk)2t

)}
≤ exp{−n(ln n)1/2}
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for large enough n. Recalling (59) gives the claimed bound. ��
Given an instance G = (G,L), let Vt be as defined above and take V ′ ≡ V4T . We

then take i.i.d. random variables Iv ∼ Ber(ε′) indexed by v ∈ V ′ (for ε′ a constant to
be determined) and let

Yv ≡ 1{Iv = 1, and Iu = 0 for all u ∈ B4T (v)\{v}} . (60)

We then define P(Y |G ) to be the law of the set Y = {v ∈ V ′ : Yv = 1}. Note that the
random variables Yv , for v ∈ V ′, all have the same expected value, so we can define
ε ≡ (EYv)/2.
Lemma 4.9 DefineB to be the set of all G = (G,L) with |V \V4T | ≤ n/(ln ln n). For
the sampling mechanism described above, condition (58) holds for any G /∈ B and
any coloring σ on G .

Proof Fix an instance G /∈ B and a coloring σ on G . Recalling Definition 4.1, for
each v ∈ V denote

Xv ≡ (Ẋv, X̂v, X̄v) ≡ H sm(G, {v}, σ ) .

Assume without loss that V ′ ≡ V4T = [n′] ≡ {v1, . . . , vn′ }, and for 0 ≤ 	 ≤ n′ let
F	 denote the sigma-field generated by Y1, . . . ,Y	. Consider

S ≡
∑
v≤n′

AvYv

where we can take different choices of Av to prove various different bounds:

– taking Av = 1 gives S = |Y | and ES = 2n′ε;
– taking Av = Ẋv(η) gives S = |Y |Ḣ sm(η) and |ES − 2n′ε Ḣ(η)| ≤ n − n′;
– taking Av = X̂v(η) gives S = |Y |Ĥ sm(η) and |ES − 2n′ε Ĥ(η)| ≤ n − n′;
– taking Av = X̄v(η) gives S = |Y |H̄ sm(η) and |ES − 2n′ε H̄(η)| ≤ n − n′,

where we recall that n − n′ = |V \V4T ≤ n/(ln ln n). Consider the Doob martingale

M	 ≡ E(S |F	) ≡
∑
v≤n′

Av E(Yv |F	) .

For 	 ≤ n′, if v lies at distance greater than 8T from any variable in [	] ≡ {v1, . . . , v	},
then

E(Yv |F	) = EYv = 2ε .

Thus, the only possibility for E(Yv |F	+1) �= E(Yv |F	) is that v lies within distance
8T of vertex 	+ 1. The number of such v is at most (dk)8T , so we conclude

|M	+1 − M	| ≤ (dk)8T ‖A‖∞ ≤ (dk)8T .
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It follows by the Azuma–Hoeffding martingale inequality that

P(|S − ES| ≥ x) ≤ exp

{
− x2

2n′(dk)16T

}
.

The result follows by summing over the choices of A listed above, combined with our
above estimates on ES for each choice of A. ��
Proof of Theorem 4.2 It follows fromLemmas4.8 and4.9 that the samplingmechanism
described by (60) satisfies the conditions of Definition 4.6. The result then follows by
taking n →∞ in Proposition 4.7. ��

5 Solution of tree optimization

From Theorem 4.2 we see that if H ∈ � is a local maximizer for the first moment
exponent F = Fλ,T , then its symmetrization H sy must be a zero of the function
� = �λ,T defined by (50). The analogous statement holds in the second moment
with F2 and �2. The functions �,�2 correspond to tree optimization problems,
which we solve in this section by relating them to the bp recursions for the coloring
model.

Proposition 5.1 For 0 ≤ λ ≤ 1 and 1 ≤ T < ∞, let H� ∈ � and H• ∈ �2 be as in
Definition 5.6 below.

a. On {H ∈ N◦ : H = Hsy}, � is uniquely minimized at H = H�, with �(H�) = 0.
b. On {H ∈ Nse : H = Hsy}, �2 is uniquely minimized at H = H•, with �2(H•) =

0.

Moreover there is a positive constant ε = ε(d, k, T ) such that

1. �(H) ≥ ε‖H − H�‖2 for all H ∈ � with H = Hsy and ‖H − H�‖ ≤ ε, and
2. �2(H) ≥ ε‖H − H•‖2 for all H ∈ �2 with H = Hsy and ‖H − H•‖ ≤ ε.

5.1 Tree optimization problem

Recall from the previous section that in the local update procedure, we sample a subset
of variables Y and consider its neighborhood N = (N,LN). Writing s = |Y |, the
graph N is the disjoint union ofD1, . . . ,Ds where eachDi is a copy of the treeD of
Fig. 6. Let � be the space of probability measures on colorings of D. Any coloring
σN can be summarized by ν ∈ � where ν(σD) is the fraction of copies Di with
σDi

= σD. The sample empirical measure H sm = H sm(G,Y , σ ) can be obtained
as a linear projection of ν, and we hereafter denote this relation by H sm = H tr(ν).
Recalling (52), we have E

lit[(wlit
N (σN))

λ] = wD(σD1
)λ · · ·wD(σDs

)λ where

wD(σD) = �̇(σ δv)
∏
e∈δv

{
�̄(σe)�̂(σ δa(e))

}
.
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Lemma 5.2 The function � of (49) is concave on �sm, and can be expressed as

�(H) = sup
{
H(ν)+ λ〈lnwD, ν〉 : ν ∈ � with Htr(ν) = H

}
. (61)

Proof The function �(H) is the sum of �tr(H) and the linear function λstr(H), so it
suffices to show that �tr is concave on �sm. For H = (Ḣ , Ĥ , H̄) ∈ �sm, if X ∈ �k

is a random variable with law Ĥ , then the first coordinate X1 has marginal law H̄ by
(47). It follows that for any H ∈ �sm we can express

�tr(H) = H(Ḣ)+ dH(X)− dH(X1)+ v(H) = H(Ḣ)+ dH(X | X1)+ v(H) .

The entropy function is concave and v is linear, so this proves that �tr (hence �) is
indeed concave on �sm. In fact this can be argued alternatively, as follows. Recalling
(56), note that for H ∈ � we have

sO(1) exp{s�(H)} = EZ(H ;N ) =
∑
ν∈�

1{H tr(ν) = H}
(
s

sν

)
(wD)

λν .

Expanding with Stirling’s formula gives the representation (61), which also implies
concavity of �. ��

Thus, for H ∈ �sm, we have �(H) = �op(ḣtr(H))−�(H) where � is given by
(61), and

�op(ḣ) = sup
{
H(ν)+ λ〈lnwD, ν〉 : ν ∈ � with ḣtr(H tr(ν)) = ḣ

}
. (62)

Both (61) and (62) fall in the general category of entropy maximization problems sub-
ject to linear constraints. In “Appendix C” we review basic calculations for problems
of this type. The discussion there, in particular Remark C.7, implies that for any ḣ,
there is a unique measure ν = νop(ḣ) achieving the maximum in (62). Moreover, there
exists a probability measure q̇ on �̇T—serving the role of Lagrange multipliers for
the constrained maximization—such that νop(ḣ) can be expressed as

ν(σD) = νq̇(σD) ≡
wD(σ )

λ

Z

∏
e∈δD

q̇(σ̇e) , (63)

where Z is the normalizing constant. The analogous statement holds for the second
moment.

5.2 BP recursions

We now state the bp recursions for the λ-tilted T -coloring model. In the standard
formulation (e.g. [33, Ch. 14]), this is a pair of relations for probability measures q̇, q̂
on �T :
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q̇(σ ) = [Ḃλ,T (q̂)](σ ) ∼= 1{σ ∈ �T }�̄(σ )λ
∑

σ∈(�T )
d

1{σ1 = σ }�̇(σ )λ
d∏

i=2
q̂(σi )

q̂(σ ) = [B̂λ,T (q̇)](σ ) ∼= 1{σ ∈ �T }�̄(σ )λ
∑

σ∈(�T )
k

1{σ1 = σ }�̂(σ )λ
k∏

i=2
q̇(σi )

where ∼= denotes equality up to normalization, so that the mapping always outputs a
probability measure. Recall from Definition 4.1 that for σ̇ ≡ (σ̇ , σ̂ ) ∈ �T we have
σ̇ ∈ �̇T and σ̂ ∈ �̂T . For our purposes we can assume a one-sided dependence,
meaning there are probability measures q̇ on �̇T and q̂ on �̂T such that q̇(σ ) ∼=
q̇(σ̇ )1{σ ∈ �T } and q̂(σ ) ∼= q̂(σ̂ )1{σ ∈ �T }. One can then check (e.g. [33, Ch. 19])
that the bp recursions preserve the one-sided property, so that Ḃλ,T and B̂λ,T restrict
to mappings

ḂP ≡ ḂPλ,T :P(�̂T )→P(�̇T ) , B̂P ≡ B̂Pλ,T :P(�̇T )→P(�̂T ) . (64)

We also denote BP ≡ BPλ,T ≡ ḂP ◦ B̂P. Given any q̇ ∈P(�̇T ), write q̂ ≡ BPq̇ , and
let H ≡ Hq̇ be defined by

Ḣq̇ (σ ) = �̇(σ )
λ

ż

d∏
i=1

q̂(σ̂i ), Ĥq̇ (σ ) = �̂(σ )
λ

ẑ

d∏
i=1

q̇(σ̇i ), H̄q̇ (σ ) = �̄(σ )
−λ

z̄
q̇(σ̇ )q̂(σ̂ )

(65)
where ż, ẑ, and z̄ are normalizing constants, all dependent on q̇ . Clearly, Hq̇ = (Hq̇)

sy.
If q̇ is a fixed point of BP, then Hq̇ ∈ �. An entirely similar discussion applies to the
pair (second moment) model, where the bp recursion reduces to a pair of mappings
between P((�̇T )

2) and P((�̂T )
2). If q̇ ∈ P((�̇T )

2) is a fixed point of BP, then
(65) defines an element Hq̇ ∈ �2.

Lemma 5.3 For 1 ≤ T < ∞, if q̇ ∈ P(�̇T ) is any fixed point of BPλ,T which has
full support on �̇T , then �(Hq̇) = 0. The analogous statement holds for the second
moment.

Proof Consider the optimization problem (62) for�op(ḣ)with ḣ = ḣtr(Hq̇). As noted
above, νop(ḣ) can be written (63) as νq̃ for some measure q̃ ∈ P(�̇T ), which may
not be unique if the constraint ḣtr(H tr(ν)) = ḣ is rank-deficient. However, if q̇ has
full support on �̇T , then ḣ = ḣtr(Hq̇) does also. In this case it is straightforward to
check that the constraints are indeed of full rank, so q̃ is unique. Because q̇ is a fixed
point of BP, the measure νq̇ satisfies H tr(νq̇) = Hq̇ , so it also satisfies the weaker
constraint ḣtr(H tr(νq̇)) = ḣ. It follows by the above uniqueness argument that q̇ = q̃ .
Therefore, νq̇ solves the optimization problem (62) for �op(ḣtr(Hq̇)), as well as the
optimization problem (61) for �(Hq̇), so we conclude �(Hq̇) = 0 as claimed. ��
Lemma 5.4 For 0 ≤ λ ≤ 1 and 1 ≤ T < ∞, let � = �λ,T , �2 = �2,λ,T , and
BP = BPλ,T .
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a. If H ∈ N◦ with H = Hsy and �(H) = 0, then H = Hq̇ where q̇ ∈P(�̇T ) is a
fixed point of BP.

b. If H ∈ Nse with H = Hsy and �2(H) = 0, then H = Hq̇ where q̇ ∈P((�̇T )
2)

is a fixed point of BP.

Proof Let μ = νop(H) denote the solution of the optimization problem (61) for
�(H), and let ν = νop(ḣtr(H)) denote the solution of the optimization problem (62)
for �op(ḣtr(H)). Since (62) has a unique optimizer, we have �(H) = 0 if and only if
μ = ν. This means H tr(ν) = H , but also ν = νq̇ from (63), which gives

Ĥ(σ ) ∼= �̂(σ )λ((BPq̇)(σ̇1))
k∏

i=2
q̇(σ̇i ) . (66)

We now claim that in order for Ĥ = Ĥ sy, we must have BPq̇ = q̇ . Note that if �̂were
fully supported on (�T )

k , and both q̇ and BPq̇ were fully supported on �̇T , the claim
would be obvious. Since �̂ is certainly not fully supported, and we also do not know
a priori whether q̇ and BPq̇ are fully supported, the claim requires some argument,
which differs slightly between the first- and second-moment cases:

a. In the first moment, Lemma 3.3 implies that q̇(σ̇ ) is positive for at least one
σ̇ ∈ {b0,b1}. Assumewithout loss that q̇(b0) is positive; it follows that (BPq̇)(σ̇ )
is positive for both σ̇ = b0,b1. For any σ̇ ∈ �̇, there exists σ̂ such that

�̂((σ̇ , σ̂ ),b0, . . . ,b0) > 0 . (67)

The symmetry of Ĥ then gives the relation

(BPq̇)(σ̇ )

(BPq̇)(b0)
= q̇(σ̇ )

q̇(b0)
,

so it follows that BPq̇ = q̇ in the first moment.
b. In the second moment, since we restrict to H ∈ Nse, q̇(σ̇ ) is positive for at

least one σ̇ ∈ {b0,b1}2. Assume without loss that q̇(b0b0) is positive. For any
σ̇ /∈ {r0r1,r1r0}, there exists σ̂ such that the second-moment analogue of (67)
holds. The preceding argument gives

(BPq̇)(σ̇ )

(BPq̇)(b0b0)
= q̇(σ̇ )

q̇(b0b0)
for all σ̇ /∈ {r0r1,r1r0} .

Since (BPq̇)(σ̇ ) is positive for all σ̇ ∈ {b0,b1}2, it follows that the same holds
for q̇ , so

(BPq̇)(σ̇ )

(BPq̇)(b0b1)
= q̇(σ̇ )

q̇(b0b1)
for all σ̇ /∈ {r0r0,r1r1} .
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Combining these, we have for σ̇ ∈ {r0r1,r1r0} that
(BPq̇)(σ̇ )

(BPq̇)(b0b0)
= (BPq̇)(σ̇ )

(BPq̇)(b0b1)

(BPq̇)(b0b1)

(BPq̇)(b0b0)
= q̇(σ̇ )

q̇(b0b0)
,

and this proves BPq̇ = q̇ in the second moment.

Altogether, the above proves in both the first- and second-moment settings that q̇ is a
bp fixed point. ��

5.3 BP contraction and conclusion

The next step is to (explicitly) define a subset � of measures q̇ on which we have a
contraction estimate of the form ‖BPq̇ − q̇�‖ ≤ c‖q̇ − q̇�‖ for a constant c < 1. A
useful feature of nae- sat is that its bp recursions are self-averaging: if q̇ is a measure
on �̇T , let

q̇av(σ̇ ) ≡ q̇(σ̇ )+ q̇(σ̇ ⊕ 1)

2
.

Then B̂Pq̇ = B̂Pq̇av, and consequently BPq̇ = BPq̇av. The analogous statement holds
in the second moment. It then suffices to prove contraction on the measures q̇ = q̇av,
since for general q̇ it implies

‖BPq̇ − q̇�‖ = ‖BPq̇av − q̇�‖ ≤ c‖q̇av − q̇�‖ ≤ c‖q̇ − q̇�‖ .

Abbreviate {r} ≡ {r0,r1} and {b} ≡ {b0,b1}. In a mild abuse of notation we now
write {f} for (�̇∪�̂)\{r,b}; so for instance q̇(f) = q̇(�̇\{r,b}) = q̇(Ṁ \{0,1, �}).
For the first moment analysis, let � be the set of measures q̇ ∈ P(�̇T ) satisfying
q̇ = q̇av, such that

q̇(r)+ 2k q̇(f)

C
≤ q̇(b) ≤ q̇(r)

1− C/2k
(68)

for C a large constant (to be determined). For the second moment analysis, let �(c, κ)
be the set of measures q̇ ∈P((�̇T )

2) satisfying q̇ = q̇av, such that

|q̇(b0b0)− q̇(b0b1)| ≤ (k9/2ck)q̇(bb), and q̇(ff)+ q̇({fr,rf})/2k
+ q̇(rr)/4k ≤ (C/2k)q̇(bb); (1�)

q̇({rf,fr}) ≤ (C/2kκ)q̇(bb) and q̇(rr) ≤ C2k(1−κ)q̇(bb); (2�)

q̇(rx σ̇ ) ≥ [1− C/2k]q̇(bx σ̇ ) and q̇(σ̇rx)

≥ [1− C/2k]q̇(σ̇bx) for all x ∈ {0,1}, σ̇ ∈ �̇. (3�)

(To clarify the notation: since b ≡ {b0,b1}, in (1�) the expression q̇(bb) refers
to q̇({b0,b1}2). Similarly, q̇(fr) refers to q̇({f} × {r0,r1}) where in this context
{f} = (�̇ ∪ �̂)\{r,b}.)
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Proposition 5.5 (proved in “Appendix A”) Assume 0 ≤ λ ≤ 1. In the first moment,
we have:

a. For any 1 ≤ T ≤ ∞, themapBP ≡ BPλ,T has a unique fixed point q̇� ≡ q̇λ,T ∈ �.
For any q̇ ∈ �, we have BPq̇ ∈ � also, with ‖BPq̇ − q̇�‖ = O(k2/2k)‖q̇ − q̇�‖.

b. In the limit T →∞, ‖q̇λ,T − q̇λ,∞‖ → 0.

In the second moment, for any 1 ≤ T ≤ ∞, we have the following:

A. The map BP ≡ BPλ,T has a unique fixed point in �(1, 1), given by q̇� ⊗ q̇�
with q̇� as in part a. Moreover, for c ∈ (0, 1] and k sufficiently large, there is
no other fixed point of BP in �(c, 1): if q̇ ∈ �(c, 1) then BPq̇ ∈ �(1, 1), with
‖BPq̇ − q̇�‖ = O(k4/2k)‖q̇ − q̇�‖.

B. If for some c ∈ (0, 1] we have q̇ ∈ �(c, 0) and q̇ = BPq̇ , then q̇ ∈ �(c, 1).

Definition 5.6 (optimal empirical measures) For 0 ≤ λ ≤ 1 and 1 ≤ T < ∞,
take the fixed point q̇� = q̇λ,T as given by Proposition 5.5a, and use (65) to define
H� = Hq̇� ∈ � and H• = Hq̇�⊗q̇� ∈ �2. Note that this agrees with our earlier
definition of H•, in the discussion below Lemma 3.9.

Lemma 5.7 Let q̇ be any fixed point of BP that arises from Lemma 5.4.

a. If H = Hq̇ ∈ N◦, then q̇ = q̇� and so H = H�.
b. If H = Hq̇ ∈ Nse, then q̇ = q̇� ⊗ q̇� and so H = H•.

Proof Since q̇ = BPq̇ , we must have q̇ = q̇av. Below we argue separately for the
first and second moment. In each case we repeatedly take advantage of the fact that
H = Hq̇ is symmetric.

a. For the firstmoment, by Proposition 5.5a it suffices to show that q̇ must lie in the set
� defined by (68). It follows directly from the relation q̇ = BPq̇ that q̇(r) ≥ q̇(b).
By definition of N◦ we must have H̄(r) ≤ 7/2k and H̄(f) ≤ 7/2k , so the vast
majority of clauses must have all incident colors in {b} = {b0,b1}:

1− 14k

2k
≤ Ĥ(bk) = 1

ẑ

∑
σ∈bk

�̂(σ )λ
k∏

i=1
q̇(σ̇i ) ≤ q̇(b)k

ẑ
.

Next, if σ ∈ rbk−1, we have �̂(σ )λ = E
lit[�̂lit(σ ⊕ L)λ] ≥ E

lit�̂lit(σ ⊕ L) =
2/2k , so

7

2k
≥ H̄(r) = Ĥ(rbk−1) ≥ q̇(r)q̇(b)k−1

2k−1ẑ
≥ q̇(r)

q̇(b)

2

2k

(
1− 14k

2k

)
,

which gives q̇(r)/q̇(b) ≤ 4 for large k. Similarly, if σ ∈ fbk−1 with σ̂1 = s
(indicating a separating clause), then �̂(σ )λ ≥ E

lit�̂lit(σ ⊕ L) = 1− 4/2k , so

7

2k
≥ H̄(f) ≥ Ĥ(fbk−1) ≥

(
1− 4

2k

)
q̇(f)q̇(b)k−1

ẑ
≥ q̇(f)

q̇(b)

(
1− 4

2k

)(
1− 14k

2k

)
,
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which gives q̇(f)/q̇(b) ≤ 8/2k for large k. Combining these estimates proves
q̇ ∈ �.

b. For the second moment, by Proposition 5.5A it suffices to verify q̇ ∈ �(1, 1), as
defined by (1�)–(3�). Condition (3�) is immediate from the relation q̇ = BPq̇ .
Moreover, by Proposition 5.5B it suffices to show q̇ ∈ �(1, 0), in which case
condition (2�) follows from (1�). It remains to verify (1�). For this end, we
denote B ≡ {b0,b1}2, and partition this into B= ≡ {b0b0,b1b1} and B} ≡
{b0b1,b1b0}. By definition, for any H ∈ Nse the single-copy marginals H1, H2

lie in N ⊆ N◦, so the total density of {r,f} edges in either copy is very small. As
a result the vast majority of clauses have all incident colors in B:

1− 28k

2k
≤ Ĥ(Bk) ≤ q̇(B)k

ẑ
.

For H ∈ Nse, we have |H̄(B=) − H̄(B})| ≤ k4/2k/2 + O(2−k). The fraction of
edges in not-all-B clauses is O(k/2k), and for σ ∈ B

k we have 1 ≥ �̂(σ )λ ≥
E
lit�̂lit(σ ⊕ L) = 1− O(k/2k), so

H̄(B=)− H̄(B})− O(k/2k) =
{
q̇(B=)− q̇(B})

q̇(B)
+ O(k/2k)

}
q̇(B)k

ẑ
.

Rearranging gives |q̇(B=)− q̇(B})|/q̇(B) ≤ 2k4/2k/2, which proves the first part
of (1�) (with c = 1). It remains to show the second part of (1�). If we denote
R= ≡ {r0r0,r1r1} and consider σ ∈ R=(B=)

k−1, then (similarly as above) we
have �̂(σ )λ ≥ E

lit�̂lit(σ ⊕ L) = 2/2k , so

7

2k
≥ H̄(R=) = Ĥ(R=(B=)

k−1) ≥ 2

2k
q̇(R=)q̇(B=)

k−1

ẑ
≥ 2

4k
q̇(R=)

q̇(B)

(
1− O(k5)

2k/2

)
,

where the last inequality is by the preceding estimates on q̇(B) and q̇(B=). The
same calculation bounds q̇(R}) for R} ≡ {r0r1,r1r0}. Next consider σ =
((σ̇ ,s),r) ∈ {fr}: if σ ∈ �k with σ1 = σ and the other k − 1 entries in B, then
�̂(σ )λ ≥ 4/2k as long as the other entries are not all B= or all B}. Therefore

7

2k
≥ H̄(fr) ≥ 4

2k
q̇(fr)q̇(B)k−1

ẑ

(
1− q̇(B=)

k−1
q̇(B)k−1 − q̇(B})

k−1
q̇(B)k−1

)
≥ q̇(fr)

q̇(B)

(
1− O(k)

2k

)
,

and the same calculation bounds q̇(rf). Finally, for σ = ((σ̇ 1,s), (σ̇ 2,s)) ∈
{ff}, we can consider σ ∈ �k with σ1 = σ and the other k − 1 entries in B;
therefore

7

2k
≥ H̄(ff) ≥ q̇(ff)q̇(B)k−1

ẑ

(
1− 4

2k

)
≥ q̇(ff)

q̇(B)

(
1− O(k)

2k

)
.

Combining these estimate verifies the second part of (1�).
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Altogether we have shown that if H = Hq̇ lies in N◦, then q̇ ∈ � and so q̇ = q̇�; and
if H = Hq̇ lies in Nse then q̇ ∈ �(1, 1) and so q̇ = q̇�⊗ q̇�. This concludes the proof.

��

Proof of Proposition 5.1 We will prove the claim in the first moment; the result for
the second moment follows by the same argument. It follows from Lemmas 5.3, 5.4
and 5.7 that the unique minimizer of � on the set {H ∈ N◦ : H = H sy} is H� (as
given by Definition 5.6), with �(H�) = 0. It remains to establish that, for H ∈ �

with H = H sy and ‖H − H�‖ ≤ ε, we have �(H) ≥ ε‖H − H�‖2. As in the proof
of Lemma 5.4, let μ = νop(H) be the solution of the optimization problem (61) for
�(H), and let ν = νop(ḣtr(H)) be the solution of the optimization problem (62) for
�op(ḣtr(H)). We have from (63) that for some q̇ ∈P(�̇T ),

ν(σD) = νq̇(σD) =
wD(σ )

λ

Z

∏
e∈δD

q̇(σ̇e) .

For e ∈ δD, abbreviate ge(σD) ≡ ln q̇(σe). Then, for any probability measure � on
colorings σD, the quantity �(ω) ≡ H(�)+ λ〈lnwD,� 〉 can be expressed as

�(ω) = H(�)+
〈
ln ν + ln Z −

∑
e∈δD

ge,�

〉

= −Dkl(ω|ν)+ ln Z − |δD|〈ln q̇, ḣtr(H tr(�))〉 .

We have ḣtr(H tr(�)) = ḣtr(H) for both � = ν and � = μ, so �(H) = �(μ) −
�(ν) = Dkl(μ|ν). (For further discussion, see Proposition C.6.) It is well known
that Dkl(μ|ν) � ‖μ− ν‖2, so to conclude it remains for us to show that ‖μ− ν‖ �
‖H − H�‖. To this end, let ν� ≡ νq̇� , and note that H = H tr(μ) while H� = H tr(ν�).
Recall from the discussion preceding Lemma 5.2 that � �→ H tr(�) is a linear
projection, so

‖H − H�‖ � ‖μ− ν�‖ ≤ ‖μ− ν‖ + ‖ν − ν�‖ � ‖μ− ν‖ + ‖q̇ − q̇�‖ ,

where the last bound holds since ν = νq̇ and ν� = νq̇� . Recall from Proposition 5.5a
(or Proposition 5.5A for the second moment) that we have the contraction estimate
‖BPq̇ − q̇�‖ ≤ c‖q̇ − q̇�‖ for c ∈ (0, 1), so

(1− c)‖q̇ − q̇�‖ ≤ ‖q̇ − q̇�‖ − ‖BPq̇ − q̇�‖ ≤ ‖q̇ − BPq̇‖ .

Let K ≡ (K̇ , K̂ , K̄ ) ≡ H tr(ν), and note that K̂ need not be symmetric: if we let
K̂ ′(σ ) ≡ K̂ (σ2, . . . , σk, σ1) for σ ∈ (�T )

k , then K̂ and K̂ ′ need not agree. On the
other hand H = H tr(μ) = H sy, so

‖K̂ − K̂ ′‖ ≤ ‖Ĥ − K̂‖ + ‖Ĥ − K̂ ′‖ = 2‖Ĥ − K̂‖ ≤ 2‖H − K‖ � ‖μ− ν‖ .
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For any k-tuple ḣ ≡ (ḣ1, . . . , ḣk) of probability measures on �̇T , consider

Ĥop(ḣ) ≡ argmaxν̂

{
H(ν̂)+ λ〈ln �̂, ν̂〉 : ν̂(σ̇1 = ·) = ḣi for all i

}

where ν̂ denotes any probability measure on supp v̂ ⊆ (�T )
k . The unique optimizer

Ĥop(ḣ) can be described in terms of another k-tuple of probability measures on �̇T ,
denoted q̇ ≡ (q̇1, . . . , q̇k), which serve as Lagrange multipliers: Ĥop(ḣ) = Ĥ(q̇)
where

[Ĥ(q̇)](σ ) ∼= �̂(σ )λ
k∏

i=1
q̇i (σ̇i ) .

In particular, Ĥop(ḣ�) = Ĥ(q̇
�
) for ḣ� ≡ (ḣtr(H�), . . . , ḣtr(H�)) and q̇

�
≡

(q̇�, . . . , q̇�). For ḣ near ḣ�, there is a unique q̇ satisfying Ĥop(ḣ) = Ĥ(q̇), and

we can determine this q̇ as a smooth function of ḣ. Thus

‖K̂ − K̂ ′‖ = ‖Ĥ(BPq̇, q̇, . . . , q̇)− Ĥ(q̇,BPq̇, q̇, . . . , q̇)‖ � ‖q̇ − BPq̇‖ .

Combining the above inequalities gives ‖H − H�‖ � ‖μ− ν‖ as desired. ��

Proof of Propositions 3.4 and 3.10 Note that for H̄ fixed, F(H) = F(Ḣ , Ĥ , H̄) is a
strictly concave function of Ḣ , Ĥ . It follows that for all H ∈ � we have F(H) ≤
F(LH )− ε‖H − LH‖2 for

LH ≡ argmaxL
{
F(L) : L ∈ � with L̄ = H̄

}
.

Clearly LH = (LH )
sy, so it follows from Theorem 4.2 and Proposition 5.1 that

F(LH ) ≤ F(H�)− ε‖LH − H�‖2.

Combining the inequalities (and adjusting ε as needed) gives F(H) ≤ F(H�) −
ε‖H − H�‖2. This concludes the proof of Proposition 3.4, and Proposition 3.10 fol-
lows by exactly the same argument. ��
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Appendix A: Contraction estimates

We now prove Proposition 5.5, on the contraction of the bp recursion for the coloring
model. In Section A.1 we analyze the recursions for the first moment (single-copy)
model and prove Proposition 5.5a. In Section A.2 we analyze the the recursions for
the first moment (pair) model and prove the remainder of Proposition 5.5. We assume
throughout the section that 0 ≤ λ ≤ 1 and 1 ≤ T ≤ ∞.

A.1. Single-copy coloring recursions

Recall from Sect. 5.2 that the bp recursion is a pair (64) of mappings ḂP :P(�̂T )→
P(�̇T ) and B̂P : P(�̇T ) → P(�̂T ). Recall that for our purposes we can restrict
attention to measures satisfying q̇ = q̇av and q̂ = q̂av. Under this restriction, the bp
recursion is quite explicit, as we now describe. Recall from Definition 2.8, equations
(24) and (25), that for τ̇ ∈ Ṁ and τ̂ ∈ M̂ we defined ṁ(τ̇ ) and m̂(τ̂ ) as probability
measures on {0,1}. For convenience, we also define

ṁ(r1) = m̂(b1) = δ1, ṁ(r0) = m̂(b0) = δ0 . (69)

In what follows we often represent a probability measure on {0,1} by the probability
assigned to 1, writing ṁ(τ̇ ) ≡ ṁ[τ̇ ](1) and m̂(τ̂ ) ≡ m̂[τ̂ ](1). Thus, equations (24),
(25), and (69) together define mappings ṁ : �̇→ [0, 1] and m̂ : �̂→ [0, 1]. Recall
that we denote {r} ≡ {r1,r0}, {b} ≡ {b1,b0}, and {f} ≡ �\{r,b}. We also write
{f} ≡ (�̇∪ �̂)\{r,b}; the precise meaning of {f}will be unambiguous from context.
Then, for x ∈ {0,1}, let us abbreviate

g ≡ b ∪ f, gx ≡ bx ∪ f, y ≡ r ∪ f, px ≡ bx ∪ rx .

The variable recursion ḂP ≡ ḂPλ,T is given by

(ḂPq̂)(σ̇ ) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̂(p1)
d−1 if σ̇ ∈ {r0,r1},

q̂(p1)
d−1 − (q̂(b1))d−1 if σ̇ ∈ {b0,b1},

ż(σ̇ )λ
∑

σ̂2,...,σ̂d

1
{
σ̇ = Ṫ

(
(σ̂i )i≥2

)} d∏
i=2

q̂(σ̂i ) if σ̇ ∈ �̇T \{r,b},

where∼= indicates the normalization which makes ḂPq̂ a probability measure on �̇T .
For the clause recursion, let us write σ̇ ∼ σ̂ if σ̇ ≡ (σ̇2, . . . , σ̇k) ∈ (�̇T )

k−1 is
compatible with σ̂ , in the sense that

{
σ = ((σ̇ , σ̂ ), (σ̇2, σ̂2), . . . (σ̇k, σ̂k)) ∈ (�T )

k : Î lit(σ ) = 1
}
�= ∅. (70)
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The clause recursion B̂P ≡ B̂Pλ,T is given by

(B̂Pq̇)(σ̂ ) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇(b0)
k−1 if σ̂ ∈ {r0,r1},

ẑ(σ̂ )λ
∑
σ̇2,...,σ̇k

1
{
σ̂ = T̂

(
(σ̇i )i≥2

)} k∏
i=2

q̇(σ̇i ) if σ̂ ∈ �̂T \{r,b},

∑
σ̇∼b1

(
1−

k∏
i=2

ṁ(σ̇i )
)λ k∏

i=2
q̇(σ̇i ) if σ̂ ∈ {b0,b1},

where the last line uses the convention (69). Recall that BP ≡ ḂP ◦ B̂P ≡ BPλ,T .
We will show the following contraction result (assuming, as always, 0 ≤ λ ≤ 1 and
1 ≤ T ≤ ∞).

Proposition A.1 If q̇1, q̇2 ∈ �, then BPq̇1,BPq̇2 ∈ � and ‖BPq̇1 − BPq̇2‖ =
O(k2/2k)‖q̇1 − q̇2‖.

Before the proof of Proposition A.1 we deduce the following consequences:

Proof of Proposition 5.5a Let q̇(0) be the uniformmeasure on {b0,b1,r1,r0}, and let
q̇(l) ≡ BPq̇(l−1). It is clear that q̇(0) ∈ �, so PropositionA.1 implies q̇(l) ∈ � for all l ≥
1, and furthermore that (q̇(l))l≥1 forms an 	1 Cauchy sequence. By completeness of 	1

we conclude that there exists q̇(∞) = q̇� ∈ � such that BPq̇� = q̇� and ‖q̇(l) − q̇�‖ →
0 as l →∞. Applying PropositionA.1 again gives ‖BPq̇ − q̇�‖ = O(k2/2k)‖q̇ − q̇�‖
for any q̇ ∈ �, from which it follows that q̇� is the unique fixed point of BP in �. ��
Proof of Proposition 5.5b For each 1 ≤ T ≤ ∞, let (q̇λ,T )(l) (l ≥ 0) be defined in
the same way as q̇(l) in the proof of Proposition A.1. It follows from the definition
that (q̇λ,T )(l) = (q̇λ,∞)(l) for all l ≤ lT , where lT ≡ ln T / ln(dk). By the triangle
inequality and Proposition 5.5a,

‖q̇λ,T − q̇λ,∞‖ ≤ ‖q̇λ,T − (q̇λ,∞)(lT )‖ + ‖(q̇λ,∞)(lT ) − q̇λ,∞‖ ≤ (C/2k)lT

for some absolute constant k. The result follows assuming k ≥ k0. ��
We now turn to the proof of Proposition A.1. We work with the non-normalized bp

recursions ṄB ≡ ṄBλ,T and N̂B ≡ N̂Bλ,T , defined by substituting “∼=” with “=” in the
definitions of ḂP and B̂P respectively. One can then recover ḂP, B̂P from ṄB, N̂B via

(ḂP p̂)(σ̇ ) = (ṄB p̂)(σ̇ )∑
σ̇ ′∈�̇(ṄB p̂)(σ̇ ′)

, (B̂P ṗ)(σ̂ ) = (N̂B ṗ)(σ̂ )∑
σ̂ ′∈�̂(N̂B ṗ)(σ̂ ′)

.

Let ṗ be the reweighted measure defined by

ṗ(σ̇ ) ≡ [ ṗ(q̇)](σ̇ ) ≡ q̇(σ̇ )

1− q̇(r)
. (71)
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In the above we have assumed that the inputs to ḂP, B̂P, ṄB, N̂B are probability mea-
sures;we nowextend them in the obviousmanner to nonnegativemeasureswith strictly
positive total mass.

Given two measures r1, r2 defined on any space X, we denote �r(x) ≡ |r1(x) −
r2(x)|. We regard �r as a nonnegative measure on X: for any subset S ⊆ X,

�r(S) =
∑
x∈S
|r1(x)− r2(x)| ≥ |r1(S)− r2(S)|,

where the inequality may be strict. For any nonnegative measure r̂ on �̂, we abbreviate

m̂λr̂(σ̂ ) ≡ m̂(σ̂ )λr̂(σ̂ ),

(1− m̂)λr̂(σ̂ ) ≡ (1− m̂(σ̂ ))λr̂(σ̂ ).

In what follows we will begin with two measures in �, and show that they contract
under one step of the bp recursion. Let N̂B and ṄB be the non-normalized single-copy
bp recursions at parameters λ, T . Starting from q̇i ∈ � (i = 1, 2), denote

ṗi ≡ ṗ(q̇i ) (as defined by (71)),

p̂i ≡ N̂B( ṗi ) and p̂i,∞ ≡ N̂Bλ,∞( ṗi ),
ṗui ≡ ṄB( p̂i ) and q̃i ≡ ḂP p̂i = BPq̇i .

With this notation in mind, the proof of Proposition A.1 is divided into four lemmas.

Lemma A.2 (effect of reweighting) Assuming q̇1, q̇2 ∈ �, ‖� ṗ‖ = O(1)‖q̇1 − q̇2‖,
where O(1) indicates a constant depending on the constant appearing in (68).

Lemma A.3 (clause bp) Assuming q̇1, q̇2 ∈ �,

m̂λ p̂i (s) = 1− 4/2k + O(k/4k),

m̂λ p̂i (f) = m̂λ p̂i (s)+ O(k/4k),

m̂λ p̂i (b1) = 1+ O(k/2k),

m̂λ p̂i (r1) = (2/2k)[1+ O(k/2k)]. (72)

Further, writing �m̂λ p̂(·) ≡ m̂λ(·)| p̂1(·)− p̂2(·)|,

�m̂λ p̂(f)+�m̂λ p̂(r) = O(k/2k)� ṗ(f),

‖�m̂λ p̂‖ = O(k2/2k)‖� ṗ‖. (73)

(Recall that p̂(σ̂⊕1) = p̂(σ̂ ) and m̂(σ̂⊕1) = 1−m̂(σ̂ ), so (1−m̂)λ p̂(σ̂ ) = m̂λ p̂(σ̂⊕
1). As a result, the bounds for �m̂λ p̂ imply analogous bounds for �(1− m̂)λ p̂.)
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Lemma A.4 (variable bp, non-normalized) Assuming q̇1, q̇2 ∈ �, we have

[
ṗui (f)
ṗui (r)

]
=
[

O(2−k)
1+ O(2−k)

]
ṗui (b),

⎡
⎣� ṗu(f)
� ṗu(b)
� ṗu(r)

⎤
⎦ =

⎡
⎣ O(k)
O(k2k)
O(k2k)

⎤
⎦ ‖�m̂λ p̂‖ max

i=1,2
{
ṗui (b)

}
.

(74)

Lemma A.5 (variable bp, normalized) Assuming q̇1, q̇2 ∈ �, we have q̃1, q̃2 ∈ � as
well, with

‖q̃1 − q̃2‖ � k‖�m̂λ p̂‖ .

Proof of Proposition A.1 Follows by combining the four preceding lemmas A.2–A.5.��
We now prove the four lemmas.

Proof of LemmaA.2 This follows from the elementary identity

a1
b1
− a2

b2
= 1

b1
(a1 − a2)+ b2 − b1

b1b2
a2 . (75)

together with (68). ��
In the proof of the next two lemmas, the following elementary fact will be used

repeatedly: suppose for 1 ≤ l ≤ m that we have nonnegative measures al , bl over a
finite set Xl . Then, denoting X = X1 × · · · × Xm , we have

∑
x∈X

∣∣∣∣
m∏
l=1

al (xl )−
m∏
l=1

bl (xl )

∣∣∣∣ ≤
m∑
l=1

∑
x∈X

{ ∏
1≤ j<l

b j (x j )

}{ ∏
l< j≤m

a j (x j )

}∣∣∣al (xl )− bl (xl )
∣∣∣

≤
m∑
l=1
‖al − bl‖

∏
j �=l

(
‖a j‖ + ‖a j − b j‖

)
. (76)

If all the (Xl , al , bl) are the same (X, a, b), this reduces to the bound

∑
x1,...,xm∈X

∣∣∣∣
m∏
i=1

a(xi )−
m∏
i=1

b(xi )

∣∣∣∣ ≤ m‖a − b‖
(
‖a‖ + ‖a − b‖

)m−1
. (77)

In what follows we will abbreviate (for x ∈ {0,1})

ax ≡
{
σ̂ ∈ �̂T : σ̇ ∈ (gx)

k−1 for all σ̇ ∼ σ̂
}
. (78)

Proof of LemmaA.3 From the definition, if ṗ = ṗ(q̇) then

ṗ(b) = q̇(b)

1− q̇(r)
= q̇(b)

q̇(g)
= 1− ṗ(f) .
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It follows that for any q̇1, q̇2 ∈ � we have � ṗ(b) ≤ � ṗ(f) ≤ ṗ1(f) + ṗ2(f) =
O(2−k). Another consequence of the definition of � is that ‖� ṗ‖ = O(1). We now
control �m̂λ p̂(σ̂ ), distinguishing a few cases:

1. We first consider σ̂ ∈ �̂\{b,s}. For such σ̂ we have

�m̂λ p̂(σ̂ ) =
∣∣∣∣[m̂(σ̂ )ẑ(σ̂ )]λ

∑
σ̇∼σ̂

( k∏
j=2

ṗ1(σ̇ j )−
k∏
j=2

ṗ2(σ̇ j )

)∣∣∣∣,

and it is easy to check that

m̂(σ̂ )ẑ(σ̂ ) = 1−
k∏
j=2

ṁ(σ̇ j ) ∈ [0, 1] .

Moreover, any such σ̂ must belong to a0 or a1. By summing over σ̂ ∈ a0 and
applying (77) we have

�m̂λ p̂(a0) ≤ (k − 1)‖( ṗ1 − ṗ2)‖	1(g0)
(
ṗ1(g0)+� ṗ(f)

)k−2
.

Recalling that ṗ1 and ṗ2 both lie in �, in the above we have ṗ1(g0)+� ṗ(f) ≤
[1+ O(2−k)]/2, as well as ‖( ṗ1− ṗ2)‖	1(b0,f) = O(1)� ṗ(f). Combining these
gives

�m̂λ p̂(a0) = O(k/2k)� ṗ(f),

and the same bound holds for �m̂λ p̂(a1).
2. Next consider σ̂ = s, for which we have m̂(σ̂ ) = 1/2 and ẑ(σ̂ ) = 2. Thus

m̂λ p̂(s) = 1− ( ṗ(g0))k−1 − ( ṗ(g1))k−1 + ṗ(f)k−1 . (79)

Arguing as above gives �m̂λ p̂(s) = O(k/2k)� ṗ(f), proving the first half of
(73).

3. Lastly consider σ̂ ∈ {b0,b1}. Recalling (69) we have �m̂λ p̂(b0) = 0, so let us
take σ̂ = b1, and consider σ̇ ∼ b1. Note that if σ̇ has no entry in {r}, then we
also have σ̇ ∼ σ̂ ′ for some σ̂ ′ ∈ {r,f}. Again making use of (69), this σ̇ gives
the same contribution to m̂λ p̂∞(σ̂ ′) as to m̂λ p̂(b1). It follows that

�m̂λ p̂(b1) ≤ �m̂λ p̂∞(y)+ k
∣∣∣ ṗ1(r0) ṗ1(b1)

k−2 − ṗ2(r0) ṗ2(b1)
k−2
∣∣∣ .

The first term on the right-hand side captures the contribution from those σ̇ with
no entry in {r}, and by the preceding arguments it is O(k/2k)� ṗ(f). It is easy to
check that the second term is O(k2/2k)‖� ṗ‖, which finishes the second part of
(73).
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Combining the above estimates proves (73). We next prove (72). For this purpose we
introduce the notation f≥1 to refer to elements of �̇ or �̂ that contain at least one free
variable. In particular, f≥1 ∩ �̂ is given by {f}\{s} ⊆ a0 ∪ a1 ⊆ �̂. Since q̇i ∈ �,
we must have from (68) that

m̂λ p̂i (f≥1) ≤ 2
k−1∑
l=1

(
k − 1

l

)
ṗi (f)

l ṗi (b0)
k−1−l ≤ 2 ṗi (b0)

k−1
k−1∑
l=1

(
k ṗi (f)

ṗi (b0)

)l
= O(k/4k) .

(80)
On the other hand, we see from (79) that

m̂λ p̂i (s) = 1− 4/2k + O(k/4k) .

If σ̇ ∼ b1 has no entry in {r}, then there must exist some σ̂ ∈ {f} such that σ̇ ∼ σ̂
as well. Conversely, if σ̂ ∈ �̂T \{r,b} and σ̇ ∼ σ̂ , then σ̇ ∼ b1, unless σ̇ has exactly
one spin σ̇i ∈ {b0,f} with the remaining k − 2 spins equal to b1.1 It follows that

m̂λ p̂i (b1) = p̂i (b1) = m̂λ p̂i,∞(f)+ (k − 1)
[
ṗi (r0)− ṗi (g0)

]
ṗi (b1)

k−2

≤ m̂λ p̂i,∞(f)+ (k − 1) ṗi (r0) ṗi (b1)
k−2 = 1+ O(k/2k). (81)

For a lower bound it suffices to consider the contribution from clauses with all k
incident colors in {b}:

m̂λ p̂i (b1) = p̂i (b1) ≥ ṗi (b)
k−1[1− O(k/2k)] = 1− O(k/2k) . (82)

Lastly, note by symmetry that

m̂λ p̂i (r1) = p̂i (r1) = p̂i (b0)
k−1 = (2/2k) p̂i (b)k−1 .

Combining these estimates proves (72). ��
Proof of LemmaA.4 We control ṗu and � ṗu in two cases.

1. First consider σ̇ ∈ �̇\{r,b}. Up to permutation there is a unique σ̂ ∈ {f}d−1 such
that σ̇ = T̂ (σ̂ ). Let comb(σ̇ ) denote the number of distinct tuples σ̂ ′ that can be
obtained by permuting the coordinates of σ̂ . For this σ̂ we have

d∏
j=2

m̂(σ̂ j )
λ ≤ ż(σ̇ )λ ≤

d∏
j=2

m̂(σ̂ j )
λ +

d∏
j=2
(1− m̂(σ̂ j ))

λ, (83)

where the rightmost inequality uses that (a + b)λ ≤ aλ + bλ for a, b ≥ 0 and
λ ∈ [0, 1]. It follows that for i = 1, 2 we have

1 The converse is not needed for the final bound, but we mention it for the sake of concreteness.

123



The number of solutions for random regular NAE-SAT 65

comb(σ̇ )
d∏
j=2

m̂ p̂i (σ̂ j ) ≤ ṗui (σ̇ ) ≤ comb(σ̇ )
{ d∏

j=2
m̂λ p̂i (σ̂ j )+

d∏
j=2
(1− m̂)λ p̂i (σ̂ j )

}
.

It follows by symmetry that m̂λ p̂i (f) = (1− m̂)λ p̂i (f), so

[m̂λ p̂i (s)]d−1 ≤ ṗui (f) ≤ [m̂λ p̂i (f)]d−1+[(1−m̂)λ p̂i (f)]d−1 = 2[m̂λ p̂i (f)]d−1 .
(84)

Making use of the symmetry together with (83) gives

� ṗu(f) ≤ 2
∑

σ̂∈(�̂f)d−1

∣∣∣∣
d−1∏
j=2

m̂λ p̂1(σ̂ j )−
d−1∏
j=2

m̂λ p̂2(σ̂ j )

∣∣∣∣,

and applying (77) gives

� ṗu(f) � d‖�m̂λ p̂‖
(
m̂λ p̂1(f)+�m̂λ p̂1(f)

)d−2
.

Combining (72) with the lower bound from (83) then gives

� ṗu(f) � d‖�m̂λ p̂‖ max
i=1,2

{
ṗui (f)

}
.

2. ] Next consider σ̇ ∈ {r,b}: for x ∈ {0,1}, note that ṗui (rx) = p̂i (px)
d−1, and

ṗui (rx)− ṗui (bx)

ṗui (rx)
= p̂i (bx)

d−1

p̂i (px)
d−1 =

(
1− p̂i (rx)

p̂i (px)

)d−1
= O(2−k), (85)

where the last estimate uses (72) and d/k = 2k−1 ln 2 + O(1). Applying (77)
gives

� ṗu(p1) � d‖m̂λ p̂‖
(
min
i=1,2

{
m̂λ p̂i (p1)

}
+�m̂λ p̂(p1)

)d−2
.

Suppose without loss that m̂λ p̂1(b1) ≤ m̂λ p̂2(b1): then

m̂λ p̂1(p1)+�m̂λ p̂(p1) = m̂λ p̂2(b1)+ m̂λ p̂1(r1)+�m̂λ p̂(r1)
≤ m̂λ p̂2(p1)+ 2�m̂λ p̂(r1),

and substituting into the above gives

� ṗu(p1) � d‖m̂λ p̂‖
(
max
i=1,2

{
m̂λ p̂i (p1)

}
+�m̂λ p̂(r1)

)d−2
.
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From (73) and the definition (68) of � we have �m̂λ p̂(r1) = O(k/2k)� ṗ(f) =
O(k/4k). It follows from (85) that

� ṗu(p1) � d‖�m̂λ p̂‖ max
i=1,2

{
ṗui (b1)

}
. (86)

It remains to show ṗu(f)/ ṗu(b) = O(2−k). From (81),

m̂λ p̂i (f)− m̂λ p̂i (b1) ≤ m̂λ p̂i,∞(f)− m̂λ p̂i (b1) ≤ (k − 1)
[
ṗi (g0)− ṗi (r0)

]
ṗi (b1)

k−2,

and by definition of � the right-hand side is O(k/4k) ṗi (b)k−1. Now recall from (82)
that m̂λ p̂i (b1) � ṗi (b)k−1. Combining these gives

m̂λ p̂i (f) ≤ [1+ O(k/4k)]m̂λ p̂i (b1) . (87)

Recalling (83), it follows that

ṗui (f)

ṗui (b1)
�
(

m̂λ p̂i (f)

m̂λ p̂i (p1)

)d−1
�
(
m̂λ p̂i (b1)

m̂λ p̂i (p1)

)d−1
� 2−k,

where the last step uses (72). This concludes the proof. ��
Proof of LemmaA.5 Denote q̃i ≡ BPq̇i and �q̃ ≡ |q̃1 − q̃2|. We first check that q̃i
lies in �: the first condition of (68) follows from (74), and the second is automatically
satisfied from the definition of ḂP. Next we bound �q̃ . With some abuse of notation,
we shall write q̃i (X) ≡ q̃i (r)− q̃i (b) and

�q̃(X) ≡ |(q̃1(r)− q̃1(b))− (q̃2(r)− q̃2(b))| .

Let ṗui (X) and � ṗu(X) be similarly defined. Arguing similarly as in the derivation of
(86),

� ṗu(X) = 2| p̂1(b1)d−1 − p̂2(b1)
d−1| � k‖�m̂λ p̂‖ max

i=1,2

{
ṗui (b)

}
(88)

Recalling ‖q̃i‖ = 1, we have

2q̃i (r) = [1− q̃i (f)] + [q̃i (r)− q̃i (b)] and
2q̃i (b) = [1− q̃i (f)] − [q̃i (r)− q̃i (b)], so
‖�q̃‖ � �q̃(f)+�q̃(X).

If we take a ∈ {1, 2} and b = 2− a, and write Żi ≡ ‖ ṗui ‖, then

�q̃(f)+�q̃(X) ≤ � ṗu(f)+� ṗu(X)

Ża
+ |Ża − Żb|

Ża

[ ṗub(f)+ ṗub(r)− ṗub(b)]
Żb

.
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If we take a ∈ argmaxi ṗ
u
i (b), then, by (74) and (88), the first term on the right-hand

side is

� k‖�m̂λ p̂‖ ṗua(b)
Ża

� k‖�m̂λ p̂‖,

where the rightmost inequality uses Żi ≥ ṗui (b). As for the second term, (74) gives

|Ża − Żb|
Ża

� d‖�m̂λ p̂‖ and
[ ṗub(f)+ ṗub(r)− ṗub(b)]

Żb
� 2−k .

Combining these estimates yields the claimed bound. ��

A.2. Pair coloring recursions

In this section we analyze the bp recursions for the pair coloring model and prove the
remaining assertions of Proposition 5.5. Recall that we assume q̇ = q̇av and q̂ = q̂av,
where these are now probability measures on (�̇T )

2 and (�̂T )
2 respectively. For any

measure p(x) defined on x ≡ (x1, x2) in (�̇T )
2 or (�̂T )

2, define

(fp)(x) ≡ p(fx) where fx ≡ x ⊕ (0,1) ≡ (x1, x2 ⊕ 1) .

Recall from Sect. 5.3 the definition of �(c, κ). We will prove that

Proposition A.6 For any c ∈ (0, 1] and any q̇1, q̇2 ∈ �(c, 1), we have BPq̇1,BPq̇2 ∈
�(1, 1) and

‖BPq̇1 − BPq̇2‖ = O(k4/2k)‖q̇1 − q̇2‖ + O(k4/2k)
∑
i=1,2

‖q̇i − fq̇i‖. (89)

Assuming this result, it is straightforward to deduce Proposition 5.5A:

Proof of Proposition 5.5A Let q̇(0) be the uniform probability measure on
{b0,b1,r1,r0}2, and define recursively q̇(l) = BPq̇(l−1) for l ≥ 1. It is clear that
q̇(0) ∈ �(1, 1) and q̇(0) = fq̇(0). Since q̇(l) = fq̇(l) for all l ≥ 1, it follows from (89)
that (q̇(l))l≥1 forms an 	1 Cauchy sequence. It follows by completeness of 	1 that q̇(l)

converges to a limit q̇(∞) = q̇� ∈ �(1, 1), satisfying q̇� = fq̇� = BPq̇�. This implies
that for any probability measure q̇ ,

‖q̇ − fq̇‖ ≤ ‖q̇ − q̇�‖ + ‖q̇� − fq̇‖ = 2‖q̇ − q̇�‖ .

Applying (89) again gives

‖BPq̇ − q̇�‖ = O(k4/2k)‖q̇ − q̇�‖ + O(k4/2k)‖q̇ − fq̇‖ = O(k4/2k)‖q̇ − q̇�‖,

proving the claimed contraction estimate. Uniqueness of q̇� can be deduced from this
contraction. ��
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We now turn to the proof of Proposition A.6; the proof of Proposition 5.5B is given
after. Let ṄB, N̂B now denote the non-normalized bp recursions for the pair model. Let
r[σ̇ ] ∈ {0, 1, 2} count the number of r spins in σ̇ , and let ṗ ≡ ṗ(q̇) be the reweighted
measure

ṗ(σ̇ ) ≡ q̇(σ̇ )

1− q̇(r[σ̇ ] > 0)
. (90)

Recalling convention (69), we will denote

m̂λr̂(σ̂ 1, σ̂ 2) ≡ [m̂(σ̂ 1)m̂(σ̂ 2)]λr̂(σ̂ 1, σ̂ 2) .

Let N̂B and ṄB be the non-normalized pair bp recursions at parameters λ, T . Starting
from q̇i ∈ �(c, κ) (i = 1, 2), we denote

ṗi ≡ ṗ(q̇i ) (as defined by (refe:reweight.second)),

p̂i ≡ N̂B( ṗi ) and p̂i,∞ ≡ N̂Bλ,∞( ṗi ),
ṗui ≡ ṄB( p̂i ) and q̃i ≡ ḂP p̂i = BPq̇i .

With this notation in mind, the proof of Proposition A.6 is divided into the following
lemmas.

Lemma A.7 (effect of reweighting) Suppose q̇1, q̇2 ∈ �(c, κ) for c ∈ (0, 1] and
κ ∈ [0, 1]: then

‖� ṗ‖ ≡ O(22(1−κ)k)‖�q̇‖,
‖ ṗi − f ṗi‖ ≡ O(2(1−κ)k)‖q̇i − fq̇i‖.

Lemma A.8 (clause bp contraction) Suppose q̇1, q̇2 ∈ �(c, κ) for c ∈ (0, 1] and
κ ∈ [0, 1]: then

�m̂λ p̂(yy) = O(k3/2k)� ṗ(gg) = O(k3/2(1+c)k),
�m̂λ p̂({br,bf≥1}) = O(k2/2k)[� ṗ(gg)+ 2−k� ṗ(�̇2\{rr})] = O(k3/2(1+c)k),

‖�m̂λ p̂‖ = O(k3/2k)‖� ṗ‖ = O(k32(1−2κ)k), (91)

and the same estimates hold with f p̂ in place of p̂. For both i = 1, 2,

‖m̂λ p̂i − m̂λf p̂i‖ = O(k3/2(1+κ)k)‖ ṗi − f ṗi‖ = O(k3/22κk)‖q̇i − fq̇i‖ . (92)

Lemma A.9 (clause bp output values) Suppose q̇1, q̇2 ∈ �(c, κ) for c ∈ (0, 1] and
κ ∈ [0, 1]. For s, t ⊆ �̂ let st ≡ s × t . Then it holds for all s, t ∈ {r1,b1,f,s} that

m̂λ p̂i (s, t)

(2/2k)r[s]+r[t]
=
{
1+ O(k2/2k) if r[s] + r[t] ≤ 1,

1+ O(k2/2ck) if r[s] + r[t] = 2.
(93)
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Furthermore we have the bounds

m̂λ p̂i (f≥1t)+ m̂λ p̂i (tf≥1) ≤ O(k/4k) for all t ∈ {r1,b1,f,s},
m̂λ p̂i ({f} × �̂)− m̂λ p̂i ({b1} × �̂) ≤ O(k/4k). (94)

The same estimates hold with f p̂i in place of p̂i .

Lemma A.10 (variable bp) Suppose q̇1, q̇2 ∈ �(c, κ) for c ∈ (0, 1] and κ ∈ [0, 1].
Then BPq̇1,BPq̇2 ∈ �(c′, 1) for c′ = max{0, 2κ − 1}, and

∥∥∥BPq̇1 − BPq̇2
∥∥∥ � k

∥∥∥�m̂λ p̂ +�m̂λf p̂
∥∥∥)+ k2k

∑
i=1,2

∥∥∥m̂λ p̂i − m̂λf p̂i
∥∥∥ .

Proof of Proposition A.6 Follows by combining the preceding lemmas A.7–A.10. ��
Proof of Proposition 5.5B If q̇ ∈ �(c, 0) is a fixed point of BP, then it follows from
Lemmas A.8–A.10 that we have q̇ ∈ �(c, 0) ∩ �(0, 1) = �(c, 1). ��

We now prove the three lemmas leading to Proposition A.6.

Proof of LemmaA.7 Applying (75) we have

| ṗ1(σ̇ )− ṗ2(σ̇ )| ≤ |q̇1(σ̇ )− q̇2(σ̇ )|
q̇1(gg)

+ |q̇1(gg)− q̇2(gg)|
q̇1(gg)q̇2(gg)

q̇2(σ̇ ),

and summing over σ̇ ∈ �̇2 gives

‖� ṗ‖ ≤ ‖q̇1 − q̇2‖
q̇1(gg)

+ |q̇1(gg)− q̇2(gg)|
q̇1(gg)q̇2(gg)

≤ 2‖q̇1 − q̇2‖
q̇1(gg)q̇2(gg)

.

Since q̇i ∈ �, we have, using (1�) and (2�),

ṗi (�̇
2\{rr}) = O(1) , ṗi (rr) = O(2(1−κ)k) . (95)

Consequently q̇i (gg)−1 ≤ O(1)2(1−κ)k , and the claimed bound on ‖� ṗ‖ follows.
The bound on ‖ ṗi − f ṗi‖ follows by noting that if q̇2 = fq̇1, then q̇1(gg) = q̇2(gg).

��
Proof of LemmaA.8 We will prove (91) for p̂i ; the proof for f p̂i is entirely similar. It
follows from the symmetry ṗi = ( ṗi )av that for any x, y ∈ {0,1},
∣∣∣ ṗi (bb)− 4 ṗi (bxb y)

∣∣∣ = 2
∣∣∣ ṗi (bxb y⊕1)− ṗi (bxb y)

∣∣∣ = 2
∣∣∣ ṗi (b0b0)− ṗi (b0b1)

∣∣∣,
from which we obtain that

� ṗ(bb) � max
i=1,2

∣∣∣ ṗi (b0b0)− ṗi (b0b1)
∣∣∣ .
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Recallg = {b,f} and ṗi (gg) = 1. Combining the abovewith the definition of�(c, κ)
gives

� ṗ(gg) ≤ � ṗ(bb)+� ṗ(gf)+� ṗ(fg)

≤
∑
i=1,2

{∣∣∣ ṗi (b0b0)− ṗi (b0b1)
∣∣∣+ ṗi (gf)+ ṗ(fg)

}
= O(2−ck). (96)

Step I.We first control�m̂λ p̂(σ̂ ). By symmetry it suffices to analyze the bp recursion
at a clause with all literals L j = 0. We distinguish the following cases of σ̂ ∈ �̂2:

1. Recall y ≡ r ∪ f, and note {y}\{s} ⊆ a0 ∪ a1 (as defined by (78)). Thus

�m̂λ p̂({yy}\{ss}) ≤
∑

x∈{0,1}

{
�m̂λ p̂(ax × {y})+�m̂λ p̂({y} × ax)

}
. (97)

For x ∈ {0,1}, consider σ̂ ∈ ax×{y}: in order for σ̇ ∈ (�̇2)k−1 to be compatible
with σ̂ , it is necessary that σ̇ j ∈ A ≡ {gx} × {g} for all 2 ≤ j ≤ k. Combining
with (77) gives

�m̂λ p̂(ax × {y}) ≤
∑
σ̇∈Ak−1

∣∣∣∣
k∏
j=2

ṗ1(σ̇ j )−
k∏
j=2

ṗ2(σ̇ j )

∣∣∣∣ ≤ k� ṗ(gg)
(
ṗ1(A)+� ṗ(gg)

)k−2
.

It follows from the definition of �(c, κ) that ṗ1(A)+� ṗ(gg) = 1
2 + O(2−ck),

so we conclude
�m̂λ p̂({yy}\{ss}) = O(k/2k)� ṗ(gg) . (98)

2. Now take σ̂ = ss: for σ̇ ∈ (�̇2)k−1 to be compatible with σ̂ , it is necessary that
σ̇ ∈ {yy}k−1. On the other hand, it is sufficient that σ̇ ∈ {gg}k−1 does not belong
to any of the sets (A0)

k−1, (A1)
k−1, (B0)

k−1, (B1)
k−1, where for x ∈ {0,1} we

define Ax ≡ {bxg} ∪ {fg} and Bx ≡ {gbx} ∪ {gf}. Therefore

�m̂λ p̂(ss) ≤
∑

x∈{0,1}

∑
σ̇∈(Ax)k−1∪(Bx)k−1

∣∣∣∣
k∏
j=2

ṗ1(σ̇ j )−
k∏
j=2

ṗ2(σ̇ j )

∣∣∣∣ = O(k/2k)� ṗ(gg),

where the last estimate follows by the same argument that led to (98). This con-
cludes the proof of the first line of (91).

3. Now consider σ̂ with exactly one coordinate in {b}, meaning the other must be
in {y}. Recalling convention (69), we assume without loss that σ̂ ∈ {b1y} and
proceed to bound �m̂λ p̂(σ̂ ). Let σ̇ ∈ (�̇2)k−1 be compatible with σ̂ . There are
two cases:

a. If σ̇ has no entry in {r}, it must also be compatible with some σ̂ ′ ∈ {yy}, as
long as we permit the possibility that |(σ̂ ′)1| > T . Such σ̇ gives the same con-
tribution to m̂λ p̂(σ̂ ) as to m̂λ p̂∞(yy). It follows from the preceding estimates

123



The number of solutions for random regular NAE-SAT 71

that the contribution to �m̂λ p̂(b1y) from all such σ̇ is upper bounded by

�m̂λ p̂∞(yy) = O(k/2k)� ṗ(gg) (99)

b. The only remaining possibility is that some permutation of σ̇ belongs to A ×
Bk−2 for A = {r0g} and B = {b1g}: the contribution to �m̂λ p̂(b1y) from
all such σ̇ is

≤ (k − 1)
∑

σ̇∈A×Bk−2

∣∣∣∣
k∏
j=2

ṗ1(σ̇ j )−
k∏
j=2

ṗ2(σ̇ j )

∣∣∣∣ = O(k2/2k)‖� ṗ‖, (100)

where the last estimate follows using (76) and (95).

Combining the above estimates (and using the symmetry between b1y and yb1)
gives

�m̂λ p̂(b1y)+�m̂λ p̂(yb1) = O(k2/2k)‖� ṗ‖ . (101)

If we further have σ̂ ∈ {b1}×{r,f≥1}, then, arguing as above, σ̇ either contributes
to �m̂λ p̂∞(y × {r,f≥1}), or else belongs to Ax × (Bx)

k−2 for Ax = {r0gx},
Bx = {b1gx} and x ∈ {0,1}. The contribution from first case is bounded by (98).
The contribution from the second case, using (76) and (95), is

� k� ṗ(�̇2\{rr})
(

max
x∈{0,1} ṗ1(Bx)+� ṗ(gg)

)k−2 = O(k2/4k)� ṗ(�̇2\{rr}) .

The second claim of (91) follows by combining these estimates and recalling (96).
c. Lastly, consider σ̂ ∈ {bb}. Without loss of generality, we take σ̂ = b1b1 and

proceed to bound �m̂λ p̂(b1b1). Let σ̇ ∈ (�̇2)k−1 be compatible with σ̂ . We
distinguish three cases:

a. For at least one i ∈ {1, 2}, σ̇ i contains no entry in {r}. In this case σ̇ is also
compatible with some σ̂ ′ ∈ {b1y}∪{yb1}, as long as we permit the possibility
that |(σ̂ ′)i | > T . The contribution of all such σ̇ to �m̂λ p̂(b1b1) is therefore
upper bounded by

�m̂λ p̂∞(b1y)+�m̂λ p̂∞(yb1) = O(k2/2k)‖� ṗ‖, (102)

where the last step is by the same argument as for (101).
b. The next case is that σ̇ is a permutation of (r0r0, (b1b1)k−2). The contribution

to �m̂λ p̂(b1b1) from this case is at most

(k − 1)

∣∣∣∣ ṗ1(r0r0) ṗ1(b1b1)
k−2 − ṗ2(r0r0) ṗ2(b1b1)

k−2
∣∣∣∣ .
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Using (76) and the definition of �(c, κ), this is at most

O(k2/4k)
(
� ṗ(r0r0)+ ṗ(r0r0) ·� ṗ(b1b1)

)

= O(k2/4k)‖ ṗ‖‖� ṗ‖ = O(k2/2(1+κ)k)‖� ṗ‖. (103)

c. The last case is that σ̇ is a permutation of (r0b1,b1r0, (b1b1)k−3). The
contribution to �m̂λ p̂(b1b1) from this case is at most

k2
∣∣∣∣ ṗ1(r0b1) ṗ1(b1r0) ṗ1(b1b1)k−3 − ṗ2(r0b1) ṗ2(b1r0) ṗ2(b1b1)

k−3
∣∣∣∣ .

This is atmost O(k2/4k)‖� ṗ‖ by another application of (76) and the definition
of �(c, κ).

The above estimates together give

�m̂λ p̂(b1b1) = O(k2/2k)‖� ṗ‖, (104)

where the main contribution comes from (102). Combining with the previous
bound (101) yields the last part of (91).

Step II.Next we prove (92) by improving the preceding bounds in the special case that
ṗ1 = ṗ and ṗ2 ≡ f ṗ. Recall p̂i ≡ N̂B( ṗi ); it follows that p̂2 = f p̂1. Thus, for any
σ̂ ∈ �̂2 with σ̂ 2 = s, we have σ̂ = fσ̂ , consequently p̂2(σ̂ ) = p̂1(fσ̂ ) = p̂1(σ̂ ). For
σ̂ ∈ �̂2 with σ̂ 1 = s, we have σ̂ = (fσ̂ ) ⊕ 1, so p̂2(σ̂ ) = p̂1(fσ̂ ) = p̂1(σ̂ ), where
the last step uses that p̂1 = ( p̂1)av. It follows that instead of (97) and (99) we have the
improved bound

�m̂λ p̂∞(yy) = �m̂λ p̂∞({yy}\({sy} ∪ {ys})) ≤
∑

x, y∈{0,1}
�m̂λ p̂∞(ax × a y)

= O(k)‖� ṗ‖
∑

x, y∈{0,1}

(
ṗ1(gx ,g y)+� ṗ(gg)

)k−2 = O(k/4k)‖ ṗ − f ṗ‖.

Similarly, instead of (100) we would only have a contribution from σ̇ belonging to
either A0 × (B0)

k−2 or A1 × (B1)
k−2, where Ax = {r0gx} and Bx = {b1gx}. It

follows that instead of (101) and (102) we have the improved bound

�m̂λ p̂∞(b1y)+�m̂λ p̂∞(yb1) = O(k4/4k)‖� ṗ‖ .

Previously the main contribution in (104) came from (102), but now it comes instead
from (103). This gives the improved bound �m̂λ p̂(b1b1) = O(k2/2(1+κ)k), which
proves the first part of (92). The second part follows by applying Lemma A.7. ��
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Proof of LemmaA.9 We first prove (93). Assume s, t ∈ {b1,f,s}, and write st ≡
s × t ⊆ �̂2. Then for a lower bound we have

m̂λ p̂i (st) ≥ [1− O(k/2k)] ṗi (bb)k−1 = 1− O(k/2k) .

for an upper bound we have

m̂λ p̂i (st) ≤ ṗi (gg)
k−1 + k ṗi (r0g) ṗi (b1g)

k−2 + k ṗi (gr0) ṗi (gb1)
k−2

+ k ṗi (r0r0) ṗi (b1b1)
k−2 + k2 ṗi (r0b1) ṗi (b1r0) ṗi (b1b1)

k−3

= 1+ O(k2/2k).

Writing r1t ≡ r1 × t for t ∈ {b1,f,s}, a similar argument gives

m̂λ p̂i (r1t) ≥ [1− O(k/2k)] ṗi (b0b)k−1 = [1− O(k/2k)] · (2/2k) ,
m̂λ p̂i (r1t) ≤ ṗi (b0g)

k−1 + k ṗi (b0r0) ṗi (b0b1)
k−2 = [1− O(k/2k)] · (2/2k) .

(105)

Lastly, it is easily seen that

m̂ p̂i (r1r1) = ṗi (b0b0)
k−1 = [1− O(k/2ck)] · (2/2k)2 .

This concludes the proof of (93), and we turn next to the proof of (94). Arguing
similarly as for (80) gives

m̂λ p̂i ({ff}\{ss}) ≤ m̂λ p̂i (f≥1f)+ m̂λ p̂i (ff≥1) = O(k/4k) .

Next, suppose σ̇ is compatible with σ̂ ∈ b1f≥1: if σ̇ has no entry in {r}, then it is
also compatible with some σ̂ ′ ∈ ff≥1, provided we allow |(σ̂ ′)1| > T . Therefore

m̂λ p̂i (b1f≥1)− m̂λ p̂i,∞(ff≥1)

≤
∑

y∈{0,1}

[
k ṗi (r0f) ṗi (b1g y)

k−2 + k2 ṗi (r0b y) ṗi (b1f) ṗi (b1g y)
k−3
]
,

and by definition of �(c, κ) this is O(k/4k). Finally,

m̂λ p̂i (r1f≥1) ≤
∑

y∈{0,1}
k ṗi (b0f) ṗi (b0g y)

k−2 = O(k/8k),

which proves the first part of (94). For the second part, arguing as for (87), we have
for any η̂ ∈ �̂ that

m̂λ p̂i (fη̂)− m̂λ p̂i (b1η̂) ≤ (k − 1)
∑
σ̇∼η̂
[ ṗi (g0σ̇2)− ṗi (r0σ̇2)]

k∏
j=3

ṗi (b1σ̇ j ) .

123



74 A. Sly et al.

Note that σ̇ has at most one entry in {r}. If σ̇2 = r0, then σ̇ j = b1 for all j ≥ 3.
Since q̇i ∈ �(c, κ) (which means also that q̇i = (q̇i )av), we have

∑
σ̇∼η̂

1{σ̇2 = ζ }
k∏
j=3

ṗi (b1σ̇ j ) ≤
{
ṗi (b1b1)k−2 ≤ O(4−k) if ζ = r0,

ṗi (b1g)k−3 ≤ O(2−k) if ζ ∈ �̇\{r0}.

On the other hand, q̇i ∈ �(c, κ) also implies

ṗi (g0ζ )− ṗi (r0ζ ) ≤ O(2−k) ṗi (b0ζ )+ ṗi (fζ ) ≤
{
O(1) if ζ = r0,

O(2−k) if ζ ∈ �̇\{r0}.

Combining these estimates and summing over η̂ ∈ �̂ proves the second part of (94).��
An immediate application of (93), which will be useful in the next proof, is that

m̂λ p̂i (rx η̂)

m̂λ p̂i (bx η̂)
≥ [1+ O(k2/2k)] · (2/2k) . (106)

for all η̂ ∈ {b0,b1,f,s} and all x ∈ {0,1}.
Proof of LemmaA.10 We divide the proof in two parts.
Step I. Non-normalized messages.

1. First consider σ̇ ∈ {ff}. Recalling (a+b)λ ≤ aλ+bλ for a, b ≥ 0 and λ ∈ [0, 1],

� ṗu(ff) ≤ 2
∑

r̂∈{ p̂,f p̂}

∑
σ̂∈{ff}k−1

∣∣∣∣
d∏
j=2

m̂λr̂1(σ̂ j )−
d∏
j=2

m̂λr̂2(σ̂ j )

∣∣∣∣

where the r̂ = f p̂ term arises from the fact that

m̂(σ̂ 1)λ[1− m̂(σ̂ 2)]λ p̂(σ̂ ) = m̂(σ̂ 1)λm̂(σ̂ 2 ⊕ 1)λ(f p̂)(fσ̂ ) = m̂λf p̂(fσ̂ ) .

Applying (77) gives

� ṗu(ff) = O(d)
∑

r̂∈{ p̂,f p̂}
�m̂λr̂(ff)

(
m̂λr̂1(ff)+�m̂λr̂(ff)

)d−2
.

Wehave from (91) and (93) that m̂λ p̂1(ff) � 1 and�m̂λ p̂(ff) = O(k3/2(1+c)k),
so

� ṗu(ff) = O(d)‖�m̂λ p̂ +�m̂λf p̂‖ · ṗu1(ff) . (107)

2. Next consider σ̇ ∈ {p1f}. Let r̂max(σ̂ ) ≡ maxi=1,2 r̂i (σ̂ )—in this notation,

r̂max(�̂) =
∑
σ̂∈�̂

max
i=1,2 r̂i (σ̂ ) ≥ max

i=1,2
∑
σ̂∈�̂

r̂i (σ̂ ) = max
i=1,2 r̂i (�̂)
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where the inequality may be strict. Then

� ṗu(p1f) = O(d)
∑

r̂∈{ p̂,f p̂}
�m̂λr̂(p1f)[m̂λr̂max(p1f)]d−2 .

Let a ∈ argmaxi r̂i (b1s), so that

0 ≤ m̂λr̂max(p1f)− m̂λr̂a(p1f) ≤ �m̂λr̂(r1f)+�m̂λr̂(b1f≥1) = O(2−(1+c)k),

where the last estimate is by (91) and (94). We also have from (93) that
m̂λ p̂(p1f) ≥ m̂λ p̂(b1f) � 1, and it follows that

[m̂λr̂max(p1f)]d−2 � [m̂λr̂a(p1f)]d−1. (108)

Applying (93) and (94) again, we have (for i = 1, 2)

[m̂λr̂i (p1f)]d−1 � [m̂λr̂i (p1s)]d−1 .

On the other hand, assuming T ≥ 1, we have

ṗui (r1f) ≥ [m̂λr̂i (p1s)]d−1 − [m̂λr̂i (b1s)]d−1 � [m̂λr̂i (p1s)]d−1

where the last step follows by (106). Similarly,

ṗui (r1f)− ṗui (b1f) = O(1)
∑

r̂∈{ p̂,f p̂}
m̂λr̂i (b1f)

d−1 = O(2−k)
∑

r̂∈{ p̂,f p̂}
m̂λr̂i (p1f)

d−1

= O(2−k) ṗui (r1f) = O(2−k) ṗui (b1f), (109)

where the last step follows by rearranging the terms. Combining the above gives

� ṗu(p1f) ≤ O(d)‖�m̂λ p̂ +�m̂λf p̂‖ max
i=1,2 ṗ

u
i (b1f). (110)

Clearly, similar bounds hold if we replace p1f with any of p0f, fp1, or fp0.
3. Lastly we bound � ṗu(pxpx) for x, y ∈ {0,1}. As in the single-copy recursion,

we denote

ṙ(Xx σ̇ ) ≡ ṙ(rx σ̇ )− ṙ(bx σ̇ ),

ṙ(σ̇Xx) ≡ ṙ(σ̇rx)− ṙ(σ̇bx),

ṙ(XxX y) ≡ ṙ(rxr y)− ṙ(rxb y)− ṙ(bxr y)+ ṙ(bxb y).

Applying (106) gives

ṗui (Xxr y) = [ p̂i (bxp y)]d−1 = O(2−k)[ p̂i (pxp y)]d−1 = O(2−k) ṗui (rxr y),

ṗui (XxX y) = [ p̂i (bxb y)]d−1 = O(2−k) ṗui (rxr y).
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Combining the above estimates gives

ṗui (rxr y)− ṗui (bxb y) = ṗui (Xxr y)+ ṗui (rxX y)− ṗui (XxX y) = O(2−k) ṗui (rxr y) .

Further, it follows from the bp equations that

max{ ṗui (rxX y), ṗ
u
i (bxX y), ṗ

u
i (Xxr y), ṗ

u
i (Xxb y)} ≤ ṗui (rxr y)− ṗui (bxb y),

so ṗui (st) = [1+ O(2−k)] ṗui (bxb y) for all s ∈ {rx,bx}, t ∈ {r y,b y}.
(111)

Similarly, we can upper bound

� ṗu(pxp y) ≤ 4[� ṗu(rxr y)+� ṗu(Xxr y)+� ṗu(rxX y)+� ṗu(XxX y)].
≤ O(d)

∑
r̂∈{ p̂,f p̂}

∑
s∈{px ,bx}
t∈{p y,b y}

‖�m̂λr̂‖[m̂λr̂max(st)]d−2. (112)

For r̂ ∈ { p̂, f p̂}, let a = argmaxi=1,2 m̂λr̂i (b1b1): then, for any s ∈ {px,bx},
t ∈ {p y,b y},

0 ≤ m̂λr̂max(st)− max
i=1,2 m̂

λr̂i (st) ≤ m̂λr̂max(st)− m̂λr̂a(st)

≤ O(1)�m̂λr̂({pp}\{bb}) ≤ O(1/2(1+c)k),

where the last estimate is by (91). Combining with (72) and (111) gives

∑
s∈{px ,bx}
t∈{p y,b y}

[m̂λr̂max(st)]d−2 = O(1)
[
max
i=1,2 r̂i (pxp y)

]d−1 = O(1) max
i=1,2 ṗ

u
i (bb) .

Substituting into (112) gives

� ṗu(pxp y) ≤ O(d)‖�m̂λ p̂ +�m̂λf p̂‖ max
i=1,2 ṗ

u
i (bb) . (113)

Further, for any st ∈ {rxX y,Xxr y,XxX y}, we have

� ṗu(st) ≤ O(k)‖�m̂λ p̂ +�m̂λf p̂‖ max
i=1,2 ṗ

u
i (bb) . (114)

Lastly, in the special case p̂2 = f p̂1, (113) reduces to

| ṗu1(b0b0)− ṗu1(b0b1)| ≤ O(d)‖m̂λ p̂1 − m̂λf p̂1‖ ṗu1(bb)
≤ k52(1−2κ)k‖ ṗi − f ṗi‖ . (115)

where the last estimate is by (92).
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Step II. Normalized messages.Recall q̃i ≡ BPq̇i . It remains to verify that q̃i ∈ �(c′, 1)
with c′ = max{0, 2κ − 1}: recalling the definition of �, this means

|p(b0b0)− p(b0b1)| ≤ (k9/2c′k)p(bb) and p(ff)+ p({fr,rf})/2k
+ p(rr)/4k = O(2−k)p(bb); (1�′)

p(fr) = O(2−k)p(bb) and p(rr) = O(1)p(bb); (2�′)
p(rx σ̇ ) ≥ [1− O(2−k)]p(bx σ̇ ) for all x ∈ {0,1} and σ̇ ∈ �̇. (3�′)

Condition (3�′) is automatically satisfied due to the bp equations. The second part
of (2�′) follows from (111). The first part of (1�′) holds trivially if c′ = 0, and
otherwise follows from (115). We claim that

q̃i ({rf,fr,ff}) = O(2−k)q̃i (bb) . (116)

This immediately gives the first part of (2�′). Further, the bp equations give q̃i (bf) ≤
q̃i (rf) and q̃i (fb) ≤ q̃i (fr), so the second part of (1�′) also follows. To see that
(116) holds, note that the second part of (94) gives

ṗui (ff) ≤ O(1)
∑

r̂∈{ p̂,f p̂}
[m̂λr̂i (ff)]d−1 ≤ O(1)

∑
r̂∈{ p̂,f p̂}

[m̂λr̂i (b1b1)]d−1,

ṗui (r1f) ≤ O(1)
∑

r̂∈{ p̂,f p̂}
[m̂λr̂i (p1f)]d−1 ≤ O(1)

∑
r̂∈{ p̂,f p̂}

[m̂λr̂i (p1b1)]d−1.

Combining with (106) gives ṗui ({r1f,ff}) = O(2−k) ṗui (r1r1). Recalling (111)
(and making use of symmetry) gives (116). Finally, we conclude the proof of the
lemma by bounding the difference�q̃ ≡ |q̃1− q̃2|. Recalling the definition of Xx , we
have

�q̃(pp) ≤ O(1)�q̃({bb,rX,Xr,XX}),
�q̃(�̇2\{pp}) ≤ O(1)�q̃({bf,fb,ff,fX,Xf}).

We next bound �q̃(bb), which is the sum of �q̃(bxb y) over x, y ∈ {0,1}. By
symmetry let us take x = y = 0. Since q̃i = (q̃i )av, q̃i (b0b0) = 1

4 q̃i (bb) +
1
2 [q̃i (b0b0)− q̃i (b0b1)], so

�q̃(b0b0) ≤ 1
4 |q̃1(bb)− q̃2(bb)| + 1

2

∑
i=1,2

|q̃i (b0b0)− q̃i (b0b1)| .

Since the q̃i are normalized to be probability measures,

1− q̃i (�̇
2\{pp}) = q̃i (pp) = 2q̃i (rX)+ 2q̃i (Xr)− 3q̃i (XX)+ 4q̃i (bb),
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from which it follows that

|q̃1(bb)− q̃2(bb)| � |q̃1(�̇2\{pp})− q̃2(�̇
2\{pp})| +�q̃({rX,Xr,XX}) .

Combining the above estimates gives

‖�q̃‖ � �q̃(A)+
∑
i=1,2

|q̃i (b0b0)− q̃i (b0b1)|, A ≡ {bf,fb,ff,fX,Xf,rX,Xr,XX} .

Write Żi ≡ ‖ ṗui ‖. Taking a ∈ {1, 2} and b = 2− a, we find ‖�q̃‖ ≤ e1 + e2e3 + e4
with

e1 ≡ � ṗu(A)

Ża
, e2 ≡ |Ż1 − Ż2|

Ża

≤ ‖� ṗu‖
Ża

, e3 ≡ ṗub(A)

Żb
,

e4 ≡
∑
i=1,2

| ṗui (b0b0)− ṗui (b0b1)|
Żi

.

It follows from (107), (110), (114) and (116), and taking a = argmaxi ṗ
u
i (bb), that

e1 � ‖�m̂λ p̂ +�m̂λf p̂‖(d/2k) max
i=1,2 ṗ

u
i (bb)/Ża � k‖�m̂λ p̂ +�m̂λf p̂‖ .

Further, recalling (113) gives

e2 � k2k‖�m̂λ p̂ +�m̂λf p̂‖ .

Combining (109), (111), and (116) gives e3 = O(2−k). Finally, (115) gives

e4 � k2k‖m̂λ p̂i − m̂λf p̂i‖ .

Combining the pieces together finishes the proof. ��

Appendix B: The 1RSB free energy

B.1. Equivalence of recursions

In this section, we relate the coloring recursion (64) to the distributional recursion
(10), and prove the following:

Proposition B.1 Let q̇λ be the fixed point given by Proposition 5.5a for parameters
λ ∈ [0, 1] and T = ∞. Let Hλ ≡ (Ḣλ, Ĥλ, H̄λ) ∈ � be the associated triple of mea-
sures defined by Proposition 3.4. We then have the identity (s(Hλ),�(Hλ), F(Hλ)) =
(sλ,�(sλ),F(λ)).
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In the course of the proof, we will obtain Proposition 1.2 as a corollary. Throughout
the section we take T = ∞ unless explicitly indicated otherwise. We begin with
some notations. Recall that P(X) is the space of probability measures on X. Given
q̇ ∈P(�̇), we define two associated measures ṁλq̇, (1− ṁ)λq̇ on �̇ by

(ṁλq̇)(σ̇ ) ≡ ṁ(σ̇ )λq̇(σ̇ ), ((1− ṁ)λq̇)(σ̇ ) ≡ (1− ṁ(σ̇ ))λq̇(σ̇ ),

We let π̇ ≡ π̇(q̇) be the probability measure on Ṁ \{�} given by

π̇(τ̇ ) =
{
[1− q̇(r)]−1q̇(τ̇ ) if τ̇ ∈ Ṁ \{0,1, �},
[1− q̇(r)]−1q̇(bx) if τ̇ = x ∈ {0,1}.

Recall from §A.1 the mappings ṁ : �̇→ [0, 1] and m̂ : �̇→ [0, 1]. We then denote
the pushforward measure u̇ ≡ u̇(q̇) ≡ π̇ ◦ ṁ−1, so that u̇ belongs to the space P
of discrete probability measures on [0, 1]. Analogously, given q̂ ∈P(�̂), we define
two associated measures m̂λq̂, (1− m̂)λq̂ on �̂. We let π̂ ≡ π̂(q̂) be the probability
measure on M̂ \{�} given by

π̂(τ̂ ) ≡
{
[1− q̂(b)]−1q̂(τ̂ ) if τ̂ ∈ M̂ \{0,1, �},
[1− q̂(b)]−1q̂(rx) if τ̂ = x ∈ {0,1},

and we then denote û ≡ û(q̂) ≡ π̂ ◦ m̂−1, so that û ∈P also. The next two lemmas
follow straightforwardly from the above definitions, and we omit their proofs:

Lemma B.2 Suppose q̇ ∈P(�̇) satisfies q̇ = q̇av and

ṁλq̇(f) = q̇(r1)− q̇(b1) = q̇(r0)− q̇(b0) = (1− ṁ)λq̇(f) (117)

Then q̂ ≡ B̂Pq̇ ∈P(�̂) must satisfy q̂ = q̂av and

m̂λq̂(f) = q̂(b1) = q̂(b0) = (1− m̂)λq̂(f), (118)

Let ẑ ≡ (N̂Bq̇)/(B̂Pq̇) be the normalizing constant. Then u̇ ≡ u̇(q̇) and û ≡ û(q̂)
satisfy

û = R̂λ(u̇), Ẑλ(u̇) = ẑ(1− q̂(b))

(1− q̇(r))k−1
. (119)

Lemma B.3 Suppose q̂ ∈P(�̂) satisfies q̂ = q̂av and (118). Then q̇ ≡ B̂Pq̂ ∈P(�̇)
must satisfy q̇ = q̇av and (117). Let ż ≡ (ṄBq̂)/(ḂPq̂) be the normalizing constant:
then

u̇ = Ṙλ(û), Żλ(û) = ż(1− q̇(r))

(1− q̂(b))d−1
. (120)

Proof of Proposition 1.2 This is simply a rephrasing of the proof of Proposition 5.5a,
using Lemma B.2 and Lemma B.3. ��
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We next prove Proposition B.1. In the remainder of this section, fix λ ∈ [0, 1] and
T = ∞. Let q̇ ≡ q̇λ be the fixed point of BP ≡ BPλ,∞ given by Proposition 5.5a. Let
q̂ ≡ q̂λ denote the image of q̇ under the mapping B̂P ≡ B̂Pλ,∞. Denote the associated
normalizing constants

ẑ ≡ ẑλ ≡ (N̂Bq̇)/(B̂Pq̇), ż ≡ żλ ≡ (ṄBq̂)/(ḂPq̂) .

Let Hλ ≡ (Ḣλ, Ĥλ, H̄λ) be the triple of associated measures defined as in Propo-
sition 3.4, with normalizing constants (żλ, ẑλ, z̄λ). Recall from (12) that F(λ) =
ln Żλ + α ln Ẑλ − d ln Z̄λ. We now show that it coincides with F(Hλ):

Lemma B.4 Under the above notations, F(Hλ) = ln żλ + α ln ẑλ − d ln z̄λ, and

Z̄λ = z̄λ

(1− q̇λ(r))(1− q̂λ(b))
, Żλ = żλ

(1− q̂λ(b))d
, Ẑλ = ẑλ

(1− q̇λ(r))k
.

(121)
Consequently F(λ) = F(Hλ).

Proof It follows from the definition (43) (and recalling from Corollary 2.18 that
�̂(σ )λ = F̂(σ )λv̂(σ )) that

F(Hλ) = 〈ln(�̇λ/Ḣ), Ḣλ〉 + α〈ln(�̂λ/Ĥλ), Ĥλ〉 + d〈ln(�̄λ H̄λ), H̄λ〉 .

Substituting in Definition 5.6 and rearranging gives

F(Hλ)−
(
ln żλ + α ln ẑλ − d ln z̄λ

)

= −
〈 d∑
i=1

ln q̂λ(σ̂i ), Ḣλ
〉
− α

〈 k∑
i=1

ln q̇λ(σ̇i ), Ĥλ
〉
+ d〈ln[q̇λ(σ̇ )q̂λ(σ̂ )], H̄λ〉.

This equals zero since Hλ ∈ �. The proof of (121) is straightforward from the pre-
ceding definitions, and is omitted. ��
Proof of Proposition B.1 By similar calculations as above, it is straightforward to verify
that sλ = s(Hλ). Since by definition F(λ) = λsλ + �(sλ) and F(Hλ) = λs(Hλ) +
�(Hλ), it follows that �(sλ) = �(Hλ), concluding the proof. ��
Proof of Proposition 3.13 Immediate consequence of Proposition B.1 together with
Proposition 5.5b. ��

B.2. Large-k asymptotics

Wenowevaluate the large-k asymptotics of the free energy, beginningwith (12). Let μ̇λ
be the probabilitymeasure on [0, 1] given by Proposition 1.2, andwrite μ̂λ ≡ R̂λ(μ̇λ).
In what follows it will be useful to denote μ̇λ(f) ≡ μ̇λ((0, 1)), as well as

ψλ ≡
∫

xλ1{x ∈ (0, 1)}μ̇λ(dx), ρλ ≡
∫

yλ1{y ∈ (0, 1)\{ 12 }}μ̂λ(dy) .

123



The number of solutions for random regular NAE-SAT 81

Proposition B.5 For k ≥ k0, αlbd ≤ α = (2k−1 − c) ln 2 ≤ αubd, and λ ∈ [0, 1],

ln Żλ = ln 2− (1− 2λ−1)/2k + d ln
(
2−λμ̂λ( 12 )+ μ̂λ(1)+ ρλ

)
+ err, (122)

−d ln Z̄ = −d ln
(
2−λμ̂λ( 12 )+ μ̂(1)+ ρλ

)
− (k ln 2)[−μ̇λ(f)+ 2ψλ] + err,

(123)

α ln Ẑ = α ln(1− 2/2k)+ (k ln 2)(−μ̇λ(f)+ 2ψλ)+ err, (124)

where err denotes any error bounded by kO(1)/4k . Altogether this yields

F(λ) = frs(α)− (1− 2λ−1)/2k + err = [(2c − 1) ln 2− (1− 2λ−1)]/2k + err .

On the other hand λsλ = λ(ln 2)2λ−1/2k + err.

Proof of Proposition 1.4b Apply Proposition B.5: setting F(λ) = λsλ gives

αλ = (2k−1 − cλ) ln 2+ err, cλ = 1

2
+ 1− 2λ−1(1− λ ln 2)

2 ln 2
.

Substituting the special values λ = 1 and λ = 0 gives

ccond = c1 = 1, csat = c0 = 1

2
+ 1

4 ln 2
,

verifying (1) and (16). ��
Proof of Proposition B.5 Throughout the proof we abbreviate εk for a small error term
which may change from one occurrence to the next, but is bounded throughout by
kC/2k for a sufficiently large absolute constant C . Note that

μ̂λ(
1
2 ) = 1− 2 · 2

1−λ

2k
+ εk, μ̂λ(1) = μ̂λ(0) = 21−λ

2k
+ εk, μ̂λ((0, 1)\{ 12 }) = εk,

fromwhich it follows that ρλ = εk . Meanwhile,ψλ ≤ μ̇λ(f), and we will show below
that

μ̇λ(f) = 2λ−1

2k
+ εk . (125)

��
Estimate of Żλ. Recall from the definition (11) that

Żλ =
∫ ( d∏

i=1
yi +

d∏
i=1
(1− yi )

)λ d∏
i=1
μ̂λ(dyi ) .
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Let Żλ(f) denote the contribution to Żλ from free variables, meaning yi ∈ (0, 1) for
all i . This can be decomposed further into the contribution Żλ(f1) from isolated free
variables (meaning yi = 1/2 for all i) and the remainder Żλ(f≥2). We then calculate

Żλ(f1) = 2λ
(
2−λμ̂λ( 12 )

)d
.

This dominates the contribution from non-isolated free variables:

Żλ(f≥2) =
d∑
j=1

(
d

j

)(∫
yλ1{y ∈ (0, 1)\{ 12 }}μ̂λ(dy)

) j(
2−λμ̂λ( 12 )

)d− j

≤ O(1)dμ̂λ((0, 1)\{ 12 })
(
2−λμ̂λ( 12 )

)d ≤ Żλ(f1)k
O(1)/2k .

Next let Żλ(1) denote the contribution from variables frozen to 1:

Żλ(1) =
( ∫

yλμ̂λ(dy)
)d − (

∫
yλ1{y ∈ (0, 1)}μ̂λ(dy)

)d

=
(
2−λμ̂λ( 12 )+ μ̂λ(1)+ ρλ

)d − 2−λŻλ(f1)+ εk .

The ratio of free to frozen variables is given by

Żλ(f)

2Żλ(1)
= 2λ

2

(
μ̂λ(

1
2 )

μ̂λ(
1
2 )+ 2λμ̂λ(1)

)d

+ εk = 2λ−1

2k
+ εk .

Combining these yields (122). The proof of (125) is very similar.
Estimate of Z̄λ. Recall from the definition (11) that

Z̄λ =
∫ (

xy + (1− x)(1− y)
)λ
μ̇λ(dx)μ̂λ(dy) .

The contribution to Z̄ from x = 0 or x = 1 is given by

Z̄λ(x = 1) = μ̇λ(1)
(
2−λμ̂λ( 12 )+ μ̂λ(1)+ ρλ

)
= Z̄λ(x = 0) .

The contribution from x ∈ (0, 1) and y = 1/2 is given by

Z̄λ(x ∈ (0, 1), y = 1/2) = μ̇λ(f)2−λμ̂λ( 12 ) .

Lastly, the contribution from x ∈ (0, 1) and y = 1 is given by

Z̄λ(x ∈ (0, 1), y = 1) = μ̂λ(1)ψλ,
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and there is an equal contribution from the case x ∈ (0, 1) and y = 0. The contribution
from the case that both x, y ∈ (0, 1) is ≤ kO(1)/8k . Combining these estimates gives

d ln Z̄λ = d ln
(
2−λμ̂λ( 12 )+ 2μ̇λ(1)μ̂(1)+ 2μ̇λ(1)ρλ + 2μ̂(1)ψλ

)
+ εk

= d ln
(
2−λμ̂λ( 12 )+ μ̂(1)+ ρλ

)
+ d ln

(
1+ μ̂(1)[−μ̇λ(f)+ 2ψλ]

2−λμ̂λ( 12 )

)
+ εk .

Recalling μ̂λ = R̂μ̇λ gives

d ln
(
1+ μ̂(1)[−μ̇λ(f)+ 2ψλ]

2−λμ̂λ( 12 )

)
= dμ̇λ(0)

k−1(−μ̇λ(f)+ 2ψλ)+ εk,

and (123) follows.
Estimate of Ẑλ. Recall from the definition (11) that

Ẑλ =
∫ (

1−
k∏

i=1
xi −

k∏
i=1
(1− xi )

) k∏
i=1
μ̇λ(xi ) .

Writing μ̇λ(0,f) ≡ μ̇λ([0, 1)), the contribution to Ẑ from separating clauses is

1− 2μ̇λ(0,f)
k + μ̇λ(f)k = 1− (2/2k)(1+ kμ̇λ(f))+ kO(1)/8k .

The contribution from clauses which are forcing to some variable that is not forced
by any other clause is 2kμ̇λ(0)k−1ψλ. The contribution from all other clause types is
≤ kO(1)/8k , and (124) follows.
Estimate of sλ. Recall from (13) the definitionof sλ. By similar considerations as above,
it is straightforward to check that the total contribution from frozen variables, edges
incident to frozen variables, and separating or forcing clauses is zero. The dominant
term is the contribution of isolated free variables, and the estimate follows. ��

B.3. Properties of the complexity function

We conclude with a few basic properties of the complexity function �(s), including
a proof of Proposition 1.4a.

Lemma B.6 For fixed 1 ≤ T <∞, the fixed point q̇λ,T of Proposition 5.5a is contin-
uously differentiable as a function of λ ∈ [0, 1].
Proof Fix T <∞ and define fT [q̇, λ] ≡ BPλ,T [q̇]−q̇ as themapping fromP(�̇T )×
[0, 1] to the set of signed measures on �T . Since function ż(σ̇ ) (ẑ(σ̂ ), respectively)
can take only finitely many values on �̇T (�̂T , respectively) and therefore must be
uniformly bounded away from 0. It is straightforward to check that for any λ ∈ [0, 1],

fT [q̇�(λ, T ), λ](σ̇ ) = 0, ∀σ̇ ∈ �T ,
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and is uniformly differentiable in a neighborhood of {(q̇�(λ, T ), λ) : λ ∈ [0, 1]}.
For any other q̇ in the contraction region (68), Proposition A.1 guarantees that

‖ fT [q̇, λ] − fT [q̇�(λ, T ), λ]‖ ≥ ‖q̇ − q̇�(λ)‖ − ‖BPλ,T [q̇] − BPλ,T [q̇�(λ, T )]‖
≥ (1− O(k22−k))‖q̇ − q̇�(λ, T )‖.

Therefore the Jacobian matrix

(∂ fT (σ̇i )
∂q̇(σ̇ j )

)
�̇×�̇

is invertible at each (q̇�(λ, T ), λ). By implicit function theorem, q̇�(λ, T ), as the
solution of fT [q̇, λ] = 0, is uniformly differentiable in λ. ��

Let us first fix T <∞ and consider the clusters encoded by T -colorings. We have
explicitly defined �(H) and s(H). Let S(s) ≡ sup{�(H) : s(H) = s}, with the
convention that a supremum over an empty set is −∞. Thus S(s) is a well-defined
function which captures the spirit of the function �(s) discussed in the introduction.
(Note S implicitly depends on T since the maximum is taken over empirical measures
H which are supported on T -colorings.) Recall that the physics approach ([31] and
refs. therein) takesS(s) as a conceptual starting point.However, for purposes of explicit
calculation the actual starting point is the Legendre dual

F(λ) ≡ (−S)�(λ) = sup
s∈R

{
λs + S(s)

}
= sup

H
Fλ(H),

where Fλ(H) ≡ λs(H) + �(H). The replica symmetry breaking heuristic gives an
explicit conjecture for F. One then makes the assumption that S(s) is concave in s:
this means it is the same as

R(s) ≡ −F�(s) = −(−S)��(s),

so if S is concave then it can be recovered from F.
We do not have a proof that S(s) is concave for all s, but we will argue that this

holds on the interval of s corresponding to λ ∈ [0, 1]. Formally, for λ ∈ [0, 1], we
proved that Fλ(H) has a unique maximizer H� ≡ Hλ. This implies that there is a
unique sλ which maximizes λs + S(s), given by

sλ = s(Hλ) .

Recall that Hλ and sλ both depend implicitly on T . We also have from Lemma B.6 that
for any fixed T <∞, sλ is continuous in λ, so it maps λ ∈ [0, 1] onto some compact
interval I ≡ [s−, s+]. Define the modified function

S(s) ≡
{
S(s) if s ∈ I,

−∞ otherwise.
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Lemma B.7 For all s ∈ R, S(s) = −(−S)��(s). Consequently the function S is con-
cave, and sλ is nondecreasing in λ.

Proof The function −S(s) has Legendre dual

F(λ) = sup
s∈R

{
λs + S(s)

}
= sup

s∈I

{
λs + S(s)

}
≤ F(λ) .

For λ ∈ [0, 1] it is clear that F(λ) = F(λ). It is straightforward to check that if λ < 0
then

F(λ) ≤ max
s∈I
λs +max

s∈I
S(s) = λsmin + S(s0),

so if s < smin then

(−S)��(s) = (F)�(s) ≥ sup
λ<0

{
λs − F(λ)

}
≥ sup
λ<0

{
λ(s − smin)− S(s0)

}
= +∞ .

A symmetric argument shows that (−S)��(s) = +∞ also for s > smax. If s ∈ I, we
must have s = sλ◦ for some λ◦ ∈ [0, 1], and so

(−S)��(s) ≥ λ◦s − F(λ◦) = −S(s) .

This proves (−S)��(s) ≥ −S(s) for all s ∈ R. On the other hand, it holds for any
function f that f �� ≤ f , so we conclude (−S)��(s) = −S(s) for all s ∈ R. This
implies that S is concave, concluding the proof. ��

Proof of Proposition 1.4a We can obtain�(s) as the limit of S(s) in the limit T →∞.
It follows from Lemma B.7 together with Proposition 5.5b that it is strictly decreasing
in s. ��

Appendix C: Constrained entropymaximization

In this section we review basic calculations for entropy maximization problems under
affine constraints.

C.1. Constraints and continuity

We will optimize a functional over nonnegative measures ν on a finite space X (with
|X | = s), subject to some affine constraints Mν = b. We begin by discussing basic
continuity properties. Denote

H(b) ≡ {ν ≥ 0} ∩ {Mν = b} ⊆ R
s .
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Let � ≡ {ν ≥ 0} ∩ {〈1, ν〉 = 1}, and let B denote the space of b ∈ R
r for which

∅ �= H(b) ⊆ � .

Then B is contained in the image of � under M , so B is a compact subset of R
r .

Proposition C.1 If F is any continuous function on � and

F(b) = max{F(ν) : ν ∈ H(b)}, (126)

then F is (uniformly) continuous over b ∈ B.

Proposition C.1 is a straightforward consequence of the following two lemmas.

Lemma C.2 For b ∈ B and any vector u in the unit sphere S
r−1, let

d(b, u) ≡ inf{t ≥ 0 : b + tu /∈ B} .

There exists δ = δ(b) > 0 such that

d(b, u) ∈ {0} ∪ [δ,∞) for all b ∈ B .

Proof B is a polytope, so it can be expressed as the intersection of finitely many closed
half-spaces H1, . . . , Hk , where Hi = {x ∈ R

r : 〈ai , x〉 ≤ ci }. Consequently there is
at least one index 1 ≤ i ≤ k such that

d(b, u) = inf{t ≥ 0 : b + tu /∈ Hi } .

It follows that 〈ai , u〉 > 0 and

d(b, u) = ci − 〈ai , b〉
〈ai , u〉 ≥ ci − 〈ai , b〉

|ai | = d(b, ∂Hi )

where d(b, ∂Hi ) is the distance between b and the boundary of Hi . In particular,
d(b, u) > 0 if and only if 〈ai , b〉 < ci , which in turn holds if and only if d(b, ∂Hi ) > 0.
It follows that for all u ∈ S

r−1 we have d(b, u) ∈ {0} ∪ [δ,∞) with

δ = δ(b) = min{d(b, ∂Hi ) : d(b, ∂Hi ) > 0};

δ is a minimum over finitely many positive numbers so it is also positive. ��
Lemma C.3 The set-valued functionH is continuous on Bwith respect to theHausdorff
metric dH, that is to say, if bn ∈ B with limn→∞ bn = b then

lim
n→∞ dH(H(bn),H(b)) = 0 .
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Proof Recall that the Hausdorff distance between two subsets X and Y of a metric
space is

dH(X ,Y ) = inf{ε ≥ 0 : X ⊆ Y ε and Y ⊆ X ε},

where X ε,Y ε are the ε-thickenings of X and Y . Any sequence νn ∈ H(bn) converges
along subsequences to limits ν ∈ H(b), so for all ε > 0 there exists n0(ε) large enough
that

H(bn) ⊆ (H(b))ε, n ≥ n0(ε) .

In the other direction, we now argue that if ν ∈ H(b) and b′ = b + tu for u ∈ S
r−1

and t a small positive number, then we can find ν′ ∈ H(b′) which is close to ν. For
u ∈ S

r−1 let d(b, u) be as in Lemma C.2, and take ν(b, u) to be any fixed element of
H(b + d(b, u)u) (which by definition is nonempty). Since we consider b′ = b + tu
for t > 0, we can assume that d(b, u) is positive, hence ≥ δ(b) by Lemma C.2. We
can express b′ = b + tu as the convex combination

b′ = (1− ε)b + ε[b + d(b, u)u], ε = t

d(b, u)
= |b′ − b|

d(b, u)
≤ |b

′ − b|
δ

.

Then ν′ = (1− ε)ν + εν(b, u) ∈ H(b′), so

|ν′ − ν| = ε|ν(b, u)− ν| ≤ (diam�)|b − b′|
δ

This implies H(b) ⊆ (H(bn))ε for large enough n, and the result follows. ��
Proof of Proposition C.1 Take ν ∈ H(b) so that F(b) = F(ν). If b′ = b + tu ∈ B
for some u ∈ S

r−1, then Lemma C.3 implies that we can find ν′ ∈ H(b′) with
|ν′ − ν| = ot (1), where ot (1) indicates a function tending to zero in the limit t ↓ 0,
uniformly over u ∈ S

r−1. It follows that F(ν) = F(ν′)+ ot (1), since F is uniformly
continuous on � by the Heine–Cantor theorem. Therefore

F(b) = F(ν) = F(ν′)+ ot (1) ≤ F(b′)+ ot (1) .

By the same argument F(b′) ≤ F(b)+ ot (1), concluding the proof. ��
When solving (126) for a fixed value of b ∈ B, it will be convenient to make the

following reduction:

Remark C.4 Suppose M is an r × s matrix where s = |X |. We can assume without
loss that M has full rank r , since otherwise we can eliminate redundant constraints.
We consider only b ∈ B, meaning ∅ �= H(b) ⊆ �. The affine space {Mν = b} has
dimension s − r ; we assume this is positive since otherwise H(b) would be a single
point. Then, if H(b) does not contain an interior point of {ν ≥ 0}, it must be that

X◦ ≡ {x ∈ X : ∃ν ∈ {ν ≥ 0} ∩ {Mν = b} so that ν(x) > 0}
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is a nonempty subset of X . In this case, it is equivalent to solve the optimization problem
over measures ν◦ on the reduced alphabet X◦, subject to constraints M ′ν◦ = b where
M ′ is the submatrix ofM formed by the columns indexed by X◦. Then, by construction,
the space

H◦(b) = {ν◦ ≥ 0} ∩ {M ′ν◦ = b}

contains an interior point of {ν◦ ≥ 0}. The matrix M ′ is r × s◦ where s◦ = |X◦|;
and if M ′ is not of rank r then we can again remove redundant constraints, replacing
M ′ with an r◦ × s◦ submatrix M◦ which has full rank r◦. We emphasize that the final
matrix M◦ depends on b. In conclusion, when solving (126) for a fixed b ∈ B, we may
assume with no essential loss of generality that the original matrix M is r× s with full
rank r , and that H(b) = {ν ≥ 0} ∩ {Mν = b} contains an interior point of {ν ≥ 0}. It
follows that this space has dimension s − r > 0, and its boundary is contained in the
boundary of {ν ≥ 0}.

C.2. Entropymaximization

We now restrict (126) to the case of functionals F which are concave on the domain
{ν ≥ 0}. It is straightforward to verify from definitions that the optimal value F(b) is
(weakly) concave in b. Recall that the convex conjugate of a function f on domain C
is the function f � defined by

f �(x�) = sup{〈x�, x〉 − f (x) : x ∈ C} .

Denote G(γ ) ≡ (−F)�(Mtγ ), and consider the Lagrangian functional

L(γ ; b) = sup{F(ν)+ 〈γ,Mν − b〉 : ν ≥ 0} = −〈γ, b〉 + G(γ ) .

It holds for any γ ∈ R
r that L(γ ; b) ≥ F(b), so

F(b) ≤ inf{L(γ ; b) : γ ∈ R
r } = −G�(b) . (127)

Now assume ψ is a positive function on X , and consider (126) for the special case

F(ν) = H(ν)+ 〈ν, lnψ〉 =
∑
x∈X
ν(x) ln

ψ(x)

ν(x)
. (128)

We remark that the supremum in (−H)�(ν�) = sup{〈ν�, ν〉 + H(ν) : ν ≥ 0} is
uniquely attained by the measure νop(x) = exp{−1+ ν�(x)}, yielding

(−H)�(ν�) = 〈νop(ν�), 1〉 =
∑
x

exp{−1+ ν�(x)} .
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This gives the explicit expression

G(γ ) = (−F)�(Mtγ ) = (−H)�(lnψ + Mtγ ) =
∑
x

ψ(x) exp{−1+ (Mtγ )(x)} .
(129)

Lemma C.5 Assume ψ is a strictly positive function on a set X of size s and that M is
r × s with rank r . Then the function G(γ ) of (129) is strictly convex in γ .

Proof Let ν ≡ ν(γ ) denote the measure on X defined by

ν(x) = ψ(x) exp{−1+ (Mtγ )(x)},

and write 〈 f (x)〉ν ≡ 〈 f , ν〉. The Hessian matrix H ≡ HessG(γ ) has entries

Hi, j = ∂
2L(γ ; b)
∂γi∂γ j

=
∑
x∈X
ν(x)Mi,x M j,x = 〈Mi,x M j,x 〉ν .

Let Mx denote the vector-valued function (Mi,x )i≤r , so

αt Hα = 〈(αt Mx )
2〉ν .

This is zero if and only if ν({x ∈ X : αt Mx = 0}) = 1. Since ν is a positive measure,
this can only happen if αt Mx = 0 for all x ∈ X , but this contradicts the assumption
that M has rank r . This proves that H is positive-definite, so G is strictly convex in
γ . ��
Proposition C.6 Let b ∈ B such thatH(b) = {ν ≥ 0}∩{Mν = b} contains an interior
point of {ν ≥ 0}, and consider the optimization problem (126) for F as in (128). For
this problem, the inequality (127) becomes an equality,

F(b) = inf{L(γ ; b) : γ ∈ R
r } = −G�(b) .

Further, L(γ ; b) is strictly convex in γ , and its infimum is achieved by a unique
γ = γ (b). The optimum value of (126) is uniquely attained by the measure ν = νop(b)
defined by

ν(x) = ψ(x) exp{−1+ (Mtγ )(x)} . (130)

For anyμ ∈ H(b), F(ν)−F(μ) = Dkl(μ|ν) � ‖ν−μ‖2. Finally, in a neighborhood
of b in B, γ ′(b) is defined and F(b) is strictly concave in b.

Proof Under the assumptions, the boundary of the set H(b) is contained in the bound-
ary of {ν ≥ 0}. The entropy H has unbounded gradient at this boundary, so for F as
in (128), the optimization problem (126) must be solved by a strictly positive measure
ν > 0. Since ν > 0, we can differentiate in the direction of any vector δ with Mδ = 0
to find

0 = d

dt

[
H(ν + tδ)+ 〈lnψ, ν + tδ〉

]∣∣∣∣
t=0

= 〈δ,−1− ln ν + lnψ〉 .
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Recalling Remark C.4, we assume without loss that M is r × s with rank r , since
otherwise we can eliminate redundant constraints. Then, since Mδ = 0, for any
γ ∈ R

r we have

0 = 〈δ, ε〉 where ε = −1− ln ν + lnψ + Mtγ .

We can then solve for γ so that Mε = 0:2

γ = (MMt )−1M(ln ν − lnψ + 1) .

Setting δ = ε in the above gives 0 = ‖ε‖2, therefore we must have ε = 0. This proves
the existence of γ = γ (b) ∈ R

r such that (126) is optimized by ν = νop(b), as given
by (130). The optimal value of (126) is then

F(b) = 〈1, νop(b)〉 − 〈Mtγ (b), νop(b)〉
=
∑
x

ψ(x) exp{−1+ (Mtγ )(x)} − 〈γ, b〉
∣∣∣∣
γ=γ (b)

= L(γ (b), b).

In view of (127), this proves that in fact

−G�(b) = inf{L(γ, b) : γ ∈ R
r } = min{L(γ, b) : γ ∈ R

r } = L(γ (b), b) = F(b)

as claimed. Now recall from Lemma C.5 that G(γ ) is strictly convex, which implies
that L(γ ; b) is strictly convex in γ . Thus γ = γ (b) is the unique stationary point of
L(γ ; b).

These conclusions are valid under the assumption that H(b) contains an interior
point of {ν ≥ 0}, which is valid in a neighborhood of b in B. Throughout this neighbor-
hood, γ (b) is defined by the stationarity condition b = G ′(γ ). Differentiating again
with respect to γ gives

b′(γ ) = HessG(γ ), γ ′(b) = [HessG(γ (b))]−1 . (131)

We also find (in this neighborhood) that

F ′(b) = −γ (b), F ′′(b) = −γ ′(b) = −[HessG(γ (b))]−1,

so F is strictly concave. It remains to prove that F(ν) − F(μ) = Dkl(μ|ν). (The
estimateDkl(μ|ν) � ‖μ− ν‖2 is well known and straightforward to verify.) For any
measure μ,

−Dkl(μ|ν) = H(μ)+ 〈μ, ln(ψ exp{−1+ Mtγ })〉 .
2 The matrix MMt is invertible: if MMt x = 0 then Mt x ∈ ker M = (im Mt )⊥. On the other hand clearly
Mt x ∈ im Mt , so Mt x ∈ (im Mt ) ∩ (im Mt )⊥ = {0}. Therefore x ∈ ker Mt , but Mt is injective by
assumption.
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Applying this with μ = ν gives

0 = −Dkl(ν|ν) = H(ν)+ 〈ν, ln(ψ exp{−1+ Mtγ })〉 .

Subtracting these two equations gives

−Dkl(μ|ν) = H(μ)−H(ν)+ 〈μ− ν, lnψ〉 + 〈μ− ν, ln(exp{−1+ Mtγ })〉 .

If Mν = Mν = b then the last term vanishes, giving −Dkl(μ|ν) = F(μ)− F(ν).��
Remark C.7 Our main application of Proposition C.6 is for the depth-one tree D of
Fig. 6. In the notation of the current section, X is the space of valid T -colorings σ of
D, and ψ : X → (0,∞) is defined by

ψ(σ) = wD(σ )
λ =

{
�̇(σ δv)

∏
a∈∂v

[�̄(σav)�̂(σ δa)]
}λ
.

We then wish to solve the optimization problem (126) for F(ν) as in (128), under the
constraint that ν hasmarginals ḣtr(σ̇ ) on the boundary edges δD. This can be expressed
as Mν = ḣ where M has rows indexed by the spins σ̇ ∈ �̇, columns indexed by valid
T -colorings η ≡ η

D
of D: the (σ̇ , η) entry of M is given by

M(σ̇ , η) = |δD|−1
∑
e∈δD

1{η̇e = σ̇ } .

Recall Remark C.4, let �̇+ = {σ̇ ∈ �̇ : ḣtr(σ̇ ) > 0}, and X◦ = {η ∈ X : M(σ̇ , η) =
0 ∀σ̇ /∈ �̇}. Let M+ be the �̇+ × X◦ submatrix of M , and set q̇(σ̇ ) = 0 for all
σ̇ /∈ �̇+. Next, in the matrix M+, if the η̇ row is a linear combination of other rows,
then set q̇(η̇) = 1 and remove this row. Repeat until we arrive at an �̇◦ × X◦ matrix
M◦ of full rank r◦ = |�̇◦|. The original problem reduces to an optimization over
{ν◦ ≥ 0} ∩ {M◦ν◦ = b◦} where b◦ denotes the entries of b indexed by �̇◦. It follows
from Proposition C.6 that the unique maximizer of (126) is the measure ν = νop(b)
given by

ν(σ ) = 1

Z
wD(σ )

λ = 1

Z

{
�̇(σ δv)

∏
a∈∂v

[�̄(σav)�̂(σ δa)]
}λ ∏

e∈δD
q̇(σe) .

Note however that if M+ is not of full rank then q̇ need not be unique.

Appendix D: Pairs of intermediate or large overlap

In this sectionweproveProposition 3.7,which states that the firstmoment of Z = Zλ,T
is dominated by separable colorings provided 0 ≤ λ ≤ 1.
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D.1. Intermediate overlap

We first show that configurations with “intermediate” overlap are negligible. This
can be done with quite crude estimates, working with nae- sat solutions rather than
colorings.

Lemma D.1 Consider random regular nae- sat at clause density α ≥ 2k−1 ln 2 −
O(1). On G = (V , F, E,L), let Z2[ρ] count the number of pairs x, x́ ∈ {0,1}V of
valid nae- sat solutions which agree on ρ fraction of variables. Then

EZ2[ρ] ≤ (EZ) exp
{
n
[
H(ρ)− (ln 2)π(ρ)+ O(1/2k)

]}
,

for π(ρ) ≡ 1− ρk − (1− ρ)k .
Proof For u ∈ {0,1}V , let Inae(u;G ) be the indicator that u is a valid nae- sat
solution on G . Fix any pair of vectors x, x́ ∈ {0,1}V which agree on ρ fraction of
variables:

EZ2[ρ] = 2n
(
n

nρ

)
E[Inae(x;G )Inae(x́;G )] = (EZ)

(
n

nρ

)
E[Inae(x́;G ) | Inae(x;G ) = 1] .

Given x, x́ , let M ≡ M(x, x́) count the number of clauses a ∈ F where

|{e ∈ δa : xv(e) = x́v(e)}| /∈ {0, k} .

In each of these clauses, there are 2k − 2 literal assignments Lδa which are valid for
x . Out of these, exactly 2k − 4 are valid also for x́ . If we define i.i.d. binomial random
variables Da ∼ Bin(k, ρ), indexed by a ∈ F , then

P(M = mγ ) = P

(∑
a∈F

1{Da /∈ {0, k}}
∣∣∣∣
∑
a∈F

Da = mkρ

)
.

The (Da)a∈F sum to mkρ with probability which is polynomial in n, so

P(M = mγ ) ≤ nO(1)P(Bin(m, π) = mγ )

with π = π(ρ) as in the statement of the lemma. Therefore

E[Inae(x́;G ) | Inae(x;G ) = 1] ≤ nO(1)E

[(
2k − 4

2k − 2

)X]

for X ∼ Bin(m, ρ). It is easily seen that the above is ≤ exp{−mπ/2k−1}, and the
claimed bound follows, using the lower bound on α = m/n. ��
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Corollary D.2 Let ψ(ρ) = H(ρ)− (ln 2)π(ρ). Then ψ(ρ) ≤ −2k/2k for all ρ in

[exp{−k/(ln k)}, 12 (1− k/2k/2)] ∪ [ 12 (1+ k/2k/2), 1− exp{−k/(ln k)}] .

Assuming α = m/n ≥ 2k−1 ln 2− O(1), EZ2[ρ] ≤ exp{−nk/2k} for all such ρ.
Proof Note that H( 1+ε2 ) ≤ ln 2− ε2/2. If (k ln k)/2k ≤ ε ≤ 1/k, then

ψ( 1+ε2 ) ≤ −ε2/2+ O(kε/2k) ≤ −ε2/3 .

Both H( 1+ε2 ) and π(
1+ε
2 ) are symmetric about ε = 0, and decreasing on the interval

0 ≤ ε ≤ 1. It follows that for any 0 ≤ a ≤ b ≤ 1,

max
a≤ε≤bψ(

1+ε
2 ) ≤ H( 1+a2 )− (ln 2)π( 1+b2 ) .

With this in mind, if 1/k ≤ ε ≤ 1− 5(ln k)/k,

ψ( 1+ε2 ) ≤ −(2k2)−1 + O(k−5/2) ≤ −(4k2)−1 .

If 1− 5(ln k)/k ≤ ε ≤ 1− (ln k)3/k2,

ψ( 1+ε2 ) ≤ O(1)(ln k)2/k −�(1)(ln k)3/k ≤ −�(1)(ln k)3/k .

Finally, if 1− (ln k)3/k2 ≤ ε ≤ 1− exp{−2k/(ln k)}, then

ψ( 1+ε2 ) ≤ O(1)εk/(ln k)−�(1)εk ≤ −�(1)εk .

Combining these estimates proves the claimed bound on ψ(ρ). The assertion for
E[Z2(ρ)] then follows by substituting into Lemma D.1, and noting that EZ ≤
exp{O(n/2k)}. ��

D.2. Large overlap

In what follows, we restrict consideration to a small neighborhood N of H�. We
abbreviate σ ∈ H if H(G, σ ) = H , and σ ∈ N if H(G, σ ) ∈ N. Recall that we write
σ ′ � σ if the number of free variables in x(σ ′) upper bounds the number in x(σ ). We
also write H ′ � H if σ ′ � σ for any (all) σ ∈ H and σ ′ ∈ H ′. Let Zns(H , H ′) count
the colorings σ ∈ H such that

∣∣∣{σ ′ ∈ H ′ : sep(œ,œ′) ≤ exp{−k/(ln k)}
}∣∣∣ ≥ !(n),

for ω(n) = exp{(ln n)4}. (Although we will not write it explicitly, it should be under-
stood that Zns(H , H ′) depends onG , since bothσ , σ ′ are required to be valid colorings
of G .) Let Zns(N) denote the sum of Zns(H ; H ′) over all pairs H , H ′ ∈ N with
H ′ � H . Let Z(N) denote the sum of Z(H) over all H ∈ N.
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Proposition D.3 There exists a small enough positive constant εmax(k) such that, if N
is the ε-neighborhood of H� for any ε ≤ εmax, then

EZns(N) ≤ EZ(N) exp{−(ln n)2} .

Proof By definition,

Zns(N) =
∑
H∈N

Z�(H), Z�(H) ≡
∑
H ′∈N

1{H ′ � H}Zns(H , H
′) .

It suffices to show that for every H ∈ N, EZ�(H) ≤ EZ(H) exp{−2(ln n)2}. Note
that the total number of empirical measures H ′ is at most nc for some constant c(k, T ).
Let E denote the set of pairs (G , σ ) for which

∣∣∣{σ ′ ∈ N : σ ′ � σ and sep(œ,œ′) ≤ exp{−k/(ln k)}
}∣∣∣ ≥ !(n) .

(Again, it is understood that both σ , σ ′ must be valid colorings of G .) Then

Z�(H) ≤ nc
∑
σ∈H

1{(G , σ ) ∈ E} .

Consequently, in order to show the required bound on EZ�(H), it suffices to show

P
H (E) ≤ n−c exp{−2(ln n)2}, (132)

where P
H is a “planted” measure on pairs (G , σ ): to sample from P

H , we start with a
set V of n isolated variables each with d incident half-edges, and a set F ofm isolated
clauses each with k incident half-edges. Assign colorings of the half-edges,

σ δ ≡ (σ δV , σ δF ) where σ δV ≡ (σ δv)v∈V , σ δF ≡ (σ δa)a∈F ,

which are uniformly random subject to the empirical measure H . Then σ δ is the
“planted” coloring: conditioned on it, we sample uniformly at random a graph G such
that σ δ becomes a valid coloring σ on G . The resulting pair (G , σ ) is a sample from
P
H .
Suppose (G , σ ) ∈ E. The total number of configurations σ ′ with sep(œ,œ′) ≤ is

at most (cn)nδ , which is ω(n) if δ ≤ n−1(ln n)2. This implies that there must exist
σ ′ ∈ N such that σ ′ � σ and

n−1(ln n)2 ≤ sep(œ,œ′) ≤ exp{−k/(ln k)} .

It follows that

S ≡ {v ∈ V : xv(σ ) ∈ {0,1} and xv(σ
′) �= xv(σ )}
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has size |S| ≡ ns for s ∈ [(2n)−1(ln n)2, exp{−k/(ln k)}]. The set S is internally
forced inσ : for every v ∈ S, any clause forcing to vmust have another edge connecting
to S. Formally, let RU (resp. BU ) count the number of {r}-colored (resp. {b}-colored)
edges incident to a subset of vertices U . Let IS be the indicator that all variables in S
are forced. For any fixed S ⊆ V ,

P
H (S internally forced) ≤ EPH

[
ISk

RS
(BS)RS

(BF )RS

]
≤ EPH [IS(4ks)RS ] .

In the first inequality, the factor kRS accounts for the choice, for each S-incident {r}-
colored edge e, of another edge e′ sharing the same clause. The factor (BS)RS/(BF )RS

then accounts for the chance that the chosen edge e′ (which must have color in {b})
will also be S-incident. The second inequality follows by noting that we certainly have
BS ≤ nsd, and for H near H� we also clearly have BF ≥ nd/4.

To bound the above, we can work with a slightly different measure Q
H : instead

of sampling σ δ subject to H , we can simply sample variable-incident colorings σ δv
i.i.d. from Ḣ , and clause-incident colorings σ δa i.i.d. from Ĥ . On the event MARG
that the resulting σ δ has empirical measure H , we sample the graph G according to
P
H (G |σ δ), and otherwise we set G = ∅. Then, since Q

H (MARG) ≥ n−c (adjusting
c as needed), we have

P
H ((G , σ )) = Q

H ((G , σ ) |MARG) ≤ nc Q
H((G ,œ);MARG) .

Let us abbreviate Ḣ(	) for the probability under Ḣ that σ has 	 entries in {r}: then

EPH [IS(4ks)RS ] ≤ nc EQH [IS(4ks)RS ;MARG] ≤ nc
(∑

‘≥1
PH(‘)(4ks)‘

)ns

. (133)

For H sufficiently close to H�, we will have

Ḣ(	) ≤ 2Ḣ�(	) ≤ 2

(
d

	

)
q̂�(r1)

	q̂�(b1)d−	

[q̂�(r1)+ q̂�(b1)]d − q̂�(b1)d
.

It follows that the right-hand side of (133) is (for some absolute constant δ)

≤ nc 2ns
( [q̂�(r1) · 4ks + q̂�(b1)]d − q̂�(b1)d

[q̂�(r1)+ q̂�(b1)]d − q̂�(b1)d

)ns

≤ ncsns2−δkns,

where the last inequality uses that s ≤ exp{−k/(ln k)}. Summing over S gives

P
H (E) ≤ max

s≥(2n)−1(ln n)2
nc2−δkns/2 ≤ exp{−�(1)k(ln n)2} .

This implies (132); and the claimed result follows as previously explained. ��
Proof of Proposition3.7 Follows by combining Corollary D.2 and Proposition D.3. ��
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Appendix E: Free energy upper bound

For a family of spin systems that includes nae- sat, an interpolative calculation gives
an upper bound for the free energy on Erdős-Rényi graphs ([26,43], cf. [30]). These
bounds build on earlier work [29] concerning the subadditivity of the free energy
in the Sherrington–Kirkpatrick model, which was later generalized to a broad class
of models [4,5,12,27]. (Although these results are closely related, we remark that
interpolation gives quantitative bounds whereas subadditivity does not.) To prove the
upper bound in Theorem 1, we establish the analogue of [26,43] for random regular
graphs. Although the main concern of this paper is the nae- sat model, we give the
bound for a more general class of models, which may be of independent interest.

E.1. Basic interpolation bound

Recall G = (V , F, E) denotes a (d, k)-regular bipartite graph (without edge literals).
We consider measures defined on vectors x ∈ XV where X is some fixed alphabet of
finite size. Fix also a finite index set S. Suppose we have (random) vectors b ∈ R

S and
f ∈ F(X)S , where F(X) denotes the space of functions X→ R≥0. Independently of
b, let f1, . . . , fk be i.i.d. copies of f , and define the random function

θ(x) ≡
∑
s∈S

bs

k∏
j=1

fs, j (x j ). (134)

Let h be another (random) element of F(X). Assume there is a constant ε > 0 so that

ε ≤ {h, 1− θ} ≤ 1

ε
almost surely. (135)

Note we do not require the bs to be nonnegative; however, we assume that

bp(s) ≡ E

[ p∏
	=1

bs	

]
≥ 0 for any p ≥ 1, s ≡ (s1, . . . , sp) ∈ S p. (136)

Let G denote the graph G labelled by a vector ((hv)v∈V , (θa)a∈F ) of independent
functions, where the hv are i.i.d. copies of h and the θa are i.i.d. copies of θ . For a ∈ F
we abbreviate xδa ≡ (xv(e))e∈δa ∈ Xk , and we consider the (random) Gibbs measure

μG (x) ≡ 1

Z(G )

∏
v∈V

hv(xv)
∏
a∈F
[1− θa(xδa)] (137)

where Z(G ) is the normalizing constant. Now letG be the random (d, k)-regular graph
on n variables, together with the random function labels. We write En for expectation
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over the law of G , and define the (logarithmic) free energy of the model to be

Fn ≡ 1

n
En ln Z(G ) .

Example E.1 (positive temperature nae- sat) Let X = {0,1}, and let L ≡ (Li )i≤k
be a sequence of i.i.d. Bernoulli(1/2) random variables. The positive-temperature
nae- sat model corresponds to taking h ≡ 1 and

θ(x) ≡ (1− e−β)
( k∏

i=1

L1 ⊕ xi
2

+
k∏

i=1

1⊕ Li ⊕ xi
2

)

where β ∈ (0,∞) is the inverse temperature. In thismodel, each violated clause incurs
a multiplicative penalty e−β .

Example E.2 (positive-temperature coloring) Let X = [q]. The positive-temperature
coloring model (i.e., anti-ferromagnetic Potts model) on a k-uniform hypergraph cor-
responds to h ≡ 1 and

θ(x) ≡ (1− e−β)
q∑

s=1
1{x1 = · · · = xk = s}

where β ∈ (0,∞) is the inverse temperature. In this model, each monochromatic
(hyper)edge incurs a multiplicative penalty e−β .

The following theorem is a random regular graph analog of [43, Thm. 3]. (We stated
our result for a slightly more general class of models than considered in [43]; however
the main result of [43] extends to these models with only minor modifications.)

Theorem E.3 Consider a (random) Gibbs measure (137) satisfying assumptions
(134)–(136), and consider the (nonasymptotic) free energy Fn ≡ n−1En ln Z(G ).
Let

M0 ≡ space of probability measures over X,

M1 ≡ space of probability measures over M0,

M2 ≡ space of probability measures over M1.

For ζ ∈M2, let η ≡ (ηa, j )a≥0, j≥0 be an array of i.i.d. samples from ζ . For each
index (a, j) let ρa, j be a conditionally independent sample from ηa, j , and denote
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ρ ≡ (ρa, j )a≥0, j≥0. Let (hρ)a, j (x) ≡ ha, j (x)ρa, j (x), define random variables

ua(x) ≡
∑
x∈Xk

1{x1 = x}[1− θa(x)]
k∏
j=2
(hρ)a, j (x j ),

ua ≡
∑
x∈Xk

[1− θa(x)]
k∏
j=1
(hρ)a, j (x j ).

For any λ ∈ (0, 1) and any ζ ∈M2,

Fn ≤ λ−1E lnE
′
[(∑

x∈X
h(x)

d∏
a=1

ua(x)
)λ]− (k − 1)αλ−1E lnE

′[(u0)λ] + Oε(n
−1/3)

where E
′ denotes the expectation over ρ conditioned on all else, and E denotes the

overall expectation.

Remark E.4 In the statistical physics framework, elementsρ ∈M0 correspond to belief
propagationmessages for the underlyingmodel, which has state spaceX. Elements η ∈
M1 correspond to belief propagation messages for the 1rsbmodel (termed “auxiliary
model” in [33, Ch. 19]), which has state space M0. The informal picture is that the
η associated to variable x is determined by the geometry of the local neighborhood
of x — that is to say, the randomness of ζ reflects the randomness in the geometry
of the R-neighborhood of a uniformly randomly variable in the graph. In random
regular graphs this randomness is degenerate—the R-neighborhood of (almost) every
vertex is simply a regular tree. It is therefore expected that the best upper bound in
Theorem E.3 can be achieved with ζ a point mass.

E.2. Replica symmetric bound

Along the lines of [43], we first prove a weaker “replica symmetric” version of The-
orem E.3. Afterwards we will apply it to obtain the full result.

Theorem E.5 In the setting of Theorem E.3, define

�V ≡ E ln
(∑
x∈X

h(x)
d∏

a=1
ua(x)

)
, �F ≡ (k − 1)αE ln(u0) .

Then Fn ≤ �V −�F − Oε(n−1/3).

Inspired by the proof of [12], we prove Theorem E.5 by a combinatorial interpola-
tion between two graphs, G−1 and Gnd+1. The initial graph G−1 will have free energy
�V , and the final graph Gnd+1 will have free energy Fn +�F . We will show that, up
to Oε(n1/3) error, the free energy of G−1 will be larger than that of Gnd+1, from which
the bound of Theorem E.5 follows.
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To begin, we take G−1 to be a factor graph consisting of n disjoint trees (Fig. 7a).
Each tree is rooted at a variable v which joins to d clauses. Each of these clauses then
joins to k − 1 more variables, which form the leaves of the tree. We write V for the
root variables, A for the clauses, andU for the leaf variables. Note |V | = n, |A| = nd,
and |U | = nd(k − 1).

Independently of all else, take a vector of i.i.d. samples (ηu, ρu)u∈U where ηu is a
sample from ζ , and ρu is a sample from ηu .3 As before, the variables and clauses in
G−1 are labelled independently with functions hv and θa . We now additionally assign
to each u ∈ U the label (ηu, ρu). Let (hρ)u(x) ≡ hu(x)ρu(x). We consider the factor
model on G−1 defined by

μG−1(x) =
1

Z(G−1)
∏
v∈V

hv(xv)
∏
a∈A
[1− θa(xδa)]

∏
u∈U
(hρ)u(xu) .

We now define the interpolating sequence of graphs G−1,G0, . . . ,Gnd+1. Fix m′ ≡
2n2/3. The construction proceeds by adding and removing clauses. Whenever we
remove a clause a, the edges δa are left behind as k unmatched edges in the remaining
graph. Whenever we add a new clause b, we label it with a fresh sample θb of θ . The
graphGr has clauses Fr which can be partitioned into AU ,r (clauses involvingU only),
AV ,r (clauses involving V only), and Ar (clauses involving both U and V ). We will
define below a certain sequence of events COUPr. Let COUP≤r be the event that COUPs
occurs for all 0 ≤ s ≤ r . The event COUP≤−1 occurs vacuously, so P(COUP≤−1) = 1.
With this notation in mind, the construction goes as follows:

1. Starting from G−1, choose a uniformly random subset of m′ clauses from F−1 =
A−1 = A, and remove them to form the new graph G0.

2. For 0 ≤ r ≤ nd − m′ − 1, we start from Gr and form Gr+1 as follows.

a. If COUP≤r−1 succeeds, choose a uniformly random clause a from Ar , and
remove it to form the new graph Gr ,◦. Let δ′Ur ,◦ and δ′Vr ,◦ denote the
unmatched half-edges incident to U and V respectively in Gr ,◦, and define
the event

COUPr ≡ {min{′Ur,◦, ′Vr,◦} ≥ k} .

If instead COUP≤r−1 fails, then COUP≤r fails by definition.
b. If COUP≤r fails, let Gr+1 = Gr . If COUP≤r succeeds, then with probability

1/k take k half-edges from δ′Vr ,◦ and join them into a new clause c. With the
remaining probability (k − 1)/k take k half-edges from δ′Ur ,◦ and join them
into a new clause c.

c. For nd−m′ ≤ r ≤ nd−1 letGr+1 = Gr . Starting fromGnd , remove all the clauses
in And . Then connect (uniformly at random) all remaining unmatched V -incident
edges into clauses. Likewise, connect all remaining unmatched U -incident edges
into clauses. Denote the resulting graph Gnd+1.

3 For the proof of Theorem E.5 it is equivalent to sample ρ from ηav ≡ ∫ η dζ .
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(a)

(b)

(c)

Fig. 7 Interpolation with d = 2, k = 3, n = 6
By construction, Gnd+1 consists of two disjoint subgraphs, which are the induced
subgraphs GU ,GV of U , V respectively. Note that GV is distributed as the random
graph G of interest, while GU consists of a collection of nd(k − 1)/k = nα(k − 1)
disjoint trees.

Lemma E.6 Under the construction above,

E ln Z(G0) ≥ E ln Z(Gnd)− Oε(n
1/3) , (138)

where the expectation E is over the sequence of random graphs (Gr )−1≤r≤nd+1.

Proof Let Fr ,◦ be the σ -field generated by Gr ,◦, and write Er ,◦ for expectation con-
ditioned on Fr ,◦. One can rewrite (138) as

E ln
Z(G0)

Z(Gnd)
=

nd−1∑
r=0

E�r , �r ≡ Er ,◦ ln
Z(Gr )

Z(Gr ,◦)
− Er ,◦ ln

Z(Gr+1)
Z(Gr ,◦)

.

In particular, �r = 0 if the coupling fails. Therefore it suffices to show that �r is
positive conditioned onCOUP≤r.4 First we compareGr andGr ,◦. Conditioned onFr ,◦,
we know Gr ,◦. From Gr ,◦ we can obtain Gr by adding a single clause a ≡ ar , together

4 The event COUP≤r is measurable with respect to Fr ,◦, since δ′Vr ,◦, δ′Ur ,◦ would remain less than k if
the coupling fails at an earlier iteration.
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with a random label θa which is a fresh copy of θ . To choose the unmatched edges δa =
(e1, . . . , ek) which are combined into the clause a, we take e1 uniformly at random
from δ′Vr ,◦, then take {e2, . . . , ek} a uniformly random subset of δ′Ur ,◦. Let μr ,◦ be
the Gibbs measure on Gr ,◦ (ignoring unmatched half-edges). Let x ≡ (x, x1, x2, . . .)
be an infinite sequence of i.i.d. samples from μr ,◦, and write 〈·〉r ,◦ for the expectation
with respect to their joint law. Then

Er ,◦ ln
Z(Gr )

Z(Gr ,◦)
= Er ,◦ ln(1− 〈θ(xδa)〉r ,◦) =

∑
p≥1

1

p
Ap, Ap ≡ Er ,◦

[〈 p∏
	=1
θ(x	δa)

〉
r ,◦

]
.

We have Er ,◦ = EaEθ where Ea is expectation over the choice of δa, and Eθ is
expectation over the choice of θ . Under Ea , the edges (e2, . . . , ek) are weakly depen-
dent, since they are required to be distinct elements of δ′Ur ,◦. We can consider instead
sampling e2, . . . , ek uniformly with replacement from δ′Ur ,◦, so that e1, . . . , ek are
independent conditional on Fr ,◦; let Ea,ind denote expectation with respect to this
choice of δa. Under Ea,ind the chance of a collision ei = e j (i ≤ j) is O(k2/|δ′Ur ,◦|).
Recalling 1− θ ≥ ε almost surely, we have

Ap,ind ≡ Ea,indEθ

[〈 p∏
	=1
θ(x	δa)

〉
r ,◦

]
= Ap + O(1)(1− ε)p min

{
k2

|δ′Ur ,◦| , 1
}
.

Recall from (134) the product form of θ , and let E f denote expectation over the law
of f ≡ ( fs)s∈S . Then, with bp(s) as defined in (136), we have

Ap,ind =
∑
s∈S p

bp(s)

〈
Ea,ind

{ k∏
j=1

E f

[ p∏
	=1

fs	 (x
	
e j )

]}〉
r ,◦

=
∑
s∈S p

bp(s)〈IV ,s(x)IU ,s(x)k−1〉r ,◦,

where, for W = U or W = V , we define

IW ,s(x) ≡ 1

|δ′Wr ,◦|
∑

e∈δ′Wr ,◦
E f

[ p∏
	=1

fs	 (x
	
e )

]
.

Summing over p ≥ 1 gives that, on the event COUP≤r,

Er ,◦ ln
Z(Gr )

Z(Gr ,◦)
=
∑
p≥1

1

p

∑
s∈S p

bp(s)Er ,◦〈IV ,s(x)IU ,s(x)k−1〉r ,◦ + errr ,1,

where |errr ,1| ≤ Oε(1)min

{
k2

|δ′Ur ,◦| , 1
}
.
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A similar comparison between Gr+1 and Gr ,◦ gives

Er ,◦ ln
Z(Gr )

Z(Gr ,◦)
=
∑
p≥1

1

p
Er ,◦

[ ∑
s∈S p

bp(s)

〈
k − 1

k
IU ,s(x)

k + 1

k
IV ,s(x)

k
〉
r ,◦

]
+ errr ,2,

|errr ,2| ≤ Oε(1)min

{
k2

min{|δ′Ur ,◦|, |δ′Vr ,◦|} , 1
}
.

We now argue that the sum of the error terms errr ,1, errr ,2, over 0 ≤ r ≤ nd − 1, is
small in expectation. First note that for a constant C = C(k, ε),

nd−1∑
r=0

E[errr ,1 + errr ,2] ≤ Cn

[
n−2/3 + P

(
min{|δ′Vr ,◦|, |δ′Vr ,◦|} ≤ n2/3 for some r ≤ nd

)]
.

The process (|δ′Vr ,◦|)r≥0 is an unbiased randomwalk started fromm′+1 = 2n2/3+1.
In each step it goes up by 1 with chance (k−1)/k, and down by k−1 with chance 1/k;
it is absorbed if it hits k before time nd − m′. Similarly, (|δ′U |r ,◦)r≥0 is an unbiased
random walk started from (m′ + 1)(k − 1) with an absorbing barrier at k. By the
Azuma–Hoeffding bound, there is a constant c = c(k) such that

P(|δ′Vr ,◦| ≤ |δ′V0,◦| − n2/3)+ P(|δ′Ur ,◦| ≤ |δ′U0,◦| − n2/3) ≤ exp{−cn1/3}

Taking a union bound over r shows that with very high probability, neither of the
walks |δ′Vr ,◦|, |δ′Ur ,◦| is absorbed before time nd − m′, and (adjusting the constant
C as needed)

nd−1∑
r=0

E[errr ,1 + errr ,2] ≤ Cn1/3 .

Altogether this gives

E ln
Z(G0)

Z(Gnd )
− Oε(n

1/3)

=
nd−1∑
r=0

∑
p≥1

1

p

∑
s

bp(s)Er ,◦
〈
IV ,s(x)IU ,s(x)

k−1 − k − 1

k
IU ,s(x)

k−1 − 1

k
IV ,s(x)

k−1
〉
r ,◦
.

Using the fact that xk − kxyk−1 + (k − 1)yk ≥ 0 for all x, y ∈ R and even k ≥ 2, or
x, y ≥ 0 and odd k ≥ 3 finishes the proof. ��
Corollary E.7 In the setting of Lemma E.6,

E ln Z(G−1) ≥ E ln Z(Gnd+1)− Oε(n
2/3),

where the expectation E is over the sequence of random graphs (Gr )−1≤r≤nd+1.
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Proof Adding or removing a clause can change the partition function by at most a
multiplicative constant (depending on ε). On the event that the coupling succeeds for
all r ,

∣∣∣∣ ln Z(G0)

Z(G−1)

∣∣∣∣+
∣∣∣∣ ln Z(Gnd+1)

Z(Gnd)

∣∣∣∣ = Oε(m
′) = Oε(n

2/3) .

On the event that the coupling fails, the difference is crudely Oε(n). We saw in the
proof of Lemma E.6 that the coupling fails with probability exponentially small in n,
so altogether we conclude

E

∣∣∣∣ ln Z(G0)

Z(G−1)

∣∣∣∣+ E

∣∣∣∣ ln Z(Gnd+1)
Z(Gnd)

∣∣∣∣ = Oε(n
2/3) .

Combining with the result of Lemma E.6 proves the claim. ��
Proof of Theorem E.5 In the interpolation, the initial graph G−1 consists of n disjoint
trees Tv , each rooted at a variable v ∈ V . Thus

n−1E ln Z(G−1) = E ln Z(Tv) = E ln

(∑
x∈X

hv(x)
d∏

a=1
ua(x)

)
.

The final graph Gnd+1 is comprised of two disjoint subgraphs—one subgraph GV has
the same law as the graph G of interest, while the other subgraph GU = (U , FU , EU )

consists of nα(k − 1) disjoint trees Sc, each rooted at a clause c ∈ AU . Thus

n−1E ln Z(Gnd+1) = α(k − 1)E ln Z(Sc)+ n−1E ln Z(G ) = α(k − 1)E ln u0 + Fn .

The theorem follows by substituting these into the bound of Corollary E.7. ��

E.3. Proof of 1RSB bound

For the proof of Theorem E.3, we take G−1 as before and modify it as follows. Where
previously each u ∈ U had spin value xu ∈ X, it now has the augmented spin (xu, γu)
where γ goes over the positive integers. Let γ ≡ (γu)u . Next, instead of labeling u

with (hu, ηu, ρu) as before, we now label it with (hu, ηu, (ρ
γ
u )γ≥1) where (ργu )γ≥1 is

an infinite sequence of i.i.d. samples from ηu . Lastly, we join all variables in U to a
new clause a∗ (Fig. 8), which is labelled with the function

ϕa∗(γ ) =
∑
γ≥1

zγ
∏
u∈U

1{γu = γ }

for some sequence of (random) weights (zγ )γ≥1. LetH−1 denote the resulting graph.
Given H−1, let μH−1 be the associated Gibbs measure on configurations (γ , x).

Due to the definition of ϕa∗ , the support of μH−1 contains only those configurations
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Fig. 8 H−1

where all the γu share a common value γ , in which case we denote (γ , x) ≡ (γ, x).
Explicitly,

μH−1(γ, x) =
1

Z(H−1)
zγ
∏
v∈V

hv(xv)
∏
a∈A
[1− θa(xδa)]

∏
u∈U
(ργ h)u(xu) .

We can then define an interpolating sequence H−1, . . . ,Hnd+1 precisely as in the
proof of Theorem E.5, leaving a∗ untouched. Let Gr denote the graphHr without the
clausea∗, and let Zγ (Gr )denote the partition functiononGr restricted to configurations
where γu = γ for all u. Then, for each 0 ≤ r ≤ nd + 1,

Z(Hr ) =
∑
γ

zγ Zγ (Gr ) .

The proofs of Lemma E.6 and Corollary E.7 carry over to this setting with essentially
no changes, giving

Corollary E.8 Under the assumptions above,

E ln Z(H−1) ≥ E ln Z(Hnd+1)− Oε(n
2/3),

where the expectation E is over the sequence of random graphs (Hr )−1≤r≤nd+1.

The result of Corollary E.8 applies for any (zγ )γ≥1. Now take (zγ )γ≥1 to be a
Poisson–Dirichlet process with parameter λ ∈ (0, 1).5 The process has the following
invariance property (see e.g. [41, Ch. 2]):

Proposition E.9 Let (zγ )γ≥1 be a Poisson–Dirichlet process with parameter λ ∈
(0, 1). Independently, let (ξγ )γ≥1 be a sequence of i.i.d. positive random variables
with finite second moment. Then the two sequences (zγ ξγ )γ≥1 and (zγ (Eξλ1 )1/λ)γ≥1
have the same distribution, and consequently

E ln
∑
γ≥1

zγ ξγ = 1

λ
lnEξλ .

5 That is to say, let (wγ )γ≥1 be a Poisson point process on R>0 with intensity measure w−(1+λ) dw. Let
W denote their sum, which is finite almost surely. Assume the points of wγ are arranged in decreasing
order, and write zγ ≡ wγ /W . Then (zγ )γ≥1 is distributed as a Poisson–Dirichlet process with parameter
λ.
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Proof of Theorem E.3 Consider Z(γ ) ≡ (Zγ (Gr ))−1≤r≤nd+1. If we condition on
everything else except for the ρ’s, then (Z(γ ))γ≥1 is an i.i.d. sequence indexed by γ .
LetEz,ρ denote expectation over the z’s and ρ’s, conditioned on all else: then applying
Proposition E.9 gives

n−1E ln Z(H−1) = (nλ)−1E lnEz,ρ [Z(G−1)λ] = λ−1E lnEz,ρ

[(∑
x∈X

h(x)
d∏

a=1
ua(x)

)λ]
,

n−1E ln Z(Hnd+1) = Fn + λ−1E lnEz,ρ [(u0)λ].

Combining with Corollary E.8 proves the result. ��

E.4. Extension to higher levels of RSB

We finally explain that Theorem E.3 can be extended relatively easily to cover the
scenario of r -step replica symmetry breaking. Before stating the result, we define
some notations (mainly following notation of [41, §2.3]). Let N be the set of positive
integers and N

r be its r -fold product; in particular, N
0 ≡ {∅}. We consider arrays

indexed by the set

A ≡
r⋃

p=0
N

p .

We view A as a depth-r infinitary tree rooted at ∅. For 0 ≤ p ≤ r − 1, each vertex
γ = (γ1, . . . , γp) ∈ N

p has children γ n ≡ (γ1, . . . , γs, n) ∈ N
s+1. The leaves of

the tree are in the last level N
r . For γ ∈ N

p write |γ | ≡ p, and let p(γ ) be the path
between the root and γ (not inclusive):

p(γ ) ≡
{
γ1, (γ1, γ2), . . . , (γ1, . . . , γp−1)

}
.

Fix a sequence of parameters m = (m1, . . . ,mr ) satisfying

0 < m0 < · · · < mr−1 < 1. (139)

For each γ ∈ A\Nr , let  γ be (independently of all else) a Poisson–Dirichlet point
process with parameterm|γ |. Let (uγ n)n∈N be the points of γ arranged in decreasing
order. As γ goes over all of A \ N

r , we obtain an array (uβ)β∈A\N0 . Let

wγ ≡
∏
β∈p(γ )

uβ .
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The Ruelle probability cascade of parameter m (hereafter RPC(m)) is defined as
the N

r -indexed array

νγ ≡ wγ∑
β∈Nr wβ

.

For the validity of the definition, see for instance [41, Lem. 2.4]. As in the 1rsb setting,
we plan to apply Theorem E.5 to the modified graphH−1, where we “glue” multiple
weighted copies of G−1’s together via the extra clause a�. The only difference is that
now the copies of G−1 are indexed by γ ∈ N

r instead of N. More precisely, the extra
spin at each vertex u ∈ U will take a value γ ∈ N

r ; the label at each vertex u ∈ U
will be (hu, ηu, (ρ

γ
u )γ∈A); and the function at a� will be

φa� (γ ) =
∑
γ∈Nr

zγ
∏
u∈U

1{γu = γ }, (140)

where (zγ )γ∈Nr is aN
r -indexed random array representing theweight of copy γ ∈ N

r .
In the proof, we will choose (zγ )γ∈Nr according to the RPC(m) law.

We now specify the labels (ργ )γ∈A that will be used in the proof. Recall that M0
is the space of probability measures on the alphabet X. We recursively defineMr , for
1 ≤ r ≤ p, to be the space of probability measures on Mr−1. Now fix an element
ρ∅ = ζ ∈Mr . For each 0 ≤ p ≤ r−1 and γ ∈ N

p, suppose inductively that we have
constructed ργ ∈ Mr−p. We then take ργ n ∈ Mr−p−1 for n ∈ N as i.i.d. samples
ργ ∈Mr−p in Mr−p−1. The process terminates with the construction of ργ ∈ X for
each γ ∈ N

r . Define the σ -field

Fp ≡ σ
((
(ργ )γ∈Ns

)
s≤p

)
,

and write Ep for expectation conditional on Fp. For any deterministic function
V (u, ρ), any randomvariableU independent of (ργ )γ∈Nr , and any sequence of param-
eters m satisfying (139), consider the random array (V γ )γ∈Nr ≡ (V (U , ργ ))γ∈Nr .
Let Tr (V ) = V (U , ρ1), and for 0 ≤ p ≤ r − 1 let

Tp(V ) =
{

Ep

(
Tp+1(V )

)mp
}1/mp

The resulting operator T0 depends implicitly on the distribution of U , measure ρ∅ ∈
Mr and parameter m. The following lemma is a well-known property of the RPC.

Lemma E.10 ([43, Prop. 2]) Let (zγ )γ∈Nr be the RPC with parameter m. Under the
notations above,

E ln T0(V ) = E ln
∑
γ∈Nr

zγ V
γ .
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The next result generalizes Theorem E.3.

Theorem E.11 Consider a (random) Gibbs measure (137) satisfying assumptions
(134)–(136). Write (hρ)a, j (x) ≡ ha, j (x)ρa, j (x). For each a ∈ F we define

ua(x) ≡
∑
x∈Xk

1{x1 = x}[1− θa(x)]
k∏
j=2
(hρ)a, j (x j ),

ua ≡
∑
x∈Xk

[1− θa(x)]
k∏
j=1
(hρ)a, j (x j ) .

Note that ua(x) and ua are deterministic functions of the variables
(
θa, (ha, j ) j∈[k],

(ρa, j ) j∈[k]
)
. Let

v ≡
∑
x∈X

h(x)
d∏

a=1
ua(x).

For any ζ ∈Mr and sequence m satisfying (139), let (ργ )γ∈Nr be constructed as
above, and let (ργa, j )γ∈Nr be i.i.d. copies indexed by (a, j). Define T0 similarly as
above, using the σ -fields

Fp = σ
(
(ρ
γ

a, j )γ∈Ns : a ∈ F, j ∈ [k], s ≤ p

)
.

Then the nonasymptotic free energy Fn ≡ n−1En ln Z(G ) satisfies the bound

Fn ≤ E ln T0(v)− (k − 1)αE ln T0(u0)+ Oε

(
1

n1/3

)

where E denotes the expectation over (θa)a∈F and (ha, j )a∈F, j∈[k].

Proof As outlined above, we consider the modified graph H−1 where each vertex
u ∈ U is independently labeled with (hu, ηu, (ρ

γ
u )γ∈A) and the extra clause a� is

labeled with the function defined in (140). In this setting, each u ∈ U has spin value
(γ, x) ∈ N

r × X. Since we are interested only in configurations (γ , x) such γu ≡ γ
for all u ∈ U , we write (γ, x) instead of (γ , x) and define the Gibbs measure as

μH−1(γ, x) =
1

Z(H−1)
zγ
∏
v∈V

hv(xv)
∏
a∈A
[1− θa(xδa)]

∏
u∈U
(ργ h)u(xu) .

Sample the weights (zγ )γ∈Nr according the law RPC(m). The result then follows by
the proof of Theorem E.3, with Lemma E.10 replacing the role of Proposition E.9. ��

123



108 A. Sly et al.

References

1. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: Proceedings of 49th
FOCS, pp. 793–802. IEEE (2008)

2. Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution-space geometry of random
constraint satisfaction problems. Random Struct. Algorithm 38(3), 251–268 (2011)

3. Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp threshold. SIAM J.
Comput. 36(3), 740–762 (2006)

4. Abbe, E., Montanari, A.: On the concentration of the number of solutions of random satisfiability
formulas. arXiv:1006.3786, (2010)

5. Abbe, E., Montanari, A.: On the concentration of the number of solutions of random satisfiability
formulas. Random Struct. Algorithm 45(3), 362–382 (2014)

6. Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction
problems. In: Proceedings of 38th STOC, pp. 130–139. ACM, New York (2006)

7. Aizenman, M., Sims, R., Starr, S.L.: Extended variational principle for the Sherrington-Kirkpatrick
spin-glass model. Phys. Rev. B 68(21), 214403 (2003)

8. Bapst, V., Coja-Oghlan, A.: The condensation phase transition in the regular k-SATmodel. In: Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and techniques, volume 60 of
LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 22, 18. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern (2016)

9. Bapst, V., Coja-Oghlan, A.: Harnessing the Bethe free energy. Random Struct. Algorithm 49(4), 694–
741 (2016)

10. Bapst, V., Coja-Oghlan, A., Hetterich, S., Raßmann, F., Vilenchik, D.: The condensation phase transi-
tion in random graph coloring. Commun. Math. Phys. 341(2), 543–606 (2016)

11. Bapst, V., Coja-Oghlan,A., Raßmann, F.:A positive temperature phase transition in randomhypergraph
2-coloring. Ann. Appl. Probab. 26(3), 1362–1406 (2016)

12. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling
limits in sparse random graphs. Ann. Probab. 41(6), 4080–4115 (2013)

13. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random
Struct. Algorithm 27(2), 201–226 (2005)

14. Coja-Oghlan, A., Krza̧kała, F., Perkins, W., Zdeborová, L.: Information-theoretic thresholds from the
cavity method. In: Proceedings of 49th STOC, pp. 146–157. ACM, New York (2017)

15. Coja-Oghlan, A., Krzakala, F., Perkins, W., Zdeborová, L.: Information-theoretic thresholds from the
cavity method. Adv. Math. 333, 694–795 (2018)

16. Coja-Oghlan, A., Perkins, W.: Belief propagation on replica symmetric random factor graph models.
Ann. Inst. Henri Poincaré D 5(2), 211–249 (2018)

17. Coja-Oghlan, A., Panagiotou, K.: Catching the k-NAE-SAT threshold. In: Proceedings of 44th STOC,
pp. 899–907. ACM, New York (2012)

18. Coja-Oghlan, A., Panagiotou, K.: The asymptotic k-SAT threshold. Adv. Math. 288, 985–1068 (2016)
19. Coja-Oghlan, A., Perkins, W., Skubch, K.: Limits of discrete distributions and Gibbs measures on

random graphs. Eur. J. Combin. 66, 37–59 (2017)
20. Coja-Oghlan, A., Zdeborová, L.: The condensation transition in random hypergraph 2-coloring. In:

Proceedings of 23rd SODA, pp. 241–250. ACM, New York (2012)
21. Decelle, A., Krza̧kała, F., Moore, C., Zdeborová, L.: Asymptotic analysis of the stochastic block model

for modular networks and its algorithmic applications. Phys. Rev. E 84(6), 66106 (2011)
22. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. In: Proceedings of

46th STOC. ACM, New York (2014)
23. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. In: Proceedings of 47th

STOC, pp. 59–68. ACM, New York (2015)
24. Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs. Acta Math. 217(2),

263–340 (2016)
25. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. Commun. Math. Phys.

341(2), 435–489 (2016)
26. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys.

111(3–4), 535–564 (2003)
27. Gamarnik, D.: Right-convergence of sparse random graphs. Probab. Theory Relat. Fields 160(1–2),

253–278 (2014)

123

http://arxiv.org/abs/1006.3786


The number of solutions for random regular NAE-SAT 109

28. Gerschenfeld, A., Montanari, A.: Reconstruction for models on random graphs. In: Proceedings of
48th FOCS, pp. 194–204. IEEE (2007)

29. Guerra, F., Toninelli, F.L.: Infinite volume limit and spontaneous replica symmetry breaking in mean
field spin glass models. Ann. Henri Poincaré 4(suppl. 1), S441–S444 (2003)

30. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys.
233(1), 1–12 (2003)

31. Krza̧kała, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborová, L.: Gibbs states and the
set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. USA 104(25),
10318–10323 (2007)

32. Massoulié, L.: Community detection thresholds and the weak Ramanujan property. In: Proceedings of
46th STOC, pp. 694–703. ACM, New York (2014)

33. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford,
Oxford Graduate Texts (2009)

34. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations.
J. ACM 54(4), 41 (2007)

35. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Phys.
Rev. Lett. 94(19), 197205 (2005)

36. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random k-SAT from the cavity method.
Random Struct. Algorithm 28(3), 340–373 (2006)

37. Mossel, E., Neeman, J., Sly, A.: Reconstruction and estimation in the planted partition model. Probab.
Theory Relat. Fields 162(3–4), 431–461 (2015)

38. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Clusters of solutions and replica symmetry breaking
in random k-satisfiability. J. Stat. Mech. 2008(04), P04004 (2008)

39. Montanari, A., Restrepo, R., Tetali, P.: Reconstruction and clustering in random constraint satisfaction
problems. SIAM J. Discrete Math. 25(2), 771–808 (2011)

40. Nam, D., Sly, A., Sohn, Y.: One-step replica symmetry breaking of random regular nae-sat.
arXiv:2011.14270, (2020)

41. Panchenko, D.: The Sherrington0-KirkpatrickModel. SpringerMonographs inMathematics, Springer,
New York (2013)

42. Parisi, G.: On local equilibrium equations for clustering states. arXiv:cs/0212047, (2002)
43. Panchenko, D., Talagrand,M.: Bounds for dilutedmean-fields spin glassmodels. Probab. TheoryRelat.

Fields 130(3), 319–336 (2004)
44. Zdeborova, L., Krza̧kała, F.: Phase transitions in the coloring of random graphs. Phys. Rev. E 76(3),

31131 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2011.14270
http://arxiv.org/abs/cs/0212047

	The number of solutions for random regular NAE-SAT
	Abstract
	1 Introduction
	1.1 Main result
	1.2 Statistical physics predictions
	1.3 The tilted cluster partition function
	1.4 Modeling solution clusters
	1.5 One-step replica symmetry breaking
	1.6 The 1RSB free energy prediction
	1.7 Proof approach
	1.8 Open problems

	2 Combinatorial model
	2.1 Frozen and warning configurations
	2.2 Message configurations
	2.3 Bethe formula
	2.4 Colorings
	2.5 Averaging over edge literals

	3 Proof outline
	3.1 Empirical measures and moments
	3.2 Outline of first moment
	3.3 Outline of second moment
	3.4 Conclusion of main result

	4 Reduction to tree optimization by local updates
	4.1 Local update
	4.2 Tree updates
	4.3 Markov chain
	4.4 From graph to tree optimizations
	4.5 Sampling mechanism

	5 Solution of tree optimization
	5.1 Tree optimization problem
	5.2 BP recursions
	5.3 BP contraction and conclusion

	Acknowledgements
	Appendix A: Contraction estimates
	A.1. Single-copy coloring recursions
	A.2. Pair coloring recursions

	Appendix B: The 1RSB free energy
	B.1. Equivalence of recursions
	B.2. Large-k asymptotics
	B.3. Properties of the complexity function

	Appendix C: Constrained entropy maximization
	C.1. Constraints and continuity
	C.2. Entropy maximization

	Appendix D: Pairs of intermediate or large overlap
	D.1. Intermediate overlap
	D.2. Large overlap

	Appendix E: Free energy upper bound
	E.1. Basic interpolation bound
	E.2. Replica symmetric bound
	E.3. Proof of 1RSB bound
	E.4. Extension to higher levels of RSB

	References




