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Abstract

Recent work has made substantial progress in understanding the transitions of ran-
dom constraint satisfaction problems. In particular, for several of these models, the
exact satisfiability threshold has been rigorously determined, confirming predictions
of statistical physics. Here we revisit one of these models, random regular k-NAE- SAT:
knowing the satisfiability threshold, it is natural to study, in the satisfiable regime, the
number of solutions in a typical instance. We prove here that these solutions have a
well-defined free energy (limiting exponential growth rate), with explicit value match-
ing the one-step replica symmetry breaking prediction. The proof develops new tech-
niques for analyzing a certain “survey propagation model” associated to this problem.
We believe that these methods may be applicable in a wide class of related problems.

Mathematics Subject Classification 60K35 - 82B44

1 Introduction

In a random constraint satisfaction problem (CSP), we have n variables taking
values in a (finite) alphabet X, subject to a random set of constraints. In previous
works on models of this kind, it has emerged that the space of solutions—a random
subset of X"—can have a complicated structure, posing obstacles to mathematical
analysis. Major advances in intuition were achieved by statistical physicists, who
developed powerful analytic heuristics to shed light on the behavior of random CSPs
([31] and references therein). Their insights and methods are fundamental to the current
understanding of random CSPs.
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2 A.Slyetal.

One prominent application of the physics heuristic is in giving explicit (non-
rigorous) predictions for the locations of satisfiability thresholds in a large class of
random CSPs ([36] and others). Recent works have given rigorous proofs for some of
these thresholds: in the random regular NAE- SAT model [22,25], in the random k-SAT
model [23], and in the independent set model on random regular graphs [24]. How-
ever, the satisfiability threshold is only one aspect of the rich picture that physicists
have developed. There are deep conjectures for the behavior of these models inside
the satisfiable regime, and it remains an outstanding mathematical challenge to prove
them. In this paper we address one part of this challenge, concerning the total number
of solutions for a typical instance in the satisfiable regime.

1.1 Main result

Given a CNF boolean formula, a not-all-equal-SAT (NAE-SAT) solution is an assign-
ment x of literals to variables such that both x and its negation —x evaluate to
TRUE—equivalently, such that no clause gives the same evaluation to all its variables.
A k-NAE- SAT problem is one in which each clause has exactly k literals; it is termed
d-regular if each variable appears in exactly d clauses. Sampling such a formula in
a uniformly random manner gives rise to the random d-regular k-NAE-SAT model.
(The formal definition is given in Sect. 2.) See [3] for important early work on the
closely related model of random (Erdés—Rényi) NAE- SAT. The appeal of this model
is that it has certain symmetries making the analysis particularly tractable, yet it is
expected to share most of the interesting qualitative phenomena exhibited by other
commonly studied problems, including random k-SAT and random graph colorings.

Following convention, we fix k and then parametrize the model by its clause-to-
variable ratio, « = d/k. The partition function, denoted Z = Z,, is the number
of valid NAE- SAT assignments for an instance on n variables. It is conjectured that
for each k > 3, the model has an exact satisfiability threshold o, (k): for @ < gy
it is satisfiable (Z > 0) with high probability, but for @ > gy it is unsatisfiable
(Z = 0) with high probability. This has been proved [25, Thm. 1] for all k exceeding
an absolute constant kg, together with an exact formula for o, which matches the
physics prediction. It can be approximated as

Osar = L L In2+e 1)
sat = 2 4In2 k

where €; denotes an error tending to zero as k — 00.

We say the model has free energy f(«) if Z!'/" converges to f(«) in probability as
n — 00. A priori, the limit may not be well-defined. If it exists, however, Markov’s
inequality and Jensen’s inequality imply that it must be upper bounded by the replica
symmetric free energy

2 o
) = (E2)!/" = 2(1 — 2—k> ) )
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The number of solutions for random regular NAE-SAT 3

(In this model and in other random regular models, the replica symmetry free energy
is the same as the annealed free energy.) One of the intriguing predictions from the
physics analysis [38,44] is that there is a critical value o/cong Strictly below agy(, such that
f(or) and f*5 () agree up to o = a¢ond and diverge thereafter. In particular, this implies
that the function f(«) must be non-analytic at « = ocong. This is the condensation
transition (or Kauzmann transition), and will be further described below in Sect. 1.2.
For all 0 < o < agy, the free energy is predicted to be given by a formula

f(a) = flRSB(a) =) for0 < o < acond,
< (@) fora > aeond.

The function f'RS?

() is quite explicit, although not extremely simple to state; it is
formally presented below in Definition 1.3. The formula for fIRSB (&) is derived via the
one-step replica symmetry breaking (1RSB) heuristic, discussed further below. Our

main result is to prove this prediction for large k:

Theorem 1 In random regular k-NAE- SAT with k > ko, for all @ < ayq (k) the free
energy f(a) exists and equals the predicted value fIRSB ().

Remark 1.1 We allow for kg to be adjusted as long as it remains an absolute constant
(so it need not equal the ko from [25]). It is assumed throughout the paper that & > ko,
even when not explicitly stated. The following considerations restrict the range of
o = d/k that we must consider:

— A convenient upper bound on the satisfiable regime is given by

In2

M2 = g,
“In(1 —2/28) 112 = Cubd

Ogar < Ors =

This bound is certainly implied by the estimate (1) from [25], but it follows much
more easily and directly from the first moment calculation (2). Indeed, we see
from (2) that the function f*°(x) is decreasing in o and satisfies f*°(as) = 1,
so (EZ)!/" < 1 for all @ > ags. Thus, by Markov’s inequality, we have that
P(Z > 0) < EZ tends to zero as n — 00, i.e., the random problem instance is
unsatisfiable with high probability.

— For @ > oy we must have f(o) = 0. On the other hand, we can see by comparing
(1) and (2) that oy is strictly smaller than ogg, and RS (agqr) 1S strictly positive.
This suggests that ocong Occurs strictly before oy, since eeond = ®sar Wwould mean
that f(er) = f*°(a) up to ey, and in this case we would expect to have gy = ags.
Formally, it requires further argument to confirm that &cong < gy in random
regular NAE- SAT, and we obtain this as a consequence of results in the present
paper. However, the phenomenon of ocond < osar Was previously confirmed by
[20] and [8] for random hypergraph bicoloring and random regular SAT, both of
which are very similar to random regular NAE- SAT. As for the value of f(«) at the
threshold @ = aga, We point out that o« = o makes sense in the setting of this
paper only if dgy (k) = kaga (k) is integer-valued for some k. We have no reason
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4 A.Slyetal.

to think that this ever occurs; however, if it does, then the probability for Z > 0
is bounded away from both zero and one [25, Thm. 1]. In this case, Z /7 does not
concentrate around a single value but rather on two values,

{o, lim flRSB(a)} )

atosat

— In [25, Propn. 1.1]itis shown that for 0 < o < ajpg = (2"_l —2)In2 and n large
enough,

E(Z?)
E2)? <C=Ck,a) <o

where Z = Z, and C(k, ) does not depend on n. Thus, for any fixed 0 < € < 1
and n large enough,

o E(Z1{Z > €EZ})? _a —€)2(EZ)? _a —€)?

P(Z > €EZ) > EZ?) > EZ2) > C .

where the step marked © is by the Cauchy—Schwarz inequality. The results of [25,
Sec. 6] imply the stronger statement that for any 0 < « < ajpg,

limliminf P(Z > eEZ) = 1.
el0 n—>o0

On the other hand we already noted in (2) that E(Z!'/") < (EZ)!/" = f*(«) for
alla > 0and n > 1. It follows by combining these facts that Z!/" converges in
probability to f**(«) in probability for any 0 < & < ajpq. That is to say, the result
of Theorem 1 is already proved for & < ajpg, with f(a) = f*(a).

This also implies that the condensation transition ¢/¢opng must occur above ®|pg.

In summary, we have ojpg < Qsat < Ors < Oubd, and it remains to prove Theorem 1
for & € (apd, @sar)- Thus, we can assume for the remainder of the paper that

21 —2)In2 = aipg < @ < agpa = 251 n2. 3

In the course of proving Theorem 1 we will also identify the condensation threshold
Ocond € (Xbd, ¥sar) (characterized in Proposition 1.4 below).

The 1RSB heuristic, along with its implications for the condensation and satisfia-
bility thresholds, has been studied in numerous recent works, which we briefly survey
here. The existence of a condensation transition was first shown in random hypergraph
bicoloring [20], which as we mentioned above is a model very similar to random NAE-
SAT. We also point out [17] which is the first work to successfully analyze solution
clusters within the condensation regime, leading to a very good lower bound on satis-
fiability threshold. This was an important precursor to subsequent works [23-25] on
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The number of solutions for random regular NAE-SAT 5

exact satisfiability thresholds in random regular NAE- SAT, random SAT, and indepen-
dent sets. Condensation has been demonstrated to occur even at positive temperature
in hypergraph bicoloring (which is very similar to NAE- SAT) [11]. However, determin-
ing the precise location of aong is challenging, and was first achieved for the random
graph coloring model [10] by an impressive and technically challenging analysis. A
related paper pinpoints «cong for random regular k-SAT (which again is very simi-
lar to NAE- SAT) [8]. Subsequent work [15] characterizes the condensation threshold
in a more general family of models, and shows a correspondence with information-
theoretic thresholds in statistical inference problems. The main contribution of this
paper is to determine for the first time the free energy throughout the condensation
regime (Cleond, Osat)-

1.2 Statistical physics predictions

According to the heuristic analysis by statistical physics methods, the random regular
NAE- SAT model has a single level of replica symmetry breaking (1RSB). We summarize
here some of the key phenomena that are predicted from the 1RSB framework [31,38,
441, referring the reader to [33, Ch. 19] for a full expository account. While much of
the following description remains conjectural, the implications at the free energy level
are rigorously established by the present paper. Throughout the following we write =
to indicate equality up to subexponential factors (exp{o(n)}).

Recall that we consider NAE- SAT with & fixed, parametrized by the clause density
o = d/k. Abbreviate 0 = TRUE, 1 = FALSE. For small «, almost all of the solutions lie
in a single well-connected subset of {0, 1}"*. This holds until a clustering transition
(or dynamical transition) oclust, above which the solution space becomes broken up into
many well-separated pieces, or clusters (see [1,2,6,35]). Informally speaking, clusters
are subsets of solutions which are characterized by the property that within-cluster
distances are very small relative to between-cluster distances. Conjecturally, o/cjust
also coincides with the reconstruction threshold [28,31,39], and is small relative to
o5t When k is large, with otcpugt/otsar < (Ink) /k.

For o above oy it is expected that the number of clusters of size exp{ns}
has mean value exp{nX(s; «)}, and is concentrated about this mean. The function
2 (s) = X(s; o) is referred to as the “cluster complexity.” The 1RSB framework of
statistical physics gives an explicit conjecture for X, discussed below in Sect. 1.3.
Then, summing over cluster sizes 0 < s < In2 gives that the total number Z of
NAE- SAT solutions has mean

EZ = ) exp(nls + £(5)]) = exp(nlsi + (s}, @

where s1 = arg max[s + X (s)]. It is expected that X is continuous and strictly concave
in s, and also that s + X(s) has a unique maximizer s; with X'(s;) = —1. For
NAE- SAT and related models, this explicit calculation reveals a critical value a¢ong €
(clust, ®sat), characterized as

Qcond = SUP{@ > Qcpust @ X (s1(a); o) > 0} .
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6 A.Slyetal.

By contrast, the satisfiability threshold can be characterized as

Qsat = sup{ar > atelyse : max X(s; o) > 0}
s

For all o > ag)yst, the expected partition function EZ is dominated by clusters of
size exp{nsy}. However, for & > ocond, we have X (s1) < 0, so the expected number
of clusters of this size is very small: exp{rnX(s1)} tends to zero exponentially fast as
n — oo. This means that clusters of size exp{ns;} are highly unlikely to appear in
a typical realization of the model. Instead, in a typical realization we only expect to
see clusters of size exp{ns} with X(s) > 0. As a result the solution space should be
dominated (with high probability) by clusters of size syax Where

Smax = Smax (@) = arg max{s + X (s) : X(s) > 0}.

Since ¥ is continuous, s,y 18 the largest root of ¥, and for o € (econd, Osat) We should
have

Z = exp{nsmax} € EZ = exp{n[s; + Z(s1)]}

(where the approximation for Z holds with high probability). The 1RSB free energy,
formally given by Definition 1.3 below, should be interpreted as an expression for the
function R (@) = smax ().

1.3 The tilted cluster partition function

From the discussion of Sect. 1.2 we see that once the function X (s; «) is determined, it
is possible to derive acond, ®sat, and f(a). However, previous works have not taken the
approach of actually computing X. Indeed, oy Was determined [25] by an analysis
involving only max; X (s; «), which contains less information than the full curve X.
Related work on the exact determination (in a range of models) of a¢ong [8,10,15] also
avoids computing X, reasoning instead via the so-called “planted model.”

In order to compute the free energy, however, we cannot avoid computing (some
version of) the function X, which we will do by a physics-inspired approach. First
consider the A-tilted partition function

Z,= ) Iy, ()

yeCL(9)
where CL(¥) denotes the set of solution clusters of ¢, and |y| denotes the number

of satisfying assignments inside the cluster y. According to the conjectural picture
described above, we should have

EZ;, =) (explns)* exp(nE(s)} = exp(nF(1))
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The number of solutions for random regular NAE-SAT 7

where § is the Legendre dual of —X:
§0) = (=2)*(h) = max {xs + z(s>} = hn+ Z(52). (©)

where s, = arg max[As+ 2 (s)]. Moreover, if £ (s;) > 0, then Z; should concentrate
near [EZ;, and in this regime physicists have an exact prediction for §(1), which will
be further discussed below in Sect. 1.5. In short, the physics approach to computing
¥ is to first compute F(A) (in the regime where X (s;) > 0), and then set ¥ = —F*.
Note that by differentiating §(1) = n~1InEZ, we find that § is convex in A, so the
resulting ¥ will indeed be concave.

At first glance the reduction to computing § (1) may not seem to improve matters. It
is notimmediately clear how “clusters” should be defined. It turns out that in the regime
we are studying, a reasonable definition is that two NAE- SAT solutions are connected
if they differ by a single bit, and the clusters are the connected components of the
solution space. A typical NAE- SAT solution will have a positive density of variables
which are free, meaning their value can be changed without violating any clause;
any such solution must belong in a cluster of exponential size. Each cluster may be
a complicated subset of {0, 1}"—changing the value at one free variable may affect
whether its neighbors are free, so a cluster need not be a simple subcube of {0, 1}".
Nevertheless, we wish to sum over the cluster sizes raised to non-integer powers. This
computation is made tractable by constructing more explicit combinatorial models for
the NAE- SAT solution clusters, as we next describe.

1.4 Modeling solution clusters

In our regime of interest (i.e., k > kg and ojpg < o < aypg; see Remark 1.1), the
analysis of NAE- SAT solution clusters is greatly simplified by the fact that in a typ-
ical satisfying assignment the vast majority of variables are frozen rather than free.
The result of this, roughly speaking, is that a cluster y € CL(¥) can be encoded by
a configuration x € {0, 1, £}" (representing its circumscribed subcube, so x, = £
indicates a free variable) with no essential loss of information. This is formalized by
a combinatorial model of “frozen configurations” representing the clusters (Defini-
tion 2.2). These frozen configurations can be viewed as the solutions of a certain CSP
lifted from the original NAE- SAT problem — so the physics heuristics can be applied
again to (the randomized version of) the lifted model. Variations on this idea appear
in several places in the physics literature; in the specific context of random CSPs we
refer to [13,34,42]. Analyzing the number of frozen configurations, corresponding to
(5) with A = 0, yields the satisfiability threshold for this model [25].

Analyzing (5) for general A requires deeper investigation of the arrangement of free
variables in a typical frozen configuration x. For this purpose it is convenient to view
an NAE- SAT instance as a (bipartite) graph ¢, where the vertices are given by variables
and clauses, and the edges indicate which variables participate in which clauses (the
formal description appears in Sect. 2). A key piece of intuition is that if we consider the
subgraph of ¢ induced by the free variables, together with the clauses through which
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8 A.Slyetal.

they interact, then this subgraph is predominantly comprised of disjoint components
T of bounded size. (In fact, the majority of free variables are simply isolated vertices;
a smaller fraction occur in linked pairs; a yet smaller fraction occur in components of
size three or more.) Each free component T is surrounded by frozen variables, and
we let z(T') be the number of NAE- SAT assignments on T' which are consistent with
the frozen boundary. Since disjoint components T', T’ do not interact, the size of the
cluster represented by x is simply the product of z(T) over all T'.

Another key observation is that the random NAE- SAT graph has few short cycles,
so almost all of the free components will be trees. As a result, their weights z(T')
can be evaluated recursively by belief propagation (BP), a well-known dynamic pro-
gramming method (see e.g. [33, Ch. 14]). In the RSB heuristic framework, a cluster is
represented by a vector m of “messages,” indexed by the directed edges of the NAE- SAT
graph ¢. Informally, for a given cluster, and for any variable v adjacent to any clause
a,

my_s represents the “within-cluster law of x, in absence of a”;

m, sy represents the “within-cluster law of x,, in absence of dv\a”, @)

where dv denotes the neighboring clauses of v. Each message is a probability measure
on {0, 1}, and the messages are related to one another via local consistency equations,
which are known as the BP equations. A configuration m which satisfies all the local
consistency equations is a BP solution. Thus a cluster y can be encoded either by a
frozen configuration x or by a BP solution m; the latter has the key advantage that the
size of y can be easily read off from m, as a certain product of local functions.
For the cluster size raised to power A, simply raise each local function to power A.
Thus the configurations m with A-tilted weights form a spin system (Markov random
field), whose partition function is the quantity of interest (5). This new spin system is
sometimes termed the “auxiliary model” (e.g. [33, Ch. 19]).

1.5 One-step replica symmetry breaking

In Sect. 1.4 we described informally how a solution cluster y can be encoded by a
frozen configuration x, or a BP solution m. An important caveat is that the converse
need not hold. In the NAE- SAT model, for any value of «, a trivial BP solution is always
given by the “replica symmetric fixed point” (also called the “factorized fixed point”),
where every m,_,, is the uniform measure on {0, 1}. However, above o¢ong, this is a
spurious solution. One way to see this is via the heuristic “cavity calculation” of f** (ar),
which we now describe to motivate the more complicated expression for f*8 (o).

Given a random regular NAE- SAT instance ¢ on n variables, choose k uniformly
random variables v, . .., vk, and assume for simplicity that no two of these share a
clause. Remove the k variables along with their kd incident clauses, producing the
“cavity graph” ¢”. Then add d(k — 1) new clauses to ¢”, producing the graph ¢’.
Under this operation (cf. [7]), ¢’ is distributed as a random regular NAE- SAT instance
on n — k variables. If the free energy f(a) = lim;, o0 Z 1/n exists, then we would
expect it to agree asymptotically with
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The number of solutions for random regular NAE-SAT 9

Z@)\ Z(@) \ 7@\ .
(Z(%) - (Z(%) / (Z(%) ' ©
Let U denote the set of “cavity neighbors™: the variables in ¢” of degree d — 1, which
neighbored the clauses that were deleted from ¢. Then ¢ and ¢’ differ from ¢”
only in the addition of a few small subgraphs which are attached to U. Computing
Z(4)]Z(@G") or Z(9'))Z(¥4") reduces to understanding the joint law of the spins
(x4)ucy under the NAE- SAT model defined by ¢”. Since ¢ is unlikely to have many
cycles, the vertices of U are typically far apart from one another in ¢”. Therefore,
one plausible scenario is that their spins are approximately independent under the
NAE- SAT model on ¢”, with x,, marginally distributed according to m,_,, where a is
the deleted clause that neighbored u in 4. If this is the case, then each m,_,, must be
uniform over {0, 1}, by the negation symmetry of NAE- SAT. Under this assumption,
we can calculate

1/k N 17k
(ZZ((Z,))) =2(1-2/2Y7, (%) = (1-2/250D 0 (9)

Substituting into (8) gives the replica symmetric free energy prediction f(ar) = f*°(),
which we know to be false for large « (in particular, it is inconsistent with the known
satisfiability threshold). Thus the replica symmetric fixed point, m;,_,, = unif({0, 1})
for all u — a, is a spurious BP solution. In reality the x, are not approximately
independent in ¢”, even though the u’s are far apart. This phenomenon of non-
negligible long-range dependence may be taken as a definition of replica symmetry
breaking (RSB) in this setting, and occurs precisely for « larger than ocong-

Since above acong the partition function cannot be estimated by (9) due to replica
symmetry breaking, a different approach is needed. To this end, the one-step RSB
(1RSB) heuristic posits that even when the original NAE- SAT model exhibits RSB, the
(seemingly more complicated) “auxiliary model” of A-weighted BP solutions m is
replica symmetric, for A small enough: conjecturally, as long as X(s;) > 0 for
s) = argmax,{As + X(s)} (cf. the discussion below (6)). That is, for such A, the
auxiliary model is predicted to have correlation decay, in contrast with the long-range
correlations of the original model. This would mean that in the auxiliary model of the
cavity graph ¢”, the spins (m;,—, 4 ), cv are approximately independent, with eachmy,_, ,
marginally distributed according to some law g, ,. The model has a replica symmetric
fixed point, ¢,,—., = ¢, for all u — a (the analogue of m,_,, = unif({0, 1}) for all
u — a). If we substitute this assumption into the cavity calculation (the analogues of
(8) and (9)), we obtain the replica symmetric prediction for the auxiliary model free
energy §(1), expressed as a function of ¢, . As explained above, from §(}) we can

derive the complexity function ¥ (s) and the 1RSB NAE- SAT free energy f'**®(a).

1.6 The 1RSB free energy prediction

Having described the heuristic reasoning, we now proceed to formally state the 1RSB
free energy prediction. We first describe ¢, as a certain discrete probability measure
overm. Since mis a probability measure over {0, 1}, weencodeitby x = m(1) € [0, 1].
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10 A.Slyetal.

A measure g on m can thus be encoded by an element i € & where & denotes the
set of discrete probability measures on [0, 1]. For measurable B C [0, 1], define

. 1 k=1 k=1 s 1— 1—[1_(_11 . k=1
P (B = /(2— ;— 1—,-)1{ =17 EB} dx;),
wn(B) 7 Ex g( Xi) P Tl =) E/L( Xi)

Z(w) i=1Xi —
1

d—1 d—1 A 1—[(171 i d—1
B u(B) = — /( yi + <1—y,->> 1{ - =l eB} w(dy), (10)
’ Z(w D E H?:ll Yi + 1_[51:11(1 = i) D

where % () and 7 (w) are the normalizing constants such that %A’A i and %_"x WL are
also probability measures on [0, 1]. (In the context of A = 0 we take the convention
that 0° = 0.) Denote %, = %"A o %A’A. The map %), : & — < represents the BP
recursion for the auxiliary model. The following presents a solution for « in the interval
(ot1bds @ubd) Which we recall (Remark 1.1) is a superset of (¥cond, ®sat)-

Proposition 1.2 (proved in “Appendix B”) For A € [0, 1], let (10 = %80—1— %81 e Z,
and define recursively iy 141 = Zpag € P for alll > 0. Define S| =
(supp £, )\(Supp(fta,0 + - .. + fiy.1—1)); this is a finite subset of [0, 1]. Regard 1.
as an infinite sequence indexed by the elements of S in increasing order, followed by
the elements of S» in increasing order, and so on. For k > ko and ajpg < o < otypg, in
the limit| — 00, 1) | converges in the 0! sequence space to a limit [, € P satisfying
the fixed point equation [v), = %y [i,., as well as the estimates [1,.((0, 1)) < 7/2% and

f.(dx) = [1(d(1 = x)).

The limit () of Proposition 1.2 encodes the desired replica symmetric solution g;,
for the auxiliary model. We can then express § (1) in terms of j1; as follows. Writing
Ay = X 1., let wy, ;, wy, € & be defined by

in(B) = (50! / (

k k s k k k
wx(B)=(3x>*‘/<1—1'[xi—H(l—xi)) I{I—Hx,-—]'[a—x,-)eB}]‘[;zx(dxl-),
i=1 i=1 i=1 i=1 i=1

A
w® =G0 [[ (w+a=00-9) 1+ a-0a-y e sli@nia.
(11)

d d

A d d d
vi+ (l—y,-)) 1{Hy,-+]'[(1—yi)e3}1'[m(dy,->,
1 i=1 i=1 i=1

1 i=

with 3 Ao 3 Ao 3 » the normalizing constants. The analogue of (9) for this model is

Z,(9) )1/" s s s g (Z;\(g’))l/k 5 ralk—1)
= =3.(31/3)% | = =3 ,
(ZA( o W53 (Frgn) =G

and substituting into (8) gives the 1RSB prediction Z, = exp{S(A)} where
FO)=Fhia)=In3,+aln3; —kaln3;. (12)
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The number of solutions for random regular NAE-SAT 1

Further, the maximizer of s — (As + X(s)) is predicted to be given by

s, =5 (a) = /ln(x)u'),\(dx) —i—a/ln(x)ﬁ))\(dx) — ko / In(x)w,(dx). (13)
If s = s, for A € [0, 1] then we define
() =20 a) =50 a) — Asy(a) . (14)
We then use (14) to define the thresholds

Qcond = sup{a : X(s1; ) > 0},

ot = supfo @ X(so; o) > 0}.

We can now formally state the predicted free energy of the original NAE- SAT model:

Definition 1.3 For @ € k~!Z, 1RSB free energy prediction f'*® () is defined as

f5() = 2(1 —2/25)*  for @ < otconds
flRSB(a) = qexp[sup{s : Z(s) > 0}] for ocond < & < gqt (15)
0 for a > ogyt.

(In regular k-NAE- SAT we must have integer d = ko, so we need not consider o ¢
k='7Z.)

Proposition 1.4 (proved in “Appendix B” ) Assume k > ko and write A =
[bd: Qupd] N (k™' 7).

a. Foreacha € A, the function s — X (s; o) is well-defined, continuous, and strictly
decreasing in s.

b. For each 0 < A < 1, the function @ +— X(sp;a) = F(X) — sy, is strictly
decreasing with respect to a € A. There is a unique o) € A such that X(sy; )
is nonnegative for all o« < «, and is negative for all « > «,. Taking .. = 0 we
recover the estimate (1); and taking A = 1 we obtain in addition

deond =1 = 2K =1 In2 +¢. (16)
(The main purpose of this proposition is to show that X(s1) < 0 for all @ €
(Acond» Usar), 1.e., that the “condensation regime” is a contiguous range of values

of a. The expansion of acong matches an earlier result of [20], which was obtained for
a slightly different but closely related model.)

1.7 Proof approach

Since f = f(«) is a priori not well-defined, the statement f < g means formally that
forall e > 0, P(ZV/" > g + €) tends to zero as n — oo. With this notation, we
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will prove separately the upper bound f(a) < f'**® () and the matching lower bound
f(ar) > f'*® (). This implies the main result Theorem 1: the free energy f(o) is indeed
well-defined, and equals fIRSB ().

The upper bound is proved by an interpolation argument, which we defer to
“Appendix E”. This argument builds on similar bounds for spin glasses on Erd&s—
Rényi graphs [26,43], together with ideas from [12,27] for interpolation in random
regular models. Let Z, (8) denote the partition function of NAE- SAT at inverse tem-
perature 8 > 0. The interpolation method yields an upper bound on E In Z,, (8) which
is expressed as the infimum of a certain function P(u; B), with u ranging over prob-
ability measures on [0, 1]. We then choose p according to Proposition 1.2, and take
B — o0 to obtain the desired bound f(ar) < 5% (ax).

Most of the paper is devoted to establishing the matching lower bound. The proof
strategy is inspired by the physics picture described above, and at a high level proceeds
as follows. Take any X such that ¥ (s;,) (as defined by (13) and (14)) is nonnegative, and
let Y, be the number of clusters of size roughly exp{ns,}. (As discussed in §1.3, we
shall think of a cluster as a connected component of the solution space.) The informal
statement of what we show is that

Y, = exp{n[is; + Z(sp)]}. (17)

Adjusting A as indicated by (15) then proves the desired bound f(«) > fIRSB ().

Proving a formalized version of (17) occupies a significant part of the present paper.
We introduce a slightly modified version of the messages m which record the topologies
of the free trees T'. We then restrict to cluster encodings in which every free tree
has fewer than T variables, which limits the distance that information can propagate
between free variables. We prove a version of (17) for every fixed T, and show that
this yields the sharp lower bound in the limit 7 — oo. The proof of (17) for fixed T
is via the moment method for the auxiliary model, which boils down to a complicated
optimization problem over many dimensions. It is known (see e.g. [25, Lem. 3.6]) that
stationary points of the optimization problem correspond to “generalized” BP fixed
points—these are measures Q4 (My— 4, My—sy), rather than the simpler “one-sided”
measures ¢, (my—,) considered in the 1RSB heuristic.

The one-sided property is a crucial simplification in physics calculations (cf. [33,
Proposition 19.4]), butis challenging to prove in general. One contribution of this work
that we wish to highlight is a novel resampling argument which yields a reduction to
one-sided messages, and allows us to solve the moment optimization problem. (We
are helped here by the truncation on the sizes of free trees.) Furthermore, the approach
allows us to bring in methods from large deviations theory. With these we can show
that the objective function has negative-definite Hessian at the optimizer, which is
necessary for the second moment method. This resampling approach is quite general
and should apply in a broad range of models.
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1.8 Open problems

Beyond the free energy, it remains a challenge to establish the full picture predicted by
statistical physicists for o < ogy. We refer the reader to several recent works targeted at
a broad class of models in the regime @ < ®ond [9,16,19], and to work on the location
on ¢ong in a general family of models [14]. In the condensation regime (cond, ®sat),
an initial step would be to show that most solutions lie within a bounded number
of clusters. A much more refined prediction is that the mass distribution among the
largest clusters forms a Poisson—Dirichlet process. Another question is to show that on
a typical problem instance over n variables, if x!, x> are sampled independently and
uniformly at random from the solutions of that instance, then the normalized overlap
Ri,=n"v: xll) = x%} concentrates on two values (corresponding roughly to the
two cases that x 1 .EZ come from the same cluster, or from different clusters)—this
criterion is sometimes taken as the precise definition of 1RSB. During the final revision
stage of this paper, some of the above questions were addressed by a new preprint [40].

Beyond the immediate context of random CSPs, understanding the condensation
transition may deepen our understanding of the stochastic block model, a model for
random networks with underlying community structure. Here again ideas from statis-
tical physics have played an important role [21]. A great deal is now known rigorously
for the case of two blocks [32,37], where there is no condensation regime. For mod-
els with more than two blocks, however, it is predicted that the condensation can
occur, and may define a regime where detection is information-theoretically possi-
ble but computationally intractable. A condensation threshold has been established
for the anti-ferromagnetic Potts model, corresponding to the disassortative regime of
the stochastic block model. An analogous transition is expected in the ferromagnetic
(assortative) case, and this remains open.

2 Combinatorial model

In this section we formalize a combinatorial model of clusters, which allows us to rig-
orously lower bound the tilted cluster partition function (5). We begin by reviewing the
(standard) graphical depiction of NAE- SAT. A not-all-equal-SAT (NAE-SAT) problem
instance is naturally represented by a bipartite factor graph ¢ with signed edges, as
follows. The vertex set of ¢ is partitioned into a set V = {vy, .. ., v,} of variables and
aset F = {ay,...,ay} of clauses; we then have a set E of edges joining variables
to clauses. For each edge ¢ € E we write v(e) for the incident variable, and a(e) for
the incident clause; and we assign an edge literal L, € {0, 1} to indicate whether v(e)
participates affirmatively (L, = 0) or negatively (L, = 1) in a(e). We define all edges
to have length one-half, so two variables v # v’ lie at unit distance if and only if they
appear in the same clause. Throughout this paper we denote § = (V, F, E) for the
bipartite graph without edge literals,and ¥ = (V, F, E, L) = (G, L) for the NAE- SAT
instance.

Formally we regard the edges E as a permutation, as follows. Each variable v € V
has incident half-edges §v, while each clause a € F has incident half-edges da. Write
8V for the labelled set of all variable-incident half-edges, and 6 F for the labelled set of

@ Springer



14 A.Slyetal.

all clause-incident half-edges; we require that |5V | = |6 F| = £. Then any permutation
mof [£] = {1, ..., £} defines E by defining a matching between §V and § F. Note that
any permutation of [¢] is permitted, so multi-edges can occur. In this paper we assume
that the graph is (d, k)-regular: each variable has d incident edges, and each clause
has k incident edges, so |E| = nd = mk. A random k-NAE-SAT instance is given
by ¥ = (V, F, E,L) where |V| = n, |F| = m, E is given by a uniformly random
permutation m of [nd], and L is a uniformly random sample from {0, 1}£. We write
IP and E for probability and expectation over the law of ¥.

Definition 2.1 (solutions and clusters) A solution of the NAE- SAT problem instance
¢ = (V,F,E,L) is any assignment x € {0, l}V such that for alla € F, (L, ®
Xy(e))ecsa 1S neither identically 0 nor identically 1. Let SOL(¥) < {0, 1}V denote
the set of all solutions of ¢, and define a graph on SOL(¥) by connecting any pair
of solutions at unit Hamming distance. The (maximal) connected components of the
SOL(¥) graph are the solution clusters, hereafter denoted CL(¥).

The aim of this section is to establish that (under a certain restriction) the NAE-
SAT solution clusters can be represented by a combinatorial model of what we will
term “colorings.” We will describe the correspondence in a few stages. Informally, the
progression is given by

NAE- SAT solution clusters y <> frozen configurations x <>

<> warning configurations y <> message configurations T <> colorings o.  (18)

Each step of (18) is formalized below. As mentioned previously, the key feature of the
last model is that the size of a cluster y can be easily read off from its corresponding
coloring o, as a product of local functions. Some steps of the correspondence (18)
appear in existing literature (see [13,25,33,34,42]) but we present them here in detail
for completeness.

2.1 Frozen and warning configurations

We introduce a new value £ (free), and adopt the convention 0 @ £ = £ = 1 @ £.
For! > land x € {0, 1, £}/ let IN*E(x) be the indicator that x is neither identically 0
nor identically 1. Given an NAE- SAT instance 4 = (V, F, E, L) and an assignment
x €{0,1, f}V, denote

INAE(J_C; 9) = 1—[ INAE((Le D Xy(e))eesa) -

acF

By Definition 2.1, an NAE- SAT solution is an assignment x € {0, 1}" satisfying
M 4) = 1.

Definition 2.2 (frozen configurations) Given an NAE- SAT instance Y = (V, F, E, L),
for any e € E let ¢ @ 1, denote the instance obtained by flipping the edge label L,
to L, @ 1. We say that x € {0, 1, £} is a valid frozen configuration on ¢ if (i) no
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The number of solutions for random regular NAE-SAT 15

NAE- SAT constraint is violated, meaning I™E(x; ¢) = 1; and (ii) for all v € V, x,
takes a value in {0, 1} only when forced to do so, meaning there is some e € §v such
that

IMEx; 9 ®1,)=0. (19)

If no such e € §v exists then x, = £.

It is well known that on any given ¢, every NAE- SAT solution x can be mapped to
a frozen configuration x = x(x) via a “coarsening” or “whitening” procedure [42],
as follows. Initialize x = x. Then, whenever x,, € {0, 1} but there exists no e € §v
such that (19) holds, update x, to f. Iterate until no further updates can be made; the
result is then a valid frozen configuration. Two NAE- SAT solutions x, x” map to the
same frozen configuration x if and only if they lie in the same cluster y € CL(¥).
Thus, for any given ¢, we have a well-defined mapping from clusters y to frozen
configurations x. This map is one-to-one but not necessarily onto: for instance, the
all-free assignment x = £ is always trivially a valid frozen configuration, but on many
instances ¢ there is no solution cluster y € CL(¥) whose coarsening is x = £. Since
the aim is to lower bound the clusters, the lack of surjectivity must be addressed. We
will do so momentarily (Definition 2.4 below), but first we review an useful alternative
representation of frozen configurations:

Definition 2.3 (warning configurations) For the integers [ > 1, define functions Y :
(0,1, £} - {0,1,f,z}and Y : {0, 1, £}/ — {0, 1, £} by

lflE{j\/l}g{laf}v U : )']l ’
G Y(y)=11 if {y;} ={0};

i -7 f otherwise.
otherwise;

Y () =

N +rHh = O

Denote M = {0, 1, f}2. We write y € ME if y = (ye)ecg Where y, = (e, 3.) € M.
If edge e joins variable v to clause a, then y, represents a “warning” along e from v
to a, while J, represents a “warning” along ¢ from a to v. We say that y € M* is a
valid warning configuration on ¢ if it satisfies the local equations h

ve = G 30 = (V@500 Le @ P (@ Diatene)) (20)
for all e € E (with no y, = z).
It is well known that on any given ¢ there is a natural bijection

frozen configurations warning configurations
{ xefo,1, £} } { yeME @D
In the forward direction, given a (valid) frozen configuration x, for any variable v and
any edge e € dv such that (19) holds, set y. = x, € {0, 1}; then in all other cases set
Ve = f. Then, having defined all the y,, the y, can only be defined by the local Eq.
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(20). One can check that the resulting assignment y € ME is a warning configuration.
Conversely, given a warning configuration y, a frozen configuration x can be obtained

by setting x, = Y (§s) for all v.

2.2 Message configurations

We return to the question of surjectivity: does a given frozen configuration x encode a
(nonempty) solution cluster y € CL(%)? We will now state an easy sufficient condition
for this to hold. The condition is not in general necessary, but we will show that it
captures enough of the solution space to deliver a sharp lower bound on the free energy.

Definition 2.4 (free cycles) Let x € {0, 1, £}V be a valid frozen configuration on
¢ = (V,F, E,L). We say that a clause a € F is separating (with respect to x) if
there exist ¢/, ¢” € 8a such that L @ x,(,/y = 0 while L.» @ x, .7y = 1. For instance,
a forcing clause is also separating. A cycle in ¢ is a sequence of edges

e|ey...ex—1eeq,

where, taking indices modulo 2/, it holds for each integer i that e;_; and ep; are
distinct but share a clause, while ep; and e; 1 are distinct but share a variable. (In
particular, if v is joined to a by two edges ¢’ # ¢”, then ¢’¢” forms a cycle.) We say
the cycle in ¢ is free (with respect to x) if all its variables are free and all its clauses
are non-separating.

Definition 2.5 (free trees) Let x be a frozen configuration on 4 = (V, F, E, L) that
has no free cyces. Let H be the subgraph of ¢ induced by the free variables and
non-separating clauses of x. Since x has no free cycles, H must be a disjoint union
of tree components ¢, which we term the free trees of x. For each ¢, let T = T (¢) be
the subgraph of ¢ induced by ¢ together with its incident variables. The subgraphs T'
(which can contain cycles) will be termed the free pieces of x. Each free variable is
covered by exactly one free piece. In the simplest case, a free piece consists of a single
free variable surrounded by d separating clauses.

Let us say that x € {0, 1}V extends x € {0, 1, £}V if x, = x, for all v such that
xy € {0, 1}. If x is a frozen configuration on ¢ with no free cycles, it is easy to extend
x to valid NAE- SAT solutions x € {0, 1}¥—we simply extend x on each free tree ¢,
since NAE- SAT on a tree is always solvable; the different free trees do not interact.
Let y denote the set of all valid NAE- SAT solutions on ¢ that extend x, and denote
size(x) = |y|. Meanwhile, let T(x) denote the set of all free pieces of x. For each
T € T(x), let size(x; T) denote the number of valid NAE- SAT solutions on T that
extend x|r. It follows from our discussion that y € CL(¥) with

yl=size = [] sizex: 7). (22)
TeX(x)

That is to say, the absence of free cycles is an easy sufficient condition for a frozen
configuration to encode a nonempty cluster; and it further ensures that the cluster has a
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relatively simple product structure (22). As noted previously, the structure within each
free piece T can be understood by dynamic programming (BP). This is a well-known
calculation (see e.g. [33, Ch. 14]) but we will review the details for our setting. To this
end, we first introduce a combinatorial model of “message configurations” which will
map directly to the natural BP variables.

Recall from Definition 2.3 that a warning configuration is denoted y € M where

each y, = (J¢, o) € M. We denote a message configuration by 7 € .# £ where each
T, = (e, To) € A (for .4 to be defined below). It will be convenient to let E indicate
adirected edge, pointing from tail vertex 7 (E) to head vertex i (E). If e is the undirected
version of E, then we denote

(Ye, Te) if t(E) is a variable,
Ve, Te) = A A . .
(Ve, Te) if £(E) is a clause.

We will make a definition such that i either takes the value “x” or is a bipartite factor
tree. The tree is unlabelled except that one vertex is distinguished as the root, and
some edges are assigned O or 1 values as explained below. The root of i is required
to have degree one, and should be thought of as corresponding to the head vertex £ (E).

In the context of message configurations z, we use “0” or “1” to stand for the
tree consisting of a single edge which is labelled 0 or 1 and rooted at the endpoint
corresponding to the head vertex—the root is the incident clause in the case of 7, the
incident variable in the case of T. We use s to stand for the tree consisting of a single
unlabelled edge, rooted at the incident variable; this will be related to the situation of

separating clauses from Definition 2.4. Given a collection of rooted trees t1, ..., #
whose roots o1, . . ., o¢ are all of the same type (either all variable or all clauses), we
define r = join(ty, ..., t) by identifying all the o; as a single vertex o, then adding

an edge which joins o to a new vertex o’. The vertex o has the same type (variable or
clause) as the o;; and the vertex o’ is assigned the opposite type and becomes the root
of .

Definition 2.6 (message configurations) Start with My = {0, 1, «} and My = 2,

and suppose inductively that M, ///t have been defined. For T € (///t)d land 7 €
(/// )=1 let us abbreviate {%;} = {f1, ..., Tk—1} and {#;} = {71, ..., T4_1}. Define
0 if 0 € (£} € ;\(1}, 0 if {4} = {1},
1 if 1 € (%} C 4:\{0}, 1 if {;} = {0},
TE) =1z if {0, 1} € {%;}, T(1)=1{s if {0, 1} € {%;},
X if» € () € A\(0, 1}, * if (0,1} ¢ {7} and » € {4},
join{z;} if {f;} C //A;\{O, 1,%); join{z;} otherwise.

Then, for ¢ > 0, define recursively the sets

Mysy = My OTIAY N,
My = My U T[( M)\ (2)
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Fig. 1 Examples of messages (Definition 2.6). Variables are indicated by circle nodes, clauses by square
nodes, and edges by lines. For simplicity we assume that all edges depicted have literals L, = 0. Each
message is shown with its root as a filled node at the top. The variable-to-clause messages ¢ are rooted at
clauses, while the clause-to-variable messages 7 are rooted at variables. The heavy lines indicates edges
inside the message that are labelled 0 or 1. In our notation we have 7p = 0 and 7; = 1. Next 70 =
T(#1,71) = 0, while 7| = T'(9, #1) = s. Finally 73 = T'(#;, %) = join@,,9)) and %, = T(43, %) =
join(B3, Bo)

70| O ’Z'()

We then !et M Abe the union of all the ///,, let .# be the union of all the //2,, and let
M= MxM.0nY = (V,F,E,L), the assignment ¢ € .#F is a valid message
configuration if (i) it satisfies the local equations

Te = (fer ) = (T Eppiene)s Le & T(L & Dsatene)) 23)

foralle € E (withno 7, = z), and (ii) if one element of {,, T, } equals x then the other
elementis in {0, 1}. In (23), we take the convention that L, @ £ = f and L, @ »x = x,
and if 7 is a tree with labels then L, & t is defined by applying L, @ - entrywise to all
labels of 7. See Fig. 1.

Suppose x is a frozen configuration on ¢, and let y be its corresponding warning
configuration from (21). Given y, we define 7 in four stages:

1. If y. € {0, 1} then set 7, = y,; likewise if y, € {0, 1} then set T, = y,.
2. If (L ® Y)sa(e)\e has both 0 and 1 entries, then set 7, = s.

3. Apply the local Eq. (23) recursively to define 7., T, wherever possible.
4. Lastly, if any 7, or T, remains undefined, then set it to *.

An example with x messages is given in Fig. 2.

Lemma 2.7 The mapping described above defines a bijection

frozen configurations x € {0, 1, £}V message configurations
. - <> E .
without free cycles TeM

Proof Let x € {0, 1, £}V be a frozen configuration on ¢4 = (V, F, E, L) without
free cycles, and let y € M be the warning configuration which corresponds to x via
(21). We first check that the mapping y — 7, as described above, gives a message
configuration which is valid, i.e., satisfies conditions (i) and (ii) of Definition 2.6. In
the first stage, the mapping procedure sets 7, = y, whenever y, € {0, 1}, and 7, = y,
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S
ofn

oe @0

Fig.2 Example of how » messages can arise in the mapping from y to z (§2.2). The figure shows a subgraph
of & with variables indicated by circle nodes, clauses by square nodes, and edges by lines. All edges in the
figure are assumed to have label L, = 0. All variables shown are frozen to 0 or 1, and all clauses shown
are separating. To avoid clutter we did not label the edges with the warnings y.; instead, each variable
v is labeled with its frozen configuration spin x,, according to the x <> y bijection (21). The clauses
force the variables along the cycle in the clockwise direction, resulting in * values in the final 7 in the
counterclockwise direction of the cycle. (Note also that y can be recovered from t by changing * to £; cf.
Lemma 2.7) -

whenever y, € {0, 1}. One can argue by induction that the rest of the procedure does
not create any additional 0 or 1 messages, so that in the final configuration the {0, 1}
values of T will match those of y. The second and third stages of the procedure are
clearly consistent with the local Eq. (23). Note in particular that the third stage does
not produce any 7, = z message, because it would contradict the assumption that y is
a valid warning configuration; it also does not produce any * message. All » messages
are created in the fourth stage, and this is clearly consistent with the mapping of
messages under 7 and 7. This concludes the proof that 7 satisfies condition (i) of
Definition 2.6. To check condition (ii), suppose g = %, and let F denote the reversal
of E. From the above construction, it must be that y; = £ and 7y = * for some E’
that points to the tail vertex #(E) but does not equal F. Consequently E must belong
to a directed cycle EEp . .. ExxE with all the 1, equal to x. Whenever E points from
a separating clause a to free variable v, we must have tz = s. As a result, if all
the variables along the cycle are free, then none of the clauses can be separating,
contradicting the assumption that x has no free cycles. Therefore some variable v on
the cycle must take value x,, € {0, 1}, and by relabelling we may assume v = ¢(Ej).
LetF; denote the reversal of E;: since x, # £ but yg, = £, itmustbe that y;, = x,. This
means that the clause a = h(E;) = (Fy) is forcing to v, so in particular y., € {0, 1}.
Continuing in this way we see that y;, € {0, 1} for all i, and it follows that 7 satisfies
condition (ii), and so is a valid message configuration.

The mapping from y to 7 is clearly injective. To see that it is surjective, let T be any

valid message configuration. Projecting M\{0,1} — £ and //2\{0, 1} — £ yields
a valid warning configuration y, which in turn maps to a valid frozen configuration
x. It remains then to check that x has no free cycles. Indeed, along a free cycle,
all the warnings (in either direction) must be £. This means none of the messages
can be in {0, 1}, and as a result none of the messages can be %, by condition (ii) of
Definition 2.6. This means all the messages must be in //Z\{O, 1, }or //2\{0, 1, *}.
Suppose in one direction of the cycle we have the directed edges E{E; . .. Ex;E;. By
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definition of 7 and T, Tg; is a proper subtree of g, for all 7, with indices modulo
2k. Going around the cycle we find that g, is a proper subtree of g, ,, = g, which
gives the contradiction. O

2.3 Bethe formula

We now describe the dynamic programming (BP) calculation which will ultimately
take a message configuration T and evaluate a product of local functions to compute
the size of its associated cluster. The first step is to define the dynamic programming
variables; these will formalize the measures m which were introduced previously in (7).
Recall that for / > 1 and x € {0, 1, £}}, we write IN*E(x) for the indicator that the
entries of x are not identically 0 or identically 1.

Definition 2.8 Recall that message configuration spins belong to the space .#Z =
M x M (Definition 2.6). Let ({0, 1}) denote the space of probablhty measures
on {0, 1}. Define the mappings m : M — P{0,1})) and 1 : M~ Z({0,1}) as
follows. For ¢ € {0, 1} let m(7) be the unit measure supported on 7. Likewise, for
t € {0, 1} let (%) be the unit measure supported on 7. For ¢ € .Z\{0, 1, *} or
7€ /2\{0, 1, } we let (%) and f(?) be recursively defined: if 7 = T'(%y, ..., T4_1)
where no 7; = x, define

—1 d—1
iy = Y [[mEI@, mEle) = H [RE)X) . (24)

xe{0,1} i=1 =1
Note that 7y, ..., T;—1 can be recovered from 7 modulo permutation of the indices,

so these quantities are well-defined. We see inductively that for 7 € M \{0, 1, }, the
normalizing factor z(7) is positive, and m(7) is a nondegenerate probability measure
on {0, 1}. Similarly, if T € //2\{0, 1, x} equals f(r'l, ..., Tk—1) where none of the 7;
are *, then set

k—1 k—1 k—1

=y Y M [[mEGE) =2 - [ [mE1o) - [ [rmEa),

x€{0,1} xe{0,1}k! i=l1 i=1 i=1

1
@ > W%)HWM@) ( Hmnm) (25)

£e(0,1)k-1 i=1

(D] (x) =

Again, we see inductively that for T € M \{0, 1, %}, the normalizing factor Z(7) is
positive, and m(7) is a nondegenerate probability measure on {0, 1}. Finally, we will
see below that for our purposes we can take m(x) and m(x) to be arbitrary nondegenerate
probability measures on {0, 1}; we therefore define them both to equal the uniform
measure on {0, 1}.

Given a valid message configuration T on ¢, define m = (m.).cg Where m, =
(the, me) with m, = m(z.) and m, = m(z,). It follows from Definition 2.8 that m
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satisfies the following local consistency equations, which are inherited from the Eq.
(23) satisfied by 7, in combination with the above definitions (24) and (25). If 7, # «,
then m, is given by the equation

AN .
fhe(x) = 72 [] fe@ (26)

e'edv(e)\e

for x € {0, 1}. Likewise, if 7, # *, then m, is given by the equation

Me(x) =

> e =xM™(@EODse) [ fwke) @D

iﬁa(e)e{o’l}d e'eda(e)\e

1
2(Te)

forx € {0, 1}. The Egs. (26) and (27) are known as the BP equations. We now proceed
to the calculation of the cluster size (22). To this end, we define the local functions

-1
@(f,f)z{ > m[f]<x>~rh[f]<x)} :

xe{0,1}

k
é\)lit(il,-u,ik) = Z INAE(-E)I_[m[Tl](xl) =1

xe{0,1}k i=l
oy ﬁmm] S {CA(CATE)
xel0.1}i=1 @ (T, T((T)) i)
d A
A R an (T (7)) j#i)))
g e ey = [ i] ) S —— 28
v K xq;l}gm il o(Ti, T((Tj) i) 28)

where the last identity in the last two lines holds for any choice of i. The BP calculation
is summarized by the following:

Lemma 2.9 Suppose on ¢ = (V, F, E, L) that x is a frozen configuration with no
free cycles, and let T be its corresponding message configuration from Lemma 2.7.
Let T € %(x) be a free piece of x, and let t be the free tree inside it. Then the number
of NAE- SAT extensions of x|t on T is given by

size(x; T) = [ ] {gb(zsv)]"[@(re)} [] #"(@® Dsa) (29)

veV(t) eesv acF(t)

where V (t) and F (t) denote respectively the variables and clauses in t. (An example
calculation is worked out in Fig. 3.)

Proof As we have mentioned before, this calculation is well known (see e.g. [33,
Ch. 14]) but we will review it here, beginning with a minor technical point. As noted
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@1

Slit

n ¥ =

Fig. 3 Example of correspondence (Lemma 2.7) between frozen and message configurations. Variables
are indicated by circle nodes, clauses by square nodes, and edges by lines. The graph formed by the wavy
lines is a free piece T', with the free tree ¢ in green and T'\¢ in blue (Definition 2.5). Each variable v is
labelled with its frozen configuration spin value x,, € {0, 1, N}. The four separating clauses are indicated
by filled black squares. The message configuration is only partially shown, with the remaining values given
by the obvious symmetries. The clause-to-variable messages 7 are shown in black, and the variable-to-
clause messages 7 are shown in purple. Each message is a tree, with root vertex shown as a filled node.
The heavy black and purple lines indicate edges inside the messages that are labeled 1. For instance, the
message coming up out of the bottom variable is a tree consisting of a single edge, labelled 1 (indicated in

the figure by a heavy purple line), rooted at its incident clause. We then calculate on each edge the values

m = (m[#](1), RA[£](1)), and use this to determine the factors ¢, ¢!, @ from (28). In this example, ¢ has

two free variables each with ¢ = 1/4, four separating clauses each with goht = 1, and one non-separating
clause with (pl“ = 3/4. There are six edges incident to ¢, each with ¢ = 2. Multiplying all these factors
together (Lemma 2.9) gives size(x; T') = 3. Indeed, in this small example it is easy to see that there are
exactly three NAE- SAT assignments extending the frozen configuration x on T, since the two free variables
cannot both take value 1, but the remaining three possibilities give valid NAE- SAT assignments (color figure
online)

in Definition 2.5, ¢ is a tree but T has a cycle wherever a variable v € T'\¢ is joined
by more than one edge to £. However, since x|\ is {0, 1}-valued, these cycles play
no role in the question of extending x|r to a valid NAE- SAT assignment on T—one
can simply duplicate variables in T'\¢ so that each one joins to ¢ by exactly one edge.
We may therefore assume for the rest of the proof that all the free pieces T € T(x)
are acyclic.

Forany T € T(x) and any edge e € T, delete from T the edges 8a(e)\e, and let T,
denote the component containing e in what remains, rooted at a(e). Likewise, delete
from T the edges Sv(e)\e, and let T, denote the component containing e in what
remains, rooted at v(e). For each variable w € Te\t, let x,, € {0, 1} be the boolean
sum of x,, together with all the edge literals L on the path joining w to a(e) in T.
Note then that 7, encodes the isomorphism class of T., labelled with boundary data
Xy, (for all the variables w € Te\t) A similar relation holds between 7, and T . For
each e € T, let 5.(x; x) count the number of valid NAE- SAT assignments that extend
x| 7, on T ¢ and take value x on v(e). Let 5. (x; x) count the number of valid NAE- SAT

assignments that extend x|4 on T . and take value x on v(e). Denote

= ) S(n), S@= Y Sxx).

xe{0,1} xe{0,1}
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There are two boundary cases: if edge e joins a free variable in £ to a separating clause
in T'\t, then we have 5,(0; x) = 5,(1; x) = 1. If edge e instead joins a non-separating
clause in ¢ to a frozen variable in T'\t, then we have $.(x; x) = 1{x = xy()}. By
induction started from these boundary cases we find that foralle € T,

() = Se(X; x)

$e(x) ' B Se (x)

It follows that for any variable v € £, any clause a € ¢, and any edge e € T, we have
the identities

Se(x) Se (x)

size(x; T) = 9(2y) [ | 0@ = 0" @) [ 80 = =275

e'edv e'eda
Combining the identities and rearranging gives (writing E (¢) for the edges of ¢)

I1 {sb(igv)]"[@(re)} [] ¢"(GE & L)

veV(t) ecdv acF(t)

_size(x; T)VOIHIFO 4 (1) .
 size(x; T)E® { 1_[ 1_[ m}/{ 1_[ 1_[ Se()_c)}~

veV(t) edv\t acF(t) eeda\t

For a € F(t) and e € da\t, the variable v(e) is frozen and so we have $,(x) =
1. For any v € V(¢) and e € Sv\t, we have $,(x) = size(x; T). The tree ¢ has
Euler characteristic one. The right-hand side of the above equation then simplifies to
size(x; T'), thereby proving the claim. O

Corollary 2.10 Suppose on9 = (V, F, E, L) that x is a frozen configuration with no
free cycles, and let T be its corresponding message configuration from Lemma 2.7.
Then the number of valid NAE- SAT extensions of x is given by the product formula

sizex) = [ [ 6@s) [ [ 6"(GE @ Ds) [ [ 620) -

veV acF ecE

This identity holds as long as m(x) and m(x) are fixed nondegenerate probability
measures on {0, 1}.

Proof Let V' denote the set of free variables, and let E’ denote the set of all edges
incident to V'. Let F’ the set of non-separating clauses. From (22) and Lemma 2.9 we
have

sizex) =[] size; )= [] ¢G5 [[ 9" (@@L [ 9() . (30)

TeZ(x) veV’ aeF’ ecE’

For any edge e € E\ E’, the incident variable v(e) must lie in V\ V', meaning x, ) €
{0, 1}. We now partition E\ E’ into the disjoint union of E and E},, as follows. Let E.
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be the set of edges e € E\ E’ such that m, is fully supported on x, (). Let Ey, be the set
ofedgese € E\ E’such thatm, is anondegenerate measure on {0, 1}; note that m, must
then be fully supported on x,(). Consider a clause a € F\ F'. If a is non-forcing, then
daNE, = & and élit((i@;)ga) = 1. Otherwise, a is forcing in the direction of some
edge e € 8a, in which case 8a N Ey = {e} and "' (1 ® L)s4) = e (Xy(e)) = 1/9(Te).
We conclude for all a € F\F’ that

P"(EeLs) [] o) =1. 31)
ecdaNE,

For v € V\V/, for all ¢ € §v N Ey, we have m.(x,) = 1 and so ¢(1.) = 1/m(xy).
Thus, forall v € V\V/,
95 [] o =1. (32)

e€SVNEy

The identities (31) and (32) remain valid even for vertices incident to * messages,
as long as m(x) and m(x) are fixed nondegenerate probability measures on {0, 1}.
Combining the identities with (30) proves the claim. O

2.4 Colorings

We conclude this section by defining the coloring model, building on an encoding
introduced by [18]. It is a simplification of the message configuration model (Defini-
tion 2.6) that takes advantage of some of the cancellations ((31) and (32)) seen above.
In short, following the notation of Corollary 2.10, for edges in E\ E’ it is not necessary
to keep all the information of 7,; instead, it suffices to keep track only of whether e
belongs to E, or Ey, along with the value of x,() € {0, 1}. The colorings encode
precisely this information. The resulting bijection between colorings and message
configurations is the last step of (18).

Recall messages take values 7 = (7,7) € A = M x M (Definition 2.6), and let
{E} C A denote the subset of values t € # where we have both T € //Z\{O, 1, «}
and T € .#\{0,1,*}. Denote Q = {ro,r1,bp,b1} U {f}. Define a projection
S:.H — Qby

ro ift =0,
ri ift=1,
S(t) =1by iff #0andt =0, (33)
by iftf#1andt =1,
T otherwise (meaning that T € {f}).

(Note that S(t) € {rg, r1} includes the case © = x, and S(t) € {bg, b1} includes
the case T = .) We define a partial inverse to S as follows. If o € {f} then define
T =1(0) =0 = (6,6).Ifc = ry forx € {0, 1} then define T = (o) = x
and leave 7 (o) undefined. If 0 = by for x € {0, 1} then define T = 7(0) = x
and leave 7 (o) undefined. For o € {ro, r1, bg, b1} we denote (6,6) = (0, o). The
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coloring model is the image of the message configuration model under the projection
S, formally given by the following:

Definition 2.11 (colorings) For o € Q7, abbreviate {0;} = {01, .. ., 04}, and define

1 ifrg e {o;} € {ro,bo},
1 ifry €{o;) € {r1, b1},

(o) = U .
1 {oi} C{f}, andg; = T((Uj)j;gi) for all 7,
0 otherwise.
Foro € QF, abbreviate {oi} = {01, ..., o}}, and define

1 ifdi:0; =rpand{o;};jx = {b1},

1 ifdi:0; =r;and {0}« = {bo},

1 if {bg, b1} C {0i} S {bo. b1} U{o € {f} : 6 = s},

1 if {oi} € o} U (£}, Hoi} N {£}] = 2, and 6; = T((£(0)) %)
for all i where o; # by;

1 if {o;} € o1} U (£}, Hoid N {£}] = 2, and 6; = T((£(0))) )
for all i where 0; # by;

ilit (g) —

0 otherwise.

(In the definition of fli‘(g) we used that if {0;} C {bg, b1} U{£}, then 7 (0;) is defined
for all i.) On an NAE- SAT instance ¥ = (V, F ,AE , L), a configuration o € QF isa
valid coloring if /(o) = 1forallv € V, and Il‘t((geag)(ga) = 1foralla € F.

Lemma 2.12 On any given NAE- SAT instance Y = (V, F, E, L), we have a bijection

message configurations colorings
te st oceQf [

Proof Given a valid message configuration 7, a valid coloring o is obtained by coordi-
natewise application of the projection map S from (33). In the other direction, given a
valid coloring o, let x, = 0 if o5, has any r entries, x, = 1 if o5, has any r; entries,
and x, = f otherwise. The resulting x € {0, 1, £ }V is a valid frozen configuration,
and the argument of Lemma 2.7 implies that it has no free cycles. It then maps by
Lemma 2.7 to a valid message configuration t, which completes the correspondence.

O

Recall the definitions (28) of ¢, ¢"'', and ¢. For o € Q9, let
¢(6) if I(g) = 1and {o;} C (£};
d)=1{1  ifi(e) =1and {0} C {ro,r1, b0, b1};

0 otherwise (meaning that I (o) =0).
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(Note if {0;} C {£} then & = £ and (&) is well-defined.) For o € QF, let

| ¢"(#(01))) if I"(@) = 1and {o;} S {bo, b1} U {£};
dlte) =11 if /(o) = 1and {0} N {ro, r1} # O; (34)
0 otherwise (meaning that /''(¢') = 0).

(Note if {0;} € {b1, b1} U {f} then 7(0;) is well-defined for all i.) Finally, let

B(0) = ¢(o) ifo e {f},
1 ifo € {ry, r1, Do, b1}

The following is a straightforward consequence of Lemma 2.9:

Lemma 2.13 Suppose on ¢ = (V, F, E, L) that x is a frozen configuration with no
free cycles. Let o be the coloring that corresponds to x by Lemmas 2.7 and 2.12. Then
the number of valid NAE- SAT extensions of x is given by size(x) = wg,f () where we
define

wif(@) = [ | das) [ 2" (@@ Dsa) [ [ Dlo0) - (35)
veV acF eckE
Proof This is a rewriting of (30). O

Definition 2.14 (T-colorings) If o € {£}, then & is a tree rooted at a clause a incident
to a single edge e(a), while & is a tree rooted at a variable v incident to a single
edge e(v). Glue ¢ and & together by identifying e(a) with e(v), and let |o’| count the
number of free variables in the resulting tree. (Note that |o'| must be finite because
we only consider colorings of finite NAE- SAT instances ¢.) Thus |o| = |6| + |6] — 1
where |&| is the number of free variables in the tree &, and |&| is the number of free
variables in the tree 6. If 0 € Q\{f} = {ro, r1, bo, b1} then define |o| = 0. If 5 is
a valid coloringon ¢4 = (V, F, E, L), then |o,| must be finite on every edge ¢ € E,
by Definition 2.11. For 0 < T < oo define Q7 = {0 € Q : |o| < T}; we then call
o a T-coloring if 0, € Q7 for all e € E. Define Z, 1 to be the partition function of
M-tilted T-colorings,

Zir=Zir@= Y wy) . (36)

ae(Qr)f

Denote Z; = Z, ~ and note that as 7 1 oo we have Z 7 1 Z) .00 = Z;..

Proposition 2.15 On an NAE- SAT instance ¢ = (V, F, E, L), recall CL(9) denotes
the set of solution clusters (connected components of SOL(¥)), and define

ZL=2= Y, Iyl (37)
yeCl(¥)

Then Z,, is lower bounded by Z,, where Z) is the increasing limit of Z, 1 as defined
by (36).
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Proof On ¢, the colorings o are in bijection (Lemma 2.12) with the message configu-
rations T, which in turn are in bijection (Lemma 2.7) with the frozen configurations x
that do not have free cycles. Each such frozen configuration defines a distinct cluster
y € CL(¥),of size |y| = size(x) = wg,f(g). The claimed inequality directly follows.O

To summarize what we have obtained so far, note that the quantity Z, of (37) is
a formal definition of the “A-tilted cluster partition function” introduced in (5). In a
sequence (18) of combinatorial mappings, we have produced in (36) a mathematically
well-defined quantity Z; 7 which lower bounds Z; (Proposition 2.15), and will be
much more tractable thanks to the product formula for cluster sizes (Lemma 2.13). The
lower bound of Theorem 1 is based on the second moment method applied to Z; 7. In
preparation for the moment calculation, we conclude the current section by discussing
some simplifications obtained by averaging over the literals of the NAE- SAT instance.

2.5 Averaging over edge literals

Our eventual purpose is to calculate EZ, r and E[(Z A,T)z], where [ is expectation
over the NAE- SAT instance ¢. Recall that 4 = (G, L) where § = (V, F, E) is the
graph without the edge literals L. Then EZ; 7 = E(E(Z, 719)) where

E(Z.r19= ) Ewg@)*9).

ae(Qr)E

For any [ > 1 and any function g : {0, 1}/ — R, let E''g denote the average value of
g(L)overallL € {0, 1}}. Forany o € QF, we have E(w%}(g)* |9) = wg(o)” where
(compare (35))

. N - A At 1/2
wgo) = [ b5 [T bies) [T o0, @ = (E"[$" @ 1) /
veV aelF eckE
(38)
— that is to say, even after averaging over L, the contribution of each o € QF is still
given by a product formula. This means that E(Z; 7 | 9) is the partition function of a
“factor model”:

Definition 2.16 (factor model) On a bipartite graph G = (V, F, E), the factor model
specified by g = (¢, &, §) is the probability measure vg on configurations § € 2’ E
defined by

1 . o -
vo® =~ [2¢,) [Te¢,) [Tac,
veV acF eckE
with Z the normalizing constant.

A further observation is that for ¢ = (G, L) and o € QE as we go over all
possibilities of L while keeping G fixed, the weight wg)(g) (the size of the cluster

encoded by o on ¢, as given by (35)) does not take more than one positive value. In
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other words, we can extract the cluster size without referring to the edge literals. The
precise statement is as follows:

Lemma 2.17 The function it of (34) can be factorized as (o & L) = ['(c @
L)F(a) for

. 1 ifa € {ro, r1, by, b1}k,
F(o) =1 2(5))

@(o;

ifo € QF withoj € {£).

As a consequence, the function of (38) satisfies Ci>(g)A = ﬁ(g)ﬁ (0)* where t(c) =
Eht[lltt(g @ L’)]

Proof For o € QF abbreviate {oi} = {o1,...,01}. If {0} C {ro, r1,bo, b1}, then
the deﬁnltlon (34) implies (i)“t((r ®L) = it (o ®L) forall L, so the factorization holds
with F (o) = 1.If {o;} nontrivially i intersects both {ro, r1}and{f}, then <I>h‘(a BL) =

1 h‘(a @ L) = 0 for all L, so we can set F (o) arbitrarily. It remains to consider the
case where {o;} nontrivially intersects {£} but does not intersect {ro, r1}. Recalling
the discussion around (33), this means that 7; = 7(0;) € .# \{*} is well-defined for
all i—if o; € {f} then1; =0; € //Z\{O, 1, x}, and if 0; = by then 7; = x € {0, 1}.
Following (23), given any L € {0, 1}¥, let us define TLi=L & f”((i'j DLj)jx). If
Iit(¢ @ L) = 1, then it follows from (25), (28), and (34) that

k
dieen =dtten = Y Mae [[mHmE)e)
xe{0,1}k j=1
= 2(f0) Y _[(E)](x;) - G = — =) (3

— b (Ei, tL.4)

We will have [ lito @ L) = 1 if and only if it holds for all 1 < i < k that 7y,; is
compatible with o, in the sense that S(7;, 71, ;) = o;. In particular, if o; € {£} (and we
assumed ¢ has at least one such entry), we must have (7;, 71, ;) = (67, 6;). It follows

thatforany o € Q* having at least one entry in { £}, we can define F (o) = 2(67)/@(oy)
for any i where o; € {f}. This completes the proof. O

Corollary 2.18 On a bipartite graph § = (V, F, E), suppose o € QEF satisfies
I(gs,) = 1forallv € V. Then, for ¢ = (G, L), it follows from (35) that
wlf (@) = { I1 i“’((gea;)aa>}wg<g>, Ws(o) = [ des) [ [ Flos) [ | lo0).
aelF veV acF eck
Combining with (38) gives, with U as defined by Lemma 2.17,
wg () = pg(@Wg(@). pglo) = E[ [T ® D)

acF

9} =[] 0@s)-

acF
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Proof Immediate consequence of Lemma 2.17. O

In the notation of Definition 2.16, the conditional first moment E(Z; 7 |, §) is the
partition function of the factor model with specification (&, ®, ®)* restricted to the
alphabet Q7. Similarly, the conditional second moment E[(Z) T)2 | G]is the partition
function of the factor model on the alphabet (QT)2 with specification (<I>2, <I>2, CDQ))‘
where CI>2 =d o, P =0Q D, and for any o = (_1 2) € Q2 we have

. L 1/ . R
$2(0) = (Eh‘[@“@ PR AER eay*D = 52@)""(F® @),

for 02(0) = Eit[lit(g! @ L) ["(c! @ L)] (by Corollary 2.18). We emphasize that
P, <I>2 both depend on A although we suppress it from the notation. Moreover, o, #
® ® d since ¢! and o2 are coupled through their interaction with the same literals
L € {0, 1}*. Lastly, we have written o in the first moment and ¢ = (¢!, ¢2) in the
second moment—this is a deliberate abuse of notation, which allows us to treat the two
cases in a unified manner. To distinguish the cases we shall refer to the “first-moment”
or “single-copy” model, versus the “second-moment” or “pair” model. We turn next
to the analysis of these models.

3 Proof outline

Having formally set up our combinatorial model of NAE- SAT solution clusters (Sect. 2),
we now give a more detailed outline for the (first and second) moment calculation that
proves the lower bound of Theorem 1. (As we mentioned before, the upper bound of
Theorem 1 is proved by an interpolation argument which builds on prior results in spin
glass theory [12,26,43]. It does not involve the combinatorial model or the moment
method, and is deferred to “Appendix E”.)

3.1 Empirical measures and moments

We use standard multi-index notations in what follows—in particular, for any ordered

sequence z = (21, - .., z7) of nonnegative integers summing to n, we denote
/
n
< ) =n! / HZ,‘!.
¢ i=1
If 7 is any nonnegative measure on a discrete space, write H(;r) = —(m, In ) for its

Shannon entropy. It follows from Stirling’s formula that for any fixed m, in the limit
n — oo we have

(n ) _ exp{nH(m))}

ni - n(lsuppﬂ\*l)/Z ’
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On a bipartite graph G, we will summarize colorings o according to some “local
statistics,” as follow:

Definition 3.1 (empirical measures) Given a bipartite graph G = (V, F, E) and o €
QE . define

H@G)=l{veV a5 =6}l/IV] fors e,
H©)=WaeF:05,=6)/IF| fors e,

Sa

H(o)=|{e € E:0, =0}|/|E] foro € Q;

The triple H = H(S, o) = (H, H, H) is the empirical measure of o on G.

Recall from (38) that wg(g))‘ is the contribution to E(Z; | §) from o € QF. We
saw in Corollary 2.18 that wg (o) = pg(@)Wg (0)* where Pg(0) is the probability
(conditional on §) that ¢ is a valid coloring on (G, L); and Wg(o) is the size of the
cluster encoded if o is valid. Now all these quantities can be expressed solely in terms
of H = H(G, o): we have pg(0) = exp(nv(H)) and Wg(o) = exp(ns(H)) where

v(H) = (d/k)(Ind, H) = (d/k) Y H@)Ind(o),

oeQk

s(H) = (Ind, H) + (d/k)(In F, H) + d(In ®, H) .

Given¥ = (9, L), let Z, 7 (H) be the contribution to Z; 7 from colorings o € (Qr)E
such that H(G, o) = H. In what follows we will often suppress the dependence on X
and 7', and write simply Z = Z; 7.

Definition 3.2 (simplex) Ford, k, T fixed, the simplex of empirical measures is the
space A = A(T) of triples H = (H, H, H) satisfyng the following conditions: H
is a probability measure supported within the set of o € (Q7)? such that I (o) = 1;
Hisa probability measure supported within the set of o € (S27)¥ such that v(o) is
positive; and both H and H must have marginal H, that is,

- Z H(o)Zl{o, =ol=H(o) = Z H(_)Zl{a, =0} (40)

UGQd GEQ]‘

for all o € Q. It follows that H is a probability measure supported on Q7.

It follows from Corollary 2.18 that if [E is expectation over a (d, k)-regular NAE- SAT
instance on n variables, then EZ (H) is positive if and only if H € A and (nH, mH )
is integer-valued. For such H, it follows from the definition of the random regular
NAE- SAT graph that

d
EZ(H) = “ (n';{ ) (mmH) / (;JZ:H) } exp{nv(H)}i| Cexplnis(H)}. (41
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In (41), the first factor (in square brackets) is the expected number EZ ;¢ 7 of valid
colorings with empirical profile H. The remaining factor exp{nis(H)} is explained
by the fact that any such coloring encodes a cluster of size exp{ns(H)}. By Stirling’s
formula, in the limit n — oo (with T fixed),

Bz _ exp{nlH(H) + (d/k)H(H) — dH(H) + v(H)]} _ exp{nZ(H)}
A=0.T = e (H)/2 = T2

where o (H) = | supp H| + | supp I:I| — | supp H| — 1, and the exponential rate X (H)
is a formal analogue of the “cluster complexity” function X (s) appearing in (4). In
analogy with (6) we let

F=F,r=X(H)+ As(H). (42)
Then altogether the first moment can be estimated as

S(H F(H
EZ(H) = (“ig(—m(/ﬂ) exp{nis(H)} = %. (43)

Note that < hides a dependence on 7', since we keep T fixed throughout our moment
analysis.

3.2 Outline of first moment

For any subset of empirical measures H € A, we write ¢ € H to indicate that
H(9,0) € H,and write Z(H) = Z, 7 (H) for the contribution to Z,_r from colorings
o € H. It then follows from (43) that

EZH) = Y EZ(H) = n°" exp |n max{F(H) : H € H}} ,
HeH

for F as in (42). Thus, calculating the first moment EZ essentially reduces to the
problem of maximizing F over A. The physics theory suggests that F is uniquely
maximized at a point H, € A which is given explicitly in terms of a replica symmetric
fixed point for the A-tilted T-coloring model. (Recall from §1.5 that in the original
NAE- SAT model, the replica symmetric fixed point was described by the measure
m = unif({0, 1}). In the coloring model, with spins o = (¢, 6) € Qr, the replica
symmetric fixed point will be characterized by a measure g on the space Q27 of possible
values for 6.)

There are several obstacles to the rigorous moment computation. From a physics
perspective, the replica symmetric fixed point of the A-tilted coloring model at 7 = oo
is equivalent to the fixed point described by Proposition 1.2, which was used to define
the 1RSB prediction (12). Mathematically, however, we work with T finite so that A
has finite dimension and g (H) is defined. Therefore we need to explicitly construct
a replica symmetric fixed point at finite 7, and use it to define H, = H), 7 € A
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(Definition 5.6 below). We must then take 7 — oo and show that the limit matches
the fixed point of Proposition 1.2, so that F (H,) = F; r(H) r)convergesas T — oo
the 1RSB prediction (12). The construction of the fixed point at finite 7 is stated in
Proposition 5.5 below, and proved in “Appendix A”. The correspondence with (12) in
the 7' = oo limit is stated in Proposition 3.13 below, and proved in “Appendix B”.

A more difficult problem is to show that F is in fact maximized at H,. The function
F is generally not convex, and must be optimized over a space A whose dimension
grows with d, k, T. Moreover, an analogous but even more difficult optimization must
be solved to compute the second moment E(Z?). The main part of this analysis is
carried outin Sects. 4 and 5. In the remainder of this section we make some preparatory
calculations and explain how the pieces will be fit together to prove the main result
Theorem 1. Recall from Remark 1.1 that we can restrict consideration to « satisfying
(3). In this regime, we make a priori estimates to show that the optimal H satisfy some
basic restrictions. Abbreviate {r} = {rg, r1}, recall {£} = Q\{rg, r1, bo, b1}, and
let

N E{HEA max{H (£), H(r)} < lk}

Nz{HeNo:||H—H*||_ 1/3}CN (44)

where ||-|| denotes the £! norm throughout this paper. We next show that empirical
measures H ¢ N, give a negligible contribution to the first moment:

Lemma3.3 For k > ko, o = d/k satisfying (3), and 0 < A < 1, EZ(A\N,) is
exponentially small in n.

Proof Let Z count the NAE- SAT solutions x € {0, 1}V which map—via coarsening
and the bijection (18)—to warning configurations y with more than 7/2F fraction
of edges e such that y, = y, = £. Similarly, let Z* count NAE- SAT solutions x
mapping to warning configurations y with more than 7/2F fraction of edges e such
that y, € {0, 1}. It follows from Prc_)position 2.15 that for any 0 < A < 1 we have
Z(A\N,) < Z + Z*. For «a satisfying (3), EZT is exponentially small in n by [25,
Propn. 2.2]. As for Z*, let us say that an edge ¢ € E is blocked under x € {0, 1}V if
Le @ Xype) = 1 @ Ler @ Xy (e forall €’ € da(e)\e. Note that if x maps to y, the only
possibility for y, € {ro, r1} is that e was blocked under x. (The converse need not
hold.) If we condition on x being a valid NAE- SAT solution, then each clause contains
a blocking edge independently with chance 6 = 2k/(2F — 2); note also that a clause
can contain at most one blocking edge. It follows that

EZ* < (IEZ)IP’(Bin(m, 0) > 7nd/2k) )

This is exponentially small in n by a Chernoff bound together with the trivial bound
EZ <2". O
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We assume throughout what follows that k > ko, « satisfies (3),and 0 < A < 1.In
this regime, Lemma 3.3 tells us that max{F (H) : H ¢ N,} is negative. On the other
hand, we shall assume that the global maximum of F is nonnegative, since otherwise
EZ is exponentially small in n and there is nothing to prove. From this we have that
any maximizer H of F must lie in N,. In Sects. 4 and 5 we develop a more refined
analysis to solve the optimization problem for F restricted to N,:

Proposition 3.4 (provedin Sect. 5) Assuming the global maximum of F is nonnegative,
the unique maximizer of F is an explicitly characterized point H, in the interior of No.
Moreover, there is a positive constant € = €(k, A, T) so that for all |H — H,| < €
we have F(H) < F(H,) — €||H — H*||2.

A consequence of the above is that we can compute the first moment of Z up
to constant factors. In the following, let g = (7T') count the number of d-tuples
o € (Qr)¢ for which j(g) > 0. Let = ©(T) count the number of k-tuples
o € (Qr)F for which 9(g) > 0. Let = |Qr|, anddenote p =  +H — H — 1.
Recall from (44) the definition of N.

Corollary 3.5 The coloring partition function Z = Z, 1 has first moment EZ =<
exp{nF (H,)}. Moreover the expectation is dominated by N in the sense that EZ(N) =
(1—-0o()EZ.

Proof Define the © x & matrix M with entries
d
M(c'.c)=Y 1oi=0'}, o' €Qrando € (Qr) N (suppl).
i=1
Similarly define the £ x g matrix M with entries
k
Mo’ o) =) Hoi=0"}, o' e€Qranda e (Qr)* N (suppd).
i=1

Lastly define the £ x (¢ + ) matrix M = (M -M ) It follows from the discussion

after Definition 3.2 that EZ (H) is positive if and only if (i) H and H are nonnegative;
(i) (1, H) = 1; (iii) (kH, dH) lies in the kernel of M; and (iv) (nH, m H) is integer-
valued. Conditions (i)—(iii) are equivalent to H € A. One can verify that the matrix M
is of full rank, from which it follows that the space of vectors (H, H) satisfying the
conditions (ii) and (iii) has dimension g. In Lemma 4.4 we will show that M satisfies
a stronger condition, which implies that the space of (H , H ) satisfying (ii)—(iv) is
an affine transformation of (n~!Z)®, where the coefficients of the transformation are
uniformly bounded. Then, by substituting the result of Proposition 3.4 in to (43), we
conclude

5 exp{n[F(H,) — O(||zl|)]}

EZ =< Y

= exp{nF (H,)}

ze(n~17Z)%
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Empirical measures H ¢ N correspond to vectors z € (n~'7)® with norm |z| >
n~1/3. These give a negligible contribution to the above sum which proves the second
claimEZ(N) = (1 — o(1))EZ. O

3.3 Outline of second moment

By a similar calculation as above, calculating the second moment IE(ZZ) reduces to the
problem of maximizing a function F, = F ; r over a space A, of pair empirical
measures. In fact we will calculate the second moment not of Z itself, but rather of a
more restricted random variable § < Z, defined below. This leads to a more tractable
analysis, as we now explain.

Concretely, A is the space of triples H = (H,H, H) satisfying the following
conditions: H is a probability measure on (Q7)%¢ N (supp 1), Hisa probability
measure on (Q27)2 N (supp 12), and Hisa probability measure on (§27)? which can
be obtained from both H and H as the edge marginal (40). Repeating the derivation
of (43) in the second moment setting, we have the following. For any H € Aj, the
expected number of valid coloring pairs (o, o) € (7)%F of type H is

exp{n[H(H) + (d/k)H(H) — dH(H) + va(H)]} _ exp(nZo(H))

2 -
E(Z)=0,7)"(H) = 9 (H)/2 T )2

Given a pair empirical measure H € Aj, take the marginal on the first element
of the pair to define the first-copy marginal H' € A; define likewise the second-
copy marginal H> € A. The contribution to Z> from any valid pair is given by
exp{nis2(H)} where so(H) = s(H") 4+ s(H?). Thus F, is given explicitly by

exp{nF2(H)} _ exp{n[X2(H) + As2(H)]}
neH)/2 = ne (H)/2

EZ?*(H) = (45)

(cf. (42) and (43)). In view of Corollary 3.5, it would suffice for our purposes to
calculate the second moment of Z(N) rather than Z, which amounts to maximizing
F on the restricted set

NQE{HEAQ:HleNandHZGN}.

Following [18] we can simplify the analysis by a further restriction, as follows:

Definition 3.6 (separability) If o, o’ are valid colorings on ¢, define their separation
sep(ce, &) to be the fraction of variables where their corresponding frozen configu-
rations (from Lemmas 2.7 and 2.12) differ. Write ¢’ = o if the frozen configuration
of ¢’ has more free variables than that of o. We say that a coloring is separable if
o € N (recall this means H(G, o) € N) and

[{o' e N: o’ = o and sep(ee, &) ¢ L}| < exp{(lnn) }
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where Iye = [(1 — k*/2K/2)/2, (1 + k*/25/2)/2] and it is implicit that both o, o’
must both be valid on ¢4. Let S = S, r be the contribution to Z(N) from separable
colorings.

Proposition 3.7 (provedin “Appendix D) The first moment is dominated by separable
colorings in the sense that ES = (1 — o(1))EZ(N).

We will apply the second moment method to lower bound S; the result will follow
since § < Z(N) < Z. For H € A, all pairs (g,0’) € H must have the same
separation sep(ce, ce’), which we can thus denote as sep(H). Partition N into Ng. =
{H € Ny : sep(H) € I} (the near-uncorrelated regime) and Nps = N> \Nge (the
C(;rrelated regime). Denote the corresponding contributions to S by $%(Ng) and
S (Ns).

Corollary 3.8 For separable colorings, the second moment contribution from the cor-
related regime N, is bounded by E[SZ(N,,S)] < exp{nis(H,) + o(n)} ES.

Proof By the symmetry between the roles of o and o, and the definition of separability,
we have

SNw) <2 Y Ho' = alwy (@) wif ()

(0,0") €N,
o separable

< exp{ns(H)r +on)}S.

Taking expectations gives the claim. O

We then conclude the second moment calculation by computing E(Z 2(Nge)), which
is an upper bound on ]E(SZ(Nse)). Therefore we must maximize the function F, on
N¢e. As in the first moment, the physics theory suggests that the unique maximizer of
F5 on N, is given by a specific pair empirical measure H, which is defined in terms of
H,.In the NAE- SAT model there is a small complication in this definition: we will have
H H ® H and H, = H, ® H,, but H + H ® H because the first and second
copies interact via the edge literals. It therefore requires a small calculation to argue
that Fo(H,) = 2F,(H,). We address this by giving a simple sufficient condition for
H € A, to satisfy Fo(H) = F(H') + F(H?) where H/ € A are its single-copy
marginal.

Lemma 3.9 Consider H € A with single-copy marginals H', H> € A. Suppose

there are functions g', g> which are invariant to literals in the sense that g/ (o) =
g/ @ L) forall g/ € (), L {0, 1}, and

Hi(@)) =g/ (0), H(' e’ =t o" [] ¢'@h.
j=12

If in addition H = H' ® H?> and H = H' ® H?, then Fo(H) = F(H') + F(H?).
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Proof Let K/ (c/,L) = ['"(c @ L)g’ (0)/2%. This defines a probability measure on
(Q)F x {0, 1}]‘ where the marginal on Q) is FAIj, and the marginal on {0, 1}k is
uniform by the assumption on g/ . It follows that K/ (¢ | L) = I''(¢ & L)g’ (o) and
A (g/) = IEI“[K«" (g/ |L)]. Let (X!, X2, L) be a random variable with law

P((XI,XZ,L)=<Q‘,QQ,;)>=21—k [] K/ .

j=1.2

The marginal law of L is uniform on {0, 1}*, and the X/ are conditionally independent
given L. The marginal law of (X!, X?) is H, and the marginal law of X/ is HJ.The
law of L conditional on X/ is uniform over Zkﬁ(X 5 possibilities, whereas the law of
L conditional on (X', X2) is uniform over 250, (X !, X?2) possibilities. It follows that

H(H) = H(X', X?) = H(L) - HLIX' XD + Y HXI|L)
j=12
=—(H,Ind) + Z H(X/|L)
j=12

= —(H.Inty) + Y [H(H))+ (H/,In1)].
j=12

Rearranging gives £,(H) = X(H') + X (H?), and the result follows. m]

It will be clear from the explicit definition that the measure H, of Proposition 3.4
can be exp_ressed as H,(0) = 0(0)g.(c) where g, is invariant to literals. Let H, =
(H,, H,, H,) where

Hio'.o?) =@ o? [] sule),
j=12

H. = I-'I* ® I-'I*, and H, = H, ® H,. The following is the second moment analogue
of Proposition 3.4.

Proposition 3.10 (proved in Section 5) The unique maximizer of F in N is H,.
Moreover, there is a positive constant € = e(k, A, T') so that for ||[H — H,|| < € we
have F2(H) < F2(H,) — €|H — H,|1*.

Corollary 3.11 For the coloring model, the second moment contribution from the near-
uncorrelated regime Ny, is given by the estimate E[22 (Nse)] < exp{2nF (H,)}.

Proof Recall from Corollary 3.5 the definition of (g, ¢, ) for the single-copy model,
and define (¢, 2, £2) analogously for the pair model. Let g = g+ — 2 — 1. For
any H', H? € N, let Nge. g1 g2 denote the set of H € Nge with single-copy marginals
H! HZ?. Thisisa space of dimension g, — 2, and it follows from Proposition 3.10
and Lemma 4.4 that

_ 1 2y _ 2
]E[ZZ(NSC’HI’HZ)] = exp{n[F2(Ho) 8(”(:15/) ’ H ) (H*v H*)” )]} .
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Summing over H', H? € N then gives E[Z?(Ng)] = exp{nF,(H,)}, which in turn
equals exp{2n F (H,)} by applying Lemma 3.9. O

3.4 Conclusion of main result

We now explain that the main theorem follows. We continue to assume, as we have
done throughout the section, that k > kg, « satisfies (3), and 0 < A < 1. The measure
H, of Proposition 3.4 depends on A and 7', and we now make this explicit by writing
H,=H, .

Corollary3.12 For any 0 < A < 1 and T finite such that X(H, 1) is positive, the
separable contribution to Z)_ 1 is well-concentrated about its mean:

ES
limlimianE”<e(]ES) <8< —> =1.
€l0 n—>oo €

Proof The upper bound follows trivially from Markov’s inequality, so the task is
to show the lower bound. In the first moment, we have ES =< exp{nF(H,)} by
Corollary 3.5 and Proposition 3.7. In the second moment, since S < Z, we have
E(S?) < E[S?(Nps)] + E[Z?(Ne)]. Combining with Corollaries 3.8 and 3.11 gives

E(S*) _ exp{nis(H,) + o(n)} _ _explo(m)}
ES)? ES o= ey T oW

which immediately implies P(S > §(IES)) > § for some positive constant §. This
can be strengthened to the asserted concentration result by an easy adaptation of the
method described in [25, Sec. 6]. O

Proposition 3.13 (proved in “Appendix B”) For 0 < A < land Hy,7r = H, € A
as given by Proposition 3.4, the triple (s(Hy 1), X(H, 1), F(H) 1)) converges as
T — oo to (s, X(sn), §(X)) from Definition 1.3.

Proof of Theorem 1 In “Appendix E” we prove the upper bound, f(a) < f'*®(«) for
all 0 < o < agy. For any A, T such that X (H, 1) is positive, Corollary 3.12 gives

liminf(Z;, 7 (N)'/" = lim (8;,7)"/" = exp{F(H;.1)} = exp(E(Hy.1) + As(Hy.1)} -
n— n—

On the other hand, Z,_7(N) consists entirely of clusters of size exp{ns(H, )+ o0(n)}.
Therefore, if X (H, r) is positive, it must be that f(«) > s(H, 7). The lower bound
f(a) > f'®B(x) then follows by appealing to Proposition 3.13, so the theorem is
proved. O

The next two sections are devoted to the optimization of F in N,, and of F» in
Nge. In Sect. 4 we show that the optimization of F and F» over small regions can be
reduced to an optimization problem on trees. In Sect. 5 we solve the tree optimization
problem by connecting it to the analysis of the BP recursion for the coloring model.
This allows us to prove Propositions 3.4 and 3.11, thereby completing the proof of the
main result Theorem 1.
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4 Reduction to tree optimization by local updates

In this section we prove the key reduction that ultimately allows us to compute the (first
and second) moments of Z = Z; r (Propositions 3.4 and 3.10). As we have already
seen, the calculation reduces to the optimization of functions F and F; from (42) and
(45). These functions are generally not convex over the entirety of their domains A and
A», but we expect them to be convex in neighborhoods around their maximizers H,
and H, (as given in Definition 5.6 below). With this in mind, we rely on other means
(a priori estimates and separability) to restrict the domains—from A to N, in the first
moment (Lemma 3.3), and from A, to N in the second moment (Corollary 3.8).
Within these restricted regions, we will show that F and F» can be optimized by a
local update procedure that reduces the (nonconvex) graph optimization to a (convex)
tree optimization.

4.1 Local update

We begin with an overview. Throughout this section, we assume 1 < 7' < 0o. Suppose
o is a T-coloring on ¢. Sample from ¢ a subset of variables Y, and let 4" = A/ (Y)
be the subgraph of ¢ induced by Y, together with the clauses neighboring ¥ and their
incident half-edges. The half-edges at the boundary of .#” will be referred to as the
leaf edges of .1".

Form a modified instance ¢’ (see Fig. 4) by resampling the edge literals on .4 as
well as the matching between .4 and 4\.4". In both 4 and ¢¥’, we will say cut edges
to refer to the edges e = (av) where a is a clause in .4 and v is a variable in the
complement of .4"; these are the edges cut by the dashed lines in Fig. 4. According to
our terminology, the leaf edges of .4 are the half-edges that lie just above the dashed
lines, so each leaf edge of . 4" is half of a cut edge. The coloring is updated accordingly
to produce 7, a T-coloring on ¢’ which agrees as much as possible with o on 4\.4":
in particular, o and 5 will agree in the variable-to-clause colors on the cut edges. We
will define the procedure so that it gives a Markov chain 7 on triples (¢, Y, o) with
reversing measure given by u(¥¢,Y, o) = P(9)P(Y | %)wg}(g))‘. (Note that y is not
normalized to be a probability measure.)

Reversibility implies that for any subset A of the state space, if B is the set of states
reachable in one step from A, then

pA) =)D BB =Y Y “(BBB,A) =) "(B) ) B(B,A)

A€A BeB A€A BeB BeB A€A
= ZM(B)B(B, A) < { Z_(B)}{ max B(B, A)} = "(B) max B(B, A). (46)
BEB BeB
BEB BEB

We will design the sampling procedure to ensure that (i) the vertices in Y are far from
one another and from any short cycles, and (ii) the empirical measure H*™ of o on .4
is close to H%, a certain symmetrization of the overall empirical measure H(9G, o).
Then EZ(H) ~ u(A) where A is the set of states (¢, Y, o) with H™ ~ H. The
update produces a state (¢, Y, 1) € B with possibly different H°™, but with the same
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(a) (9,Y,0)

(b) (¢',Y,n)

Fig.4 One step of the local update procedure. In this figure, open circles indicate variable factors b, solid
squares indicate clause factors @it and each variable-clause edge is bisected by a small dot indicating the
edge factor ®. The initial state (top panel) is a triple (¢, Y, o) where ¢ is an NAE- SAT instance, Y is a
subset of variables (blue circles), and o is a coloring on ¢ (not shown). Let .4 = .4 (Y) be the subgraph
of ¢ induced by the variables in Y, together with the clausees neighboring Y and their incident half-edges
(shown in blue, above the dashed line). The local update procedure resamples the edge literals on .4, as
well as the matching between .4 and 4\ ./, to produce a modified instance &’. The coloring is updated
accordingly so that we arrive at the new state (¢’, Y, n) (bottom panel). In both & and &', the edges cut by
the dashed lines will be referred to as cut edges. The half-edges just above the dashed lines will be referred
to as the leaf edges of .4 (color figure online)

empirical measure A(H™) of variable-to-clause colors & on the leaf edges of 4.
Bounding 7 (B, A) reduces to calculating the weight of configurations on .4~ with
empirical measure H5™ &~ H%Y, relative to the weight of all configurations on .4~ with
empirical measure RAT(HS™) ~ h"(HY) on the leaf edges of 4. Because ./ is a
disjoint union of trees, this reduces to a convex optimization problem which lends
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itself much more readily to analysis. The purpose of the current section is to formalize
this graphs-to-trees reduction. We begin with the precise definitions of %Y, H*™ and
R (H5™). Recall our notation o = (&, &) € 2 from the discussion followmg (33). As
o goes over all of Q7, write SZT for the possible values of ¢, and QT for the possible
values of 6. Let 2 = o and Q= Qoo, SO

= {ro, r1,bo, b1} U (A\{0, 1, %)),
fzE{ 0,1, bo, b1} U (A\(0, 1, %))

Definition 4.1 (sample empirical measures) Given an NAE- SAT instance 4 = (G, L),
a T-coloring o on ¢, and a nonempty subset of variables ¥ C V, we record the
local statistics of “o around Y™ as follows. Let H*™ be the empirical measure of
variable-incident colorings in Y: for n € (Qr)4,

H™(n) = Z 1oy, =

veY

Let H™ be the empirical measure of colors on the edges incident to ¥: for n € Qr,

Sm(’?) = W Z Z Ho. =n}.

veY e€dv

Forn € (Qr)fand 1 < Jj < k define the rotation n(/) Mjs ooy M M5 ey Mj—1)-
For any v € Y and e € v, let j(e) be the index of e in da(e). Forn € (27)F let

™ () = W DY (@0 =0}

veY e€dv

Then H™ = (H™, HS™, H™) is the sample empirical measure for the state
(4,Y,0); we shall write this hereafter as H™ = H*™(G, Y, o). Note that H™
lies in the space A®™ which is defined similarly to A but with condition (40) replaced
by

- Z H*m(cr)Zl{o, =t}=H"(1)= ) H™Uor=1}. 47

neQd oeQk

We emphas1ze that (40) and (47) differ on the right-hand side. However, if we have

= (H, H,H ) € A suchthat H is invariant under rotation of the indices 1 < Jj <k,
then H € A as well. With this in mind, for H € A we define HY = (H, Ay, H) e
AS™ where H is the average over all k rotations of H. Later we will sample Y such
that H5™ falls very close to H% with high probability. Lastly, for any H™ € A% we
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let A" (H™) be the measure on Q7 given by

k

. 1 ~

(A" (H™)](1) = —1 Z Z 1{6; = n}H™" (o).
oe(Qr)k j=2

Thus A" (HS™) represents the empirical measure of spins ¢ on the leaf edges of A4,
i.e., the edges cut by the dashed lines in Fig. 4.

For H € A, recall from (43) that F(H) = X(H) 4+ As(H) where X(H) is the
cluster complexity and s(H) is (the exponential rate of) the cluster size. The tree
analogue of X (H) is XY (H*™) where

TY(H) = H(H) + dH(H) — dHH) + v(H) (48)

— the only difference being that ¥ has coefficient « = d/k on the clause entropy
term H (I:I ), while X' has coefficient d. As we see below, this occurs because the ratio
of variables to clauses to edges is 1 : d : d for the disjoint union of trees .4, versus
1 : « : d for the full graph &. We will also see that X' is always concave, though X
need not be. Likewise, the tree analogue of s (H) is s"(H®™) where

s"(H)=(Ind, H) +d(InF, H) + d(In ®, H) .
The tree analogue of F(H) is A(H*™) where
A(H) = XY(H) + xsY(H). (49)

Recall Definition 4.1: given (¢, Y, o) with sample empirical measure H*™, the empir-
ical measure of spins ¢ on the leaf edges of .4#"(Y) is given by hY = h''(H™). Then,
for any probability measure z on Qr, we let

A% (h) = sup{A(H) : H € A’ with hA"(H) = h},

where we emphasize that the supremum is taken over A®™ rather than A. For H € AS™
we define ]
E(H)=E, 7(H)=A®(h"(H)) — A(H). (50)

The interpretation of E, formalized below, is that for any H € A, if A is the set of
states with H™ ~ H% and B is the set of states reachable in one step of the chain
from A, then max{m (B, A) : B € B} is approximately exp{—|Y| E(H"Y)}, where we

note that E(H%) > 0 since E is nonnegative on all of A*™, and HY € A N A%,
Formally, we have the following bound:

Theorem 4.2 For € small enough (depending only ond, k, T), it holds for all H € A
that

F(H) < max {F(H’) H — H| < e(dk)”} — e E(HY).
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(a) variable-to-clause tree. (b) clause-to-variable tree.

Fig.5 Two types of directed tree .7 . In each case the root edge e is shown at the top, and the boundary §.7
is highlighted in purple. For e € W, the unit-radius neighborhood of e in ¢\.4" typically looks like the left
panel (color figure online)

The analogous statement holds in the second moment with Fo = F, ; 1t and £, =
BT

For the sake of exposition, we will give the proof of Theorem 4.2 for F only; the
assertion for F, follows from the same argument with essentially no modifications.
The first task is to define the Markov chain that was informally discussed above. There
are a few issues to be addressed: how to sample Y ensuring certain desirable properties;
how to resample the matching between ./ and ¢\.#"; and how to produce a valid
coloring n on ¢’ without changing the spins ¢ on the cut edges. We address the last
issue next.

4.2 Tree updates

Recall that in the bipartite factor graph ¢4 = (V, F, E, L), each edge joins a variable
to a clause and is defined to have length one-half. For the discussion that follows, it
is useful to bisect each edge e € E with an artificial vertex indicating the edge factor
®; these are shown as small dots in Fig. 4. Thus an edge ¢ joininga € Ftov € V
becomes two quarter-length edges, (ae) and (ev), where e now refers to the artificial
vertex. Given a coloring o on the original graph, we obtain a coloring on the new
graph by simply duplicating the color on each edge, setting o, = 0, = 0,,. We then
define .4 (v) as the (5/8)-neighborhood of variable v, and define .4 = .4/ (Y) as the
union of .4 (v) for all v € Y: in the top panel of Fig. 4, .4 is the subgraph shown in
blue, above the dashed line.

Directly below the same dashed line, the small solid orange dots correspond to the
boundary edges, hereafter denoted W, of the cavity graph & = ¢\ .4". Fore € W, let
7 be its neighborhood in 4\ ./ of some radius £ > T where 2/ is a positive integer.
Assuming e is not close to a short cycle, .7 is what we will call a directed tree rooted
at e. In this case we also call .7 a variable-to-clause tree since the root edge has no
incident clause; a clause-to-variable tree is similarly defined. We always visualize a
directed tree .7 as in Fig. 5, with the root edge e at the top, so that paths leaving the
root travel downwards. On an edge e = (av), the upward color is 6, if a lies above
v, and 6y, if v lies above a. We let §.7 denote the boundary edges of .77, not including
the root edge.
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Suppose ¢ is a valid T-coloring of a directed tree .7 with root spin o, = o, and
consider a new root spin n € Qr. If o and 5 agree on the upward color of the root
edge, then there is a unique valid coloring

= update(w, ; .7) € ('7)¥7)

which has root spin 71, and agrees with ¢ in all the upward colors. Indeed, the only
possibility for o # 7 is that both o, n € {f}. Then, recalling (23), the coloring
update(ce, ; .7) is uniquely defined by recursively applying the mappings 7" and T,
starting from the root and continuing downwards. Since we assumed that o was a
valid T-coloring and n € Qr, it is easy to verify that the resulting 7 is also a valid
T-coloring, so the update procedure respects the restriction to €27. From now on we
assume all edge colors belong to Q7.

Lemma 4.3 Suppose o is a valid T -coloring of the directed tree T with root color o,
andn € Qr agrees with o on the upward color of the root edge. If n = update(c, ; 7)
agrees with o on the boundary 8.7, then wl” (o) = wl” ().

Proof 1t follows from the construction that on any edge e in the tree, o, and 7, agree
on the upward color; moreover, if o, # 1, then we must have o,, n, € {f}. For each

vertex x € .7, let e(x) denote the parent edge of x, that is, the unique edge of .7
which lies above x. We then have

whe) =[] @00 [] {d><g5,,>é><oe(v>>} I1 {é“‘((geag)am(oe@)}.
eed.T veV () acF(7)

For a clause a in .7 with e(a) = e, if both 0., n, € {f} then it follows directly from
(39) that

(0 B L)sa) P(0e) = @" (2 B L)sa)@(00) = 2(6e) = 2(fie) = D" ((n ® L)sa) P (1) -

For a variable v in .7 with e(v) = e, if 0., . € {£}, then a similar calculation as (39)
gives

D(05,)D(00) = 9(65,)8(00) = 2(Ge) = () = D115, )P (1)

where we used the fact that necessarily we have o5, € {£}. To conclude, we recall
that o and n agree on §.7 by assumption, so we have wllt (o) = w{}(n) as claimed.

O

We also use the directed tree as a device to prove the following lemma, which was
used in the proofs of Corollaries 3.5 and 3.11.

Lemma4.4 Let M, M be as defined in Corollary 3.5, and let Mz, Mz be their ana-
logues in the pair model. For any o,n € S2 there exists an integer-valued vector
(H, H ) so that

(1,H =0=(1,H) and MH—-MH =1, —1,,
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where 1 denotes the all-ones vector, and 1, denotes the vector which is one in the o
coordinate and zero elsewhere. The analogous statement holds for (M, M>).

Proof We define a graph on Q7 by putting an edge between o and 7 if there exist
valid colorings o,  on some directed tree .7 which take values o, 7 on the root edge,
but agree on the boundary edges §.7 . If o, n are connected in this way, then taking

Hp) = Y Uos,=pl— Y Un, =p}, pe@r)

veV(T) veV ()
Hp)= Y Uoso=p}— ), Ui, =p}. pe@t
aeF(T) aeF ()

gives MH—-MH =1, — 1, as required. It therefore suffices to show that the graph
we have defined on Q7 is connected (hence complete). First, if ¢ = 7, it is clear that
o and 5 can be connected by colorings o, 1 of some variable-to-clause tree .7, with
n = update(ce, ; .7). Similarly, if & = 7, then o and 7 can be connected by a clause-
to-variable tree. This implies that {£} is connected. Next, if o = ry and n = by, then
they can be connected by a variable-to-clause tree rooted at edge e, containing a single
variable factor v = v(e), with 0, , identically equal to ry. If o = by and n = (7, s)
forany ¢ € Q\{r, b}, then they can be connected by a clause-to-variable tree rooted at
edge e, containing a single clause factora = a(e), withany o a\e such that (¢ ®L)sa\e
contains both {bg, b1} entries. It follows that Q7 is 1ndeed connected, which proves
the assertion concerning (M M ). The proof for (Mz, Mz) is very similar and we omit
the details. O

4.3 Markov chain

We now define a Markov chain on tuples (¢, Y, o) where ¢ is an NAE- SAT instance,
o is a valid T-coloring on ¢4, and Y C V is a subset of variables such that

the subgraphs By7(v), for v € Y, are mutually disjoint trees, 51

where By7 (v) is to the 2T -neighborhood of v in 4. Recall that .4/~ = A (Y) is the
%-neighborhood of Y; we write .4/~ = (N, L) where N is the graph without edge
literals. Write 8N for the boundary of N, consisting of clause-incident edges that are
not incident to Y (just above the dashed line in Fig. 4). Write o for a T-coloring on
N (including §N), and let

wht (@ |Ly) = w' (ay) = H {Cb(g’sv) H {&)m((g@ysa@)é(%)}} oY

veY e€dv

On the other hand we have ¥\ .4 = ¥4, = (G, L) where Gy = (Vj, Fj, Ej), and
W denotes the boundary of ¥ (just below the dashed line in Fig. 4). Write ¢, for a
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coloring on Gy (including W), and let

wi'ey) = [ s [] ¥ @@ D) [] d00).

veVy acFy eckEy

By matching 6N to W (along the dashed line in Fig. 4), the graphs ¢, and .#" combine
to form the original instance ¢. If ¢ is a valid coloring on ¢, then g 5 and gy must
agree, and we have _ ) .

wi(a) = wy' (g whi(@n|Ly) - (53)
Let A (o) = A" be the empirical measure of the spins (6¢).csn- Given initial state
(¢4,7, 0), we take one step of the Markov chain as follows:

1. Detach .4 from &. On ./, sample a new assignment (L), 1) from the proba-
bility measure
LA (15,0 = h"Jwi (|1
z(IY[, h")

P(Ls 1) | Ly, o)) = (54)

where the denominator is the normalizing constant obtained by summing over all
possible (L, )

2. Form the new graph ¢’ by sampling a uniformly random matching of §N with W,
subject to the constraint that ¢ € W must be matched to ¢’ € N with 6, = 7.
The number of such matchings depends only on |Y| and h", so we denote it as
M(|Y|, h). For each matched pair (e, ¢’) where 6, # i/, let 7 = T (e) be the
radius-27" neighborhood of e in the graph ¢;. Let

1., = update(e 7. c: 7)
and note that, since o is a valid T -coloring, n 7 andg 5 Mustagree at the boundary
of 7. Finally, on the rest of G3 outside the radius-27 neighborhood of W, we
simply take 7 and o to be the same.

The state of the Markov chain after one stepis (¢', Y, Q) where n is a valid T'-coloring
on¥'.

Lemma 4.5 Suppose we have a sampling mechanism for a random subset of variables
Y in 9 such that, whenever (4,Y,0) and (4', Y, Q) appear in the same orbit of the
Markov chain, we have

P(Y|9) =P(Y |¥)). (55)

A reversing measure for the Markov chain is then given by w,Y, o) =
P&)P(Y | 9w (o).

Proof Given A = (¢4,Y,®), let B = (¢’,Y,) be any state reachable from A in a
single step of the chain. By the factorization (53), together with assumption (55) and
the fact that P(¥¢) = P(¥¢"),
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Fig.6 If s = |Y| and

o
N =N (Y) =N, L), the
graph N consists of s disjoint
copies of the tree D shown here. o
/\

0
The boundary 3D is highlighted yd
in purple (color figure online)

m
I\

w P(%)]P(Y I(p)wlll(o_o)kwht (UNILN)A lltLd)Awlll(UNlLN)A llt (UNlLN)

uB) PP 9wl () whit(n, LA witr el LA wlik i Jh)*

where the last identity is by Lemma 4.3. On the other hand, with = denoting the
transition probabilities for the Markov chain, (54) implies

T(AB) _ WNOILAT MY AD(YL AT pe)
7B, A) - MY ANV A whionly)*  u@)

Rearranging proves reversibility, (£ (A)B(A, B) = ~(B)B(B, A). (We remark that since
the Markov chain breaks up into many disjoint orbits, the reversing measure  is not
unique.) O

4.4 From graph to tree optimizations

If Y satisfies condition (51) and we define 4~ = A4 (Y) = (N, L) as before, then
N consists of |Y| = s disjoint copies of the tree D shown in Fig. 6. Recall from
Definition 4.1 the definition of H*™ = H*™(G, Y, o), and note H*™ depends only on
o Forany H™ € A we let Z(H™; .#") be the partition function of all colorings
on ./ with empirical measure H®"—the only randomness comes from the literals
L. The expected number of valid colorings is

d d
EZimo,r (H™ ) = explsd (H™™. a>}< qu> (mésm)/ <dsﬁjsm>

which by Stirling’s formulais s oM exp{s TV (H™)} (see (48)). Any valid coloring o ¢
with empirical measure H*™ contributes weight wit N(@n] L) = exp{sAs"(H*™)},
so altogether

EZ(H™; ) = s°D exp{s[Z"(H™) + As"(H™]} = s°D exp{s A(H*™)},
(56)
with A as in (49). (This calculation clarifies why we refer to X', A as the “tree
analogues” of X, F.)
Fix HS™ € A®™ and let A(HS™) be the set of all (¢4,Y, o) with H™(G,Y,0) =
H™. Let B(H™) be the set of states reachable in one step from A(H™). Then, for
all B € B(H™),
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EZH™; 4)

B, A(H™)) =
T AT Y heam HRE(H) = Re(H™)EZH'; )

= sOWexp{—s EE™)}. (57)

This is the key calculation for Theorem 4.2. To complete the proof, what remains is
to produce a sampling mechanism P(Y | %) which satisfies our earlier conditions (51)
and (55), together with some concentration bound to ensure that in most cases Y is
large and H%™ ~ H®%. We formalize this as follows:

Definition 4.6 (sampling mechanism) Let P(Y | %) be the probability of sampling the
subset of variables ¥ from the NAE- SAT instance ¢. We call this a good sampling
mechanism if the following holds: first, whenever (¢4, Y, o) and (¢, Y, ) appear
in the same orbit of the Markov chain, we must have P(Y |¥) = P(Y |¥") (used in
Lemma 4.5 to show reversibility). Next we require that for every ¢, and for every
Y with P(Y |¥) positive, the neighborhoods By7 (v) for v € Y are mutually disjoint
trees (condition (51), required for defining the Markov chain). Lastly we require that
for all but an exceptional set & of “bad” NAE- SAT instances, with P(¢¥ € %) <
exp{—n(In n)/2}, we have

1

sm S 1
) P<Y|£¢>1{HH (9,Y,g>—HY<9,g>HsW}zE. (58)

Y:ne<|Y|<4ne
for all colorings o on ¥.

Proposition 4.7 Assume the existence of a good sampling mechanism in the sense of
Definition 4.6. Then, for € small enough (depending only on d, k, T ), it holds for all
H € A that

BZ@H) _ _ explon(D}
EZ(Np.o) — exp{ne E(HY)}

where Ny . = {H' € A : |H — H'|| < €(dk)*"} and HY is the symmetrization of
H from Definition 4.1.

Proof Abbreviate § = 1/(Inlnn)'/2. Given H € A and its symmetrization H% &
AN A et

A= {(54, Y,o) : |Y| > ne and ”Hsm(g, Y, o) — HY| < 25} .

With p the reversing measure from Lemma 4.5, we have

lit () IH™(S. Y. 0) = HY(S, o) <5
u(A)z%j%P(%)g %@ y;;nem“%l{ and |HG. o) — H| <8 }

using |H(G,0) — H|| < ||H¥ (G, o) — HY|| together with the triangle inequality.
Applying (58) gives
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E[Z(H); 4 ¢ B _ EZ(H)
2 =4

)

1 .
TOEEDIN DY }‘;(g)kl{nH(s,g)—Hn 58} >
G¢RB o

where the last step follows from the bound on P(¥ € ). If B is the set of states
reachable from A in one step of the Markov chain, then crudely u(B) < EZ(Npg. ),
and

max R(B, A) < m
BeB exp{n E (HY)}

by our earlier calculation (57). The result follows by substituting into (46). O

4.5 Sampling mechanism

To complete the proof of Theorem 4.2, it remains for us to define a sampling mechanism
satisfying the conditions of Definition 4.6. To this end, given a (d, k)-regular graph G,
let V; € V be the subset of variables v € V such that the #-neighborhood B, (v) around
v is a tree. Recall the following form of the Chernoff bound: if X is a binomial random
variable with mean p, then for all # > 1 we have P(X > ru) < exp{—tuIn(t/e)}.

Lemma 4.8 Suppose G is sampled from the (d, k)-regular configuration model on n
vertices. For any fixed t we have P(|V\V;| > n/(Inlnn)) < exp{—n(Inn)'/?} for n
large enough (depending on d, k, t).

Proof Let y count the total number of cycles in G of length at most 2z. If v ¢ V; then
v must certainly lie within distance 7 of one of these cycles, so crudely we have

[VAV:| < 2t(dk)"y . (59)

Consider breadth-first search exploration in G started from an arbitrary variable, say
v = 1. At each step of the exploration we reveal one edge, so the exploration takes
nd steps total. Conditioned on everything revealed in the first ¢ steps, the chance that
the edge revealed at step ¢ 4+ 1 will form a new cycle of length < 2¢ is upper bounded
by(dk)* /(nd — 1). Tt follows that the total number of cycles revealed up to time
nd(1 — §) is stochastically dominated by a binomial random variable

(dk)Zt )

"~ Bin( nd(1 - §),
y 1n<n( ) BT

The final nd§ exploration steps form at most nd§ cycles, so y <y’ + nd$. Applying
the Chernoff bound (as stated above) with § = 1/(InInn)2, we obtain

nds?

P(y = 2nd8) < P(y' = ndé) < exp { ot (e(dk)Z’

)} < exp{—n(lnn)'/?}
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for large enough n. Recalling (59) gives the claimed bound. O

Given an instance ¢4 = (G, L), let V, be as defined above and take V' = V7. We
then take i.i.d. random variables I, ~ Ber(¢’) indexed by v € V' (for €’ a constant to
be determined) and let

Yo =1I, =1, and I, = 0forall u € Bar(v)\{v}}. (60)

We then define P(Y | %) to be the law of the set Y = {v € V' : ¥, = 1}. Note that the
random variables Y, for v € V', all have the same expected value, so we can define
€ = (EYy)/2.

Lemma 4.9 Define A to be the set of all ¢ = (G, L) with |V\Var| < n/(Inlnn). For
the sampling mechanism described above, condition (58) holds for any 4 ¢ % and
any coloring o on'Y.

Proof Fix an instance & ¢ 9 and a coloring o on ¢. Recalling Definition 4.1, for
each v € V denote

Xy = (X, Xy, Xy) = H™(G, (v}, 0).

Assume without loss that V' = V7 = [n'] = {v1,..., vy}, and for 0 < £ < n’ let
Z; denote the sigma-field generated by Y, ..., ¥;. Consider
S = Z AyY,
v<n’

where we can take different choices of A, to prove various different bounds:
taking A, = 1 gives S = |Y| and ES = 2n'¢; '

taking A, = X, (1) gives S = [Y|H*" () and |ES —2n'e H(n)| <n —n’;
taking A, = X, (1) gives S = |Y|H*™(n) and [ES — 2n'e H(p)| < n —n';
taking A, = )_(U(;) gives § = |Y|I-_Ism(;) and |[ES — Zn’el-_l(;)| <n-n,

where we recall that n — n’ = |V\ V47 < n/(Inlnn). Consider the Doob martingale

My =E(S| %) = Z A E(Yy | Z0) .

v<n’

For ¢ < n',if v lies at distance greater than 87 from any variable in [¢] = {vy, ..., v¢},
then

E(Y, | %) = EY, = 2¢.

Thus, the only possibility for E(Y, | %¢+1) # E(Y, | %) is that v lies within distance
8T of vertex £ + 1. The number of such v is at most (dk)37, so we conclude

|Meg1 — Me| < (di)¥ | Allso < (dk)®T .
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It follows by the Azuma—Hoeffding martingale inequality that

2
X

The result follows by summing over the choices of A listed above, combined with our
above estimates on [ES for each choice of A. O

Proof of Theorem 4.2 Itfollows from Lemmas 4.8 and 4.9 that the sampling mechanism
described by (60) satisfies the conditions of Definition 4.6. The result then follows by
taking n — oo in Proposition 4.7. O

5 Solution of tree optimization

From Theorem 4.2 we see that if H € A is a local maximizer for the first moment
exponent F = F, r, then its symmetrization H* must be a zero of the function
E = E, r defined by (50). The analogous statement holds in the second moment
with F; and E,. The functions E, E, correspond to tree optimization problems,
which we solve in this section by relating them to the BP recursions for the coloring

model.

Proposition5.1 ForO <A <land1 <T < oo, let H, € A and H, € A, be as in
Definition 5.6 below.

a. On{H € N, : H = H"}, E is uniquely minimized at H = H,, with E(H,) = 0.

b. On{H € Ny, : H = H"}, 5 is uniquely minimized at H = H,, with Z>(H,) =
0.

Moreover there is a positive constant € = €(d, k, T) such that

1. E(H) > €|H — H,|* forall H € A with H = H” and |H — H,|| < €, and
2. B5(H) = €|H — H,||* forall H € Ay with H = H and |H — H,| < €.

5.1 Tree optimization problem

Recall from the previous section that in the local update procedure, we sample a subset
of variables Y and consider its neighborhood .4~ = (N, Ly). Writing s = |Y|, the
graph N is the disjoint union of Dy, ..., Ds where each D; is a copy of the tree D of
Fig. 6. Let IT be the space of probability measures on colorings of D. Any coloring
oy can be summarized by v € II where v(o ) is the fraction of copies D; with
op, = op. The sample empirical measure H*" = H*"(G, Y, o) can be obtained
as a linear projection of v, and we hereafter denote this relation by H™ = HY(v).
Recalling (52), we have El'[(w", (01))*] = wp(op )" -+ wp (o )* where

wp(op) = Poy,) [ {@(Ge)é’(gaa(e))} :

ecdv
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Lemma 5.2 The function A of (49) is concave on A*™", and can be expressed as
ACH) = sup {FCw) + 2(nwa, v) v e Mwith H") = H| . (61)

Proof The function A(H) is the sum of X(H) and the linear function As"(H), so it
suffices to show that ' is concave on AS™. For H = (H, H, H) € A*™,if X € Q*
is a random variable with law H, then the first coordinate X has marginal law H by
(47). It follows that for any H € A®™ we can express

TU(H) = H(H) + dH(X) —dH(X1) + v(H) = H(H) + dH(X | X1) + v(H) .

The entropy function is concave and v is linear, so this proves that X% (hence A) is
indeed concave on A®™. In fact this can be argued alternatively, as follows. Recalling
(56), note that for H € IT we have

sOW exp{sA(H)} = EZ(H; N) = Z 1{H"(v) = H}( g )(w@)“ )
vell sV

Expanding with Stirling’s formula gives the representation (61), which also implies
concavity of A. O

Thus, for H € A*™, we have E(H) = A®®(h"(H)) — A(H) where A is given by
(61), and

AP () = sup {fH(v) Fonwp, v) : v e I with AT (HT(v)) = iz} .62

Both (61) and (62) fall in the general category of entropy maximization problems sub-
ject to linear constraints. In “Appendix C” we review basic calculations for problems
of this type. The discussion there, in particular Remark C.7, implies that for any 7,
there is a unique measure v = v°P (k) achieving the maximum in (62). Moreover, there
exists a probability measure ¢ on $27—serving the role of Lagrange multipliers for
the constrained maximization—such that UOP(fz) can be expressed as

A
v(@p) = vjlop) = % [T qGo. (63)
ecsD

where Z is the normalizing constant. The analogous statement holds for the second
moment.

5.2 BP recursions
We now state the BP recursions for the A-tilted 7'-coloring model. In the standard
formulation (e.g. [33, Ch. 14]), this is a pair of relations for probability measures ¢, ¢

on Q7:
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d
(o) = [Br1(@])(0) = o € Q7}d(0)* Y o1 =0}d@) [[§(o)

ae(Qr)? i=2

k
§(0) = [Brr(@])(0) = o € Q7}®(0)* > o1 =0a}d@)* [ 400

ae(Qr)k i=2

where = denotes equality up to normalization, so that the mapping always outputs a
probability measure. Recall from Definition 4.1 that for ¢ = (o, 6) € Qr we have
6 € Qr and 6 € Qr. For our purposes we can assume a one-sided dependence
meaning there are probability measures ¢ on 27 and § on Qr such that §(o) =
G(©6)1{o € Qr}and g(0) = §(6)1{c € Q7}. One can then check (e.g. [33, Ch. 19])
that the BP recursions preserve the one-sided property, so that B 1,7 and B A,T restrict
to mappings

BP = BP,. 1 : 2(Qr) > P(Qr), BP=Bp,1: 2Qr) > P(Qr). (64)
We also denote BP = BP; 7 = BPoEP. Given any § € P (Qr), write § = BP¢g, and

let H = H; be defined by

b d . e1><a)A d(o)

Hi(o) =

]'[q(al H;(0) =

4(6)q(6)
(65)
where 3, 3, and 3 are normalizing constants, all dependent on g. Clearly, H; = (H;)®.
If g is a fixed point of BP, then H; € A. An entirely similar discussion applies to the
pair (second moment) model, where the BP recursion reduces to a pair of mappings

between 2 ((Qr)?) and 2((27)?). If g € Z((2r)?) is a fixed point of BP, then
(65) defines an element H; € A;.

Lemma53 For1 <T < o0, ifq € P(Qr) is any fixed point of BP, T which has
Sull support on Qr, then E(H;) = 0. The analogous statement holds for the second
moment.

Proof Consider the optimization problem (62) for A°P (h) with h = h" (Hj;). Asnoted
above, v°P(h) can be written (63) as v; for some measure g € P (1), which may
not be unique if the constraint h‘r(H T(y)) = h is rank-deficient. However, if ¢ has
full support on Q7, then h = ht (H;) does also. In this case it is straightforward to
check that the constraints are indeed of full rank, so c} is unique. Because ¢ is a fixed
point of BP, the measure v; satisfies H"(v;) = Hj, so it also satisfies the weaker
constraint A" (H T(vg)) = h. Tt follows by the above uniqueness argument thatg = q.
Therefore, v; solves the optimization problem (62) for A°p(htr(H )), as well as the
optimization problem (61) for A(H;), so we conclude E (H;) = 0 as claimed. O

[x]

Lemma54 For0 < A <land1 < T < oo, let 2 = &) 1,
BP = BP; 7.

2 = BT, and
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a. If H e Nowith H = H" and E(H) = 0, then H = H; where g € P(Qr)isa
fixed point of BP.

b. If H € Ny with H = HY and E,(H) = 0, then H = H; where g € P(27)?)
is a fixed point of BP.

Proof Let © = v°P(H) denote the solution of the optimization problem (61) for
A(H), and let v = v°P(A(H)) denote the solution of the optimization problem (62)
for A°P(A"(H)). Since (62) has a unique optimizer, we have & (H) = 0 if and only if
w = v. This means H"(v) = H, but also v = v, from (63), which gives

k
H(o) = ®(@)*((BPg)(6)) [ 4650 (66)
=2

We now claim that in order for H = H*Y, we must have BP§ = ¢. Note that if d were
fully supported on (Q7)*, and both ¢ and BP§ were fully supported on 27, the claim
would be obvious. Since ® is certainly not fully supported, and we also do not know
a priori whether ¢ and BPg are fully supported, the claim requires some argument,
which differs slightly between the first- and second-moment cases:

a. In the first moment, Lemma 3.3 implies that ¢(o) is positive for at least one
¢ € {bg, b1}. Assume without loss that g (bg) _is positive; it follows that (BPg) ()
is positive for both 6 = by, b;. For any ¢ € €2, there exists 6 such that

®((6,6),bo, ..., bg) > 0. (67)
The symmetry of H then gives the relation

(BPg)(5) _ q(o)
(BP¢)(bo)  G(bo)’

so it follows that BPg = ¢ in the first moment.

b. In the second moment, since we restrict to H € N, g(0) is positive for at
least one ¢ € {by, bl}z. Assume without loss that ¢ (lbgbg) is positive. For any
6 ¢ {ror1, riro}, there exists & such that the second-moment analogue of (67)
holds. The preceding argument gives

(BP¢)(6) _  4()
(BPg)(bobo)  g(bobo)

for all & ¢ {rorl, rlro} .

Since (BPg)(0) is positive for all 6 € {by, b1}?, it follows that the same holds
for g, so
(BPg)(0) q(o)

- = - forallo ¢ {rorg,rir1}.
(BP¢)(bob1)  ¢(bobi) # roro, 1113
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Combining these, we have for o € {rori, riro} that

(BPg) (o) _ (BPg)(5) (BPC})(bobl): q(o)
(BP¢)(bobg)  (BPG)(bob1) (BP§)(bobo)  ¢(bobo)’

and this proves BPg = ¢ in the second moment.

Altogether, the above proves in both the first- and second-moment settings that g is a
BP fixed point. O

5.3 BP contraction and conclusion

The next step is to (explicitly) define a subset I' of measures ¢ on which we have a
contraction estimate of the form ||BPg — ¢,|| < c||g — g«|| for a constant ¢ < 1. A
useful feature of NAE- SAT is that its BP recursions are self-averaging: if ¢ is a measure
on Q7, let

v oy _ 4(0)+q(c 1)
(o)== ————.

2
Then BP§ = EP§®, and consequently BP§g = BP¢®". The analogous statement holds
in the second moment. It then suffices to prove contraction on the measures § = ¢,
since for general ¢ it implies

IBPG — Gull = IBPG™ — Gull < cllg™ — gull < cllg — Gull -

Abbreviate {r} = A{ro, r1}and {b} = {bg,b1}. Ina mild abuse of notation we now
write {£} for (QUQ)\{r, b}; so forinstance ¢(f) = g(Q\{r, b}) = 4(///\{0, 1, }).
For the first moment analysis, let I be the set of measures ¢ € Z2(2r) satisfying
g = ¢*, such that

. 2k . f .

q(r) +2°q(f) < i) < q(r) 68)
C 1—-C/2k
for C alarge constant (to be detepnined). For the second moment analysis, let I'(c, k)
be the set of measures ¢ € Z((27)?) satisfying § = ¢**, such that

g (bobo) — ¢(bob1)| < (k?/2%)¢(bb), and §(££) + ¢({£r, r£})/2F

+4(rr)/4* < (€/2%)¢(pb); (1r)
G({rf, fr}) < (C/2")g(bb) and 4(rr) < C2X17)§ (bby); (ar)
G(rx6) = [1 — C/2¥14(bx6) and ¢ (6 rx)
> [1—C/2K14(6by) forall x € {0,1},6 € Q. (3T)

(To clarify the notation: since b = {bg, b1}, in (1T) the expression g (bb) refers
to 4({bo‘, bllz). Similarly, g (fr) refers to g({£} x {rg, r1}) where in this context
{f} = (QUQ)\{xr, b}.)
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Proposition 5.5 (proved in “Appendix A”) Assume 0 < A < 1. In the first moment,
we have:

a. Foranyl < T < oo, the map BP = BP,_ 1 has a unique fixed point g, = q.7 € I.
For any ¢ € T, we have BP§ € T also, with |BP§ — ¢,|| = O (k*/2°)|1¢ — ¢.||.
b. Inthe limit T — oo, [[gy.7 — Gx,00ll — 0.

In the second moment, for any 1 < T < oo, we have the following:

A. The map BP = BP, 1 has a unique fixed point in T (1, 1), given by g. @ q.
with q. as in part a. Moreover, for ¢ € (0, 1] and k sufficiently large, there is
no other fixed point of BPin I'(c, 1): if ¢ € T'(c, 1) then BPq € T'(1, 1), with
IBPG — Gull = OKk*/2)11G = Gull-

B. Iffor some c € (0, 1] we have q € T'(c,0) and g = BPq, then q € I'(c, 1).

Definition 5.6 (optimal empirical measures) For 0 < A < land 1 < T < oo,
take the fixed point ¢, = ¢, 7 as given by Proposition 5.5a, and use (65) to define
H, = H;, € A and H, = Hj,g; € A;. Note that this agrees with our earlier
definition of H,, in the discussion below Lemma 3.9.

Lemma 5.7 Let g be any fixed point of BP that arises from Lemma 5.4.

a. If H = H; € N,, then g = g, and so H = H,.
b. If H = H; € Ny, then ¢ = 4. ® 4. and so H = H,.

Proof Since ¢ = BPqg, we must have ¢ = ¢*'. Below we argue separately for the
first and second moment. In each case we repeatedly take advantage of the fact that
H = H,; is symmetric.

a. For the first moment, by Proposition 5.5a it suffices to show that ¢ must lie in the set
I' defined by (68). It follows directly from the relation ¢ = BPq that g (r) > g (b).
By definition of N, we must have I:I(r) < 7/2" and I-_I(f) < 7/2", so the vast
majority of clauses must have all incident colors in {b} = {bg, b1}:

14k N
- Sr < AEH =z ¥ <I>(_)*]_[q(m) < Q

aebk

Next, if 0 € rb*~!, we have ®(0)* = E'[dlil(¢ & L)*] > E'dlit(c @ L) =
2/2%, so

7 H(xr) = Hxb" ) >
2k = B -

G q<r>3< _ﬂ)
2%=15 = 4(b) 2k 2% )

which gives §(r)/q(b) < 4 for large k. Similarly, if 0 € fof~! with 6; = s
(indicating a separating clause), then ®(0)* > Elitdlil(c @ L) = 1 — 4/2F, so

T g 3Rk _ANdEIO T gE) _i<_g
> A0 = At = (10 5 ) 1L IO (- D (1- )
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which gives ¢(£)/¢ () < 8/2% for large k. Combining these estimates proves
g eTl.

b. For the second moment, by Proposition 5.5A it suffices to verify g € I'(1, 1), as
defined by (1T')—(3I'). Condition (3T) is immediate from the relation ¢ = BPgq.
Moreover, by Proposition 5.5B it suffices to show ¢ € T'(1, 0), in which case
condition (2T') follows from (1T). It remains to verify (1I'). For this end, we
denote B = {bg, b1}?, and partition this into B- = {bgbg, b1b1} and B, =
{bob1, b1bg}. By definition, for any H € N, the single-copy marginals H', H>
lie in N € N, so the total density of {r, £} edges in either copy is very small. As
a result the vast majority of clauses have all incident colors in B:

For H € N, we have |H(B-) — H(By)| < k*/2%/? + 0(27%). The fraction of
edggs.in not-all-B clauses is 0(k/2k), and for o € B* we have 1 > dAD(g)A >
El'®lt(ec @ L) = 1 — 0(k/25), s0

q(B-) — q(By)
q(B)

; k
H(B-) — HBy) — 0(k/2") = { q(I;%)

+ O(k/z")}

Rearranging gives lg(B=) —q(B4)|/gB) < 2k*/2k/2 which proves the first part
of (1T) (with ¢ = 1). It remains to show the second part of (1I'). If we denote
R- = {roro, r1r1} and consider ¢ € R_(B- Y¥=1 then (similarly as above) we

have ®(0)* > E'dlit(c @ L) = 2/2%, so

7 _ k—1
2—kZH(R) H(R-(B-) )= op : >7q(3) -

2 GR)GB) 2 G(R- )(1 O(ks))
where the last inequality is by the preceding estimates on ¢(B) and ¢(B-). The
same calculation bounds ¢(Ry) for Ry = {rori, riro}. Next consider o =
((6,s8),r) € {fr}:ifo € QF with o1 = o and the other k — 1 entries in B, then
d(o)* > 4/2% as long as the other entries are not all B- or all B.. Therefore

3

4 g(E)g @B~ 1(1 @)kt 403#)"‘1) _ atEn) (1 0(k>)
2% '

.
= A= o gBFT BT ) T §®) 2k

and the same calculation bounds ¢ (rf). Finally, for o = (61, 9), (6%, 9)) €
{f££}, we can consider o € QF with o1 = o and the other k — 1 entries in B;

therefore
T _ 5 g(££)q(B)*! 4\ _ q(£f) 0 (k)
72 0= S (1-5) = G5 (- 57)

Combining these estimate verifies the second part of (1T').
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Altogether we have shown that if H = Hj lies in N, then ¢ € T and so ¢ = g,; and
if H = H; liesin Nge then g € I'(1, 1) and s0 ¢ = ¢, ® g.. This concludes the proof.
O

Proof of Proposition 5.1 We will prove the claim in the first moment; the result for
the second moment follows by the same argument. It follows from Lemmas 5.3, 5.4
and 5.7 that the unique minimizer of E on the set {H € N, : H = H%} is H, (as
given by Definition 5.6), with E(H,) = 0. It remains to establish that, for H € A
with H = H% and |[H — H,|| < €, we have E(H) > ¢||H — H,||>. As in the proof
of Lemma 5.4, let u = v°P(H) be the solution of the optimization problem (61) for
A(H), and let v = v°P(A"(H)) be the solution of the optimization problem (62) for
A°P(h"(H)). We have from (63) that for some § € 2 (1),

A
vop) = vilop) = 22 T 6o,
ecdD

For e € §D, abbreviate g.(0 1) = In g (o). Then, for any probability measure  on
colorings o ¢, the quantity A(w) = H(w') + A(lnwp, ) can be expressed as

A(w) = H(w) +<lnv+an - Z ges w>
ecdD
= Dy (@|v) +In Z — [§D[(Ing, h" (H" (w))) .

We have A" (H' () = h"(H) forboth @ = v and @ = p, so Z(H) = A(u) —
A(v) = Dy (u|v). (For further discussion, see Proposition C.6.) It is well known
that Dy, (1|v) = [l — v||%, so to conclude it remains for us to show that || — v| >
|H — H,||. To this end, let v, = vj,, and note that H = H"(w) while H, = H"(v,).
Recall from the discussion preceding Lemma 5.2 that w + H'Y(w) is a linear
projection, so

IH — Ho |l Sl = vull < lle = vl + v =il Sl =il 4+ 11 — sl »

where the last bound holds since v = v; and v, = vg,. Recall from Proposition 5.5a
(or Proposition 5.5A for the second moment) that we have the contraction estimate
IBPG — gull < cllg — gull forc € (0, 1), so

(I =0l — gull = 14 — gull — IBPG — G4l < g — BEG] .

Let K = (AK, K, K) = H"(v), and note that K qeed not be symmetric: if we let
K'(o) = K(oa,...,0,,01) foro € (QT)k, then K and K’ need not agree. On the
other hand H = H"(u) = HY, so

IK—=K'I<IH—-KI+IH-K'=21H-K|I<2H—-K[|<lu—vl.
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For any k-tuple i = (hy, ..., hy) of probability measures on €27, consider
ﬁOP(ﬁ) = arg max; {J—C(G) +M{In®, D) : (6 =) = h; forall i}

where D denotes any probability measure on supp v € (Q27)F. The unique optimizer
H °P (/1) can be described in terms of another k-tuple of probability measures on QT,

denoted ¢ = (41, - .., gk), which serve as Lagrange multipliers: A "P(_) - H (@)
where

k
[H(@)](@) = &) [ di(6i) .

i=1

In particular, HP(h,) = H(q) for h, = (h"(H,).....h"(H,) and ¢ =
(Gu, - .-+ Gx). For h near é*, there is a unique g satisfying I—}"P(é) = I:I(z'), and
we can determine this g as a smooth function of h. Thus

IK =K' = IH®P4. 4, ....4) — HG,BPG, 4, ... = l§ — BPGI|.
Combining the above inequalities gives |H — H,| < ||u — v|| as desired. O

Proof of Propositions 3.4 and 3.10 Note that for H fixed, F(H) = F(H,H, H) is a
strictly concave function of H, H. It follows that for all H € A we have F(H) <
F(Ly) —€llH — Ly |?* for

Ly = argmax; {F(L) :LeAwithL = I-_I].
Clearly Ly = (L)%, so it follows from Theorem 4.2 and Proposition 5.1 that
F(Ly) < F(H) —€||Ly — H|*.

Combining the inequalities (and adjusting € as needed) gives F(H) < F(H,) —
€||[H — H,||%. This concludes the proof of Proposition 3.4, and Proposition 3.10 fol-
lows by exactly the same argument. O
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Appendix A: Contraction estimates

We now prove Proposition 5.5, on the contraction of the BP recursion for the coloring
model. In Section A.1 we analyze the recursions for the first moment (single-copy)
model and prove Proposition 5.5a. In Section A.2 we analyze the the recursions for
the first moment (pair) model and prove the remainder of Proposition 5.5. We assume
throughout the section that0 <X < land 1 < T < c0.

A.1. Single-copy coloring recursions

Recall from Sect. 5.2 that the BP recursion is a pair (64) of mappings BP : P Qr) —
P(Qr) and BP : 2(Qr) — P(Qr). Recall that for our purposes we can restrict
attention to measures satisfying ¢ = ¢*" and ¢ = ¢*'. Under this restriction, the BP
recursion is quite explicit, as we now describe. Recall from Definition 2.8, equations
(24) and (25), that for # € .# and 7 € M we defined m(t) and m(7) as probability
measures on {0, 1}. For convenience, we also define

m(ri) =mr) =381, m(rg) =m(by) =¥dp. (69)

In what follows we often represent a probability measure on {0, 1} by the probability
assigned to 1, writing m(7) = m[t](1) and m(r) =m[7](1). Thus equations (24),
(25), and (69) together define mappings m :Q — [0,1] and i : Q- [0, 1]. Recall
that we denote {r} = {r1, ro}, {b} = {b1, by}, and {£} = Q\{r, b}. We also write
(f} = (QU fZ)\{r, b}; the precise meaning of {£} will be unambiguous from context.
Then, for x € {0, 1}, let us abbreviate

g=bUf, gr=byUf, y=rULf, py=byUr,.

The variable recursion BP = BP;,_ 7 is given by

G(pp)4! if & € {ro, r1),
. G = (Go1))! if & € {bo, b1},
(BP§)(6) = _ d
Z'(éﬂ))L Z 1{5 = T((&i)izz)} 1_[ (6i) ifo e QT\{r, b},
02,...,04 i=2

where = indicates the normalization which makes BP§ a probability measure on Q7.
For the clause recursion, let us write ¢ ~ ¢ if & = (62,...,0%) € (SZT)"‘_l is
compatible with &, in the sense that

{o=6.6).620....00 e @ M) =1} £2. (70
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The clause recursion BP = BP; 7 is given by

G(oo)*! if 6 € {ro, r1},

k
) 26) 1{6 =T((61)ix2 } G(6;) if6 € Qr\{r, b},
(BPg)(6) = 62;(;;{ ( ) E

k k
> (1-[Ten) Tlaen if & € (0o, by,
i=2 i=2

o~by

where the last line uses the convention (69). Recall that BP = BP o BP = BPj 7.
We will show the following contraction result (assuming, as always, 0 < A < 1 and
1<T < ).

PropositionA.1 If ¢1,4> € T, then BPj1,BPg; € T and ||BPq, — BPjz|| =
0(k* /129141 = gall.

Before the proof of Proposition A.1 we deduce the following consequences:

Proof of Proposition 5.5a Let c}(o) be the uniform measure on {bg, b1, r1, ro}, and let
¢V =BP¢~V Ttisclearthat ¢ e T, soProposition A.1 implies ) € I foralll >
1, and furthermore that (§)) />1 forms an ¢! Cauchy sequence. By completeness of ¢!
we conclude that there exists ¢® = ¢, € I such that BPg, = ¢, and ||¢) — 4,| —
0as! — oo. Applying Proposition A.1 again gives || BPG — ¢,/ = O(k*/2) ¢ — g |l
for any ¢ € I', from which it follows that ¢, is the unique fixed pointof BPinI'. O

Proof of Proposition 5.5b For each 1 < T < oo, let (¢;.7)" (I > 0) be defined in
the same way as ¢ in the proof of Proposition A.1. It follows from the definition
that (4.7)" = (g.00)® for all I < I7, where I = InT/In(dk). By the triangle
inequality and Proposition 5.5a,

g7 = Gr.coll < 12,7 = (Gr.00) "1 + 1(d2.00) " = Ga.coll < (C/29"
for some absolute constant k. The result follows assuming k > k. O
We now turn to the proof of Proposition A.1. We work with the non-normalized BP

recursions NB = NB;,_ 7 and NB = NBy, 7, defined by substituting “=” with “=""in the
definitions of BP and EP respectively. One can then recover BP, BP from NB, NB via

(NBp)(6)
Y sreaMBPY(E)

(NB)(4)

f s BAP . ~ —
Y srea(NBP)(67) (BPp)(0)

(BPP)(6) =

Let p be the reweighted measure defined by

q()

pe) =[p@lo) = e (71)
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In the above we have assumed that the inputs to BP, BP, NB, NB are probability mea-
sures; we now extend them in the obvious manner to nonnegative measures with strictly
positive total mass.

Given two measures r1, rp defined on any space X, we denote Ar(x) = |rj(x) —
ra(x)|. We regard Ar as a nonnegative measure on X: for any subset § € X,

Ar(S) =Y Iri(x) = r2(x)| = [r1(S) — ra(S),

xes

where the inequality may be strict. For any nonnegative measure 7 on $2, we abbreviate

In what follows we will begin with two measures in I', and show that they contract
under one step of the BP recursion. Let NB and NB be the non-normalized single-copy
BP recursions at parameters A, 7. Starting from ¢; € T (i = 1, 2), denote

pi = p(g;) (as defined by (71)),
pi = NB(p;) and pi 0o = NBj. oo (Pi),
P = NB(p;) and §; = BPp; = BPg;.

With this notation in mind, the proof of Proposition A.1 is divided into four lemmas.

Lemma A.2 (effect of reweighting) Assuming ¢1,q> € T, |Ap|l = O(Dlq1 — ¢21,
where O (1) indicates a constant depending on the constant appearing in (68).

Lemma A.3 (clause BP) Assuming q1, ¢ € T,

m* ﬁ (s) =1 —4/2 + 0(k/45,
Pi(£) = m* pi(s) + O (k/4b),
pi(b1) = 1+ 0(k/25,
pi(ry) = 2/29[1 + 0(k/25)]. (72)

Further, writing Ai* p(-) = m* ()| p1() = p2(0)l,

AR B(E) + A p(r) = 0(k/2M) Ap(£),
lAm*pll = OK* /25 AP (73)

(Recallthat p(6® 1) = p(&) andm(6®1) = 1—m(6), so (1—m)* p(6) = m* p(6 &
1). As a result, the bounds for Am* p imply analogous bounds for A(1 — m)* p.)
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Lemma A.4 (variable BP, non-normalized) Assuming q1, g2 € T, we have

" i Ao [ o
o)=L 0000 o | s | =] o |1ait o may [5t0).
i ap'n]  Lowt)

(74)

Lemma A.5 (variable BP, normalized) Assuming q1, g2 € I, we have ¢1,q> € T as
well, with

IG1 — @21l S kllAm* ]l
Proof of Proposition A.1 Follows by combining the four preceding lemmas A.2—-A.5.0

We now prove the four lemmas.

Proof of Lemma A.2 This follows from the elementary identity

a, @ 1 by — by
b by bt Tt

a. (75)

together with (68). O

In the proof of the next two lemmas, the following elementary fact will be used
repeatedly: suppose for 1 < [ < m that we have nonnegative measures a', b’ over a
finite set X'. Then, denoting X = X Ly oo x X™, we have

]_[a(x’)—]_[bl(x’) Z { 1 bf(xf)}{ I aj(xj)}‘al(xl)—bl(xl)
eX =1 I=1 I=1xeX ‘1<j<l I<j<m
2

| ><

la' =o' TT (a1l + a? = b71). (76)

=1 j#l

If all the (X!, a!, b') are the same (X, a, b), this reduces to the bound

Ha(x,) - Hb(x,

i=1

—1
< mlla = bl (llall +la=b1)" . @)

In what follows we will abbreviate (for x € {0, 1})
— 15 o - k—1 . ~
axz[aeQT.ge(gx) forallg~c7}. (78)

Proof of Lemma A.3 From the definition, if p = p(g) then

. é(b) _q®) .
b =1—-p(f).
p() = i@ i@ p(£)
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It follows that for any g1, g2 € T we have Ap(b) < Ap(f) < p1(f) + p2(f) =
0 (27%). Another consequence of the definition of T is that ||Ap| = O(1). We now
control Am™ p(6), distinguishing a few cases:

1. We first consider 6 € fZ\{b, s}. For such 6 we have

A p(0)=‘[ﬁ1(5)z(0) Z(]‘[pl(an—]"[pz(aj)

o~o

and it is easy to check that

k
m(6)2(6) =1-[]m@) elo.1].

j=2

Moreover, any such & must belong to ag or a;. By summing over 6 € ag and
applying (77) we have

AN A . .. . . k=2
At p(ao) = (k= DI = 52l (P1(50) + APE)

Recalling that p; and p; both lie in T, in the above we have p;(gy) + Ap(£) <
[14+0@2%)1/2,as well as ||(p1 — Pt py.5) = O(1)Ap(£). Combining these
gives

A p(ag) = O (k)2 Ap(E),

and the same bound holds for Am* p(ay).
2. Next consider 6 = s, for which we have m(6) = 1/2 and Z(6) = 2. Thus

mrp(s) =1 — (plgo) ™" — (plg )™ + p(e)F . (79)

Arguing as above gives Am*p(s) = O(k/2X)Ap(£), proving the first half of
(73).

3. Lastly consider 6 € {bg, b1}. Recalling (69) we have Am” p(bg) = 0, so let us
take 6 = b1, and consider & ~ b;. Note that if & has no entry in {r}, then we
also have & ~ &' for some 6’ € {r, £}. Again making use of (69), this & gives
the same contribution to m* poo (67) as to /i* p(b1). It follows that

i po1) < A peo(y) + k| p1(xo) p1(o1) 2 — pa(ro) pa(or) 2.

The first term on the right-hand side captures the contribution from those ¢ with
no entry in {r}, and by the preceding arguments it is O (k/2¥) A p(£). It is easy to
check that the second term is O (k?/2%)||A p||, which finishes the second part of
(73).
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Combining the above estimates proves (73). We next prove (72). For this purpose we
introduce the notation £ to refer to elements of €2 or €2 that contain at least one free
variable. In particular, £51 N Qs given by {£}\{s} CapUa; C . Since gi €T,
we must have from (68) that

A A (k=1 k=11 ko1 = (kpi(D) k
7t Pi(le)§22< l )p,(f) Pi(®0) < 2 (bo) Z( ) = O(k/4").
=1

pi(bo)
(80)
On the other hand, we see from (79) that

m*pi(s) =1 —4/2F + 0(k/4%).
If ¢ ~ by has no entry in {r}, then there must exist some o € {f} such thatg ~ &

as well. Conversely, if 6 € Qr\{r, b} and & ~ &, then & ~ b1, unless & has exactly
one spin &; € {bg, £} with the remaining k — 2 spins equal to by.! It follows that

i pi(b1)

Pi001) = 1t pi.oo (£) + (k = D[ pi(x0) = pi(go) | pior)
< P (£) 4+ (k — 1) piro) pi(o1)F 2 =1+ 0(k/25). (81)

For a lower bound it suffices to consider the contribution from clauses with all k&
incident colors in {b}:

*pi(o1) = pi(or) = pi I —0Gk/29T=1-0k/25). (82

m
Lastly, note by symmetry that
i pi(r1) = pi(r1) = pi(bo) " = (2/29pi ).
Combining these estimates proves (72). O

Proof of Lemma A.4 We control p" and A p" in two cases.

1. First consiAderc'r € Q\{r, b}. Up to permutation there is a unique & € {£ 191 such
that & = T(&). Let comb(6) denote the number of distinct tuples &’ that can be
obtained by permuting the coordinates of &. For this & we have

S

d d
]_[r;l(o,) < 2(6)" ]‘[ G+ [ —m@E (83)

j=2 Jj=2

where the rightmost inequality uses that (a + b)* < a* + b* for a,b > 0 and
A € [0, 1]. It follows that for i = 1, 2 we have

I The converse is not needed for the final bound, but we mention it for the sake of concreteness.
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d

d
comb(d) l_[ mp; a]) < p; U(e) < comb(cr){ 1_[ Di crj)—|— l_[(l —m) p,(a])}
= j=2 j=2

It follows by symmetry that /i* p; (£) = (1 — m)* p; (£), so
[ pi()1™" < p(E) < [ pi ()1~ +IA—m)* pi ()1~ = 20m™ pi (£)17" .

(84)
Making use of the symmetry together with (83) gives

ApU(E) <2 ) ‘l_[m p1(6)) — Hm ZICHIN

se(Qe)d—1 J=2

and applying (77) gives

. d-2
ABME) S dil it pl (i P (£) + A i (£) )

Combining (72) with the lower bound from (83) then gives
AP S diarit pl max { o)}
i=1,

)d—l

2. ] Next consider 6 € {r, b}: for x € {0, 1}, note that p}'(ry) = p; (ox , and

Pi(rx) = Pi(ox)  pilor)’™' < Dz

d—1
- = =027, 85
P () Bi(on) T ﬁ,«px)) ¢ B

where the last estimate uses (72) and d/k = 2K"11n2 + O(1). Applying (77)
gives

-u Ad oA . Ad oA AN A d=2
85" (01) S i pll min {i? pi(o1) | + Arit* (1))
Suppose without loss that /mi* p1 (b1) < mi* p2(I): then

A

i* pro1) + At p(p1) = i’ pa(br) + " pr(xe) + At p(x)
< 1" pa(p1) + 240" p(z1),
and substituting into the above gives

AP0 S it pll(max | picon | + A pr))
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From (73) and the definition (68) of I' we have Am* p(r1) = O (k/25)Ap(£) =
O (k/4%). It follows from (85) that

A" (1) < dll i’ pil max { pr o)} (36)

It remains to show pU(£)/p"(b) = 0(27%). From (81),

i pi(E) = iy (1) < 1 i oo (B) = iy (1) = (k= D) pi(g0) = i o) | e () 2,

and by definition of T the right-hand side is O (k/4%) p; (b)*~!. Now recall from (82)
that /* p; (b1) > pi()*~!. Combining these gives

M pi(£) < [1+ O(k/4)m* pi(b1) . (87)

Recalling (83), it follows that

. A d-1 P d—1
{?E‘(f) < ( inxfai(f) ) - <M> <2k,
pl(b1) m* pi(p1) m* pi(p1)

where the last step uses (72). This concludes the proof. O

Proof of Lemma A.5 Denote g; = BPq; and Aq = |q1 — ¢2|. We first check that g;
lies in I': the first condition of (68) follows from (74), and the second is automatically
satisfied from the definition of BP. Next we bound Ag. With some abuse of notation,
we shall write g; (X) = g;(r) — ¢g; (b) and

AGX) = [(q1(x) — g1 (D) — (G2(x) — g2(b))].

Let p}'(X) and A p"(X) be similarly defined. Arguing similarly as in the derivation of
(86),

AP = 20pi(o)"" = paor)!!| < kA pl max { )] (88)
Recalling ||g;|| = 1, we have
2G1(x) = [1 = G (D)) + G (x) — Gi(0)] and

2gi (o) =[1 — g (£)]1 — [gi(x) — gi(©)], so
1AG] S AG(E) + AG(X).

If we take a € {1,2} and b = 2 — a, and write Z; = 2}l then

APU(E) + ApU(X) N |Za — Zp| [PR(E) + pi(x) — pi(D)]

AG(E) + Ag(X) <
q(£) q(x) 7 7 2
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If we take a € argmax; p}'(b), then, by (74) and (88), the first term on the right-hand
side is

< kllai* bl pg (o)

~

S kllam* pl,

a

where the rightmost inequality uses Z; > pj'(b). As for the second term, (74) gives

Zy—7 o W(E) + pl(r) — pl(b
| a i b| ngIAm)‘pH and [pb( ) pb'( ) Pb( )] Sz_k-
Za Zp
Combining these estimates yields the claimed bound. O

A.2. Pair coloring recursions

In this section we analyze the BP recursions for the pair coloring model and prove the
remaining assertions of Proposition 5.5. Recall that we assume ¢ = ¢*¥ and ¢ = ¢,
where these are now probability measures on (27)% and (Qr)? respectively. For any
measure p(x) defined on x = (x!, x2) in (Q7)2 or (fZT)2, define

(p)(x) = p(jx) wherefx=x® (0,1) = x", x> ® 1).

Recall from Sect. 5.3 the definition of I'(c, ). We will prove that
Proposition A.6 For any c € (0, 1] and any q1, ¢ € I'(c, 1), we have BPq, BPg> €
I'(1,1) and

1BPG — BPG2 |l = O(K*/25)1lg1 — gall + OK*/25) D llgi — faill. -~ (89)

i=1,2

Assuming this result, it is straightforward to deduce Proposition 5.5A:

Proof of Proposition 5.5A Let ¢ be the uniform probability measure on
{bo, b1, r1, ro}?, and define recursively qﬂ) = qu“—l) for [ > 1. It is clear that
¢ erd,1)and ¢© = §G©. Since ¢ = ¢ for all I > 1, it follows from (89)
that (¢);> forms an £! Cauchy sequence. It follows by completeness of ¢! that ¢’
converges to a limit ¢©* = ¢, € T'(1, 1), satisfying ¢, = f¢. = BPq,. This implies
that for any probability measure g,

G =51 < 1g = Gll + G — §1l = 211G — Gull -
Applying (89) again gives
IBPG — gull = O(K* /2511 — ¢ull + O G425 11g — §q1l = OK* /211G — ¢all,

proving the claimed contraction estimate. Uniqueness of ¢, can be deduced from this
contraction. O
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We now turn to the proof of Proposition A.6; the proof of Proposition 5.5B is given
after. Let NB, NB now denote the non-normalized BP recursions for the pair model. Let
rlo] € {0, 1, 2} count the number of r spins in ¢, and let p = p(q) be the reweighted

measure L.
q(o)

=610 o

po) =
Recalling convention (69), we will denote
i, 6%) = @G HmeH 16!, 6.

Let NB and NB be the non-normalized pair BP recursions at parameters A, T. Starting
from g; € T'(c, k) (i = 1, 2), we denote

pi = p(g;) (as defined by (refe:reweight.second)),
pi = NB(p;) and pi 0o = NBj. oo (Pi),
P} = NB(p;) and §; = BPp; = BPg;.

With this notation in mind, the proof of Proposition A.6 is divided into the following
lemmas.

Lemma A.7 (effect of reweighting) Suppose ¢1,q> € T'(c, k) for ¢ € (0, 1] and
k € [0, 1]: then

IAp] = 021K A4,
Ipi — §pill = 0% g — fdi .

Lemma A.8 (clause BP contraction) Suppose q1,q> € I'(c,«) for ¢ € (0, 1] and
k € [0, 1]: then

AR p(yy) = 0K )25 Ap(gg) = 03 20+9K),
A p({br, bf21}) = 0K /29[ Ap(gg) + 27 Ap(@2\(rrh] = 0K 20F%),
A pll = O3 /29| Al = O k3202, o1

and the same estimates hold with p in place of p. For bothi = 1, 2,
i pi — i §pill = OG> 1209 pi — il = O /2 gi —Faill. (92)

LemmaA.9 (clause BP output values) Suppose 1,42 € I'(c, k) for ¢ € (0, 1] and
k €[0,1]. Fors,t C Qlet st =s x t. Then it holds for all s,t € {r1, bz, £, s} that

i pi(s. 1) |1+ 0®.*/2% ifrls]+ £lr] < 1,

(2/2kyrlsl+=ltl ) 1 4 0 (k2 /2%y if rls] + =t] = 2. ©3)
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Furthermore we have the bounds

i pi(£x11) +m’ pi(t £51) < O(k/4%) forallt € {r1, by, £, s},
n* pi (£} x Q) — i pi({b1} x Q) < O(k/45). (94)

The same estimates hold with §p; in place of p;.

Lemma A.10 (variable BP) Suppose 41, ¢2 € TI'(c, k) for ¢ € (0, 1] and k € [0, 1].
Then BPq, BPg; € T'(c’, 1) for ¢’ = max{0, 2« — 1}, and

Hqul — BR H < kH A+ A p ”) +r2E S Hn%)‘ﬁ,- — A pi
i=1,2

Proof of Proposition A.6 Follows by combining the preceding lemmas A.7-A.10. O

Proof of Proposition 5.5B 1f ¢ € T'(c, 0) is a fixed point of BP, then it follows from
Lemmas A.8-A.10 that we have g € T'(¢,0) NI (0, 1) =T (c, 1). O

We now prove the three lemmas leading to Proposition A.6.

Proof of Lemma A.7 Applying (75) we have

P16 — pa(6)] < Iql(q) —¢2(0)] " Iqli(gg) —'qz(gg)lqz(d)’
q1(g9) q1(99)q2(99)

and summing over & € Q2 gives

1Ap] < g1 — g2l 1g1(g9) — g2(g9)] _ 2llg1 — g2l
~ ¢i1(g9) 41(99)¢2(99)  ~ 41(99)¢2(99)

Since g; € I, we have, using (1I') and (2I'),
pi(Q@\{rrh = 0(), pi(rr) = 0QU™H). (95)

Consequently ¢;(gg)~! < 0(1)2979k and the claimed bound on ||Ap|| follows.
The bound on || p; — fp; || follows by noting that if g» = fq1, then ¢1(gg) = ¢2(g9).
O

Proof of Lemma A.8 We will prove (91) for p;; the proof for §p; is entirely similar. It
follows from the symmetry p; = (p;)® that for any x, y € {0, 1},

Pi0oD) — 4 (beboy)| =2

Pi(oxbyen) — pi(baby)| = 2|i(Bobo) — piooby)|,

from which we obtain that

Ajp(ob) S max | 5 (bobo) — ji(Bob1)] -
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Recallg = {b, £} and p;(gg) = 1. Combining the above with the definition of I (c, «)
gives

IA

Ap(bb) + Ap(gf) + Ap(£g)

>

i=1,2

Ap(gg)

IA

pi(bobg) — pi(bob1) | + pi(gf) + P(fg)} =002"%). (96)

Step I. We first control Arm* p(6). By symmetry it suffices to analyze the BP recursion
at a clause with all literals L; = 0. We distinguish the following cases of 6 € Q%

1. Recall y = r U £, and note {y}\{s} C ag U a1 (as defined by (78)). Thus

A ptyyissh) < D {Mﬂﬁ(axx{y}>+mkﬁ<{y}xax>}. 97)
xe{0,1}

For x € {0, 1}, consider 6 € ay x {y}:inorder forg € ()% tobe compatible
with &, it is necessary that 6; € A = {g,} x {g} for all 2 < j < k. Combining
with (77) gives

. . . k_2
= kAo (P14 + Ape) .

k k
[[p16) =] 5260

j=2 Jj=2

A plax x yh = )

QGAk’l

It follows from the definition of T'(c, k) that p1(A) + Ap(gg) = + + 0(27F),
so we conclude
Am* pyy\iss)) = 0k/25Ap(gg) . (98)

2. Now take 6 = ss: for & € (2%)F~! to be compatible with &, it is necessary that
& € {yy}¥~!. On the other hand, it is sufficient that & € {gg}*~! does not belong
to any of the sets (Ao)*1, (ADK1 (Bo)¥— 1, (B1)¥~!, where for x € {0, 1} we
define Ay = {byg} U {fg} and By = {gb,} U {gf}. Therefore

= 0(k/2"Ap(g9),

At pss) < Y >

x€{0,1} s e(Ap)—1U(By )k

k k
[1816) =] p266p)
j=2

j=2

where the last estimate follows by the same argument that led to (98). This con-
cludes the proof of the first line of (91).

3. Now consider 6 with exactly one coordinate in {b}, meaning the other must be
in {y}. Recalling convention (69), we assume without loss that 6 € {b;y} and
proceed to bound Am? p(6). Let & € (22)¥~! be compatible with 6. There are
two cases:

a. If & has no entry in {r}, it must also be compatible with some ¢’ € {yy}, as
long as we permit the possibility that |(6')!| > T. Such & gives the same con-
tribution to 7i1* p(&) as to m* pso (vy). It follows from the preceding estimates
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that the contribution to Arit* p(lo1y) from all such & is upper bounded by

A poo(yy) = O(k/2Y A p(gg) (99)

b. The only remaining possibility is that some permutation of & belongs to A x
B*=2 for A = {rog} and B = {b1g}: the contribution to Am”* p(b1y) from
all such ¢ is

0K /251ApI1, (100)

<k-1 >

GeAxBk-2

H p16)) — H P26))| =

j=2

where the last estimate follows using (76) and (95).

Combining the above estimates (and using the symmetry between b1y and yb1)
gives
i’ plory) + A’ p(ybr) = O(k* /25| Ap|l . (101)

If we furtherhave 6 € {b1} x {r, £51}, then, arguing as above, ¢ either contributes
to Am* poo(y X {r, £51}), or else belongs to Ay x (By) =2 for Ay = {rogy},
By = {b1gy}and x € {0, 1}. The contribution from first case is bounded by (98).
The contribution from the second case, using (76) and (95), is

SRARE\(ee)( max ji(Bo) + Bp(a9) = OW/49AHER\rz)).

The second claim of (91) follows by combining these estimates and recalling (96).

c. Lastly, consider 6 € {bb}. Without loss of generality, we take 6 = bib; and
proceed to bound Arm*p(bib1). Let 5 € (221 pe compatible with 6. We
distinguish three cases:

a. For at least one i € {1, 2}, &' contains no entry in {r}. In this case & is also
compatible with some 6’ € {b1y}U{yb1}, as long as we permit the possibility
that |(6")!] > T. The contribution of all such & to Am* p(b1b1) is therefore
upper bounded by

A P (01Y) 4 A" poo(ybr) = O (K2 /25| Apll, (102)

where the last step is by the same argument as for (101).
b. Thenextcaseis that & is a permutation of (rorg, (b1b1)*~2). The contribution
to Arit* p(b1b1) from this case is at most

(k — 1)|p1(xoro) p1(o1b1) 2 — pa(roro) pa(oibr) 2|.
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Using (76) and the definition of I' (¢, k), this is at most

02 /4 (A j(rore) + p(roro) - Ap(oibn))
= 02 /4N plllapll = OF* 120Ky A p). (103)

c. The last case is that ¢ is a permutation of (rpbi,birg, (b1b1)¥73). The
contribution to Arit* p(b1b1) from this case is at most

k2| p1(xob1) p1(b1xo) p1(o1b1) ™ — pa(robi) par(biro) pa(brbr) 3

This is at most O (k2 /4%) | Ap || by another application of (76) and the definition
of I'(c, k).

The above estimates together give
A poibr) = 0K /29[ Ap, (104)

where the main contribution comes from (102). Combining with the previous
bound (101) yields the last part of (91).

Step I1. Next we prove (92) by improving the preceding bounds in the special case that
p1 = p and py = §p. Recall p; = NB(p;); it follows that p» = §p;. Thus, for any
6 € 2 with 62 = s, we have 6 = fo, consequently p(6) = p1(fjo) = p1(6). For
6 e Q2 withé! = s, wehave 6 = (j6) @ 1, s0 pa(6) = p1(§6) = p1(6), where
the last step uses that p; = (p1)?". It follows that instead of (97) and (99) we have the
improved bound

AR Poo (vy) = A poo (lyyN\(sy} U fysh) < Y Ai*poc(ax x ay)
x,y€{0,1}

k=2
=owlapl Y. (hi(eegp+Apee) =064 —fpl.
x,y€{0,1}

Similarly, instead of (100) we would only have a contribution from ¢ belonging to
either Ag x (Bo)*™2 or A1 x (B1)¥"2, where Ay = {rog,} and By = {b1g,}. It
follows that instead of (101) and (102) we have the improved bound

At poo (B1Y) + Afit? o (yb1) = O(k*/45) | Ap .
Previously the main contribution in (104) came from (102), but now it comes instead

from (103). This gives the improved bound Am* p(b1b1) = O(k*/21H%) which
proves the first part of (92). The second part follows by applying Lemma A.7. O
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ProofongmmaA.9 We first prove (93). Assume s,¢ € {b1, £, s}, and write st
s x t € 2. Then for a lower bound we have

i pi(st) = [1 = O(k/21pi(ob) ™! =1 - 0(k/25).
for an upper bound we have

i pi(st) < pi(g) ™! +kpi(rog) pi(019) 7 4+ kpi(gro) pi(gb) 2
+ kpi(roro) pi(b1b1) 72 + k2 pi(rob1) pi (o1r0) pi (b1 b1)* 3
=14 0k?*/2.

Writing r1t = r1 x t fort € {b;, £, s}, a similar argument gives

i pi(ert) = [1— 0(k/251pi (o) 1 = [1 — 0(k/25)1- (2/2Y),
AN A
pl(

((r11) < pi(ood) ™" + kpi(ooro) pi(loob1) ™2 = [1 — 0 (k/25)] - (2/2%).
(105)

Lastly, it is easily seen that
i pi(rir1) = pi(oobo) " = [1 - 0Kk/2%)]- (2/29°.

This concludes the proof of (93), and we turn next to the proof of (94). Arguing
similarly as for (80) gives

n*pi({(EEN\[ss)) < M pi(Ex1£) + 1’ pi(££21) = O(k/45).

Next, suppose ¢ is compatible with 6 € by £>1: if & has no entry in {r}, then it is
also compatible with some 6’ € ££-, provided we allow |(6’ )!| > T. Therefore

i pi (D1 £21) — 1 Pi oo (££21)

<> [km(rofm(blgy)k—z+k2m<roby)ﬁi(blfm(blgy)k—ﬂ,
ye{0,1}

and by definition of I' (c, k) this is O (k/ 4k ). Finally,

wpi(rif=1) < Y kpi(oof)pi(bog,) > = O(k/8"Y),
yefo,1}

which proves the first part of (94). For the second part, arguing as for (87), we have
for any 7 € Q that

k
' pi(£7) — " pi(br) < (k= 1) Y [pi(ge62) — pi(roo)] [ | pi(br6;)) .
o~ Jj=3
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Note that ¢ has at most one entry in {r}. If 60 = rq, then 6; = by for all j > 3.
Since ¢g; € I'(c, k) (which means also that ¢; = (g;)®"), we have

pi(b1b)* 2 < 0(@47%) if ¢ = rg,
2 1ie2=2) ﬂ pilb10)) = {mblg)“ 0@ if¢ e \fxo).

o~
On the other hand, ¢; € T'(c, k) also implies

o) if¢=ro,

5 _ 5 —ky . 5
pi(g0¢) — pi(rol) = OQ27)pi(ol) + pi(£0) =< {0(2k) it € O\(xo).

Combining these estimates and summing over 7 € Q proves the second part of (94).0
An immediate application of (93), which will be useful in the next proof, is that
P
WD (11 022 2/29). (106)
m* pi (ox 1)
forall € {bg, b1, £, s} and all x € {0, 1}.

Proof of Lemma A.10 We divide the proof in two parts.
Step I. Non-normalized messages.

1. Firstconsider 6 € {ff}. Recalling (a+b)* < a*+b*fora,b > 0and r € [0, 1],

ApUED <2 Y Y

Felp.fp) (£}

d d
]‘[ RGOS B PG

J=2

where the 7 = fp term arises from the fact that
MY —m@EHH6) = m@EH mE* & VM (p)(J6) = i p(f6) .
Applying (77) gives
~Adn PN N d=2
APUER) = 0W) Y A r(ff)(m FL(EE) + A r(ff))
Fe{p.fp}

We have from (91) and (93) that i p1 (££) < 1and Am* p(££) = O (k3 2049k,
SO
AP (EE) = O(d)| Am* p + A fp| - pi(EE). (107)

2. Next consider 6 € {p1 £}. Let Fmax(6) = max;—; 5 7;(¢)—in this notation,

Fmax (Q) = ) | max 7:(6) = max | 7i(6) = max 7i(%)
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where the inequality may be strict. Then

Ap'(p1£) = 0(d) Z AR (1 £)[R* Finax (P2 £)1972.
€{p.fp}

Let a € arg max; 7; (b1 s), so that
0 < i Finax (P1£) = W Fa(p1£) < AMP(x1£) + AP (b1 £21) = 02710,

where the last estimate is by (91) and (94). We also have from (93) that
m* p(p1 £) = m* p(br £) =< 1, and it follows that

[ Fnax (01 )19 7% < [ F (01 £)197 1. (108)
Applying (93) and (94) again, we have (fori = 1, 2)

]d 1 ]dfl )

it 7 (o1 1971 < ™7 (01 5)

On the other hand, assuming 7 > 1, we have
PY(raf) = [ Fi (1) — b Fi(br9)]" ! = 7 (D s))Y !

where the last step follows by (106). Similarly,

Pt = ploaf) =0() Y wthmiH =02 Y At !
Fe{p,fp} re{p.ip}
= 02 “pix1E) = 027 p o1 6), (109)

where the last step follows by rearranging the terms. Combining the above gives

AP (D1 ) = 0@ AR p+ AR*pl max b1 6).  (110)

Clearly, similar bounds hold if we replace p £ with any of pg £, £pq, or £py.
3. Lastly we bound A p"(p,py) for x, y € {0, 1}. As in the single-copy recursion,
we denote

F(Xx0) =7(rx0) — 7 (bxo),
F(0Xy) =7 (6ry) — F(dby),
i'(Xny) = ’.’(rxry) - ’.’(rxby) - ’;(bxry) + ’.’(bxby)-

Applying (106) gives

PrXery) = [pi(oxoy) 1 = 0Q7)pi(ox0 )1 = 0275 pl(rery),
Pr(ReXy) = [pi(oxby) 97! = 0275 pi(xary).
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Combining the above estimates gives
pl‘u(rxry) - Ia;l(bxby) = Pl-u(ery) + ﬁ?(rxxy) - P,U(Xxxy) = O(Z_k)p?(rxry) .
Further, it follows from the BP equations that

max{p?(rxxy)a p?(bxxy)a P?(Xxl’y), p?(xxby)} =< p?(rxry) - ﬁ?(bxby),

50 pi(st) = [1+ 0Q2 7 )]pl(byby) forall s € {ry, by}, 1 € {ry, by},
(111)

Similarly, we can upper bound

A]')u(pxpy) = 4[Apu(rxry) + Apu(ery) + Af?u(rny) + AIiu(Xny)]-
<0 YD AR P (5] (112)

Fe{p,fp}s€{px.bx}
te{py»by

For 7 € {p,fp}, let a = argmax,_, , m*7; (b1b1): then, for any s € {py, by},
te {pyrby}a

0 < 1it* Frnax (s1) — max M Fi(s1) < M Pinax (s7) — ™ 7q (1)
< O() AR F({pph\{bb}) < 0 (17207,

where the last estimate is by (91). Combining with (72) and (111) gives

> I (sH] 7 = 0(1)[1,11:1%?,- (pxpy)] = O(1) max p;'(bb).

s€{px,bx}
te{pyvby}

Substituting into (112) gives
AP Bepy) < OWIAAp o+ ARl max psb) . (113)
Further, for any st € {ryXy, Xyry, XxXy}, we have

Ap"(st) = O | A p + Ari*p | max i (bb) . (114)
=1,

Lastly, in the special case py = fpy, (113) reduces to

| (bobo) — pY(boba)| < O@) | py — i p1 || pY (bb)
< K2072K) 5 — 51l . (115)

where the last estimate is by (92).
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Step II. Normalized messages. Recall §; = BP¢; . It remains to verify thatg; € T'(¢/, 1)
with ¢/ = max{0, 2k — 1}: recalling the definition of ', this means

|p(bobo) — p(bob1)| < (k°/2%) p(bb) and p(££) + p({fr, r})/2k

+ p(xrr) /4 = 027 p(bb); (1)
p(fr) = 027" p(bb) and p(rr) = O(1) p(bb); @r’)
p(ryo) > [1 — 0(27k)]p(bx('7) forallx € {0,1}and 6 € Q. 3r)

Condition (3T") is automatically satisfied due to the BP equations. The second part
of (2I) follows from (111). The first part of (1T’) holds trivially if ¢’ = 0, and
otherwise follows from (115). We claim that

gi({rf, fr, ££}) = O(Z_k)cji(bb). (116)

This immediately gives the first part of (2I'"). Further, the BP equations give g; (bf) <
gi(rf) and g; (fb) < §;(fr), so the second part of (1I) also follows. To see that
(116) holds, note that the second part of (94) gives

PrER) =0 Y IFHEDIT <0y Y [t (biby))

Felp.ip) Fe{p.fp}
plaeif) <o) Y e O <00) Y i)l
Fe(p.ip) Fe{p.fp}

Combining with (106) gives p;/'({r.f, £f}) = O(Z_k)[)?(rlrl). Recalling (111)
(and making use of symmetry) gives (116). Finally, we conclude the proof of the
lemma by bounding the difference Ag = |¢1 — g2|. Recalling the definition of X, we
have

Ag(pp) < O(1)Ag({bb, rX, Xr, XX}),
AG(2*\{pp})) < O(1)AG({bf, £b, £, £X, Xf}).

We next bound Ag(bb), which is the sum of Ag(byby) over x,y € {0, 1}. By

symmetry let us take x = y = 0. Since ¢; = (§;)*, ¢i(bobg) = %C]i (bb) +
51Gi(bobo) — i (bob1)], s0

AG(bobo) < $1g1(Bb) — G2(Bb)| + 3 D [Gi(bobo) — Gi(boby)] -
i=1,2

Since the g; are normalized to be probability measures,
1= G (@°\pp)) = Gi (PP) = 2Gi (rX) + 2 (Xr) — 3; (XX) + 4G (D),
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from which it follows that
1G1(bb) — G2(bb)| < 141 (2°\{pp)) — §2(2*\fEP)| + AG({rX, Xr, XX}) .
Combining the above estimates gives
1AGI S AG@) + Y 1Gi(bobo) — Gi(bob1)|, 2= {bf, £b, £, £X, Xf, rX, Xr, XX} .
i=1,2

Write Z; = [ pll. Taking @ € {1,2} and b = 2 — a, we find |AG|| < e1 + eze3 + e4
with

AP (D) |Z1 — Za]
€)= —

e = ——,

Zy Za

Ap" (A
5” .pll’ ESprh()’

Za Zh

" (bobo) — p¥(bob

04 = Z |p;' (oo o)' D; (bo 1)|.

i=1,2 Zi

It follows from (107), (110), (114) and (116), and taking a = arg max; p;'(bb), that

er S Il Am*p + Am*fpli(d/2") m max Y(bb)/Za S kAWM P+ AP

Further, recalling (113) gives
ey S k2X | A p+ At ip .
Combining (109), (111), and (116) gives ez = 0Q75. Finally, (115) gives
es S k2M i pi — i 5pil

Combining the pieces together finishes the proof. O

Appendix B: The 1RSB free energy
B.1. Equivalence of recursions

In this section, we relate the coloring recursion (64) to the distributional recursion
(10), and prove the following:

Proposition B.1 Let g be the fixed point given by Proposition 5.5a for parameters
A€ [0,1land T = oo. Let H), = (H,\, H;L, H;L) € A be the associated triple of mea-
sures defined by Proposition 3.4. We then have the identity (s(H,), X (H,), F (H))) =
(53, Z(s2), FA)).
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In the course of the proof, we will obtain Proposition 1.2 as a corollary. Throughout
the section we take T = oo unless explicitly indicated otherwise. We begin with
some notations. Recall that £2(X) is the space of probability measures on X. Given
§ € P (), we define two associated measures 7§, (1 — ri)*¢ on Q by

(*§)(6) = m(6)*¢(&), (1 —m)*¢) (&) =1 —m@)*§©6),

We let 7 = 77 (g) be the probability measure on M \{x} given by

) = {[1 —G@I74@) it e A0, 1.%),
[1 =41 '4(by) if t =x €{0,1}.
Recall from §A.1 the mappings m : Q— [0, 1] and 1 : Q— [0, 1]. We then denote
the pushforward measure &t = 1i(§) = 7 o m~", so that it belongs to the space P
of discrete probability measures on [0, 1]. Analogously, given § € £2(£2), we define
two associated measures i*§, (1 — 1i)*§ on . We let # = 7 (§) be the probability
measure on .4 \{x} given by

7(T)

[1—GM®]'4@#) ifte.A\[0,1,x),
[1-g®]114(xy) ifT=xe€{0,1},

and we then denote & = ii(§) = 7 om ™!, so that i € 2 also. The next two lemmas
follow straightforwardly from the above definitions, and we omit their proofs:

LemmaB.2 Suppose § € P () satisfies § = ¢* and
it q(£) = 4(r1) — ¢(b1) = §(ro) = 4(bo) = (1 —m)*4(£) ~ (117)
Then § = Bpg € P (Q) must satisfy § = §° and
m*q(£) = §(b1) = G(bo) = (1 —M)*4(£), (118)

Let 2 = (NBG)/(BPq) be the normalizing constant. Then it = 1(¢) and ii = 1(q)

satisfy
z(1=4(»)
(1 =gkt

Lemma B.3 Suppose § € P (Q) satisfies § = G and (118). Then § = BP§ € P ()
must satisfy ¢ = g and (117). Let 7 = (NBj)/(BP§) be the normalizing constant:
then

z(1 —4()
(I =gm)d-1

Proof of Proposition 1.2 This is simply a rephrasing of the proof of Proposition 5.5a,
using Lemma B.2 and Lemma B.3. O

i =), %)= (119)

=20, Z@0) =

(120)
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We next prove Proposition B.1. In the remainder of this section, fix A € [0, 1] and
T = oo. Let g = ¢, be the fixed point of BP = BP, o given by Proposition 5.5a. Let
G = g denote the image of ¢ under the mapping BP = BP;_... Denote the associated
normalizing constants

Z=12, = (NBg)/(BPg), %=z, = NB)/(BP]).

Let H, = (H,, I-}A, H,) be the triple of associated measures defined as in Propo-
sitipn 34, WAith norma_lizing constants (3, 32, 31). Recall from (12) that F(A) =
In3; + aln 3, — dIn 3;. We now show that it coincides with F(H,):

Lemma B.4 Under the above notations, F(H,) = In}; + aInj) — dInj;, and
ok
(1 — g ()

3 3
P A=) =)’

Consequently §(A) = F(H,).

5 3
2= J

=0 BT
(121

F:roof It foAllows from the definition (43) (and recalling from Corollary 2.18 that
®(0)* = F(0)*0(0)) that

F(Hy) = (In(d*/H), Hy) + a(n(®/Hy), Hy) +d(In(®"Hy). Hy).
Substituting in Definition 5.6 and rearranging gives
F(H;) — (m;;x talni, — dlngk)
d k .
= (D@6, Bi) o Yo, i) + diInlds(@)dn @), H).
i=1 i=1

This equals zero since H, € A. The proof of (121) is straightforward from the pre-
ceding definitions, and is omitted. O

Proof of Proposition B.1 By similar calculations as above, it is straightforward to verify
that s, = s(H,). Since by definition §(A) = As) + X(s,) and F(H)) = As(H,) +
Y (H,), it follows that X (s;) = X (H,), concluding the proof. O

Proof of Proposition 3.13 Immediate consequence of Proposition B.1 together with
Proposition 5.5b. O

B.2. Large-k asymptotics
We now evaluate the large-k asymptotics of the free energy, beginning with (12). Let 1,

be the probability measure on [0, 1] given by Proposition 1.2, and write 1) = %, (11,.).
In what follows it will be useful to denote f1; (£) = 1, ((0, 1)), as well as

v = / P x € (0, D} dx), = / V1 € 0. D\ AL (dy).
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Proposition B.5 Fork > ko, ajpg < o = K71 —¢)In2 < aupg, and A € [0, 1],

N3, =m2—(1—-2"12%4fdmn (24[“(%) + ) + p;L> terr, (122)

—dIn3 = ~dn (27 () + 4D + p2) = kIn2)[—fx () + 2] + e,
(123)

aln3 =aln(l —2/2%) + (kIn2)(— . (£) + 24 + err, (124)
where err denotes any error bounded by kO /4% Altogether this yields
FO) =) — (1 —-2"YH2kterr=[Q2c— 12— (1—=2""H12" +err.

On the other hand \s) = A(In 2)2)‘_1/2]‘ + err.

Proof of Proposition 1.4b Apply Proposition B.5: setting F(X) = As; gives

1 1-2>11—=xIn2
Ot)h=(2k71—0)»)1n2+6|'l’, C)LZE-I— ( n2)

2In2
Substituting the special values A = 1 and A = 0 gives
Ceond =C1 =1, €t =co = ! + L,
2 4In2
verifying (1) and (16). O

Proof of Proposition B.5 Throughout the proof we abbreviate €, for a small error term
which may change from one occurrence to the next, but is bounded throughout by
k€ 2K for a sufficiently large absolute constant C. Note that

1—x 1—A

R 2 N N 2 .
) =1-2-"+ea, L) =m0 =" +ea w0 D\z) =«

from which it follows that p, = €. Meanwhile, ¥, < 1, (f), and we will show below

that
A—1

i (f) = T + €k . (125)
[m}

Estimate of 3;. Recall from the definition (11) that

_ d d i d
A= / (Hyi +]Ja _yi)> [Tan@y.
i=1 i=1 i=1
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Let 3 1 (£) denote the contribution to 3, from free variables, meaning y; € (0, 1) for
all i. This can be decomposed further into the contributiop 35 (£1) from isolated free
variables (meaning y; = 1/2 for all /) and the remainder 3, (£>2). We then calculate

5 =2 (2 md)’

This dominates the contribution from non-isolated free variables:

d

. d J d—j
SuE =) (])( [riveo. 1)\{%}%(@)) e ud)
j=1
d .
= 0. (0, VD (270 (D))" = 3u(EpkOD /2
Next let 35 (1) denote the contribution from variables frozen to 1:
. i d N ) d
5.0 = ([P inan) = ([ 510 € 0. Dian)

d .
= (27 ) + ) + o) =27 ED + e

The ratio of free to frozen variables is given by

5 x 0, (L d r—1
W) 2 ( .(3) ) +€k—2

—| = — = ——— + €.
5. (3 + 2% 2, (1) 2k

23,(1) 2

Combining these yields (122). The proof of (125) is very similar.
Estimate of 3;. Recall from the definition (11) that

5= [ (4 =00 =) @i @).
The contribution to 3 from x = 0 or x = 1 is given by
3 =1 = (270 Q) + ) + ) = 31 =0).
The contribution from x € (0, 1) and y = 1/2 is given by
3ax €0, 1),y =1/2) = 1, ()27 a(5) -
Lastly, the contribution from x € (0, 1) and y = 1 is given by

3(x e, D, y=1 =)y,
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and there is an equal contribution from the case x € (0, 1) and y = 0. The contribution
from the case that both x, y € (0, 1) is < k2D /8. Combining these estimates gives

din3; = din (27 .(3) + 2. (D) + 2i.(Dp, + 2DV + &

A= (£) +2m]) e
274 ()

—dIn (2*[“(%) A+ pA) +dn (1 n

Recalling /i, = Zju;. gives

A= (£) + 23]
274 ()

a1+ ) = O (= () + 29 + e,

and (123) follows.
Estimate of 3;. Recall from the definition (11) that

k k k
3= f (1 -T]x-]]a —m) [ ]
i=1 i=1

i=1
Writing 11, (0, £) = 11, ([0, 1)), the contribution to 3 from separating clauses is
1 =20, £) + i (B = 1= @/2 (1 + kpun (£)) + KOV /8.

The contribution from clauses which are forcing to some variable that is not forced
by any other clause is 2k /1, (0)¥~ .. The contribution from all other clause types is
< k9 8k and (124) follows.

Estimate of s).. Recall from (13) the definition of s, . By similar considerations as above,
it is straightforward to check that the total contribution from frozen variables, edges
incident to frozen variables, and separating or forcing clauses is zero. The dominant
term is the contribution of isolated free variables, and the estimate follows. O

B.3. Properties of the complexity function

We conclude with a few basic properties of the complexity function X (s), including
a proof of Proposition 1.4a.

LemmaB.6 Forfixed 1 < T < oo, the fixed point ¢, r of Proposition 5.5a is contin-
uously differentiable as a function of A € [0, 1].

Proof Fix T < ooanddefine fr[g, 2] = BP, r[¢]—¢ as the mapping from P (1) %
[0, 1] to the set of signed measures on Q7. Since function z(¢) (2(5), respectively)
can take only finitely many values on 27 (Qr, respectively) and therefore must be
uniformly bounded away from 0. It is straightforward to check that for any A € [0, 1],

Jrlg(x, T), 21(6) =0, Vo € Qr,
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and is uniformly differentiable in a neighborhood of {(¢.(x, T'), A) : A € [0, 1]}.
For any other ¢ in the contraction region (68), Proposition A.1 guarantees that

I frig, A1 = frigeG, T, Al = 11 — e || — IIBPA 7[¢] — BP; 7[ga (A, TH1I
> (1— 0K 27NNg — .0, T

Therefore the Jacobian matrix

( d fr(07) )

9g(c;) /ax@

is invertible at each (g.(x, T'), 1). By implicit function theorem, g,(x, T'), as the
solution of fr[q, A] = 0, is uniformly differentiable in X. O

Let us first fix T < oo and consider the clusters encoded by T-colorings. We have
explicitly defined X(H) and s(H). Let 8(s) = sup{X(H) : s(H) = s}, with the
convention that a supremum over an empty set is —oo. Thus 8(s) is a well-defined
function which captures the spirit of the function ¥ (s) discussed in the introduction.
(Note 8 implicitly depends on T since the maximum is taken over empirical measures
H which are supported on T-colorings.) Recall that the physics approach ([31] and
refs. therein) takes S (s) as a conceptual starting point. However, for purposes of explicit
calculation the actual starting point is the Legendre dual

FO) = (—=8)* () = sup {As + S(S)} — sup F; (H),
seR H

where F (H) = As(H) + X (H). The replica symmetry breaking heuristic gives an
explicit conjecture for §. One then makes the assumption that 8(s) is concave in s:
this means it is the same as

R(s) = =F"(s) = =(=8)"(s),

so if § is concave then it can be recovered from §.

We do not have a proof that S(s) is concave for all s, but we will argue that this
holds on the interval of s corresponding to A € [0, 1]. Formally, for 1 € [0, 1], we
proved that F, (H) has a unique maximizer H, = H,. This implies that there is a
unique s, which maximizes As + 8(s), given by

Sy = S(H)L) .

Recall that H, and s; both depend implicitly on 7. We also have from Lemma B.6 that
for any fixed T < 00, s, is continuous in A, so it maps A € [0, 1] onto some compact
interval J = [s_, s+ ]. Define the modified function

S8(s) ifsed,
—oo otherwise.

g(s) =
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LemmaB.7 Foralls € R, 8(s) = —(—8)**(s). Consequently the function S is con-
cave, and s, _is nondecreasing in \.

Proof The function —8(s) has Legendre dual

F(W) = sup [As —i—g(s)] = sup {As + S(s)} <FO).

seR sed

For A € [0, 1] it is clear that §(A) = §(A). It is straightforward to check thatif A < 0
then

F(A) < max As + max 8(s) = ASmin + S(s0),
sed sed
so if § < Smin then

(=9 (5) = @) = sup {25 = 1)} = sup {35 = smin) = S(0)| = +oc.
A<0 A<0

A symmetric argument shows that (—8)**(s) = 400 also for s > smax. If s € J, we
must have s = s for some A, € [0, 1], and so

(=8)™(5) = hos — F(ho) = =8(s).
This proves (—g)**(s) > —g(s) for all s € R_ On the othgr hand, it holds for any
function f that f** < f, so we conclude (—=8)**(s) = —3(s) for all s € R. This
implies that § is concave, concluding the proof. O
Proof of Proposition 1.4a We can obtain  (s) as the limit of S(s) in the limit 7 — oo.
It follows from Lemma B.7 together with Proposition 5.5b that it is strictly decreasing
in s. O

Appendix C: Constrained entropy maximization

In this section we review basic calculations for entropy maximization problems under
affine constraints.

C.1. Constraints and continuity
We will optimize a functional over nonnegative measures v on a finite space X (with

|X| = s), subject to some affine constraints Mv = b. We begin by discussing basic
continuity properties. Denote

H(b) = {v >0} N {Mv =b} CR".
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Let A = {v > 0} N {(1, v) = 1}, and let B denote the space of b € R" for which
@ #H(b) C A.

Then B is contained in the image of A under M, so B is a compact subset of R".

Proposition C.1 If F is any continuous function on A and

F() = max{F () : v € H(b)}, (126)
then F is (uniformly) continuous over b € B.

Proposition C.1 is a straightforward consequence of the following two lemmas.
Lemma C.2 For b € B and any vector u in the unit sphere S' !, let
db,uy=inf{t >0:b+1tu ¢ B}.
There exists 5 = §(b) > 0 such that
db,u) e {0}U[5,00) forallbe B.

Proof B is a polytope, so it can be expressed as the intersection of finitely many closed

half-spaces Hy, ..., Hy, where H; = {x € R" : (a;, x) < ¢;}. Consequently there is
at least one index 1 < i < k such that

db,uy=inf{t >0:b+1tu ¢ H;}.
It follows that {(a;, u) > 0 and

d(b.u) = ¢i — (aj, b) _ G~ (ai, b) — d(b. 9 H))

(ai,u) = ail

where d(b, dH;) is the distance between b and the boundary of H;. In particular,
d(b,u) > Oifandonlyif (a;, b) < c¢;, whichinturnholdsif andonlyifd(b, d H;) > 0.
It follows that for all u € S"~! we have d (b, u) € {0} U [8, 00) with

8 = 8(b) = min{d(b, 0H;) : d(b, 0H;) > 0};

4 is a minimum over finitely many positive numbers so it is also positive. O

Lemma C.3 The set-valued function H is continuous on B with respect to the Hausdorff
metric dg, that is to say, if by, € B with lim,,_, o by, = b then

Jim dyc(H(by), H(b)) = 0.
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Proof Recall that the Hausdorff distance between two subsets X and Y of a metric
space is

dyc(X,Y)=inf{fe >0: X CYand Y C X},

where X€, Y€ are the e-thickenings of X and Y. Any sequence v, € H(b,) converges
along subsequences to limits v € H(), so for all € > 0 there exists n¢(¢) large enough
that

H(by) < (HD)C, n = no(e).

In the other direction, we now argue that if v € H(b) and b’ = b + tu foru € sr-1
and ¢ a small positive number, then we can find v/ € H(d’) which is close to v. For
u e S letd(b, u) be as in Lemma C.2, and take v(b, u) to be any fixed element of
H(b + d (b, u)u) (which by definition is nonempty). Since we consider b’ = b + tu
for t+ > 0, we can assume that d(b, u) is positive, hence > §(b) by Lemma C.2. We
can express b’ = b + tu as the convex combination

t b —b| b — bl
J— < .

bi=(U=ebtelb+dbuwul, €=7—05="10"505="7

Then v/ = (1 — €)v + €v(b, u) € H('), so

. _h
< (diam A)|b — b/|

V' —v| =€, u)—v| 5

This implies H(b) C (H (b,))¢ for large enough n, and the result follows. O

Proof of Proposition C.1 Take v € H(b) so that F(b) = F(v).If ¥’ = b+ tu € B
for some u € S'~!, then Lemma C.3 implies that we can find v/ € H(b') with
v/ — v| = o(1), where o,(1) indicates a function tending to zero in the limit ¢ | 0,
uniformly over u € S"~!. It follows that F(v) = F(v') + 0,(1), since F is uniformly
continuous on A by the Heine—Cantor theorem. Therefore

F(b)=F() = F(V) +0,(1) < F(b)) + 0,(1).

By the same argument F (b") < F(b) + o,(1), concluding the proof. O

When solving (126) for a fixed value of b € B, it will be convenient to make the
following reduction:

Remark C.4 Suppose M is an r x s matrix where s = |X|. We can assume without
loss that M has full rank r, since otherwise we can eliminate redundant constraints.
We consider only b € B, meaning & # H(b) € A. The affine space {Mv = b} has
dimension s — r; we assume this is positive since otherwise H(b) would be a single
point. Then, if H(b) does not contain an interior point of {v > 0}, it must be that

Xo={xeX:Ive{v=0N{Mv = b}sothatv(x) > 0}
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isanonempty subset of X. In this case, itis equivalent to solve the optimization problem
over measures v, on the reduced alphabet X,, subject to constraints M'v, = b where
M’ is the submatrix of M formed by the columns indexed by X,,. Then, by construction,
the space

H,(b) = {vo = 0} N {M'v, = b}

contains an interior point of {v, > 0}. The matrix M’ is r x s, where s, = |X,|;
and if M’ is not of rank r then we can again remove redundant constraints, replacing
M’ with an r, x s, submatrix M, which has full rank r,. We emphasize that the final
matrix M, depends on b. In conclusion, when solving (126) for a fixed b € B, we may
assume with no essential loss of generality that the original matrix M is » x s with full
rank r, and that H(b) = {v > 0} N {Mv = b} contains an interior point of {v > 0}. It
follows that this space has dimension s — r > 0, and its boundary is contained in the
boundary of {v > 0}.

C.2. Entropy maximization

We now restrict (126) to the case of functionals F which are concave on the domain
{v > 0}. It is straightforward to verify from definitions that the optimal value F(b) is
(weakly) concave in b. Recall that the convex conjugate of a function f on domain C
is the function f* defined by

Jr() = sup{(x*, x) — f(x) :x € C}.
Denote G(y) = (—F)*(M'y), and consider the Lagrangian functional
L(y:b) =sup{F(v) + (y,Mv —b) :v =0} = —(y,b) + G(y) .
It holds for any y € R" that L(y; b) > F(b), so
F(b) <inf{L(y; D) :y e R"} = -G*(b). (127)
Now assume 1 is a positive function on X, and consider (126) for the special case

Y (x)
Fv)=HW) + (v,Iny) = Z v(x)In ot (128)

xeX

We remark that the supremum in (—J0)*(v*) = sup{(v*,v) + H(() : v > 0} is
uniquely attained by the measure v°P(x) = exp{—1 + v*(x)}, yielding

(=30 (") = (PEY), 1) =Y expl—1 +v* (1)}
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This gives the explicit expression

Gy)=(—F)M'y)=(-3H)*(Iny + M'y) = ZI/I(X)CXP{—l + (M'y)(x)}.
) (129)

Lemma C.5 Assume  is a strictly positive function on a set X of size s and that M is
r X s with rank r. Then the function G(y) of (129) is strictly convex in y.

Proof Letv = v(y) denote the measure on X defined by

v(x) = Y (x)exp{—1+ (M'y)x)},
and write (f(x)), = (f, v). The Hessian matrix H = Hess G(y) has entries

_92L(y; b)

H; ;= by, = Z VO M; M = (Mi xMj x)y .

xeX

Let M, denote the vector-valued function (M; ,);<,, SO
o' Ha = ((a'M,)?), .

This is zero if and only if v({x € X : o' M, = 0}) = 1. Since v is a positive measure,
this can only happen if o' M, = 0 for all x € X, but this contradicts the assumption
that M has rank r. This proves that H is positive-definite, so G 1is strictly convex in

V. O

Proposition C.6 Letb € B suchthatH(b) = {v > 0}N{Mv = b} contains an interior
point of {v > 0}, and consider the optimization problem (126) for F as in (128). For
this problem, the inequality (127) becomes an equality,

F(b) = inf{L(y;b) 1y e R} = —G*(b).

Further, L(y; b) is strictly convex in y, and its infimum is achieved by a unique
y = y(b). The optimum value of (126) is uniquely attained by the measure v = v°P (b)
defined by

v(x) = Y (x)exp{—1+ (M'y)(x)}. (130)

Forany u € H(b), F(v)—F (i) = Dy (lv) 2 |lv — % Finally, in a neighborhood
of b in B, y'(b) is defined and F (b) is strictly concave in b.

Proof Under the assumptions, the boundary of the set H(b) is contained in the bound-
ary of {v > 0}. The entropy H has unbounded gradient at this boundary, so for F as
in (128), the optimization problem (126) must be solved by a strictly positive measure
v > 0. Since v > 0, we can differentiate in the direction of any vector § with Mé = 0
to find

=8, —1—Inv+Iny).

0= i[f]-f(v +1t8) + (Inyr, v+ t8)j|
dt =0
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Recalling Remark C.4, we assume without loss that M is r x s with rank r, since
otherwise we can eliminate redundant constraints. Then, since M§ = 0, for any
y € R” we have

0=(8,¢) wheree=—1—Inv+Iny+My.
We can then solve for y so that Me = 0:?
y=MM) 'Mnv—Iny +1).
Setting § = € in the above gives 0 = || |2, therefore we must have € = 0. This proves

the existence of ¥ = y(b) € R” such that (126) is optimized by v = v°P(b), as given
by (130). The optimal value of (126) is then

F(b) = (1,vP (b)) — (M"y (b), vP (b))

=ZW(X)CXP{—1 + (M'y)(x)} — (v.b) = L(y (D), b).
x y=y(b)

In view of (127), this proves that in fact
—G*(b) = inf{L(y,b) : y e R} =min{L(y,b) : y e R"} = L(y(b),b) = F(b)

as claimed. Now recall from Lemma C.5 that G(y) is strictly convex, which implies
that L(y; b) is strictly convex in y. Thus y = y (b) is the unique stationary point of
Ly b).

These conclusions are valid under the assumption that H(b) contains an interior
point of {v > 0}, which is valid in a neighborhood of » in B. Throughout this neighbor-
hood, y (b) is defined by the stationarity condition b = G’(y). Differentiating again
with respect to y gives

b'(y) =HessG(y), y'(b) = [HessG(y(b)] ™. (131)
We also find (in this neighborhood) that
F'(b) = —y(b), F'(b)=—y'(b) = —[HessG(y ()],
so F is strictly concave. It remains to prove that F(v) — F(u) = Dy (u|v). (The

estimate D, (u|v) > |l — v||* is well known and straightforward to verify.) For any
measure [,

Dy (1|v) = FH (W) + (1, In(Y exp{—=1+ M'y})).

2 The matrix M M is invertible: if MM'x = 0 then M'x € ker M = (im M")L. On the other hand clearly
M'x € imM!, so M'x € (imM") N (im M)+ = {0}. Therefore x € ker M!, but M' is injective by
assumption.
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Applying this with & = v gives
0 = =Dy (v[v) = H®) + (v, In(Y exp{—1 + M'y}).
Subtracting these two equations gives
Dy (1lv) = H(p) = HW) + (1 — v, Iny) + (u — v, In(exp{—1 + M'y})) .

If Mv = Mv = b then the last term vanishes, giving —Dy, (u|v) = F(u) — F(v).O

Remark C.7 Our main application of Proposition C.6 is for the depth-one tree D of
Fig. 6. In the notation of the current section, X is the space of valid T -colorings o of
D, and ¥ : X — (0, 00) is defined by

A
Y(0) =wp() = {cb@,g,,) I [<i><oav><i><géa>]} :

acdv

We then wish to solve the optimization problem (126) for F(v) as in (128), under the
constraint that v has marginals h(6) on the boundary edges §D. This can be expressed
as Mv = h where M has rows indexed by the spins & € 2, columns indexed by valid
T-colorings n = N4 of D: the (¢, n) entry of M is given by

M6, n) =16DI7" Y 1. =6}
ecdD

Recall Remark C.4,let @, = {6 € Q: h"(6) > 0),and X, = {n € X : M(6., 1) =
0Ve ¢ Q). Let M, be the 4 x X, submatrix of M, and set §(&) = 0 for all
6 ¢ Q. Next, in the matrix M., if the 7) row is a linear combination of other rows,
then set g () = 1 and remove this row. Repeat until we arrive at an Q. x X, matrix
M, of full rank r, = |§20|. The original problem reduces to an optimization over
{vo > 0} N {M,v, = b,} where b, denotes the entries of b indexed by Qc. It follows
from Proposition C.6 that the unique maximizer of (126) is the measure v = v°P(b)
given by

1 1. . . A
v(o) = EW@(Q)A = E{CD(Q,SU) I1 [<I>(0av)<1>(g<;,,)]} [] deo-

acov eesD

Note however that if M is not of full rank then ¢ need not be unique.

Appendix D: Pairs of intermediate or large overlap

In this section we prove Proposition 3.7, which states that the firstmomentof Z = Z; 7
is dominated by separable colorings provided 0 < A < 1.
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D.1. Intermediate overlap

We first show that configurations with “intermediate” overlap are negligible. This
can be done with quite crude estimates, working with NAE- SAT solutions rather than
colorings.

Lemma D.1 Consider random regular NAE- SAT at clause density o > 2K=11n2 —
o).0on¥ = (V,F,E, L), let Zz[p] count the number of pairs x, x € {0, 11V of
valid NAE- SAT solutions which agree on p fraction of variables. Then

EZ%(p] = BZ)exp {n[ H(p) — (n2)w(p) + 0172},

Jorm(p) =1—pk—(1—phk
Proof For u € {0,1}V, let IN*E(u; %) be the indicator that u is a valid NAE- SAT

solution on ¢. Fix any pair of vectors x, ¥ € {0, 1}" which agree on p fraction of
variables:

EZ*[p] = 2" (nnp>E[1NAE(L DIN (& 9] = (EZ) (nnp)E[INAE(i; DI 9) = 11.

Given x, X, let M = M(x, X) count the number of clauses a € F where
l{e € da C Xy(e) = )év(e)}l ¢ {0, k}.
In each of these clauses, there are 2€ — 2 literal assignments L, which are valid for

x. Out of these, exactly 2% — 4 are valid also for X. If we define i.i.d. binomial random
variables D, ~ Bin(k, p), indexed by a € F, then

P(M = my) = P( > UDa ¢ {0.k})

acF

ZDa = mkp> .

acF

The (Dg)qer sum to mkp with probability which is polynomial in n, so
P(M =my) < nO“)]P’(Bin(m, T) =my)

with 7 = 7 (p) as in the statement of the lemma. Therefore

k4N X
[N (s %UNAE@;%)=1]sn0“>E[(§k j) ]

for X ~ Bin(m, p). It is easily seen that the above is < exp{—mz/2¥~1}, and the
claimed bound follows, using the lower bound on & = m/n. O
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Corollary D.2 Let v (p) = H(p) — (In2)m(p). Then v (p) < —2k/2F for all p in
[exp{—k/(Ink)}, 3(1 — k/2HTU L1 + k/25%), 1 — exp{—k/(Ink)}].

Assuming « = m/n > 25"11In2 — 0(1), EZ?[p] < exp{—nk/Zk}for all such p.
Proof Note that H(%) <In2-— 62/2. If (k lnk)/2k <€ < 1/k, then

Y(E€) < —€2/2 + O(ke/2%) < —€2/3.

Both H (1%) and n(%) are symmetric about € = 0, and decreasing on the interval
0 <€ < 1.Itfollows that forany 0 <a < b < 1,

Jmax ¥(15%) < H(5) = (n2)m (52).

With this in mind, if 1/k < e <1 —5(Ink)/k,
Y5 < —@H T+ 0 < —@kAH)
If1 —5(Ink)/k <e <1—(Ink)>/k?,
Y9 < 0 kb)?/k = Q((Ink)*/k < =D (Ink)* k.
Finally, if 1 — (Ink)3/k? < € < 1 — exp{—2k/(Ink)}, then
Y (H€) < 0(Dek/(nk) — Q(Dek < —Q(Dek.
Combining these estimates proves the claimed bound on ¥/ (p). The assertion for

E[Z%(p)] then follows by substituting into Lemma D.1, and noting that EZ <
exp{0(n/25}. o

D.2. Large overlap

In what follows, we restrict consideration to a small neighborhood N of H,. We
abbreviate 0 € H if H(G,0) = H,and o € N if H(G, o) € N. Recall that we write
o’ = o if the number of free variables in x(¢’) upper bounds the number in x(c’). We
also write H' %= H if o/ %= o forany (all) o0 € H and o’ € H'. Let Z,s(H, H') count
the colorings o € H such that

o' € B sep(ee, o) < exp{—k/n )} | = 1,

for w(n) = exp{(In n)*}. (Although we will not write it explicitly, it should be under-
stood that Z,,s(H, H') depends on ¢, since both o, o’ are required to be valid colorings
of 4.) Let Z,s(N) denote the sum of Z,(H; H') over all pairs H, H € N with
H’ = H.Let Z(N) denote the sum of Z(H) over all H € N.
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Proposition D.3 There exists a small enough positive constant €max (k) such that, if N
is the e-neighborhood of H, for any € < €max, then

EZ,s(N) < EZ(N) exp{—(Inn)?}.

Proof By definition,

Zos(N) = Y Zo(H), Zo(H)= ) WH' = HYZy(H, H').
HeN H’eN

It suffices to show that for every H € N, EZ._(H) < EZ(H) exp{—2(In n)z}. Note

that the total number of empirical measures H' is at most n¢ for some constant c(k, T').
Let E denote the set of pairs (¢, o) for which

o' eN: o’ = o and sep(a, o) < exp(—k/nk) || = 1)
(Again, it is understood that both o, ¢’ must be valid colorings of ¢.) Then

Zo(H)<n® ) 1{(¥,0) € E).
oeH

Consequently, in order to show the required bound on EZ . (H), it suffices to show
PH(E) < n¢ exp{—2(Inn)?}, (132)
where P¥ is a “planted”” measure on pairs (¢, o): to sample from P | we start with a

set V of n isolated variables each with d incident half-edges, and a set F of m isolated
clauses each with k incident half-edges. Assign colorings of the half-edges,

o5 = (0sy,0s5p) Where asy = (045, vev, 055 = (Ts,)acFs

which are uniformly random subject to the empirical measure H. Then o is the
“planted” coloring: conditioned on it, we sample uniformly at random a graph ¢ such
that o5 becomes a valid coloring o on ¢. The resulting pair (¢, o) is a sample from
PH.

Suppose (¢, o) € E. The total number of configurations o’ with sep(ce, &¢’) < is
at most (cn)™, which is <« wn)if§ < n~1(Inn)2. This implies that there must exist
o’ € Nsuch that ¢’ = o and

n~'(Inn)* < sep(ce, @) < exp{—k/(Ink)}.
It follows that
S={veV:x, (o) € {0,1}and x,(c') # x,(0)}
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has size |S| = ns for s € [(2n)"'(Inn)?, exp{—k/(Ink)}]. The set S is internally
forcedino: forevery v € S, any clause forcing to v must have another edge connecting
to S. Formally, let Ry (resp. By) count the number of {r}-colored (resp. {b}-colored)
edges incident to a subset of vertices U. Let I be the indicator that all variables in S
are forced. For any fixed S C V,

(BS)RS

P (S internally forced) < Epu [IskRS
(BF)RS

] < EPH[15(4/<S)RS] .

In the first inequality, the factor k&S accounts for the choice, for each S-incident {r}-
colored edge e, of another edge ¢’ sharing the same clause. The factor (Bs)rs/(BF)rg
then accounts for the chance that the chosen edge ¢’ (which must have color in {b})
will also be S-incident. The second inequality follows by noting that we certainly have
Bs < nsd, and for H near H, we also clearly have Br > nd /4.

To bound the above, we can work with a slightly different measure Q: instead
of sampling o 5 subject to H, we can simply sample variable-incident colorings o5,
ii.d. from H , and clause-incident colorings o, i.i.d. from H. On the event MARG
that the resulting o5 has empirical measure H, we sample the graph ¢ according to
PH (¢|0s), and otherwise we set 4 = @. Then, since QY (MARG) > n~° (adjusting
¢ as needed), we have

PH (%, 0)) = Q7 (¥, o) IMARG) < n° Q" ((¥, ); MARG) .

Let us abbreviate H (£) for the probability under H that o has £ entries in {r}: then

Epn[Ls(4ks)®S] < n Equ[Is(4ks)®S; MARG] < n° (ZB(‘)@ks)‘) . (133)
—

For H sufficiently close to H,, we will have

Gu(r1) Gu(01)47*

[é*(rl) + é*(bl)]d - qA*(bl)d .

(O < 20,0 < 2(?)

It follows that the right-hand side of (133) is (for some absolute constant &)

< nCs™ 278kns :

< ns<[f?*<r1> - 4ks + G (01)1 —cL(bl)d)'“‘
<n‘2 - A -
[G2(x1) + gu(bD)]? — gu(b1)

where the last inequality uses that s < exp{—k/(Ink)}. Summing over S gives

PP(E) < max  n27%/2 < exp(—Q(1)k(Inn)?}.

s>2n)~(Inn)?
This implies (132); and the claimed result follows as previously explained. O

Proof of Proposition3.7 Follows by combining Corollary D.2 and Proposition D.3. O
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Appendix E: Free energy upper bound

For a family of spin systems that includes NAE- SAT, an interpolative calculation gives
an upper bound for the free energy on Erd6és-Rényi graphs ([26,43], cf. [30]). These
bounds build on earlier work [29] concerning the subadditivity of the free energy
in the Sherrington—Kirkpatrick model, which was later generalized to a broad class
of models [4,5,12,27]. (Although these results are closely related, we remark that
interpolation gives quantitative bounds whereas subadditivity does not.) To prove the
upper bound in Theorem 1, we establish the analogue of [26,43] for random regular
graphs. Although the main concern of this paper is the NAE- SAT model, we give the
bound for a more general class of models, which may be of independent interest.

E.1. Basic interpolation bound

Recall § = (V, F, E) denotes a (d, k)-regular bipartite graph (without edge literals).
We consider measures defined on vectors x € X" where X is some fixed alphabet of
finite size. Fix also a finite index set S. Suppose we have (random) vectors b € RS and
f € F(X)5, where F(X) denotes the space of functions X — R>¢. Independently of

b, let f1,..., fr bei.i.d. copies of f, and define the random function
k
0(x) =Y by [] feixp- (134)
ses  j=1

Let i be another (random) element of F(X). Assume there is a constant € > 0 so that

—_

€ <{h,1 —0} < — almost surely. (135)

m

Note we do not require the b to be nonnegative; however, we assume that

b7(9) = B[ [Tty |20 forany p= Ls=(s1..o5,) €87 (136)
=1

Let ¢ denote the graph G labelled by a vector ((hy)yev, (64)acr) of independent
functions, where the &, are i.i.d. copies of & and the 0, are i.i.d. copies of 6. Fora € F
we abbreviate x5, = (Xy(e))eecsa € X*, and we consider the (random) Gibbs measure

1
g (x) = 7D 11 By (x) E[l — 04 (x5,)] (137)

where Z (%) is the normalizing constant. Now let ¢ be the random (d, k)-regular graph
on n variables, together with the random function labels. We write [E,, for expectation
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over the law of ¢, and define the (logarithmic) free energy of the model to be

F,=-E,InZ(%).

S|

Example E.1 (positive temperature NAE- SAT) Let X = {0, 1}, and let L = (L;);<x
be a sequence of i.i.d. Bernoulli(1/2) random variables. The positive-temperature
NAE- SAT model corresponds to taking 2 = 1 and

k
f(x) = (1 _eﬂ)<1—[ L1 & x; +H1@Lz€9xl>

i=1 i=1

where 8 € (0, 00) is the inverse temperature. In this model, each violated clause incurs
a multiplicative penalty e ~#.

Example E.2 (positive-temperature coloring) Let X = [g]. The positive-temperature
coloring model (i.e., anti-ferromagnetic Potts model) on a k-uniform hypergraph cor-
responds to & = 1 and

q
0D =0-eP)) Hxy = =x =5}

s=1

where § € (0, co) is the inverse temperature. In this model, each monochromatic
(hyper)edge incurs a multiplicative penalty e #.

The following theorem is a random regular graph analog of [43, Thm. 3]. (We stated
our result for a slightly more general class of models than considered in [43]; however
the main result of [43] extends to these models with only minor modifications.)

Theorem E.3 Consider a (random) Gibbs measure (137) satisfying assumptions
(134)—(136), and consider the (nonasymptotic) free energy F, = n~lE, In Z(¥).
Let

My = space of probability measures over X,
My = space of probability measures over My,
My = space of probability measures over M.

For ¢ € My, let n= (Ma,j)a=0,j>0 be an array of i.i.d. samples from . For each
index (a, j) let pq, j be a conditionally independent sample from 1, j, and denote
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P = (Pa,jla=0,j>0- Let (hp)a,j(x) = hq,j(X)pa,;j(x), define random variables

ug(x)

k
D x = xH1 = 0,1 [ [ hp)a,j(x)),

xeXk j=2

k
=Y =01 [(hp)aj(x)).

xeXk Jj=1

For any A € (0, 1) and any ¢ € Mo,

d
F, < A‘lElnE’[( Y h ] ua(x))k] — (k= Dar""EInE [(uo)*] + 0. (n~"/3)

xeX a=1

where B denotes the expectation over p conditioned on all else, and E denotes the
overall expectation.

Remark E.4 Inthe statistical physics framework, elements p € Mg correspond to belief
propagation messages for the underlying model, which has state space X. Elements €
M correspond to belief propagation messages for the 1RSB model (termed “auxiliary
model” in [33, Ch. 19]), which has state space My. The informal picture is that the
n associated to variable x is determined by the geometry of the local neighborhood
of x — that is to say, the randomness of ¢ reflects the randomness in the geometry
of the R-neighborhood of a uniformly randomly variable in the graph. In random
regular graphs this randomness is degenerate—the R-neighborhood of (almost) every
vertex is simply a regular tree. It is therefore expected that the best upper bound in
Theorem E.3 can be achieved with ¢ a point mass.

E.2. Replica symmetric bound

Along the lines of [43], we first prove a weaker “replica symmetric” version of The-
orem E.3. Afterwards we will apply it to obtain the full result.

Theorem E.5 In the setting of Theorem E.3, define

d
Dy = Eln(z h(x) Hua(x)), ®p = (k — aEIn(up) .

xeX a=1

Then Fy, < &y — &p — O (n~1/3).

Inspired by the proof of [12], we prove Theorem E.5 by a combinatorial interpola-
tion between two graphs, 4_1 and ¢,,4+1. The initial graph ¢_; will have free energy
®y, and the final graph %,,441 will have free energy F,, + ® . We will show that, up
to O (n'/3) error, the free energy of ¢_; will be larger than that of &4 1, from which
the bound of Theorem E.5 follows.
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To begin, we take ¢4_ to be a factor graph consisting of n disjoint trees (Fig. 7a).
Each tree is rooted at a variable v which joins to d clauses. Each of these clauses then
joins to k — 1 more variables, which form the leaves of the tree. We write V for the
root variables, A for the clauses, and U for the leaf variables. Note |V | = n, |A| = nd,
and |U| = nd(k — 1).

Independently of all else, take a vector of i.i.d. samples (n,, py)yey Where n, is a
sample from ¢, and p, is a sample from 7,.> As before, the variables and clauses in
¢ are labelled independently with functions /2, and 6,,. We now additionally assign
toeach u € U the label (n,, p,). Let (hp),(x) = h,(x)p,(x). We consider the factor
model on ¢_ defined by

1

Hy@) = [ThoGeo) [T11 = 6aas )] [ ] hoduCxa) -
ey acA uel
We now define the interpolating sequence of graphs 41, %, ..., %,q11. Fix m' =

2n*/3. The construction proceeds by adding and removing clauses. Whenever we
remove a clause a, the edges da are left behind as k unmatched edges in the remaining
graph. Whenever we add a new clause b, we label it with a fresh sample 6, of 6. The
graph %, has clauses F, which can be partitioned into Ay, (clauses involving U only),
Ay , (clauses involving V only), and A, (clauses involving both U and V). We will
define below a certain sequence of events COUP;.. Let COUP <, be the event that COUP;
occurs forall 0 < s < r. The event COUP<_; occurs vacuously, so P(COUP<_;) = 1.
With this notation in mind, the construction goes as follows:

1. Starting from ¢_, choose a uniformly random subset of m’ clauses from F_; =
A_1 = A, and remove them to form the new graph %.
2. For0 <r < nd —m’ — 1, we start from 4, and form ¥, | as follows.

a. If COUP<,_; succeeds, choose a uniformly random clause a from A,, and
remove it to form the new graph ¥, ,. Let §'U,, and &'V, , denote the
unmatched half-edges incident to U and V respectively in %, ., and define
the event

COUP; = {min{/Ur,o, /Vr,o} > k}.

If instead COUP,_; fails, then COUP <, fails by definition.

b. If COUPL; fails, let 4,11 = ¥,. If COUP, succeeds, then with probability
1/k take k half-edges from &'V, , and join them into a new clause c. With the
remaining probability (k — 1)/k take k half-edges from §'U, , and join them
into a new clause c.

c. Fornd—m' <r <nd—11et¥, | = %,. Starting from ¥4, remove all the clauses
in A;4. Then connect (uniformly at random) all remaining unmatched V -incident
edges into clauses. Likewise, connect all remaining unmatched U-incident edges
into clauses. Denote the resulting graph 4,44 1.

3 For the proof of Theorem E.5 it is equivalent to sample p from n?" = / nd¢.
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Fig.7 Interpolation withd =2,k =3,n =6

By construction, ¢,4+1 consists of two disjoint subgraphs, which are the induced
subgraphs 4, 9y of U, V respectively. Note that ¢4y is distributed as the random
graph ¢ of interest, while ¢y consists of a collection of nd(k — 1)/k = na(k — 1)
disjoint trees.

LemmaE.6 Under the construction above,
Eln Z(%) > Eln Z(%,q) — O (n'/?), (138)

where the expectation E is over the sequence of random graphs (4,)_1<r<nd+1.

Proof Let .Z, , be the o-field generated by ¥, ,, and write E, , for expectation con-
ditioned on .%, . One can rewrite (138) as

nd—1

Z (% Z(%, Z(%,
n 20 _ S EA. A =Eon @) —Er,olnM.
Z(gnd) =0 Z(%r,o) Z(gr,o)
In particular, A, = 0 if the coupling fails. Therefore it suffices to show that A, is
positive conditioned on COUPSr.4 First we compare %, and %, ,. Conditioned on .%; .,
we know ¥, . From ¥, , we can obtain %, by adding a single clause a = a,, together

4 The event COUP<; is measurable with respect to 35,,0, since &’ Vr o, B’U,,o would remain less than & if
the coupling fails at an earlier iteration.
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with arandom label 6, which is a fresh copy of 6. To choose the unmatched edges da =
(e1, ..., er) which are combined into the clause a, we take e; uniformly at random
from 8’V o, then take {e, ..., e} a uniformly random subset of §'U; .. Let 1, be
the Gibbs measure on %, , (ignoring unmatched half-edges). Let x = (x, x!, x2,...)
be an infinite sequence of i.i.d. samples from j, ., and write (-),,o_for the expectation
with respect to their joint law. Then

Z(%,) 1 L
Eroln— (g; = Eroln(l = 0xs0))re) = > ST A= E[( I1 9@@%,0} :

p=zl1 t=1

We have E, , = E,Eqg where E, is expectation over the choice of da, and Ey is
expectation over the choice of 8. Under E,, the edges (ez, . . ., ex) are weakly depen-
dent, since they are required to be distinct elements of §'U, . We can consider instead
sampling ey, . . ., ¢x uniformly with replacement from §'U, ,, so that ey, ..., ¢ are
independent conditional on .%; .; let E, ing denote expectation with respect to this
choice of éa. Under [, ing the chance of a collisione; =¢; (i < j)is 0(k2/|8’Ur,O D.
Recalling 1 — 6 > € almost surely, we have

P 2
ok
Ay ind = Eq.inaEo [( [T 9(£§H)>r } = o, + 0()(1 — €)” min {—|6’U 1 1} .
=1 s r,o

Recall from (134) the product form of ¢, and let IE ; denote expectation over the law
of f = (fs)ses- Then, with b?(s) as defined in (136), we have

k p
EATEDY bP(g)(Ea,md{ [1E, [ [T/ (xf,.)] }>
j=1 (=1 r

seSP 0

=Y POy @Iy @,

seSP
where, for W = U or W = V, we define

1
16"Wr ol

Iy o (x) =

> e[ [Tne]

ecs' Wy, =1
Summing over p > 1 gives that, on the event COUP,,

Z(9)

1 k—1
NG > =D BPOE oIy sy s @0 +err

p=1" sesp

E ol

k2
h err < Oc(l)min{ ——, 1%.
where err, 1| < f()mm{|a/ur,o| }
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A similar comparison between %41 and %, , gives

Z(9,)
Eroln 7o Z Ero[ZbP(S)<

sesP

1
Iy, s(x)k kIV,s(é)k> :| +err, 2,

r,o

k2
err, < Oc(1) mi , 1.
lertr.2l = E()mm{min{|a/Ur,o|,|a/vr,o|} }

We now argue that the sum of the error terms err, 1, err, 2, over 0 < r < nd — 1, is
small in expectation. First note that for a constant C = C (k, €),

nd—1
Z Elerr, 1 +err, 2] < Cn |:n72/3 + IP’(min{lS/ Viool, 18’ Viol} < 0?3 for some r < nd>:| .
r=0

The process (|8’ V; o|) >0 is an unbiased random walk started fromm’+1 = 2023 41.
In each step it goes up by 1 with chance (k — 1) /k, and down by k — 1 with chance 1/k;
it is absorbed if it hits k before time nd — m’. Similarly, (|8'U |, o)r>0 is an unbiased
random walk started from (m’ + 1)(k — 1) with an absorbing barrier at k. By the
Azuma-Hoeffding bound, there is a constant ¢ = c(k) such that

P(I8'Vy o] < 18'Vo.ol — n*3) + P(18'U, 0| < 18'Up .| — n*3) < exp{—cn'/?)

Taking a union bound over r shows that with very high probability, neither of the
walks |8'V; 6|, |8'U; 5| is absorbed before time nd — m’, and (adjusting the constant
C as needed)

nd—1
Z Elerr, | + err, 5] < Cn'/?.
r=0

Altogether this gives

Z(%
Eln ﬂ — 0%

Gnd)
nd—1 _
=y > - Zb"QE,o<1v5<x)1Us(x>" - vs @ flv,g@"*‘>
r=0 p>1 s r,o

Using the fact that xk — kxyk’1 + (k — l)yk >0 forallx,y e Randevenk > 2, or
x,y > 0and odd k£ > 3 finishes the proof. O

Corollary E.7 In the setting of Lemma E.6,
ElnZ(@-1) = EIn Z(@a+1) — Oc (),
where the expectation E is over the sequence of random graphs (9,)_1<r<nd-+1.
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Proof Adding or removing a clause can change the partition function by at most a
multiplicative constant (depending on €). On the event that the coupling succeeds for
all r,

n Z(%)
Z(9-1)

‘1 = Oc(m') = 0.(n*?).

‘ n Z(%na+1)
Z(gnd)

On the event that the coupling fails, the difference is crudely O (n). We saw in the
proof of Lemma E.6 that the coupling fails with probability exponentially small in 7,
so altogether we conclude

Z(%)
Z(9-1)

]E‘ In = 0.n*).

’ N Z(%pa+1)
Z(gnd)

Combining with the result of Lemma E.6 proves the claim. O

Proof of Theorem E.5 In the interpolation, the initial graph ¢_; consists of n disjoint
trees T, each rooted at a variable v € V. Thus

d
n'ElnZ(@_) =EInZ(T,) = Eln ( Z hy(x) ]_[ ua(x)) .

xeX a=1

The final graph ¢,,;+ is comprised of two disjoint subgraphs—one subgraph ¢y has
the same law as the graph ¢ of interest, while the other subgraph ¥, = (U, Fy, Ey)
consists of na(k — 1) disjoint trees S, each rooted at a clause ¢ € Ay. Thus

n'Eln Z(@a41) = ak — DEIn Z(S.) +n 'Eln Z(4) = a(k — DEInug + F, .

The theorem follows by substituting these into the bound of Corollary E.7. O

E.3. Proof of 1RSB bound

For the proof of Theorem E.3, we take ¢_; as before and modify it as follows. Where
previously each u € U had spin value x,, € X, it now has the augmented spin (x,,, ;)
where y goes over the positive integers. Let y = (y,,),. Next, instead of labeling u
with (A, n,, pu) as before, we now label it with (h,,, n,, (pf,/)),z]) where (,0,);)},21 is
an infinite sequence of i.i.d. samples from 1,. Lastly, we join all variables in U to a
new clause a, (Fig. 8), which is labelled with the function

(pa*(Z) = ZZV l_[ Uy =y}

y>1 uel
for some sequence of (random) weights (z, ), >1. Let 7771 denote the resulting graph.

Given J77 1, let 1 g, be the associated Gibbs measure on configurations (y, x).
Due to the definition of ¢,, , the support of i s , contains only those configurations

@ Springer



104 A.Slyetal.

FIVONITININS)

Ay |

Fig.8 74

S

where all the y,, share a common value y, in which case we denote (Z ,X) = (¥, x).
Explicitly,

1
Mo (Vo) = 7=ty [Thoeo) [T11 = 6a s )] [T 07 muxa) -

veV acA uel

We can then define an interpolating sequence J¢21, ..., #4+1 precisely as in the
proof of Theorem E.5, leaving a, untouched. Let &, denote the graph % without the
clauseay,andlet Z, (%) denote the partition function on &, restricted to configurations
where y,, = y for all u. Then, foreach O <r <nd + 1,

Z() =Y 2y Zy(G).
14

The proofs of Lemma E.6 and Corollary E.7 carry over to this setting with essentially
no changes, giving

Corollary E.8 Under the assumptions above,
Eln Z(A) = Eln Z(Ha41) — Oc(n*?),

where the expectation E is over the sequence of random graphs (76.) —1<r<nd+1-

The result of Corollary E.8 applies for any (z;,),>1. Now take (z}),>1 to be a
Poisson—Dirichlet process with parameter A € (0, 1).> The process has the following
invariance property (see e.g. [41, Ch. 2]):

PropositionE.9 Let (z,),>1 be a Poisson-Dirichlet process with parameter X €
(0, 1). Independently, let (§,),>1 be a sequence of i.i.d. positive random variables
with finite second moment. Then the two sequences (z,§y),>1 and (z, (Eél)‘)l/ A)yzl
have the same distribution, and consequently

1
Eln ) z,& = - InE&> .
y>1

5 That is to say, let (wy )y, >1 be a Poisson point process on R with intensity measure w0 gy, Let
W denote their sum, which is finite almost surely. Assume the points of w,, are arranged in decreasing
order, and write z;, = wy, /W. Then (zy), > is distributed as a Poisson-Dirichlet process with parameter
A.
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Proof of Theorem E.3 Consider Z(y) = (Z,(%))—1<r<na+1. If we condition on
everything else except for the p’s, then (Z(y)),>1 is ani.i.d. sequence indexed by y .
LetE, , denote expectation over the z’s and p’s, conditioned on all else: then applying
Proposition E.9 gives

d A
nEInZ(A ) = ) 'EInE, ,[Z(@- 1) = rl]EanEz,pK > oo |] ua(x)> ]

xeX a=1

n'Eln Z(Hpas1) = Fp + A 'EInE. ,[(uo)*].
Combining with Corollary E.8 proves the result. O

E.4. Extension to higher levels of RSB

We finally explain that Theorem E.3 can be extended relatively easily to cover the
scenario of r-step replica symmetry breaking. Before stating the result, we define
some notations (mainly following notation of [41, §2.3]). Let N be the set of positive
integers and N be its r-fold product; in particular, N® = {&}. We consider arrays
indexed by the set

,
A= UNP.
p=0

We view A as a depth-r infinitary tree rooted at &. For 0 < p < r — 1, each vertex
Yy = V1, ...,¥p) € NP has children yn = (y1,...,¥s,n) € NS+, The leaves of
the tree are in the last level N”. For y € N” write |y| = p, and let p(y) be the path
between the root and y (not inclusive):

ply) = {m, 1, v2), .-, (1, ..-,ypl)}.

Fix a sequence of parameters m = (my, ..., m,) satisfying
O<mpg<---<m_1 <1 (139)

For each y € A\N, let IT,, be (independently of all else) a Poisson—Dirichlet point
process with parameter m . Let (¢,,),eN be the points of I, arranged in decreasing
order. As y goes over all of A \ N, we obtain an array (ug)ge q\no- Let

wa l_[ ug .

Bep(y)
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The Ruelle probability cascade of parameter m (hereafter RPC(m)) is defined as
the N"-indexed array

Wy
ZﬁeN’ wg

Vy

For the validity of the definition, see for instance [41, Lem. 2.4]. As in the 1RSB setting,
we plan to apply Theorem E.5 to the modified graph .77Z |, where we “glue” multiple
weighted copies of ¥_1’s together via the extra clause a,. The only difference is that
now the copies of ¢_; are indexed by y € N” instead of N. More precisely, the extra
spin at each vertex u € U will take a value y € N'; the label at each vertex u € U
will be (hy, ny, (,oz,/)yeA); and the function at a, will be

¢ ) =Yz [[ =17} (140)

yeNr uel

where (z, )y enr is a N"-indexed random array representing the weight of copy y € N".
In the proof, we will choose (z, )y enr according to the RPC(m) law.

We now specify the labels (p”), ¢4 that will be used in the proof. Recall that Mg
is the space of probability measures on the alphabet X. We recursively define M, for
1 < r < p, to be the space of probability measures on M, _;. Now fix an element
p? =¢ e M,.ForeachQ < p < r—1andy e NP, suppose inductively that we have
constructed p” € M,_,. We then take p”" € M,_,_ for n € N as i.i.d. samples
pY € M,_, in M,_,_1. The process terminates with the construction of p¥ e X for
each y € N'. Define the o -field

I, = G(((ﬂy)yeNS)S§p> )

and write £, for expectation conditional on J,. For any deterministic function
V(u, p), any random variable U independent of (0” ), enr, and any sequence of param-
eters m satisfying (139), consider the random array (V?),enr = (V(U, p¥))yenr.
Let T, (V) = V(U, pb),andfor0 < p <r — 1 let

m, 1/m
T,(V) = {Ep (Tr+11) }
The resulting operator Ty depends implicitly on the distribution of U, measure p? €

M, and parameter m. The following lemma is a well-known property of the RPC.

Lemma E.10 ([43, Prop. 2]) Let (z))yenr be the RPC with parameter m. Under the
notations above,

ElnTo(V) =Eln ) z,V".
yeNr
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The next result generalizes Theorem E.3.

Theorem E.11 Consider a (random) Gibbs measure (137) satisfying assumptions
(134)—(136). Write (hp)q,j(x) = hq, j(x)pa,j(x). For each a € F we define

k
ua(x) = Y 1xr =x}1 = 0,1 [ [(rp)a.j(x)),

xeXk j=2

k
o=y 1= 0@ [rp)aj(x)).

xeXk Jj=1

Note that u,(x) and u, are deterministic functions of the variables (Ga, (ha,j)jelr)s
(Pa, ) jek))- Let

d
v=>Y hx) []ua).
xeX a=1
For any { € M, and sequence m satisfying (139), let (p¥),cnr be constructed as

above, and let (,02; j)yeN" be i.i.d. copies indexed by (a, j). Define Ty similarly as
above, using the o -fields

Iy :a((pz;j)yeNs ra€F,jelk]l,s < p).
Then the nonasymptotic free energy F, = n~'E, In Z(9) satisfies the bound

1
F, <ElnTy() — (k — Dk In To(uo) + 0€<W)
n

where [E denotes the expectation over (0,)acr and (hq, j)acF, je[k]-

Proof As outlined above, we consider the modified graph 72 where each vertex
u € U is independently labeled with (h,, ., (o) )yea) and the extra clause a, is
labeled with the function defined in (140). In this setting, each u € U has spin value
(y,x) € N” x X. Since we are interested only in configurations (y, x) such y, = y
for all u € U, we write (y, x) instead of (y, x) and define the Gibbs measure as

1
Hota V. 0) = Z=iy [ThoGeo) [T0 = 6a s )1 [T 07 muxa) -

veV acA uel

Sample the weights (z, )y enr according the law RPC(m). The result then follows by
the proof of Theorem E.3, with Lemma E.10 replacing the role of Proposition E.9. O
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