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Abstract
The Brownianmap is amodel of random geometry on the sphere and as such an impor-
tant object in probability theory and physics. It has been linked to Liouville Quantum
Gravity and much research has been devoted to it. One open question asks for a canon-
ical embedding of the Brownian map into the sphere or other, more abstract, metric
spaces. Similarly, Liouville Quantum Gravity has been shown to be “equivalent” to
the Brownian map but the exact nature of the correspondence (i.e. embedding) is still
unknown. In this article we show that any embedding of the Brownian map or contin-
uum random tree intoR

d , Sd ,Td , or more generally any doublingmetric space, cannot
be quasisymmetric. We achieve this with the aid of dimension theory by identifying a
metric structure that is invariant under quasisymmetric mappings (such as isometries)
and which implies infinite Assouad dimension. We show, using elementary methods,
that this structure is almost surely present in the Brownian continuum random tree and
the Brownianmap.We further show that snowflaking themetric is not sufficient to find
an embedding and discuss continuum trees as a tool to studying “fractal functions”.

Mathematics Subject Classification Primary 60D05; Secondary 28A80 · 05C80 ·
37C45

1 Introduction

Over the past few years two important models of random geometry of the sphere S
2

emerged. One was originally motivated by string theory and conformal field theory
in physics and is known as Liouville Quantum Gravity. The other is known as the
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Brownian map, which originated from the study of large random planar maps. The
Brownian map turned out to be a universal limit of random planar maps of S

2 and both
models have attracted a great deal of interest over the past few years.

We say that a map is planar if it is an embedding of a finite connected graph onto
S
2 with no edge-crossings. A quadrangulation is a planar map where all its faces are

incident to exactly four edges, where edges incident to only one face are counted
twice (for both “sides” of the edge). Let Qn be the set of all rooted1 quadrangulations
with n vertices. This set is finite and we randomly choose a specific quadrangulation
qn ∈ Qn with the uniform probability measure. Let dgr be the graph metric.2 It
was independently proven by Le Gall [17] and by Miermont [21] that the sequence
(qn, n−1/4dgr ) converges in distribution to a random limit object (m∞, D), known
as the Brownian map, in the space isometry classes of all compact sets (K, dGH )

equipped with the Gromov-Hausdorff distance. Remarkably, Le Gall also established
that this object is universal in the sense that not just quadrangulations, but also uniform
triangulations and 2n-angulations (n ≥ 2) converge in distribution to the same object,
up to a rescaling that only depends on the type of p-angulation, see [17] and the survey
[18]. Notably, the Brownian map is homeomorphic to S

2 but has Hausdorff dimension
4, indicating that the homeomorphism is highly singular. Finding such a canonical
mapping is still an active research area and in this article we show, using elementary
facts from probability and dimension theory, that the Brownian map has an almost
sure metric property that we coin starry. This property implies that the Brownian map
and its images under quasisymmetric mappings has infinite Assouad dimension and
hence cannot be embedded by quasisymmetric mappings (such as isometries) into
finite dimensional manifolds.

The other important model of random surfaces is known as Liouville Quantum
Gravity (LQG) which is defined in terms of a real parameter γ . The LQG is a random
geometry based on the Gaussian Free Field (GFF), a random construction that can
be considered a higher dimensional variant of Brownian motion. Crucially, the law
of the GFF is conformally invariant. When γ = √

8/3, the resulting random surface
has long been conjectured to be equivalent to the Brownian map. Very recently, work
began to unify the two models and although the exact nature of this equivalency
(that is, a canonical embedding) is still unknown, major progress was made by Miller
and Sheffield in their series of works [23–25]; see also the recent survey [22]. In
particular, they showed that the Brownian map and LQG share the same axiomatic
properties and that there exists a homeomorphism of the Brownian map onto S

2 which
realises LQG. As above, the quasisymmetrically invariant starry property implies that
no such embedding can be quasisymmetric. In [15], Gwynne, Miller, and Sheffield
gave an explicit construction of the embedding as the limit of conformal embeddings,
showing that the discretised Brownian disk converges to the conformal embedding of
the continuum Brownian disk. The latter corresponds to

√
8/3-LQG.

Before describing our results and background in detail, we remark that the Brow-
nian map can also be obtained from another famous random space: the Brownian

1 A graph is said to be rooted if there exists a unique oriented and distinguished edge, called the root.
2 The distance dgr (v, w) between two vertices v, w in a finite connected graph is equal to the length of the
shortest path between v and w. If v = w, we set dgr = 0.
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continuum random tree. The Brownian continuum random tree (CRT) is a continuum
tree that was introduced and studied by Aldous in [2–4]. It appears in many seem-
ingly disjoint contexts such as the scaling limit of critical Galton-Watson trees and
Brownian excursions using a “least intermediate point” metric. This ubiquity led to
the CRT becoming an important object in probability theory in its own right. The
Brownian map can be constructed from the CRT by another change in metric and it
is this description that allows access to a very different set of probabilistic tools on
which our proofs are based. In fact, we first prove that the CRT is starry and thus also
cannot be embedded into finite dimensional manifolds almost surely. Note that this
is also in stark contrast with the work on conformal weldings of the CRT in [19] and
implies much higher singularity of embeddings than previously known.

This article is structured as follows: InSect. 2,we recall the definition of theAssouad
dimension and its use in embedding theory. We will also introduce the starry property
for metric spaces in Sect. 2.2 and show that it is invariant under quasisymmetric
mappings and implies infinite Assouad dimension. In Sect. 3, we define the Brownian
continuum random tree via the Brownian excursion and show that the CRT is starry
almost surely. We conclude that it cannot be embedded into R

d for any d ∈ N using
quasisymmetric mappings. In Sect. 4, we define the Brownian map through the CRT
and prove that the Brownian map is starry, also. In particular, Theorem 2.4 states that
quasisymmetric images of starry metric spaces have infinite Assouad dimension (and
are thus not doubling), Theorem 3.5 proves that the CRT is starry almost surely, and
Theorem 4.1 shows that the Brownian map is starry. Section 5 finishes this article
by containing a discussion of our results from a fractal geometric point of view.
Throughout, we postpone proofs until the end of their respective section.

2 Assouad dimension and embeddings

The Assouad dimension is an important tool in the study of embedding problems. It
was first introduced by Patrice Assouad in [5]. More recently, the exact determination
of the Assouad dimension for random and deterministic subsets of Euclidean space
has revealed intricate relations with separation properties in the study of fractal sets.
Notably, the Assouad dimension of random sets tends to be “as big as possible”, see
e.g. [12], and that for self-conformal subsets of R, Ahlfors regularity is equivalent to
the Assouad dimension coinciding with the Hausdorff dimension, see [1].

2.1 Assouad dimension

Formally, let (X , d) be a metric space and write N (X , r) for the minimal number
of sets of diameter at most r needed to cover X . We set N (X , r) = ∞ if no such
collection exists.

Let B(x, r) be the closed ball in X of radius r > 0. The Assouad dimension is then
given by
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1026 S. Troscheit

dimA(X) = inf

{
α : (∃C > 0) (∀ 0 < r < R < 1) sup

x∈X
N

(
B(x, R), r

) ≤ C

(
R

r

)α }
.

(2.1)

There are several important generalisations andvariations of theAssouaddimension
such as the quasi-Assouad dimension and the Assouad spectrum. The latter fixes the
relationship between r and R by a parameter θ , i.e. r = R1/θ , whereas the former is a
slightly more regularised version of the Assouad dimension. One could certainly ask
the questions that arise here of these variants and we forward the interested reader to
the survey [11] for an overview.

The Assouad dimension is always an upper bound to the Hausdorff dimension but
coincides in many “natural” examples such as k-dimensional Riemannian manifolds.
However, they can also differ widely in general metric spaces and it is possible to
construct a space X such that X is countable with Hausdorff dimension 0 but has infi-
nite Assouad dimension; see e.g. Proposition 2.7. These sets are however somewhat
pathological and it would be interesting to find ‘natural’ metric spaces that have low
Hausdorff and box-counting dimension but are ‘big’ in the sense of Assouad dimen-
sion. A natural candidate are random sets since they tend to have a regular average
behaviour, giving low Hausdorff dimension, but have rare but very ‘thick’ regions; see
[12,13,27,28]. These regions are detected by the Assouad dimension and, as we will
show in this article, are sufficient to give infinite Assouad dimension for the Brownian
map and CRT.

TheAssouad dimension is strongly related to themetric notion of doubling: ametric
space has finite Assouad dimension if and only if it is doubling. Further, the Assouad
dimension is invariant under bi-Lipschitz mappings and is a useful indicator when a
space is or is not embeddable. Because of this invariance, a metric space (X , d) with
Assouad dimension sa = dimA X cannot be embedded into R

	sa
−1 with bi-Lipschitz
mappings. The converse is not quite true, but “snowflaking” the metric by some α > 0
allows a bi-Lipschitz embedding [5].

Theorem 2.1 (Assouad Embedding Theorem) Let (X , d) be a metric space with finite
Assouad dimension. Then there exists C > 1, N ∈ N, 1/2 < α < 1, and an injection
φ : X → R

N such that

C−1d(x, y)α ≤ |φ(x) − φ(y)| ≤ Cd(x, y)α ∀x, y ∈ X

Explicit bounds on N and α can be obtained from the Assouad dimension, see e.g.
[8].

2.2 Starry metric spaces

While the Assouad dimension is invariant under bi-Lipschitz mappings, this is not true
for the more general notion of quasisymmetric mappings. We recall the definition of
a quasisymmetric mapping.
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On quasisymmetric embeddings of the Brownian map and… 1027

Definition 2.2 Let (X , dX ) and (Y , dY ) be metric spaces. A homeomorphism
φ : X → Y is called �-quasisymmetric if there exists an increasing function
� : (0,∞) → (0,∞) such that for any three distinct points x, y, z ∈ X ,

dY (φ(x), φ(y))

dY (φ(x), φ(z))
≤ �

(dX (x, y)

dX (x, z)

)
.

A basic example of quasi-symmetric mappings are isometric embeddings but the
notion of quasisymmetric mappings generalises it by allowing a uniformly con-
trolled distortion. In Euclidean space quasisymmetric mappings correspond to
quasi-conformal mappings. That is, if φ : � → �′, where �,�′ ⊂ R

d are open
and φ is �-quasisymmetric, then φ is also K -quasiconformal for some K depending
only on the function �. A similar statement holds in the other direction.

In [20], Mackay and Tyson study the Assouad dimension under symmetric map-
pings. In particular, it is possible to lower the Assouad dimension by quasisymmetric
mappings (see also [29]) and they introduce the notion of the conformal Assouad
dimension. The conformal Assouad dimension of a metric space (X , d) is defined
as the infimum of the Assouad dimension of all quasisymmetric images of X . This
notion has been subsequently explored for many examples of deterministic sets, such
as self-affine carpets in [16].

Here we define the structure of an approximate n-star, which, heuristically, is the
property that a space contains n distinct points that are roughly equidistant to a central
point with every geodesic between them going near the centre, the extent of which is
controlled by the parameters A and μ.

Definition 2.3 Ametric space (X , d) is said to contain an (A, η) -approximate n -star
if there exists A > 1 and 0 < η < 1, 	 > 0, such that A−η > 1+η ⇔ η < (A−1)/2
as well as 	 > 0 and a set of points {x0, . . . , xn} ⊆ (X , d) satisfying

(A − η)	 ≤ d(xi , x j ) ≤ A	 for all i, j ∈ {1, . . . , n} with i �= j

and

	 ≤ d(x0, xi ) ≤ (1 + η)	 for all i ∈ {1, . . . , n}.

We say that a metric space (X , d) is starry if there exist uniform A > 1 and 0 < η <

(A − 1)/2 such that (X , d) contains an (An, η)-approximate n-star for all n, where
A ≤ An .

We note that any (A, η)-approximate n-star is also an (A, ζ )-approximate m-star for
all m ≤ n and ζ ≥ η, provided that 1 + ζ < A − ζ . Further, A is always bounded
above by the triangle inequality, since (A−η)	 ≤ d(x1, x2) ≤ d(x1, x0)+d(x0, x2) ≤
2(1 + η)	, giving 1 < 1 + 2η < A ≤ 2 + 3η < 5.

Our main theorem in this section states that all quasisymmetric images of starry
metric spaces (including the identity) have infinite Assouad dimension. Essentially,
being starry means that the conformal Assouad dimension is maximal.
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1028 S. Troscheit

Theorem 2.4 Let (X , d) be a starry metric space and let φ be a quasisymmetric map-
ping φ : (X , d) → (φ(X), dφ). Then dimA φ(X) = ∞.

Recall that ametric space (X , d) is said to be doubling if there exists a constant K > 0
such that the ball B(x, r) ⊆ X can be covered by at most K balls of radius r/2 for all
x ∈ X and r > 0. Given that the Assouad dimension of a metric space is finite if and
only if it is doubling, see e.g. [10, Theorem 13.1.1], we obtain

Corollary 2.5 Let (X , dX ) be a starry metric space and (Y , dY ) be a doubling metric
space. Then X is not doubling and any embedding φ : X → Y cannot be quasisym-
metric.

It is a simple exercise to see that any s-Ahlfors regular space3 has Assouad (and
Hausdorff) dimension equal to s and so R

d has Assouad dimension d. Similarly,
any d-dimensional Riemannian space is d-Ahlfors regular, as it supports a d-regular
volume measure. Our result immediately implies that any starry metric space cannot
be embedded into such finite dimensional spaces by quasisymmetric (and hence bi-
Lipschitz) mappings.

Careful observation of the estimates in the proof of Theorem 2.4 shows that
snowflaking does not allow a quasisymmetric or bi-Lipschitz embedding. That is,
there is no analogy of the Assouad embedding theorem (Theorem 2.1) for starry met-
ric spaces and we get the stronger statement.

Corollary 2.6 Let (X , dX ) be a starry metric space and let (Y , dY ) be a doubling
metric space (such as an s-Ahlfors regular space with s ∈ [0,∞)). Let α ∈ (0, 1],
� : (0,∞) → (0,∞) be an increasing function, and φ : X → Y be an embedding
of X into Y . Then φ cannot satisfy

dY (φ(x), φ(y))

dY (φ(x), φ(z))
≤ �

(dX (x, y)α

dX (x, z)α

)

for distinct x, y, z ∈ X.

In analogy to the observation that every set X ⊂ R
d withAssouad dimension d ∈ N

must contain [0, 1]d as a weak tangent, see [14], one might think that a metric space
with infinite Assouad dimension must also be starry. However, that is not true.

Proposition 2.7 There exists a countable and bounded metric space with infinite
Assouad dimension that is not starry.

We will give an example in the next section.

2.3 Proofs for Sect. 2

Proof of Theorem 2.4 We argue by contradiction. Assume dimA φ(X) < ∞. Then
there exists s > 0 and C > 1 such that N (Bdφ (x, R), r) ≤ C · (R/r)s for all

3 A metric space X is s-Ahlfors regular if it supports a Radon measure μ such that μ(B(x, r)) ∼ rs for
all x ∈ X and 0 < r < diam X .
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On quasisymmetric embeddings of the Brownian map and… 1029

0 < r < R < diamdφ φ(X) and x ∈ φ(X). We assume that X is starry and thus
there exist A and η such that X has (A, η)-approximate nk-stars. Pick k such that
nk > C · (4�(1)�(1 + η))s , where � : (0,∞) → [0,∞) is the scale distortion
function of the quasisymmetric mapping φ.

Let xi , 	, be the points and size of the approximate nk-star. First note that distances
relative to the centre x0 are preserved. That is, for all i ∈ {1, . . . , nk},

dφ(φ(x0), φ(xi ))

dφ(φ(x0), φ(x j ))
≤ �

(
d(x0, xi )

d(x0, x j )

)
≤ �

(
(1 + η)	

	

)
≤ �(1 + η).

One deduces a lower bound by taking the inverse

1

�(1 + η)
≤ dφ(φ(x0), φ(xi ))

dφ(φ(x0), φ(x j ))
≤ �(1 + η)

for all i, j ∈ {1, . . . , nk}. Note that Bdφ (φ(x0), R) = {y ∈ φ(X) : dφ(φ(x0), y) ≤
R} contains {φ(x0), . . . , φ(xn)} for R = �(1 + η)mink dφ(φ(x0), φ(xk)).

Let i �= j ∈ {1, . . . , nk}. We estimate

dφ(φ(x0), φ(xi ))

dφ(φ(xi ), φ(x j ))
≤ �

(
d(x0, xi )

d(xi , x j )

)
≤ �

(
1 + η

A − η

)
≤ �(1).

and soobtaindφ(φ(xi ), φ(x j )) ≥ dφ(φ(x0), φ(xi ))/�(1) ≥ (1/�(1))mink dφ(φ(x0),
φ(xk)). Set r = (1/(4�(1)))mink dφ(φ(x0), φ(xk)) and let yi , y j ∈ φ(X) be such
that φ(xi ) ∈ Bdφ (yi , r) and φ(x j ) ∈ Bdφ (y j , r) for i �= j ∈ {1, . . . , nk}. Then,

Bdφ (yi , r) ∩ Bdφ (y j , r)

= {z ∈ φ(X) : dφ(z, yi ) < r and dφ(z, y j ) < r}
⊆ {z ∈ φ(X) : dφ(z, φ(xi )) < 2r and dφ(z, φ(x j )) < 2r}
⊆ {z ∈ φ(X) : dφ(φ(xi ), z) + dφ(z, φ(x j ))

< 4r = (1/�(1))min
k

dφ(φ(x0), φ(xi ))}
= ∅

by the triangle inequality and our estimate4 for dφ(φ(xi ), φ(x j )). We conclude that
any r -cover of {φ(x1), . . . , φ(xnk )} must consist of at least nk balls as no single r -ball
can cover two distinct points. Hence,

N (Bdφ (φ(x0), R), r) ≥ nk and
R

r
= 4�(1)�(1 + η).

But then

C(4�(1)�(1 + η))s < nk ≤ N (Bdφ (φ(x0), R), r) ≤ C
( R

r

)s = C(4�(1 + η)�(1))s,

4 This also shows that the starry property is invariant under quasisymmetric mappings.
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1030 S. Troscheit

a contradiction. ��
Proof of Proposition 2.7 We construct an explicit example of a metric space that is
bounded, has infinite Assouad dimension, but is not starry. Consider the set of points
(n,m) ∈ N × N with the pseudometric

d((n,m), (n′,m′)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if n = n′ and m = m′
0 if n = n′,min{m,m′} = 1 and max{m,m′} > n

0 if n = n′ and min{m,m′} > n

2−n if n = n′ and none of the above
2

∑max{n,n′}
k=min{n,n′} k−2 if n �= n′.

Since d((n,m), (n,m)) = 0 and the distance function is symmetric, we only need to
check the triangle inequality. Let (n,m), (n′,m′), (n′′,m′′) be points in our space. If
n �= n′′, then

d((n,m), (n′′,m′′)) = 2
max{n,n′′}∑

k=min{n,n′′}
k−2 ≤ 2

max{n,n′,n′′}∑
k=min{n,n′,n′′}

k−2

≤ 2
max{n,n′}∑

k=min{n,n′}
k−2 + 2

max{n′,n′′}∑
k=min{n′,n′′}

k−2 = d((n,m), (n′,m′)) + d((n′,m′), (n′′,m′′)).

If, however n = n′′, we may assume that m �= m′′ and min{m,m′′} ≤ n and
(min{m,m′′} �= 1 or max{m,m′′} ≤ n) as otherwise the triangle inequality is trivially
satisfied. If n′ �= n, then

d((n,m), (n′′,m′′)) = 2−n ≤ 2n−2 ≤ 2
max{n,n′}∑

k=min{n,n′}
k−2 ≤ d((n,m), (n′,m′)).

When n′ = n then m′ �= m or m′ �= m′′. Therefore, at least one of d((n,m), (n′,m′))
and d((n′,m′), (n′′,m′′)) is equal to 2−n . Again we obtain

d((n,m), (n′′,m′′)) = 2−n ≤ d((n,m), (n′,m′)) + d((n′,m′), (n′′,m′′))

and d is a pseudometric. In fact, identifying points with distance zero gives the metric
space ((N × N)/≈, d) where all (n,m) get identified with (n, 1) for m > n.

To see that this space has infinite Assouad dimension one can consider balls Bn

centered at (n, 1) with diameter R = 2−n . This ball contains exactly n distinct points
(n, 1), (n, 2), . . . , (n, n) each at distance R from each other. Letting r = R/2 we need
n balls of diameter r to cover Bn . However, there are no uniform constants C, s such
that n ≤ C(2)s and hence the Assouad dimension is infinite.

To show that this metric space is not starry, we assume for a contradiction that
it is and that there exist 1 < A, η < (A − 1)/2 and subsets Sn that form (An, η)-
approximate n-stars for A < An . Consider Sn . It must contain a centre x0 = (p0, q0) ∈
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On quasisymmetric embeddings of the Brownian map and… 1031

Sn and n distinct points in the annulus Dn = B(x0, (1+η)ρn)\B(x0, ρn). We see that
(1+ η)ρn > 2−n since otherwise Sn ⊆ Bn and all points in Bn are equidistant and do
not have a centre. We split the annulus Dn in two parts,

D−
n = {(p, q) ∈ N : p < p0 and ρn ≤

p0∑
k=p

k−2 ≤ (1 + η)ρn}

and

D+
n = {(p, q) ∈ N : p > p0 and ρn ≤

p∑
k=p0

k−2 ≤ (1 + η)ρn}

Let (p, q), (p′, q ′) ∈ D+
n be distinct. Then,

d((p, q), (p′, q ′)) ≤ max{2−(n+1),

p∑
k=p0

k−2} ≤ (1 + η)ρn < (A − η)ρn ≤ (An − η)ρn .

Thus, Sn may contain at most one element in D+
n and D−

n contains at least n − 1
elements. Consider the distinct elements (p, q), (p′, q ′) ∈ D−

n . If p �= p′ we must
have d((p, q), (p′, q ′)) ≤ ∑p

k=p0
k−2 ≤ (1 + η)ρn < (An − η)ρn . This implies that

at least n − 1 elements in D−
n are contained a single Bp ⊂ D−

n . Considering distinct
elements (p, q), (p′, q ′) ∈ D−

n with p = p′, we obtain d((p, q), (p′, q ′)) = 2−p,
where p satisfies

∑p0
k=p k

−2 ≤ (1 + η)ρn . Since these points form an approximate
n-star, we further have 2−p > (An − η)ρn > (1 + η)ρn and so

p−2 ≤
p0∑

k=p

k−2 ≤ (1 + η)ρn < 2−p.

This implies p ≤ 4 and so #Sn ≤ 5, a contradiction as n was arbitrary.
Lastly, the space is bounded as the entire set is contained in B((1, 1), 2π2/6). ��

3 Result for Brownian continuum random trees

In this section we introduce the concept ofR-trees. We define a pseudometric on [0, 1]
in terms of an excursion function f . This pseudometric gives rise to an R-tree which
we call the continuum tree of function f . Letting f be a generic realisation of the
Brownian excursion, we obtain the Brownian continuum random tree (CRT). We will
show that the CRT is a starry metric space and thus has infinite Assouad dimension.
In Sect. 5 we ask whether this is true for a larger class of functions.
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1032 S. Troscheit

3.1 R-trees and excursion functions

AnR-tree is a continuumvariant of a tree. It is ametric space that satisfies the following
properties.

Definition 3.1 A metric space (X , d) is an R-tree if, for every x, y ∈ X ,

(1) there exists a unique isometric mapping f(x,y) : [0, d(x, y)] → X such that
f(x,y)(0) = x and f(x,y)(d(x, y)) = y,

(2) if f : [0, 1] → X is injective with f (0) = x and f (1) = y, then

f ([0, 1]) = f(x,y)([0, d(x, y)]).

We further say that (X , d) is rooted if there is a distinguished point x ∈ X , which we
call the root.

Heuristically, X is a connected, but potentially uncountable, union of line segments.
Every two points x, y ∈ X are connected by a unique arc (or geodesic) that is iso-
morphic to a line segment. We call any x ∈ X a leaf if X\{x} is still connected. In
Sect. 4 we will further introduce a labelling on the trees that is used to identify (or
glue) certain leaves. The resulting space will be the Brownian map.

There are several canonical ways of generating R-trees, such as the “stick-breaking
model” but here we will focus on continuum trees generated by excursion functions.

Definition 3.2 Let f : [0, 1] → [0,∞) be a continuous function. We say that f is a
(length 1) excursion function if f (0) = f (1) = 0 and f (t) > 0 for all t ∈ (0, 1).

These excursion functions are now used to define a new metric on [0, 1] that gives a
new metric space called the continuum tree.

Definition 3.3 Let f be an excursion function. We call T f = ([0, 1]/ ≈, d f ) the
continuum tree with excursion f , where d f is the (pseudo-)metric given by

d f (x, y) = f (x) + f (y) − 2min{ f (t) : min{x, y} ≤ t ≤ max{x, y} },

and≈ f , the equivalence relation on [0, 1] defined by x ≈ f y if and only if d f (x, y) =
0.

The resulting metric space is of cardinality the continuum and can be considered a
tree with root vertex 0 ≈ f 1, where the lowest common ancestor of the equivalence
classes of x < y is given by the equivalence classes of any t0 ∈ [x, y] such that
f (t0) = min{ f (t) : x ≤ t ≤ y}. We note that while the value for which the
minimum is achieved might not be unique in [0, 1] with the Euclidean metric, all such
points are identified in the metric space T f = ([0, 1]/ ≈ f , d f ), where d f is a bona
fide metric.

3.2 The Brownian continuum random tree

The Brownian continuum random tree was first studied in the comprehensive work of
Aldous [2–4]. It is a randommetric space that can be obtained with the continuum tree
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metric described above by choosing the normalised Brownian excursion e(t) as the
excursion function. The Brownian excursion can be defined in terms of a Brownian
bridge B(t) with parameter T , which is a Wiener process conditioned on B(0) =
B(1) = 0. Further, it is well known that the Brownian bridge (with T = 1) can be
expressed as B(t) = W (t) − tW (1) where B(t) is independent of W (1). The graph
{(t,W (t)) : t ∈ [0, 1]} and hence {(t, B(t)) : t ∈ [0, 1]} are compact almost surely
and so B(tmin) = min{B(t) : 0 ≤ t ≤ 1} exists and tmin is almost surely unique.
Cutting the Brownian bridge at the minimum and translating, one obtains a Brownian
excursion

e(t) =
{
B(t + tmin) − B(tmin) 0 ≤ t ≤ 1 − tmin,

B(t − 1 + tmin) − B(tmin) 1 − tmin < t ≤ 1.

We use this definition of the Brownian bridge and excursion, as we will need to show a
decay of correlations between e(s) and e(t), where s and t are in disjoint subintervals
of [0, 1].
Definition 3.4 Let e be a Brownian excursion. The random metric space (Te, de) =
([0, 1]/≈e, de) is called the Brownian continuum random tree (CRT).

The CRT also appears as the limit object of the stick-breaking model and rescaled
critical Galton-Watson trees as the number of nodes is taken to infinity. As such, the
CRT is an important object in probability theory. It also appears in the construction of
the Brownian map, which we will recall in Sect. 4.

Our main result in this section is that the CRT is starry. However, we establish a
slightly stronger result below, which we will need in the proof that the Brownian map
is starry.

Theorem 3.5 Let e be aBrownian excursion and Te be the associatedBrownian contin-
uum random tree. Then, for every n, Te contains infinitely many approximate n-stars,
almost surely. In particular, Te is almost surely starry.

Therefore, by Theorem 2.4 and Corollary 2.5, the Brownian excursion has infinite
Assouad dimension and cannot be embedded into finite dimensional manifolds using
quasisymmetric mappings.

We end this section by noting that, from a fractal geometry standpoint, the contin-
uum tree metric could hold the key to a better understanding of “fractal functions”
such as the Weierstraß functions and general self-affine functions, see Sect. 5.

3.3 Proofs of Sect. 3

To prove that Te, and later that the Brownianmap, is starry, we partition [1/2, 3/4) into
countably many disjoint intervals Am

n and show that the processes on these intervals
are “almost” independent. Let Ak

n = [a(n, k), a(n, k) + 2−(n+k+2)], where a(n, k) =
3
4 − 2−(n+k+1)(2k−1 + 1). Noting that a(n, k + 1) − a(n, k) = 2−(n+k+2) and a(n +
1, 1) > a(n, k) for all n, k ∈ N we see that the interiors of Ak

n and Ak′
n′ are disjoint

whenever n �= n′ or k′ �= k. Further,
⋃

n,k∈N Ak
n = [ 12 , 3

4 ) and the half-open intervals
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[inf Ak
n, sup Ak

n) form a countable partition of [ 12 , 3
4 ). We require the following well-

known result that allows us to estimate a Wiener process with a given function. In
particular, this follows directly from the construction of the classical Wiener measure
on the classical Wiener space and the fact that this measure is strictly positive, see e.g.
[26, §8].

Lemma 3.6 Let W (t) be a Wiener process on [0, 1]. Then, for every continuous func-
tion f ∈ C[0, 1] and ε > 0,

P(‖W (t) + f (0) − f (t)‖∞ < ε) > 0.

Wewill use this lemma with a “zig-zag” function (see Fig. 1) that will give the correct
structure on [0, 1] when applied with the continuum tree metric. Let Fn(x) : [0, 1] →
R≥0, where

Fn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2nx, 0 ≤ x < 1/(2n);
−nx + 2k+3

2 , 2k+1
2n ≤ x < k+1

n and 0 ≤ k ≤ n − 2;
nx − k − 1

2 ,
k+1
n ≤ x < 2k+3

2n and 0 ≤ k ≤ n − 2;
−2nx + 2n, 2n−1

2n ≤ x ≤ 1.

The function Fn is an excursion function (Fn(0) = 0 = Fn(1)) that is continu-
ous and linear between the local maxima Fn((k + 1)/n) = 1 and local minima
Fn((2k+1)/(2n)) = 1/2 in (0, 1).We next show that theBrownian excursion contains
arbitrarily good approximations to this function for all n.

Lemma 3.7 Let e(s) be a Brownian excursion. Then, almost surely, for every n large
enough, there exists infinitely many pairwise disjoint non-trivial intervals [skn , tkn ] ⊂
[0, 1], k ∈ N, such that

sup
s∈[skn ,tkn ]

|e(s) − e(skn ) −
√
tkn − skn · Fn(s)| <

√
tkn − skn · 21−n .

Proof Using Lemma 3.6, we have ‖W (t)− Fn(t)‖∞ < 2−n with positive probability,
see Fig. 1.

Let Hk
n : [0, 1] → Ak

n be the map defined by x �→ |Ak
n|x + inf Ak

n . By the scaling
property of Wiener processes,Wk

n (s) = (W ◦ Hk
n (s)−W ◦ Hk

n (0))/
√|Ak

n| is equal in
distribution to W (s). Therefore, P{‖Wk

n − Fn‖∞ < 2−n} ≥ pn > 0, where pn only
depends on n. Further, the disjointness of intervals Ak

n and Ak′
n′ for (n, k) �= (n′, k′)

implies that the events are independent for different (n, k). A simple application of
the Borel-Cantelli lemma then shows that for every n there are infinitely many k such
that ‖Wk

n − Fn‖∞ < 2−n almost surely.
Let us define the Brownian bridge B by B(s) = W (s) − sW (1) and let

Bk
n (s) = (B ◦ Hk

n (s) − B ◦ Hk
n (0))/

√
|Ak

n|

123



On quasisymmetric embeddings of the Brownian map and… 1035

Fig. 1 The function F4 and a Wiener process such that ‖W − F4‖∞ < 1/8

= (W ◦ Hk
n (s) − sW (1) · Hk

n (s) − W ◦ Hk
n (0) + sW (1) · Hk

n (0))/
√

|Ak
n|.

While it is not true that Bk
n (s) is independent of B

k′
n′ (t), the problematic W (1) plays a

diminishing role in approximating Bk
n by Fk

n for n, k large.
Fix a realisation such that for all n there are infinitelymany k such that ‖Wk

n −Fn‖ <

2−n . Clearly this realisation is generic as the event has full measure. Then, for this
realisation,

‖Bk
n − Fn‖∞

=
∥∥∥∥
(
W ◦ Hk

n − s · W (1) · Hk
n − W ◦ Hk

n (0) + s · W (1) · Hk
n (0)

)
/

√
|Ak

n| − Fn

∥∥∥∥∞
≤

∥∥∥Wk
n − Fn

∥∥∥∞ +
∥∥∥s · W (1) · (Hk

n (0) − Hk
n )

∥∥∥∞ /

√
|Ak

n|

≤ 2−n +
√

|Ak
n| · |W (1)| = 2−n + 2−(n+k)/2−1|W (1)|.

Since W (1) is fixed for this realisation we obtain that for every n ∈ N there are
infinitely many k ∈ N such that ‖Bk

n − Fn‖ < 2−(n−1). Finally, e is a simple cut
and translate transformation of B, where the cut is the (almost surely) unique tmin
with B(tmin) = mint∈[0,1] B(t). There are two cases to consider. Either tmin ≥ 3/4
or tmin < 3/4. In the former case we define the interval I kn = Ak

n + 1 − tmin and, in
the latter case, we define I kn = Ak

n − tmin for n large enough such that inf A1
n > tmin.

Analogous to Hk
n , define Gk

n : [0, 1] → I kn to be the unique orientation preserving
similarity mapping [0, 1) into I kn . Therefore, almost surely, for large enough n there
exist infinitely many k such that sups∈[0,1)|(e ◦Gk

n(s) − e ◦Gk
n(0))/

√|I kn | − Fn(s)| <

21−n . This is the required conclusion. ��

Equipped with this lemma, we prove that the CRT is starry.
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Proof of Theorem 3.5 Let Gk
n be as in the proof of Lemma 3.7 and assume that e is a

generic realisation. Then,

e ◦Gk
n(0)+

√
|I kn | · (Fn(s)− 21−n) ≤ e ◦Gk

n(s) ≤ e ◦Gk
n(0)+

√
|I kn | · (Fn(s)+ 21−n)

(3.1)
for all 0 ≤ s ≤ 1, where the existence of k for large enough n is guaranteed by
Lemma 3.7. Let z = 1/(4n). Further, let yp = (2p + 1)/2n for 0 ≤ p ≤ n − 2. We
now estimate the distances between Gk

n(z) and Gk
n(yp) with respect to the de metric.

First, by 3.1,

de(G
k
n(z),G

k
n(yp))

= e(Gk
n(z)) + e(Gk

n(yp)) − 2 min
t∈[z,yp]

e(Gk
n(t))

≤
√

|I kn |
(
Fn(z) + Fn(yp) + 2 · 21−n − 2 min

t∈[z,1−z](Fn(t) − 21−n)

)

=
√

|I kn |(23−n + 1/2 + 1 − 2 · 1/2) =
√

|I kn |
(
1

2
+ 23−n

)

and

de(G
k
n(z),G

k
n(yp))

≥
√

|I kn |
(
Fn(z) + Fn(yp) − 2 · 21−n − 2 min

t∈[z,1−z](Fn(t) + 21−n)

)

=
√

|I kn |(−23−n + 1/2 + 1 − 2 · 1/2) =
√

|I kn |
(
1

2
− 23−n

)
.

Similarly, for q �= p,

de(G
k
n(yq),G

k
n(yp))

= e(Gk
n(yq)) + e(Gk

n(yp)) − 2 min
t∈[yq ,yp]

e(Gk
n(t))

≤
√

|I kn |
(
Fn(yq) + Fn(yp) + 2 · 21−n − 2 min

t∈[z,1−z](Fn(t) − 21−n)

)

=
√

|I kn |(23−n + 1 + 1 − 2 · 1/2) =
√

|I kn |
(
1 + 23−n

)

and

de(G
k
n(yq),G

k
n(yp)) ≥

√
|I kn |

(
1 − 23−n

)
.

Let 	n = (1−24−n) 12

√|I kn |, An = (2+24−n)/(1−24−n), and ηn = (1+24−n)/(1−
24−n) − 1. For n ≥ 6 we obtain An > 2, 0 < ηn ≤ 2/3, and

An − ηn = (2 − 24−n)/(1 − 24−n) > (1 + 24−n)/(1 − 24−n) = 1 + ηn .
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Therefore the points x0 = Gk
n(z), xp = Gk

n(yp) (1 ≤ p ≤ n) form an (An, η)-
approximate (n − 1)-star for sufficiently large n and so, as An > 2 > 1, we conclude
that Te is starry almost surely. ��

4 The Brownianmap

As mentioned in the introduction, the Brownian map is a model of random geometry
of the sphere that arises as the limit of many models of planar maps, e.g. uniform
p-angulations (p ≥ 3) of S

2, as the number of vertices is increased. We refer the
reader to the surveys [18] and [22] for a detailed description of the Brownian map and
its relation to other random geometries, such as Liouville Quantum Gravity.

In this section we define the Brownian map in terms of the Brownian continuum
random tree and show that the Brownian map is almost surely starry.

4.1 Definition of the Brownianmap

To obtain the Brownian map from the CRT, one defines a random pseudometric on
the CRT, which in turn results in a (quotient) metric space that is the Brownian map.
This metric is defined in terms of a Gaussian process defined on the CRT.

Let Z(t) be a centered Gaussian process conditioned on e such that the covariance
satisfies

E(Z(s)Z(t)| e) = min{e(u) : min{s, t} ≤ u ≤ max{s, t}}.

Note that this completely determines theGaussian process and that the secondmoment
of distances is equal to the distance on the CRT, that isE((Z(s)−Z(t))2| e) = de(s, t).
One may imagine this process as a Wiener process along geodesics of the CRT, where
branches evolve independently up to the common joint value.

We use this process to define a pseudo metric on [0, 1] by first setting

Do(s, t) = Z(s) + Z(t) − 2max

{
min
u∈[s,t] Z(u), min

u∈[t,s] Z(u)

}

for s, t ∈ [0, 1]. We can also define Do directly on the tree Te by defining

Do(x, y) = min{Do(s, t) : π(s) = x and π(t) = y}

for x, y ∈ Te, where π : [0, 1] → Te is the canonical projection under the equivalence
relation ≈e, cf. Definition 3.3. Note that Do does not satisfy the triangle inequality
and for s, t ∈ [0, 1] we further define

D(s, t) = inf

{
n−1∑
i=0

Do(ui , ui+1) : ui ∈ Te

}
,
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Fig. 2 The metric structure of an F10 approximation

where the infimum is taken over all finite choices of ui satisfying π(s) = u0 and
π(t) = un . It can be verified that D is indeed a pseudometric on [0, 1]. Considering
m∞ = [0, 1]/ ≈, where s ≈ t if and only if D(s, t) = 0 we obtain the Brownian
map (m∞, D). More generally, we can construct a Brownian map for any excursion
function f by replacing ewith f in the construction above.We call the resultingmetric
space (�( f ), D) the Brownian map conditioned on the excursion function f . Letting
f = e, we recover the Brownian map (m∞, D) = (�(e), D).

4.2 The Brownianmap is starry

Lemma 3.7 gives an insight in the extremal structure of Te and we will see that it also
implies extremal behaviour for the Brownian map. The approximate star for the CRT
(see Fig. 2 gives rise to a line segment of length approximately 	 to which n − 1 line
segments of length approximately 	 are glued near the end.

By a similar argument to the one in Lemma 3.7 we will see that there exists positive
probability that the Gaussian process defined on this substructure follows a similar
“zig-zag” pattern that gives rise to a further approximate (n − 1)-star, see Fig. 3.

Theorem 4.1 Let f : [0, 1] → R be an excursion function such that for infinitely
many n ∈ N, there exists infinitely many intervals [skn , tkn ] ∈ [0, 1], k ∈ N, such that

sup
s∈[skn ,tkn ]

| f (s)− f (skn )−
√
tkn − skn · Fn((s − skn )/(t

k
n − skn ))| <

√
tkn − skn · 21−n (4.1)

where the intervals [skn , tkn ] are pairwise disjoint. Then, (�( f ), D) is almost surely
starry.
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In particular, this is true for almost every realisation of the Brownian excursion, see
Lemma 3.7.

Corollary 4.2 The Brownian map (m∞, D) is almost surely starry and thus for all
0 < α ≤ 1, doubling metric spaces (X , d) and increasing functions � : (0,∞) →
(0,∞) any homeomorphism φ : (m∞, D) → (X , d) cannot satisfy

d(φ(x), φ(y)

d(φ(x), φ(z))
≤ �

(
D(x, y)α

D(x, z)α

)

for all x, y, z ∈ m∞.

Note further that the intervals atwhichwechose to “zoom in”on theCRTandBrownian
map are arbitrary. We can easily make the stronger statement that there cannot be a
single neighbourhood at which the homeomorphism can be quasisymmetric, i.e. the
map cannot even be locally quasisymmetric.

4.3 Proofs of Sect. 4

Proof of Theorem 4.1 Temporarily fix n, k such that (4.1) holds. Define

x0 = xn = argmax
{
min{ f (s) : 0 ≤ s − skn ≤ (tkn − skn )/(2n)}, min{ f (s) :

(1 − 1/(2n))(tkn − skn ) ≤ s − skn ≤ (tkn − skn )}
}
,

xp = argmin

{
f (s) : p − 1/2

n
(tkn − skn ) ≤ s − skn ≤

p + 1/2

n
(tkn − skn )

}
for 1 ≤ p ≤ n − 1, (4.2)

and

yp = argmax

{
f (s) : p

n
(tkn − skn ) ≤ s − skn ≤ p + 1

n
(tkn − skn )

}
for 0 ≤ p ≤ n − 1.

Consider the “subtree” ([skn , tkn ], d f ) ⊂ (T f , d f ) and note that it contains n + 1 lines
Li of length comparable to (1/2)

√
tkn − skn . They are

Li = {max{s ∈ [xi , yi ] : f (s) = t} : t ∈ [max{ f (xi ), f (xi+1)}, f (yi )]}

and we have f (Li ) = [max{ f (xi ), f (xi+1)}, f (yi )], sup Li ≤ inf L j for i < j ,
mins∈Li f (s) = f (inf Li ), and f |Li is a bijection. This structure can easily be seen
on Fig. 3 (left). The point xn = x0 corresponds to the root of the tree, the xi correspond
to the branch points of line segment Li that end at the leaf yi .

The Gaussian Z on [0, 1] has the property that Z |Li is independent of Z |L j if i �= j
and is a Wiener process on f (Li ). Let s ∈ Li , t ∈ L j and assume without loss of
generality that s < t . Then,
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x1

x0 = x4

y0

y1

x2
x3

y2

y3

L0

L1

L2

L3

(x0, Z(x0))

(x1, Z(x1))

(x2, Z(x2))

(x3, Z(x3))

(y0, Z(y0))

(y1, Z(y1))

(y2, Z(y2))

(y3, Z(y3))

Fig. 3 Labelled structure of an F4 approximation (left) with line segments L0, L1, L2. Gaussian process
indexed by the F4 subtree (right). From top to bottom, the four graphs show the biased Gaussian process Z
along the geodesic from x0 to y3, y2, y1, and y0, respectively

Cov(Z(s) − Z(inf Li ), Z(t) − Z(inf L j ))

= Cov(Z(s), Z(t)) − Cov(Z(s), Z(inf L j )) − Cov(Z(t), Z(inf Li ))

+ Cov(Z(inf Li ), Z(inf L j ))

= min
u∈[s,t] f (u) − min

u∈[s,inf L j ]
f (u) − min[inf Li ,t]

f (u) + min[inf Li ,inf L j ]
f (u)

= min
u∈[s,inf L j ]

f (u) − min
u∈[s,inf L j ]

f (u)

− min
u∈[inf Li ,inf L j ]

f (u) + min
u∈[inf Li ,inf L j ]

f (u) = 0.

Now let s, t ∈ Li . Then,

Cov(Z(s), Z(t)) = min{ f (u) : min{s, t} ≤ u ≤ max{s, t}}
= f (min{s, t}) = min{ f (s), f (t)}.

Let Gi be the unique orientation preserving similarity mapping the interval [0, 1] onto
f (Li ) = [max{ f (xi ), f (xi+1)}, f (yi )]. Then,

Zi (s) = (Z ◦ f −1 ◦ Gi (s) − Z ◦ f −1 ◦ Gi (0))/
√| f (Li )|

is equal in distribution to a Wiener process W and, as | f (Li )| ∼ | f (L j )|, there exists
pn independent of i such that

P{‖Zi (s) − s‖∞ < 2−n} ≥ pn > 0.

We can argue similarly for all the joined pieces Ji . They are independent (conditioned
on starting value) and have length at most (1 + 21−n)| f (L0)|. Hence the probability
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that the process deviates at most 2−n is also comparable to pn and we assume without
loss of generality that pn is a lower bound. Thus, the probability that this holds for all

i and all connecting tree pieces is at least p
n+1+log2(n+1)
n > 0.

Wenowestablish that these events are independent for distinct intervals. Let x0(n, k)
be as in (4.2) and let [s0(n, k), t0(n, k)] ⊆ [skn , tkn ] be the smallest interval such that
f (s0(n, k)) = f (t0(n, k)) = x0. Therefore f (u) ≥ x0 for all u ∈ (s0(n, k), t0(n, k)).
Assume that at least one of n �= n′ and k �= k′ is given, then the following holds for
all u1, u2 ∈ [s0(n, k), t0(n, k)] and v1, v2 ∈ [s0(n′, k′), t0(n′, k′)], assuming without
loss of generality that t0(n, k) ≤ s0(n′, k′),

Cov(Z(u1) − Z(u2), Z(v1) − Z(v2))

= min
u∈[u1,v1]

f (u) − min
u∈[u1,v2]

f (u) − min
u∈[u2,v1]

f (u) + min
u∈[u2,v2]

f (u)

= min
u∈[t0(n,k),s0(n′,k′)]

f (u) − min
u∈[t0(n,k),s0(n′,k′)]

f (u)

− min
u∈[t0(n,k),s0(n′,k′)]

f (u) + min
u∈[t0(n,k),s0(n′,k′)]

f (u)

= 0.

Thus the (relative) Gaussian processes chosen earlier are independent if at least one
of n, n′ or k, k′ differ. Thus a standard Borel-Cantelli argument shows that there are
infinitely many intervals where this occurs for every n, almost surely.

The last thing to show is that these structures give rise to (n−1)-stars. This involves
estimating theBrownianmapmetric aswell as the following estimates. Let x, y ∈ m∞,
then

Z(x) + Z(y) − 2Z(x ∧ y) ≤ D(x, y) ≤ Do(x, y),

where x ∧ y is the lowest common ancestor of x and y in Te and minz∈[x,y] Z(z) ≥
minz∈[0,1] Z(z). We thus estimate, for i �= j ,

0 ≤ D(xi , x j ) ≤ Do(xi , x j ) = Z(xi ) + Z(x j ) − 2 min
s∈[xi ,x j ]

Z(s)

≤ 2max
k

Z(xk) − 2min
k

Z(xk) ≤ 4 · 2−n max
k

√| f (Lk)|

as well as for the branches

D(x1, yi ) ≤ D(x1, xi ) + D(xi , yi )

≤ 4 · 2−n max
k

√| f (Lk)| + (1 + 2 · 2−n)
√| f (Li )|

≤ (1 + 6 · 2−n)max
k

√| f (Lk)|

and
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D(yi , y j ) ≤ D(xi , x j ) + D(xi , yi ) + D(x j , y j )

≤ (2 + 16 · 2−n)max
k

√| f (Lk)|.

The lower bounds are given by

D(x1, yi ) ≥ Z(yi ) + Z(x1) − 2Z(x1) = Z(yi ) − Z(x1)

≥ Z(yi ) − Z(xi ) − |Z(x1) − Z(xi )|
≥ √| f (Li )| − 2 · 2−n max

k

√| f (Lk)|
≥ (1 − 6 · 2−n)max

k

√| f (Lk)|

and

D(yi , y j ) ≥ Z(yi ) + Z(y j ) − 2Z(yi ∧ y j ) ≥ (2 − 16 · 2−n)max
k

√| f (Lk)|.

Analogous to the proof of Theorem 3.5 we see that the collection of points yi together
with centre x1, form an approximate (n − 1)-star. Since this is true, almost surely, for
every n we have shown that (m∞, D) is starry. ��

5 The continuum tree as a dual space

While it is not generally true that the operator mapping continuous excursion functions
on [0, 1] to continuum trees is invertible, one can see the tree associatedwith a function
as an indicator of its irregularity. For instance, local maxima of the excursion function
are exactly the leaves of the associated continuum tree (with the exception of the root).
One might conjecture a strong link between dimensions of the graph of an excursion
function and its associated continuum tree.

Question 5.1 Let f be an excursion function on [0, 1] with graph G f = {(t, f (t)) :
t ∈ [0, 1]} ⊆ R

2. Suppose additionally that dim G f = s. What can we say about the
dimension5 dim T f ?

Given the extremal nature of the Assouad dimension one might further conjecture that
functions whose graph has Assouad dimension strictly larger than 1 have an associated
continuum tree that is starry.

Conjecture 5.2 Let f be an excursion function such that dimA G f > 1. Then T f is
starry.

This is certainly not a necessary condition as Example 5.1 below shows.
Establishing such relationships between dimensions and irregular curves is at the

heart of fractal geometry, see e.g. [7] and [9]. The dimension theory of the family of

5 Here, dimension refers to any of the commonly considered dimensions:Hausdorff, packing, box-counting,
Assouad, and lower dimension.
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Fig. 4 The excursion function g(x) + s(x)

Fig. 5 Close up of Fig. 4

Weierstraß functions has only recently been analysed and self-affine curves are still
not fully understood, see e.g. [6]. One of the major difficulty for affine functions are
complicated relationships between the scaling in the horizontal as well as vertical axis
and the continuum tree might get around this problem by separating the two scales
in terms of placement of nodes and length of subtrees. These may give rise to a self-
similar set in an abstract space other thanR

d thatmay be easier to understand.Knowing
bounds such as those asked in Question 5.1 may lead to a better understanding of the
self-affine theory and this “dual space” could solve many open questions for singular
functions.

Example 5.1: Excursion with low Assouad dimension whose continuum tree is
infinite dimensional

Let sn(x) be the positive triangle function with slope 2 and n maxima,

sn(x) =

⎧⎪⎨
⎪⎩
2(x − k

n ) x ∈ [ kn , k
n + 1

2n ) and 0 ≤ k < n

−2(x − k+1
n ) x ∈ [ kn + 1

2n , k+1
n ) and 0 ≤ k < n

0 x = 1

123



1044 S. Troscheit

Fig. 6 The continuum tree Tg(x)+s(x)

Let us define disjoint dyadic intervals [an, bn] ⊂ [0, 1/2] by an = 1/2− 2−(n+1) and
bn = an + 2−(n+3). Note that an+1 − bn = bn − an , and so, the gap between [an, bn]
and [an+1, bn+1] is equal in size to the length of the former interval. We define

s(x) =
∑

χ[an ,bn ](x) · (bn − an) · s(n+1)n ((x − an)/(bn − an))

and note that this function is triangular on [an, bn] with slope 2 but decreasing ampli-
tude and increasing frequency, such that it has (n + 1)n maxima on [an, bn]. The map
S : (x, y) �→ (x, y + s(x)) is easily shown to be bi-Lipschitz on [0, 1] × R with
Lipschitz constant

√
5. Further, let

g1(x) =
∫ x

0

(
1 −

∞∑
n=1

χ[an ,bn ](y)
)
dy.

It is clear that g1(x) is a non-decreasing function with slope 0 in [an, bn] and slope 1
otherwise. Let g2(x) = −2g1(1/2)x + 2g1(1/2) and

g(x) =
{
g1(x) 0 ≤ x < 1/2

g2(x) 1/2 ≤ x ≤ 1
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Similarly, G : (x, y) �→ (x, y + g(x)) is bi-Lipschitz on [0, 1] × R with Lipschitz
constant

√
2. It can be checked that g(x) + s(x) is an excursion function on [0, 1]

see also Fig. 4 and Fig. 5. The graph {(x, g(x) + s(x)) : x ∈ [0, 1]} is the image of
[0, 1] × {0} under S ◦ G and hence is a bi-Lipschitz image of the unit line. Therefore
the Assouad dimension of the excursion graph g(x)+ s(x) is 1, i.e. as low as possible
for a continuous function. To see that the resulting continuum tree Tg(x)+s(x) is starry,
one needs to observe that the triangle function gives the excursion functions (n + 1)n

peaks in [an, bn] whose amplitude is small compared to g(an+1). This gives rise to
approximate (n + 1)n-stars centred at an ∈ Tg(x)+s(x) for all n and thus Tg(x)+s(x) is
starry. See Fig. 6 for an illustration of Tg(x)+s(x).
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