
Probability Theory and Related Fields (2021) 179:835–888
https://doi.org/10.1007/s00440-020-01002-8

Quantum SL2, infinite curvature and Pitman’s 2M-X
theorem

François Chapon1 · Reda Chhaibi1

Received: 5 November 2019 / Revised: 2 July 2020 / Accepted: 10 September 2020 /
Published online: 20 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The classical theorem by Pitman states that a Brownianmotionminus twice its running
infimum enjoys the Markov property. On the one hand, Biane understood that Pit-
man’s theorem is intimately related to the representation theory of the quantum group
Uq (sl2), in the so-called crystal regime q → 0.On the other hand, Bougerol and Jeulin
showed the appearance of exactly the same Pitman transform in the infinite curvature
limit r → ∞ of a Brownian motion on the hyperbolic space H

3 = SL2(C)/SU2.
This paper aims at understanding this phenomenon by giving a unifying point of view.
In order to do so, we exhibit a presentation U�

q (sl2) of the Jimbo–Drinfeld quantum
group which isolates the role of curvature r and that of the Planck constant �. The
simple relationship between parameters is q = e−r . The semi-classical limits � → 0
are the Poisson–Lie groups dual to SL2(C) with varying curvatures r ∈ R+. We also
construct classical and quantum random walks, drawing a full picture which includes
Biane’s quantum walks and the construction of Bougerol–Jeulin. Taking the curvature
parameter r to infinity leads indeed to the crystal regime at the level of representa-
tion theory (� > 0) and to the Bougerol–Jeulin construction in the classical world
(� = 0). All these results are neatly in accordance with the philosophy of Kirillov’s
orbit method.
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Notation

L(X) is the probability measure which is the law of a random variable X . Equality

in law between two random variables X and Y is written X
L= Y . If X = (Xt )t∈T is a

process indexed by T, then its natural filtration is denoted F X . We will only consider
T = N for discrete time, and T = R+ for continuous time.

The Vinogradov symbol� is equivalent to the O notation: f � g ⇔ f = O(g).
Moreover, if the implicit constant depends on other quantities, they will be indicated
by subscripts.

If V is a finite dimensional vector space, then Tr : End(V )→ C is the usual trace,
while tr := Tr

dim V is the normalized trace. V ∗ is the dual vector space, and the duality
pairing is denoted by 〈·, ·〉. Moreover, if G is a group, then its Lie algebra i.e. the
tangent space at the identity is written TeG = g.
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Quantum SL2, infinite curvature and Pitman’s 2M-X theorem 837

Throughout the paper, � > 0 will denote a positive real number, which will play
the role of Planck constant. For any � ∈ R, we write �� := �
�/�� ∈ �Z.

1 Statement of the problem

In order to state the problem at the end of this section, we start by presenting the
related body of work while distilling the necessary geometric and representation-
theoretic notions as we progress. To that endeavor, we adopt the informal style of a
survey, which will not be faithful nor all-encompassing. Also, certain prior results
will be slightly reformulated, in order to reflect a personal point of view and lay the
groundwork for this paper.

While we are focused on relating the representation theory of quantum groups and
(possibly non-commutative) geometry, our starting point is Pitman’s theorem from
probability theory [30]. It will play the role of Ariadne’s thread while navigating
through the maze created from the interaction of these various fields.

Theorem 1.1 (Pitman’s 2M-XTheorem,Discrete version)Let (Xn; n ∈ N)be a simple
random walk in Z, i.e. increments are independent and

∀n ∈ Z+, P (Xn+1 − Xn = 1) = 1− P (Xn+1 − Xn = −1) = 1

2
.

Then the process
(
�∞n ; n ∈ N

)
defined as

�∞n := Xn − 2 inf
0≤k≤n Xk

is a Markov chain on N with transition kernel given by Q:

Q (λ, λ+ 1) = λ+ 2

2(λ+ 1)
, Q (λ, λ− 1) = λ

2(λ+ 1)
. (1.1)

Moreover, the missing information is stationary and equidistributed in law in the sense
that for all n ∈ N:

L
(
Xn | F�∞

n , �∞n = λ
)
= 1

λ+ 1

∑

−λ≤k≤λ
λ−k even

δk .

Pitman’s original proof uses the combinatorics of random walks and is formulated
in terms of the running maximum instead of the running infimum. Both are equivalent
upon replacing X by−X , hence the common name of “Pitman’s 2M − X Theorem”,
where the capital letter M stands for “Maximum”.
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838 F. Chapon, R. Chhaibi

From the discrete version, one obtains a Brownian version thanks to a simple
application of Donsker’s invariance principle and by computing the diffusive rescaling
of the Markov kernel Q.

Theorem 1.2 (Pitman’s 2M-X Theorem, Continuous version) Let (Xt ; t ∈ R+) be a
standard Brownian motion. Then the process

(
�∞t ; t ∈ R+

)
defined as

�∞t := Xt − 2 inf
0≤s≤t Xs

is a Bessel 3 process, that is to say it has the same distribution as

�0
t :=

√
X2
t + Y 2

t + Z2
t ,

where (X ,Y , Z) is a Euclidean Brownian motion on R
3.

Moreover, the missing information is stationary and equidistributed in law in the
sense that:

L
(
Xt | F�∞

t , �∞t = λ
)
= 1

2λ
1[−λ,λ](x)dx .

Remark 1.3 The reader trained in probability theory knows that theMarkov property is
very fragile and can be easily broken, while

(− inf0≤s≤t Xs; t ∈ R+
)
is the archetype

of non-Markovian behavior. As such, Pitman’s theorem is rather peculiar. It is also
very rigid, as

(
Xt − k inf

0≤s≤t Xs; t ∈ R+
)

enjoys the Markov property only for k = 0, 1, and 2 [28] ; the latter case being by far
the most interesting in our opinion.

In fact, direct proofs of Theorem 1.2 at the level of continuous-time stochastic
processes are available. Jeulin [35] has an approach that uses filtration enlargement
techniques and [34] makes use of intertwinings of Markov kernels. These two proofs
led to a flurry of very interesting probabilistic developments. For example, see the
essay [29] for filtration enlargement, and [12] for intertwining.

If other proofs and generalizations abound, we want to focus on two specific
approaches where the complex group SL2(C) plays an important role. The approach
by Bougerol and Jeulin [9] is based on a geometric construction while the approach
by Biane [6,8] is based on the representation theory of that group. The goal of this
paper is to exhibit a direct relationship between the two, via semi-classical limits. Let
us mention the recent paper [1] which is similar in spirit to ours as it analyzes the
radial part of Brownian motion on H

3 while stressing the role of Poisson geometry.
The Lie algebra of SU2 is

su2 := TeSU2 = SpanR

(
Xg,Yg, Zg

)
(1.2)
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Quantum SL2, infinite curvature and Pitman’s 2M-X theorem 839

where
(
Xg,Yg, Zg

)
is the basis of anti-Hermitian matrices:

Xg =
(
i 0
0 −i

)
; Yg =

(
0 i
i 0

)
; Zg =

(
0 1
−1 0

)
,

which are i times the so-called Pauli matrices. Our use of the subscript ·g is due to
the fact that the symbols X , Y and Z will often be used to refer to other objects. The
complexification of su2 is the Lie algebra of SL2(C):

sl2 := TeSL2(C) = su2 ⊗ C = SpanC (E, F, H) , (1.3)

where:

H =
(
1 0
0 −1

)
; E =

(
0 1
0 0

)
; F =

(
0 0
1 0

)
. (1.4)

1.1 Bougerol and Jeulin’s approach via curvature deformation

In the paper [9], Bougerol and Jeulin take a parameter r > 0 and consider a left-
invariant process gr = (

grt ; t ≥ 0
)
on the symmetric space H

3 = SL2(C)/SU2.
Because of the Gram–Schmidt decomposition, we make the identification H

3 =
SL2(C)/SU2 ≈ N A, where N A is the subgroup of lower triangular matrices with
positive diagonals. More precisely:

A :=
{(

a 0
0 a−1

)
| a ∈ R

∗+
}

, and N :=
{(

1 0
b 1

)
| b ∈ C

}
.

The corresponding Lie algebras are denoted by a := Te A = RH and n := TeN =
RF ⊕ Ri F .

In that identification, the process gr satisfies the left-invariant stochastic differential
equation (SDE for short)

∀t ≥ 0, grt =
( 1

2rdXt 0
r(dYt + i Zt ) − 1

2rdXt

)
◦ grt ,

where (X ,Y , Z) is a standard Euclidean Brownian motion on R
3. Here, the symbol

◦ refers to the Stratonovich integration convention. Solving explicitly the SDE yields
for all t ≥ 0:

grt =
(

e
1
2 r Xt 0

re
1
2 r Xt

∫ t
0 e
−r Xs d(Ys + i Zs) e− 1

2 r Xt

)

. (1.5)

The reader unfamiliar with stochastic integration should see the above equation
as a definition for the process gr . More importantly, the parameter r > 0 should
be seen as a curvature parameter. The definitive explanation will be given in Sect. 3
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840 F. Chapon, R. Chhaibi

where we will see that we are considering the hyperbolic space H
3 as the space with

constant sectional curvature − 1
2r

2. As such, there is no harm in loosely referring to r
as curvature. At this stage, let us only mention the following. We have, as r → 0:

grt = Id+r
( 1

2 Xt 0
Yt + i Zt − 1

2 Xt

)
+ o(r) =: Id+r x0t + o(r),

and thus appears a three dimensional Brownianmotion
(
x0t = ∂grt

∂r |r=0; t ≥ 0
)
on a⊕

n ≈ R
3, which is a flat space. Because of Brownian motion’s time-scaling properties,

rescaling r amounts to speeding up the Brownian motion and hence the associated
vector fields. As the process gr moves more erratically as r > 0 grows larger, the
non-commutativity of the underlying space N A becomes more apparent. One could
say that the space increases in curvature, which is a key element in the following result
by Bougerol and Jeulin.

Their result holds for all complex semi-simple groups G, but in the context of
G = SL2(C), we have:

Theorem 1.4 (Bougerol and Jeulin [9])Let 12r�
r
t be the radial part of g

r
t , i.e. exp

(
r�r

t

)

is the largest singular value of grt or equivalently that �r ≥ 0 and there exists
(k1, k2) : R+ → SU2 × SU2 such that

grt = k1(t)

(
e
1
2 r�

r
t 0

0 e− 1
2 r�

r
t

)

k2(t).

Then, �r is a process whose distribution does not depend on r > 0. It is explicitly
given by:

�r
t =

1

r
Argcosh

[
1

2
r2
∣∣
∣∣e

1
2 r Xt

∫ t

0
e−r Xs (dYs + id Zs)

∣∣
∣∣

2

+ cosh(r Xt )

]

, (1.6)

whereArgcosh(x) = log
(
x +√x2 − 1

)
is the inverse of cosh :R+ → [1,∞).More-

over, for all t > 0, we have the limits in probability:

{
�r=0

t := P− limr→0 �r
t =

√
X2
t + Y 2

t + Z2
t ,

�r=∞
t := P− limr→∞�r

t = Xt − 2 inf0≤s≤t Xs .
(1.7)

In particular, these processes are both Bessel processes of dimension 3.

Because Bougerol and Jeulin treat the general case, for a general complex semi-
simple Lie group G, extracting the above statement is not a trivial task. As part of
our unifying picture, we shall provide a complete proof in the case of SL2(C), where
the key arguments are simplified while giving a few illuminating computations. The
only novelty in our treatment of Theorem 1.4 is in the proof that the law L(�r ) does
not depend on r > 0. This fact is rather subtle and so is the argument of Bougerol
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Quantum SL2, infinite curvature and Pitman’s 2M-X theorem 841

and Jeulin. We give a short argument based on the rigidity of quantum groups and
the results developed in this paper. We also reinterpret the argument of Bougerol and
Jeulin through the lens of spherical harmonic analysis, thereby showing where the
curvature and the rigidity of quantum groups are hidden.

The important remark is that the Pitman transform shows up in infinite (negative)
curvature, while the norm process in R

3 appears in flat curvature. The interpretation
of the parameter r as curvature is mainly absent from the literature except in the very
astute remark in the final paragraphs of [9, Section 1].

1.2 Kirillov’s orbit method

The correct general framework to understand our group-theoretic story is Kirillov’s
orbit method. As explained in [19], the orbit method is more of a philosophy, with
merits and demerits. For a Lie group G with Lie algebra g = TeG, it is well-known
that the study of representation theory for G is equivalent to its local version, that is
the study of the representations of the Lie algebra g. Equivalently, one prefers to work
with the universal enveloping algebra which is defined as

U� (g) = T (g) / {x ⊗ y − y ⊗ x − �[x, y]} ,

where T (g) is the tensor algebra. The fundamental idea behind the orbit method is that
the representation theory G should be seen as the quantization of a certain Poisson
manifold. Already, one sees that the algebra U� (g) degenerates as � → 0 to the
algebra S (g) of symmetric tensors, which is canonically identified with C

[
g∗
]
, the

algebra of polynomials on g∗. There are two interesting structures on C
[
g∗
]
, whose

combination is referred to as the trivial Poisson–Lie structure on g∗. Basically, we are
only saying that g∗ has to be seen as a flat Poisson manifold, once endowed with the
canonical Kirillov–Kostant–Souriau (KKS) Poisson bracket. The formal definition is
as follows, which will fix the notations for later use.

On the one hand, let C∞(g∗) be the algebra of smooth functions on g∗ and we have
the inclusion of sub-algebras C

[
g∗
]

↪→ C∞(g∗). As a semi-classical limit, C∞(g∗)
becomes a Poisson algebra once endowed with the KKS bracket {·, ·}0: C∞(g∗) ×
C∞(g∗)→ C∞(g∗). By definition, a Poisson bracket is a derivation in both variables.
Therefore, because of the Leibniz rule, the Poisson bracket is entirely determined by
its values on linear functions:

∀X ∈ g ≈ (g∗)∗, fX (·) := 〈X , ·〉.

On linear forms, the KKS bracket is defined as:

{ fX , fY }0 := f[X ,Y ] = 〈[X ,Y ], ·〉. (1.8)

On the other hand, recall that if
(G, ∗G

)
is a group, then the group law ∗G can be

encoded thanks to a coproduct on algebras of functions. By definition, the coproduct
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842 F. Chapon, R. Chhaibi

� associated to
(G, ∗G

)
is the map:

�: C∞ (G) → C∞ (G × G)

f �→ (
(g1, g2) �→ f (g1 ∗G g2)

) . (1.9)

Since � is a morphism of algebras, it needs to be specified on generators only. If
A ⊂ C∞(G) is a dense sub-algebra such that for all f ∈ A, �( f ) is a separable
function, which is written in Sweedler’s notation:

�( f )(g1, g2) =
∑

( f )

f1(g1) f2(g2),

then we can actually write �:A→ A⊗A. This is the customary choice in order to
work algebraically. Here, consider (g∗,+) to be an Abelian group, which amounts to
the trivial coproduct �0 defined on linear functions X ∈ g ≈ (g∗)∗ via:

�0: C[g∗] → C[g∗] ⊗ C[g∗]
X �→ X ⊗ 1+ 1⊗ X

. (1.10)

We give the following trivial, yet key, example. This is the setting of Euclidean
Brownian motion on R

3 ≈ a⊕ n.

Example 1.5 Consider theAbelian group
(
R
3,+) = (a⊕ n,+). Its coordinate algebra

is the polynomial algebra in three variablesC[X ,Y , Z ], and (X ,Y , Z) are linear forms
on R

3.
We have for f ∈ {X ,Y , Z}:

�0( f )

⎛

⎝

⎛

⎝
x1
y1
z1

⎞

⎠ ,

⎛

⎝
x2
y2
z2

⎞

⎠

⎞

⎠ Eq. (1.9)= f

⎛

⎝

⎛

⎝
x1 + x2
y1 + y2
z1 + z2

⎞

⎠

⎞

⎠ = f

⎛

⎝

⎛

⎝
x1
y1
z1

⎞

⎠

⎞

⎠+ f

⎛

⎝

⎛

⎝
x2
y2
z2

⎞

⎠

⎞

⎠ ,

which is more compactly written �0( f ) = f ⊗ 1+ 1⊗ f , with the convention that
tensors with index i = 1, 2 are functions of the i th variable. Since �0 is a morphism
of algebras, it is entirely determined by its values on generators X ,Y , Z .

The simplest illustration of the orbit method is the Heisenberg Lie algebra, which
is the Lie algebra with two generators x and p, along with the commutation relation
[x, p] = � id. The orbit method morally says that “the quantum mechanics of one
particle on the real line is the representation theory of the Heisenberg algebra”.

In the end, implementing the orbit method consists in drawing correspondences
between the two worlds: Unitary representations should correspond to orbits, char-
acters should correspond to orbital integrals, tensor products should correspond to
convolutions of orbital measures, etc… For an extensive dictionary, we refer again to
[19]. In that sense, some of our results will be implementations of the orbit method
and the general philosophy will be our inspiration.

Nevertheless, for the purposes of this paper, we will only consider SL2(C) and
groups related to it.
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1.3 Biane’s quantumwalks

In accordance with the orbit method, Biane [5] considers U(sl2) = U�=1(sl2) as
an algebra of observables for a non-commutative probability space. This space is
the quantization of su∗2 ≈ R

3 endowed with the KKS structure, and as such, one
should think of a three dimensional space where we cannot measure the directions
(X ,Y , Z) independently. The measurement operators (Xg,Yg, Zg) do not commute,
with exactly the relations given by the Lie bracket of su2. Although it is never stated
explicitly, studying quantum systems in this space is equivalent to the representation
theory of su2.

In a sense, Biane’s work gives a dynamical flavor to Kirillov’s orbit method. More
precisely, Biane considers the following quantum dynamical system or quantum ran-
dom walk using the framework of non-commutative probability. For a comprehensive
survey, we recommend [7]. For the purposes of this paper, we want to push for the
idea that one needs to separate the geometry of the underlying space and measurement
operators. Biane’s construction is about quantum mechanics on the flat geometric
space su∗2 ≈ R

3, or equivalently non-commutative probability on the Abelian Lie
group su∗2 ≈ R

3. The matrix mechanics for quantum measurements are controlled by
the commutation relations of the Lie algebra su2.

Notions of non-commutative probability If classical probability theory uses the C-
algebra of randomvariables L∞−(�) := ∩p≥1L p(�) endowedwith the linear formE,
non-commutative probability relies on a possibly non-commutative involutive unital
C-algebra A endowed with a state τ : A→ C. In order to distinguish with the more
fundamental duality between a vector space V and its dual V ∗, we write † for the C-
anti-linear involution onA. A state is a normalized positive linear form i.e. τ(aa†) ≥ 0
for all a ∈ A. It plays the role of expectation. The elements of A are naturally called
non-commutative random variables. If (ai )i∈I is a family of non-commutative random
variables, then their joint distribution is defined as the collection of non-commutative
moments:

(
τ
(
aε1
i1
aε2
i2

. . . aεk
ik

)
; k ∈ N and ∀ j = 1, . . . , k, (i j , ε j ) ∈ I × {1, †}

)
. (1.11)

Convergence in distribution is defined as the convergence in non-commutative
moments.

Now, as a guiding example, let us construct explicitly the probability space under-
lying a random walk in R

d—with say, d = 3 as in Example 1.5—and independent
identically distributed increments sharing a common distribution. The independent

increments are defined on the classical probability space � = (
R
d
)N

endowed with
an infinite product measure P. In order to have a dual point of view, we need to write
everything in terms of functions, which are referred to as observables. Since an infi-
nite product space is in fact a projective limit of spaces, the dual notion will be an

inductive limit of functions. Given the natural inclusionF (
R
d
)⊗n

↪→ F (
R
d
)⊗(n+1)

,
one realizes that a convenient algebra of functions is
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844 F. Chapon, R. Chhaibi

F(�) = lim−→
n

F
(
R
d
)⊗n

.

This is the inductive limit of polynomial functions depending on a finite number of
increments. It is nothing but the polynomial algebra in infinitely variables and, if
increments are bounded, we have the natural inclusion F(�) ↪→ L∞(�, P).

In the non-commutative setting, the analogue of the algebra of observables depend-
ing on a single increment is U(sl2). From the previous discussion, it is natural to
consider:

A := lim−→
n

U(sl2)
⊗n

as the algebra of all observables. The † involution makes the elements in su2 self-
adjoint. The natural inclusion U(sl2)⊗n ↪→ U(sl2)⊗(n+1) is x �→ x ⊗ 1. In particular,
in A, we identify x1 ⊗ · · · ⊗ xk with x1 ⊗ · · · ⊗ xk ⊗ 1∞. As a state τ , we take a
product state on pure tensors i.e. for all x1 ⊗ · · · ⊗ xk ∈ U(sl2)⊗k :

τ(x1 ⊗ · · · ⊗ xk) =
k∏

i=1
τ(xi ),

and for every single elementary observable x ∈ U(sl2), we have:

τ(x) = tr ρ1(x),

where ρ1:U(sl2)→ End(C2) is the natural representation via (1.4). Recall that ρ1 is
the representation with highest weight λ = 1, and could easily be replaced by another
representation.

Also, for the sake of simpler exposition, we do not detail the matters of completion
throughout the paper. Indeed, at this point, A is the non-commutative analogue of a
polynomial algebra. In order to have functional calculus available and carry certain
analytic arguments, A needs to be completed into a Von Neumann algebra. We refer
to “Appendix A” for tying up such loose ends.

Random walks Now, the crucial point is that U(sl2) is endowed with a coproduct
�0:U(sl2)→ U(sl2)⊗U(sl2) that is exactly the same on sl2 as the trivial coproduct
(1.10). This allows to construct a random walk whose algebra of observables is not
commutative or quantum random walk for short. We stress that the underlying space
has to be seen as an Abelian group because of the choice of the coproduct, but it is
the algebra of observables that is not commutative. In this construction, we consider
measurement operators, which measure for every time n ∈ N, the observable x ∈
U(sl2) applied to the quantum random walk. As such, one exhibits a morphism of
algebras Mn :U(sl2) → A as follows:

{
M1 = 1,
Mn = (Mn−1 ⊗ 1) ◦�0, for n ≥ 2.

(1.12)
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Quantum SL2, infinite curvature and Pitman’s 2M-X theorem 845

We extend the definition from n ∈ N to t ∈ R+ by defining:

∀t ∈ R+, Mt :=M
t�. (1.13)

Because Mn is a morphism of algebras, the operators (Mn(x); x ∈ U(sl2)) have
the same commutation relations as the enveloping algebras, and hence are truly quan-
tum observables, on the non-commutative space U(sl2) which is the quantization of
su∗2 ≈ R

3. The discrepancy between sl2 = su2 ⊗ C and su2 is due to an implicit
complexification, which will be explained upon discussing real forms.

Theorem 1.6 (Biane [6]) Consider Cg :=
√

1
2 + X2

g + Y 2
g + Z2

g to be the Casimir

operator associated to U(sl2). Then define for n ∈ N:

{
(Xn,Yn, Zn) :=

(
Mn(Xg), Mn(Yg), Mn(Zg)

)
,

�n := Mn(Cg) =
√

1
2 + X2

n + Y 2
n + Z2

n .
(1.14)

The triple ((Xn,Yn, Zn); n ∈ N) is a non-commutative process, with each coordinate
being a simple randomwalk. Furthermore, the pair (X ,�) is a quantumMarkov chain
on U(sl2), with a classical transition operator on the state space:

{(ω, λ) ∈ Z× N | ω ∈ {−λ, λ+ 2, . . . , λ− 2, λ}}

and with transitions:

p ((ω, λ), (ω + 1, λ+ 1)) = λ+ ω + 2

2(λ+ 1)
, p ((ω, λ), (ω − 1, λ+ 1)) = λ− ω + 2

2(λ+ 1)
,

p ((ω, λ), (ω + 1, λ− 1)) = λ− ω

2(λ+ 1)
, p ((ω, λ), (ω − 1, λ− 1)) = λ+ ω

2(λ+ 1)
.

(1.15)

In particular, X is a simple random walk, while � follows the same transitions as
(1.1).

If the pair (X ,�) has coordinate-wise exactly the same dynamic as in Pitman’s theo-
rem, the joint dynamic is different: X is a simple randomwalk while� is the quantized
analogue of a Euclidean norm—not the Pitman transform of X ! This is even more
apparent upon taking the following semi-classical limit.

Theorem 1.7 (Biane) In the sense of non-commutative moments, we have the conver-
gence in law:

(
�Mt/�2(Xg), �Mt/�2(Yg), �Mt/�2(Zg); t ≥ 0

) �→0−→ ((Xt ,Yt , Zt ) ; t ≥ 0) ,
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where (X ,Y , Z) is a Euclidean Brownian motion on R
3. Moreover, jointly with the

above convergence �M·/�2(Cg) converges to the Euclidean norm
√
X2 + Y 2 + Z2

which is a Bessel-3 process.

In order to see the relation with the approach of Bougerol and Jeulin, we make
the double identification su∗2 ≈ R

3 ≈ n ⊕ a and reformulate the above result as the
convergence of quantum observables to classical observables applied to the standard
Brownian motion on n⊕ a:

(
�Mt/�2(F); F ∈ U (sl2) , t ≥ 0

)

�→0−→
(
f (x0t ) = f

(( 1
2 Xt 0

Yt + i Zt − 1
2 Xt

))
; f = π(F), t ≥ 0

)
.

Here π :U (sl2) ≈ U� (sl2)→ C[su∗2] ≈ C[n⊕ a] is the quotient map mod �, which
consists in seeing any non-commutative monomial as a commutative one.

1.4 Quantum groups and crystals

The mismatch between Pitman’s Theorem 1.2 and the norm process appearing in
the previous Theorem 1.7 is fixed upon considering quantum groups. The classical
presentation of a quantum group is [27, Example 3.2.1]:

Uq (sl2) := 〈K 1
2 , K−

1
2 , E, F〉/R, (1.16)

where K = qH , q = eh , and R is the two-sided ideal generated by the relations:

K
1
2 EK−

1
2 = qE, K

1
2 FK−

1
2 = qF, EF − FE = K − K−1

q − q−1
. (1.17)

Here, h should not be seen as the actual Planck constant. It is a deformation parameter
such that formally “Uq (sl2) → U(sl2)” as h → 0. This can be seen from Taylor
expanding the relations up to order 1. For example, upon writing q = 1 + h + o(h),
the first relation in (1.17) becomes:

E + 1

2
h[H , E] + o(h) = E + hE + o(h),

and therefore one recovers the classical commutation relation [H , E] = 2E in sl2.
As q → 0, the algebra structure breaks down but a combinatorial structure called

crystals remains at the level of the representation theory. In [8], Biane understood
that it is the combinatorics of crystals that is lurking behind Pitman’s theorem. The
generalization which consists in tensoring by other representations and in general Lie
type is developed in [25,26]. In fact, they revisited the works of [2,3] where continuous
crystals were directly constructed. The following statement is extracted from [8]. As
the Main Theorem 2.1 will demonstrate, it should be seen as a quantized version of
Bougerol and Jeulin’s Theorem 1.4:
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Theorem 1.8 There is a quantum Markov chain (X ,�) on Uq(sl2), with a classical
transition operator given by:

p ((ω, λ), (ω + 1, λ+ 1)) = qλ−ω − q2(λ+1)

2(1− q2(λ+1))
, p ((ω, λ), (ω − 1, λ+ 1)) = 1− qλ−ω+2

2(1− q2(λ+1))
,

p ((ω, λ), (ω + 1, λ− 1)) = 1− qλ−ω

2(1− q2(λ+1))
, p ((ω, λ), (ω − 1, λ− 1)) = qλ−ω+2 − q2(λ+1)

2(1− q2(λ+1))
,

(1.18)

with the convention that 00 = 1. In particular, the limit q → 1 coincides with the
result of the previous section, while q → 0 coincides with Pitman’s theorem.

Indeed, upon computing the transition probabilities as q → 0, one realizes that
if (Xn; n ≥ 0) is a standard random walk, then (X ,�) are coupled as follows. One
checks that �n = P(X)n where the path transform P is defined on any path via:

P: X �→
(
t �→ Xt − 2 inf

0≤s≤t Xs

)
.

Weconclude this subsection by stating that Pitman’s theorem, in its discrete version,
has to do with quantum random walks on Uq (sl2) and taking q from q = 1 to q = 0,
where crystals do appear. In fact, everything can be conveniently recast in terms of
the Littelmann path model [23,24], which is a combinatorial model for crystals. The
random walks at hand are readily identified with crystal elements. For an overview,
see the introduction of one of the author’s Ph.D. thesis [10].

We are ready to state the problem that is addressed in the paper:

Question 1.9 If the Pitman transform P is intimately related to crystals, appearing at
the level of the representation theory of Uq(sl2) at q = 0, why does it also appear in
the geometric context of Bougerol and Jeulin?

Why would there be crystal-like phenomenons by taking curvature to infinity (r →
∞) in a symmetric space H

3 = SL2(C)/SU2 ≈ N A?

It is certainly desirable to have single global picture, with an interplay between
both the representation theory of Uq(sl2), as q > 0 varies, and the geometry of the
symmetric space H

3 = SL2(C)/SU2 with varying curvatures r > 0. Such a unifying
point of view should also extend to dynamics, by relating Biane’s quantum random
walks and the dynamic of Bougerol–Jeulin on H

3.

2 Statement of themain result

At this point, let us summarize the landscape:

• On the one hand, at q = 1, there is Biane’s construction of quantum randomwalks
[5]. The diffusive limit is Brownian motion on the space su∗2, which can be seen
as a flat space with zero curvature (r = 0).
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Uq (sl2) C [(SU∗
2 )r]

U (sl2) C [su∗
2]

→ 0

r → 0

→ 0

r → 0

Quantum mechanics,
Representation theory

Semiclassical limit,
Poisson geometry

Curved setting

Flat setting

Fig. 1 A formal commutative diagram

• On the other hand, at q = 0, using Kashiwara crystals, for example in the path
model form, one recovers Pitman’s theorem. The latter is also recovered upon
taking a Brownian motion on the symmetric space H

3 = SL2(C)/SU2 and taking
the curvature to infinity (r →∞).

Thus, we want to interpolate the two different regimes, and perhaps reinterpret the
parameter q in quantum groups as a curvature parameter. The most fruitful idea in
trying to answer Question 1.9 is to discard the idea that q = eh in the Drinfeld–Jimbo
quantum group Uq (sl2), with h being a Planck constant. The following conversation
will take us back to the genesis of quantum groups, which we feel is necessary in order
to really distinguish what is quantum and what is not. We begin by introducing two
important ingredients U�

q (sl2) and C
[
(SU∗2)r

]
. These are tailored so that the formal

diagram in Fig. 1 commutes.
Quoting Kirillov [31, p. 305], who attributes the statement to Drinfeld, the first

approximation to quantum groups as classical objects are Poisson–Lie groups. This
leads us to the first ingredient, that is a family of Poisson–Lie groups (SU∗2)r with
varying curvatures r > 0. C

[
(SU∗2)r

]
will denote the coordinate algebra. In order for

such an object to appear as a semi-classical limit, we have to revisit the presentation
given in (1.16). We require a different presentation U�

q (sl2) of the Jimbo–Drinfeld
quantum group with two parameters � > 0 and q = e−r .

Again, as mentioned just before Theorem 1.6, one notices the discrepancy between
sl2 = su2 ⊗ C in the quantum picture and su2 in the semiclassical picture. Now, let
us define U�

q (sl2) and C
[
(SU∗2)r

]
.
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2.1 Definitions

2.1.1 A different presentation of the Drinfeld–Jimbo quantum group

We define U�
q (sl2) with q = e−r as follows. As explained before, r > 0 has to be

understood as curvature and � > 0 is the actual Planck constant. We set

U�

q (sl2) := 〈K 1
2 , K−

1
2 , E, F〉/R (2.1)

where this time K
1
2 = q

1
2 H = e− 1

2 r H and R is the two-sided ideal generated by the
relations:

K
1
2 EK−

1
2 = q�E, K

1
2 FK−

1
2 = q−�F, EF − FE = �

K−1 − K

2r
= �

erH − e−r H

2r
.

(2.2)
Furthermore, U�

q (sl2) is a Hopf algebra once endowed with the co-product

�r : U�
q (sl2)→ U�

q (sl2)⊗ U�
q (sl2):

⎧
⎪⎪⎨

⎪⎪⎩

�r

(
e
1
2 r H

)
= e

1
2 r H ⊗ e

1
2 r H ,

�r (F) = F ⊗ e
1
2 r H + e− 1

2 r H ⊗ F,

�r (E) = E ⊗ e
1
2 r H + e− 1

2 r H ⊗ E,

(2.3)

while the antipode and counit maps S�
r , εr :U�

q (sl2) → U�
q (sl2) are given by:

S�

r

(
e±

1
2 r H

)
= e∓

1
2 r H , S�

r (E) = −q�E, S�

r (F) = −q−�F, (2.4)

εr

(
e±

1
2 r H

)
= 1, εr (E) = εr (F) = 0. (2.5)

It is easy to check that, over C, there is a Hopf algebra isomorphism � : Uq� (sl2) →
U�
q (sl2), between the classical presentation (1.16) of Drinfeld–Jimbo and ours (2.1),

such that:

�(H) = H

�
, �(E) = E

√
2r

�(q−� − q�)
, �(F) = F

√
2r

�(q−� − q�)
. (2.6)

Strictly speaking, the first equation holds upon continuously extending � to a
completion so that K = q�H ∈ Uq� (sl2) maps to:

�(K ) = �(e−r�H ) = e−r H = K .
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As such, the usual Casimir element:

Cq := EF + q−1K + qK−1

(q − q−1)2
∈ Uq (sl2) (2.7)

is changed to

Cq� := EF + q−�K + q�K−1

(q� − q−�)2
∈ Uq� (sl2) ,

which maps via the isomorphism � and a rescaling to

Cr ,� := r�
(
q−� − q�

)
�
(
Cq�

)

= 1

2

(
4r2EF +

(
q−�K + q�K−1

) 2r�

(q−� − q�)

)

= 1

2

(
4r2EF +

(
er�K + e−r�K−1

) 2r�

(er� − e−r�)

)
. (2.8)

Naturally, Cr ,� generates the center of U�
q (sl2) by [17, Theorem VI.4.8]. We also

define the element �r ,� belonging to a completion of U�
q (sl2) as

�r ,� := 1

r
Argcosh

(
er� − e−r�

2r�
Cr ,�

)

− �. (2.9)

As we will see in the upcoming Sect. 3.6, the definition of �r ,� has been tailored so
that �r ,� acts as the appropriate constant in any fixed irreducible representation of
U�
q (sl2).
Finally, the analogue of choosing a real form for a Lie algebra in the context of Hopf

algebras is exactly the choice of an anti-involution †. We recommend the discussion
in [21, Section 1.2.7] regarding that matter. Here, the compact real form of U�

q (sl2) is

defined as the pair
(
U�
q (sl2) , †

)
where † is the algebra anti-involution given by [21,

p.59]:

K † = K , E† = F, F† = E . (2.10)

This real form is compatiblewith the real formwe shall choose for Poisson–Lie groups.

2.1.2 Poisson–Lie groups with varying curvatures r > 0

Consider B ⊂ SL2(C) as the Borel subgroup:

B :=
{(

a 0
b a−1

)
| a ∈ C

∗, b ∈ C

}
,
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while B+ is the transpose. If b ∈ B ∪ B+, then [b]0 denotes the projection onto the
diagonal. The following complex group will play an important role:

SL∗2 :=
{
(b, b+) ∈ B × B+ | [b]0 = [b+]−10

}
, (2.11)

which is called the Poisson–Lie group dual to SL2(C), equipped with the standard
structure (see [11] or [20]). The group law is the pair-wise matrix multiplication. Its
Lie algebra

sl∗2 := TeSL
∗
2 = b⊕h b+, (2.12)

is made of the two triangular subalgebras b = TeB and b+ = TeB+, with the diagonal
parts in h being opposite. Here h := a+ ia ⊂ sl2 is simply the Abelian subalgebra of
complex diagonal matrices.

In order to have varying curvatures r > 0 and interpolate with the trivial Poisson–

Lie group sl∗2, we define
(
SL∗2

)
r as the Lie groupwith Lie algebra

(
sl∗2, r [·, ·]sl∗2

)
. This

is nothingmore thanSL∗2 as a space butwith a different group law.WedefineC
[(
SL∗2

)
r

]

as the polynomial algebra generated by the variables e
1
2 r H , e− 1

2 r H =
(
e
1
2 r H

)−1
, E

and F :

C
[(
SL∗2

)
r

] := C

[
e
1
2 r H , e−

1
2 r H , E, F

]
. (2.13)

In turn, these variables are seen as coordinate functions by writing:

∀g ∈ (
SL∗2

)
r , g =

((
e
1
2 r H(g) 0

2r F(g) e− 1
2 r H(g)

)

,

(
e− 1

2 r H(g) 2r E(g)

0 e
1
2 r H(g)

))

. (2.14)

When convenient, we will drop the dependence in g for f (g) = f ∈ {H , E, F}, as
in the definition of the coordinate algebra C

[(
SL∗2

)
r

]
.

Now define:

(SU∗2)r :=
{
g ∈ (SL∗2)r | H(g) ∈ R, E(g) = F(g)

}
. (2.15)

This is clearly a subgroup of (SL∗2)r and we will see in the next section that it is the
Poisson–Lie group dual to SU2, via an involution † which respects the duality at the
level of Hopf algebras. Its curvature will also be shown to vary with r > 0. In view of
the definition of the elements of (SU∗2)r , all the information is contained in the lower
Borel subgroup with positive diagonals, leading to a natural identification

(
SU∗2

)
r ≈ N A.

The corresponding coordinate algebra is naturally denoted C[(SU∗2)r ].
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There is also the following, more analytic, presentation of
(
SU∗2

)
r . Notice that the

exponential map is a diffeomorphism exp : su∗2 ≈ n⊕ a
∼−→ N A ≈ (

SU∗2
)
r . As such,

we can identify su∗2 and
(
SU∗2

)
r as topological spaces. Then we define a group law

with a parameter r > 0 via:

∀(X ,Y ) ∈ su∗2 × su∗2, X ∗r Y := 1

r
log

(
er XerY

)
. (2.16)

The new group is denoted by
((
SU∗2

)
r , ∗r

)
and its Lie bracket is naturally r [·, ·]sl∗2 ,

i.e. the rescaling of the original bracket by a factor r > 0. Clearly, as r → 0, the group((
SU∗2

)
r , ∗r

)
becomes the Abelian group

(
su∗2,+

)
.

2.2 Main result

In order to construct the quantum walk on U�
q (sl2), this latter algebra is taken as

the algebra of observables for one increment. Thanks to the framework detailed in
Sect. 1.3, our algebra of non-commutative random variables is the inductive limit

Ar ,� := lim−→
n

(
U�

q (sl2)
)⊗n

. (2.17)

Given that U�
q (sl2) is isomorphic to the usual Jimbo–Drinfeld quantum group, the

representations are essentially the same. The specifics are not needed for now. The
state τ is the product state using the standard representation C

2. The pair
(Ar ,�, τ

)

will be our working non-commutative probability space.
Measurement operators are exactly the same as Eq. (1.12), except that we have

to use the coproduct �r . As such, the morphism of algebras Mn :U�
q (sl2) → Ar ,�

defined for discrete times n ∈ N are as follows. M0 = εr is given by the counit, and

{
M1 = 1,

Mn = (Mn−1 ⊗ 1) ◦�r , for n ≥ 2.
(2.18)

Since we want the random walk to classically start from the identity, and the quantum
version consists in expressing everything dually at the level of measurement operators,
one sees that M0 has to be taken as the counit.

The convention (1.13) is still in place. As a random walk on U�
q (sl2), we define

three non-commutative processes via:

∀t ∈ R+, Sr ,�t := Mt/�2 (S)
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for each generator S ∈ {H , E, F} of the quantum group U�
q (sl2). This three-

dimensional non-commutative process is neatly repackaged in matrices of
(
SU∗2

)
r

with non-commutative entries:

∀t ∈ R+, gr ,�t :=
((

e
1
2 r H

r ,�
t 0

2r Fr ,�
t e− 1

2 r H
r ,�
t

)

,

(
e− 1

2 r H
r ,�
t 2r Er ,�

t

0 e
1
2 r H

r ,�
t

))

∈ (
SU∗2

)
r ⊗Ar ,�.

(2.19)

By stating that the above quantity is in
(
SU∗2

)
r ⊗Ar ,�, we are implicitly saying that

the lower and upper triangular parts are †-conjugate. Therefore gr ,�t can be seen as an

element in N A with operator-valued entries. The quantum dynamic
(
�

r ,�
t ; t ≥ 0

)

is defined from the measurement of the Casimir element (2.8) thanks to the explicit
expression:

∀t ∈ R+,
2r�

er� − e−r�
cosh

(
r�+ r�r ,�

t

)
:= Mt/�2

(
Cr ,�

)
. (2.20)

This is equivalent to directly setting �
r ,�
t := Mt/�2

(
�r ,�

)
after continuously extend-

ing the measurement operators to the completion where �r ,� lives (see Eq. (2.9)).
We are ready to state the main result of this paper, which unifies the results of

Biane on the one hand and Bougerol–Jeulin on the other hand. Since the crystal regime
q = e−r → 0 is tractable in both quantum and semi-classical settings, it explains why
crystal-like phenomena appear upon taking infinite curvature limits. This recovers
indeed Pitman’s 2M − X Theorem in the discrete and continuous versions.

Theorem 2.1 (Main theorem) In the sense of (possibly non-commutative) moments,
we have the following convergences in law between processes indexed by t ∈ R+:

�
∞,�
t = X�

t − 2 inf0≤s≤t X�
t

Pitman’s T heorem 1.1
(discrete case)

�∞t = Xt − 2 inf0≤s≤t Xs

Pitman’s T heorem 1.2
(continuous case)

gr ,�t ∈ (
SU∗2

)
r ⊗Ar ,�

�
r ,�
t

Quantum random walks
on U�

q (sl2) as in Eq. (2.19)

grt ∈
(
SU∗2

)
r ⊗ L∞−(�)

�r
t = 1

r Argcosh ◦ tr
(
grt

(
grt
)†)

Bougerol–Jeulin’s convolution dynamic
and its radial part as in Theorem 1.4

x0,�t =
( 1

2 X
�
t 0

Y�
t + i Z�

t − 1
2 X

�
t

)
∈ su∗2 ⊗A0,�

�
0,�
t =

√
1
2�2 + (

X�
t
)2 + (

Y�
t
)2 + (

Z�
t
)2

Biane’s quantum random walks
on U�(sl2) as in Theorem 1.6

x0t =
( 1

2 Xt 0
Yt + i Zt − 1

2 Xt

)
∈ su∗2 ⊗ L∞−(�)

�0
t =

√
X2
t + Y 2

t + Z2
t

Flat Brownian Motion on su∗2 ≈ R
3

and its radial part

�→0

r→∞

r→0

�→0

r→∞

r→0

�→0

Moreover, on both quantum and semi-classical pictures, i.e. for � > 0 and � = 0, the
dynamic of �r ,� does not depend on r.
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2.3 Structure of the paper

Section 3 is aimed at giving a precise meaning to the formal commutative diagram 1.
This is given as Theorem 3.5 which is the geometric shadow of the commutative
diagram in the Main Theorem. In essence, that theorem is implicit in Drinfeld’s foun-
dational ICM talk [13]. Nevertheless, the value of this section resides in giving a
precise statement calibrated for this paper and in interpreting its ingredients. To that
endeavor, we start by detailing classical coproducts and Poisson brackets with the goal
of showing that the presentation (2.1) can be surmised from classical objects. Then we
give a more natural definition of the involution † for

(
SL∗2

)
r and explain why r > 0

is indeed a curvature parameter. Only then we will be able to formulate Theorem 3.5
as a result about deformation of algebras (via curvature r ) and quantizations (via the
Planck constant �). For later use, we conclude the section by recording how changing
the presentation of the Jimbo–Drinfeld quantum group, from (1.16) to (2.1), rescales
the representations.

In Sect. 4, we prove in Theorem 4.1 that quantum observables in large represen-
tations become classical observables. This is the implementation of Kirillov’s orbit
method, which proves quantitatively that large representations behave like symplec-
tic leaves (here dressing orbits), and that the tensor product of two representations
behaves like convolution of two orbital measures. Furthermore, we demonstrate the
appearance of the crystal tensor product rule in the r →∞ limit. We feel that this is
instructive to prepare for the proof of the Main Theorem which deals with diffusive
limits. In that sense, the Main Theorem is about infinitely many tensor products and
infinitely many convolutions.

Finally, in Sect. 5, we tackle the proof of the Main Theorem 2.1, which unifies
the representation theoretic construction of Biane and the geometric construction of
Bougerol–Jeulin. There, we isolate in separate subsections an independent proof of
Theorem 1.4 and the argument that the dynamic of � does not depend on r > 0.

3 Commutative and non-commutative geometry of Poisson–Lie
groups

3.1 Coproducts and Poisson brackets

Now that we know that the Poisson–Lie group
(
SL∗2

)
r will play an important role

for the Main Theorem 2.1, we will begin this section by detailing two structures on
it: the coproduct and the Poisson bracket. Recalling the general definition (1.9) of a
coproduct for the coordinate algebra of a group, we have:

Lemma 3.1 The coproduct on C
[(
SL∗2

)
r

]
is given by:

⎧
⎪⎪⎨

⎪⎪⎩

�r

(
e
1
2 r H

)
= e

1
2 r H ⊗ e

1
2 r H ,

�r (F) = F ⊗ e
1
2 r H + e− 1

2 r H ⊗ F,

�r (E) = E ⊗ e
1
2 r H + e− 1

2 r H ⊗ E .
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Proof Writing two elements gi ∈
(
SL∗2

)
r , i = 1, 2 as in (2.14), we obtain six complex

numbers Hi = H(gi ), Ei = E(gi ) and Fi = F(gi ) for i = 1, 2. By computing the
matrix product, we obtain that g1g2 = (b, b+) with:

b =
(

e
1
2 r(H1+H2) 0

2r
(
F1e

1
2 r H2 + e− 1

2 r H1F2
)

e− 1
2 r(H1+H2)

)

,

b+ =
(
e− 1

2 r(H1+H2) 2r
(
E1e

1
2 r H2 + e− 1

2 r H1E2

)

0 e
1
2 r(H1+H2)

)

.

Then using the definition of�r in (1.9), we extract from the above expressions exactly
the announced expressions for the coproduct. ��
Remark 3.2 (The coproduct of U�

q (sl2) is not quantum) By comparing to Eq. (2.3), the

reader will recognize the coproduct �r of the quantum groups U�
q (sl2) upon setting

K = e−r H . Already we see there is nothing quantum about that!

Now, by using the same trick as in the definition of the KKS structure, we identify
Xg ∈ sl2 = su2 ⊗ C with a complex linear forms fX on su∗2 ≈ (SU∗2)r . It is an easy
computation to check the following.

Lemma 3.3 There exists a legitimate Poisson bracket on C
[
(SU∗2)r

]
defined by:

{H , E}r := 2E,

{H , F}r := −2F,

{E, F}r := erH − e−r H

2r
.

Proof A Poisson bracket is determined by its value on linear forms because of the
Leibniz rule. Thus we only have to check the Jacobi identity:

0 = {A, {B,C}r }r + {B, {C, A}r }r + {C, {A, B}r }r

for all elements A, B,C that are linear forms. The Jacobi identity can be checked
on a basis. Also, because {·, ·}r is anti-symmetric, there is no need to check all the
possibilities, only (A, B,C) = (H , E, F) i.e.

0
?=
{
H ,

erH − e−r H

2r

}

r
+ {E, 2F}r + {F, 2E}r

=
{
H ,

erH − e−r H

2r

}

r
.

This last term is indeed zero, as the Poisson bracket is a derivation in each variable. ��
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Notice that the space su∗2 has no reason of having aLie bracket, hence the assignment
of a trivial Lie bracket on su∗2. It is natural to interpret a trivial Lie bracket as zero
curvature, since that for Lie groups equipped with an invariant metric, the curvature
tensor is basically equivalent to the bracket. We will explicit this idea later in this
section. Adding to that the KKS Poisson bracket {·, ·}0, which is nothing but the Lie
bracket of su2, one says that [11]

(
su∗2, 0 = [·, ·]su∗2 , {·, ·}0

)

is a Lie bialgebra.
Here, we have described a curved version of this statement, i.e. that we have a

bialgebra structure:

(
su∗2, r [·, ·], {·, ·}r

)

where r plays the role of curvature, dilating the Lie bracket on sl∗2, and {·, ·}r has to
be a compatible Poisson bracket.

3.2 The real form
(
SU∗

2
)
r and Poisson–Hopf duality

We write

sl∗2 = SpanC

(
H∗, E∗, F∗

)

by making the choice of basis:

H∗ =
((
− 1

8 0
0 1

8

)

,

(
1
8 0
0 − 1

8

))

; E∗ =
((

0 0
0 0

)
,

(
0 1
0 0

))
; F∗ =

((
0 0
1 0

)
,

(
0 0
0 0

))
.

This choice of basis yields the same presentation of sl∗2 as in [20].
On sl2, we write † for the (standard) conjugate transpose. It is the involutive anti-

morphism which determines the compact form su2 ⊂ sl2 at the level of Lie algebras,
and the compact form SU2 ⊂ SL2(C) at the level of Lie groups:

SU2 :=
{
x ∈ SL2(C) | xx† = id

}
.

Because of the standard duality between sl2 and sl∗2 (see [11,20]), so that:

〈H∗, H〉 = 〈E∗, E〉 = 〈F∗, F〉 = 1

while all other duality brackets vanish, we can transport † to the Lie algebra sl∗2 =
SpanC (H∗, E∗, F∗). This is done via the following relation which is compatible with
Hopf algebra duality (see [11, p. 117]):

∀ f ∈ sl∗2, ∀X ∈ sl2, 〈 f †, X〉 := 〈 f , S(X)†〉.
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Here S: sl2 → sl2 is the antipode map obtained by degenerating the definition (2.4)
with � → 0. All in all, we obtain an anti-linear involution on sl∗2:

(
H∗

)† = −H∗,
(
E∗

)† = −F∗,
(
F∗

)† = −E∗.

Upon exponentiating, we have an antimorphism † acting on points of
(
SL∗2

)
r as

follows. If H , F , E are complex scalars such that:

x =
((

e
1
2 r H 0

2r F e− 1
2 r H

)

,

(
e− 1

2 r H 2r E

0 e
1
2 r H

))

,

exactly as in Eq. (2.14), then we have:

x† =
((

e− 1
2 r H 0

−2r E e
1
2 r H

)

,

(
e
1
2 r H −2r F
0 e− 1

2 r H

))

.

As such, we obtain a presentation of the subgroup
(
SU∗2

)
r which is more natural than

(2.15) via:

(
SU∗2

)
r =

{
x ∈ (

SL∗2
)
r | xx† = id

}
≈ N A.

Indeed, xx† = id yields that H − H = 0 i.e. H is real and E = F . Therefore, all the
information is in the lower Borel subgroup with positive diagonals. Going back to the
Poisson–Lie dual, su∗2 is thus naturally identified with lower triangular matrices and(
SU∗2

)
r ≈ N A. The subscript r indicates that we renormalize the group law thanks to

the parameter r .

3.3 The constant r is a curvature parameter

Following [14, §3.17], if G is a Lie group with invariant metric, then the (1, 3)-
curvature tensor is

R(X ,Y , Z) = 1

4
[X , [Y , Z ]],

where X , Y and Z represent invariant vector fields. In our case, the parameter r > 0
controls the curvature of H

3 ≈ (
SU∗2

)
r via:

R(X ,Y , Z) = r2

4
[X , [Y , Z ]sl∗2 ]sl∗2 .

The sectional curvature along any plane P = SpanR(X ,Y ) ⊂ su∗2 ≈ a⊕n, spanned
by orthonormal vectors X and Y , is by definition K (P) := 〈R(X ,Y , X),Y 〉, where
the natural scalar product is given by the Killing form. By invariance of the Killing
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form, K (P) = − r2
4 ‖[Y , X ]sl∗2‖2. This expression is again invariant under conjugation

by SU2 or more accurately via the coadjoint action of SU2 on su∗2 ≈ a ⊕ n. As a
consequence, there is no loss of generality in assuming Y = H

‖H‖ = H√
2
∈ a ⊕ n.

Any orthogonal vector must be of the form X = eiθ F
‖F‖ = eiθ F , which yields

‖[Y , X ]sl∗2‖ = ‖ 1√
2
[H , F]sl∗2‖ =

√
2.

In the end, the sectional curvature of
(
SU∗2

)
r ≈ SL2(C)/SU2 = H

3 is indeed
constant and equal to K (P) = − 1

2r
2, which goes to −∞ as r →∞.

3.4 Deformation and quantization

Let C[[z]] denote the ring of formal power series in the indeterminate z. Recall from
[11, Definition 6.1.1 and Definition 6.2.4]:

Definition 3.4 A Hopf deformation over C[[z]] of a Hopf algebra A with product μ

and coproduct �, is a Hopf algebra Az with product μz and coproduct �z such that

(i) Az ≈ A[[z]] as C[[z]]-module,
(ii) μz ≡ μ mod z, and �z ≡ � mod z .

The notation A[[z]] means the formal power series in z with coefficient in A.
Moreover, if A has the additional structure of a Poisson algebra, one says that Az

is a quantization of A if Az is a Hopf deformation of A and

μz(a, b)− μz(b, a)

z
≡ {πz(a), πz(b)} mod z,

where {·, ·} is the Poisson bracket on A and πz :Az → Az/zAz is the quotient map
mod z.

Notice that as a consequence of (i), we have a linear isomorphism A ≈ Az/zAz .
We can now turn the formal diagram of Fig. 1 into a commutative diagram which
expresses a deformation (via curvature r ) and a quantization (via the Planck constant
�).

Theorem 3.5 (A commutative diagram for spaces) Let us denote by μ�
q and μ� the

products on U�
q (sl2) and U�(sl2) respectively. The following diagram between Hopf

algebras commutes:

( (
U�
q (sl2), †

)
, μ�

q , �r

) (
C
[
(SU∗2)r

]
, {·, ·}r , �r

)

( (U�(sl2), †
)
, μ�, �0

) (
C
[
su∗2

]
, {·, ·}0, �0

)
mod r

mod�

mod r

mod�
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Vertical arrows are curvature deformations, while horizontal arrows are quantizations
of Poisson algebra.

As mentioned before, this theorem can historically be attributed to Drinfeld since
it is implicitly present in his ICM foundational paper [13]. It appears more explicitly
and in a very general form in the paper of Kassel and Turaev [22]. A more detailed
discussion is given in the next subsection. For the sake of completeness, let us give a
condensed proof while interpreting its ingredients.

Proof For the purposes of this proof, all algebras are completed with respect to the
�-adic and r -adic topology. If an algebra Az uses the parameter z ∈ {r , �}, then A is
seen as a C[[z]]-module. For example, U�

q (sl2) uses both parameters (q = e−r ).
We start by checking (i) in Definition 3.4. The argument boils down to Poincaré–

Birkhoff–Witt theorems (PBW) [37] thanks towhich all four algebras are freemodules
with essentially the same basis. Indeed, by the classical PBW theorem, the ordered
monomials

HaEbFc, for a, b, c ≥ 0,

form a (topological) basis of U�(sl2). As such, any element of U�(sl2) can be written
as a sum of monomials HaEbFc with coefficient in C[[�]], giving the isomorphism
between C[[�]]-modules:

U�(sl2) ≈ C[H , E, F][[�]] = C[su∗2][[�]].

Note that the discrepancy between sl2 and su2 is due to the fact that we consider the
above linear isomorphism as a linear isomorphism between involutive algebras: it is
the compact form

(U�(sl2), †
)
which deforms the Poisson algebra C[su∗2], viewed as

the coordinate algebra C[sl∗2] ≈ C[H , E, F] equipped with the †-involution. In the
case of U�

q (sl2), one invokes the quantum PBW theorem, which states that the ordered
monomials

KaEbFc, for a ∈ Z, b, c ∈ N

form a (topological) basis of U�
q (sl2), giving the isomorphism between C[[�]]-

modules:

U�

q (sl2) ≈ C[K , E, F][[�]] = C[(SU∗2
)
r ][[�]].

As for the flat case r = 0, the above equation shows a discrepancy between sl2 and(
SU∗2

)
r . The compact form

(
U�
q (sl2), †

)
will be a Hopf deformation of the Poisson

algebraC[(SU∗2)r ], viewed as the real form of the Poisson algebraC[(SL∗2)r ] equipped
with the †-involution. Recall that Sect. 3.2 explains how † is transported from the
algebra of functions to points and thus defines (SU∗2)r ⊂ (SL∗2)r .

Now notice that, since K±1 = e±r H , one realizes that by expanding the exponential
into formal power series, the two previous bases are related by a triangular linear
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transformation with coefficients in C[r ]. As such:

U�

q (sl2) ≈ C[H , E, F][[r ]][[�]] ≈ U� (sl2) [[r ]]

and

C[(SU∗2
)
r ] ≈ C[H , E, F][[r ]] ≈ C[su∗2][[r ]].

This proves (i) for all four arrows.
In order to prove (i i), coproducts are swiftly dealt with as follows. Remark 3.2

reminds us that coproducts are unchanged with the deformation in �. For the defor-
mation in r , �r ≡ �0 mod r is seen from the expression of the coproduct at the level

of generators in Lemma 3.1: H remains primitive for all r > 0 and e
1
2 r H ≡ 1 mod r .

For products, we need to analyze the relations in the algebra U�
q (sl2) given after

Eq. (2.1). Again, viewing the element K±1 = e±r H as the formal power series
∑

k≥0
(±1)krk

k! Hk , the Hopf algebra U�
q (sl2) can be defined as the algebra generated

by the elements H , E, F and relations

[H , E] = 2�E, [H , F] = −2�F, EF − FE = �
erH − e−r H

2r
. (3.1)

Indeed, the first two relations implies easily the two relations K
1
2 EK− 1

2 = e−r�E
and K

1
2 FK− 1

2 = er�F of (2.2). Since the third relation yields:

EF − FE = �H mod r ,

we recover the relations of U� (sl2) modulo r . The congruence μ�
q ≡ μ� mod r

follows. The commutative product of functions is obviously the same in C[su∗2] and
C[(SU∗2)r ]. For products modulo �, Eq. (3.1) yields that μ�

q (resp. μ�) is congruent
mod � to a commutative product.

We have thus proved (ii) for all four arrows, which are therefore deformations in
the sense of Definition 3.4.

Finally, let us show that the two horizontal arrows are also quantizations, by proving
that commutators mod �

2 encode Poisson brackets. It is well known that the Hopf
algebra U�(sl2) is a quantization of the Poisson algebra C[su∗2] (see for instance
the more general example [11, Example 6.2.5]). We only prove that U�

q (sl2) is a
quantization of C[(SU∗2)r ] with an argument that is uniform in r > 0.

Using the quotient map π = mod � and the Poisson bracket {·, ·}r on C[(SU∗2)r ],
it remains to prove that, for any a, b ∈ U�

q (sl2),

μ�
q (a, b)− μ�

q (b, a)

�
= {π(a), π(b)}r mod �.
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Using commutators on the left-hand side, and because of the Leibniz rule for the
Poisson bracket on the right-hand side, it suffices to prove the above on the generators
ofU�

q (sl2)only. The claim then follows fromputting togetherEq. (3.1) andLemma3.3.
Notice that the same argument carries upon taking r → 0. ��

3.5 Further comments on two-parameter deformations

Since sl2 is (semi-)simple, Drinfeld’s rigidity theorem [11, Theorem 6.1.8] states
that the deformation theory of U (sl2) is trivial, in the sense that every deformation of
U(sl2) using � is isomorphic toU(sl2)[[�]] as an algebra. One could take a pessimistic
stance on that theorem and decide that there is no point in trying to play with algebras
such as the one-parameter deformation Uq(sl2). Nevertheless no explicit equivalence
is known and the success of quantum groups has proven this intuition wrong.

Even going beyond one-parameter deformations, there are quite a few papers which
develop two-parameter deformations. We are only aware of the papers [4,22], which
develop exactly the same two-parameter deformation but with a different point of
view.

3.5.1 Kassel and Turaev’s biquantization

In [22], Kassel and Turaev present a commutative diagram that is intriguingly similar
to the formal diagram in Fig. 1, as it uses two parameters denoted u and v. Furthermore,
their result, termed as biquantization of Lie bialgebras, holds for all Lie algebras.

The deformed law (2.16) is considered in [22, Eq. (2.6)], and defined formally from
the Baker–Campbell–Hausdorff formula. The Baker–Campbell–Hausdorff formula
converges in our case, since we are dealing with a solvable group. Dually, one obtains
a coproduct �r on the coordinate algebra of

(
SL∗2

)
r . Also, it is made into a Poisson

algebra thanks to a Poisson bivector, which comes from the bracket of sl2 (see [22,
Eq. (2.9)]).

Their deformations in the parameter u are indeed quantization of Poisson bialgebras
while the deformations in v are co-quantizations of co-Poisson algebras. Their result
also holds dually, replacing g by its dual g∗, giving a symmetric roles to the parameters
u and v, hence the term of biquantization. In the context of Question 1.9, we never
invoke the co-quantization using the parameter r > 0. In our case the parameter � ≥ 0
controls the non-commutativity in the algebra of observablesAr ,�, in accordance with
the principles of quantum mechanics, while r > 0 controls the non-commutativity of
invariant vector fields, in the underlying space

(
SU∗2

)
r and thus controls the curvature.

3.5.2 Ballesteros, Celeghini and Del Olmo’s point of view

In a very insightful comment, the authors of [4] argue that quantumgroups andquantum
algebras need to be viewed as abstract Hopf algebras since that, in many physical
cases, the parameter q is completely independent from the truly quantum � constant.
An example they give, among others, is that q clearly plays the role of anisotropy
parameter in the context of the Heisenberg XXZ spin chain. Commutative diagrams
similar to Fig. 1 do appear in their paper.
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Let us conclude the section by arguing that the common name of QUE algebras
which stands for “QuantumUniversal Enveloping algebras” ismisleading. It is perhaps
more appropriate to refer to the Drinfeld–Jimbo quantum group either as a “quantized
Poisson–Lie function algebra”, which is Drinfeld’s original point of view, or as a
“curved universal enveloping algebra”.

3.6 Representations

Since Theorem 3.5 deals with another presentation of the Drinfeld–Jimbo quantum
group, the representation theory is essentially unchanged. Of course, the constants
� and r appear at various places and the goal of this subsection is to record these
unessential changes.

Recall from [21, Page 61] that Uq(sl2), with the usual presentation (1.16), that for
every λ ∈ N, there exists a representation Vq(λ) of dimension λ + 1 and with basis
labelled

(ek; k = −λ,−λ+ 2, . . . , λ− 2, λ) .

The action on generators is given in terms of q-integers [n]q := qn−q−n
q−q−1 by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K · ek = qkek,

E · ek =
√[ 1

2λ− 1
2k
]
q

[ 1
2λ+ 1

2k + 1
]
qek+2 =

√
qλ+1+q−(λ+1)−qk+1−q−(k+1)

|q−q−1| ek+2,

F · ek =
√[ 1

2λ+ 1
2k
]
q

[ 1
2λ− 1

2k + 1
]
qek−2 =

√
qλ+1+q−(λ+1)−qk−1−q−(k−1)

|q−q−1| ek−2.

By definition, the weight lattice is the union of possible spectra for the operator
H , in all possible representations. Upon rescaling thanks to the isomorphism (2.6),
the weight lattice is rescaled from Z to �Z. Highest weights are therefore of the form
�� = �
�/�� ∈ �Z for � ≥ 0, and highest weight representations are indexed
by such elements. As such, denoting by Vq(��) the irreducible representation of
dimension 
�/�� + 1, it has a linear basis:

(e�k; k = −
�/��, 
�/�� + 2, . . . , 
�/�� − 2, 
�/��) ⊂ V q(��). (3.2)

The action on generators of U�
q (sl2) becomes:

⎧
⎪⎨

⎪⎩

K · e�k = e−r�ke�k,

E · e�k = α�
r

√
er(��+�) + e−r(��+�) − er�(k+1) − e−r�(k+1)e�(k+2),

F · e�k = α�
r

√
er(��+�) + e−r(��+�) − er�(k−1) − e−r�(k−1)e�(k−2),

(3.3)

where α�
r = 1

2r

√
2r�

er�−e−r� . The vector e�k is therefore the vector of weight �k. In

particular, e�� is the highest weight vector with weight ��.
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Likewise, instead of the usual Casimir (2.7) of Uq(sl2), which acts on V q(λ) as the
constant:

(
Cq)

|Vq (λ)
:= qλ+1 + q−(λ+1)

(
q − q−1

)2 , (3.4)

we have to consider our Casimir (2.8) which acts on Vq(��) like the constant:

Cr ,�(��) := 1

2

2r�

er� − e−r�
(
er(�

�+�) + e−r(��+�)
)

. (3.5)

This is equivalent to saying that the operator �r ,� defined in (2.9) acts on Vq(��) as
the constant ��. Notice that this constant is independent of the curvature r > 0.

4 Static semi-classical limits and crystallization

The main theorem of this section deals with an effective implementation of the orbit
method i.e. quantum observables converging to classical observables, while tracking
the effect of the curvature parameter r > 0. This allows to show the appearance of
crystals in the infinite curvature limit, both on the quantum and semi-classical side.

Dressing orbits In order to give an effective implementation of the orbit method, we
first require the definition of the dressing action of SU2 on

(
SU∗2

)
r ≈ N A, which is

exactly the curved version of the coadjoint action (see [20]). It is defined as:

SU2 × N A → N A
(k, b) �→ k · b,

where k ·b = b′ is the lower triangular matrix obtained via the Gram–Schmidt decom-
position kb = b′k′, with k′ ∈ SU2. We identify � > 0 with the diagonal matrix(

� 0
0 −�

)
. By definition, the dressing orbit of SU2 passing through� ∈ R+ in

(
SU∗2

)
r

is:

Or (�) := SU2 ·� =
{
k · exp

(
r

(
� 0
0 −�

))
∈ (

SU∗2
)
r | k ∈ SU2

}
. (4.1)

The orbit Or (�) is endowed with a natural invariant measure, induced by the Haar
measure onSU2.Auniformelement onOr (�) is a randomvariablewhich is distributed
according to this invariant measure.

Crystals For any fixed quantum group, Kashiwara associates to any representation Vq

a set B called the crystal basis or crystal for short. Morally, a crystal is the combina-
torial object which remains upon taking the q → 0 limit of the so-called Kashiwara’s
global basis which is equivalent to Lusztig’s canonical basis. For reference, we rec-
ommend the comprehensive [18]. A crystal is a set endowed with a graph structure so
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that connected components are in bijection with highest weight irreducible modules.
Furthermore, Kashiwara defined a combinatorial tensor product rule for two crystals
B and B′, by giving a crystal graph structure to:

B ⊗ B′ := {
b1 ⊗ b2 | (b1, b2) ∈ B × B′} .

As a set, it is nothing but B × B′. Nevertheless the notation B ⊗ B′ hints to the fact
that it has a richer combinatorial structure thanks to the crystal graph.

In the case of U�
q (sl2), let us illustrate the previous paragraph, while changing the

weight lattice from Z to �Z to accommodate our setting. We write that any crystal B
is a disjoint union of highest weight crystals B(�):

B = ��∈CB(�),

where C is the multi-set of connected components—that is to say that repetition of
� ∈ �N is allowed. Any highest weight crystal B(�) for a highest weight � ∈ �N is
naturally identified with the weight basis:

B(�) ≈ {−�,−�+ 2�, . . . , �− 4�,�− 2�,�} , (4.2)

and the crystal graph structure is depicted in Figure 2. It is obtained by connecting
integer multiples of � which are neighbors on the real line.

For any crystal B, there are two well-defined maps

wt :B→ �Z; hw :B→ �N,

which respectively give the weight of a crystal basis element and the highest weight
corresponding to its connected component. Notice that for the very special case of
sl2, the identification (4.2) corresponds to fixing � ∈ �N and identifying b ∈ B(�)

with wt(b) ∈ �Z. The Kashiwara tensor product rule for b1 ∈ B(�1) and b2 ∈ B(�2)

states that (see [18, Déf. 2.3.2]):

wt(b1 ⊗ b2) = wt(b1)+ wt(b2);
hw(b1 ⊗ b2) = max (�1 + wt(b2), −wt(b1)+�2) .

B (Λ)

−Λ −Λ + 2 Λ − 2 Λ

Fig. 2 The crystal graph for B(�) for � ∈ �N
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Quantum SL2, infinite curvature and Pitman’s 2M-X theorem 865

B Λ2

B Λ1

→0−→

Λ1 > 0

Λ2 > 0

Fig. 3 Tensor product of crystals and scaling limit as � → 0. Connected components correspond to level
sets of the map hw

In our opinion, this rule and its pictorial description (Fig. 3) are landmarks of crystal
combinatorics. The left-hand side in Fig. 3 is classical (see e.g. [18, Chapter 2, Fig.
2.1]) and is reproduced for the reader’s convenience.

The appearance of rational expressions in the max-plus algebra is intimately related
to the following tropicalization trick:

∀(a, b) ∈ R× R, lim
r→∞

1

r
log

(
era + erb

)
= max(a, b), (4.3)

which is simple yet ubiquitous in crystal combinatorics (see [10, Chapter 7]). As we
shall see, it will play an important role in this section and in the next.

We now state the main theorem of this section:

Theorem 4.1 Let �1,�2 > 0 and let g1 and g2 be random variables uniformly dis-
tributed on Or (�1) and Or (�2) respectively. Also for all observables F ∈ U�

q (sl2),
write

f := F mod � ∈ C
[
(SU∗2)r

]
,

where mod � is the quotient map appearing in Theorem 3.5.
Then the following semi-classical limits hold:

TrVq (��

1 )(q
−HF)

TrVq (��

1 )(q
−H )

�→0−→ E ( f (g1)) , (4.4)

TrVq (��

1 )⊗Vq (��

2 )(q
−HF)

TrVq (��

1 )⊗Vq (��

2 )(q
−H )

�→0−→ E ( f (g1g2)) . (4.5)

In particular, the crystal regime appears by letting r → ∞ and by taking an
observable depending only on H and on the operator �r ,� defined in (2.9). More
specifically, upon writing F = ϕ(�r ,�)ψ(H) for two polynomials ϕ and ψ , the
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following commutative diagram holds:

trVq (��

1 )⊗Vq (��

2 )[ϕ(�r ,�)ψ(H)] E
(
e−r H(g1g2)ϕ ◦�(g1g2) ψ ◦ H(g1g2)

)

E
(
e−r H(g1g2)

)

∑

b1⊗b2∈
B(��

1 )⊗B(��

2 )

ϕ (hw(b1⊗b2)) ψ (wt(b1⊗b2))

(��

1+1)(��

2+1)
1

4�1�2

∫ �1

−�1

∫ �2

−�2

ϕ
(
hw�1,�2(μ1, μ2)

)
ψ(μ1+μ2)dμ1dμ2

� → 0

� → 0

r →∞
r →∞

(4.6)

where hw�1,�2(μ1, μ2) = max(�1 + μ2,−μ1 + �2) and �(g) = � ∈ R is such
that g ∈ Or (�). In order to simplify notation, we identify in (4.6) a function and its
image by the quotient map mod �.

Limits (4.4) and (4.5) are considered folklore in the representation theory com-
munity and often not made explicit. In the literature, the authors managed to only
identify [36, Theorem 3.5] where Eq. (4.4) is explicitly present with morally r = 1.
Sun’s approach works for Uq(gln) and his proof uses a neat induction on the degree
of PBW basis elements and arguments from symplectic geometry. Our statement has
the following distinctive features:

• We keep track of the dependence in r > 0.
• Contrary to Sun’s paper [36], we only treat the very specific case of sl2 in Eq. (4.4),
where the structure of representations can be made entirely explicit. Although less
general, the proof is interesting in its own right as it transparently shows that matrix
coefficients of representations are indeed deformations of functions on dressing
orbits. We have not found this proof in the literature.

• We complete the picture with the convolution of two orbits in Eq. (4.5).
• We show the appearance of the crystal tensor product rule in the infinite curvature
limit thanks to the above commutative diagram (4.6).

The proof of Theorem 4.1 is carried in the next four subsections: we describe in
the first subsection the uniform measure on dressing orbits and then prove in the
remaining three subsections the convergences stated in Theorem 4.1. But already, let
us give a remark on how to understand the quantum Casimir (2.8) as the quantization
of a dressing orbit invariant.

Remark 4.2 We have seen in Theorem 3.5 that as � → 0,
(
U�
q (sl2), †

)
degenerates to

the coordinate algebraC[(SU∗2
)
r ]. Moreover, in that limit, the Casimir (2.8) becomes:

1

2

(
4r2EF +

(
erH + e−r H

))
= tr(xx†),

for x ∈ (
SU∗2

)
r , which is essentially the only function of x invariant under the dressing

action. Indeed, for x ∈ Or (�), we have that tr(xx†) = cosh (r�) ; and every function
in C[(SU∗2

)
r ] invariant under the dressing action will be a function of �.
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4.1 Uniformmeasure on a dressing orbit and Archimedes’Theorem

The following proposition describes, in coordinates, the uniformmeasure on a dressing
orbitOr (�) = SU2 ∗r �. By uniform measure, we mean the measure induced by the
Haar measure.

Proposition 4.3 A uniform element in Or (�) = SU2 ∗r � is uniquely written:

g =
(

e
1
2 rμ 0

ei�
√
er� + e−r� − erμ − e−rμ e− 1

2 rμ

)

, (4.6)

with μ and � independent random variables. The phase � is uniform on [0, 2π ] and
μ follows the distribution:

P (μ ∈ dx) = rerxdx

er� − e−r�
1[−�,�].

In fact, the law of μ is exactly encoded by the Harish–Chandra spherical function,
but we will prefer an elementary derivation based on the following result, which dates
back to Archimedes’ work “On the sphere and cylinder”. We provide the proof for the
sake of completeness.

Theorem 4.4 (Archimedes’ Theorem) Consider the unit sphere S2 ⊂ R
3. Then:

• (Global version) If the sphere is inscribed inside a cylinder, the sphere has exactly
the same surface area as the lateral side of the cylinder.

• (Local version)Considering the uniformmeasure on the sphere, the imagemeasure
through the projection along any axis is uniform on [−1, 1].

Proof The global version is naturally deduced from the local version by integration
along the axis. One can also invoke the nowadays known area formulas. This is almost
Archimedes’ original statement as he included the bases of the cylinder, leading him
to the celebrated formulation that “the surface of the cylinder is half as large again as
the surface of the sphere” [15].

For the local version, one can perform a Jacobian computation but we prefer the
following probabilistic derivation. It generalizes easily to any dimension, showing
that projections along an axis are Beta distributions. Now, because of the rotation
invariance of the Gaussian distribution, a uniform random variable on the unit sphere
is obtained by normalizing a standard Gaussian vector (N1,N2,N3). Therefore, the
measure of interest is the law of

X := N1√
N 2

1 +N 2
2 +N 2

3

.

We need to show that:

P (X ∈ dx) = 1[−1,1](x)
dx

2
.
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We have that ε = sgn(X) is a Bernoulli random variable and |X | is independent of ε,
by symmetry of the Gaussian distribution. Therefore, we write:

X2 = N 2
1

N 2
1 +N 2

2 +N 2
3

=
γ 1

2

γ 1
2
+ γ1

,

where the γk’s are independent Gamma variables with parameter k. Because of the
Beta-Gamma algebra identities, X2 has a Beta distribution with parameters ( 12 , 1).
As such, P(X2 ∈ dx) = 1[0,1] dx

2x
1
2
, which implies by a change of variables that

P(|X | ∈ dx) = 1[0,1](x)dx . The result follows. ��
Proof of Proposition 4.3 Using notation (2.14), we have:

er� + e−r� = Tr(gg†) = erH + e−r H + 4r2|F |2.

Theexpression (4.6) then follows, by settingH = μ and2r F = ei�|2r F |.Uniqueness
is obvious. Let us now compute the joint distribution of � and μ.

We have that for any θ ∈ R, t =
(
eiθ 0
0 e−iθ

)
∈ SU2,

tgt−1 =
(

e
1
2 rμ 0

ei(�−2θ)
√
er� + e−r� − erμ − e−rμ e− 1

2 rμ

)

still belongs to the orbit. By definition of the uniform measure on the dressing orbit
Or (�), tgt−1 is also distributed according to the uniformmeasure onOr (�). As such
for all θ ∈ R, we have the equality in law

(μ,�)
L= (μ,�− 2θ mod 2π) .

Necessarily � is uniform on [0, 2π ] and is independent of μ. In order to track the
distribution of μ, let us write:

g = k1

(
e
1
2 r� 0

0 e− 1
2 r�

)

k2

with k1 Haar distributed on SU2, and k2 ∈ SU2 is chosen in such a way that g ∈ N A.
Thus:

gg† = k1

(
er� 0
0 e−r�

)
k†1

=
(

erμ e−i�e 1
2 rμ
√
er� + e−r� − erμ − e−rμ

ei�e
1
2 rμ
√
er� + e−r� − erμ − e−rμ

(
er� + e−r� − erμ − e−rμ

)+ e−rμ

)

,
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and therefore erμ is the top-left coefficient of a Hermitian matrix, whose spectrum is
{e−r�, er�}, and whose eigenvectors are Haar distributed. The space of such matrices
is a sphere with principal diameter [e−r�, er�], and the induced measure is uniform.
Hence, by Archimedes’ Theorem 4.4, erμ is uniform on [e−r�, er�].

We conclude by the following computation. For all bounded measurable function
ϕ:R → R, the last paragraph yields:

E (ϕ(μ)) =
∫ er�

e−r�
du

er� − e−r�
ϕ

(
1

r
log u

)

=
∫ �

−�

rerxdx

er� − e−r�
ϕ (x) .

��

4.2 Proof of Eq. (4.4): one orbit

Let � ∈ R
∗+. V q(��) has basis

(e�k; k = −
�/��,−
�/�� + 2, . . . , 
�/�� − 2, 
�/��) .

Because of the PBW basis theorem, it suffices to prove the result when F =
EaFbHc for natural numbers a, b and c. Thanks to the structure of the representation
given in (3.3), we have that:

Fe�k ∈ Ce�k+2�(a−b).

As such, we have that 〈Fe�k, e∗�k〉 = 0 if a �= b. Upon computing the coefficients,
we have as � → 0:

〈q−HFe�k, e
∗
�k〉 = (1+ o(1)) δa,b e

r(�k) (�k)c
1

(2r)2a

∣∣
∣er� + e−r� − er�k − e−r�k

∣∣
∣
a
,

excepted for a bounded number of indices k, and each of these terms is bounded. As
such:

TrVq (��)

(
q−HF

)

=

�/��∑

k=−
�/��

�/��−k even

〈q−HFe�k, e
∗
�k〉

= O(1)+

�/��∑

k=−
�/��

�/��−k even

δa,b (1+ o(1)) er(�k) (�k)c
∣∣∣∣∣
er� + e−r� − er�k − e−r�k

(2r)2

∣∣∣∣∣

a
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= O(1)+ δa,b
1+ o(1)

�

∫ �

−�

erx xc
∣∣
∣∣
er� + e−r� − erx − e−r x

(2r)2

∣∣
∣∣

a

dx,

where we recognized a Riemann sum at the last step. Therefore, if we divide by

TrVq (��)

(
q−H

)
= O(1)+ 1+ o(1)

�

er� − e−r�

r
,

we obtain:

TrVq (��)

(
q−HF)

TrVq (��)

(
q−H

)

= O(�)+ δa,b (1+ o(1))
∫ �

−�

rerx

er� − e−r�
xc

∣∣
∣∣
er� + e−r� − erx − e−r x

(2r)2

∣∣
∣∣

a

dx,

Now, thanks to Proposition 4.3, any element gwhich is uniform inOr (�) = SU2 ·�
can be written:

g =
((

e
1
2 r H 0

2r F e− 1
2 r H

)

,

(
e− 1

2 r H 2r E

0 e
1
2 r H

))

where E(g) = F(g) = 1
2r e

i�
√
er� + e−r� − erH(g) − e−r H(g), � is uniform on

[0, 2π ] and H(g) follows the prescribed distribution. As such:

TrVq (��)

(
q−HF)

TrVq (��)

(
q−H

) = O(�)+ (1+ o(1)) E

(
E(g)a F(g)bH(g)c

)

= o(1)+ E ( f (g)) .

This concludes the proof of Eq. (4.4) for one orbit. Notice that the proof holds for all
r > 0, uniformly on compact intervals.

4.3 Proof of Eq. (4.5): convolution of two orbits

Sweedler’s notation for the coproduct �r on U�
q (sl2) is written:

�rF =
∑

(F)

F1 ⊗ F2.

Hence, since q−H is group-like and �r is a morphism:

�r

(
q−HF

)
=
∑

(F)

(
q−HF1

)
⊗
(
q−HF2

)
.
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Upon considering
(
ei
�k

)
k as the basis of V

q(��

i ), for i = 1, 2, this gives:

TrVq (��

1 )⊗Vq (��

2 )

(
q−HF

)
=
∑

i, j

〈�r q
−HF · e1

�i ⊗ e2
� j ,

(
e1
�i ⊗ e2

� j

)∗〉

=
∑

(F)

∑

i, j

〈q−HF1e
1
�i ,

(
e1
�i

)∗〉〈q−HF2 · e2� j ,
(
e2
� j

)∗〉

=
∑

(F)

TrVq (��

1 )(q
−HF1) TrVq (��

2 )(q
−HF2).

Again, because q−H is group-like, we have:

TrVq (��

1 )⊗Vq (��

2 )(q
−H ) = TrVq (��

1 )(q
−H )TrVq (��

2 )(q
−H ),

and upon dividing by that quantity, we obtain the equality:

TrVq (��

1 )⊗Vq (��

2 )

(
q−HF)

TrVq (��

1 )⊗Vq (��

2 )(q
−H )

=
∑

(F)

TrVq (��

1 )

(
q−HF1

)

TrVq (��

1 )(q
−H )

TrVq (��

2 )

(
q−HF2

)

TrVq (��

2 )(q
−H )

.

We are ready to invoke the semi-classical limit Eq. (4.4) for one orbit. Let f j :=
F j mod � for j = 1, 2. Also consider a random variable x uniformly distributed on
Or (�1) and an independent random variable y uniformly distributed onOr (�2). We
have, as � → 0:

TrVq (��

1 )⊗Vq (��

2 )

(
q−HF)

TrVq (��

1 )⊗Vq (��

2 )(q
−H )

= o(1)+
∑

(F)

E ( f1(x)) E ( f2(y))

= o(1)+ E

⎛

⎝
∑

(F)

f1(x) f2(y)

⎞

⎠ .

Now, recall from Remark 3.2 that the coproduct�r on U�
q (sl2) has nothing inherently

quantum! It is the coproduct associated to the dual Poisson–Lie group (SL∗2)r and as
such, by definition:

∑

(F)

f1(x) f2(y) = f (x ∗r y) ,

where f = F mod �. The result (4.5) follows.

4.4 Proof of Eq. (4.6): crystals in the infinite curvature limit

The bottom arrow is a specialization of the semi-classical limit for two orbits given in
Eq. (4.5).
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The top arrow is the convergence of a sum indexed by B (
��

1

)× B (
��

2

)
. Thanks

to the identification (4.2), this is a sum on a mesh which discretizes the rectangle
[−�1,�1] × [−�2,�2]. The statement is thus the convergence of a Riemann sum.

The left arrow is essentially a restatement of what crystal bases are. Indeed, as
q → 0, the only remaining basis vectors of the representation Vq

(
��

1

) ⊗ V q
(
��

2

)

are monomial and thus identify with crystal elements of the form b1⊗b2 ∈ B (
��

1

)⊗
B (

��

2

)
. The convergence follows, since as r → ∞, �r ,� acts as the highest weight

hw while H acts as the weight wt in any representation.
Only the right arrow remains to be detailed. To that endeavor, we start by invoking

Proposition 4.3 giving the explicit description of uniform elements g j ∈ Or (� j ),
j = 1, 2, on two dressing orbits:

g j =
(

e
1
2 rμi 0

ei� j
√
er� j + e−r� j − erμ j − e−rμ j e− 1

2 rμ j

)

.

The product is:

g1g2 =
(
e
1
2 r(μ1+μ2) 0

2r F(g1g2) e− 1
2 r(μ1+μ2)

)

,

with

2r F(g1g2) = ei�1
√
er�1 + e−r�1 − erμ1 − e−rμ1e

1
2 rμ2

+ ei�2e−
1
2 rμ1

√
er�2 + e−r�2 − erμ2 − e−rμ2 .

When r →∞, as soon as |μ1| < �1, |μ2| < �2, and ei�1 �= −ei�2 , the tropicaliza-
tion trick (4.3) yields the estimate:

4r2 |F(g1g2)|2 =
∣∣
∣ei�1e

1
2 r(�1+μ2+o(1)) + ei�2e

1
2 r(−μ1+�2+o(1))

∣∣
∣
2

= exp [r max (�1 + μ2, −μ1 +�2)+ o(r)] . (4.7)

Now, we compute the scalar � = �(g1g2) ∈ R such that g1g2 belongs to the orbit
Or (�). We have:

�(g1g2) = 1

r
Argcosh ◦ tr

[
(g1g2)(g1g2)

†
]

= 1

r
Argcosh

(
cosh (r(μ1 + μ2))+ 2r2 |F(g1g2)|2

)

r→∞−→ max (�1 + μ2, −μ1 +�2) ,

thanks to the estimate (4.7), the asymptotic Argcosh(x) = log 2x + o(1) as x →∞
and the tropicalization trick (4.3) again. This limit holds for (Lebesgue) almost every
μ1 ∈ [−�1,�1], μ2 ∈ [−�2,�2] and (�1,�2) ∈ [0, 2π ]2.
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We thus conclude, that for independent random variables g1 and g2, uniformly
distributed on Or (�1) and Or (�2) respectively, we have:

E
(
e−r H(g1g2)ϕ ◦�(g1g2) ψ ◦ H(g1g2)

)

E
(
e−r H(g1g2)

)

= 1

4�1�2

∫ �1

−�1

∫ �2

−�2

dμ1dμ2

∫ 2π

0

∫ 2π

0

d�1

2π

d�2

2π
ϕ ◦�(g1g2) ψ (μ1 + μ2)

r→∞−→ 1

4�1�2

∫ �1

−�1

∫ �2

−�2

dμ1dμ2 ϕ ◦max (�1 + μ2, −μ1 +�2) ψ (μ1 + μ2) .

In the above computation, the equality is obtained thanks to Proposition 4.3 and the
limit follows from the dominated convergence theorem.

5 Dynamical semi-classical limits: proof of Main Theorem 2.1

This section is devoted to the proof of Theorem 2.1. Let us start by recalling what is
already known among the convergences � → 0 or r → 0 or∞.

Theorem 1.7 of Biane gives the convergence in the semi-classical limit � → 0 of the

non-commutative process
(
x0,�t ; t ≥ 0

)
to the flat Brownian motion

(
x0t ; t ≥ 0

)
, as

well as the convergence of the Casimir process
(
�

0,�
t ; t ≥ 0

)
to the Bessel-3 process.

The convergence of the dynamic
(
gr ,�t ; t ≥ 0

)
on U�

q (sl2) to Pitman’s Theorem 1.1

is also a rephrasing of Biane’s Theorem 1.8 as the q → 0 limit corresponds to our

curvature r going to infinity. The r → 0 regime of
(
gr ,�t ; t ≥ 0

)
is obviously given

by the degeneration “q → 1” of U�
q (sl2) to U�(sl2). In the semi-classical world, the

convergence in both regimes r → 0 and r → ∞ is Theorem 1.4 by Bougerol and
Jeulin.

As already mentioned, since extracting their result is not trivial, we provide a
complete proof of the convergences in Sect. 5.1. In Sect. 5.2, we compute the law

of the dynamic
(
�

r ,�
t ; t ≥ 0

)
induced by the Casimir operator for generic r > 0.

Sect. 5.3 is the technical part where we provide the proof of the convergence of((
gr ,�t ,�

r ,�
t

)
; t ≥ 0

)
to

((
grt ,�

r
t

) ; t ≥ 0
)
as � → 0. Finally, we conclude in

Sect. 5.4 with a conceptual explanation of why the law of �r ,� is independent from
r > 0.

5.1 The proof of Bougerol and Jeulin’s Theorem 1.4

The fact that the distribution of �r does not depend on r > 0 is rather subtle. As
announced earlier, we leave the matter for Sect. 5.4, where we will benefit from a
more global vision of the problem.

123



874 F. Chapon, R. Chhaibi

For the first expression given in Eq. (1.6), consider Eq. (1.5) and write:

cosh
(
r�r

t

) = tr gt g
†
t = cosh(r Xt )+ 1

2
r2
∣∣
∣∣e

1
2 r Xt

∫ t

0
e−r Xs (dYs + id Zs)

∣∣
∣∣

2

.

Taking the inverse of cosh yields the result.
Now, let us prove the existence of the limits r → 0 and r → ∞ for �r , which

are given in Eq. (1.7). We shall use the notation o(1) to denote a sequence of random
variables going to zero almost surely, and oP(1) if this convergence is in probability.

The computation of �r=0 goes via the following limit argument. For fixed t > 0,
we start with the estimate:

∫ t

0
e−r Xs (dYs + id Zs) = Yt + i Zt + oP(1),

which is an easy consequence of computing the L2(�, P) norm thanks to the Itô
isometry property. Then, via Taylor expansions:

cosh
(
r�r

t

) = cosh(r Xt )+ 1

2
r2
∣∣∣∣e

1
2 r Xt

∫ t

0
e−r Xs (dYs + id Zs)

∣∣∣∣

2

= 1+ 1

2
r2X2

t + r2o(1)+ 1

2
r2 |(1+ o(1)) (Yt + i Zt + oP(1))|2

= 1+ 1

2
r2
(
X2
t + Y 2

t + Z2
t + oP(1)

)
.

Since Argcosh(1+ 1
2 x) =

√
x +O(x) for x → 0, we have as r → 0:

�r
t =

1

r
Argcosh

[
1+ 1

2
r2
(
X2
t + Y 2

t + Z2
t + oP(1)

)]

=
√
X2
t + Y 2

t + Z2
t + oP(1)+ oP(1)

=
√
X2
t + Y 2

t + Z2
t + oP(1).

Therefore, we have the limit in probability for all t > 0:

P− lim
r→0

�r
t =

√
X2
t + Y 2

t + Z2
t ,

which yields the result for �r=0.
For the computation of�r=∞, we fix t > 0 and work conditionally to the trajectory

(Xs; s ∈ R+). By virtue of classical Wiener integration with respect to Brownian
motion, there exists a complex standard Gaussian NC such that

∫ t

0
e−r Xs (dYs + id Zs)

L=NC

√∫ t

0
e−2r Xs ds.
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Indeed, (Y , Z) is independent from X and conditioningwith respect to (Xs; 0 ≤ s ≤ t)
allows to treat the integrand as a deterministic function. As such:

cosh
(
r�r

t

) = cosh(r Xt )+ 1

2
r2
∣∣∣∣e

1
2 r Xt

∫ t

0
e−r Xs (dYs + id Zs)

∣∣∣∣

2

= 1

2
er Xt + 1

2
e−r Xt + 1

2
r2|NC|2er Xt

∫ t

0
e−2r Xs ds.

Notice that the above quantity is a sum of positive terms and diverges to∞ as r →∞,
since either Xt > 0 or −Xt > 0 almost surely. Moreover as x → ∞, we have
Argcosh(x) = o(1)+ log 2x , hence:

�r
t = o (1)+ 1

r
log

(
er Xt + e−r Xt + r2|NC|2er Xt

∫ t

0
e−2r Xs ds

)
.

Now, the crux of the argument consists in invoking the Laplace method which can
be seen as the continuous analogue of the tropicalization trick (4.3). It states that for
all continuous functions f :

lim
r→∞

1

r
log

∫ t

0
e−r f (s)ds = − inf

0≤s≤t f (s).

In particular, for f = X , we have:

�r
t = o (1)+ 1

r
log

(
er Xt + e−r Xt + r2|NC|2er(o(1)+Xt−2 inf0≤s≤t Xs)

)
,

Invoking the tropicalization trick (4.3) again, we obtain:

�r
t = o(1)+max

(
|Xt |, o(1)+ Xt − 2 inf

0≤s≤t Xs

)
.

Upon noticing the almost sure inequality Xt − 2 inf0≤s≤t Xs > |Xt |, we have shown
that there is an almost sure limit:

lim
r→∞�r

t = Xt − 2 inf
0≤s≤t Xs,

which implies the limit in probability given in the theorem.

5.2 The Littlewood–Richardson dynamic

Here we compute the distribution of the commutative process
(
Mn(Cr ,�); n ≥ 1

)
.

From the facts that theMn’s are algebra homomorphisms and thatCr ,� lies in the center
of U�

q (sl2), it is clear that Mn(Cr ,�) commutes with any Mk(Cr ,�) for k ≤ n. More-

over, from its definition (2.8), Cr ,� is Hermitian with respect to the involution †. As
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such, one can simultaneously diagonalize the operators
(
M1(Cr ,�), . . . , Mn(Cr ,�)

)
.

Recall that Cr ,� acts on the irreducible representation V q
(
��

)
as the constant

Cr ,�(��) defined in Eq. (3.5). Because of the rigidity of quantum groups, the
Littlewood–Richardson rule is unchanged which will imply that

(
Mn(Cr ,�); n ≥ 0

)

follows the same dynamic regardless of the parameter r > 0. The following lemma is
an analogue of Lemma 3.3 in [7].

Lemma 5.1 Let J = {λ1, . . . , λn} ⊂ N with λ1 = 1 and |λk+1−λk | = 1. There exists
a subspace V q

J ⊂ (C2)
⊗n

, isomorphic to the irreducible representation V q(�λn) of
dimension λn + 1, which is a common eigenspace of M1(Cr ,�), . . . , Mn(Cr ,�) with
corresponding eigenvalues Cr ,�(�λ1), . . . ,Cr ,�(�λn).

Proof The proof is done by induction on n. For n = 1, Vq
J = V q(�) ≈ C

2 is indeed
an eigenspace of M1(Cr ,�) = Cr ,� and the base case is proven.

Now, suppose the assertion is true for fixed n ≥ 1. Let λ1, . . . , λn+1 with |λk+1 −
λk | = 1. Let J ′ = {λ1, . . . , λn}. Because of the induction hypothesis, there exists a
subspace Vq

J ′ ⊂ V q(�)⊗n which is a common eigenspace ofM1(Cr ,�), . . . , Mn(Cr ,�)

with eigenvalues Cr ,�(�λ1), . . . ,Cr ,�(�λn). Moreover V q
J ′  V q(�λn). Upon ten-

soring by Vq(�), we obtain Vq
J ′ ⊗ V q(�) ⊂ Vq(�)⊗(n+1) which is still a common

eigenspace for the previous operators and with exactly the same eigenvalues.
Here, we invoke the Littlewood–Richardson rule which governs the decomposition

of tensor products into irreducibles. We have

Vq
J ′ ⊗ V q(�) ≈ V q(�λn)⊗ V q(�) ≈ V q (�(λn + 1))⊕ V q (�(λn − 1)) , (5.1)

irrespective of the parameter q = e−r , a property which is referred to as the rigidity
of quantum groups.

On the irreducible representationV q (�(λn + 1)) (resp.Vq(�(λn−1))),Mn+1(Cr ,�)

acts as the constant Cr ,�(�(λn + 1)) (resp. Cr ,�(�(λn − 1))). Moreover, one can con-
struct Vq(�(λn + 1)) and Vq(�(λn − 1)) as follows (see [38, p. 35]). Let

(
el
�k; k = −l,−l + 2, . . . , l − 2, l

)

be the weight basis of Vq(�l). Then V q(�(λn + 1)) is spanned by the vectors eλn+1
�m

defined by

eλn+1
�m := CGC�

q (λn, 1, λn + 1;m − 1, 1,m) eλn
�(m−1) ⊗ e1

�

+ CGC�

q (λn, 1, λn + 1;m + 1,−1,m) eλn
�(m+1) ⊗ e1−�

,

for m = −(λn + 1),−λn + 1, . . . , λn − 1, λn + 1. On the other hand, V q(�(λn − 1))
is spanned by the vectors eλn−1

�m defined by

eλn−1
�m := CGC�

q (λn, 1, λn − 1;m − 1, 1,m) eλn
�(m−1) ⊗ e1

�

+ CGC�

q (λn, 1, λn − 1;m + 1,−1,m) eλn
�(m+1) ⊗ e1−�

,
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for m = −(λn − 1),−λn + 3, . . . , λn − 3, λn − 1. Here the explicit coefficients
CGC�

q (·; ·) are the so-called Clebsch–Gordan coefficients.

Since for k ≤ n, the operator Mk(Cr ,�) acts only on the first kth legs of
the tensor product, Vq(�(λn + 1)) and V q(�(λn − 1)) are still eigenspaces of
M1(Cr ,�), . . . , Mn(Cr ,�), so the lemma is proved letting Vq

J = Vq(�(λn + 1)) for
λn+1 = λn + 1 and Vq

J = V q(�(λn − 1)) for λn+1 = λn − 1. ��
Using the above lemma, for any polynomial f in n variables, the spectral theorem

gives

τ
[
f
(
M1(C

r ,�), . . . , Mn(C
r ,�)

)]

=
∑

J={λ1,...,λn}
f
(
Cr ,�(�λ1), . . . ,C

r ,�(�λn)
)
× 1

2n
Tr(�J ),

where �J is the projector onto V q
J which has dimension λn + 1. Thus Tr(�J ) =

λn + 1 and the probability of (M1(Cr ,�), . . . , Mn(Cr ,�)) having the trajectory
(Cr ,�(�λ1), . . . ,Cr ,�(�λn)) is equal to

λn + 1

2n
= λ1 + 1

2

λ2 + 1

2(λ1 + 1)
· · · λn + 1

2(λn−1 + 1)
.

We deduce that the process
(
Mn(Cr ,�); n ≥ 1

)
is a Markov chain on the state space{

Cr ,�(�k); k ∈ N
}
with transitions given by

p
(
Cr ,�(�λ),Cr ,�(�(λ+ 1))

)
= λ+2

2(λ+1) , p
(
Cr ,�(�λ),Cr ,�(�(λ− 1))

) = λ

2(λ+ 1)
.

This shows that the dynamic induced by the Casimir operator has transitions which
do not depend on r and are given as in Pitman’s Theorem 1.1. Consequently, using

(2.20), we have that the dynamic of the process
(
�

r ,�
n ; n ≥ 0

)
is independent of the

curvature r and is a Markov chain on highest weights �N with transitions (1.1).

5.3 Semi-classical limit of quantumwalks onU�
q (sl2) and Brownianmotion on

(
SU∗

2
)
r

Recall that H is defined in a completion of U�
q (sl2) through K = e−r H ∈ U�

q (sl2),

and define β = "β + i#β ∈ U�
q (sl2) where

"β = 2"F = F + F† = F + E, #β = 2#F = i(F† − F) = i(E − F).

Using the action on the irreducible representation Vq(�) ≈ C
2 given by (3.3), the

non-commutative self-adjoint random variables H ,"β and #β are represented thanks
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878 F. Chapon, R. Chhaibi

to (Vq(�), ρ�) by the following matrices:

ρ�(H) = �

(
1 0
0 −1

)
, ρ�("β) = β�

r

(
0 1
1 0

)
, ρ�(#β) = β�

r

(
0 i
−i 0

)
,

with β�
r = α�

r (er� − e−r�)  � as � → 0. Accordingly, one sees that H , "β

and #β are renormalized Pauli matrices. Since the state τ is the normalized trace on
End(Vq(�)), their marginal distributions (L(H),L("F),L(#F)) are given by their
spectral measures:

L(H) = 1

2
δ� + 1

2
δ−�, L("F) = 1

2
δβ�

r
+ 1

2
δ−β�

r
, L(#F) = 1

2
δβ�

r
+ 1

2
δ−β�

r
.

As such, H is distributed as � times a Bernoulli random variable and "β and #β are
distributed as β�

r times a Bernoulli random variable.
Now, let us adopt the following convenient but abusive notations:

Mn(β) := Mn("β)+ iMn(#β),

Mn("β) :=
n∑

k=1
1⊗k−1 ⊗"β,

Mn(#β) :=
n∑

k=1
1⊗k−1 ⊗ #β.

This is an abuse of notation because the right-hand side has no reason to belong to
the image of Mn . Moreover, it is different from the result obtained by applying the
measurement operator Mn to β, as β is not primitive. We will nevertheless pretend
that it is the case, since it will be convenient. Furthermore, since H is primitive, one
has

Mn(H) =
n∑

k=1
1⊗k−1 ⊗ H .

Since the random variables
(
1⊗k−1 ⊗ A; k ≥ 1

)
, for each fixed A ∈ {H ,"β,#β},

are commuting and thus independent, each of the walks Mn(H), Mn("β), Mn(#β)

is a sum of independent Bernoulli random variables, and this triplet corresponds to
the quantum Bernoulli walk of Biane appearing in Theorem 1.6 but with a different
normalization. As such, Donsker’s invariance principle gives that each of these walks
converges towards a Brownian motion. Moreover, using the commutation relations of
(2.1) defining the algebra U�

q (sl2), one sees that all the brackets [Mn(A), Mn(B)]
for given A, B ∈ {H ,"β,#β} are of order � and thus converge to zero in the
semi-classical limit � → 0. This is the crucial argument in Biane’s Theorem, giv-
ing that the quantum walk

(
Mt/�2(H), Mt/�2("β), Mt/�2(#β); t ≥ 0

)
converges, in

the semi-classical limit, towards a classical Euclidean 3-dimensional Brownianmotion
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(X ,Y , Z). Notice that compared to us, the Planck constant is not explicit in Biane’s
argument, as it is hidden in the diffusive rescaling.

In any case, recalling that Mn(β) = Mn("β)+ iMn(#β), we get the convergence
in distribution

(
Mt/�2(H), Mt/�2(β); t ≥ 0

) �→0−→
(
Xt , β

C

t ; t ≥ 0
)

, (5.2)

where βC
t = Yt + i Zt is a standard complex Brownian motion and Xt a standard real

Brownian motion. We made such a choice of notation so that one can recognize the
driving processes associated to the Bougerol–Jeulin dynamic:

grt =
(

e
1
2 r Xt 0

re
1
2 r Xt

∫ t
0 e
−r Xs dβC

s e− 1
2 r Xt

)

∈ (
SU∗2

)
r ≈ N A.

Note that in view of the convergence of
(
Mt/�2(H); t ≥ 0

)
, one has the conver-

gence in distribution of the commutative process
(
Kr ,�
t := Mt/�2(K ); t ≥ 0

)
to

(
e−r Xt ; t ≥ 0

)
.

In order to justify the convergenceof the full non-commutative process
(
gr ,�t ; t ≥ 0

)

to
(
grt ; t ≥ 0

)
, it remains to prove that, jointly with

(
Kr ,�
t ; t ≥ 0

)
,

(
2r Fr ,�

t := 2rMt/�2(F); t ≥ 0
)

�→0−→
(
re

1
2 r Xt

∫ t

0
e−r Xs dβC

s ; t ≥ 0

)
.

Note that contrary to
(
Kr ,�
t ; t ≥ 0

)
, the process

(
Fr ,�
t ; t ≥ 0

)
is not classical, since

Mn(F) does not commute with Mk(F) for k < n and it is not self-adjoint either.
Nevertheless, using the expression of coproducts for s ∈ N:

Ms+1(F) = (Ms ⊗ 1)(�F) = Ms(F)⊗ K
1
2 + Ms(K

− 1
2 )⊗ F, (5.3)

one sees that for all n ∈ N:

Mn(F)

= Mn(K
1
2 )Mn(K

− 1
2 )Mn(F)

= Mn(K
1
2 )

n−1∑

s=0

(
Ms+1(K−

1
2 )Ms+1(F)− Ms(K

− 1
2 )Ms(F)

)

(5.3)= Mn(K
1
2 )

n−1∑

s=0

[
Ms+1(K−

1
2 ) ·

(
Ms(F)⊗ K

1
2 + Ms(K

− 1
2 )⊗ F

)
− Ms(K

− 1
2 )Ms(F)

]

= Mn(K
1
2 )

n−1∑

s=0

[
Ms(K

− 1
2 )Ms(F)+ Ms(K

−1)⊗ K−
1
2 F − Ms(K

− 1
2 )Ms(F)

]
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= Mn(K
1
2 )

n−1∑

s=0
Ms(K

−1)⊗ K−
1
2 F .

This expression has been tailored to look similar to the computation of the coef-
ficient F(x) if x ∈ (

SU∗2
)
r is a product of n matrices. After all, according to the

orbit method, an n-fold tensor product should correspond to the quantization of an
n-fold convolution. A crucial point is that the above expression is a (non-commutative)
martingale transform or a discrete stochastic integral. We are now ready to prove:

Proposition 5.2 The following convergence in distribution holds:

((
Kr ,�
t , 2r Fr ,�

t

)
; t ≥ 0

)
�→0−→

((
e−r Xt , re

1
2 r Xt

∫ t

0
e−r Xs dβC

s

)
; t ≥ 0

)
.

Proof Let D be a subdivision of the segment [0, t]. The maximal meshsize is denoted
|D|. Associated to D and t , one defines the sums:

F�,D
t := Mt/�2(K

1
2 )

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1
Mu/�2(K−1)⊗ 1⊗s−1−
u/�

2� ⊗ K−
1
2 F

= Mt/�2(K
1
2 )

∑

[u,v]∈D
Mu/�2(K−1)


v/�
2�∑

s=
u/�2�+1
1⊗(s−1) ⊗ K−

1
2 F .

Again, the above sum can be understood as the definition of the non-commutative
stochastic integral of the adapted process Mt (K−1)with respect to the process defined
by the independent increments 1⊗(s−1) ⊗ K− 1

2 F .

Step 1Using the weak convergence of Eq. (5.2), one has the weak convergence jointly
with the other walks (M·(H), M·(β)):

(
2F�,D

t ; t ≥ 0
)

�→0−→
⎛

⎝e
1
2 r Xt

∑

[u,v]∈D
e−r Xu

(
βC

v − βC

u

)
; t ≥ 0

⎞

⎠ .

Indeed even when considering different times, F�,D
t is a polynomial function

of known random walks. Since Mt/�2(K ) converges to e−r Xt and K− 1
2"F (resp.

K− 1
2#F) has the same spectral measure in Vq(�) than "F (resp. #F), one has


v/�
2�∑

s=
u/�2�+1
1⊗(s−1) ⊗ 2K−

1
2 F → βC

v − βC

u

as � → 0, so we get the above convergence of F�,D
t by simply applying a polynomial

version of the mapping theorem in the non-commutative setting.
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Step 2 Let us prove that for every fixed �0, T > 0 and p > 1

lim sup
|D|→∞

sup
�∈[0,�0]

sup
t∈[0,T ]

∥∥
∥Fr ,�

t − F�,D
t

∥∥
∥
p
= 0,

where ‖ · ‖p denotes the norm in L p(Ar ,�, τ ). We start by noticing that Mt/�2(K )

is uniformly bounded in all L p as (renormalized) Bernoulli walks have exponential
moments of all order. Then using the Cauchy–Schwarz inequality:
∥
∥∥Fr ,�

t − F�,D
t

∥
∥∥
p

≤
∥
∥∥Mt/�2 (K

1
2 )

∥
∥∥
2p

×
∥∥∥

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1

(
Ms−1(K−1)− Mu/�2 (K−1)⊗ 1⊗(s−1−
u/�

2�))⊗ K−
1
2 F

∥∥∥
2p

�
∥
∥∥

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1

(
Ms−1(K−1)− Mu/�2 (K−1)⊗ 1⊗(s−1−
u/�

2�))⊗ K−
1
2 F

∥
∥∥
2p

.

The above sum is thus a martingale transform of the adapted process ξs =
Ms−1(K−1)−Mu/�2(K−1)⊗1⊗(s−1−
u/�

2�) with respect to themartingale difference
process given by the increments

(
1⊗s−1 ⊗ K−1F; s ∈ N

)
. Note that the increment

1⊗s−1⊗ K−1F is independent from ξs since ξs is identity on the sth leg of the tensor
product.

Now, thanks to the non-commutative Burkholder–Davis–Gundy inequality [32,
Theorem 2.1] established by Pisier–Xu, its L2p norm is controlled by the L p norms
of non-commutative brackets:

∥∥
∥Fr ,�

t − F�,D
t

∥∥
∥
2

2p

� max

⎧
⎨

⎩

∥
∥∥

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1

(
Ms−1(K−1)− Mu/�2 (K−1)⊗ 1⊗(s−1−
u/�

2�))2 ⊗ EK−1F
∥
∥∥

1
2

p
,

∥
∥∥

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1

(
Ms−1(K−1)− Mu/�2 (K−1)⊗ 1⊗(s−1−
u/�

2�))2 ⊗ K−
1
2 FEK−

1
2

∥
∥∥

1
2

p

⎫
⎬

⎭

where we have used ‖A 1
2 ‖2p = ‖A‖

1
2
p . Using Hölder’s inequality and the fact that

‖EK−1F‖p and ‖K− 1
2 FEK− 1

2 ‖p are of order �
2, we get

∥∥∥Fr ,�
t − F�,D

t

∥∥∥
4

2p
�

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1
�
2
∥∥∥
(
Ms−1(K−1)− Mu/�2(K−1)

)2 ∥∥∥
2p

.
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Now, since
(
Ms(K−1); s ∈ N

)
is a commutative process, one can use the classical

Burkholder–Davis–Gundy inequality to obtain the estimate

‖(Ms−1(K−1)− Mu/�2(K−1))2‖2p � (2r�)2(s − 1− 
u/�
2�).

As such, we get

∥∥∥Fr ,�
t − F�,D

t

∥∥∥
4

2p
�

∑

[u,v]∈D


v/�
2�∑

s=
u/�2�+1
�
4
(
s − 1− 
u/�

2�
)

=
∑

[u,v]∈D
�
4

v/�

2�−
u/�
2�∑

s=1
s

�
∑

[u,v]∈D
�
4
(

v/�

2� − 
u/�
2�
)2

� |D|

uniformly in t ∈ [0, T ] and �.

Step 3 By the same computation, in the easier classical setting, any fixed moments of

the family
(
e
1
2 r Xt

∑
[u,v]∈D e−r Xu

(
βC

v − βC
u

) ; t ≥ 0
)
are close to the corresponding

moments of the family
(
e
1
2 r Xt

∫ t
0 e
−r Xs dβC

s ; t ≥ 0
)
, the error depending only on |D|,

this error vanishing as |D| → 0. Also one can invoke the convergence in probability
and boundedness in every L p.

Step 4 To conclude, any non-commutative moments of
(
Kr ,�
t , 2r Fr ,�

t ; t ≥ 0
)
are

• close to the moments of
(
Kr ,�
t , 2r F�,D

t ; t ≥ 0
)
via Step 2.

• which are close to the moments of
(
e−r Xt , re

1
2 r Xt

∑
[u,v]∈D e−r Xu

(
βC

v − βC
u

)
;

t ≥ 0
)
via Step 1.

• which are close to the moments of
(
e−r Xt , re

1
2 r Xt

∫ t
0 e
−r Xs dβC

s ; t ≥ 0
)
via Step

3.

��
Now let us deal with the semi-classical limit of the dynamic induced by the quantum

Casimir. From Eq. (2.20), we have:

2r�

er� − e−r�
cosh

(
r�+ r�r ,�

t

)

= 1

2

(
|2r Fr ,�

t |2 +
(
er�Kr ,�

t + e−r�(Kr ,�
t )−1

) 2r�

(er� − e−r�)

)
.
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As � → 0, exactly as in Remark 4.2, we obtain the dressing orbit invariant in the limit

lim
h→0

2r�

er� − e−r�
cosh

(
r�+ r�r ,�

t

)

= 1

2

∣∣
∣∣re

1
2 r Xt

∫ t

0
e−r Xs dβC

s

∣∣
∣∣

2

+ 1

2

(
e−r Xt + er Xt

)

= 1

2
Tr grt g

r
t
†
.

By inverting the cosh, we obtain as announced:

lim
�→0

�
r ,�
t = 1

r
Argcosh

[
1

2

∣∣∣
∣re

1
2 r Xt

∫ t

0
e−r Xs dβC

s

∣∣∣
∣

2

+ cosh(r Xt )

]

= �r
t .

5.4 The law of3r is independent from the curvature r > 0

Now that we have developed all the machinery, the simplest proof of the independence
of L (�r ) consists in putting together the two following facts:

• via Sect. 5.3,�r is the semi-classical limit of the Littlewood–Richardson dynamic.
• as described in Sect. 5.2, the Littlewood–Richardson dynamic is the one measured
by the Casimir. It depends on the relative dimensions of representations, upon
tensoring by Vq(�) and breaking into irreducibles. As the tensor product rule
(5.1) is independent of q = e−r , so is the Littlewood–Richardson dynamic.

As long as we are concerned with the required proofs in the paper, we are done.
We finish by revisiting the subtle argument of Bougerol and Jeulin [9, Section 3]
through the lens of spherical harmonic analysis and by explaining where the curvature
parameter is hidden. The key ingredient for this reinterpretation is the (r -deformed)
Harish-Chandra spherical function φ

(r)
z (�), which is defined as follows. Given an

element gr ,� uniformly distributed on the dressing orbit Or (�), define:

φ(r)
z (�) := E

(
er(z−1)H(gr ,�)

)
= erz� − e−r z�

z(er� − e−r�)
,

where the last equality is computed via Proposition 4.3. Notice the trivial dependence
in r via a rescaling:

φ(r)
z (�) = φ(1)

z (r�). (5.4)

From Theorem 4.1, this is the semi-classical manifestation of (renormalized) charac-
ters

TrVq (��)(q
−zH )

TrVq (��)(q
−H )
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depending trivially on q = e−r , itself a side-product of the rigidity of quantum groups.
Now, let us sketch the argument before discussing it. They start by considering the

canonical (bi-invariant) Brownian motion B = (Bt ; t ≥ 0) on H
3 = SL2(C)/SU2 ≈(

SU∗2
)
r=1. Its radial part has generator

1

2
∂2� + ∂� log sinh(�) ∂�,

whose heat kernel is diagonalized using the spherical functions
(
φ

(r=1)
z (�); z ∈ iR

)
.

Bougerol and Jeulin perform a first change of measure using φ
(r=1)
0 (�) = �

sinh(�)

as a density. Under the new measure, B becomes the process B0. By Girsanov, the
generator of its radial part transforms as:

1

2
∂2� + ∂� log sinh(�) ∂� + ∂� logφ

(r=1)
0 (�) ∂� = 1

2
∂2� + ∂� log� ∂�.

This is where we recognize the Bessel 3 process, which incidentally is the law of the
radial part of the flat Brownian motion x0 (denoted Z in their paper).

Another change of measure ends up having a similar effect. Consider the map
τ := e−H on N A ≈ H

3. This time, the change of measure uses τ as density and aims
at creating a special drift in the diagonal part of the symmetric space. Under the new
measure, B becomes the process Bτ and it is directly related to our curved Brownian

motion via Bτ L= gr=1.
Bougerol and Jeulin [9, Theorem 3.1] invoke the invariance of the Brownianmotion

B in order to average τ over SU2 and obtain φ0. This entails that the radial parts of
Bτ and B0 have the same distribution. All in all, this proves that �r=1, the radial part
of gr=1, is a Bessel 3 process. Brownian scaling extends the result to all r > 0 in
[9, Proposition 3.2]. Such a scaling argument however does not make apparent why
r > 0 is a curvature parameter.

Let us now revisit the argument by introducing the parameter r > 0 since the
beginning. Here, the hyperbolic space H

3 with curvature parameter r is identified
with

(
SU∗2

)
r .

As detailed in Sect. 3.3, introducing the parameter r amounts to multiplying the
sectional curvature by r2. In turn, this is equivalent to rescaling the metric tensor by
r−2 via [14, §3.20, (iii)]. Indeed, recall that thanks to the Killing-Hopf theorem [14,
§3.28], in the context of constant sectional curvature, there is a one to one corre-
spondence between curvature and the Riemannian metric tensor. Here the metric on
H

3 = (
SU∗2

)
r=1 corresponds in spherical coordinates to [16, p. 152]:

ds2 = d�2 + sinh(�)2dσ 2,

where dσ 2 is the Riemannian structure on the unit sphere, in the tangent space at
the identity. By rescaling the curvature and then changing � to r�, we obtain on

123



Quantum SL2, infinite curvature and Pitman’s 2M-X theorem 885

H
3 = (

SU∗2
)
r :

ds2 = d�2 +
(
sinh(r�)

r

)2

dσ 2.

Computing the Laplace–Beltrami operator (see [16, Chapter II, §2.4, Eq. (13)]), we
obtain in spherical coordinates:

1

2
∂2� + ∂� log

(
sinh(r�)

r

)
∂�.

From this point on, the argument of Bougerol and Jeulin carries verbatim and we
obtain that the generator of �r , the radial part of gr , is:

1

2
∂2� + ∂� log

(
sinh(r�)

r

)
∂� + ∂� logφ

(r)
0 (�) ∂� = 1

2
∂2� + ∂� log� ∂�,

which is the generator of a Bessel-3 process, independently of r > 0. The Brownian
rescaling argument is not needed anymore and we have indeed used curvature.

In the end, we realize the key role of the simple dependence in r > 0 of the spherical
harmonic analysis in Eq. (5.4), which is nothing but the rigidity of quantum groups.

Acknowledgements During a conference in Reims, R.C. had the opportunity to meet Kirillov and present
some of the ideas behind this paper, while still in their infancy. Kirillov said with a smile that these ideas
were not completely absurd and that now, “you have to work”. Needless to say, one could not hope for
better words of encouragement.

F.C. andR.C. acknowledge the support of theGrant PEPS JC 2017 “Quantumwalks on quantum groups”
and theGrant ANR-18-CE40-0006MESA funded by the FrenchNational ResearchAgency (ANR). Finally,
the authors express their gratitude to the anonymous referees for their useful comments.

A. Non-commutative topological considerations

Throughout the paper, we avoided the matters of completions of algebras. Since this
is definitely not the main focus of the paper, we chose to postpone these topological
considerations to this appendix.

Already, let us explain why, in most of our proofs, completing into a Von Neuman
algebra would have been an overkill. In the entire paper, one can perform functional
calculus at the level of the matrix algebras obtained after representation. For example,
the first instance where we invoked elements belonging to a completion was Theo-
rem 1.6 where the Casimir element Cg is defined as a square-root. The simplest way
of defining the object is the following. One has to remember that, in the computation
of non-commutative moments, C2

g is represented as a Hermitian matrix before taking
the trace. At that level, functional calculus is available for Hermitian matrices and the
square-root is perfectly well-defined.

Nevertheless, since the machinery exists (see [32], [33] and references therein), it
is possible to have a more intrinsic point of view and complete any of the algebras
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A considered in the paper into a C∗-algebra or a Von Neumann algebra. The general
technique relies on the state τ . In order to form a Banach algebra, we define the norm
d given by:

∀X ∈ End(V ), d(X) = lim
p→∞ τ

(
(XX∗)p

) 1
p ,

then we completeA thanks to d. In order to form a Von Neumann algebra, there is the
Gelfand–Naimark–Segal construction (GNS for short). This is done in several steps
which we detail for the quantum group U�

q (sl2) = A. The other algebras considered
in the paper are tensor products or degenerations.

Step 1: Linear structure Consider a representation

ρ : A = U�

q (sl2) −→
∞⊕

n=0
End

(
V q(n�)

)
,

which can be taken to be the faithful Peter–Weyl isomorphism. For shorter notations,
let ρn� = ρ|End(Vq (n�)) be the restriction to the nth component. Then define a trace
via

τ(a) =
∞∑

n=0
dn

Tr(ρn�(a))

dim V q(n�)
,

where

∞∑

n=0
dn = 1.

From this normalized trace τ , one forms the scalar product 〈a, b〉 := τ(a†b) and
considers the completion into a Hilbert space H . Thus we embed the algebra into a
linear space, but the multiplicative structure is missing.

Step 2: Multiplicative structure The algebra A acts on H via multiplication. More-
over, seeing A ∈ A as an operator on H , we write for b ∈ H :

A(b) := A × b,

and from the Cauchy–Schwarz inequality:

‖A(b)‖H =
√

τ
[
ρ(A†A)b†b

] ≤
√

τ(ρ(A†A))‖b‖H .

Hence the A acts necessarily as a bounded operator. As such the algebraA is identified
to a subalgebra of B(H), the algebra of bounded operators on H .
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Step 3: Completions Upon completion for the operator norm, one obtains a C∗ alge-
bra. Upon completionwith respect to theweak-* topology, one obtains aVonNeumann
algebra. Going even further, one obtains the unbounded operators on H affiliated to
the algebra A.
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