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Abstract
We investigate properties of Markov quasi-diffusion processes corresponding to
elliptic operators L = ai j Di j + bi Di , acting on functions on R

d , with measurable
coefficients, bounded and uniformly elliptic a and b ∈ Ld(R

d). We show that each
of them is strong Markov with strong Feller transition semigroup Tt , which is also a
continuous bounded semigroup in Ld0(R

d) for some d0 ∈ (d/2, d). We show that Tt ,
t > 0, has a kernel pt (x, y) which is summable in y to the power of d0/(d0 − 1). This
leads to the parabolic Aleksandrov estimate with power of summability d0 instead of
the usual d + 1. For the probabilistic solution, associated with such a process, of the
problem Lu = f in a bounded domain D ⊂ R

d with boundary condition u = g,
where f ∈ Ld0(D) and g is bounded, we show that it is Hölder continuous. Parabolic
version of this problem is treated as well. We also prove Harnack’s inequality for
harmonic and caloric functions associated with such a process. Finally, we show that
the probabilistic solutions are Ld0 -viscosity solutions.

Keywords Itô equations · Markov processes · Diffusion processes

Mathematics Subject Classification 60J60 · 60J35

1 Introduction

Let Rd be a Euclidean space of points x = (x1, ..., xd). For a fixed throughout the
article δ ∈ (0, 1) define Sδ as the set of d × d symmetric matrices whose eigenvalues
are between δ and δ−1. Fix a constant ‖b‖ ∈ (0,∞). In this article we consider and
discuss only uniformly nondegenerate processes with bounded diffusion coefficient.
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Assumption 1.1 We are given a Borel measurable Sδ-valued function a = a(x) and a
Borel measurable Rd -valued function b = b(x) such that

‖b‖Ld (Rd ) ≤ ‖b‖.

Define

Di = ∂

∂xi
, Di j = Di D j , L = (1/2)ai j (x)Di j + bi (x)Di . (1.1)

Thegoal of this article is to investigate (time-homogeneousMarkov) quasi-diffusion
processes corresponding to L . In the more modern terminology from [18] these are
called diffusion processes, but at this point and later on we will follow the terminology
from [5] in which the notion of diffusion processes is defined differently from [18].

The definition of time-homogeneous diffusion processes first appeared in the book
by Dynkin in 1963, [5], where he also constructs diffusion processes corresponding
to elliptic operators as in (1.1) with bounded and Hölder continuous coefficients, such
that the matrix (ai j (x)) is uniformly strictly positive.

If xt (x), t ≥ 0, is a family of continuous processes onRd , parametrized by x ∈ R
d ,

and the family is a diffusion process corresponding to the above L in Dynkin’s sense,
then, for any bounded domain D ⊂ R

d and smooth function u,

u(x) = Ex

[
u(xτD ) −

∫ τD

0
Lu(xt ) dt

]
,

where τD = τD(x) is the first exit time of xt (x) from D.
The author took the above property as the definition of quasi-diffusion process

and in 1966 constructed such process under the assumptions that the matrix (ai j (x))
is uniformly strictly positive, is continuous and b is Borel bounded. The domain of
definitionof the correspondinggenerator of the constructedprocesswas also described,
which provides the so-called weak uniqueness of the process with this generator. Later
on in 1973, ( [7]), when Itô’s formulawas extended toW 2

p functions, it became obvious
that the quasi-diffusion processes corresponding to the operators satisfying the above
mentioned condition are weakly unique.

Two years earlier Tanaka constructed Dynkin’s diffusion processes when b is also
continuous. No uniqueness was implied in his paper.

Quasi-diffusion processes are characterized by the property that, for any smooth
function u(x) and starting point x , the process

u(xt (x)) −
∫ t

0
Lu(xs(x)) ds

is a localmartingale. Stroock andVaradhan (1969), [18], took the time-inhomogeneous
version of this property as the definition of diffusion process and proved existence and
weak uniqueness under the condition that a, b are bounded, a is uniformly continuous
in x uniformly in t , and a is uniformly nondegenerate. The proof of uniqueness is
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Diffusions with drift in Ld 167

based on the solvability of parabolic equations with coefficients depending only on
time, a result borrowed from PDE, and the estimate

Es,x

∫ 1

0
f (s + t, xt ) dt ≤ N

( ∫ 1

0

∫
Rd

| f (s + t, y)|p dtdx
)1/p

, (1.2)

which is achieved by a quite clever argument. This argument, however, is heavily
based on the uniform continuity of a with respect to x .

In 1974 [8] the author proved that estimate (1.2) holds true not only for solutions
of stochastic equations but also in the case that a, b are any progressively measurable
bounded functions such that a is uniformly nondegenerate. The method of proof is
different from the one used by Stroock and Varadhan (and the range of p is more
restrictive).

Recall that the first quasi-diffusion strong Markov processes with bounded Borel
b and Borel uniformly nondegenerate a were constructed in [7]. This construction
was carried over to the case of time-inhomogeneous processes with jumps in [1]. A
different approach again when b is bounded, based on Krylov-Safonov estimates, is
carried out in [2] and produced a particular strong Markov process with strong Feller
resolvent.

It is worth mentioning that with sufficiently regular diffusion matrix a and the drift
which is a generalized function of the type of the derivative of a measure generalized
diffusion processes are constructed in [15]. The case of time-dependent regular a and b
summable to powers which are different in t and x attracted a very extensive attention.
In that regard the reader can consult [15,20], and references therein.Ourmain emphasis
here is on time-homogeneous b ∈ Ld(R

d) and Borel Sδ-valued a. For that matter, we
do not know if all results similar to given here hold in time-inhomogeneous case, say,
with b ∈ Ld+1 (space in (t, x)). Yet a Markov process is proved in [12] to exist in this
case.

In case b ∈ Ld we established in [11] the existence of a strong Markov quasi-
diffusion process corresponding to L . Our goal in this article is to investigate properties
of just Markov quasi-diffusion processes corresponding to L regardless of how they
appeared or were constructed.

In particular, we show that each of them is strong Markov with strong Feller tran-
sition semigroup Tt , which is also a continuous bounded semigroup in L p(R

d) for
p ∈ [d0, d), where d0 ∈ (d/2, d). Our estimate (4.11) implies that Tt has a kernel
pt (x, y) which is summable with respect to y to the power of d0/(d0 − 1). This leads
to the parabolic Aleksandrov estimate with power of summability d0 instead of usual
d + 1 (see Corollary 4.9 for the probabilistic version and Theorem 4.13 for the PDE
version).

For the probabilistic solution, associated with such a process, of the problem
Lu + f = 0 in a bounded domain D ⊂ R

d with boundary condition u = g, where
f ∈ Ld0(D) and g is Borel bounded, we show that it is Hölder continuous in D.
Parabolic version of this problem is treated as well. We also prove Harnack’s inequal-
ity for harmonic and caloric functions associated with such a process. Finally we show
that probabilistic solutions of the corresponding elliptic equations are Ld0 -viscosity
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168 N. V. Krylov

solutions. In [19] the reader can find extensions of some of our results to the case of
time-inhomogeneous diffusions.

In our arguments self-similar transformations play a very important role, when we
pass from xt to cxt/c2 with a constant c > 0. Observe that under such transformations
a and b change, but the new a is still in Sδ and the Ld(R

d)-norm of the new b is
majorated by the same number ‖b‖.

We finish the introduction with some notation. For T , R > 0, (t, x) ∈ R
d+1 =

{(t, x) : t ∈ R, x ∈ R
d} define

BR(x) = {y ∈ R
d : |y − x | < R}, BR = BR(0), CT ,R = [0, T ) × BR,

CT ,R(t, x) = (t, x) + CT ,R, CR(t, x) = CR2,R(t, x), CR = CR(0, 0),

∂t = ∂/∂t .

In the proofs of various results we use the symbol N to denote finite nonnegative
constants which may change from one occurrence to another and we do not always
specify on which data these constants depend. In these cases the reader should remem-
ber that, if in the statement of a result there are constants called N which are claimed
to depend only on certain parameters, then in the proof of the result the constants
N also depend only on the same parameters unless specifically stated otherwise. Of
course, if we write N = N (...), this means that N depends only on what is inside the
parentheses. Another point is that when we say that certain constants depend only on
such and such parameters wemean, in particular, that the dependence is such that these
constants stay bounded as the parameters vary in compact subsets of their ranges.

2 Diffusions and Itô stochastic equations

Suppose that we are given a a quasi-diffusion process corresponding to L , that is, we
are given a continuous Markov process X = (xt ,∞,Mt , Px ) (the terminology taken
from [5]) in Rd such that for any x ∈ R

d and t ≥ 0

Ex

∫ t

0
|b(xs)| ds < ∞ (2.1)

and for any twice continuously differentiable function u with compact support

u(x) = Exu(xt ) − Ex

∫ t

0
Lu(xs) ds.

Remark 2.1 These requirements would be unrealistic if b were only in L p with p < d
(see [11]).

Define τR as the first exit time of xt from BR (equal to infinity if xt never exits from
BR). This notation τR is used throughout the article.

Denote by Nt the σ -field in � generated by the events {ω : xs ∈ �} for all s ≤ t
and Borel � ⊂ R

d and let N̄ x0
t be the completion of Nt with respect to (N∞, Px0).
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Diffusions with drift in Ld 169

Here is a start up result.

Theorem 2.1 For any x0 ∈ R
d there exists a d-dimensional Wiener process wt such

that (wt , N̄ x0
t ) is a Wiener process and Px0 -(a.s.) for all t ≥ 0

xt = x0 +
∫ t

0

√
a(xs) dws +

∫ t

0
b(xs) ds. (2.2)

This theorem would be a simple consequence of Theorem 4.5.1 of [18] if b were
supposed to be bounded. In our case Theorem 2.1 is a direct corollary of Lemma 1.6
of [11] and the following.

Lemma 2.2 For any x0 ∈ R
d and any twice continuously differentiable function u

with compact support the process

ξt := u(xt ) −
∫ t

0
Lu(xs) ds (2.3)

is a martingale with respect to Nt and measure Px0 .

Proof What we are given and the Markov property imply that for any 0 = t0 < t1 <

... < tn = s < t and Borel bounded g(y0, ..., yn) on R
d(n+1)

Ex0

(
g(xt0 , ..., xtn )(ξt − ξs)

)

= Ex0

(
g(xt0 , ..., xtn )

(
Exs u(xt−s) − u(xs) − Exs

∫ t−s

0
Lu(xr ) dr

))
= 0.

It follows that

Ex0(ξt − ξs | N̄ x0
s ) = 0,

which shows that (ξt ,N x0
t ), t ≥ 0, is, indeed, a martingale. �	

3 Some results from [10] and [11]

Theorem 2.1 allows us to use the results from [10,11] some of which we list here.
We need a part of Corollary 1.2 of [10] which we state as follows.

Theorem 3.1 For 0 ≤ s < t < ∞, x ∈ R
d , and n ≥ 0 we have

Ex max
r∈[s,t] |xr − xs |2n ≤ N (t − s)n, (3.1)

where N = N (n, d, δ, ‖b‖).
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170 N. V. Krylov

Here are Theorems 2.7 and 2.8 of [11], in which d0 = d0(d, δ, ‖b‖) ∈ (d/2, d)

and for Borel � ⊂ R
d

φt (�) =
∫ t

0
I�(xs) ds.

Theorem 3.2 Let p ≥ d0 and R ∈ (0,∞). Then there exists N , depending only on
p, d, δ, and ‖b‖, such that for any Borel nonnegative f on R

d we have

E0

∫ τR

0
f (xt ) dt ≤ N R2−d/p‖ f ‖L p(BR). (3.2)

Theorem 3.3 Let p ≥ d0. Then there exist constants N and μ > 0, depending only
on d, p, and ‖b‖, and there exists R0 = R0(d, ‖b‖) ≥ 2, such that for any λ > 0,
R ∈ [0,∞), and Borel nonnegative f given on R

d we have

E0

∫ ∞

0
e−λφt (Bc

R) f (xt ) dt ≤ N (R
√

λ + R0)
2−d/pλd/(2p)−1‖�−1

R,λ f ‖L p(Rd ),

(3.3)

where �R,λ(x) = exp
(√

λ μ dist (x, BR+R0/
√

λ)
)
.

Of the same spirit is the following particular case of Theorem 4.7 of [10].

Theorem 3.4 There exists constants N and μ > 0, depending only on d, δ, and ‖b‖,
such that for any λ > 0 and Borel nonnegative f given on R

d+1 we have

E0

∫ ∞

0
e−λt f (t, xt ) dt ≤ Nλ−d/(2d+2)‖�−1

λ f ‖Ld+1(R
d+1), (3.4)

where �λ(x) = exp(
√

λμ|x |).
Introduce

Rλ f (x) = Ex

∫ ∞

0
e−λt f (xt ) dt .

Corollary 3.5 Let q ≥ p ≥ d0. Then there exists a constant N , depending only on
d, p, q, δ, and ‖b‖, such that for any λ > 0 and Borel nonnegative f given on Rd we
have

Rλ f ≤ Nλd/(2p)−1‖�−1
0,λ f ‖L p(Rd ), (3.5)

‖Rλ f ‖Lq (Rd ) ≤ Nλ−1+(d/2)(1/p−1/q)‖ f ‖L p(Rd ). (3.6)

Indeed, (3.5) is a particular case of (3.3) when R = 0, which can be rewritten as

(Rλ f (x))
p ≤ Nλd/2−p

∫
Rd

e−√
λμ|x−y| f p(y) dy.
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On the right we have the convolution of two functions. Hence,

‖Rp
λ f ‖Lq/p(Rd ) ≤ Nλd/2−p

( ∫
Rd

e−√
λμ|x |q/p dx

)p/q‖ f p‖L1(Rd ),

which immediately yields (3.6).

Corollary 3.6 Let p ≥ d0. Then for any f ∈ L p(R
d) we have

lim
λ→∞ ‖λRλ f − f ‖L p(Rd ) = 0. (3.7)

Indeed, owing to Corollary 3.5 it suffices to prove (3.7) for f ∈ C∞
0 (Rd). For such

f by Itô’s formula (see Theorem 1.3 in [11])

Ex f (xt )e
−λt = f (x) + Ex

∫ t

0
e−λs(g − λ f )(xs) ds,

where g = L f ∈ Ld0(R
d) (just in case, b ∈ Ld(R

d), d0 < d, f has compact support).
Hence

λRλ f − f = Rλg

and owing to (3.6)

‖λRλ f − f ‖L p(Rd ) ≤ Nλ−1+(d/2)(1/d0−1/p)‖g‖Ld0 (Rd ).

Here the exponent of λ is strictly less than zero because d0 > d/2 and this yields (3.7).
We are also going to need Corollary 4.3 of [11], which we state as follows.

Theorem 3.7 For any R ∈ (0,∞) and κ ∈ (0, 1) there exist constants μ ≥ 1, θ > 0,
and N, depending only on d, δ, ‖b‖, and κ , such that, for any x ∈ BκR and Borel set
� ⊂ BR

Px (φτR (�) ≥ θγ μR2) ≥ N−1γ 2μ, (3.8)

where γ = |�|/|BR | and |�| is the Lebesgue measure of �.
Here is a specification of Theorem 4.4 of [10] to our case. Recall that

CT ,R = [0, T ) × BR, CR = CR2,R .

Theorem 3.8 For any κ ∈ (0, 1) there is a function q(γ ), γ ∈ (0, 1), depending only
on d, δ, ‖b‖, κ , and, naturally, on γ , such that for any R ∈ (0,∞), x ∈ BκR, and
closed � ⊂ CR2,R satisfying |�| ≥ γ |CR2,R | we have

Px (τ� ≤ τR2,R) ≥ q(γ ),
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172 N. V. Krylov

where τ� is the first time the process (t, xt ) hits � and τR2,R is its first exit time from
CR2,R. Furthermore, q(γ ) → 1 as γ ↑ 1.

Here is a corollary of estimate (2.19) of [10]:

P0(τR ≤ t) ≤ 2 exp
(

− βR2

t

)
, (3.9)

where β = β(d, δ, ‖b‖) > 0.
Here is a corollary of Theorem 4.17 of [11].

Theorem 3.9 Let R ∈ (0,∞), κ, η ∈ (0, 1), x, y ∈ BκR, and η−1R2 ≥ t ≥ ηR2.
Then there exist N , ν > 0, depending only on κ, η, d, δ, and ‖b‖, such that, for any
ρ ∈ (0, 1],

N Px (xt ∈ BρR(y), τR > t) ≥ ρν. (3.10)

4 StrongMarkov and strong Feller properties of X

Here is one of basic results of this section. Its proof would be greatly simplified if
we knew that X is strong Markov. Then we would use stopping times. Instead we use
randomized stopping.

Theorem 4.1 Let p ≥ d0, λ > 0, and f ∈ L p(R
d). Then there exist α ∈ (0, 1) and

N, depending only on p, d, δ, and ‖b‖, such that

|Rλ f (x) − Rλ f (y)| ≤ Nλ(α p+d)/(2p)−1‖ f ‖L p(Rd )|x − y|α. (4.1)

The following is an immediate and well-known consequence of just continuity of
Rλ f (x) with respect to x (see, for instance, Theorem I.8.11 in [3]).

Corollary 4.2 The process (xt , N̄t+, Px ) is strong Markov.

Perhaps it is worth recalling for the reader’s orientations that in our case Nt is the
Borel σ -field in C([0, t],Rd), N̄t is its completion with respect to the distributions of
the trajectories of X starting from all points, N̄t+ = ⋂

ε>0 N̄t+ε.
Note that strong Markov processes (xt , N̄t , Px ) corresponding to L in case b is

bounded are constructed in [7] and strong Markov processes (xt , N̄t+, Px ) corre-
sponding to L in case b is bounded are constructed in [2]. We show that any Markov
process corresponding to L with b ∈ Ld is strong Markov with respect to N̄t+. The-
orem 4.1 will be proved after some preparations.

The following technical result is obtained byusingFubini’s theorem for ft vanishing
for t ≥ T and then letting T → ∞.

Lemma 4.3 (i) Let φt , �t , ft be nonnegative Borel functions on [0,∞) such that
�0 = 1, �t is continuous and decreasing. Then

∫ ∞

0
e−φt ft dt = −

∫ ∞

0
e−φt

( ∫ ∞

t
e−(φs−φt ) fs ds

)
d�t +

∫ ∞

0
e−φt�t ft dt .
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(ii) Let ft be a nonnegative Borel function on [0,∞) and let φt and ψt be absolutely
continuous on [0,∞) such that φ0 = ψ0. Assume that

∫ ∞

0
e−φt ft +

∫ ∞

0
e−ψt |φ′

t − ψ ′
t |
( ∫ ∞

t
e−(φs−φt ) fs ds

)
dt < ∞.

Then
∫ ∞

0
e−φt ft dt =

∫ ∞

0
e−ψt ft dt −

∫ ∞

0
e−ψt (φ′

t − ψ ′
t )

( ∫ ∞

t
e−(φs−φt ) fs ds

)
dt .

In the sequel we use the parameter n that will be ultimately send to infinity. Note
that by Rn(BR) one usually means the resolvent at λ = n of the process killed outside
BR . Our notation has a different meaning. If n → ∞, our Rn(BR) converges to the
resolvent at λ = 0 of the process killed outside BR .

Lemma 4.4 Let f be a nonnegative Borel bounded function on R
d . For Borel sets

� ⊂ R
d define

φt (�) =
∫ t

0
I�(xs) ds, u(x) = Ex

∫ ∞

0
e−t f (xt ) dt .

Also for R > 0 set

Rn(BR) f (x) = Ex

∫ ∞

0
e−nφt (Bc

R) f (xt ) dt .

Then

u = R1(BR) f − R1(BR)IBRu. (4.2)

Furthermore, for any n ≥ 1

R1(BR) f = Rn(BR) f + (n − 1)Rn(BR)IBc
R
R1(BR) f . (4.3)

Finally, for any Borel � ⊂ BR and hn = nRn(BR) f

hn(x) = Ex

∫ ∞

0
e−nφt (�∪Bc

R)nI�(xt )h
n(xt ) dt

+nEx

∫ ∞

0
e−nφt (�∪Bc

R) f (xt ) dt . (4.4)

Proof Equation (4.2) is obtained by using the Markov property of X and by applying
Lemma 4.3 (ii) with φt = t , ψt = φt (Bc

R). To check that Lemma 4.3 (ii) is applicable
we use Theorem 3.3 according to which

Ex

∫ ∞

0
e−φt (Bc

R) dt < ∞.
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174 N. V. Krylov

Equation (4.3) is obtained directly by using the Markov property and Lemma 4.3
(i) with φt = φt (Bc

R), �t = exp(−(n − 1)φt (Bc
R)).

Finally, to get (4.4) it suffices in Lemma 4.3 (i) to take φt = nφt (Bc
R), and �t =

exp(−nφt (�)). The lemma is proved. �	
Remark 4.1 Send n → ∞ in (4.3) and (4.4) assuming that f = 0 in BR in (4.4). Then
intuitively we should get

u(x) := Ex

∫ τR

0
f (xt ) dt = R1(BR) f − Ex R1(BR) f (xτR ),

hn(x) → h(x) := Ex f (xτR ), h(x) = Ex
(
Iτ�<τR h(xτ� ) + Iτ�>τR f (xτR )

)
,

where τ� is the first time xt hits �. The formulas we get this way are true indeed if we
know that X is strong Markov (and that τ� makes sense and is a stopping time). Of
course, u and h are the objects of main interest, but we cannot handle them because
we do not know yet that X is strong Markov. That is why instead of using stopping
times we use randomized ones when, for instance in case of (4.3), we stop xt on each
time interval dt it spends outside BR with probability (n − 1)dt (provided it was not
stopped before).

The next two lemmas are aimed at partially justifying what is said in Remark 4.1.

Lemma 4.5 Let c be a nonnegative function such that c ≥ 1 on Bc
ρ . Then for any

n, ρ, ε > 0, and |x | < ρ + ε

In,ε := Ex

∫ ∞

τρ+2ε

e−nφt nc(xt ) dt ≤ 2e−√
nε/N ,

where N = N (d, δ, ‖b‖) and

φt =
∫ t

0
c(xs) ds.

Proof We look at the representation of xt as a solution of (2.2) with x0 = x . Then
after defining γ as the first time after τρ+ε the process xt exits from Bε(xτρ+ε )we note
that

In,ε ≤ Exe
−nφτρ+2ε ≤ Ex E

(
e−n(φγ −φτρ+ε ) | N̄τρ+ε

)
.

Here, by the conditional version of Theorem 2.10 of [10], the conditional expectation
(a.s.) is dominated by 2e−√

n ε/N , and this proves the lemma. �	
Lemma 4.6 For Borel� and ρ > 0 define�ρ = �∩Bρ . Assume that� and ρ are such
that |�ρ | ≥ (1/2)|Bρ | and �3ρ = �ρ ∪ {2ρ ≤ |x | < 3ρ}. Then there are constant
N , ν > 0, depending only on d, δ, and ‖b‖, such that for any n > 0 and |x | ≤ (5/2)ρ

1 ≥ nEx

∫ τ3ρ

0
I�3ρ (xt )e

−nφt (�3ρ) dt ≥ 1 − 2e−√
nρ/N , (4.5)
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and for |x | ≤ ρ

I := Ex

∫ τ3ρ

0
nI�ρ (xt )e

−nφt (�3ρ) dt ≥ ν − Ne−nρ2/N . (4.6)

Proof Observe that

I ≥ Ex

∫ τ2ρ

0
nI�ρ (xt )e

−nφt (�ρ) dt = 1 − Exe
−nφτ2ρ (�ρ)

,

where for γ = |�ρ |/|B2ρ | (≥ 2−d−1) owing to Theorem 3.7

Exe
−nφτ2ρ (�ρ) ≤ P

(
φτ2ρ (�ρ) ≤ θγ μ(2ρ)2

)
+e−nθγ μ(2ρ)2 P

(
φτ2ρ (�ρ) ≥ θγ μ(2ρ)2

)
= 1 − (1 − e−nρ2/N )P

(
φτ2ρ (�ρ) ≥ θγ μ(2ρ)2

) ≤ 1 − (1 − e−nρ2/N )N−1γ 2μ.

This proves (4.6).
To prove (4.5) denote by γ the first exit time of xt after τ(5/2)ρ from B(1/2)ρ(xτ(5/2)ρ )

and observe that

0 ≤ 1 − nEx

∫ τ3ρ

0
I�3ρ (xt )e

−nφt (�3ρ) dt = Exe
−nφτ3ρ (�3ρ)

≤ Ex E
(
e−n(φγ (�3ρ)−φτ(5/2)ρ (�3ρ)) | Nτ(5/2)ρ

)
.

Here, by the conditional version of Theorem 2.10 of [10], the conditional expectation
(a.s.) is dominated by 2e−√

n ρ/N , and this proves the lemma. �	
Before doing the next almost final step in our preparation to prove Theorem 4.1,

take n ≥ 1, R ∈ (0, 1], a bounded Borel g ≥ 0, such that g(x) = 0 for |x | < R and
introduce

hn = nRn(BR)g.

Observe that

hn ≤ (sup g)nEx

∫ ∞

0
e−nφt (Bc

R) IBc
R
(xt ) dt ≤ sup g.

The proof of the following lemma, actually, is just a simple adaptation of what is
usually done in the theory of elliptic equations when they prove the Hölder continuity
of harmonic functions associated with elliptic operators. Again lacking the strong
Markov property and knowing nothing about the sets�n , introduced below, apart from
the fact that they are Borel, forces us to use randomized stopping times. Somewhat
cleaner this adaptation is seen in our Sect. 6. Concerning the origin of our arguments
see Section 9.6 in [9].
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Lemma 4.7 There exist constants α ∈ (0, 1) and N, depending only on d, δ, and ‖b‖,
and there exists a constant N ′, depending only on d, δ, ‖b‖, and sup g, such that for
|x | ≤ R/12 and any n ≥ 1 we have

|hn(x) − hn(0)| ≤ N (|x |/R)α sup
BR

hn + N ′(e−n|x |2/N + e−√
n |x |/N ). (4.7)

Proof For ρ > 0 introduce the notation

osc
Bρ

u = sup
Bρ

u − inf
Bρ

u, Mn
ρ = sup

Bρ

hn, mn
ρ = inf

Bρ

hn, μn
ρ = (Mn

ρ + mn
ρ)/2.

Take ρ > 0, such that ρ ≤ R/4, and consider two cases

(a) |Bρ ∩ {hn ≥ μn
ρ}| ≥ (1/2)|Bρ |,

(b) |Bρ ∩ {hn ≤ μn
ρ}| ≥ (1/2)|Bρ |.

In case (a) introduce �n = (
Bρ ∩ {hn ≥ μn

ρ}) ∪ (Bc
2ρ ∩ BR). By using (4.4) and

Lemma 4.5 for |x | ≤ ρ we find that

hn(x) = Ex

∫ τ3ρ

0
e−nφt (�

n)nI�n (xt )h
n(xt ) dt + ξn(x) =: hn0(x) + ξn(x), (4.8)

where |ξn(x)| ≤ N ′e−√
nρ/N . Furthermore, hn ≥ μn

ρ on �n
ρ and hn ≥ mn

3ρ in B3ρ .
Hence

hn0(x) ≥ (μn
ρ − mn

3ρ)Ex

∫ τ3ρ

0
e−nφt (�

n)nI�n
ρ
(xt ) dt

+mn
3ρEx

∫ τ3ρ

0
e−nφt (�

n)nI�n (xt ) dt .

It follows by Lemma 4.6 (also note that μn
ρ − mn

3ρ ≥ 0) that for |x | ≤ ρ

hn0(x) ≥ νμn
ρ + (1 − ν)mn

3ρ − N ′(e−nρ2/N + e−√
nρ/N ),

which in light of the arbitrariness of x and (4.8) implies that

(1 − ν/2)mn
ρ ≥ (ν/2)Mn

ρ + (1 − ν)mn
3ρ − N ′(e−nρ2/N + e−√

nρ/N ).

On the other hand, obviously

(1 − ν/2)Mn
ρ ≤ (ν/2)Mn

ρ + (1 − ν)Mn
3ρ.

By subtracting the last two inequalities we get

(1 − ν/2) osc
Bρ

hn ≤ (1 − ν) osc
B3ρ

hn + N ′(e−nρ2/N + e−√
nρ/N ),
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osc
Bρ

hn ≤ θ osc
B3ρ

hn + N ′(e−nρ2/N + e−√
nρ/N ), (4.9)

where θ = θ(d, δ, ‖b‖) = (1 − ν)/(1 − ν/2) < 1.
In case (b) introduce �n = (

Bρ ∩ {hn ≤ μn
ρ}) ∪ (Bc

2ρ ∩ BR). As in case (a), we
have (4.9), where hn ≤ μn

ρ on �n
ρ and hn ≤ Mn

3ρ om B3ρ . Hence,

hn0(x) ≤ (μn
ρ − Mn

3ρ)Ex

∫ τ3ρ

0
e−nφt (�

n)nI�n
ρ
(xt ) dt

+Mn
3ρEx

∫ τ3ρ

0
e−nφt (�

n)nI�n (xt ) dt .

Here μn
ρ − Mn

3ρ ≤ 0 and the last expectation is less than one. Then by (4.6)

hn0(x) ≤ (μn
ρ − Mn

3ρ)ν + Mn
3ρ + N ′e−nρ2/N ,

which in light of the arbitrariness of x and (4.8) implies that

(1 − ν/2)Mn
ρ ≤ (ν/2)mn

ρ + (1 − ν)Mn
3ρ + N ′(e−nρ2/N + e−√

nρ/N ).

On the other, hand obviously

(1 − ν/2)mn
ρ ≥ (ν/2)mn

ρ + (1 − ν)mn
3ρ.

By subtracting the last two inequalities we get (4.9) again.
From (4.9) we see that

θ−k osc
B3−k

hn ≤ θ−k+1 osc
B3−k+1

hn + θ−k N ′(e−n3−2k/N + e−√
n 3−k/N ),

as long as 3−k ≤ R/4, that is k ≥ �log3(4/R)� =: k0. By observing that, for instance,
exp(−n3−2kρ2/N ) is an increasing function of k we obtain, for k ≥ k0

θ−k osc
B3−k

hn ≤ θ−k0 osc
B
3−k0

hn + N ′(e−n3−2k/N + e−√
n 3−k/N )

k−k0−1∑
i=0

θ−k+i .

For |x | ≤ R/12 and k = �log3(1/|x |)� we have

|x | ≤ 3−k ≤ R/4, θ−1|x |−α ≥ θ−k ≥ |x |−α,

where α = − log3 θ . Furthermore,

3−k ≥ |x |, θ−k0 ≤ 4αR−α.

Now (4.7) follows. The lemma is proved. �	
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Proof of Theorem 4.1 Self-similarity transformations show that we may assume that
λ = 1. Furthermore, obviously we may assume that f ≥ 0. Estimate (3.3) allows us
to assume that f is bounded and continuous. Then take R ∈ (0, 1], n ≥ 2, and take
g = IBc

R
R1(BR) f in Lemma 4.7. Observe that by (4.3) we have hn ≤ 2R1(BR) f .

Furthermore, in light of (4.3), Lemma 4.7, and Theorem 3.3, for 0 < |x | ≤ R/12 we
have

|R1(BR) f (x) − R1(BR) f (0)| ≤ N (R + R0/
√
n)2−d/p‖ f ‖L p(Rd )

+N (|x |/R)α(R + R0)
2−d/p‖ f ‖L p(Rd ) + N ′(e−n|x |2/N + e−√

n |x |/N ),

where N ′ is independent of n. By sending n → ∞ and taking onto account that R ≤ 1
we come to

|R1(BR) f (x) − R1(BR) f (0)| ≤ N R2−d/p‖ f ‖L p(Rd )

+N (|x |/R)α‖ f ‖L p(Rd ).

By applying this result to (4.2) and using Corollary 3.5, according to which |u| ≤
N‖ f ‖L p(Rd ), and also using (3.5), which implies R1(BR)IBR ≤ N Rd/p for R ≤ 1,
we obtain

|R1 f (x) − R1 f (0)| ≤ N (R2−d/p + Rd/p)‖ f ‖L p(Rd )

+N (|x |/R)α‖ f ‖L p(Rd ).

If 2 − d/p ≤ d/p, we take here R = |x |β , where αβ−1 = 2 − d/p + α, and we get

|R1 f (x) − R1 f (0)| ≤ N |x |α(1−β)‖ f ‖L p(Rd ), (4.10)

provided that |x | ≤ R/12 = |x |β/12, that is |x | ≤ η = η(d, δ, p, ‖b‖). For |x | ≥ η

estimate (4.10) holds due to Theorem 3.3. However, if 2 − d/p > d/p, we find β

from β(d/p + α) = α and again come to (4.10).
This proves (4.1) forλ = 1 and y = 0. Shifting the coordinates take care of arbitrary

x, y. The theorem is proved. �	
To prove that X is strong Feller we need the following generalization of a result

of Lions [14], proved in case b is bounded and p > d, which was generalized in [6]
albeit when b = 0 but with p ≥ d0.

Theorem 4.8 For any p ≥ d0 there are constants N and μ > 0, depending only on
d, p, δ, and ‖b‖, such that for any Borel nonnegative f given on R

d and t > 0 we
have

Tt f (0) ≤ Nt−d/(2p)‖�t f ‖L p(Rd ), (4.11)

where �t (x) = exp(−μ|x |/√t).
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Proof The proof is quite similar to what is done in [14] and [6]. First fix ε ∈ (0, 1)
and let Fε be the set of Borel f such that ε ≤ f (x) ≤ ε−1 for any x . Then introduce

Kε = sup
T1 f (0)

‖�1 f ‖L p(Rd )

,

where the choice of μ (in �1) will be specified later and the supremum is taken over
all f ∈ Fε and over all diffusion processes X , for which Assumption 1.1 is satisfied (δ
and ‖b‖ are fixed). Obviously, Kε < ∞. Also observe that self-similarity arguments
easily show that (4.11) holds with N = Kε if f ∈ Fε. Shifting the origin shows that
for f ∈ Fε, t > 0, and x ∈ R

d

Tt f (x) ≤ Kεt
−d/(2p)

( ∫
Rd

e−pμ|x−y|/√t f p(y) dy
)1/p

. (4.12)

Now, define u(t, x) = Tt f (x) and observe that by the Markov property for s ∈ (0, 1)

u(1, 0) = Tsu(1 − s, ·)(0) = 2
∫ 1/2

0
Tsu(1 − s, ·)(0) ds

= 2E0

∫ 1/2

0
u(1 − s, xs) ds ≤ NE0

∫ ∞

0
Is≤1/2e

−su(1 − s, xs) ds.

By using Theorem 3.4 we obtain

ud+1(1, 0) ≤ N I J , (4.13)

where

I = sup
[0,1/2]×Rd

(
ud(1 − s, x)e−ν|x |d) = sup

[1/2,1]×Rd

(
ud(t, x)e−ν|x |d),

J =
∫
Rd

e−ν|x |( ∫ 1

1/2
u(t, x) dt

)
dy

and ν is the least of the constants called μ in Theorems 3.4 and 3.3 . As is easy to see

J ≤ e
∫
Rd

e−ν|x |R1 f (x) dx,

which by Theorem 3.3 yields

J ≤ N
∫
Rd

e−ν|x |( ∫
Rd

e−ν p|x−y| f p(y) dy
)1/p

dx,

123



180 N. V. Krylov

where, perhaps, the second ν is different from the first one.We allow ourselves to use ν

as a generic constant > 0 depending only on p, d, δ, and ‖b‖. By Hölder’s inequality

J ≤ N
( ∫

Rd
e−ν|x | dx

)1/q( ∫
Rd

g(y) f p(y) dy
)1/p

,

where q = p/(p − 1) and

g(y) =
∫
Rd

e−ν(|x |+|x−y|) dx .

Since |x | + |x − y| ≥ (1/2)(|x | + |y|), we have

J ≤ N
( ∫

Rd
e−pμ|y| f p(y) dy

)1/p
. (4.14)

In (4.14) we use μ in place of ν because this is the way we introduce μ =
μ(p, d, δ, ‖b‖) > 0, which is used in the definitions of �t and Kε.

We can certainly assume that μ is less than or equal to the first ν above and in what
concerns I observe that owing to (4.12) for t ∈ [1/2, 1] we have

u(t, x)e−ν|x | ≤ u(t, x)e−μ|x | ≤ NKε

( ∫
Rd

e−pμ(|x |+|x−y|) f p(y) dy
)1/p

≤ NKε

( ∫
Rd

e−pμ|y| f p(y) dy
)1/p

.

Hence

I ≤ NKd
ε

( ∫
Rd

e−pμ|y| f p(y) dy
)d/p

,

and coming back to (4.13) we get

u(1, 0) ≤ NKd/(d+1)
ε

( ∫
Rd

e−pμ|y| f p(y) dy
)1/p

.

Because of the definition of Kε it follows that

Kε ≤ NKd/(d+1)
ε , Kε ≤ N .

After that it only remains to send ε ↓ 0 observing that the last N as well as μ depend
only on p, d, δ, and ‖b‖. The theorem is proved. �	
Remark 4.2 Once we know that (4.11) holds for Borel nonnegative f , we can repeat
the argument from the beginning of the above proof and conclude that for all Borel
nonnegative f , t > 0, and x ∈ R

d ,

Tt f (x) ≤ Nt−d/(2p)
( ∫

Rd
e−pμ|x−y|/√t f p(y) dy

)1/p
. (4.15)

123



Diffusions with drift in Ld 181

Corollary 4.9 For p ≥ d0 such that p > d/2 + 1 there exists a constant N =
N (p, d, δ, ‖b‖) such that for any T ∈ (0,∞) and nonnegative Borel f (t, x) given on
[0, T ] × R

d we have

I := E0

∫ T

0
f (t, xt ) dt ≤ NT (p−1)/p−d/(2p)‖�T f ‖L p([0,T ]×Rd ). (4.16)

Indeed,

I =
∫ T

0
Tt f (t, ·)(0) dt ≤ N

∫ T

0
t−d/(2p)

( ∫
Rd

�
p
T (y) f p(t, y) dy

)1/p
dt,(4.17)

and it only remains to use Hölder’s inequality.

Remark 4.3 Observe that the usual parabolic Aleksandrov estimate gives (4.16) with
p ≥ d+1.Wewere able to reduce p because a is independent of t . Also note that in [8]
there is an example showing that (4.16) and (4.15) generally (when a is independent
of t) fail to hold for any fixed p < d if δ can be chosen small enough. In that regard
see also the example in [6], that appeared a few years later than [8].

The following is deduced from (4.15) in the same way as (3.6) in Corollary 3.5 is
derived from Theorem 3.4.

Corollary 4.10 For q ≥ p ≥ d0 there exists a constant N = N (p, q, d, δ, ‖b‖) such
that for any t > 0 and nonnegative Borel f

‖Tt f ‖Lq (Rd ) ≤ Nt (d/2)(1/q−1/p)‖ f ‖L p(Rd ).

Remark 4.4 The fact that the semigroup Tt is bounded in L p, which follows from
Corollary 4.10 with p = q , should not look very surprising and follows by self-
similarity from the boundedness of T1 (which, however, is not trivial).

Corollary 4.11 For p ≥ d0 and f ∈ L p(R
d)

lim
t↓0 ‖Tt f − f ‖L p(Rd ) = 0.

Indeed, in light of Corollary 4.10 (with q = p) we may concentrate on f ∈
C∞
0 (Rd). In that case by Itô’s formula

Tt f − f =
∫ t

0
Ts L f ds,

where L f ∈ Ld0(R
d). Hence, by Corollary 4.10

‖Tt f − f ‖L p(Rd ) ≤
∫ t

0
‖Ts L f ‖L p(Rd ) ds ≤

∫ t

0
s(d/2)(1/p−1/d0) ds‖L f ‖Ld0 (Rd )

and the last integral tends to zero as t ↓ 0 since d0 > d/2.
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Theorem 4.12 The process X is strong Feller in the sense that for any bounded Borel
f given on R

d the function Tt f (x) is continuous on (0,∞) × R
d .

Proof In light of Theorem 4.8 we may concentrate on smooth compactly supported
f ’s. In that case we are going to prove that Tt f (x) is continuous in [0,∞) × R

d .
Observe that for t ≥ s ≥ 0 we have

|Tt f (x) − Ts f (x)| = |Ts(Tt−s f − f )(x)| = |Ex Exs [ f (xt−s) − f (x0)]|
≤ sup |∇ f | sup

y
Ey |xt−s − x0| ≤ N sup |∇ f |√t − s,

where the last inequality follows from Theorem 3.1. We see that Tt f (x) is continuous
in [0,∞) uniformly with respect to x .

Next, for our f Theorem 3.1 easily implies that λRλ f → f as λ → ∞ uniformly
with respect to x . After that the continuity of Tt f (x) with respect to x follows from
the fact that

TtλRλ f = λRλTt f ,

where the right-hand sides are continuous in x due to Theorem 4.1 and the left-hand
sides converge uniformly in x to Tt f (x). The theorem is proved. �	

We finish the section by a version of parabolic Aleksandrov estimates.

Theorem 4.13 Let D be a bounded domain in Rd , p ≥ d0, p > d/2+ 1, T ∈ (0,∞)

and let u ∈ W 1,2
p,loc((0, T )×D)∩C([0, T ]× D̄). Then there is a constant N , depending

only on d, δ, ‖b‖, and T , such that in [0, T ] × D we have

u ≤ N‖(∂t u + Lu)−‖L p((0,T )×D) + sup
(∂((0,T )×D))\({0}×D)

u. (4.18)

Proof In the same way as in the proof of Theorem 3.1 of [10] we convince ourselves
that we may assume that u ∈ W 1,2

p ((0, T ) × D), D is smooth, and b is bounded. In
that case it suffices to prove (4.18) for u ∈ C1,2([0, T ] × D̄). For such u, by Itô’s
formula P0-(a.s.) for all t ≤ T

u(t ∧ τ, xt∧τ ) = u(0, 0) +
∫ t∧τ

0
(∂t u + Lu)(s, xs) ds +

∫ t∧τ

0
Diu(s, xs)σ

ik(xs) dwk
s

and the stochastic integral is a martingale, where τ is the first exit time of (t, xt ) from
[0, T ) × D. By setting t = T and taking expectations we get

u(0, 0) = −E0

∫ τ

0
(∂t u + Lu)(t, xt ) dt + E0u(τ, xτ )

≤ E0

∫ τ

0
(∂t u + Lu)−(t, xt ) dt + sup

(∂((0,T )×D))\({0}×D)

u.

After that it only remains to use Corollary 4.9. The theorem is proved. �	
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5 Estimating time spent in space-time sets of small measure

Here we present extensions to the case that b ∈ Ld of probabilistic versions of some
PDE results found in [9,13,16]. Recall the notation introduced before Theorem 3.8
and also introduce

Co
T ,R = (0, T ) × BR, Co

T ,R(t, x) = (t, x) + Co
T ,R, Co

R(t, x) = Co
R2,R(t, x),

Co
R = Co

R(0, 0). Fix

q, η, κ ∈ (0, 1).

For cylinders Q = Co
ρ(t, x) define

Q′ = (t, x) − Co
η−1ρ2,ρ

, Q′′ = (
t − η−1ρ2, x

) + Co
η−1ρ2κ2,ρκ

,

Q′+ = Q ∪ Q′ ∪ ({t} × Bρ(x)
)
.

Imagine that the t-axis is pointed up vertically. Then Q′ is adjacent to Q from
below, the two cylinders have a common base, and along the t-axis Q′ is η−1 times
longer than Q. The cylinder Q′′ is obtained by contracting Q′ to the center of its lower
base with the contraction factor κ−2 for the t-axis and κ−1 for the spatial axes.

Remark 5.1 If Q = Co
ρ(t, x), then the shortest distance between Q and Q′′ along the

t axis is

η−1ρ2 − η−1ρ2κ2 = η−1ρ2(1 − κ2), (5.1)

which is bigger than 2ρ2 if

κ2 ≤ 1 − 2η. (5.2)

Let � be a measurable subset of C1 and introduce B = B(�, q) as the family of
open cylinders Q of type Co

ρ(t0, x0) such that

Q ⊂ C1 and |Q ∩ �| ≥ q|Q|.

Finally, define

�′′ =
⋃
Q∈B

Q′′, �′′
ε =

⋃
Q∈B:|Q|≥ε

Q′′.

Observe that for Q ∈ B the set Q′′ is open. Hence, �′′ is open and measurable.

Lemma 5.1 If |�| ≤ q|C1|, then

|�′′| ≥
(
1 − 1 − q

3d+1

)−1
(1 + η)−1κd+2|�|
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and there exists θ = θ(d, q, η, κ) > 1 such that for any sufficiently small ε > 0 there
exists a closed �ε ⊂ �′′

ε such that

|�ε| ≥ θ |�|. (5.3)

The first assertion of the lemma originated in [13,16], is presented, for instance as
Lemma 9.3.6 in [9]. The second one is proved in the same way as the second assertion
of Lemma 4.7 of [11].

Lemma 5.2 Let κ ∈ (0, 1). Then there is a constant q0 = q0(κ, d, δ, ‖b‖) ∈ (0, 1)
such that for any R ∈ (0,∞), Borel set� ⊂ CR satisfying |�| ≥ q0|CR |, and x ∈ BκR

we have

Ex

∫ τR∧R2

0
I�(t, xt ) dt ≥ μ0R

2, (5.4)

where μ0 = μ0(d, δ, ‖b‖, κ) ∈ (0, 1).

Proof As usual we let R = 1. Then observe that by Lemma 2.13 of [10] we have
Ex (τ1 ∧ 1) ≥ ν = ν(d, δ, ‖b‖, κ) > 0. By using Corollary 4.9 we get that

Ex (τ1 ∧ 1) − Ex

∫ τ1∧1

0
I�(t, xt ) dt = Ex

∫ τ1∧1

0
IC1\�(t, xt ) dt

≤ N (|C1| − |�|)1/d0 ≤ N (1 − q0)
1/d0 ≤ N (1 − q0)

1/d0Ex (τ1 ∧ 1),

where the constants N depend only on κ, d, δ, and ‖b‖. We see how to choose q0 to
satisfy (5.4) with a μ0 = μ0(d, δ, ‖b‖, κ) ∈ (0, 1). The lemma is proved. �	

In Lemma 5.3 by q0 we mean the one from Lemma 5.2.

Lemma 5.3 Take Q = Co
ρ(s, y), use the notation Q′, Q′′, Q′+ introduced above,

assume (5.2), and suppose that Borel � ⊂ Q is such that |�| ≥ q0|Q|. Then there is
a constant ν0 > 0, depending only on η, κ, d, δ, ‖b‖, such that for any (t0, x0) ∈ Q′′

Ex0

∫ τ

0
I�(t, xt ) dt ≥ ν0Ex0τ, (5.5)

where τ is the first exit time of (t0 + t, xt ) from Q′+.

Proof Thanks to (5.2) and Remark 5.1 we have s− t0 ∈ (2ρ2, η−1ρ2). Also |y−x0| <

κρ. It follows by Theorem 3.9 that

Px0
(

sup
r∈[0,s−t0]

|xr − y| < ρ, |xs−t0 − y| < κρ
) ≥ ν,

where ν = ν(κ, η, d, δ, ‖b‖) > 0.
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Next. for γ defined as the first exit time of (t0+ t, xt ) from Q′ in light of Lemma 5.2
we have

Ex0

∫ τ

0
I�(t, xt ) dt = Ex0 Iγ>s−t0

∫ τ

γ

I�(t, xt ) dt

≥ Ex0 Iγ>s−t0,|xs−t0−y|<κρExs−t0

∫ τ

0
I�(t, xt ) dt

≥ μ0ρ
2Px0

(
sup

r∈[0,s−t0]
|xr − y| < ρ, |xs−t0 − y| < κρ

) ≥ μ0νρ
2.

On the other hand, the height of Q′+ is (1 + η−1)ρ2, so that (t0 + t, xt ) cannot spend
in Q′+ more time than (1 + η−1)ρ2. This proves the lemma. �	
Theorem 5.4 For any κ ∈ (0, 1) there exists γ ∈ (0, 1) and N, depending only on
κ, d, δ, ‖b‖, such that for any R ∈ (0,∞), q ∈ (0, 1), Borel� ⊂ CR(R2, 0) satisfying
|�| ≥ q|CR(R2, 0)|, and x ∈ BκR we have

GR(�, x) := Ex

∫ τR∧(2R2)

0
I�(t, xt ) dt ≥ N−1q1/γ R2. (5.6)

Proof Self-similar transformations allow us to assume that R = 1 and write G(�, x)
instead of G1(�, x). Then find and fix q0, η, κ ∈ (0, 1), depending only on d, δ, ‖b‖,
such that (5.2) holds, θ from Lemma 5.1 is strictly bigger than 1, and (5.4) holds
whenever |�| ≥ q0|CR |. Clearly we can find such κ ∈ (0, 1) which is larger than the
one in the statement of the theorem.

It is convenient to introduce a function μ(q) as the infimum of the left-hand sides
of (5.6) (with R = 1) over all Borel � ⊂ C1(1, 0) satisfying |�| ≥ q|C1(1, 0)| and
over all x ∈ Bκ . Observe that a combination of Lemma 5.2 and Theorem 3.9, as in
the proof of Lemma 5.3, leads to the conclusion that there exists q0, μ0 ∈ (0, 1),
depending only on η, κ, d, δ, ‖b‖, such that

μ(q) ≥ μ0

for q ∈ [q0, 1].
We will be comparing μ(q ′) and μ(q ′′) for 0 < q ′ < q ′′ < 1 such that

(1 + θ)q ′ ≥ 2q ′′. (5.7)

We take a Borel � ⊂ C1(1, 0) satisfying |�| ≥ q ′|C1(1, 0)| and in the construction
before Lemma 5.1 we replace C1 by C1(1, 0), keep all other notation, and from the
chosen �, κ, η, and q0 (not q ′) we build up the sets �ε and take ε so small that (5.3)
holds. There are two cases:

(i)
∣∣�ε \ C1(1, 0)

∣∣ ≤ (q ′′ − q ′)|C1|,
(ii)

∣∣�ε \ C1(1, 0)
∣∣ > (q ′′ − q ′)|C1|.
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Case (i ). Our goal is to show that

G(�, x) ≥ min
(
μ0, ν0μ(q ′′)

)
, |x | ≤ κ, (5.8)

where ν0 depends only on κ, η, d, δ, ‖b‖.
Observe that, if |�| ≥ q0|C1|, by definition G(�, x) ≥ μ(q0) ≥ μ0 for |x | ≤ R.

Hence, we may assume that

|�| < q0|C1|.

In that case define

�̂ε = �ε ∩ Co
1 (1, 0).

Notice that by definition and Lemma 5.1

q ′|C1| ≤ |�| ≤ θ−1|�ε|.

Moreover, by assumption

|�ε| = ∣∣�ε \ C1(1, 0)
∣∣ + |�̂ε| ≤ (q ′′ − q ′)|C1| + |�̂ε|.

Due to (5.7), it follows that

|�̂ε| ≥ q ′′|C1|,

so that

G(�̂ε, x) ≥ μ(q ′′), |x | ≤ κ.

We now estimate G(�, x) from below by means of G(�̂ε, x) using Lemma 5.3.
Since �ε ⊂ �′′

ε , the closed set �ε is covered by the family {Q′′ : Q ∈ B, |Q| ≥ ε}.
Then there is finitely many Q(1), ..., Q(n) ∈ B such that |Q(i)| ≥ ε, i = 1, ..., n,
and

�ε ⊂
n⋃

i=1

Q′′(i) =: �ε.

Then for (t, x) ∈ �ε define i(t, x) as the first i ∈ {1, ..., n} for which (t, x) ∈
Q′′(i). Also set Q′+(0) = C2,1 and i(t, x) = 0 if (t, x) ∈ ∂C2,1. Now define recur-
sively γ 0 = 0, τ 1 as the first time after γ 0 when (t, xt ) exits from C2,1 \ �ε, γ 1

as the first time after τ 1 when (t, xt ) exits from Q′+(i(τ 1, xτ 1)), and generally, for
k = 2, 3, ... define τ k as the first time after γ k−1 when (t, xt ) exits from C2,1 \ �ε,
γ k as the first time after τ k when (t, xt ) exits from Q′+(i(τ k, xτ k )). It is easy to check
that so defined τ k and γ k are stopping times and, since |Q(i)| ≥ ε and the trajectories
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of (t, xt ) are continuous, τ k ↑ τ1 ∧ 2 as k → ∞. Furthermore, (a.s.) all the τ k’s equal
τ1 ∧ 2 for all large k.

For a domain Q ⊂ R
d+1 we denote by γ (s, Q) the first exit time of (s + t, xt )

from Q and by the strong Markov property obtain

G(�, x) ≥
∞∑
k=1

Ex

∫ γ k

τ k
I�(t, xt ) dt

=
∞∑
k=1

Ex Ex
τk

∫ γ (s,Q′+(i))

0
I�(s + t, xt ) dt

∣∣∣
i=i(τ k ,x

τk ),s=τ k
.

We estimate the interior expectation from below by Lemma 5.3 and get

G(�, x) ≥ ν0

∞∑
k=1

Ex Ex
τk

∫ γ (s,Q′+(i))

0
I�ε(s + t, xt ) dt

∣∣∣
s=τ k ,i=i(τ k ,x

τk )

≥ ν0

∞∑
k=1

Ex Ex
τk

∫ γ (s,Q′+(i))

0
I�ε (s + t, xt ) dt

∣∣∣
s=τ k ,i=i(τ k ,x

τk )

= ν0

∞∑
k=1

Ex

∫ γ k

τ k
I�ε (t, xt ) dt = ν0G(�ε, x) ≥ ν0G(�̂ε, x) ≥ ν0μ(q ′′).

This proves (5.8).
Case (ii). Here the goal is to prove that

G(�, x) ≥ μ0νηn(q ′′ − q ′)n, |x | ≤ κ, (5.9)

where ν > 0 and n ≥ 1 depend only on d, δ, ‖b‖, η, and κ .
First we claim that for some (t, x) ∈ �ε it holds that t < q ′ − q ′′ + 1. Indeed,

otherwise�ε\C1(1, 0) ⊂ Cq ′′−q ′,1(q ′−q ′′+1, 0) and |�ε\C1(1, 0)| ≤ (q ′′−q ′)|C1|.
It follows that there is a cylinder

Q = Co
ρ(s, y) ∈ B

such that Q′ contains points in the half-space t < q ′ − q ′′ + 1. Since q ′ < q ′′, we
have q ′ − q ′′ + 1 < 1, and since Q′ is adjacent to Q ⊂ C1(1, 0), this implies that the
height of Q′ is at least q ′′ − q ′, that is,

ρ2η−1 ≥ q ′′ − q ′, ρ2 ≥ η(q ′′ − q ′). (5.10)

On the other hand, Q ⊂ C1(1, 0), s > 1, and ρ < 1.
Moreover, by construction, |� ∩ Q| ≥ q0|Q| and by Lemma 5.2

Ex

∫ τ

0
I�(s + t, xt ) dt ≥ μ0ρ

2 ≥ μ0η(q ′′ − q ′)
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if |x − y| ≤ κρ, where τ is the first exit time of (s + t, xt ) from Cρ(s, y). Now by
Theorem 3.9 for x ∈ Bκ

Ex

∫ τ2,1

0
I�(t, xt ) dt ≥ Ex Iτ1>s,|xs−y|≤κρExs

∫ τ

0
I�(s + t, xt ) dt

≥ μ0η(q ′′ − q ′)Px
(
τ1 > s, |xs − y| ≤ κρ

) ≥ N−1ρνμ0η(q ′′ − q ′).

This proves (5.9).
By combining the two cases (i) and (ii) we conclude that

G(�, x) ≥ min
(
μ0, ν0μ(q ′′), μ0νηn(q ′′ − q ′)n

)
, |x | ≤ κ,

and the arbitrariness of � allows us to conclude that

μ(q ′) ≥ min
(
μ0, ν0μ(q ′′), μ0νηn(q ′′ − q ′)n

)
, (5.11)

whenever (5.7) holds. Observe that (5.11) is identical to (9.3.10) of [9] and by literally
repeating what is in [9], just replacing ξ there with our θ , we come to (5.6). The
theorem is proved. �	

The following three results are derived fromTheorem 5.4 in the sameway as similar
results are derived from Theorem 4.1 of [11].

Corollary 5.5 For any κ ∈ (0, 1) there exists N = N (d, δ, ‖b‖, κ) such that, for any
R ∈ (0,∞), x ∈ BκR, and closed set � ⊂ CR(R2, 0), the probability that the process
(t, xt ) with x0 = x reaches � before exiting from C2R2,R is greater than or equal to
N−1(|�|/|CR|)μ−1/d0 :

Px (τ� < τ2R2,R) ≥ N−1(|�|/|CR|)μ−1/d0 , (5.12)

where τ� is the first time (t, xt ) hits�, τ2R2,R is the first exit time of (t, xt ) fromC2R2,R,
μ = 1/γ , and γ is taken from Theorem 5.4.

Corollary 5.6 For any Borel nonnegative f vanishing outside CR(R2, 0) and x ∈ BκR

∫
CR(R2,0)

f 1/(2μ)(t, y) dydt ≤ N Rd−1/μ
(
Ex

∫ τR2,R

0
f (t, xt ) dt

)1/(2μ)

,

where N = N (d, δ, ‖b‖, κ).

Theorem 5.7 Let p ∈ [d0,∞), u ∈ W 1,2
p,loc(C2,1)∩C(C̄2,1), and c ∈ L p(C2,1) c ≥ 0.

Then
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( ∫
C1,1(1,0)

|D2u|1/(2μ) dxdt
)2μ ≤ N sup

∂ ′C2,1

|u|

+ N
( ∫

C2,1

|∂t u + Lu − cu|p dxdt
)1/p

, (5.13)

where ∂t = ∂/∂t , ∂ ′C2,1 = ∂C2,1 \ ({0} × B1), μ is taken from Corollary 5.5 and N
depends only on d, δ, ‖b‖, p, and ‖c‖L p(C2,1).

It is worth emphasizing that in (5.13) the restriction on p is p ≥ d0 and d0 < d. If
a depended on t , p would be > d.

Theorem 5.7 is similar to Theorem 9.4.1 of [9] and in the same way as Theorem
9.4.9 of [9] is derived from it (by using a simple trick) one derives from Theorem 5.7
the following.

Theorem 5.8 Let p ∈ [d0,∞), u ∈ W 1,2
p,loc(C1) ∩ C(C̄1), and c ∈ L p(C1), c ≥ 0.

Then

( ∫
C1

|D2u|1/(2μ) dxdt
)2μ ≤ N

( ∫
C1

|∂t u + Lu − cu|p dxdt
)1/p + N sup

∂ ′C1

|u|,

where ∂ ′C1 = ∂C1 \ ({0} × B1), μ is taken from Corollary 5.5 and N depends only
on d, δ, ‖b‖, p, and ‖c‖L p(C1).

In the next section we will need the following.

Theorem 5.9 Let κ, η, ζ, q ∈ (0, 1), R ∈ (0,∞), T ∈ [ηR2, η−1R2], and closed
� ⊂ CT ,R be such that |� ∩ CζT ,R((1 − ζ )T , 0)| ≥ q|CζT ,R |. Then there exists
p0 = p0(κ, η, ζ, q, d, δ, ‖b‖) > 0 such that, for (t0, x0) ∈ C(1−ζ )T ,κR,

Px0(τ� < τT ,R) ≥ p0, (5.14)

where τ� is the first time (t0 + t, xt ) hits � and τT ,R is its first exit time from CT ,R.

Proof Asusual assume that R = 1. Then observe that one can chooseρ > 0 depending
only on d, η, ζ , and q and one can find (t0, x0) ∈ CT ,1 with t0 ≥ ρ2 + (1− ζ )T such
thatCρ(t0+ρ2, x0) ⊂ CT ,1 and |�∩Cρ(t0+ρ2, x0)| ≥ q̄|Cρ |, where q̄ > 0 depends
only on d, η, ζ , and q. Then by Corollary 5.5, for x ∈ κBρ(x0) the Px -probability that
the process (t0 + t, xt ) will hit � before exiting from C2ρ2,ρ(t0, x0) is estimated from
below by a strictly positive constant depending only on κ, q̄, d, δ, ‖b‖. After that it
only remains to invoke Theorem 3.9 recalling that t0 ≥ ρ2 + (1 − ζ )T . The theorem
is proved. �	

6 Harnack inequality, Hölder continuity of X-caloric functions, and
some other results

Safonov, [17], considered the case of the coefficients of L so regular that X -harmonic
functions are sufficiently smooth and gave the estimate of the Hölder norm of X -
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harmonic functions and the estimate of the Harnack constant for them independent
of the imposed regularity of L in terms of only d, δ, ‖b‖. We emphasize that ‖b‖ is a
bound of the Ld -norm of b. Our case is not covered by [17], since the origin of our
X is unknown and it is unknown if and in which sense it can be approximated by
processes with regular coefficients. At the same time some arguments here are quite
close to those in [17] as well as to those in [9,13,16].

Definition 6.1 If Q is a set in R
d+1 = {(t, x) : t ∈ R, x ∈ R

d} and u is a bounded
Borel function on Q, we call it caloric (relative to the process X ) if for any (s, y) and
T , R ∈ (0,∞) such that C̄T ,R(s, y) ⊂ Q and any (t0, x0) ∈ C := CT ,R(s, y) we
have

u(t0, x0) = Ex0u(t0 + τC , xτC ),

where τC is the first exit time of (t0 + t, xt ) from C .
If D is a set in R

d and u is a bounded Borel function on D, we call it harmonic
(relative to the process X ) if for any y and R ∈ (0,∞) such that B̄R(y) ⊂ D and any
x ∈ BR(y) we have

u(x) = Exu(xτR(y)),

where τR(y) is the first exit time of xt from BR(y).

Remark 6.1 If u is harmonic in D and B̄R(y) ⊂ D and x ∈ BR(y), then by using the
Markov property of X we find

u(x) = Ex E
(
u(xτR(y)) | NT

) = Ex IτR(y)≤T u(xτR ) + Ex IτR(y)>T ExT u(xτR(y))

= Ex IτR(y)≤T u(xτR(y)) + Ex IτR(y)>T u(xT ) = Exu(xτR(y)∧T )

which implies that u is a caloric function in R × D. Also if u is caloric in Q,
C̄T ,R(s, y) ⊂ Q and (t0, x0) ∈ C := CT ,R(s, y), then by the strong Markov property
for any stopping time τ ≤ τC we have

u(t0, x0) = Ex0E
(
u(t0 + τC , xτC ) | Nτ

) = Ex0u(t0 + τ, xτ ).

Here is the statement of the Harnack inequality.

Theorem 6.1 Let θ > 1, let R ∈ (0,∞], and let u be a nonnegative caloric function
in C̄θR2,R. Then there exists a constant N , which depends only on θ , δ, ‖b‖, and d,
such that

u(R2, 0) ≤ Nu(0, x) (6.1)

whenever |x | ≤ R/2.
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Proof As usual without loss of generality wemay concentrate on R = 2. Then the case
of general θ > 1 is reduced to that of θ ≥ 2 by appropriate change of the time variable
t → τ(t). One more observation that the best constant N is obviously decreasing in
θ , allows us to restrict our attention to the case of θ = 2.

In case R = θ = 2, to exclude a trivial situation, additionally assume that

u(4, 0) > 0.

For κ = 1/2, η = 1/2, we take N and ν from Theorem 3.9, call this N N1, and,
having in mind Theorem 3.8, find γ ∈ (0, 1) close to 1 and ε > 0 close to zero, for
which

1 − ε ≥ q(γ )2−1 + [
1 − q(γ )

]
2ν . (6.2)

Next, for r ∈ [0, 1), introduce

μ(r) = u(4, 0)(1 − r)−ν, n(r) = sup{u, C̄r (4, 0)}
(
C̄0(4, 0) := {

(4, 0)
})

,

and define r0 as the greatest number in r ∈ [0, 1) satisfying

n(r) ≥ μ(r).

Such a number does exist because n(0) = μ(0), μ(r) → ∞ as r ↑ 1, and n(r)
is bounded, increasing, and right continuous. Choose (tε, xε) ∈ C̄r0(4, 0) such that
n(r0) ≤ (1 + ε)u(tε, xε) and consider the cylinder

Q :=
{
(t, x) : 0 ≤ t − tε <

(1 − r0)2

4
, |x − xε| <

1 − r0
2

}
.

As is easy to see Q̄ ⊂ C̄r1(4, 0), where r1 = (1 + r0)/2. By the definition of r0,
this implies that

sup
Q̄

u < μ(r1) = u(4, 0)
(1 − r0

2

)−ν ≤ 2νn(r0).

We claim that owing to this and (6.2),

∣∣Q ∩ {
u > n(r0)/2

}∣∣ ≥ (1 − γ )|Q|. (6.3)

To argue by contradiction, assume (6.3) is false. Then

∣∣Q ∩ {
u ≤ n(r0)/2

}∣∣ > γ |Q|

and there is a closed set � ⊂ Q ∩ {
u ≤ n(r0)/2

}
such that |�| > γ |Q|. Introduce τ�

as the first time the process (tε + t, xt ) hits � and τQ as the first time it exits from Q.
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It follows by Remark 6.1 and Theorem 3.8 that (note that n(r0)/2 ≤ supQ̄ u)

u(tε, xε) = Exε Iτ�<τQu(tε + τ�, xτ� ) + Exε Iτ�≥τQu(tε + τQ, xτQ )

≤ Pxε (τ� < τQ)n(r0)/2 + (1 − Pxε (τ� < τQ)) sup
Q̄

u

≤ q(γ )n(r0)/2 + (1 − q(γ )) sup
Q̄

u

≤ q(γ )n(r0)/2 + (1 − q(γ ))2νn(r0).

We now have

n(r0) ≤ (1 + ε)n(r0)
[
q(γ )2−1 + (1 − q(γ ))2ν

] ≤ (1 − ε2)n(r0),

which is impossible. This proves (6.3).
Next we apply Theorem 5.9 and get that

u(tε, x) ≥ p0n(r0)2
−1

if |x−xε| ≤ (1−r0)4−1, where p0 = p0(d, δ, ‖b‖, γ ) > 0. After that it only remains
to apply Theorem 3.9 to conclude that for |x | ≤ 1 we have

u(0, x) ≥ 1

2
p0n(r0)N

−1
1

(1 − r0
4

)ν ≥ 2−2ν−1 p0N
−1
1 u(4, 0).

The theorem is proved. �	
Since harmonic function are also caloric we have the following.

Corollary 6.2 Let R ∈ (0,∞] and let u be a nonnegative harmonic function in B2R.
Then for any x, y ∈ BR we have u(x) ≤ Nu(y), where N = N (d, δ, ‖b‖).
Corollary 6.3 Let R ∈ (0,∞] and let u ∈ W 2

d0
(B2R) be a nonnegative function satis-

fying Lu = 0 (a.e.) in B2R. Then for any x, y ∈ BR we have u(x) ≤ Nu(y), where
N = N (d, δ, ‖b‖).

Indeed, by Theorem 1.3 of [11] Itô’s formula is applicable and it shows that u is
harmonic in B2R .

In the next part of the section we deal with Hölder norm estimates for harmonic
functions and potentials. If z1 = (t1, x1) and z2 = (t2, x2), we define

ρ(z1, z2) = |x1 − x2| + |t1 − t2|1/2 (6.4)

and call ρ(z1, z2) the parabolic distance between z1 and z2.

Lemma 6.4 Let R ∈ (0,∞] and let u be a caloric function in C̄2R. Then there exist
constants N and

α0 ∈ (0, 1),
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depending only on δ, d, ‖b‖, such that, for any α ∈ (0, α0] and z1, z2 ∈ CR, we have

∣∣u(z1) − u(z2)
∣∣ ≤ N R−αρα(z1, z2) sup

(|u|, C̄2R
)
. (6.5)

Furthermore, sup(|u|, C̄2R) in (6.5) can be replaced by osc(u, C̄2R), where we use
the notation

osc(g, �) = osc
�

g = sup
�

g − inf
�

g.

Proof The case that R = ∞ is obtained by passing to the limit and the case R ∈ (0,∞)

reduces to R = 1 by using self-similarity. In that case for r ∈ (0, 2], set

w(r) = osc(u, C̄r ), m(r) = inf
C̄r

u, M(r) = sup
C̄r

u,

μ(r) = (1/2)
(
m(r) + M(r)

)
.

Take r ≤ 1/2 and suppose that

∣∣C2r ∩ {
u ≤ μ(r)

}∣∣ ≥ (1/2)|C2r |.

Then there is a closed � ⊂ C2r ∩ {
u ≤ μ(r)

}
such that

∣∣C3r2,r (r
2, 0) ∩ �

∣∣ ≥ (1/4)|C3r2,r | (6.6)

By Theorem 5.9 for any (t0, x0) ∈ C̄r we have

Px0(τ� < τ2r ) ≥ p0,

where p0 > 0 depends only on δ, d, ‖b‖, τ� is the first time (t0 + t, xt ) hits �, τ2r is
its first exit time from C2r . Then by Remark 6.1 for τ = τ� ∧ τ2r

u(t0, x0) = Ex0u(t0 + τ, xτ ).

= Ex0u(t0 + τ�, xτ� )Iτ�<τ2r + Ex0u(t0 + τ2r , xτ2r )Iτ�≥τ2r

≤ μ(r)p0 + M(2r)(1 − p0)

(we used that μ(r) ≤ M(2r)). It follows that

M(r) ≤ p0
1

2

(
m(r) + M(r)

) + (1 − p0)M(2r),

(
1 − p0

2
)M(r) ≤ p0

2
m(r) + (1 − p0)M(2r).

Adding to this the obvious inequality

( p0
2

− 1)m(r) ≤ − p0
2
m(r) + (p0 − 1)m(2r),
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we get

(
1 − p0

2

)
w(r) ≤ (1 − p0)w(2r), w(r) ≤ εw(2r), (6.7)

where ε < 1, ε = ε(d, ||b||, δ). We may, certainly, assume that ε > 1/2.
We have proved (6.7) assuming that (6.6) is true. However if (6.6) is false, then −u

satisfies an inequality similar to (6.6) and this leads to (6.7) again.
Therefore, w(r) ≤ εw(2r) for all r ≤ 1/2. Iterations then yield

w(r) ≤ ε2w(4r) for r ≤ 1/4, ..., w(r) ≤ εnw(2nr) for r ≤ 2−n .

If r ≤ 1/2 and we take n := �− log2 r�, then r ≤ 2−n and

w(r) ≤ εnw(2nr) ≤ ε−1rαw(1) ≤ 2ε−1rα sup
(|u|, C̄1

)
,

where α = − log2 ε ∈ (0, 1). This provides an estimate of the oscillation of u in any
Cr with r ≤ 1/2. The same estimate obviously holds for the oscillation of u in any
Cr (t, x) ⊂ C2 as long as r ≤ 1/2.

Now take z1 = (t1, x1), z2 = (t2, x2) ∈ C1 such that r := ρ(z1, z2) ≤ 1/2 and
define

t = t1 ∧ t2, x = (x1 + x2)/2.

Then we have zi ∈ C̄R(t, x), i = 1, 2, and

∣∣u(z1) − u(z2)
∣∣ ≤ 2ε−1rα sup

(|u|, C̄1(t, x)
)

≤ 2ε−1ρα(z1, z2) sup
(|u|, C̄2

)
.

In the case that ρ(z1, z2) ≥ 1/2 we have

∣∣u(z1) − u(z2)
∣∣ ≤ 2 sup

(|u|, C̄2
)

≤ 21+αρα(z1, z2) sup
(|u|, C̄2

)
.

Thus, N = 21+α+2ε−1 in (6.5) is always agoodchoicewith R = 1andα = α(δ, d)

found above. One can take any smaller α as well since ρ(z1, z2) ≤ N (d)R. The lemma
is proved. �	

Theorem 6.5 Let R ∈ (0,∞), p ≥ d0, p > d/2+1, let g be a Borel bounded function
on C̄2R and f ∈ L p(C2R). For (t0, x0) ∈ C2R define

u(t0, x0) = Ex0

∫ γ2R

0
f (t0 + t, xt ) dt + Ex0g(t0 + γ2R, xγ2R ),
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where γ2R is the first exit time of (t0 + t, xt ) from C2R. Then there exists a constant
N , which depends only on p, d, ‖b‖, and δ, such that

∣∣u(z1) − u(z2)
∣∣ ≤ N

(
R−αρα(z1, z2) sup

C̄2R

|g| + R2−(d+2)/p‖ f ‖L p(C2R)

)
(6.8)

for z1, z2 ∈ CR and α ∈ (0, α0].
Proof Parabolic scalings allow us to only concentrate on the case that R = 1. After
that it only remains to observe that h(t0, x0) := Ex0g(t0 + γ2R, xγ2R ) is a caloric
function, to which Lemma 6.4 is applicable, and u(t0, x0) − h(t0, x0) is estimated by
Corollary 4.9. The theorem is proved. �	

Here is a version of Theorem 6.5 which sometimes is slightly more convenient.

Theorem 6.6 Under the conditions of Theorem 6.5 there exists a constant N , which
depends only on p, d, ‖b‖, and δ, such that

∣∣u(z1) − u(z2)
∣∣ ≤ N R−βρβ(z1, z2)

(
sup
C̄2R

|u| + R2−(d+2)/p‖ f ‖L p(C2R)

)
(6.9)

for z1, z2 ∈ CR, where

β = α(2p − d − 2)

α p + 2p − d − 2

and α = α0(δ, d) is the constant from Theorem 6.5 (or Lemma 6.4).

Proof Fix z1, z2 ∈ CR . Since there is the sup norm of u on the right, it suffices to
prove (6.9) assuming that

ξ :=
( R

ρ(z1, z2)

)β/α ≥ 4.

Then set

R̄ = ξρ(z1, z2).

If zi = (ti , xi ), i = 1, 2, without losing generality we may assume that t1 ≤ t2.
Then for

|x1| + R̄ ≤ 2R and t1 + R̄2 ≤ 4R2 (6.10)

we have

z1, z2 ∈ C̄ R̄/4(z1) ⊂ C̄ R̄(z1) ⊂ C̄2R . (6.11)

123



196 N. V. Krylov

Since z1 ∈ C̄R , we have |x1| ≤ R and t1 ≤ R2 and, for any of the inequalities (6.10)
to go wrong, we have to have R̄ ≥ R, that is,

( R

ρ(z1, z2)

)β/α−1 ≥ 1,

which is only possible if ρ(z1, z2) ≥ R when (6.9) holds trivially with N = 2.
Therefore, in what follows we assume (6.11) and that R̄ ≤ R.

Then by Theorem 6.5 applied to CR̄(z1) in place of CR we obtain

∣∣u(z1) − u(z2)
∣∣ ≤ N

(
R̄−αρα(z1, z2) sup

C2R

|u| + R̄2−(d+2)/p‖ f ‖L p(C2R)

)
,

where the right-hand side is transformed to that of (6.9) by simple arithmetics. The
theorem is proved. �	
Corollary 6.7 Let R ∈ (0,∞), p ≥ d0, p > d/2 + 1, and let u ∈ W 1,2

p (C2R). Define
f = ∂t u + Lu. Then there exists a constant N , which depends only on p, d, ‖b‖, and
δ, such that (6.9) holds for z1, z2 ∈ CR with the same β as in (6.9).

To prove this it suffices to follow the path laid down in the proof of Theorem 4.13.
In the time-homogeneous situation we have a similar result.

Theorem 6.8 Let R ∈ (0,∞), p ≥ d0, let g be a Borel bounded function on B̄2R and
f ∈ L p(B2R). For x0 ∈ B2R define

u(x0) = Ex0

∫ τ2R

0
f (xt ) dt + Ex0g(xτ2R ),

(recall that τ2R is the first exit time of xt from B2R). Then there exists a constant N ,
which depends only on p, d, ‖b‖, and δ, such that

∣∣u(x1) − u(x2)
∣∣ ≤ N R−α|x1 − x2|α

(
sup
B̄2R

|u| + R2−d/p‖ f ‖L p(B2R)

)
(6.12)

for x1, x2 ∈ BR and α = α(d, δ, ‖b‖) ∈ (0, 1).

This theorem is proved in the same way as Theorem 6.6 by using the fact that
h(x0) := Ex0g(xτ2R ) is a caloric function, to which Lemma 6.4 is applicable, and
u − h admits an estimate by Theorem 3.2.

Similarly to Corollary 6.7 we have the following corollary of Theorem 6.8.

Corollary 6.9 Let R ∈ (0,∞), p ≥ d0, and let u ∈ W 2
p(B2R). Define f = Lu. Then

there exists a constant N , which depends only on p, d, ‖b‖, and δ, such that (6.12)
holds for x1, x2 ∈ BR with the same α as in (6.12).

Wefinish the paper by proving a result showing that the functionu fromTheorem6.8
is an Ld0 -viscosity solution of the equation Lu = − f in B2R .
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Theorem 6.10 Let u be as in Theorem 6.8. Then for any φ ∈ W 2
d0

(B2R) and any point
x0 ∈ B2R at which u − φ has local maximum we have

lim
ε↓0 esssupBε(x0)

(Lφ + f ) ≥ 0. (6.13)

The proof of this theorem is based on the following.

Lemma 6.11 There is a constant N = N (d, δ, ‖b‖) such that for any Br (x) satisfying
B̄r (x) ⊂ B2R and φ ∈ W 2

d0
(Br (x)) we have on Br (x) that

u ≤ φ + Nr2−d/d0‖(Lφ + f )+‖Ld0 (Br (x)) + max
∂Br (x)

(u − φ)+. (6.14)

Proof For x0 ∈ Br (x) by strong Markov property, with τ defined as the first exit time
of xt from Br (x), and Itô’s formula we have

u(x0) = Ex0

( ∫ τ

0
f (xt ) dt + u(xτ )

)
,

φ(x0) = Ex0

( ∫ τ

0
(−Lφ)(xt ) dt + φ(xτ )

)
.

Hence,

u(x0) − φ(x0) ≤ Ex0

( ∫ τ

0
(Lφ + f )+(xt ) dt + (u − φ)+(xτ )

)

and (6.14) follows from Theorem 3.2. The lemma is proved. �	
Proof of Theorem 6.10 Let x0 ∈ B2R be a point at which u − φ has local maximum.
Then for ε > 0 and all small r > 0 for

φε,r (x) = φ(x) − φ(x0) + u(x0) + ε(|x − x0|2 − r2)

we have that

max
∂Br (x0)

(u − φε,r )+ = 0.

Hence, by Lemma 6.11

εr2 = (u − φε,r )(x0) ≤ N1r
2−d/d0‖(Lφε + f )+‖Ld0 (Br (x0)),

where φε = φ + ε|x − x0|2. Here (Lφε + f )+ ≤ (Lφ + f + 2εtr a)+ + Nεr |b| and
in light of Hölder’s inequality

‖(Lφε + f )+‖Ld0 (Br (x0)) ≤ ‖(Lφ + f + 2εtr a)+‖Ld0 (Br (x0))

+N2εr
d/d0‖b‖Ld (Br (x0)).
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Here the last termmultiplied by N1r2−d/d0 is smaller than (1/2)εr2 for all sufficiently
small r (depending on how fast ‖b‖Ld (Br (x0)) → 0). Therefore, for such r

(1/2)εr2 = (u − φε,r )(x0) ≤ Nr2−d/d0‖(Lφ + f + 2εtr a)+‖Ld0 (Br (x0))

≤ Nr2 esssup
Br (x0))

(Lφ + f + 2εtr a)+,

esssup
Br (x0))

(Lφ + f + 2εtr a) > 0,

and the last relation implies (6.13) after setting r , ε ↓ 0. The theorem is proved. �	
Remark 6.2 Let D be a bounded domain in Rd , g be a Borel bounded function on Rd ,
and f ∈ Ld0(D). Introduce

u(x) = Ex

( ∫ τ

0
f (xt ) dt + g(xτ )

)
,

where τ is the first exit time of xt from D. Then by the strong Markov property for
any domain G ⊂ D

u(x) = Ex

( ∫ γ

0
f (xt ) dt + u(xγ )

)
,

where γ is the first exit time of xt from G. Therefore, Theorem 6.10 implies that u is
an Ld−

0
viscosity solution of Lu + f = 0 in D. It is Hölder continuous in D in light

of Theorem 6.8.
Its boundary behavior can be investigated by using, for instance, Theorem 4.10 of

[11], which says that if 0 ∈ ∂D and for some constants ρ, γ > 0 and any r ∈ (0, ρ)

we have |Br ∩ Dc| ≥ γ |Br |, then there exists β = β(d, δ, ‖b‖, γ ) > 0 such that, for
any nonnegative h ∈ Ld0(D) and x ∈ D,

Ex

∫ τ

0
h(xt ) dt ≤ N |x |β‖h‖Ld0 (D), (6.15)

where N depends only on d, δ, ‖b‖, γ, ρ, and the diameter of D.
The reader can find numerous properties of L p-viscosity solutions in elliptic and

parabolic settings in articles initiated by [4], references to many of them can be found
in [9].
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