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Abstract
In this paper, we compare the solutions of the Dyson Brownian motion for general
β and potential V and the associated McKean–Vlasov equation near the edge. Under
suitable conditions on the initial data and the potential V , we obtain optimal rigidity
estimates of particle locations near the edge after a short time t = o(1). Our argument
uses the method of characteristics along with a careful estimate involving an equation
of the edge. With the rigidity estimates as an input, we prove a central limit theorem
for mesoscopic statistics near the edge, which, as far as we know, has been done for
the first time in this paper. Additionally, combining our results with Landon and Yau
(Edge statistics of Dyson Brownianmotion. arXiv:1712.03881, 2017), we give a proof
of the local ergodicity of the Dyson Brownian motion for general β and potential at the
edge, i.e., we show the distribution of extreme particles converges to the Tracy–Widom
β distribution in a short time.

Mathematics Subject Classification 60H15 · 60F05 · 60B20

1 Introduction

Random matrix models were originally proposed by Wigner [54,55] as models for
the nuclei of heavy atoms. The models he originally studied, the Gaussian orthogo-
nal/unitary ensembles, were successful in describing the spacing distribution between
energy levels. Wigner conjectured that the spacing distribution of a random matrix
ensemble depends only on the symmetry class of the ensemble.

Later, in 1962 [17], Dyson interpreted the Gaussian orthogonal/unitary ensembles
as dynamical limits of a matrix-valued stochastic differential equation. The equation
is given by
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dH(t) = 1√
N
dB(t) − 1

2
H(t)dt, (1.1)

where B(t) is the Brownian motion on real symmetric/complex Hermitian matrices,
respectively. It turns out that the eigenvalues of the above process satisfy a system
of self-consistent stochastic differential equations. These equations have later been
generalized to other stochastic differential equations called the β-Dyson Brownian
motion with potential“ V ,

dλi (t) =
√

2

βN
dBi (t)+ 1

N

N∑
j : j �=i

dt

λi (t) − λ j (t)
−1

2
V ′(λi (t))dt, 1 ≤ i ≤ N , (1.2)

where the initial data {λ1(0), λ2(0), . . . , λN (0)} is in the closure of the Weyl chamber

�N := {(x1, x2, . . . , xN ) : x1 > x2 · · · > xN }.

When β = 1 and V = x2/2, the Eq. (1.2) correspond to the eigenvalue process of
Eq. (1.1) for real symmetric matrices; when β = 2, they correspond to the eigenvalue
process for complex Hermitian matrices.

Dyson speculated that, under this stochastic eigenvalue process, the bulk local
statistics reach an equilibrium after a time of order slightly larger than 1/N . In other
words, the distributions of the eigenvalue gaps would asymptotically match those of
the corresponding β-symmetry class. In fact, one has three time scales.

1. For time t � 1, one should get the global equilibrium. Namely, the global spectral
density should approach that of the corresponding β ensemble. For the Dyson
Brownian motion with general β and potential V , this was studied in [44].

2. For scales of order 1/N � η∗ � 1, the spectral statistics on the scale η∗ should
reach the equilibrium after runningDysonBrownianmotion for time t � η∗.More
precisely, mesoscopic quantities of the form

∑N
i=1 f ((λi −E)/η∗) for appropriate

test functions should be distributed according to a universal distribution.
3. On the microscopic scale, i.e., the scale of order O(1/N ), the microscopic

eigenvalue distribution matches that of the Gaussian ensembles in the same
symmetry class. For example, when β = 2, the microscopic eigenvalue distri-
bution should be given by the determinantal point process with the Sine kernel
K (x, y) = sin(x − y)/(x − y) provided one runs the Dyson Brownian motion for
t � 1/N .

The fact that the local statistics of the Dyson Brownianmotion reach an equilibrium
in a short time plays an important role in the proof of Wigner’s original universality
conjecture by Erdős, Schlein, and Yau [28]. The first step of their method is to prove
a rigidity estimate of the eigenvalues, i.e., they show that the eigenvalues are close to
their classical locations up to an optimal scale. This can be understood as an initial data
estimate for the dynamic (1.2). The second step is to show that the Dyson Brownian
motion reaches an equilibrium for local statistics in a short amount of time. Since
one needs only to run the Dyson Brownian motion for a short time, the initial and
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final models can be compared. The last step is to compare the original random matrix
ensemble with one that has a small Gaussian component. For a good review of the
general framework regarding this type of analysis, we refer to the book [21] by Erdős
and Yau.

Of the three steps described in the previous paragraph, the step that is the least
robust is the proof of the rigidity estimates. This part depends very strongly on the
model in consideration and requires significant effort to obtain an optimal estimate.
Even in the basic case of Wigner matrices, the proof of the optimal rigidity estimates
requires the so-called fluctuation averaging lemma [31]. The proof of such lemmas
requires very delicate combinatorial expansions involving iterated applications of the
resolvent entries. Formodels evenmore complicated than theWignermatrices, proving
such lemmas is an intricate effort. A more general method that does not depend on the
details of the models is preferred. This will allow one to treat general classes of models
uniformly. We remark here that in contrast to [31] we do not establish an entrywise or
isotropic local law.

A dynamical approach to proving eigenvalue rigidity using the Dyson Brownian
motion allows us to avoid technical issues involving the details of a matrix model. We
do not need to perform complicated combinatorial analysis. In addition, it will allow
us to treat models that do not occur naturally with an associated matrix structure, such
as the β-ensembles. In an earlier paper by B. Landon and the second author [36],
the rigidity estimates of the bulk eigenvalues arising dynamically from the Dyson
Brownian motion were established. As a result, the optimal rigidity estimates in the
bulk are purely a consequence of the dynamics. The proof of rigidity is based on a
comparison between the empirical eigenvalue process of the Dyson Brownian motion
and the deterministicmeasure-valued process obtained as the solution of the associated
McKean–Vlasov equation by using the method of characteristics. The difference in
the corresponding Stieltjes transforms can be analyzed by a Gronwall-type estimate.
The method of characteristics was also applied in [6] to study the extreme eigenvalue
gaps of Wigner matrices.

There are substantial difficulties involved in performing a comparison between the
solutions of the Dyson Brownian motion and the associatedMcKean–Vlasov equation
near the edge. In the bulk, one can derive sufficiently strong estimates by looking at
the distance between the characteristics and the real line; this is thanks to the fact that
we have strong bounds on the imaginary part of the Stieltjes transform in the bulk.
Near the spectral edge, the power of these bounds decays and becomes too weak to
prove optimal rigidity. In our case, we have to establish an equation determining the
relative movement of our characteristics with respect to the edge. The estimates of
the Stieltjes transform of the empirical particle density near the edge heavily depend
on this relative movement. Informally, our main rigidity theorem is as follows; it
summarizes Theorem 4.8 in the text.

Theorem 1.1 (Informal Eigenvalue Rigidity Theorem) Consider a probability mea-
sureμ0 = (1/N )

∑N
i=1 δλi that satisfies the rigidity estimates on the scale η∗ near the

edge. The empirical particle density μt at any time t � √
η∗ of the Dyson-Brownian

motion with general β and potential starting from μ0 satisfies an optimal rigidity
estimate.
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In addition to the rigidity estimates, another main innovation in this paper is the
computation of the correlation kernel for the Stieltjes transform of the empirical par-
ticle density of the Dyson Brownian motion on mesoscopic scales near the edge. It
allows us to prove a mesoscopic central limit theorem near the edge. The mesoscopic
central limit in the bulk is proven for Wigner matrices in [10,11,33,34,46], for β-
ensembles in [46] and for the Dyson Brownian motion in [16,36,39]. Applications for
mesoscopic central limit theorems are given in [38]. Two-point correlation functions
for all mesoscopic scales are considered in [35]. As far as we know, the mesoscopic
central limit theorem near the edge is new even for Wigner matrices and β-ensembles.
The dynamical method provides a unified approach to see how it emerges naturally,
and allows us to see the universality of this correlation kernel. Informally, our main
result on the mesoscopic central limit theorem can be stated as follows; it summarizes
Theorem 4.8 and Corollary 5.4 in the text.

Theorem 1.2 (Informal Mesoscopic CLT) Consider a probability measure μ0 =
(1/N )

∑N
i=1 δλi which satisfies the rigidity estimates on the scale η∗ near the edge. The

empirical particle density μt at any time t � max{√η∗,√η} of the Dyson-Brownian
motion with general β and potential starting from μ0 satisfies a mesoscopic central
limit theorem on the scale η.

Combining our result with [41], we can give a proof of the local ergodicity of
the Dyson Brownian motion for general β and potential at the edge. In other words,
we show that the distribution of extreme particles converges to the Tracy–Widom β

distribution in a short time. Our proof uses only the dynamics and is independent
of the matrix model (if it exists). This is in alignment with Dyson’s original vision
on the nature of the universality of the local eigenvalue statistics. A consequence of
our edge universality result is a purely dynamical proof of the edge universality for
β-ensembles with general potential.

1.1 Related results in the literature

Results for the McKean–Vlasov equation were first established by Chan [12] and
Rogers and Shi [49], who showed the existence of a solution for quadratic potentials
V . The McKean–Vlasov equation for general potentials V was studied in detail in the
works of Li, Li, and Xie. In their works [44] and [45], it was shown that, under very
weak conditions on V , the solution of the McKean–Vlasov equation would converge
to an equilibrium distribution for times t � 1. The authors were able to interpret the
time evolution under the McKean–Vlasov equation as a type of gradient descent on
the space of measures. This gives the complete description of the Dyson Brownian
motion on the macroscopic scale.

On the microscopic scale, the Dyson Brownian motion was studied in detail by
Erdős, Yau and various coauthors across a multitude of papers [8,22–29,31]. Specif-
ically, for the classical ensembles (β = 1, 2, 4) with quadratic potential and initial
data given by the eigenvalues of a Wigner matrix, it is known that, after t � N−1,
the bulk local statistics of the particles are asymptotically the same as those of the
corresponding classical Gaussian ensemble. After this, the two works [20,40] estab-
lished gap universality for the classical (β = 1, 2, 4) Dyson Brownian motion with
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general initial data by using estimates established in a discrete DeGiorgi–Nash–Moser
theorem in [29]. Fixed energy universality required a sophisticated homogenization
argument that allowed for the comparison between the discrete equation and a contin-
uous version; the results have been established in recent papers [7,39]. An extension
of this interpolation at the edge was proven in [41]. These results were a key step in
the proof of edge and bulk universality in various models. An alternative approach to
universality was established, independently, in the works of Tao and Vu [52] and for
the edge in [51].

In the three-step strategy for proving universality, as developed by Erdős, Yau, and
their collaborators, the first step is to derive a local law for the eigenvalue density.
This is a very technical and highly model dependent procedure. In the case of Wigner
matrices, the proofs have been established in [26,27,30,31,53]. Local laws can be
established for other matrix models in the bulk, such as the case of sparse random
matrices [22] or deformedWigner matrices [43]. Establishing local laws near the edge
is generally more involved; the case of correlated matrices was shown in [1,4,18]; the
deformed Wigner matrices were considered in [42]; the sparse random graphs were
studied in [5,37]. Local laws for β-ensembles near the edge were considered in [9]
with the discrete analog in [32].

1.2 Notations

For the rest of this paper, we will use C to represent a large universal constant and c
to represent a small positive universal constant which may depend on other universal
constants and may differ from line to line. We write that X = O(Y ) if there exists
some universal constant such that |X | ≤ CY . We write X = o(Y ), or X � Y if
the ratio |X |/Y → 0 as N goes to infinity. We write X � Y if there exist universal
constants such that cY ≤ |X | ≤ CY . We denote the set {1, 2, . . . , N } by [[N ]]. We say
an event � holds with overwhelming probability, if for any D > 0, and N ≥ N0(D)

large enough, P(�) ≥ 1 − N−D .

2 Background

In this section, we will provide the basic definitions and assumptions in our study
of the β-Dyson Brownian motion and the associated McKean–Vlasov equation. This
section collects some properties of solutions of the McKean–Vlasov equation, the
proof of various important inequalities on the growth of the solution in time t , and
the behavior of its characteristics zt (u). These bounds provide the basis for our later
estimates on the edge rigidity of the β-Dyson Brownianmotion. Tomake the argument
clean, we make the following assumption on the potential V . This assumption allows
us to rewrite certain errors for the regions far away from the spectrum in Sect. 4 as a
contour integral and simplifies the proof. Moreover, this assumption also makes the
analysis of the McKean–Vlasov equation (2.2) easier. We believe the main results in
this paper hold for V in C4 as in [36].

Assumption 2.1 We assume that the potential V is an analytic function.
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We denote the space of probability measures on R by M1(R) and equip this space
with the weak topology. We fix a sufficiently small time T > 0 and denote by
C([0, T ], M1(R)) the space of continuous processes on [0, T ] taking values inM1(R).
It follows from [44] that for all β ≥ 1 and initial data λ(0) ∈ �N , there exists a strong
solution (λ(t))0≤t≤T ∈ C([0, T ],�N ) to the stochastic differential equation (1.2).

We recall the following estimates on the locations of extreme particles of the β-
Dyson Brownian motion from [36, Proposition 2.5].

Proposition 2.2 Suppose V satisfies Assumption 2.1. Let β ≥ 1, and λ(0) ∈ �N . Let
a be a constant such that the initial data ‖λ(0)‖∞ ≤ a. Then for a sufficiently small
time T > 0, there exists a finite constant b = b(a, T ), such that for any 0 ≤ t ≤ T ,
the unique strong solution of (1.2) satisfies:

P(max{|λ1(t)|, |λN (t)|} ≥ b) ≤ e−N . (2.1)

Assume that the empirical density of λ(0) converges to a probability measure μ̂0.
Then, thanks to [44, Theorem 1.1 and 1.3], the empirical density of λ(t) converges to
a probability measure μ̂t . We let m̂t (z) be the Stieltjes transform of μ̂t . The measure-
valued process {μ̂t }t≥0 satisfies the following equation

∂t m̂t (z) = ∂zm̂t (z)

(
m̂t (z) + V ′(z)

2

)
+ m̂t (z)V ′′(z)

2
+
∫
R

g(z, x)dμ̂t (x), (2.2)

where

g(z, x) := V ′(x) − V ′(z) − (x − z)V ′′(z)
2(x − z)2

, g(x, x) := V ′′′(x)
4

. (2.3)

It is easy to see that for any fixed z, g(z, x) is analytic in C as a function of x , and for
any fixed x , g(z, x) is analytic in C as a function of z.

We analyze (2.2) by the method of characteristics. Denote the upper half-plane by
C+. Let

∂t zt (u) = −m̂t (zt (u)) − V ′(zt (u))

2
, z0(u) = u ∈ C+. (2.4)

If the context is clear, we omit the parameter u, i.e., we simply write zt instead of
zt (u). Plugging (2.4) into (2.2) and applying the chain rule, we obtain

∂t m̂t (zt (u)) = m̂t (zt (u))V ′′(zt (u))

2
+
∫
R

g(zt (u), x)dμ̂t (x). (2.5)

The behaviors of zs and m̂s(zs) are governed by the system of Eqs. (2.4) and (2.5).
As a consequence of Proposition 2.2, if the probability measure μ̂0 is supported

on [−a, a], then there exists a finite constant b = b(a, T ), such that the μ̂t are sup-
ported on [−b, b] for 0 ≤ t ≤ T . We fix a large constant R. If zt (u) ∈ B2R(0) and
dist(zt (u), [−b, b]) ≥ 1, then

123



Dyson Brownian motion for general β and potential at the… 899

|∂t zt | ≤ 1 + 1

2
sup

z∈B2R(0)
|V ′(z)|. (2.6)

Therefore, for any u ∈ BR(0), we have zt (u) ∈ B2R(0) for any 0 ≤ t ≤ T , provided
T is small enough.

We also frequently use the following estimates studying the imaginary part of the
characteristics. They were proved in [36, Proposition 2.7].

Proposition 2.3 Suppose V satisfies Assumption 2.1. Let β ≥ 1, λ(0) ∈ �N , and
a be a constant satisfying ‖λ(0)‖∞ ≤ a. Fix a large constant R > 0. Then for a
sufficiently small time T > 0, there exist constants depending on the potential V and
the constant a such that the following holds. Fix any 0 ≤ s ≤ t ≤ T with u ∈ BR(0)
and Im[zt (u)] > 0. Then,

e−O(t−s)Im[zt ] ≤ Im[zs ], e−O(t−s)Im[m̂t (zt )] ≤ Im[m̂s(zs)] ≤ eO(t−s)Im[m̂t (zt )],
e−O(t−s) (Im[zt ] + (t − s)Im[m̂t (zt )]

) ≤ Im[zs ] ≤ eO(t−s) (Im[zt ] + (t − s)Im[m̂t (zt )]
)
. (2.7)

3 Square root behavior measures

In the earlier work [36], the bulk rigidity of the β-Dyson Brownian motion was proved
via a comparison of the empirical density μt with μ̃t , the solution of the associated
McKean–Vlasov equationwithμ0 as initial data. This is not a good choice for studying
the spectral edge. In most applications, μ0 is the empirical eigenvalue density of a
random matrix and is a random measure. As a consequence, the solution μ̃t of the
associatedMcKean–Vlasov equationwithμ0 as initial data is again a randommeasure.
Even if we have good control of the difference between μt and μ̃t , it does not tell us
the locations of the extreme eigenvalues unless we have very precise control of μ̃t .
Unfortunately, proving edge universality requires that we know exactly the locations
of the extreme eigenvalues.

In order to circumvent this problem, we compare the empirical density μt with
μ̂t , the solution of the associated McKean–Vlasov equation with deterministic initial
data μ̂0 close to μ0. In most applications, e.g., [5,37], we take μ̂0 to be either the
semi-circle distribution,

ρsc(x)dx =
√[4 − x2]+

2π
dx, (3.1)

or the Kesten–McKay distribution,

ρd(x)dx =
(
1 + 1

d − 1
− x2

d

)−1 √[4 − x2]+
2π

dx . (3.2)

As one can see from the expressions of the semi-circle distribution (3.1), and the
Kesten–McKay distribution (3.2), they both have square root behavior at the spectral
edge. In fact, in the work of [3], it is observed that square root behavior at the edge

123



900 A. Adhikari, J. Huang

is a general phenomenon of many random matrix ensembles. We remark here that it
is believed that square root behavior is necessary for the Tracy–Widom fluctuation.
Higher-order singularities lead to new kernels, see [2,13–15,19] For the remainder
of the paper, we assume that the initial measure μ̂0 has square root behavior in the
following sense.

Definition 3.1 We say a probability measure μ̂0 has square root behavior at E0 if
the measure is supported in (−∞, E0] and, in addition, there is some neighborhood
around E0 such that its Stieltjes transform satisfies

m̂0(z) = A0(z) +√B0(z), (3.3)

with A0(z) and B0(z) analytic in a neighborhood around E0. z = E0 is a simple
root of B0(z). All throughout the paper, the complex square root is the branch with
nonnegative real part, i.e.,

√|z|eiθ = √|z|eiθ/2 for −π < θ ≤ π .

Remark 3.2 If μ̂0 has square root behavior at the right edge E0, then, for any z =
E0 + κ + iη with η > 0, it is easy to check that

Im[m̂0(z)] � Im
[√

z − E0

]
�
{ √|κ| + η, κ ≤ 0

η/
√|κ| + η, κ ≥ 0.

The Stieltjes transforms of the semi-circle distribution and the Kesten–McKay
distribution are given by

msc(z) =
∫
R

ρsc(x)dx

x − z
= − z

2
+

√
z2 − 4

2

md(z) =
∫
R

ρd(x)dx

x − z
=
(
1 + 1

d − 1
− z2

d

)−1
(

− (d − 2)z

2d
+

√
z2 − 4

2

)
.

They both have square root behavior in the sense of Definition 3.1. More generally,
we have the following proposition.

Proposition 3.3 If μ̂0 has an analytic density ρ̂0 in a small neighborhood of E0, given
by

dμ̂0 = ρ̂0(x)dx = S(x)
√[E0 − x]+dx, E0 − r ≤ x ≤ E0 + r,

where S(x) > 0 is analytic on [E0 − r, E0 + r], then μ̂0 has square root behavior in
the sense of Definition 3.1.

One important consequence of our definition of ameasurewith square root behavior
is the following proposition, which shows how square root behavior is a property that
propagates in time when solving the McKean–Vlasov equation (2.2). We postpone its
proof to Appendix A.
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Proposition 3.4 Let μ̂0 be a probability measure that has square root behavior at the
right edge E0 in the sense of Definition 3.1. Fix a small time T > 0. Let (μ̂t )t∈[0,T ]
be the solution of the McKean–Vlasov equation (2.2) with initial data μ̂0. Then, for
0 ≤ t ≤ T , the measures μ̂t have square root behavior at the right edge Et . The edge
Et satisfies

∂t Et = −m̂t (Et ) − V ′(Et )

2
, (3.4)

and it is Lipschitz in time, |Et−Es | = O(|t−s|) for 0 ≤ s ≤ t ≤ T . As a consequence,
μ̂t has a density in the neighborhood of Et , given by

dμ̂t (x) = ρ̂t (x)dx = (1 + O(|Et − x |))Ct
√[Et − x]+dx, Et − r ≤ x ≤ Et + r.

(3.5)

The constants Ct are Lipschitz in time, |Ct − Cs | = O(|t − s|), for 0 ≤ s ≤ t ≤ T .
The Lipschitz constants of Et and Ct depend only on the initial measure μ̂0 and the
potential V .

The following proposition studies the growth of the distance from the real part of the
characteristics zt (u) to the edge Et . This is the main proposition we use to give strong
bounds on |mt (z) − m̂t (z)| close to the edge, and it serves as one of our fundamental
inequalities in the next section. The square root behavior of the measures μ̂t will be
used to describe an equation for the growth of Et and to provide estimates for the
Stieltjes transform.

Proposition 3.5 Let μ̂0 be a probabilitymeasurewith square root behavior in the sense
of Definition 3.1, let T be as in Proposition 3.4, and let (μ̂t )t∈[0,T ] be the solution of
the McKean–Vlasov equation (2.2) with initial data μ̂0. Choose a small parameter
r > 0 such that μ̂0 has an analytic density in the neighborhood [E0 − r, E0 + r]. If
at some time t � 1, we know that zt (u) = Et + κt (u) + iηt (u) with zt (u) ∈ Br(Et )

and κt > 0, then, for times 0 ≤ s ≤ t , there exists a constant C such that κs ≥ 0.
Moreover, the following inequality holds,√

κs(u) ≥ √κt (u) + C(t − s). (3.6)

Proof In the proof, we will write κs(u), ηs(u) as κs, ηs . In the following, we prove
that if κs ≥ 0, then ∂sκs ≤ −C

√
κs for some universal constant C . Then the claim

(3.6) follows by integrating from s to t , and we have κs ≥ 0 for all 0 ≤ s ≤ t .
We recall the differential equation (3.4) for the edge Es ,

∂s Es = −m̂s(Es) − V ′(Es)

2
. (3.7)

We take the real part of (2.4), and then compute its difference with (3.7)

∂sκs = − (Re[m̂s(zs(u))] − m̂s(Es)
)− Re[V ′(zs(u))] − V ′(Es)

2
. (3.8)
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For the first term in (3.8)

Re[m̂s(zs(u))] − m̂s(Es)

= (Re[m̂s(zs(u))] − m̂s(Es + κs)) + (m̂s(Es + κs) − m̂s(Es))

= η2s

∫
dμ̂s(x)

(Es + κs − x)((Es + κs − x)2 + η2s )
+ κs

∫
dμ̂s(x)

(Es + κs − x)(Es − x)
.

(3.9)

The purpose of the above decomposition is to write the expressions for the Stieltjes
transform in a way that we can easily compare the corresponding integral expressions.
From the integral expression, we can compute the leading order behavior in terms of
κs and ηs in order to get an equation. Thanks to Proposition 3.4, μ̂s has square root
behavior. From Remark 3.2, we have dμ̂s(x)/dx � √[Es − x]+ in a neighborhood
of Es , and we can estimate (3.9)

Re[m̂s(zs(u))] − m̂s(Es) ≥ C

(
η2s

(κs + ηs)3/2
+ √

κs

)
,

where C > 0 is some universal constant. For the second term in (3.8)

Re[V ′(zs(u))] − V ′(Es) = (Re[V ′(zs(u))] − V ′(κs + Es)) + (V ′(κs + Es) − V ′(Es))
≥ −C(η2s + κs), (3.10)

where we used that V ′ is real on the real line,

Re[V ′(zs(u))] − V ′(Re[zs(u)]) = Re[V ′(Es + κs + iηs)] − V ′(Es + κs)

= Re[V ′(Es + κs) + V ′′(Es + κs)iηs + O(V ′′′(Es + κs)η
2
s )] − V ′(Es + κs)] ≥ −Cη2s .

Uniformly for 0 ≤ s ≤ t , we have κs, ηs ≤ 2r. By taking r sufficiently small, it
follows by combining (3.9) and (3.10) that there exists some constant C > 0 such that

∂sκs ≤ −C
√

κs,

and the claim (3.6) follows. ��

4 Rigidity estimates

We prove our edge rigidity estimates in this section. In this section, we fix a determin-
istic measure μ̂0 which has square root behavior as defined in Definition 3.1, and a
scale parameter η∗ which depends on N . Roughly speaking, if the initial data of the
Dyson Brownian motion is close to μ̂0 on the scale η∗, then optimal rigidity holds
for time t � √

η∗. Throughout this section, we denote the solution of the McKean–
Vlasov equation (2.2) with initial data μ̂0 by μ̂t . Thanks to Proposition 3.4, μ̂t has
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Dyson Brownian motion for general β and potential at the… 903

square root behavior in the sense of Definition 3.1 around the right spectral edge Et .
We also fix a small number r > 0 and mainly study the behaviors of the Stieltjes
transform mt (z) in the radius r neighborhood of the right spectral edge Et . We denote
the characteristic flow as in (2.4) starting at z0(u) = u by zt (u). We decompose it
according to its distance to the right spectral edge: zt (u) = Et +κt (u)+ iηt (u), where
κt (u) = Re[zt (u)] − Et . If the context is clear, we omit the parameter u, i.e., we
simply write zt , κt , ηt instead of zt (u), κt (u), ηt (u).

Assumption 4.1 Let λ(0) = (λ1(0), λ2(0), . . . , λN (0)) ∈ �N where ‖λ(0)‖∞ ≤ a
for some constant a. Fix a scale parameter η∗ that depends on N . We assume that the
initial empirical density

μ0 = 1

N

N∑
i=1

δλi (0),

satisfies the following estimates.

1. λ1(0) ≤ E0 + η∗/2.
2. There exists a deterministic measure μ̂0, with square root behavior as defined in

Definition 3.1 around the spectral edge E0, such that we have the estimate

|m0(z) − m̂0(z)| ≤ M

N Im[z] , z ∈ Din
0 ∪ Dout

0 , (4.1)

and

|m0(z) − m̂0(z)| ≤ M

N
, z ∈ Dfar

0 , (4.2)

where m0(z) and m̂0(z) are the Stieltjes transforms of μ0 and μ̂0 respectively, M
is a control parameter M � (log N )12, and the domains Din

0 , Dout
0 and Dfar

0 are
given by

Din
0 :=

{
z ∈ C

+ ∩ Br(E0) : Im[z]Im[m̂0(z)] ≥ (η∗)3/2
}

,

Dout
0 := {z ∈ C

+ ∩ Br(E0) : Re[z] ≥ E0 + η∗},
Dfar

0 := {z ∈ C
+ : R − 1 ≤ dist(z, supp μ̂0) ≤ R + 1},

where R is a large constant as defined in (2.6), and Br(E0) is the radius r disk
centered at E0.

Remark 4.2 We remark that, in Assumption 4.1, we can take any M � (log N )12.
Concretely, one can take M to be some large power (log N )C or small power Nd and
get a slightly weaker rigidity result.

Remark 4.3 It is important to notice that it is essential to control the difference of m0
and m̂0 far away from the support of μ̂0, i.e., in Dfar

0 . The estimate for the Stieltjes
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904 A. Adhikari, J. Huang

transform far away from the spectrum is the key input in Claim 4.13. The effect of the
potential V is to cause a long range interaction that will cause mt and m̂t to diverge
if we have no control in this region. To see this effect, one should notice that if we
were to compare the linear statistics of the Dyson BrownianMotion from two different
initial measures, then the difference of these linear statistics will not change too much
on time scales t = o(1).

Remark 4.4 The Assumption 4.1 implies a stronger estimate of the Stieltjes transform
m0(z) on the domain Dout

0 outside the spectrum: For any z = E0 + κ + iη ∈ Dout
0 ,

|m0(z) − m̂0(z)| � M log N

N (κ + η)
. (4.3)

If η ≥ κ , this directly follows from (4.1). If κ ≥ η, we can rewrite the difference
m0(z) − m̂0(z) as a contour integral

m0(z) − m̂0(z) =
∮
C
m0(w) − m̂0(w)

w − z
dw,

where the contour C is the rectangle centered at E0 + κ , with height 4κ and width
2κ − η∗. Then, we have C ∈ Dout

0 , and, for any w ∈ C, it holds that |w − z| � κ .
Therefore,

|m0(z) − m̂0(z)| ≤
∮
C

|m0(w) − m̂0(w)|
|w − z| dw � 1

κ

∮
C

|m0(w) − m̂0(w)|dw � M log N

Nκ
.

We define the following function

f (t) =
(
max

{√
η∗ − ct, M3N−1/3

})2
, (4.4)

where the small constant c > 0 will be chosen later. We observe that f (0) = η∗, and
f (t) satisfies an inequality similar to (3.6). Namely, it satisfies

√
f (s) ≤ √

f (t) +
c(t − s) for any 0 ≤ s ≤ t . We use this function in interpolating from weak eigenvalue
rigidity at the edge at time 0 to better eigenvalue rigidity at time t , where rigidity refers
to estimates on the difference of the Stieltjes transforms |mt − m̂t | (Fig. 1).
Theorem 4.5 Suppose V satisfies Assumption 2.1, and the initial data λ(0) satisfies
Assumption 4.1. For time T = o(1), with high probability under the Dyson Brownian
motion (1.2), we have λ1(t) ≤ Et + f (t) for t ∈ [0, T ].

We define the spectral domainsDt . Roughly speaking, the information of the Stielt-
jes transform mt (z) on Dt reflects the regularity of the empirical particle density μt

on the scale f (t).
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Dyson Brownian motion for general β and potential at the… 905

Fig. 1 The left pane is an illustration of the domainsDfar
0 ,Din

0 ,Dout
0 ,Dout

0 . The right pane is an illustration

of the domains Dfar
t ,Din

t ,Dout
t ,Dout

t for t > 0

Definition 4.6 For any t ≥ 0, we define the region Dt = Din
t ∪ Dout

t ∪ Dout
t ∪ Dfar

t ,
where

Din
t := {z ∈ C

+ ∩ Br−t/c(Et ) : Im[z]Im[m̂t (z)] ≥ f (t)3/2},
Dout
t :=

{
z ∈ C

+ ∩ Br−t/c(Et ) : Re[z] ≥ Et + 2 f (t), Im[z] ≥ et/c/N1/c
}

, for t > 0,

Dout
t :=

{
z ∈ C

+ ∩ Br−t/c(Et ) : Re[z] ≥ Et + f (t), Im[z] ≥ et/cM/N2/3
}
,

Dfar
t := {z ∈ C

+ : R − 1 + t/c ≤ dist(z, supp μ̂t ) ≤ R + 1 − t/c}, (4.5)

where we recall the small constant c > 0 from (4.4), and Dout
0 is defined in Assump-

tion 4.1. We remark here that we do not use the notation Dt to denote the completion
of the domain Dt .

For any 0 ≤ s ≤ t , the spectral domain Dt is a subset of the domain Ds under the
characteristic flow. Our definition ofDout

t for t > 0 in (4.5) is not consistent withDout
0

in Assumption 4.1. We have taken Dout
0 slightly larger for the following Claim.

Claim 4.7 Suppose V satisfies Assumption 2.1, and the initial data λ(0) satisfies
Assumption 4.1. For any 0 ≤ s ≤ t � c, we have

zs ◦ z−1
t (Din

t ) ⊂ Din
s ∪ Dout

s , zs ◦ z−1
t (Dout

t ) ⊂ Dout
s ,

zs ◦ z−1
t (Dout

t ) ⊂ Dout
s , zs ◦ z−1

t (Dfar
t ) ⊂ Dfar

s .

Proof In the following, we prove that

z−1
t (Din

t ) ⊂ Din
0 ∪ Dout

0 , z−1
t (Dout

t ) ⊂ Dout
0 , z−1

t (Dout
t ) ⊂ Dout

0 , z−1
t (Dfar

t ) ⊂ Dfar
0 .

(4.6)

The general statement follows from the same argument by only considering the charac-
teristic flow from time s to time t . Let zs = Es +κs + iηs for 0 ≤ s ≤ t . By integrating
(2.6), we get that |zt − z0| = O(t) for any zt ∈ Dfar

t . It follows that z−1
t (Dfar

t ) ⊂ Dfar
0 ,

and z−1
t (C+ ∩ Br−t/c(Et ))) ⊂ C

+ ∩ Br(E0), provided that c is small enough.
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906 A. Adhikari, J. Huang

For any zt ∈ Dout
t , it holds that κt ≥ f (t). By the definition of f (t) in (4.4), we

have

√
f (s) ≤ c(t − s) +√ f (t) ≤ c(t − s) + √

κt ≤ √
κs − c(t − s), (4.7)

provided that c ≤ C/2, where C is the constant in (3.6). We can rearrange (4.7) to get

κs ≥ f (s) + c
√

κs(t − s). (4.8)

As a consequence,we have E0+κ0 ≥ E0+ f (0) = E0+η∗. Thus, κ0 ≥ η∗.Moreover,
thanks to Proposition 2.3, we have η0 ≥ eO(t)ηt ≥ e(O(1)+1/c)t M/N 2/3 ≥ M/N 2/3,
provided c is small enough. Therefore, we have z−1

t (Dout
t ) ⊂ Dout

0 . The same argument
implies that z−1

t (Dout
t ) ⊂ Dout

0 .
Thanks to Proposition 2.3, we have e−O(t)Im[m̂0(z0)] ≤ Im[m̂t (zt )] ≤

eO(t)Im[m̂0(z0)] and η0 ≥ e−O(t)(ηt + tIm[m̂t (zt )]). Therefore, it follows that

eta0Im[m̂0(z0)] ≥ e−O(t)(ηt Im[m̂t (zt )] + tIm[m̂t (zt )]2). (4.9)

If zt ∈ Din
t \Dout

t , then Et + κt ≤ Et + f (t). Since μ̂t has square root behavior in the
sense of 3.1, Im[m̂t (zt )] ≥ f (t)1/2/C for some universal constantC . If t ≤ √

η∗/(3c),
we have

η0Im[m̂0(z0)] ≥ e−O(t)( f (t)3/2 + t f (t)/C2)

≥ e−O(t)(
√

η∗ − ct)2(
√

η∗ + (1/C2 − c)t) ≥ (η∗)3/2, (4.10)

provided c is small enough. If t ≥ √
η∗/(3c), κt ≤ η∗, and ηt ≥ η∗, then Im[m̂t (zt )] ≥√

η∗/C , and we have

η0Im[m̂0(z0)] ≥ e−O(t)tIm[m̂t (zt )]2 ≥ e−O(t)(
√

η∗/(3c))(
√

η∗/C)2 ≥ (η∗)3/2,
(4.11)

provided that c is small enough. Therefore, in both cases, we have that z0 ∈ Din
0 .

Finally, for the remaining case that t ≥ √
η∗/(3c) and zt ∈ C

+ ∩ Bη∗(Et ), we will
show that z0 ∈ Dout

0 . We prove it by contradiction. Assume, for contradiction, that
there exists some zt ∈ C

+ ∩ Bη∗(Et ) such that κ0 ≤ η∗. By our assumption that μ̂t

has square root behavior, we have Im[m̂t (zt )] ≤ C
√

η∗. In addition, we have the
following inequality,

Im[m̂t (zt )] ≥ e−O(t)Im[m̂0(z0)] ≥ e−O(t)

C

η0√
η∗ + η0

≥ e−O(t)

C

tIm[m̂t (zt )]√
η∗ + e−O(t)tIm[m̂t (zt )]

. (4.12)
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Let us explain how we derived the last inequality. Using Proposition 2.3, we have
η0 ≥ e−O(t)(ηt + tIm[m̂t (zt )]) ≥ e−O(t)tIm[m̂t (zt )]. We notice that η0/

√
η∗ + η0 is

monotone in η0. The last inequality follows by replacing η0 with e−O(t)tIm[m̂t (zt )].
The inequality (4.12) is impossible if t ≥ √

η∗/(3c), and c is sufficiently small. This
finishes the proof of (4.6) and Claim 4.7. ��

The following theorem gives optimal estimates formt both inside the spectrum and
outside the spectrum, i.e., on the spectral domain Din

t ∪ Dout
t ∪ Dout

t ∪ Dfar
t .

Theorem 4.8 Suppose V satisfies Assumption 2.1. Fix time T = o(1). Consider any
initial data λ(0) satisfying Assumption 4.1. Uniformly for any time 0 ≤ t ≤ T and
w ∈ Dt , the following holds with overwhelming probability: if w ∈ Din

t ,then

|mt (w) − m̂t (w)| � log NM

N Im[w] . (4.13)

If w ∈ Dfar
t ,then

|mt (w) − m̂t (w)| � M

N
. (4.14)

If w ∈ Dout
t ∪ Dout

t ,then

|mt (w) − m̂t (w)| � log NM

N
√|w − Et |Im[w] . (4.15)

As a consequence of Theorems 4.5 and 4.8, by the same argument as [36, Corollary
3.2], we have the following corollary on the locations of the extreme eigenvalues.

Corollary 4.9 Suppose V satisfies Assumption 2.1, and the initial data λ(0) satisfies
Assumption 4.1. Fix some time T = o(1). There exists a constant e > 0 such that with
high probability under the Dyson Brownian motion (1.2), for time 0 ≤ t ≤ T , and,
uniformly for indices 1 ≤ j ≤ eN, we have

|λ j (s) − γ j (s)| � (log N )2M

N 2/3 j1/3
,

for j ≥ (log N )M, |λ j (s) − γ j (s)| � f (s), for j ≤ (log N )M, (4.16)

where γ j (t) are the classical particle locations of the measure μ̂t , i.e.,

j − 1

N
=
∫ Et

γ j (t)
dμ̂t (x). (4.17)

The proof of Theorem 4.8 follows the argument in [36, Theorem 3.1] with several
modifications. Firstly, whenwe use theGronwall inequality, we need to take care of the
error from the initial data, i.e., m0(z)− m̂0(z) �= 0. This is where our Assumption 4.1
comes into play. Secondly, we estimate the error term involving the potential V using a
contour integral. Finally, to get the estimates outside the spectrum, i.e., onDout

t ∪Dout
t ,
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908 A. Adhikari, J. Huang

we need to improve several estimates from [36, Theorem 3.1]. More precisely, in [36,
Theorem 3.1], the error estimates at some w ∈ Dt depend only on its imaginary part
Im[w]. We improve all such estimates to depend on both Im[w] and its distance to the
spectral edge Et .

Remark 4.10 Similar to Remark 4.4, by performing a contour integral, we have the
improved estimates of the Stieltjes transform outside the spectrum: if w ∈ Dout

t , then

|mt (w) − m̂t (w)| � (log N )2M

N |w − Et | . (4.18)

Thanks to the sharp estimates (4.15) of the Stieltjes transform on the domain Dout
t ,

Theorem 4.5 follows easily from Theorem 4.8.

Proof of Theorem 4.5 We prove the statement that with high probability, uniformly for
any 0 ≤ t ≤ T , and for w ∈ Dout

t that

|mt (w) − m̂t (w)| � log NM

N
√|w − Et |Im[w] , (4.19)

implies that, with high probability, there is no eigenvalue in the interval [Et + f (t) −
et/cM/N 2/3, Et + f (t) + et/cM/N 2/3]. At time t = 0, by our Assumption 4.1, we
have λ1(0) ≤ E0 + η∗/2 ≤ E0 + f (0). Since λ1(t) is continuous, we can conclude
that λ1(t) ≤ Et + f (t) for 0 ≤ t ≤ T with high probability.

We take w = Et + f (t) + iet/cM/N 2/3; then, w ∈ Dout
t . Thanks to (4.15), with

high probability, we have

|mt (w) − m̂t (w)| � (log N )M

N
√|w − Et |Im[w] � 1

N Im[w] , (4.20)

provided that M � (log N )2. Moreover, thanks to our Assumption 4.1 that μ̂t has
square root behavior and the fact that Im[m̂t (w)] � Im[w]/√|w − Et | � 1/N Im[w],
it follows that

Im[mt (w)] = 1

N

N∑
i=1

Im[w]
(λi (t) − Re[w])2 + Im[w]2 � 1

N Im[w] . (4.21)

If there exists some λi (t) such that λi (t) ∈ [Et + f (t) − et/cM/N 2/3, Et + f (t) +
et/cM/N 2/3], then the right-hand side of (4.21) is at least 1/(2N Im[w]). This leads
to a contradiction. ��
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Proof of Theorem 4.8 By Ito’s formula,ms(z) satisfies the stochastic differential equa-
tion

dms(z) = −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − z)2
+ ms(z)∂zms(z)ds

+ 1

2N

N∑
i=1

V ′(λi (s))
(λi (s) − z)2

ds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − z)3
. (4.22)

We can rewrite (4.22) as

dms(z) = −
√

2

βN3

N∑
i=1

dBi (s)

(λi (s) − z)2
+ ∂zms(z)

(
ms(z) + V ′(z)

2

)
ds + ms(z)V ′′(z)

2
ds

+
∫
R

g(z, x)dμs(x)ds + 2 − β

βN2

N∑
i=1

ds

(λi (s) − z)3
, (4.23)

where g(z, x) is defined in (2.3). Plugging (2.4) into (4.23) and using the chain rule,
we have

dms(zs) = −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − zs)2
+ ∂zms(zs)

(
ms(zs) − m̂s(zs)

)
ds + ms(zs)V ′′(zs)

2
ds

+
∫
R

g(zs , x)dμs(x)ds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − zs)3
. (4.24)

It follows from taking the difference between (2.5) and (4.24) that

d(ms(zs) − m̂s(zs))

= −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − zs)2
+ (ms(zs) − m̂s(zs)

) (
∂zms(zs) + V ′′(zs)

2

)
ds

+
∫
R

g(zs, x)(dμs(x) − dμ̂s(x))ds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − zs)3
. (4.25)

We can integrate both sides of (4.25) from 0 to t and obtain

mt (zt ) − m̂t (zt ) =
∫ t

0
(E1(s)ds + dE2(s)) + (m0(z0) − m̂0(z0)), (4.26)
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where the error terms are

E1(s) = (ms(zs) − m̂s(zs)
) (

∂zms(zs) + V ′′(zs)
2

)
+
∫
R

g(zs , x)(dμs(x) − dμ̂s(x)),

(4.27)

dE2(s) = 2 − β

βN2

N∑
i=1

ds

(λi (s) − zs)3
−
√

2

βN3

N∑
i=1

dBi (s)

(λi (s) − zs)2
. (4.28)

We remark that E1 and E2 implicitly depend on u, the initial value of the flow zs(u). The
optimal rigidity estimates will eventually follow from an application of the Gronwall
inequality to (4.26).

We define the following lattice on the upper half-plane C+,

L =
{
E + iη ∈ Din

0 ∪ Dout
0 ∪ Dout

0 ∪ Dfar
0 : E ∈ Z/N 3, η ∈ Z/N 3

}
. (4.29)

It follows from Claim 4.7 that z−1
t (Dt ) ⊂ Din

0 ∪ Dout
0 ∪ Dout

0 ∪ Dfar
0 . Moreover, [36,

Propsition 3.6] implies that zt (u) is Lipschitz in u with Lipschitz constant bounded
by O(N ). Thus for any w ∈ Dt , there exists some lattice point u ∈ L∩ z−1

t (Dt ), such
that |zt (u) − w| = O(N−2).

We define the stopping time

σ := T
∧

inf
s≥0

{‖λ(s)‖∞ ≥ b}
∧

inf
s≥0

{
∃w ∈ Din

s : ∣∣ms(w) − m̂s(w)
∣∣ ≥ C log NM

N Im[w]
}

∧
inf
s≥0

{
∃w ∈ Dout

s ∪ Dout
s : ∣∣ms(w) − m̂s(w)

∣∣ ≥ C log NM

N
√
Im[w]|w − Es |

}
∧

inf
s≥0

{
∃w ∈ Dfar

s : ∣∣ms(w) − m̂s(w)
∣∣ ≥ C log NM

N

}
, (4.30)

where C is a large constant that we will choose later. The second line in the above
definition (4.30) was used earlier in [36] to ensure that, up to time σ , we have rigidity
estimates inside the spectrum. The third line ensures we have rigidity estimates up to
time σ outside the spectrum, i.e., in Dout

s ∪ Dout
s . We notice that as time evolves, this

region will contain points closer to the spectral edge. As a consequence, the scale on
which we have rigidity is improving along time. The fourth line is the analog for the
region far away from the spectrum.

By the same argument we used to prove Theorem 4.5, we can use the estimates in
(4.30) to show that, for any 0 ≤ t ≤ T , we have

λ1(t ∧ σ) ≤ Et∧σ + f (t ∧ σ). (4.31)
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For u ∈ L∩z−1
t (Din

t ) or u ∈ L∩z−1
t (Dfar

t ), by the argument in [36, Proposition 3.8],
using the Burkholder–Davis–Gundy inequality, there exists a set� of Brownian paths
{B1(s), B2(s), . . . , BN (s)}0≤s≤t such that for any 0 ≤ s ≤ t and u ∈ L ∩ z−1

t (Din
t )

∣∣∣∣
∫ s∧σ

0
dE2(τ )

∣∣∣∣ � (log N )2

Nηs∧σ (u)
, (4.32)

and u ∈ L ∩ z−1
t (Dfar

t ),

∣∣∣∣
∫ s∧σ

0
dE2(τ )

∣∣∣∣ � (log N )2

N
. (4.33)

The case Dfar
t was not exactly considered in the previous work [36]. Since Dfar

t is far
away from the spectrum, we can apply trivial bounds to control the error term in this
region. Namely, we have that |λi (t) − z| � 1 when zt ∈ Dfar

t , and the analysis will
not be significantly altered.

For u ∈ L ∩ z−1
t (Dout

t ∪ Dout
t ), using the estimate of the largest eigenvalue (4.31),

we can get better estimates than those in [36, Proposition 3.8]. In [36, Theorem 3.1],
the error estimates at some zt ∈ Dt depend only on its imaginary part ηt . We improve
all such estimates at zt (u) to depend on both ηt and its distance κt to the spectral edge
Et . The following claims analyze the error term (4.28) for u ∈ L∩ z−1

t (Dout
t ∪Dout

t ).

Claim 4.11 Under the assumptions of Theorem 4.8, for any u ∈ z−1
t (Dout

t ∪Dout
t ) and

0 ≤ s ≤ t , we have

∣∣Im[ms∧σ (zs∧σ )] − Im[m̂s∧σ (zs∧σ )]∣∣ � Im[m̂s∧σ (zs∧σ )]/ log N + ηs∧σ . (4.34)

Proof If u ∈ L∩ z−1
t (Dout

t ), we have ηs∧σ ≥ et/cMN−2/3. From the definition (4.30)
of σ , we have that

|ms∧σ (zs∧σ ) − m̂s∧σ (zs∧σ )| � log NM

N
√

(κs∧σ + ηs∧σ )ηs∧σ

� 1

log N

ηs∧σ√
κs∧σ + ηs∧σ

� Im[m̂s∧σ (zs∧σ )]
log N

.

If u ∈ L ∩ z−1
t (Dout

t ), then our construction of the domain Dout
t implies κs∧σ ≥

2 f (s ∧ σ). Combining this with (4.31), we have that |λi (s ∧ σ) − zs∧σ | ≥ (κs∧σ +
ηs∧σ )/2. By the argument in Corollary 4.9, we have optimal rigidity estimates for the
first eN particles at time s ∧ σ : for indices 1 ≤ j ≤ eN , we have

|λ j (s ∧ σ) − γ j (s ∧ σ)| � (log N )2M

N 2/3 j1/3
, for j ≥ (log N )M,

|λ j (s ∧ σ) − γ j (s ∧ σ)| � f (s ∧ σ), for j ≤ (log N )M,

123



912 A. Adhikari, J. Huang

where γ j (s ∧ σ) are the classical particle locations of the measure μ̂s∧σ as defined in
(4.17). We can estimate the left-hand side of (4.34) as

∣∣Im[ms∧σ (zs∧σ )] − Im[m̂s∧σ (zs∧σ )]∣∣
ηs∧σ

� 1

N

eN∑
i=1

|λi (s) − γi (s)|
|γi (s) − zs |3 + O(1)

� (log N )2M

N (κs∧σ + ηs∧σ )2
+ O(1)

� 1

log N

Im[m̂s∧σ (zs∧σ )]
ηs∧σ

+ O(1). (4.35)

This finishes the proof of Claim 4.11. ��
Claim 4.12 Under the assumptions of Theorem 4.8, for u ∈ z−1

t (Dout
t ∪Dout

t ) and any
0 ≤ s ≤ t , we have

2 − β

β

∫ s∧σ

0

1

N 2

N∑
k=1

1

|λk(τ ) − zτ (u)|3 dτ � log N

N (κs∧σ (u) + ηs∧σ (u))
, (4.36)

and there exists a set � of Brownian paths {B1(s), B2(s), . . . , BN (s)}0≤s≤t , which
holds with overwhelming probability, such that, on �, the following inequality holds

∫ s∧σ

0

√
2

βN 3

N∑
k=1

dBk(τ )

|zτ (u) − λk(τ )|2 dτ � (log N )2

N
√

(κs∧σ (u) + ηs∧σ (u))ηs∧σ (u)
.

(4.37)

Proof For simplicity of notation, we simply write zs(u), κs(u), ηs(u) as zs, κs, ηs . By
the definition of σ , for τ ≤ σ , it holds that λ1(τ ) ≤ Eτ + f (τ ). As a consequence,
we have

∫ s∧σ

0

1

N2

N∑
k=1

1

|λk(τ ) − zτ |3 dτ

≤ 1

N

∫ s∧σ

0

Im[mτ (zτ )]
|κτ + Eτ − λ1(τ ) + iητ |ητ

dτ

≤ O(1)

N

∫ s∧σ

0

Im[m̂τ (zτ )]
|κτ + Eτ − λ1(τ ) + iητ |ητ

dτ ≤ O(1)

N

∫ s∧σ

0

ητ /
√

κτ + ητ

(κτ − f (τ ) + ητ )ητ
dτ

≤ O(1)

N

∫ s∧σ

0

dτ

(κτ + ητ )1/2((κτ )1/2(s ∧ σ − τ) + ητ )
≤ O(1) log N

N (κs∧σ + ηs∧σ )
,

where we used Claim 4.11 in the second inequality; in the last line, we use (4.8), (2.7),
and the increasing gap inequality (3.6): for any 0 ≤ τ ≤ s ∧ σ ,

ητ � ηs∧σ + ηs∧σ√
κs∧σ + ηs∧σ

(s ∧ σ − τ), κ1/2
τ ≥ κ

1/2
s∧σ + C(s ∧ σ − τ) ≥ κ

1/2
s∧σ .
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Dyson Brownian motion for general β and potential at the… 913

We remark that when considering characteristics such that κs∧σ is greater than
ηs∧σ , we replace each appearance of κτ and ητ in the last line with κs∧σ and ηs∧σ

respectively. Then, we get O(log N )

N (
√

κs∧σ (ηs∧σ +κs∧σ )
. The denominator can be compared to

κs∧σ + ηs∧σ .
In contrast, when ηs∧σ ≥ κs∧σ , the replacement ητ � ηs∧σ + ηs∧σ√

κs∧σ +ηs∧σ (s∧σ−τ)
is

crucial and integrating in time will give us O(log N )
Nηs∧σ

. This is then less than O(log N )
N (κs∧σ +ηs∧σ )

when ηs∧σ ≥ κs∧σ .
This finishes the proof of (4.36).
To prove (4.37), we notice that thanks to Claim 4.7, if zt (u) ∈ Dout

t ∪ Dout
t , then

zs(u) ∈ Dout
s ∪ Dout

s for any 0 ≤ s ≤ t . We define a series of partial stopping times
0 = t0 < t1 < t2 < · · · , as follows:

tk = t ∧ inf{s > tk−1 : κsηs < κtk−1ηtk−1/2}, k = 1, 2, 3, . . . . (4.38)

Notice that since κt and ηt are finite and cannot be smaller than N−1/c, for a given t , we
have tk = t for k � log N . We now apply the Burkholder–Davis–Gundy inequality to
our stochastic integral. This allows us to bound the supremumof our stochastic integral
over a time range by its quadratic variation with overwhelming probability. We refer
to [48] for a detailed introduction to the Burkholder–Davis–Gundy inequality. The
quadratic variation can be found as follows:

∫ tk∧σ

0

2

βN 3

N∑
k=1

ds

|zs − λk(s)|4

≤ O(1)

N 2

∫ tk∧σ

0

Im[ms(zs)]
ηs((κs − f (s))2 + (ηs)2)

ds

≤ O(1)

N 2

∫ tk∧σ

0

Im[m̂s(zs)]
ηs((κs − f (s))2 + (ηs)2)

ds ≤ O(1)

N 2

∫ tk∧σ

0

ηs/
√

κs + ηs

ηs((κs)1/2(tk − s) + ηs)2
ds

≤ O(1)

N 2

∫ tk∧σ

0

ds

(κtk∧σ + ηtk∧σ )3/2(tk − s + ηtk∧σ /(κtk∧σ + ηtk∧σ )1/2)2

≤ O(1)

N 2

1

(κtk∧σ + ηtk∧σ )ηtk∧σ

,

where we used Claim 4.11 in the second inequality; in the third inequality, we use
(4.8), the square root behavior of μ̂s : Im[m̂s(zs)] � ηs/(

√
κs + ηs), and

ηs � ηtk∧σ + ηtk∧σ√
κtk∧σ + ηtk∧σ

(tk ∧ σ − s), κ
1/2
s ≥ κ

1/2
tk∧σ

. (4.39)

The Burkholder–Davis–Gundy inequality implies that with overwhelming probability
we have

sup
0≤s≤tk

∣∣∣∣∣
∫ s∧σ

0

√
2

βN 3

N∑
k=1

dBi (τ )

|zτ − λk(τ )|2
∣∣∣∣∣ ≤ O(1)(log N )2

N
√

(κtk∧σ + ηtk∧σ )ηtk∧σ

. (4.40)
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914 A. Adhikari, J. Huang

Wedefine� to be the set of Brownian paths {B1(s), . . . , BN (s)}0≤s≤T onwhich (4.40)
holds for all k. It follows from the discussion above that � holds with overwhelming
probability. Therefore, for any s ∈ [tk−1, tk], the bounds (4.40) and our choice of tk

(4.38) yield that, on �,

∣∣∣∣∣
∫ s∧σ

0

√
2

βN 3

N∑
k=1

dBi (τ )

|zτ − λk(τ )|2
∣∣∣∣∣ ≤ O(1)(log N )2

N
√

(κs∧σ + ηs∧σ )ηs∧σ

.

This finishes the proof of (4.37). ��
Thanks to Claim 4.12, for any u ∈ L∩ z−1

t (Dout
t ∪Dout

t ), with high probability, we
have: ∣∣∣∣

∫ s∧σ

0
dE2(τ )

∣∣∣∣ � (log N )2

N
√

(κs∧σ (u) + ηs∧σ (u))ηs∧σ (u)
. (4.41)

For the last term in (4.27), we rewrite it as a contour integral and bound it by its
absolute value.

Claim 4.13 Under the assumptions of Theorem 4.8, for any u ∈ z−1
t (Dt ) and for any

s satisfying 0 ≤ s ≤ t , we have∣∣∣∣
∫
R

g(zs∧σ (u), x)(dμs∧σ (x) − dμ̂s∧σ (x))

∣∣∣∣ = O

(
CM

N

)
. (4.42)

Proof From our choice of the stopping time (4.30), we have both μs∧σ and μ̂s∧σ are
supported on [−b, b]. Moreover, g(zs∧σ (u), x) is analytic in x ; we can rewrite the
integral in (4.42) as a contour integral∫

R

g(zs∧σ (u), x)(dμs∧σ (x) − dμ̂s∧σ (x))

= − 1

2π i

∮
Cs

g(zs∧σ (u), w)(ms∧σ (w) − m̂s∧σ (w))dw,

where Cs is a contour of distance R away from the support of μ̂s . Thanks to our
definition of Dfar

s in (4.5), we have Cs ⊂ Dfar
s . The above contour integral can be

bounded by∣∣∣∣
∮
Cs

g(zs∧σ , w)(ms∧σ (w) − m̂s∧σ (w))dw

∣∣∣∣
≤ length(Cs) sup

w∈Cs
|g(zs∧σ , w)||m̂s∧σ (w) − ms∧σ (w)| = O

(
CM

N

)
,

where we use the fact that g is bounded on the contour Cs , the length of Cs is bounded,
and there is rigidity along the contour Cs , i.e., |m̂s∧σ (w) − ms∧σ (w)| ≤ CM/N on
Cs . ��
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Now, let us return to Eq. (4.26) for the difference between m̂t (z) and mt (z). We
plug (4.32), (4.33) and (4.42) into (4.26). On the event � such that (4.32) and (4.33)
hold, for u ∈ L ∩ z−1

t (Din
t ), we have

|mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )| ≤ |m0(z0) − m̂0(z0)| + O

(
C(t ∧ σ)M

N
+ (log N )2

Nηt∧σ

)

+
∫ t∧σ

0

∣∣m̂s(zs) − ms(zs)
∣∣ ∣∣∣∣∂zms(zs) + V ′′(zs)

2

∣∣∣∣ ds.
Thanks to Assumption 4.1, |m0(z0)− m̂0(z0)| ≤ M/Nη0 ≤ O(M)/Nηt∧σ . It follows
from the Gronwall inequality and the argument in [36, Proposition 3.8] that

|mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )| ≤ CM

Nηt∧σ

, (4.43)

for some universal constant C provided that t ≤ T = o(1). And similarly, for u ∈
L ∩ z−1

t (Dfar
t ), we have |m0(z0) − m̂0(z0)| ≤ M/N and

|mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )| ≤ CM

N
, (4.44)

provided that t ≤ T = o(1).
For u ∈ L ∩ z−1

t (Dout
t ∪ Dout

t ), we plug (4.41) and (4.42) into (4.26), on the event
� as defined in Claim 4.12, we have

|mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )|

≤ |m0(z0) − m̂0(z0)| + O

(
C(t ∧ σ)M

N
+ (log N )2

N
√

(κt∧σ + ηt∧σ )ηt∧σ

)

+
∫ t∧σ

0

∣∣m̂s(zs) − ms(zs)
∣∣ ∣∣∣∣∂zms(zs) + V ′′(zs)

2

∣∣∣∣ ds. (4.45)

For the last term in (4.45), we have

∣∣∣∣∂zms(zs) + V ′′(zs)
2

∣∣∣∣ ≤ Im[ms(zs)]
ηs

+ O(1) ≤
(
1 + C

log N

)
Im[m̂s(zs)]

ηs
+ C .

(4.46)

where we used Claim 4.11. We denote the quantity,

β(s) :=
(
1 + C

log N

)
Im[m̂s(zs)]

ηs
+ C = O

(
Im[m̂s(zs)]

ηs

)
, (4.47)
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916 A. Adhikari, J. Huang

and rewrite (4.45) as

∣∣mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )
∣∣

≤
∫ t∧σ

0
β(s)

∣∣ms(zs) − m̂s(zs)
∣∣ ds

+ O(1)C(t ∧ σ)M

N
+ O(1)(log N )2

N
√

(κt∧σ + ηt∧σ )ηt∧σ

+ ∣∣m0(z0) − m̂0(z0)
∣∣ .

By the Gronwall inequality, this implies the following estimate for any 0 ≤ t ≤ T

∣∣mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )
∣∣

≤ O(1)C(t ∧ σ)M

N
+ O(1)(log N )2

N
√

(κt∧σ + ηt∧σ )ηt∧σ

+ ∣∣m0(z0) − m̂0(z0)
∣∣

+
∫ t∧σ

0
β(s)

(
sM

N
+ O(1)(log N )2

N
√

(κs + ηs)ηs
+ ∣∣m0(z0) − m̂0(z0)

∣∣) e
∫ t∧σ
s β(τ)dτds.

(4.48)

For the function β(τ), we have the following estimates

∫ t∧σ

s
β(τ)dτ ≤ O(t − s) +

(
1 + 1

log N

)∫ t∧σ

s

Im[m̂τ (zτ )]
ητ

dτ

≤ O(t − s) +
(
1 + 1

log N

)
log

(
ηs

ηt∧σ

)
,

and thus

e
∫ t∧σ
s β(τ)dτ ≤ eO(t−s)e

(
1+ 1

log N

)
log
(

ηs
ηt∧σ

)
≤ O(1)

ηs

ηt∧σ

, (4.49)

where in the last inequality, we used the estimate log(ηs/ηt∧σ ) � log N . Combining
the above inequality (4.49) with (4.47), we can bound the last term in (4.48) by

∫ t∧σ

0

Im[m̂s(zs)]
ηt∧σ

(
sM

N
+ (log N )2

N
√

(κs + ηs)ηs
+ ∣∣m0(z0) − m̂0(z0)

∣∣) ds

� M

Nηt∧σ

∫ t∧σ

0
sIm[m̂s(zs)]ds +

∫ t∧σ

0

Im[m̂s(zs)]
ηt∧σ

(log N )2

N
√

(κs + ηs)ηs
ds

+ (t ∧ σ)
∣∣m0(z0) − m̂0(z0)

∣∣ Im[m̂t∧σ (zt∧σ )]
ηt∧σ

. (4.50)

Thanks to Proposition 2.3 and the square root behavior of the measure μ̂t∧σ ,
Im[m̂s(zs)] � Im[m̂t∧σ (zt∧σ )] � ηt∧σ /(κt∧σ + ηt∧σ )1/2. We can bound the first
term on the right-hand side of (4.50) by
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M

Nηt∧σ

∫ t∧σ

0
sIm[m̂s(zs)]ds � (t ∧ σ)2MIm[m̂t∧σ (zt∧σ )]

Nηt∧σ

� (t ∧ σ)2M

N
√

κt∧σ + ηt∧σ

.

(4.51)

For the second term in the right-hand side of (4.50), we have

∫ t∧σ

0

ηt∧σ /(κt∧σ + ηt∧σ )1/2

ηt∧σ N
√

(κs + ηs)ηs
ds

= O

(∫ t∧σ

0

ηt∧σ

N (κt∧σ + ηt∧σ )η
3/2
s

ds

)

= O

(∫ t∧σ

0

ηt∧σ

N (κt∧σ + ηt∧σ )(ηt∧σ + (t ∧ s)ηt∧σ /(κt∧σ + ηt∧σ )1/2)3/2
ds

)

= O

(
1

N
√

(κt∧σ + ηt∧σ )ηt∧σ

)
,

where in the second line we used (2.7). For the last term in the right-hand side of
(4.50), we have

(t ∧ σ)
∣∣m0(z0) − m̂0(z0)

∣∣ Im[m̂t∧σ (zt∧σ )]
ηt∧σ

= O

(
(t ∧ σ)M log N

N (κ0 + η0)
√

κt∧σ + ηt∧σ

)

= O

(
M log N

N (κt∧σ + ηt∧σ )

)
,

where we used (2.7) and (3.6) to get κ0 + η0 � (t ∧ σ)
√

κt∧σ + ηt∧σ . Combining all
the above estimates, we have that, on the event �,

∣∣mt∧σ (zt∧σ ) − m̂t∧σ (zt∧σ )
∣∣ = O

(
(log N )2

N
√

(κt∧σ + ηt∧σ )ηt∧σ

+ M log N

N (κt∧σ + ηt∧σ )

)

≤ CM log N

N
√

(κt∧σ + ηt∧σ )ηt∧σ

. (4.52)

Thus, ifwe takeC in (4.30) larger than the constantsC in (4.43), (4.44) and (4.52), then,
with high probability, we have σ = T . Thus, (4.13), (4.14) and (4.15) in Theorem 4.8
follow. This finishes the proof of Theorem 4.8. ��

5 Mesoscopic central limit theorem

We assume that the initial data μ0 satisfies Assumption 4.1. In this section, we will
prove a mesoscopic central limit theorem for eigenvalue statistics after running the
Dyson Brownianmotion.We remark here that in order to prove themesoscopic central
limit theorem on scale η, we would need to run the Dyson Brownian motion for times
t � √

η in order to get the appropriate Gaussian fluctuations for the eigenvalues.
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918 A. Adhikari, J. Huang

Theorem 5.1 Suppose V satisfies Assumption 2.1, and the initial data λ(0) sat-
isfies Assumption 4.1. Fix time T = (log N )−4, an arbitrary small parameter
d > 0, and scale η satisfying N−2/3+20d ≤ η ≤ N−20d. Consider com-
plex numbers w1, w2, . . . , wk and a time t satisfying Ndmax{√η,

√
η∗} ≤ t ≤

T , where η∗ is from Assumption 4.1. Then the rescaled quantities �η,t (wi ) :=
Nη
[
mt (Et + wiη) − m̂t (Et + wiη)

] − (2 − β)/(4βwi ) (where m̂t is as defined in
(2.2)) asymptotically form a Gaussian field with limiting covariance kernel

Kedge(wi , w j ) := lim
N→∞ cov〈�η,t (wi ), �η,t (w j )〉 = 1

2β
√

wi
√

w j (
√

wi + √
w j )2

,

for 1 ≤ i, j ≤ k.

Proof of Theorem 5.1 We take a time s(t) depending on t (if the context is clear, we
will omit the dependence), such that

(η∗)1/2 � s(t), N 4dη1/2 � t − s(t) � η1/4+d/6. (5.1)

In this section, we will consider the behavior of the fluctuationmq(zq)−m̂q(zq) along
characteristics zq = Eq + κq + iηq such that, at the terminal time t , the characteristic
satisfies ηt � η and −Ndηt ≤ κt � ηt . From Lemma B.1, we have, for any q
satisfying s ≤ q ≤ t , that there exists some universal C such that

−CNdηq ≤ κq . (5.2)

Along these characteristics, we will use the improved rigidity estimates

|mq(zq) − m̂q(zq)| � (log N )2M

N (κq + ηq)
, (5.3)

from (4.18) when κq � N−2/3 or else

|mq(zq) − m̂q(zq)| � log NM

Nηq
, (5.4)

from (4.13) for times q with s(t) ≤ q ≤ t . To apply the results of Theorem 4.8, we
will use the analysis of characteristics in Lemma B.1 to argue that the points zq along
our characteristics are in the appropriate regions of applicability. For the rest of this
section, we postpone some tedious but straightforward computations to Appendix B
in order to keep the proof concise.
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We rewrite (4.25) as

d(mq (zq ) − m̂q (zq )) = −
√

2

βN3

N∑
i=1

dBi (q)

(λi (q) − zq )2

+ (mq (zq ) − m̂q (zq )
) (

∂zmq (zq ) + V ′′(zq )

2

)
dq

+
∫
R

g(zq , x)(dμq (x) − dμ̂q (x))dq + 2 − β

βN2

N∑
i=1

dq

(λi (q) − zq )3
.

(5.5)

We will define S to be the set on which all the estimates from Theorem 4.8 hold
with overwhelming probability. Thanks to the estimates (5.3) or (5.4) and Eq. (B.2) of
the computational Lemma B.3, we can bound the second term on the right-hand side
of (5.5) by first splitting it into a main term and an error term:

(
mq(zq) − m̂q(zq)

) (
∂zmq(zq) + V ′′(zq)

2

)
= (mq(zq) − m̂q(zq)

)
∂zm̂q(zq)

+ (mq(zq) − m̂q(zq)
) (

(∂zmq(zq) − ∂zm̂q(zq)) + V ′′(zq)
2

)

= (mq(zq) − m̂q(zq)
)
∂zm̂q(zq) + O

(
N 2d

N (|κq | + ηq)

(
N 2d

N (|κq | + ηq)ηq
+ 1

))

= (mq(zq) − m̂q(zq)
)
∂zm̂q(zq) + O

(
N 4d

N 2(|κq | + ηq)η2q
+ N 2d

N (|κq | + ηq)

)
.

(5.6)

The main term coming from this contribution is
(
mq(zq) − m̂q(zq)

)
∂zm̂q(zq). For

the third term on the right-hand side of (5.5), using Claim 4.13, we have that, on S,
∣∣∣∣
∫
R

g(zq , x)(dμq(x) − dμ̂q(x))

∣∣∣∣ = O

(
M

N

)
. (5.7)

We can rewrite the last term on the right-hand side of (5.5) as

2 − β

βN 2

N∑
i=1

1

(λi (q) − zq)3
= 2 − β

2βN
(∂2z mq(zq) − ∂2z m̂q(zq)) + 2 − β

2βN
∂2z m̂q(zq).

(5.8)
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By standard computations using eigenvalue rigidity (Lemma B.3), on S, we have

∣∣∣∂2z mq(zq) − ∂2z m̂q(zq)
∣∣∣ = O

(
N 2d

N (|κq | + ηq)η2q

)
. (5.9)

By plugging (5.6), (5.7), (5.8) and (5.9) into (5.5), we obtain the following simplified
differential equation of the difference mq(zq) − m̂q(zq)

d(mq(zq) − m̂q(zq)) = (mq(zq) − m̂q(zq))∂zm̂q(zq) + 2 − β

2βN
∂2z m̂q(zq)

−
√

2

βN 3

N∑
i=1

dBi (q)

(λi (q) − zq)2
+ Eq , (5.10)

where the error term Eq = O

(
N4d

N2(|κq |+ηq )η2q

)
holds uniformly over S. We can explic-

itly solve the above equation by using

It := exp
∫ t

0
∂zm̂q(zq)dq, (5.11)

as an integrating factor. We have the following lemma that allows us to evaluate this
quantity. We postpone its proof to Sect. 5.1.

Lemma 5.2 Recall the times s and t from (5.1). Under the assumptions of Theorem 5.1,
we consider a characteristic {zτ }0≤τ≤t = Eτ + κτ + iητ terminating at zt such that
ηt � η and −Ndη ≤ κt � η. Letting q be a time such that s ≤ q ≤ t , we have

(It )(Iq)−1 = exp
∫ t

q
∂zm̂τ (zτ )dτ =

(
1 + O

(
N−d2

)) √κq + iηq√
κt + iηt

, (5.12)

where It , Iq are as defined in (5.11), and zτ = Eτ + κτ + iητ for any q ≤ τ ≤ t .

By using (5.11), the solution to the differential equation (5.10) can be expressed as

mt (zt ) − m̂t (zt ) = It (Is)−1(ms(zs) − m̂(zs))

+ It
∫ t

s
I−1
q

(
2 − β

2βN
∂2z m̂q (zq )dq −

√
2

βN 3

N∑
i=1

dBi (q)

(λi (q) − zq )2
+ Eqdq

)
.

(5.13)

The deterministic integral in the above line is a correction term for themean value. The
stochastic integral is the cause of the Gaussian fluctuation. We replace every instance
of It (Iq)−1 with the right-hand side of (5.12). Once this replacement is made, the
remaining computations are standard.

123



Dyson Brownian motion for general β and potential at the… 921

We recall our choice of s in (5.1): N 4dη1/2 � t−s � η1/4+d/6. Due to the rigidity
estimates (5.3) and (5.4) as well as the estimate of κq in (5.2), we can bound the first
term on the right-hand side of (5.13) by

∣∣∣It (Is )−1(ms (zs ) − m̂s (zs ))
∣∣∣ � (1 + N−d2 )

√|κs | + ηs√|κt | + ηt
|ms (zs ) − m̂s (zs )|

� N1.1d

N
√

ηs

1√|κt | + ηt

� N1.1d

N
√

ηt + (t − s)Im[mt (zt )]
1√|κt | + ηt

� 1

N (|κt | + ηt )
, (5.14)

where we used (2.7) and (t − s) � N 3d(|κt | + ηt )
1/2. The first term in the integral

on the right-hand side of (5.13) can be evaluated using the results of Lemma B.7.

It
∫ t

s
I−1
q

2 − β

2βN
∂2z m̂q (zq )dq = (1 + O(N−d2 ))

2 − β

2βN

1√
κt + iηt

∫ t

s
∂2z m̂q (zq )

√
κq + iηqdq

=
(
1 + O(N−d2 )

) 2 − β

4βN

1

(κt + iηt )
. (5.15)

We now combine the above estimates (5.14) and (5.15). After this, we integrate
the rigidity bounds on the error term Eq in time using the computations detailed in
Lemma B.4. Putting these estimates all together, on S, it holds that

mt (zt ) − m̂t (zt ) =
(
1 + O(N−d2)

) 2 − β

4βN

1

κt + iηt

−
√

2

βN 3

∫ t

s
It (Iq)−1

N∑
i=1

dBi (q)

(λi (q) − zq)2
+ O

(
N 4d

N 2η
5/2
t

)
.

(5.16)

We remark that since we have that ηt � N−2/3+20d, the last error term in (5.16) will
be less than the previous two terms and can essentially be absorbed into the O(N−d2)

factor appearing above.
Inwhat follows,wewill show that theBrownianmotion integrals are asymptotically

jointly Gaussian. Consider the points z1, z2, . . . , zk ∈ C+ such that, uniformly for
all 1 ≤ j ≤ k, |Re[z j ] − Et |, Im[z j ] � η, and let u1, u2, . . . , uk be points such
that zt (u j ) = z j for j = 1, 2, . . . , k, respectively. We denote for any 1 ≤ j ≤ k,
zt (u j ) = Et + κt (u j ) + iηt (u j ). For 1 ≤ j ≤ k, let

X j (t) := ηt (u j )

√
2

βN

∫ t

s

N∑
i=1

It (Iq)−1 dBi (q)

(λi (q) − zq(u j ))2
, j = 1, 2, . . . , k,

(5.17)
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where the time s is chosen as in (5.1). We compute their joint characteristic function,

E

⎡
⎣exp

⎧⎨
⎩i

k∑
j=1

a jRe[X j (t)] + b j Im[X j (t)]
⎫⎬
⎭
⎤
⎦ . (5.18)

Since
∑k

j=1 a jRe[X j (t)]+b j Im[X j (t)] is amartingale, the following is also amartin-
gale, where we use the notation 〈·〉 to denote the quadratic variation of the martingale
term inside,

exp

⎧⎨
⎩i

k∑
j=1

{a jRe[X j (t)] + b j Im[X j (t)]} − 1

2

〈
k∑
j=1

a jRe[X j (t)] + b j Im[X j (t)]
〉⎫⎬
⎭ .

In particular, its expectation is one,

E exp

⎧⎨
⎩i

k∑
j=1

{a jRe[X j (t)] + b j Im[X j (t)]} − 1

2

〈 k∑
j=1

a jRe[X j (t)] + b j Im[X j (t)]
〉⎫⎬
⎭ = 1.

(5.19)

Using the following proposition, we can compute the quadratic variation in (5.19).
Recalling (5.17), we see that X j can be obtained via an algebraic manipulation of
the Stieltjes transform mt (zt ) − m̂t (zt ). The next proposition computes the quadratic
variation of the Stieltjes transform. It will be proved at the end of this section.

Proposition 5.3 Recall the times s and t from (5.1). Under the assumptions of Theo-
rem 5.1, we consider a pair of points zt = Et + κt + iηt and z′t = Et + κ ′

t + iη′
t such

that ηt , η
′
t � η and −Ndη ≤ κt , κ

′
t � η. We have the following expressions for the

quadratic variances:

1

N 3

∫ t

s
[(It )(Iq)−1]2

N∑
i=1

dq

(λi (q) − zq)4
= 1 + O(N−d2)

16N 2(κt + iηt )2
+ O

(
N 2d

N 3η
7/2
t

)
,

(5.20)

1

N 3

∫ t

s
[(It )(Iq)−1][(I ′

t )(I ′
q)

−1]
N∑
i=1

dq

(λi (q) − zq)2(λi (q) − z′q)2

= 1 + O(N−d2)

4N 2
√

κt + iηt
√

κ ′
t + iη′

t (
√

κt + iηt +√κ ′
t + iη′

t )
2

+ O

(
N 3d

N 3η
7/2
t

+ N 3d

N 3η
′7/2
t

)
,

(5.21)
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1

N 3

∫ t

s
[(It )(Iq)−1][(I ′

t )(I ′
q)

−1]
N∑
i=1

dq

(λi (q) − z̄q)2(λi (q) − z′q)2

= 1 + O(N−d2)

4N 2
√

κt − iηt
√

κ ′
t + iη′

t (
√

κt − iηt +√κ ′
t + iη′

t )
2

+ O

(
N 3d

N 3η
7/2
t

+ N 3d

N 3η
′7/2
t

)
.

(5.22)

After rescaling and other algebraic manipulations, we see that the expression of the
full quadratic variation of X j (t) is given as follows. It is a consequence of Proposi-
tion 5.3 and Lemma B.6.

1

2

〈
k∑
j=1

a jRe[X j (t)] + b j Im[X j (t)]
〉 (

1 + O(N−d2
)
)

=
∑

1≤ j,�≤k

Re

[
(a j + ib j )(a� − ib�)ηt (u j )ηt (u�)

16β
√

κt (u j ) − iηt (u j )
√

κt (u�) + iηt (u�)(
√

κt (u j ) − iηt (u j ) + √
κt (u�) + iηt (u�))2

]

+
∑

1≤ j,�≤k

Re

[
(a j − ib j )(a� − ib�)ηt (u j )ηt (u�)

16β
√

κt (u j ) + iηt (u j )
√

κt (u�) + iηt (u�)(
√

κt (u j ) + iηt (u j ) + √
κt (u�) + iηt (u�))2

]

+
∑

1≤ j,�≤k

Re

[
(a j + ib j )(a� + ib�)ηt (u j )ηt (u�)

16β
√

κt (u j ) − iηt (u j )
√

κt (u�) − iηt (u�)(
√

κt (u j ) − iηt (u j ) + √
κt (u�) − iηt (u�))2

]
.

(5.23)

Recall that, from (5.19), we know that the expectation (5.18) is equal to the value
of the quadratic variation (5.23). This implies that the random variables X j (t) are
asymptotically joint Gaussian.

Using the Eq. (5.16), we see that, with high probability, we have the following
relation.

Nηt (u j )

(
mt (zt (u j )) − m̂t (zt (u j )) − 2 − β

4Nβ(zt (u j ) − Et )

)
= X j (t) + O(N−d2).

If we take w j = (zt (u j ) − Et )/η for j = 1, 2, . . . , k, we see that the left-hand side
of the above equation represents the quantities �η,t (w j ) for j = 1, 2, . . . , k from
Theorem 5.1. We have shown earlier that the X j (t) are asymptotically joint Gaussian;
the equality above implies that the �η,t (w j ) are also asymptotically joint Gaussian
with the covariance kernel given by

Kedge(w,w′) = 1

2β
√

w
√

w′(
√

w + √
w′)2

. (5.24)

This completes the proof of Theorem 5.1. ��
We recall that the kernel in the bulk is given by

Kbulk(w,w′) = 2

β(w − w′)2
, (5.25)
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provided w ∈ C+, w′ ∈ C−, or w ∈ C−, w′ ∈ C+; otherwise, Kbulk(w,w′) = 0 (see
[36]). We can, in fact, recover the kernel in the bulk from the kernel at the edge. We
take w = κ + iη and w = κ ′ + iη′, and let κ, κ ′ tend to −∞. Then,

Kedge(w,w′) →
{

0 if ηη′ > 0,
Kbulk(w,w′) if ηη′ < 0.

Corollary 5.4 Under the assumptions of Theorem 5.1, for any compactly supported
test function ψ in the Sobolev space Hs with s > 1, we define

ψη(x) = ψ

(
x − Et

η

)
.

Recall that η is an N dependant value satisfying N−2/3+20d ≤ η ≤ N−20d for some
fixed parameter d and t is a time satisfying Ndmax{√η,

√
η∗} ≤ t ≤ T where

T = (log N )−4. The normalized linear statistics converge to a Gaussian

L̂(ψη) :=
N∑
i=1

ψη(λi (t)) − N
∫
R

ψη(x)dμt (x) → N (0, σ 2
ψ) − 2 − β

4β
ψ(0), (5.26)

in distribution, as N → ∞, where

σ 2
ψ := 1

4π2β

∫
R2

(
ψ(x2) − ψ(y2)

x − y

)2

dxdy.

Proof The proof of this corollary follows the proof of the central limit theorem in [50,
Theorem 4]. The idea is to combine a Littlewood–Paley decomposition in momentum
space with covariance estimates on the Stieltjes transform. The estimates that we have
established on the asymptotic normality of the Stieltjes transform in a radius O(η)

sized neighborhood of the edge can be used with their Littlewood–Paley analysis. ��

5.1 Proofs of Lemmas used in Theorem 5.1

In the following lemma, we compute the leading order behavior of the func-
tion

√
κt + iηt . This allows us to compute integrals in time involving the quantity√

κt + iηt , e.g., (5.15).

Lemma 5.5 We recall Cq from (3.5) as well as the times s and t from (5.1). Under
the assumptions of Theorem 5.1, consider any characteristic flow {zτ }0≤τ≤t with
zt = Et + κt + iηt such that ηt � η and −Ndη � κt � η. For any time q satisfying
s ≤ q ≤ t , we have

∣∣∣∣2√κt + iηt − 2
√

κq + iηq + π

∫ t

q
Cτdτ

∣∣∣∣ = O
(
(log N )2

(
(t − q)2 + (t − q)

√|κt + iηt |
))

.

(5.27)
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Proof To derive a differential equation for κτ + iητ , we take the difference of (2.4)
and (3.4),

∂τ (κτ + iητ ) = −(m̂τ (zτ ) − m̂τ (Eτ )) − V ′(zτ )
2

+ V ′(Eτ )

2

= −
∫ Eτ

−∞
dμ̂τ (x)

x − zτ
+
∫ Eτ

−∞
dμ̂τ (x)

x − Eτ

+ O(|zτ − Eτ |)

= −(zτ − Eτ )

∫ Eτ

−∞
dμ̂τ (x)

(x − Eτ )(x − zτ )
+ O(|zτ − Eτ |).

At this stage, using Proposition 3.4, we can replace the integral appearing above with
an expression that can be computed explicitly. As is detailed in Lemma B.5, the main
contribution is from the part close to the edge, and we can consider the integral from
−∞ to Eτ − (log N )−1 as an error term. A Taylor expansion indicates that the leading
order contribution will be from the integral of Cτ

√[Eτ − x]+.

∂τ (κτ + iητ )

= −(zτ − Eτ )

(∫ Eτ

Eτ −(log N )−1

ρ̂τ (x)dx

(x − Eτ )(x − zτ )
+ O((log N )2)

)
+ O(|zτ − Eτ |)

= −(zτ − Eτ )

(∫ 0

−(log N )−1

Cτ
√|x | + O(|x |3/2)

x(x − (zτ − Eτ ))
dx + O((log N )2)

)
+ O(|zτ − Eτ |)

= −πCτ

√
κτ + iητ + O((log N )2|zτ − Eτ |). (5.28)

We can rewrite (5.28) as

2∂τ

√
κτ + iητ = −πCτ + O

(
(log N )2

√|κτ + iητ |
)

. (5.29)

We notice that the right-hand side is O(1). By integrating both sides of the above
equation, we get

√|κτ + iητ | = O
(
|t − τ | +√|κt + iηt |

)
. (5.30)

We can plug (5.30) into (5.29) and integrate both sides from q to t , again, to get

√
κt + iηt −√κq + iηq + π/2

∫ t

q
Cτdτ

= O

(
(log N )2

∫ t

q
|t − τ | +√|κt + iηt |dτ

)

= O
(
(log N )2

(
(t − q)

√|κt + iηt | + (t − q)2
))

.

This finishes the proof of Lemma 5.5. ��
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With Lemma 5.5 in hand, we can now perform the proposed time integral in
Lemma 5.2 via an appropriate change of variables.

Proof of Lemma 5.2 Through straightforward calculations, we can compute the value
ofIt (Iq)−1 for anyq satisfying s ≤ q ≤ t . Following the computations of LemmaB.5,
we have∫ t

s
∂zm̂q(zq)dq =

∫ t

s

∫ 0

−∞

(
Cq

√|x |
(x − κq − iηq)2

dx + O((log N )2)

)
dq

=
∫ t

s

Cqπ

2
√

κq + iηq
dq + O((t − s)(log N )2).

By the assumption in the condition of Lemma 5.2, we have t − s � η1/4+d/6. Thanks
to Lemma 5.5, we have∣∣∣∣√κq + iηq − (

√
κt + iηt + π/2

∫ t

q
Cτdτ)

∣∣∣∣ ≤ |√κq + iηq |1+d/3. (5.31)

It gives the following comparison estimate∣∣∣∣∣
∫ t

s

Cqπ/2√
κq + iηq

dq −
∫ t

s

Cqπ/2

(
√

κt + iηt + π/2
∫ t
q Cτdτ)

dq

∣∣∣∣∣
≤
∫ t

s

∣∣∣∣∣ Cqπ/2

(
√

κt + iηt + π/2
∫ t
q Cτdτ)1−d/3

∣∣∣∣∣ dq ≤
∣∣∣√κs + iηs

∣∣∣d/3
. (5.32)

We combine the estimates in (5.31) and (5.32), and notice that |κs |, |ηs | ≤ N−4d. This
gives us

∫ t

s

Cqπ

2
√

κq + iηq
dq =

∫ t

s

Cqπ

2(
√

κt + iηt + π/2
∫ t
q Cτdτ)

dq + O(N−d2)

= ln

(√
κs + iηs√
κt + iηt

)
+ O(N−d2).

This finishes the proof of Lemma 5.2. ��
Our estimates of the characteristics from Lemma 5.5 will allow us to performmany

of the time integrals that appear in the computation of the quadratic variances. The
proof of Proposition 5.3 consists of bounding the error terms and performing other
computations detailed in the appendix.

Proof of Proposition 5.3 When simplifying the expressions in (5.20), (5.21) and (5.22),
one should first evaluate the Stieltjes transform for a fixed time; when this is done,
we can deal with the time integral. We restrict ourselves to the event S defined earlier
near the beginning of Theorem 5.1. On S, we can apply the rigidity estimates (5.3)
and (5.4) along the characteristic curve.
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We denote �mq(w) := (mq(w) − m̂q(w)). Regarding (5.20), the left-hand side
can be written as the derivative of the Stieltjes transform mq at zq , and so

1

N 3

N∑
i=1

1

(λi (q) − zq)4
= ∂3z mq(zq)

6N 2 = 1

6N 2 ∂3z m̂q(zq) + ∂3z �mq(zq)

6N 2

= ∂3z m̂q(zq)

6N 2 + O

(
N 2d

N 3(|κq | + ηq)η3q

)
, (5.33)

where we used Lemma B.3 to bound ∂3z �mq(zq). To prove (5.20), we multi-
ply both sides of (5.33) by [It (Iq)−1]2 and integrate. The error term is given by
(6N−2)

∫ t
s [It (Iq)−1]2∂3z �mq(zq).Wecan use Lemma 5.2 to bound [It (Iq)−1]2 from

above by O
(|κq + iηq |/|κt + iηt |

)
. This leads to the upper bound

∫ t

s

|κq + iηq |
|κt + iηt |

N 2d

N 3(|κq | + ηq)η3q
dq ≤ N 2d

N 3|κt + iηt |
∫ t

s

dq

η3q
≤ N 2d

N 3|κt + iηt |η5/2t

,

(5.34)
where we used Lemma B.4 for the last integral. Our choice of ηt ≥ N−2/3+20d will
ensure that this error term is smaller than the main term, which is of order |κt + iηt |−2.
For the leading order term, (6N−2)

∫ t
s [It (Iq)−1]2∂3z mq(zq)dq, we use Lemma 5.2 to

derive

1

6N 2

∫ t

s
[It (Iq)−1]2∂3z m̂q(zq)dq = (1 + O(N−d2))

1

6N 2

∫ t

s

κq + iηq
κt + iηt

∂3z m̂q(zq)dq

= 1 + O(N−d2)

16N 2(κt + iηt )2
, (5.35)

where the last step is a straightforward computation (Lemma B.6 with zt = z′t ). (5.34)
and (5.35) together finish the proof of Eq. (5.20).

Now we turn to our proof of the second Eq. (5.21). We write the left-hand side of
(5.21) as a contour integral of m̂s :

1

N 3

N∑
i=1

1

(λi (q) − zq)2(λi (q) − z′q)2
= 1

2π iN 2

∮
C

m̂q(w) + �mq(w)

(w − zq)2(w − z′q)2
dw. (5.36)

In the case that max{ηq/3, η′
q/3} ≥ |zq − z′q | (without loss of generality, we assume

that the maximum is ηq/3), we set C to be a contour centered at zq with radius
ηq/2. In this case, we have dist(C, {zq , z′q}) ≥ ηq/6. In the case that |zq − z′q | ≥
max{ηq/3, η′

q/3}, we let C = C1 ∪ C2 consist of two contours, where C1 is centered at
zq with radius ηq/6, and C2 is centered at z′q with radius η′

q/6. Then, in this case, we
have dist(C1, z′q) ≥ ηq/6 and dist(C2, zq) ≥ η′

q/6.
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We first estimate the error term in (5.36). If C consists of a single contour, we have

∣∣∣∣∣ 1

2π iN 2

∮
C

�mq(w)

(w − zq)2(w − z′q)2
dw

∣∣∣∣∣ ≤ C

N 2

∫
C

N 2d

N (|κq | + ηq)η4q
dw

� N 2d

N 3(|κq | + ηq)η3q
. (5.37)

We used the estimates �mq(w) ≤ N2d

N (|κq |+ηq )
and ηq � |w − zq |, |w − z′q | on the

contour C. Finally, we used that |C| � ηq .

If C consists of two contours C1∪C2, we apply the estimates�mq(w) ≤ N2d

N (|κq |+ηq )

and ηq � |w − zq |, |w − z′q | on C1 and the corresponding estimates with η′
q and κ ′

q
on C2. We can bound our error term by

∣∣∣∣∣ 1

2π iN 2

∮
C

�mq(w)

(w − zq)2(w − z′q)2
dw

∣∣∣∣∣
≤ C

N 2

(∫
C1

N 2d

N (|κq | + ηq)η4q
dw +

∫
C2

N 2d

N (|κ ′
q | + η′

q)η
′4
q
dw

)

� N 2d

N 3(|κq | + ηq)η3q
+ N 2d

N 3(|κ ′
q | + η′

q)η
′3
q

, (5.38)

where we used |C1| = O(ηq) and |C2| = O(η′
q). To prove (5.21), we multiply both

sides of (5.37) or (5.38) by [It (Iq)−1][I ′
t (I ′

q)
−1]. We can use Lemma 5.2 to bound

[It (Iq)−1][I ′
t (I ′

q)
−1] from above by

O

⎛
⎝
√

|κq + iηq ||κ ′
q + iη′

q |√|κt + iηt ||κ ′
t + iη′

t |

⎞
⎠ .

This leads to the upper bound of the error term

∫ t

s

√
|κq + iηq ||κ ′

q + iη′
q |√|κt + iηt ||κ ′

t + iη′
t |

(
N 2d

N 3(|κq | + ηq)η3q
+ N 2d

N 3(|κ ′
q | + η′

q)η
′3
q

)
dq

≤ N 3d

N 3
√|κt + iηt ||κ ′

t + iη′
t |
∫ t

s

(
1

η3q
+ 1

η′3
q

)
dq ≤ N 3d

N 3

(
1

η
7/2
t

+ 1

η
′7/2
t

)
,

(5.39)

where, in the first inequality, we usedLemmaB.2 to get N−d ≤ |κ ′
q+iη′

q |/|κq+iηq | ≤
Nd, and the last inequality is a straightforward computation (see Lemma B.4). For the
leading order term in (5.21), we have
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∫ t

s
[It (Iq)−1][I ′

t (I ′
q)

−1] 1

2π iN 2

∮
C

m̂q(w)

(w − zq)2(w − z′q)2
dwdq

= (1 + O(N−d2))

∫ t

s

√
|κq + iηq ||κ ′

q + iη′
q |√|κt + iηt ||κ ′

t + iη′
t |

(
1

N 2

∫ Eq

−∞
dμ̂q(x)

(x − zq)2(x − z′q)2

)
dq

= 1 + O(N−d2)

4N 2
√

κt + iηt
√

κ ′
t + iη′

t (
√

κt + iηt +√κ ′
t + iη′

t )
2
, (5.40)

where, in the first equality, we used Lemma 5.2, and the last step is a straightfor-
ward computation (see Lemma B.6). (5.39) and (5.40), together, finish the proof of
Eq. (5.21).

For (5.22), we can first write the left-hand side in terms of the Stieltjes transform
mq as

1

N

N∑
i=1

1

(λi (q) − z̄q )2(λi (q) − z′q )2
= 2(−mq (zq ) + mq (z′q ))

(z̄q − z′q )3
+ ∂zmq (zq ) + ∂zmq (z′q )

(z̄q − z′q )2
.

(5.41)
We note that |z̄q − z′q | ≥ ηq +η′

q . As before, we will separatemq asmq = �mq + m̂q

and analyze the corresponding term with �mq . For the terms in (5.41), we have by
Lemma B.3 that

∣∣∣∣∣ 1

N2

2(−�mq (zq ) + �mq (z′q ))

(z̄q − z′q )3

∣∣∣∣∣ ≤ C

N2

(
N2d

N (|κq | + ηq )(ηq )3
+ N2d

N (|κ ′
q | + η′

q )(η′
q )3

)
,

∣∣∣∣∣ 1

N2

∂z�mq (zq ) + ∂z�mq (z′q )

(z̄q − z′q )2

∣∣∣∣∣ ≤ C

N2

(
N2d

N (|κq | + ηq )(ηq )3
+ N2d

N (|κ ′
q | + η′

q )(η′
q )3

)
.

(5.42)

Using the estimate (5.42) as an input, the same analysis used to establish (5.21) can
be used to give (5.22). ��

6 Edge universality

We recall the β-Dyson Brownian motion from (1.2)

dλi (t) =
√

2

βN
dBi (t) + 1

N

∑
j : j �=i

dt

λi (t) − λ j (t)
− 1

2
V ′(λi (t))dt, i = 1, 2, . . . , N ,

where the initial data λ(0) = (λ1, λ2, . . . , λN ) satisfies Assumption 4.1 and the poten-
tial V satisfies Assumption 2.1.

In Sect. 4, we showed that a measure with rigidity on the scale η∗ would have
optimal edge rigidity after running a β-Dyson Brownian motion with potential V for
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time
√

η∗. Upon further applying the β-Dyson Brownian motion with potential V ,
we can compare the local eigenvalue fluctuations to that of the β-ensemble with an
appropriate quadratic potential. Themain strategy is to perform a coupling between the
β-Dyson Brownian motion with potential V and the β-Dyson Brownian motion with
an appropriate quadratic potential started from its equilibrium measure. We will, as
in previous works, estimate the differences of the coupled processes via a continuous
interpolation. A similar analysis has been performed for the bulk in [40] and at the
edge in [41]. Our result on edge universality can be considered to be an extension of
the result in [9] in that we can dynamically prove universality for more general point
processes, i.e., the Airy β-point process for any β ≥ 1.

Without loss of generality, in the rest of this section, we assume that the initial data
λ(0) has eigenvalue rigidity near the edge to an optimal scale, i.e., Assumption 4.1
holdswith η∗ = (log N )C N−2/3. Otherwise, we can first apply theβ-DysonBrownian
motion until we have rigidity near the edge to an optimal scale. We now define μi to
be the unique strong solution to the SDE

dμi (t) =
√

2

βN
dBi (t) + 1

N

∑
j : j �=i

dt

μi (t) − μ j (t)
− 1

2
W ′(μi (t))dt, i = 1, 2, . . . , N ,

where the Brownian motion appearing here is the same Brownian motion appearing
in the equation of λi (t) and the initial data μi (0) has the same law as the β-ensemble
with quadratic potential W ,

1

ZN

∏
i< j

|μi − μ j |βe−N
∑

i W (μi )
∏
i

dμi . (6.1)

The quadratic potential W is chosen so that its corresponding equilibrium measure
behaves like μ̂0 from Assumption 4.1. More specifically, the equilibrium measure
behaves like C0

√[E0 − x]+ to leading order as x approaches E0 from the right. It
was proved in [47] that for any fixed integer K ≥ 0, the rescaled vector,

(
(πC0N/2)2/3(μi − E0)

)
1≤i≤K

,

converges to the Airy β-point process, which is characterized by the stochastic Airy
operator.

The main result of this section is the following, which states that the extreme
particles of the Dyson Brownian motion for general β and potential V converge to the
Airy-β point process in a short time.

Theorem 6.1 Suppose V satisfies Assumption 2.1, and the initial data λ(0) satisfies
Assumption 4.1 with η∗ = (log N )C N−2/3. Let t � N−1/3+ω where ω > 0 is an
arbitrarily small parameter and fix some large integer K > 0. With overwhelming
probability, we have
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|(λi (t) − Et ) − (μi − E0)| ≤ 1

N 2/3+c
,

for a small c > 0 and for any index 1 ≤ i ≤ K, where the μi ’s have the law of a
β-ensemble as given in (6.1).

6.1 Interpolation

Let us start with a brief discussion of the main strategy in [41]. As was described
earlier, one wants to find a coupling of the Dyson Brownian motions applied to the
λi ’s and μi ’s. It is easier to get estimates on this coupling if one uses the interpolation
αλi + (1 − α)μi with 0 ≤ α ≤ 1 between the eigenvalue processes for λi and those
for μi , and studies a Dyson Brownian motion on these interpolated eigenvalues.

Just as we have used μ̂0 earlier as a deterministic measure which could be compared
to the initial eigenvalue density (1/N )

∑N
i=1 δλi (0), we need to find a determinis-

tic measure μ̂0(x, α) that can be compared to the interpolated eigenvalue density
(1/N )

∑N
i=1 δαλi (0)+(1−α)μi (0). The measure μ̂(x, α) that we will construct has a con-

tinuous density ρ̂(x, α), and we will use ρ̂(x, α) to refer to this measure; similarly,
we will refer to the initial measure μ̂0 as ρ̂0 for the rest of this section.

It was observed in [41] that the eigenvalue fluctuations are due to short-range
effects. In order to derive edge universality, it is only necessary to have control of the
eigenvalues that liewithin anO(1) neighborhood of the edge. Themain difficulty in the
construction of ρ̂0(x, α) is to ensurewe have a reasonable deterministic approximation
in an O(1) neighborhood of the edge; one can directly use the random point process
(1/N )

∑
i /∈[1,cN ] δαλi (0)+(1−α)μi (0) for eigenvalues far away from the edge. To simplify

the notation in the proof, we will assume that we have control of the eigenvalues
λi (0) on the entire spectrum rather than just in an O(1) neighborhood of the edge.
Our construction of ρ̂0(x, α) will be less cumbersome, but will still illustrate how to
approximate the eigenvalues near the edge.

We define the following interpolating processes for 0 ≤ α ≤ 1.

dzi (t, α) =
√

2

βN
dBi (t) + 1

N

∑
j : j �=i

dt

zi (t, α) − z j (t, α)
− 1

2
V ′

α(zi (t, α))dt, i = 1, 2, . . . , N . (6.2)

The potential is

Vα := αV + (1 − α)W ,

where W is the quadratic potential from (6.1), and the initial data is

zi (0, α) := αλi (0) + (1 − α)μi (0),

for i = 1, 2, . . . , N .
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We define the Stieltjes transform of the empirical particle process zi (t, α) from
(6.2) as

mt (z, α) = 1

N

∑
i

1

zi (t, α) − z
.

We recall that by our Assumption 4.1, we have

ρ̂0(x, 1) := ρ̂0(x) = f0(x, 1)
√[E0 − x]+, x ∈ (−∞, E0],

where f0(x, 1) is analytic in a neighborhood of x = E0 and satisfies limx→E0 f0(x, 1)
= C0. The equilibrium measure of the β-ensemble (6.1) with the quadratic potential
W has the same form

ρ̂0(x, 0) = f0(x, 0)
√[E0 − x]+, x ∈ (−∞, E0],

with f0(x, 0) analytic in a neighborhood of E0 and limx→E0 f0(x, 0) = C0. It turns
out that for any 0 ≤ α ≤ 1, there exists an analytic function f0(x, α) in a neighborhood
of E0, such that the empirical distribution of the interpolated initial data zi (0, α) is
close to the profile

ρ̂0(x, α) = f0(x, α)
√[E0 − x]+, x ∈ (−∞, E0].

The profile ρ̂0(x, α) is characterized by the following relation

F̂(y, α) =
∫ ∞
y

ρ̂0(x, α)dx, F̂−1(y, α) = α F̂−1(y, 1) + (1 − α)F̂−1(y, 0), α ∈ [0, 1],
(6.3)

where F̂−1(y, α) is the inverse function of F̂(y, α).
The next proposition establishes the previously claimed analyticity properties

regarding the functions f0(x, α), α ∈ [0, 1] in a more general setting. The proof
follows from a direct power series expansion.

Proposition 6.2 Consider the two measures ρ0(x) = f0(x)
√[E0 − x]+ and ρ1(x) =

f1(x)
√[E0 − x]+ where f0(x) and f1(x) are analytic functions around the spec-

tral edge E0. The measure ρα whose cumulative distribution function F(y, α) =∫∞
y ρα(x)dx is determined by the relation

F−1(y, α) = αF−1(y, 1) + (1 − α)F−1(y, 0),

where F(y, 1) and F(y, 0) are the cumulative distribution functions of ρ1(x) and
ρ0(x) respectively, is of the following form

ρα(x) = fα(x)
√[E0 − x]+, x ∈ (−∞, E0],
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where fα(x) is analytic around the spectral edge E0.

In our specific construction, we can establish eigenvalue rigidity estimates for the
interpolated processes.

Proposition 6.3 Suppose V satisfies Assumption 2.1, and the initial data λ(0) satisfies
Assumption 4.1 with η∗ = (log N )C N−2/3. Then ρ̂0(x, α) as constructed in (6.3)
satisfies ρ̂0(x, α) = (C0 + o(1))

√[E0 − x]+, as x → E0 from the right, and, for
1 ≤ i ≤ eN,

|zi (0, α) − γ̂i (0, α)| ≤ (log N )C

N 2/3i1/3
,

where the γ̂i (0, α)s are the classical eigenvalue locations of ρ̂0(x, α), i.e., γ̂i (0, α) =
F̂−1(i/n, α). This rigidity of the eigenvalues would imply that the point process
(1/N )

∑N
i=1 δzi (0,α) is close to the measure ρ̂0(x, α), which has square root behavior,

in the sense of Assumption 4.1 up to the optimal scale η∗ = (log N )C N−2/3.

One should note that the above prop is simply a consequence of the definition (6.3).
The value of γ̂i (0, α) is the linearly interpolated value between the endpoints at α = 0
and 1; in other words, γ̂i (0, α) = (1 − α)γ̂i (0, 0) + αγ̂i (0, 1). Since optimal rigidity
holds at the endpoints, we have it for all 0 ≤ α ≤ 1.

We let ρ̂t (x, α) be the solution of theMcKean–Vlasov equation (2.2) with potential
Vα and initial data ρ̂0(x, α), and denote its Stieltjes transform by m̂t (z, α). It follows
from Proposition 6.2 and Proposition 3.4 that ρ̂t (x, α) has a square root density with a
right edge,whichwe denote by Et (α). Let γ̂i (t, α) be the classical eigenvalue locations
with respect to ρ̂t (x, α). To be more precise, they are defined by

i

N
=
∫ ∞

γ̂i (t,α)

ρ̂t (x, α)dx . (6.4)

As a consequence of Proposition 3.4, we have the following proposition for the den-
sities ρt (x, α).

Proposition 6.4 Suppose V satisfies Assumption 2.1 and the initial data λ(0) satisfies
Assumption 4.1 with η∗ = (log N )C N−2/3. Fix small constants e, ω > 0 and time
t � N−1/3+ω. We have

1) The solution ρ̂t (x, α) of the McKean–Vlasov equation (2.2) with initial data
ρ̂0(x, α) satisfies ρ̂t (x, α) = (Ct (α) + o(1))

√[Et (α) − x]+, as x → Et (α) from
the right. The changes in the measure and edge locations in α and time t satisfy:

|Ct (α) − Ct (0)| = O(t), |Et (α) − Et (0)| = O(t).

The changes in the differences of the Stieltjes transforms for different α are small:
Fix any small d > 0; for −N−2dN−2/3 � κ ≤ 0, we have

|Re[m̂t (κ + Et (α), α) − m̂t (Et (α), α)] −Re[m̂t (κ + Et (0), 0) − m̂t (Et (0), 0)]| � |κ|N 1/3+d.

(6.5)

123
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For 0 ≤ κ � N−2dN−2/3, we have

|Re[m̂t (κ +Et (α), α)−m̂t (Et (α), α)]−Re[m̂t (κ +Et (0), 0)−m̂t (Et (0), 0)]| � |κ|1/2Nd. (6.6)

We have the following estimates on the classical eigenvalue locations (as defined
in (6.4)),

|γ̂i (t, α) − γ̂i (t, 0)| � N−d i
2/3t

N 2/3 , (6.7)

for any 1 ≤ i ≤ eN.
2) The optimal rigidity estimates hold:

|mt (z, α) − m̂t (z, α)| ≤ (log N )C

Nη
, (6.8)

where η = Im[z] � N−2/3 and κ = Re[z] − Et (α) satisfy |κ|, η ≤ e. We also
have the rigidity estimates for each particle close to the right spectral edge,

sup
0≤α≤1

sup
0≤t≤T

|zi (t, α) − γ̂i (t, α)| ≤ (log N )C

N 2/3i1/3
, (6.9)

for 1 ≤ i ≤ eN with overwhelming probability.

Part 1 in Proposition 6.4 consists of deterministic estimates regarding the solution
ρ̂t (x, α) of the McKean–Vlasov equation (2.2) and its Stieltjes transform. The proof
is the same as in [41, Lemma 3.4], except that we assume that the initial data λ(0)
satisfies optimal rigidity estimates. Thus, we do not need to run the Dyson Brownian
motion first up to time t0 as in [41, Lemma 3.4]. The proof only involves knowing that
the measures ρ̂t (x, α) are close near the edge up to a small multiplicative factor along
with the square root behavior of ρ̂t (x, α) around the edge. For part 2 of Proposition 6.4,
the rigidity estimates follow from Proposition 6.3 and Sect. 4.

6.2 Short-range approximation

We recall from (3.4) that the edge Et (α) satisfies the differential equation:

dEt (α) = −mt (Et (α), α)dt − 1

2
V ′

α(Et (α))dt .

Combining this with the SDE of zi (t, α), we can derive an equation for z̃i (t, α) :=
zi (t, α) − Et (α).

dz̃i (t, α) =
√

2

βN
dBi (t) + 1

N

∑
j : j �=i

1

z̃i (t, α) − z̃ j (t, α)
dt

− 1

2
V ′

α(z̃i (t, α) + Et (α))dt + mt (Et (α), α)dt + 1

2
V ′

α(Et (α))dt, 1 ≤ i ≤ N .
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The highest order contribution to the fluctuation around the edge comes from the short-
range interactions, i.e., the particles close to z̃i (t, α). Following [41], to quantify this,
we need to define a symmetric set of indices A ⊆ [[N ]] × [[N ]], i.e., (i, j) ∈ A iff
( j, i) ∈ A. The definition of A requires the choice of a short-range scale parameter

� := Nω�.

We do not want to consider the effects on the dynamics from eigenvalues that are far
away. The parameter � is introduced to quantify the scale of the short-range dynamics.
We see that we will have to choose ω� ≥ ω where ω is from Theorem 6.1. As in [41],
we choose ω� = 10ω for concreteness. We let

A :=
{
(i, j) : |i − j | ≤ �(10�2 + i2/3 + j2/3)

}
.

We denote the interval

Ii (t, α) = [γ j−(t, α) − Et (α), γ j+(t, α) − Et (α)],

where j− = min j {(i, j) ∈ A} and j+ = max j {(i, j) ∈ A}.
We construct a new process ẑi (t, α) that makes two simplifications to the dynamics.

The first is to only consider the short-range interaction on the scale �. The second
is, on a scale NωA with ωA ≥ ω�, to replace Et (α) and mt (Et (α), α) with Et (0)
and mt (Et (0), 0). For concreteness, we will choose ωA = 10ω�. We will show that
z̃i (t, α) − ẑi (t, α) is small. Moreover, the new dynamics ẑi (t, α) are much easier to
study.

For 1 ≤ i ≤ NωA , the dynamics of ẑi (t, α) are given by

dẑi (t, α) =
√

2

βN
dBi (t) + 1

N

∑
j :(i, j)∈A

dt

ẑi (t, α) − ẑ j (t, α)

+
∫
I ci (t,0)

ρ̂t (E + Et (0), 0)

ẑi (t, α) − E
dEdt + Re[mt (Et (0), 0)]dt . (6.10)

For NωA ≤ i , the dynamics of ẑi (t, α) is

dẑi (t, α) =
√

2

βN
dBi (t) + 1

N

∑
j :(i, j)∈A

dt

ẑi (t, α) − ẑ j (t, α)

+
∫
I ci (t,α)

ρ̂t (E + Et (α), α)

ẑi (t, α) − E
dEdt − 1

2
V ′

α(ẑi (t, α) + Et (α))dt

+ Re[mt (Et (α), α)]dt + 1

2
V ′

α(Et (α))dt . (6.11)

As we have mentioned before, the first advantage of the new process ẑi (t, α) is that
it only takes into account the short-range interaction. The second benefit is that the

123
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derivatives ∂α ẑi (t, α) are vastly simplified when i is close to the edge since we have
replaced many of the terms involving Et (α) by Et (0).

We can show that the parabolic kernel associated with our system of equations is
a contraction in �p space. Thus, if our initial error ẑi (0, α) − z̃i (0, α) is small, then it
will be small for all later times t . Our initial rigidity estimates imply our initial errors
are small. The details of the proof are similar to those of [41, Lemma 3.7]; we have the
same rigidity estimates (6.9) as well as the measure comparison estimates (6.5)–(6.7).

Proposition 6.5 Under the assumptions of Proposition 6.4, with the construction
(6.10) and (6.11), we have

sup
0≤α≤1

sup
0≤t≤T

max
1≤i≤N

|ẑi (t, α) − z̃i (t, α)| ≤ 1

N 2/3+c
,

for some c > 0. For any fixed large integer K ≥ 1, we have

sup
0≤α≤1

sup
0≤t≤T

sup
1≤i≤K

|zi (t, α) − γ̂i (t, α)| ≤ (log N )C

N 2/3i1/3
.

In the following, we show that for time t � N−1/3, max1≤i≤K |∂α ẑi (t, α)| is
negligible. Let ui (t, α) := ∂α ẑi (t, α). We see that u(t, α) = (u1(t, α), u2(t, α), . . . ,

uN (t, α)) satisfies the equation,

∂t u(t, α) = Lu(t, α) + E,

where the operator L and the force term E are given as follows. The operator L is

L = B + V,

where

(Bu)i = 1

N

∑
j :(i, j)∈A

u j − ui
(ẑi (α, t) − ẑ j (α, t))2

.

V is a diagonal operator, (Vu) = Vi ui , such that for 1 ≤ i ≤ NωA ,

Vi = −
∫
I ci (t,0)

ρ̂t (E + Et (0), 0)

(ẑi (α, t) − E)2
dE, E = 0,

and, for NωA ≤ i ,

Vi = −
∫
I ci (t,α)

ρ̂t (E + Et (α), α)

(ẑi (α, t) − E)2
dE, |E | ≤ NC .
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In the definition of V , we use the measure ρ̂t instead of one explicitly defined by
the free convolution with the semicircle as in [41, Section 3.1.1].However, we can still
derive similar energy estimates as well as finite speed estimates. This is due to the
fact that the estimates in [41] involving the analog of the operator V , such as Lemma
3.11, only really require the square root behavior of the comparison measure. Since
we know our ρ̂t has square root behavior and we have the estimates in Proposition 6.4,
we can derive the same estimates on the kernel L.

As in [41, Section 4], the propagator of the operator L satisfies a finite speed esti-
mate. We can replace it with a short-range operator. Afterward, an energy estimate as
in [41, Section 3.5] implies that |ui (t, α)| = |∂α ẑi (t, α)| ≤ N c/(N 1/3t) for arbitrarily
small c. As a consequence, we get

N 2/3|(zi (t, 1) − Et (1)) − (zi (t, 0) − Et (0))|
= N 2/3|(ẑi (t, 1) − ẑi (t, 0)| + O

(
N−c

)
= N 2/3

∣∣∣∣
∫ 1

0
∂α ẑi (t, α)

∣∣∣∣+ O
(
N−c

)
= O

(
N c/(N 1/3t) + N−c

)
= o(1),

provided t � N−1/3, and Theorem 6.1 follows.

Acknowledgements Wewant to thank the anonymous reviewers for their comments and suggestions,which
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A Proof of Proposition 3.4

The proof of Proposition 3.4 is based on performing a power series expansion of the
analytic functions A0 and B0 in a neighborhood around E0 and solving the McKean–
Vlasov equation (2.2) term by term. A0(z) and B0(z) have power series representations

A0(z) = a0 + a1(z − E0) + a2(z − E0)
2 + a3(z − E0)

3 + · · · ,

B0(z) = b0 + b1(z − E0) + b2(z − E0)
2 + b3(z − E0)

3 + · · · ,

such that

|ai |, |bi | ≤ C0Mi

(i + 1)2
, i = 0, 1, 2, . . . .

The following proposition states that the Stieltjes transform of μ̂t has the form
At + √

Bt , and At , Bt have power series representations in a neighborhood of E0.
Proposition 3.4 is a natural consequence of the proceeding proposition.
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Proposition A.1 We assume (3.3) holds. We fix a sufficiently small T > 0 and let
L = 1/T . Then for t ∈ [0, T ], the solution of (2.2) is given by

m̂t (z) = At (z) +√Bt (z), (A.1)

with At (z) and Bt (z) analytic functions in a small neighborhood of E0. In this neigh-
borhood, At (z) and Bt (z) have power series representations,

At (z) = a0(t) + a1(t)(z − E0) + a2(t)(z − E0)
2 + a3(t)(z − E0)

3 + · · · ,

Bt (z) = b0(t) + b1(t)(z − E0) + b2(t)(z − E0)
2 + b3(t)(z − E0)

3 + · · · , (A.2)

where the coefficients satisfy

|ak(t)|, |bk(t)| ≤ CMkeLtk

(k + 1)2
. (A.3)

Moreover, in a small neighborhood of E0, Bt (z) has a unique simple root at z = Et ,
which satisfies the differential equation

∂t Et = −m̂t (Et ) − V ′(Et )

2
. (A.4)

Proof We suppose that the solution of (2.2) is given by (A.1), and At (z), Bt (z) have
power series representations given by (A.2). We plug (A.1) into (2.2) to get

∂t At + ∂t Bt

2
√
Bt

= Dt∂z Dt + ∂z Bt

2
+ Rt (z) + 1√

Bt

(
Bt∂z Dt + 1

2
Dt∂z Bt

)
, (A.5)

where

Dt (z) = At + V ′(z)
2

, Rt (z) =
∫
R

g(z, x)dμ̂t (x) − V ′(z)V ′′(z)
4

, (A.6)

are analytic in a neighborhood of E0. One should note here that our goal in this section
is not to show the existence of solutions to the original McKean–Vlasov equation, but
only that said solution is analytic in a small neighborhood of E0. Thus, the fact that
we use μ̂t in our expression of Rt (z) is not an issue.

For (A.5) to hold, it is sufficient that

∂t Dt = Dt∂z Dt + ∂z Bt

2
+ Rt (z),

∂t Bt

2
= Bt∂z Dt + 1

2
Dt∂z Bt . (A.7)
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We solve (A.7) using the power series representations. Let

Bt (z) = b0(t) + b1(t)(z − E0) + b2(t)(z − E0)
2 + b3(t)(z − E0)

3 + · · ·
Dt (z) = d0(t) + d1(t)(z − E0) + d2(t)(z − E0)

2 + d3(t)(z − E0)
3 + · · ·

Rt (z) = r0(t) + r1(t)(z − E0) + r2(t)(z − E0)
2 + r3(t)(z − E0)

3 + · · · .

Then, (A.7) is equivalent to the following infinite system of ordinary differential equa-
tions. For i = 0, 1, 2, . . .,

∂t di (t) =
i∑

j=0

( j + 1)di− j (t)d j+1(t) + 1

2
(i + 1)bi+1(t) + ri (t)

∂t bi (t) = 2
i∑

j=0

( j + 1)bi− j (t)d j+1(t) +
i∑

j=0

( j + 1)di− j (t)b j+1(t). (A.8)

Although (A.8) is not Lipschitz, we can still solve this system by the Picard iteration.
Let

d(0)
i (t) = di (0), b(0)

i (t) = bi (0),

and define recursively

d(n+1)
i (t) = di (0) +

∫ t

0

⎛
⎝ i∑

j=0

( j + 1)d(n)
i− j (t)d

(n)
j+1(t) + 1

2
(i + 1)b(n)

i+1(t) + ri (t)

⎞
⎠ dt,

b(n+1)
i (t) = bi (0) +

∫ t

0

⎛
⎝ i∑

j=0

2( j + 1)b(n)
i− j (t)d

(n)
j+1(t) +

i∑
j=0

( j + 1)d(n)
i− j (t)b

(n)
j+1(t)

⎞
⎠ dt .

(A.9)

As we have noted before, the existence of the measure μ̂t is not in question and,
thus, we do not need to perform an iteration of the ri (t) terms in n.

We take large constants C > 0, L > 0 and a small constant T = 1/L . We first
prove by induction that uniformly for t ∈ [0, T ],

|d(n)
i (t)|, |b(n)

i (t)| ≤ CMieLti

(i + 1)2
. (A.10)

Since Rt (z) is analytic in a neighborhood of E0, we can take C0, M > 0 large enough
such that

|ri (t)| ≤ C0Mi

(i + 1)2
.
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We assume that (A.10) holds for n. Using (A.9), we have

|d(n+1)
i (t)| ≤ C0M

i

(i + 1)2
+
∫ t

0

⎛
⎝ i∑

j=0

C2Mi+1eLt(i+1)

(i − j + 1)2( j + 2)
+ CMi+1eLt(i+1)

2(i + 2)
+ C0M

i

(i + 1)2

⎞
⎠ dt

≤ (1 + t)C0M
i

(i + 1)2
+

i∑
j=0

C2Mi+1eLt(i+1)

L(i + 1)( j + 2)(i − j + 1)2
+ CMi+1eLt(i+1)

2L(i + 1)(i + 2)

≤ CMieLti

(i + 1)2

(
(1 + t)C0

C
+ 6CMeLT

L
+ MeT L

2L

)
≤ CMieLti

(i + 1)2
,

provided C > 4C0 and L > 24eCM . Similarly, for b(n+1)
i (t),

|b(n+1)
i (t)| ≤ C0Mi

(i + 1)2
+
∫ t

0
3

i∑
j=0

C2Mi+1eLt(i+1)

(i − j + 1)2( j + 2)
dt

≤ CMieLti

(i + 1)2

(
C0

C
+ 18CMeLT

L

)
≤ CMieLti

(i + 1)2
, (A.11)

provided C > 2C0 and L > 36eCM . This finishes the proof of claim (A.10).
In the following, we prove that d(n)

i (t), b(n)
i (t) converge uniformly as n goes to

infinity. This follows from

|d(n)
i (t) − d(n−1)

i (t)|, |b(n)
i (t) − b(n−1)

i (t)| ≤ 1

2n
CMieLti

(i + 1)2
. (A.12)

We prove (A.12) by induction. We assume that (A.12) holds for n. By using (A.9), the
difference |d(n+1)

i (t) − d(n)
i (t)| is bounded by

∫ t

0

i∑
j=0

( j + 1)
(∣∣∣d(n)

i− j (t) − d(n−1)
i− j (t)

∣∣∣ d(n)
j+1(t) + d(n−1)

i− j (t)
∣∣∣d(n)

j+1(t) − d(n−1)
j+1 (t)

∣∣∣)

+ 1

2
(i + 1)

∣∣∣b(n)
i+1(t) − b(n−1)

i+1 (t)
∣∣∣ dt ≤ 1

2n

∫ t

0

⎛
⎝ i∑

j=0

2C2Mi+1eLt(i+1)

(i − j + 1)2( j + 2)
+ CMi+1eLt(i+1)

2(i + 2)

⎞
⎠ dt

≤ 1

2n
CMi eLti

(i + 1)2

(
12CMeLT

L
+ MeT L

2L

)
≤ 1

2n+1
CMi eLti

(i + 1)2
,
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provided that L ≥ 24eCM . Similarly, the difference |b(n+1)
i (t) − b(n)

i (t)| is bounded
by

∫ t

0
2

i∑
j=0

( j + 1)
(∣∣∣b(n)

i− j (t) − b(n−1)
i− j (t)

∣∣∣ d(n)
j+1(t) + b(n−1)

i− j (t)
∣∣∣d(n)

j+1(t) − d(n−1)
j+1 (t)

∣∣∣)

+
i∑

j=0

( j + 1)
(∣∣∣d(n)

i− j (t) − d(n−1)
i− j (t)

∣∣∣ b(n)
j+1(t) + d(n−1)

i− j (t)
∣∣∣b(n)

j+1(t) − b(n−1)
j+1 (t)

∣∣∣) dt

≤ 1

2n

∫ t

0

⎛
⎝ i∑

j=0

6C2Mi+1eLt(i+1)

(i − j + 1)2( j + 2)

⎞
⎠ dt ≤ 1

2n
CMi eLti

(i + 1)2
36CMeLT

L
≤ 1

2n+1
CMieLti

(i + 1)2
,

(A.13)

provided L ≥ 72eCM .
We denote for i = 0, 1, 2, . . .,

di (t) = lim
n→∞ d(n)

i (t), bi (t) = lim
n→∞ b(n)

i (t).

They satisfy the system of differential equations (A.9), and (A.3) holds.
Using the same argument we used for (A.11) gives us

|bi (t) − bi (0)| ≤ 3C2Mi+1(eLt(i+1) − 1)

(i + 1)2L
.

And, thus, for T > 0 small enough, times 0 ≤ t ≤ T , and z on a small circle centered
at E0,

|Bt (z) − B0(z)| ≤
∑
i≥0

3C2(Mz)i+1(eLt(i+1) − 1)

(i + 1)2L
< |B0(z)|.

Thus, by Rouché’s theorem, Bt (z) has a unique simple root at z = Et inside a small
neighborhood of E0. Moreover, from our construction, B̄t (z) = Bt (z̄). Thus, Et is
real. By taking the derivative of Bt (Et ) = 0 with respect to t and using (A.7), we get

∂t Et = − ∂t Bt (Et )

∂z Bt (Et )
= −Dt (Et ) = −m̂t (Et ) − V ′(Et )

2
.

This finishes the proof of Proposition A.1. ��
Proof of Proposition 3.4 It follows from Proposition A.1 that μ̂t has square root behav-
ior. In addition, m̂t (Et ) = At (Et ) + √

Bt (Et ) is uniformly bounded for 0 ≤ t ≤ T .
The claim that Et is Lipschitz in time simply follows from integrating (A.4).

Next, we prove that Ct is Lipschitz in time.We notice that C2
t = ∂z Bt (Et ). To prove

|Ct − Cs | = O(t − s), it suffices to prove this for s = 0. Using the series expansion,
as in the notation of (A.2), we see that
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C2
t −C2

0 = ∂z Bt (Et )−∂z B0(E0) = b1(t)−b1(0)+(Et −E0)

∞∑
i=2

ibi (t)(Et −E0)
i−2.

Using the differential equation (A.8), we see that b1(t) − b1(0) = O(t). Earlier,
we showed that (Et − E0) is of O(t). The infinite sum converges provided we take
T sufficiently small. Therefore, it follows that C2

t − C2
0 = O(t). Since C0 is bounded

away from 0, this would imply that Ct − C0 = O(t) as desired. ��

B Rigidity bounds in the Proof of theMesoscopic Central Limit
Theorem

We start this section by collecting some lemmas that analyze the movement of char-
acteristic flows that terminate in a radius η (N−2/3 � η � 1) neighborhood of the
edge Et . Knowing the precise values of κs and ηs along a characteristic of the form
zs = Es + κs + iηs will allow us to apply many of the improved rigidity bounds from
Theorem 4.8 and the following remarks.

Lemma B.1 Suppose V satisfies Assumption 2.1 and let d be a small parameter. Con-
sider a characteristic zt = Et + κt + iηt as in (2.4) with terminal time t = o(1). If zt
satisfies

−Ndηt ≤ κt � ηt , N−2/3+20d ≤ ηt ≤ N−20d. (B.1)

then for any 0 ≤ s ≤ t , we have:

N−2/3+20d(1 − C(t − s)) ≤ ηs ≤ N−20d + C(t − s),

− CNdηs ≤ κs ≤ C(1 + (t − s)/ηt )ηs .

Proof From the equation determining the motion of the characteristics (2.4), we know
that each characteristic moves at a rate O(1) in time. Thus, if ηt ≤ N−20d, we have
ηs ≤ N−20d + C(t − s). Thanks to the estimates (2.7), if ηt ≥ N−2/3+20d, we have
ηs ≥ N−2/3+20d(1 − C(t − s)).

In the following, we estimate the ratio κs/ηs . Let zt − Et = κt + iηt = (Rt + iat )2,
and zs−Es = κs+iηs = (Rs+ias)2, where Rt , at , Rs , and as > 0. By our assumption
on zt , we have

−Nd ≤ κt

ηt
= 1

2

(
Rt

at
− at

Rt

)
≤ C,

and it follows that N−d/C ≤ Rt
at

≤ C . Thanks to (2.7) and the assumption of square
root behavior, we have at � Im[m̂t (zt )] � Im[m̂s(zs)] � as . Moreover, using (2.7)
again, we have 2as Rs = ηs � (ηt + (t − s)at ) � (as Rt + (t − s)as). We conclude
that Rs � Rt + (t − s), and
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N−d � Rs

as
� Rt

at
+ t − s

at
�
(
1 + t − s

at

)
.

It follows, by rearranging, that

−Nd � κs

ηs
= 1

2

(
Rs

as
− as

Rs

)
� 1 + t − s

at
.

This finishes the proof of Lemma B.1. ��
Lemma B.2 Suppose V satisfies Assumption 2.1. Consider a characteristic zt = Et +
κt + iηt as in (2.4) with terminal time t = o(1). If its terminal point zt = Et +κt + iηt
satisfies −ηt ≤ κt ≤ Cηt , then we have, for t − q ≥ √

ηt , that
√|κq | + ηq �

(t − q), and, for t − q ≤ √
ηt , it holds that

√|κq | + ηq � √
ηt . We always have

ηq � ηt + (t − q)
√

ηt .
If we consider a characteristic whose terminal point instead satisfies −Ndηt ≤

κt ≤ −ηt , we instead find that
√

κq + ηq � (t − q) for t − q ≥ √|κt | + ηt . For
t − q ≤ √|κt | + ηt , we have

√|κq | + ηq � √|κt | + ηt . We always have ηq �
ηt + (t − q)

√|κt | + ηt .

Proof Consider a characteristic whose terminal point zt satisfies −ηt ≤ κt ≤ Cηt . By
square root behavior, this will imply Im[m̂t (zt )] � √

ηt . Finally, by the final line of
(2.7), we have that ηq � ηt + (t − q)

√
ηt . We see that, for t − q ≤ √

ηt , we have that
ηq � ηt , while, for (t − q) ≥ √

ηt , we have that ηq � (t − q)
√

ηt .
We additionally have the relation Im[m̂q(zq)] � Im[m̂t (zt )] by the second line

of (2.7). This will certainly imply that zq cannot move far inside the spectrum, and,
instead, we must have

ηq√|κq | + ηq
� ηt√|κt | + ηt

.

This will imply √|κq | + ηq � ηq√
ηt

� √
ηt + (t − q).

Thus, when t − q ≥ √
ηt , we have that

√|κq | � (t − q).
Now let us consider, instead, the case that −Ndηt ≤ κt ≤ −ηt . We will have the

relation ηq � ηt + (t − q)
√|κt |. For t − q ≥ ηt/

√
κt , this will be comparable to

(t − q)
√|κt |. To maintain Im[mq(zq)] � Im[mt (zt )], when t − q ≤ √

κt , would
necessitate |κq | + ηq � |κt | + ηt . When (t − q) ≥ √

κt , we would instead have the
relation

ηq√
κq + ηq

� √|κt | + ηt .

This would then imply that
√

κq + ηq � (t − q). ��
The improved rigidity bounds in Theorem 4.8 allow us to get sharp estimates on

the derivatives of the Stieltjes transform as in the following lemma.

Lemma B.3 Recall the times s and t from Eq. (5.1) as well as the event S from Sect. 5.
Under the assumptions of Theorem 5.1, consider a characteristic zt such that ηt � η
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and −Ndη ≤ κt � η. On S, we have the following estimate uniformly for times q
satisfying s ≤ q ≤ t .

∣∣∂ p
z mq(zq) − ∂

p
z m̂q(zq)

∣∣ ≤ N d̃

(|κq | + ηq)η
p
q

, (B.2)

where d̃ is any parameter strictly greater than d.

Proof Since bothmq and m̂q are analytic on the upper half-plane, by Cauchy’s integral
formula,

∂
p
z mq(zq) − ∂

p
z m̂q(zq) = p!

2π i

∮
C
mq(w) − m̂q(w)

(w − zq)p+1 dw,

where C is a small contour in the upper half-plane centered at zq with radius ηq/2. We
take the absolute value of both sides to get

∣∣∣∣ p!
2π i

∮
C
mq(w) − m̂q(w)

(w − zq)p+1 dw

∣∣∣∣ ≤ p!
2π

∮
C

|mq(w) − m̂q(w)|
|w − zq |p+1 dw. (B.3)

If we have that κq ≥ ηq � N−2/3, we will be in a region in which we can apply

the improved error estimates (4.18) to argue that |mq(w) − m̂q(w)| ≤ M(log N )2

N (κq+ηq )
.

Otherwise, we have, instead, that ηq ≥ κq ≥ −Ndηq by applying Lemma B.1. At this
point, we can apply the error estimate from (4.13) to conclude that |mq(w)−m̂q(w)| ≤
Nd(log N )M
N (|κq |+ηq )

.

We can regard the M and log N factors as unimportant relative to the Nd factor
in the numerator for sufficiently large N . We can additionally bound |w − zq | in the
denominator from below by ηq . Applying these considerations to the contour integral
(B.3), we derive the bound

|∂ p
z mq(zq) − ∂

p
z m̂q(zq)| ≤ N d̃

(|κq | + ηq)η
p
q

,

where d̃ is any parameter greater than d. ��
We will often have to perform the time integral of the error term coming from our

rigidity estimates. This lemma explicitly performs the time integrals that frequently
appear in our analysis.

Lemma B.4 Recall the times s and t from Eq. (5.1). Under the assumptions of The-
orem 5.1, consider a characteristic zτ = Eτ + κτ + iητ that, at time t, satisfies the
conditions ηt � η and −Ndη � κt � η. We have

∫ t

s

dq

η
p
q

= O

(
1

η
p−1/2
t

)
,
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where the implicit constant is universal.

Proof We can perform explicit calculations thanks to (2.7)

∫ t

s

1

η
p
q
dq = O

(∫ t

s

1

(ηt + (t − q)Im[m̂t (zt )])p dq
)

= O

(
1

Im[m̂t (zt )]ηp−1
t

)
.

The claim follows from our assumption of square root behavior. We chose the time
difference t−s large enough so that the quantity ηt +(t−s)Im[m̂t (zt )] is much larger
than ηt . Finally, we used the fact that, at zt , we have Im[m̂t (zt )] ≤ C

√
ηt for some

large constant C . ��
The following lemma computes the main contribution of the quadratic variance

terms from Proposition 5.3.

Lemma B.5 We recall Cq from (3.5) and the times s and t from Eq. (5.1). Under the
assumptions of Theorem 5.1 and for any time q satisfying s ≤ q ≤ t , we have the
following integral evaluation,

∫ Eq

−∞
dμ̂q(x)

(x − zq)2(x − z′q)2
= π

2

(1 + O(N−d2))Cq√
κq + iηq

√
κ ′
q + iη′

q(
√

κq + iηq +
√

κ ′
q + iη′

q)
3
,

(B.4)
where the characteristics zt = Et + κt + iηt , z′t = Et + κ ′

t + iη′
t satisfy ηt , η

′
t � η,

−Ndη ≤ κt , κ
′
t ≤ η.

Proof We recall from Proposition 3.4 that the measure μ̂q is supported on (−∞, Eq ],
and has a density in a small neighborhood of Eq of the form

dμ̂q(x) = (1 + O(|Eq − x |))Cq
√[Eq − x]+dx .

Now, we try to explicitly identify the main term found in (B.4). We have

∫ Eq

−∞
dμ̂q(x)

(x − zq)2(x − z′q)2
=
∫ Eq

Eq−(log N )−1

ρ̂q(x)dx

(x − zq)2(x − z′q)2

+
∫ Eq−(log N )−1

−∞
dμ̂q(x)

(x − zq)2(x − z′q)2
. (B.5)

The second term of the above equation can clearly be bounded by O((log N )4) if one
takes into account the fact that zq and z′q are far away from Eq − (log N )−1. This can

easily be seen to be an O(N−d2) factor of the main term in (B.4).
To estimate the other quantity, we do a Taylor expansion of ρ̂q(x) around the

point 0 as |ρ̂q(x) − Cq
√
x | = O(x3/2). Without loss of generality, we will assume

that |κq | ≥ |κ ′
q |. To illustrate the computation, we will only consider the case that

−κq ≥ ηq , and −κ ′
q ≥ η′

q . Similar techniques can be used in all other cases and
are generally simpler. The above computation can be divided into two cases; the first
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case is when |κq − κ ′
q | ≥ |κq |/2. We will perform a decomposition of the integral as

follows:

∫ Eq

−∞
|Eq − x |3/2

|x − zq |2|x − z′q |2 dx =
∫ Eq+2κq

−∞
|Eq − x |3/2

|x − zq |2|x − z′q |2 dx

+
∫ Eq+(κq+κ ′

q )/2

Eq+2κq

|Eq − x |3/2
|x − zq |2|x − z′q |2 dx

+
∫ Eq

Eq+(κq+κ ′
q )/2

|Eq − x |3/2
|x − zq |2|x − z′q |2 dx

�
∫ Eq+2κq

−∞
|Eq − x |−5/2dx + |κq |5/2

η2q |κq − κ ′
q |2 + |κ ′

q + κq |5/2
η′2
q |κq − κ ′

q |2
� |κq |−3/2 + |κq |1/2η−2

q .

We need to show that the above quantity will be less than N−d2 |κq |−2|κ ′
q |−1/2. This

is implied by the two inequalities ηq ≤ N−20d and |κq | ≤ Ndηq from Lemma B.1.
Next, we consider the case in which |κq − κ ′

q | ≤ |κq |/2. We can divide the integral
as

∫ Eq

−∞
|Eq − x |3/2

|x − zq |2|x − z′q |2
dx =

∫ Eq+2κq

−∞
|Eq − x |3/2

|x − zq |2|x − z′q |2
dx +

∫ Eq

Eq+2κq

|Eq − x |3/2
|x − zq |2|x − z′q |2

dx

� |κq |−3/2 + |κq |5/2η−2
q η′−2

q .

To show that the above error is smaller than N−d2 |κq |−2|κ ′
q |−1/2, we would only need

to show that |κq |5 ≤ N−d2η2qη
′2
q . Applying ηq � η′

q and the fact that |κq | ≤ Ndηq ,

we see that we would only need to prove that ηq ≤ N−d2−5d. This is due to the fact
that ηq ≤ N−20d.

We now only need to compute the following integral

∫ Eq

Eq−(log N )−1

Cq
√
Eq − x

(x − zq)2(x − z′q)2
dx

=
∫ 0

−∞
Cq

√−x

(x − κq − iηq)2(x − κ ′
q − iη′

q)
2 dx + O((log N )5/2)

= π

2

Cq√
κq + iηq

√
κ ′
q + iη′

q(
√

κq + iηq + sqrtκ ′
q + iη′

q)
3

+ O((log N )5/2),

(B.6)

where the square roots come from the branch with positive real part, and the error term
(log N )5/2 can be absorbed into the N−d2 factor of the main term. This finishes the
proof of Lemma B.5. ��
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We now compute the time integrals of the main terms in Proposition 5.3 weighted
by the factors It (Is)−1. By using the equation of the characteristics, we can integrate
this by a simple change of variables formula.

Lemma B.6 We recall Cq from (3.5) and times s and t from Eq. (5.1). Under the
assumptions of Theorem 5.1, take two characteristics zt = Et + κt + iηt and z′t =
Et + κ ′

t + iη′
t such that ηt , η′

t � η, −Ndη � κt , κ
′
t � η. We have that

∫ t

s

√
κq + iηq

√
κ ′
q + iη′

q
√

κt + iηt
√

κ ′
t + iη′

t

∫ ∞

−∞
dμ̂q(x)

(x − zq)2(x − z′q)2
dq

= (1 + O(N−d2))

4
√

κt + iηt
√

κ ′
t + iη′

t (
√

κt + iηt +√κ ′
t + iη′

t )
2

− (1 + O(N−d2))

4
√

κt + iηt
√

κ ′
t + iη′

t (
√

κs + iηs +√κ ′
s + iη′

s)
2
. (B.7)

Proof Using the results of Lemma B.5, we have

∫ t

s

√
κq + iηq

√
κ ′
q + iη′

q
√

κt + iηt
√

κ ′
t + iη′

t

∫ Eq

−∞
dμ̂q(x)

(x − zq)2(x − z′q)2
dq

= (1 + O(N−d2))

∫ t

s
π/2

Cq

(
√

κq + iηq +
√

κ ′
q + iη′

q)
3
dq.

Let A = √
κs + iηs , A′ = √

κ ′
s + iη′

s and Bq = π/2
∫ t
q Cτdτ . By using our char-

acteristic estimates from (5.27), we would like to replace
√

κq + iηq with the sum√
κt + iηt + π/2

∫ t
q Cτdτ up to some small error. For times (t − q) � (|κt | + ηt )

1/4,

this replacement is valid up to a multiplicative factor of (1 + O(N−d2)).

∫ t

s
π/2

Cq

(
√

κq + iηq +
√

κ ′
q + iη′

q )3
dq = (1 + O(N−d2 ))

∫ t

s
π/2

Cq

(A + A′ − 2Bq )3
dq.

We will change the integration variable from q → Bq ; the Jacobian of this transform
will be π/2Cq . Upon this transformation, we see that we would have to integrate∫ Bt
Bs=0

1
(A+A′−2x)3

dx . This can be evaluated explicitly and will give us the last line of

(B.7) up to a multiplicative factor of the form 1 + O(N−d2), due to the fact that we
have to invert the substitution

√
κt + iηt + π/2

∫ t
q Cτdτ → √

κq + iηq . We remark
here that if we have that t − s � √

η, the last line of (B.7) can be subsumed as an

O(N−d2) error of the second term. ��
The following lemma collects the last computation appearing in Sect. 5. It follows

from the arguments of Lemma B.5 and Lemma B.6. We will only mention the result
here for reference.
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Lemma B.7 We recall Cq from (3.5) and times s and t from Eq. (5.1). Under the
assumptions of Theorem 5.1, consider a characteristic zt = Et + κt + iηt such that
ηt � η and −Ndη � κt � η. We have

∂2z m̂q(zq) = πCq

4

(1 + O(N−d2))

(
√

κq + iηq)3
, (B.8)

and ∫ t

s
It (Iq)−1∂2z m̂q(zq)dq = 1

2

(1 + O(N−d2))

κt + iηt
. (B.9)
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