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Abstract

We prove the superposition principle for probability measure-valued solutions to non-
local Fokker—Planck—Kolmogorov equations, which in turn yields the equivalence
between martingale problems for stochastic differential equations with jumps and such
non-local partial differential equations with rough coefficients. As an application, we
obtain a probabilistic representation for weak solutions of fractional porous media
equations.
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1 Introduction
1.1 Background
Let P(R?) be the space of all probability measures on R? endowed with the weak

convergence topology. Let b : Ry x R?Y — R¢ be a measurable vector field. In [2],
Ambrosio studied the connection between the continuity equation

Oy = div(buy), (1.1
and the ordinary differential equation (ODE for short)
dw; = b (wy)dt. (1.2)

The following superposition principle was proved therein: Suppose that t +— pu; €
P(RY) is a solution of (1.1) and satisfies

D (x)]
It x| uy(dx)dt < oo, VT >0,
R4

then there exists a probability measure 1 on the space C of continuous functions from
R, to R, which is concentrated on the set of all @ such that w is an absolutely
continuous solution of (1.2), and for every function f € Cp (R9y and all r > 0,

/ f(X)m(dX)=/ f(@r)n(dw).
R C

In other words, the measure u, coincides with the image of 1 under the evaluation
map o — ;. Consequently, the well-posedness of ODE (1.2) is equivalent to the
existence and uniqueness of solutions for the continuity Eq. (1.1). In particular, the
well-posedness of ODE (1.2) with BV drift whose distributional divergence belongs to
L*° was obtained in a generalized sense. See also [3-5,29] and the references therein
for further developments.

The stochastic counterpart of the above superposition principle was established
by Figalli [15]. In this situation, the continuity equation becomes the Fokker—Planck—
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Superposition principle for non-local FPK operators 701

Kolmogorov equation, while the ODE becomes a stochastic differential equation (SDE
for short). More precisely, let X; solve the following SDE in R?:

dX; = by(Xp)dt + oy (X)dW, (1.3)

where b : Ry x R? - R? and o : Ry x R? — RY ® R? are measurable functions,
W; is a standard Brownian motion defined on some probability space (€2, F, P). Let
U € P(R" ) be the marginal law of X,. By It6’s formula, p; solves the following
Fokker—Planck—Kolmogorov equation in the distributional sense

Oy = (sz + 931)*,““ (1.4)
where for f € Cbz(Rd),
A f(x) = tr(ar (x) - V2 (X)), B f(x) = by(x) - Vf(x) (1.5)

with a;(x) = 5 (ala, )(x), and 27" and B} stand for the adjoint operators of % and
P, respectively. When the coefﬁments a and b are bounded measurable, the super-
position principle for Eq. (1.4) was proved by Figalli [15, Theorem 2.6], which says
that every probability measure-valued solution to the Fokker—Planck—Kolmogorov Eq.
(1.4) yields a martingale solution for the operator % + %, on the path space C (or
equivalently, a weak solution for SDE (1.3)). We would like to mention that Kurtz in
[20, Theorem 2.7] has already proven such a principle if a and b are time-independent
and bounded measurable (see [20, Remark 2.8(a)]). In [32], Trevisan extended it to
the following natural integrability assumption:

T
/ / <|b,(x)|+|at(x)|>u,(dx)dt <00, VT > 0. (1.6)
0 R4

More precisely, for any probability measure-valued solution p of (1.4), under (1.6),
there is a weak solution X to SDE (1.3) so that for each r > 0,

uy = Law of X;. (1.7)

It should be noticed that if ; does not have finite first moment, then (1.6) may not
be satisfied for b and o with at most linear growth. Recently, in [12], Bogachev,
Rockner and Shaposhnikov obtained the superposition principle under the following
more natural assumption:

/ /’ (x, bt(IX_)i_||‘f|‘2|at(x)| 1, (dx)dr < 0o, ¥T > 0. (1.8)
R4

The proofs in [12] depend on quite involved uniqueness results for Fokker—Planck—
Kolmogorov equations obtained in [11]. The superposition principle obtained in
[15,32] has been used in the study of the uniqueness of FPKEs with rough coefficients
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(see e.g. [25,36]), probabilistic representations for solutions to non-linear partial dif-
ferential equations (PDEs for short) [6] as well as distribution dependent SDEs (see
[7,26]).

On the other hand, let (X;);>( be a Feller process in R? with infinitesimal generator
(Z,Dom(.%)) (see [24, page 88]). One says that £ satisfies a positive maximum
principle if for all 0 < f € Dom(.%) reaching a positive maximum at point xo € R?,
then .Z f(xg) < 0. Suppose that CZ° (R?) ¢ Dom(.Z). The well-known Courrege
theorem states that .Z satisfies the positive maximum principle if and only if .Z takes
the following form

d

d
L) =Y aij(0) )+ Y bi(x)d f(x) + e(x) f (x)

ij=1 i=1

+/Rd (f(x+2) = f(0) = 1g=12- V() ve(d2), (1.9)

where a = (a;j)1<i,j<a 1 a d x d-symmetric positive definite matrix-valued mea-
surable functionon R4, b : R — R4, ¢ : R4 — (—o00, 0] are measurable functions
and v, (dz) is a family of Lévy measures (see [28]). In particular, if we let u; be the
marginal law of X, then by Dynkin’s formula,

oy =2 *Mz~

We naturally ask that for any probability measure-valued solution u; to the above
Fokker—Planck—Kolmogorov equation, is it possible to find some process X so that
WU 1s just the law of X, for each ¢+ > 0? In the next subsection, under some growth
assumptions on the coefficients, we shall give an affirmative answer.

1.2 Superposition principle for non-local operators
Our aim in this paper is to develop a non-local version of the superposition principle.

Let {v x};50.rere be a family of Lévy measures over R4, that is, for each # > 0 and
iz
x € RY,

g/ (x) 1=/ 21?1 (d2) < 00, vy . (Bf) < oo, (1.10)
By

where ¢ > 0 is a fixed number, and B; := {z € R? : |z| < £}. Without loss of
generality we may assume

< 1/v2.

We introduce the following Lévy type operator: for any f € C,% RY),
N[ @) =AY f ) = A f(x) = /Rd O 1 (x; 2)vr,x(d2), (1.11)
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Superposition principle for non-local FPK operators 703

where

Or(x;2) = f(x+2)— f(x) = 1z<ez- Vf(x). (1.12)

Let us consider the following non-local Fokker—Planck—Kolmogorov equation (FPKE
for short):

Oy = z*,th’ (1.13)
where .7 is a general diffusion operator with jumps, i.e.,
L=+ B+ M

with o7, and %, being defined by (1.5) and .4} being defined by (1.11). We introduce
the following definition of weak solution to Eq. (1.13).

Definition 1.1 (Weak solution) Let u : Ry — P(RY) be a continuous curve. We call
n = (s)r>0 a weak solution of the non-local FPKE (1.13) if forany R > Oand ¢ > 0,

t
[ e (10014 20001+ 0200 s anras <
0 JRY

‘ (1.14)
/0 /Rd (Vs,x(Bg\/(m_R)) + lBR(x)Vs,x(BZ )Ms(dx)ds < o0,
and for all f € C2(RY) andt > 0,
t
i (f) =Mo(f)+/0 1 (5 s, (1.15)

where 1, (f) := [ga f )1 (dx).

We point out that unlike the local case considered in [2,12,15,32], where the local
integrability of the coefficients with respect to w;(dx)ds implies the well-definedness
of the integrals in (1.15), it is even not clear whether the above integral in (1.15) makes
sense in the non-local case since in general .4;" f does not have compact support for
fe Cg (R9)Y. This is the reason why we need the second assumption in (1.14).

Remark 1.2 Under (1.14), one has fot ws(1-Zs f)ds < oo forany f € CCZ(]R‘I). Let us
only show

t
/0 s (LAY F)ds < oo.

Note that for x, z € R, by Taylor’s expansion, there is a 6 € [0, 1] such that

Jfx+2)—fx)—z-Vflx)= Z 2izj0i0) f(x +02)/2. (1.16)

i,j=1,.., d
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704 M. Réckner et al.

Suppose that the support of f is contained in a ball Bg. By definition we have

10 £ D < I flooliz)=¢ Qpriz<r + Lixj<r) + 1V Flloodjzj<el 21?1 jx < Rote-

Hence,

t t
/ Ms(I«/K”fI)dS ,S f / I:US,X(BE\/(M‘_R)) + lBR (x)Vs,x(Bg)]Hs(dx)ds
0 0 JRA

t
+ / / L., (08! (¥)pts (dx)ds < oo.
0 JRA

Let D be the space of all R%-valued cadlag functions on R, which is endowed
with the Skorokhod topology so that ID becomes a Polish space. Let X;(w) = w; be
the canonical process. For ¢t > 0, let B? (D) denote the natural filtration generated by
(Xs)sefo,r]> and let

B, := Bi(D) := Ny, B(D), B :=B(D) := Boo(D).

Now we recall the notion of martingale solutions associated with .Z; in the sense of
Stroock—Varadhan [31].

Definition 1.3 (Martingale Problem) Let jup € P(RY), s > 0 and t > s be a BB;-
stopping time. We call a probability measure P € P(ID) a martingale solution (resp. a
“stopped”” martingale solution) of .%; with initial distribution p¢ at time s if

(i) P(X; = X,,t €[0,5]) = land Po X! = po.
(ii) Forany f € C 3 (RY), le (resp. Mtfm) is a B;-martingale under P, where

t
M = F(X0) - F(X) - / L f(X)dr, 1 = 5. (1.17)

All the martingale solutions (resp. “stopped” martingale solutions) associated with
%, with initial law pg at time s will be denoted by M (%) (resp. ML (£)). In
particular, if o = 8 (the Dirac measure concentrated on x), we shall write M7 (.£) =
M () for simplify.

Remark 1.4 Under (1.18) below, (ii) in Definition 1.3 is equivalent to that for any
f e Cz(Rd) with | f(x)| < Clog(2 + |x]), M,f is a local B;-martingale under P.
Indeed, let x € CSO(R‘{) be a smooth function with x(x) = 1 for |[x|] < 1 and
x(x) = 0 for |[x| > 2. For each n, m € N, define f,,(x) := f(x)x(x/n) and 7, :=
inf{t > s : | X;|V|X; — X;—| > m}. By (ii) of Definition 1.3, one knows that M,fA”Tm is
a B;-martingale. Since | f (x)| < Clog(2+ |x|), by definition (1.11) and (1.18) below,
it is easy to see that for each fixed m € N,

sup sup sup |-Z f,(x)] < oo

n rel0,¢]|x|<m
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Superposition principle for non-local FPK operators 705

Thus, for each t > s, by the dominated convergence theorem, we have

ATy
lim E ( [ e —asﬂrf(xrndr) —o.

Therefore, for each ¢t > s,
: o g f _
nll)ngoE|Mt/\fm Mt/\r,,,l =0,

which implies that Mthrm is a B;-martingale for each m € N, and also M,f is a local

B;-martingale since 7, — 00 as m — 00.

Throughout this paper, we make the following assumption:

la; ()] + g/ (x) | |b(x)]
ry, = hY , 118
ab Stl,lf[ Tt g PO = (1.18)

where g/ (x) is defined by (1.10) and

B (x) == /
B

and if v; , is symmetric, then we define

tog (1+ 1) v (do). (1.19)

¢
14

Y (x) = /u » Ilog (1 + Plf‘lxl)v,,x(dz). (1.20)
Z|> X

The main result of this paper is as follows.

Theorem 1.5 (Superposition principle) Under (1.18), for any weak solution (i41);>0
of FPKE (1.13) in the sense of Definition 1.1, there is a martingale solution P €
./\/lgO (%) such that

w=PoX ', V>0

Remark 1.6 Under (1.18), condition (1.14) holds. In fact, it suffices to check that

sup (v,,x(Bgv(lxl_R)) +1p, (x)ut,x(Bg)) <00, VR>0. (1.21)
t,x

By definition we have

Vix (B ai k) S /B Jtog (1+ 1ky) /1og (1 + 2450 ) vy (o)
€

= @)/ og (14 S50 < ) /1og (14 17 )
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706 M. Réckner et al.

and

L (v (Bf) < 1 () /B tog (1+ 1) /10g (1 + 15557 v (@)
14

= 1, (B} )/ log (14 1) = B0/ log (14 ).

Hence, (1.21) follows by (1.18).

Remark 1.7 Note that our result does not cover the one in [12] (see the above (1.8)).
The results in [12] allow to treat SDEs with singular and linear growth coefficients,
while our assumption (1.18) only allows the coefficients being of linear growth. Here
the main issue is that the elegant push-forward method used in [32] seems not valid
in the non-local case. Moreover, in our proof, we borrow some technique from [12]
to construct the approximation sequence (see Proposition 3.2 below).

Example 1.8 Let v; ,(dz) = «(x, z)dz/|z|d+°‘ with a € (0, 2), that is, .4/ is an a-
stable like operator.

(i) If |/ (x, 2)| < (1 4 [xD¥ /(1 4 Ta=1 log(1 + |x])), then sup, , h}(x) < oo.
Indeed, by definition we have

(14 |xpont dz
R () < g (1+ ) —s
1+ To=1log(l + |x]) Jp¢ |z

We calculate the right hand integral which is denoted by .# as follows: using polar
coordinates and integration by parts,

I = c/mlog (1 + —H’m) r1modr
¢

oo
S tog (1+ 1) +/@ P+ Ix + 1) dr

]

1+]x]
§(1+|x|)‘1+(1+|x|)—1/ ,—ad,+f o1y,
¢ 1+]x|

S A4 D™+ A+ x)T DA 4 1o log(+ [x]) + (14 |x)7
S A+ x)TEDA 4 142 log(1 + [x])).

Thus, we have i} (x) < C.

(ii) If x4 (x, z) is symmetric, that is, k; (x, 2) = k;(x, —2), and |« (x, 2)| < c(14|x])%,
a € (0,2). Then sup, , i/ (x) < oo. In fact, by (1.20) we have for any 8 €
0, A1),

B dz
me a+i [ (1)
t 2l 1+ix] Pl g jdte

dz
< (1+|x|)°‘*ﬁ/ &
|z|>1+]x] |Z|d+a_ﬁ
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Superposition principle for non-local FPK operators 707

which in turn yields sup, , 7/ (x) < oo.

As far as we know, there are very few results concerning the superposition prin-
ciple for non-local operators. In the constant non-local case, the third author of the
present paper [36] used the superposition principle to show the uniqueness of non-local
FPKEs. Recently, Fournier and Xu [16] proved a non-local version to the superposition
principle in a special case, that is,

Y F ) = /R Tf0+ D — f@h o),

and (i/);>0 have finite first order moments, i.e.,

/ |x|u:(dx) < oo, YVt > 0.
R4

These two assumptions rule out the interesting «-stable processes (see Example 1.8
above). To drop these two limitations, we employ some techniques from [12]. It should
be emphasized that the elegant push-forward method used in [32] does not seem to
work in the non-local case. Here the main obstacles are to show the tightness and
taking limits. One important motivation for studying the superposition principle for
nonlocal operators is to solve the Boltzman equation as explained in Subsection 1.2
of [16] (see also [17]).

1.3 Equivalence between FPKEs and martingale problems

The following corollary is a direct consequence of Theorem 1.5 and [14, Theorem
4.4.2] (see also [21, Corollary 1.3] and [32, Lemma 2.12]). For the readers’ conve-
nience, we provide a detailed proof here.

Corollary 1.9 Under (1.18), the well-posedness of the Fokker—Planck—Kolmogorov Eq.
(1.13) is equivalent to the well-posedness of the martingale problem associated with
L. More precisely, we have the following equivalences:

o (Existence) For any v € P(RY), the non-local FPKE (1.13) admits a solution
((1)r=0 with initial value (1o = v if and only if./\/lg(f) has at least one element.
e (Uniqueness) The following two statements are equivalent.

(i) For each (s,v) € Ry x P(RY), the non-local FPKE (1.13) has at most one
solution (Ji;)1>s With (g = v.
(ii) Foreach (s,v) € Ry x P(RY), MY (L) has at most one element.

Proof We only prove the uniqueness part. (ii)=>(i) is easy by Theorem 1.5. We show
(i)=>(ii). For given (s, v) € Ry x P(R?) and let Py, P; € MY (ZL). To show Py = P,,
it suffices to prove the following claim by induction:

(Cp) for given n € N, and for any s < #; < t» < t, and strictly positive and
bounded measurable functions f, ..., f, on R4,

EX 1 (f1(Xy) - fu(X0)) = EP2(F1(Xy) -+ fu(Xy)) (1.22)
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708 M. Réckner et al.

First of all, by Theorem 1.5 and the assumption, one sees that (C) holds. Next we
assume (C,,) holds for some n > 2. For simplicity we write

n = fiXy) - fu(Xs,),

and fori = 1, 2, we define new probability measures
dP; := nd]P’,-//Qnd]P’,- ePD), ¥ =P oX,'eP®R?).
Now we show
B e MJI(2), i=1,2.

Let Mtf be defined by (1.17). We only need to prove that for any t' > t > 1, and
bounded B;-measurable &,

% (M]g) =B" (M) & BM(ufen) =E" (/ gm),
which follows since P; € M} (.Z). Thus, by induction hypothesis and Theorem 1.5,
V=) = @1 OXt;il ZfP"Q OX;L, Vitgg1 > ty.

which in turn implies that (C,,41) holds. The proof is complete. O
1.4 Fractional porous media equation

Probabilistic representation of solution to PDEs is a powerful tool to study their analytic
properties (well-posedness, regularity, etc) since it allows us to use many probabilistic
tools (see [7-9]). As an application of the superposition principle obtained in Theorem
1.5, we intend to derive a probabilistic representation for the weak solution of the
following fractional porous media equation (FPME for short):

du = A (Ju" " w), u(0,x) = @), (1.23)

where the porous media exponent m > 1, o € (0, 2) and A%? .= —(=A)¥/? is the
usual fractional Laplacian with, up to a constant, alternative expression

AY? f(x) =P.V. fRd (f(x 4+ 2) — f(x))dz/|z]9T, (1.24)

where P.V. stands for the Cauchy principal value. This equation is a typical non-linear,
degenerate and non-local parabolic equation, which appears naturally in statistical
mechanics and population dynamics in order to describe the hydrodynamic limit of
interacting particle systems with jumps or long-range interactions. In the last decade,
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Superposition principle for non-local FPK operators 709

there are many works devoted to the study of Eq. (1.23) from the PDE point of view,
see [23] and the recent survey paper [33], the monograph [34] and the references
therein.

Let H%/2(R?) be the homogeneous fractional Sobolev space defined as the com-
pletion of C§° (R?) with respect to

. 1/2
1 £l oz o= ( fR , |s|“|f(s)|2ds) = 12" f 1,

where f is the Fourier transform of f. The following notion about the weak solution
of FPME is introduced in [22, Definition 3.1].

Definition 1.10 A function u is called a weak or L'-energy solution of FPME (1.23)
if

e u € C([0,00); L'(RY)) and |u|"'u € L2 ((0, 00); H*/2(R?));
e forevery f € Cé(R+ x R%),

o0 o0
/ f u-8tfdxdt=f /(|u|m_1u)-A°‘/2fdxdt;
0 R4 0 Rd

e 1u(0, x) = ¢(x) almost everywhere.

The following result was proved in [22, Theorem 2.1, Theorem 2.2].

Theorem 1.11 Leta € (0,2) andm > 1. Forevery ¢ € LY (R?), there exists a unique
weak solution u for Eq. (1.23). Moreover, u enjoys the following properties:

1) ifo >0, thenu(t,x) >0forallt > 0andx € RY;
(i) du € L®((s, 00); L' (RY)) for every s > 0;
(i) forallt =0, [pqu(t, x)dx = [pq @(x)dx;
(iv) if ¢ € L®(RY), then for everyt > 0,

(@, oo < ll@lloo:

(v) for some B € (0, 1), u € CP((0, 00) x RY).

Our aim in this subsection is to represent the above solution u as the distributional
density of the solution to a nonlinear stochastic differential equation driven by the «-
stable process L; with Lévy measure dz/|z|?T%. More precisely, consider the following
distribution dependent stochastic differential equation (DDSDE for short) driven by
the d-dimensional isotropic «-stable process L;:

m—1
dY: = py,(Yi=) @ dL;, py,(x) = p(x), (1.25)
where py, (x) := (dLy,/dx)(x) denotes the distributional density of Y; with respect

to Lebesgue measure. We introduce the following notion about the above DDSDE
(1.25).
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710 M. Réckner et al.

Definition 1.12 Let (2, F, P; (F;);>0) be a stochastic basis and (¥, L) two F;-
adapted cadlag processes. For u € P(RY), we call (2, F,P; (Fi)i=0; Y, L) asolution
of (1.25) with initial law w if

(i) L is an a-stable process with Lévy measure dz/|z|9T;
(i) foreacht > 0,Po Y,_l(dx) = py, (x)dx;
(iii) Y; solves the following SDE:

! m-1
Y, = Y()—i-‘/(; )OY_;(YS—) @ dLy.

The following is the second main result of this paper.

Theorem 1.13 Let ¢ > 0 be bounded and satisfy fRd @(x)dx = 1. Let u be the unique
weak solution to FPME (1.23) given by Theorem 1.11 with initial value . Then there
exists a weak solution Y to DDSDE (1.25) such that

py,(x) = u(t,x), Vt>0.

Remark 1.14 Here an open question is to show the uniqueness of weak solutions to
the nonlinear SDE (1.25), which can not be derived from the uniqueness of FPME
(1.23). We will study this in a future work.

We mention that in the 1-dimensional case, such kind of probabilistic representation
for the classical porous media equation (i.e., « = 2) was obtained in [8], see also [10]
and [6,7] and for the generalization to the multi-dimensional case and more general
non-linear equations. We also mention that there has been an increasing interest in
DDSDEs driven by Brownian motion in the last decade, see [7,26] and in particular,
[13] as well as the references therein. As far as we know, even the weak existence
result for DDSDE (1.25) driven by Lévy noise in Theorem 1.13 is also new.

This paper is organized as follows: In Sect. 2, we study the Eq. (1.13) with smooth
and non-degenerate coefficients. Then we prove Theorems 1.5 and 1.13 in Sects. 3
and 4, respectively. Throughout this paper we shall use the following conventions:

The letter C denotes a constant, whose value may change in different places.

We use A < B to denote A < CB for some unimportant constant C > 0.

Np := NU{0}, R, := [0, 00),aVb := max(a, b),aAb := min(a, b),a™ := aVO0.
Vi = 0x := (0x;s ..., Oxy), 0j := 0y, := 0/0x;.

Si is the set of all d x d-symmetric and non-negative definite matrices.

2 Proof of Theorem 1.5: smooth and nondegenerate coefficients

First of all, we show the following well-posedness result about the martingale problem
associated with .%;, which extends Stroock’s result [30] to unbounded coefficients case,
and is probably well-known at least to experts. However, since we can not find it in
the literature, we provide a detailed proof here.
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Theorem 2.1 Suppose that the following conditions are satisfied:

A) a;(x): Ry x R — S‘i is continuous and a;(x) is invertible;
B) br(x) : Ry x R4 - RY s locally bounded and measurable;

(C) forany A € BRY), (t,x) — fA(l A |Z|2)v,)x (dz) is continuous;
(D) the following global growth condition holds:

o <|az(x)|+<x bi(0) " + g/ ()
t,x

“ L+ a2

+ 2ht”(x)) <00

where g/ (x) and I} (x) are defined by (1.10) and (1.19), respectively.

Then foreach (s, x) € Ry x R4, thereisa unique martingale solutionPs , € M7 (%}).
Moreover, the following assertions hold:

(i) Foreach A € B(D), (s, x) — Ps »(A) is Borel measurable.
(ii) The following strong Markov property holds: for every bounded measurable f
and any finite stopping time t,

EPOr (f (41, Xe)|Be) = (EP (F (s + 1, X)) | 5y — o)

Remark 2.2 Condition (D) ensures the non-explosion of the solution.
To prove this theorem we first show the following Lyapunov type estimate.

Lemma2.3 Let € C2(R; Ry) with lim,_, o0 ¥ (r) = 00 and
0<vy' <1, y"<o. 2.1

Fix y € R? and define a Lyapunov function Vy(x) := ¥ og(1l+ |x — y1%)). Then for
allt > 0and x € RY, we have

_ + v
2y, 00 <2 (OIEEZR BN 2ED opa). e
~ T+1x—yP
where g} (x) is defined by (1.10), and
H(x,y) = / log (l + 1+|‘;| yl) Ve x(dz). (2.3)

Z

Proof By definition, it is easy to see that

2(x — y)
VVy(x) = ﬁlﬂ (log(1 + |x — y[*))
and
4(x — _
V2V, (x) = 2EZN O ) i tog(1 4+ Jx — yI2)

(1+|x —y»H?
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712 M. Réckner et al.

b yog(1 + x — y2)
——¥'(o X — .
T+l —yr” * '
Thus by (2.1), one gets that
2 2(x — y, by (x) "
AV, (x) < la; (x)] BV < (x—y r(X)2>
L+ x —yl I+ x —yl

On the other hand, recalling (1.12), we have for |z| < ¢ < 1/\/5,

Ov,(x;2) = Vy(x +2) — Vy(x) —z- VVy(x) = 2iz;0;9; Vy(x + 62)/2
2z, x—y +07)2
T (I x—y+6z2)2

(" — ") (log(l + |x — y + 0z%))

|z , 2
log(1+|x —y+6z
1+u—y+&Pw(g( lx —y %))
@) |22 |z 21z
<

Ll =y 40z 7 14+l = y2/2 =122 7 1+ |x —y[*’

where 6 € [0, 1]. Similarly, by the mean value formula, we have

Vy(x +2) — Vy(x) = Iﬁ’(e*)[log(l +lx—y+z*) —log (1+Ix — y|2)]

ﬂ@—yﬂﬂ+kﬁ)
1+ |x — y?

2
510g<1+ <log (1+%)
X =Yy

2 4
slog(1+&) slog(1+L) ,
T = T =)

where 6, € R. Hence,

g/ (x)

m + 4Htv(x, y).

A Vy(x) < /d Oy, (x; 2y x(dz) <2
RV

Combining the above calculations, we obtain (2.2). O

The following stochastic Gronwall inequality for continuous martingales was
proved by Scheutzow [27], and for general discontinuous martingales in [35, Lemma
3.71.

Lemma 2.4 (Stochastic Gronwall inequality) Let £(t) and 1(t) be two non-negative
cadlag adapted processes, A; a continuous non-decreasing adapted process with Ay =
0, M; a local martingale with My = 0. Suppose that

t
E(r) < n(t)+/ E(s)dAs + My, Vi = 0.
0
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Superposition principle for non-local FPK operators 713

Then for any 0 < g < p < 1 and stopping time T > 0, we have

[EE@H1]7 < (52) " (Eerr0-7) " By

where £(t)* = SUP;[0.1] E(@s).

The following localization lemma is well known (see e.g. [31, Theorem 1.3.5]).
Although it is only proved for the probability measures on the space of continuous
functions, by checking the proof therein, one sees that it also works for D.

Lemma 2.5 Let (PP,),en C P(D) be a family of probability measures and (t,)neN @
non-decreasing sequence of stopping times with to = 0. Suppose that for eachn € N,
P, equals P, on By, (D), and for any T > 0,

lim P,(r, <T)=0.
n—o0
Then there is a unique probability measure P € P (D) such that P equals P, on B, (D)
and P, weakly converges to P as n — oo.
We now use the above localization lemma to give

Proof of Theorem 2.1 Let x € C*° (R?) be a smooth function with
x@) =1, x| <1, xx) =0, |x|>2.
For any n € N, define

Xn(x) = x(x/n)

and

a/ (x) = ar(xxn(x)),  bf (x) := xn ()b (x), 7, (d2) 1= xn (x)vr x(d2).

By the assumptions (A)—(C), one can check that (a”, ", v") satisfies for any 7' > 0,
(A) a'(x) : [0, T] x R — S‘i is bounded continuous and a;' (x) is invertible.
(B') b'(x):[0,T] x R? — R is bounded measurable.
(C') Forany A € B(RY), (1, x) > fA(l A |z|2)vzx(dz) is bounded continuous.

Let . be defined in terms of (a”, b, v"). Foreachn € Nand (s, x) € Ry x RY, by

[19, Theorem 2.34, p. 159], there is a unique martingale solution P{ , € M{(Z"),
and the following properties hold:

(i) Foreach A € B(D), (s, x) — P{ ,(A) is Borel measurable.
(i) The following strong Markov property holds: for any bounded measurable f and
finite stopping time t,

]E]P)S’X (f(l' +1, X‘L’-H)lBT) = (EPL‘V(f(S +1, XS+I)))|(S’),):(T,XZ)-
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714 M. Réckner et al.

Moreover, if we define
T, = inf{t > s : | X;| > n},

then by [19, Theorem 2.41, p. 161], for any m > n, the “stopped” martingale problem
M5 . (Z") admits a unique solution, that is,

Pe B, @ =P 18, m-
To show the well-posedness, by Lemma 2.5, it suffices to show that for any 7" > 0,

nll)néo P{ (ta <T) =0.

Let V(x) :=log(l + |x|2). By the definition of martingale solution (see Remark 1.4),
there is a cadlag local P{  -martingale M, such that

IATh
V(Xirg) =Vx) + a%nV(X,)dr + M,
N

[ATy

=V + L V(Xp)dr + M,

N

2.2) .
< V() +20,, - —s)+ M,

where 1:‘; ; 1s defined in (D). By Lemma 2.4 and condition (D), we obtain

tels, TAT]

supEP?vx ( sup Vé(X,)> < 400,
n

which in turn implies that

1 n
Pl =T) = P?,x( sup | X¢| > Vl) < ——E% sup VI(xy) )"0
1€ls, T Aty Vi(n) r€[s. T ATy

The proof is complete. O
Now we can give the proof of Theorem 1.5 under the assumptions (A)—(D).

Theorem 2.6 Assume that (A)—(D) hold. Then for any 11y € P(Rd), there are a unique
solution ()s>0 to FPKE (1.13) and a unique martingale solution Py ,,, € ./\/lg0 (L)

so that i, =Py, 0 Xt_l.

Proof Let ip € P(RY) and Py, € MG(Z). Clearly,
o= [ Posod) € ME(2),
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and p; = Py, 0 X, ! solves FPKE (1.13). It remains to show the uniqueness for
(1.13). Following the same argument as in [16], due to Horowitz and Karandikar [17,
Theorem B1], we only need to verify the following five points:

(a) Cg (R9) is dense in Co(RY) with respect to the uniform convergence.

(b) (t,x) — % f(x) is measurable for all f € C>(RY).

(¢) Foreach ¢t > 0, the operator .%; satisfies the maximum principle.

(d) There exists a countable family ( fx)ken C CC2 (Rd ) such that for all r > 0,

(Lf, feCPRY) C{ZL fi, keN),

where the closure is taken in the uniform norm.
(e) Foreach x € RY, M{(Z) has exactly one element.

Note that (a)—(c) are obvious and (e) is proven in Theorem 2.1. Thus we only need
to check (d). Let (fi)ren be a countable dense subset of CE(R"), that is, for any
f € Cf.(Rd) with support in Bg, where R > 2, there is a subsequence fi, with
support in Byg such that

tim (1l fi, = flloo + 19 fo, =V flloo + 192 fi, = V2 flloc) = 0.
n—oo
We want to show
lim_ [Z(fi, = Plloo = 0.
n—oo

Without loss of generality, we may assume f = 0 and proceed to prove the following
limits:

lim |19 fi, oo = 0, lim 1%, fi,llc = 0, lim [[A7" fi, lloo = O.
n— oo n—o0 n—o0
The first two limits are obvious. Let us focus on the last one. By definition we have

1© 5, 0 2D =1/, (x +2) = fi, (X) = Ljzj<ez - V fig, (%)]
< 1gj=el fi, 6 4+ 2D + L= LBy Ol f lloo
+ 15 <1 Bygn, OV fiy oozl

Note that

1ol () < [og(1 + )] Tog (1 + -2
lz|>¢1Bsp (X) = | 108 TF5R g T+ix] ) °

and if |x| > 5R, then for |x + z| < 2R,

ol o lxl—lxtzl o x=2R _ 1
THx] = 4] = T+~ 2°
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716 M. Réckner et al.

and thus,

~1
Lo elge, (1) Lgg, (x +2) < [log(%)] log (1+ l'j“x‘).

Therefore,

| A fie, ()] < / 10 ., (x5 2)[Vrx(d2) < V2 fio, e sUp /B |z|%vr 2 (d2)
1

XEByR+2

+C||fkn||oo/ tog (14 1£45) vic(d2)

= IV? finloo sup g/ (x) + Cll fi, lloo sup Ay (x),

X€ByR+2 xeR4

which in turn implies by (1.18) that
lim (|47 fi, oo = 0.
n—o0

The proof is compete. O

3 Proof of Theorem 1.5: general case

Let 1, be a solution of (1.13) in the sense of Definition 1.1. In order to show the
existence of a martingale solution P € /\/lg (%) so that

MtZPOX;I,

we shall follow the same lines of argument as in [12,15,32]. Here and below we use
the following convention: for ¢t < 0,

we(dx) :== po(dx), a;(x) =0, bi(x)=0, Vt,x(dZ) =0.
3.1 Regularization

Let p' € C2([0,1]; Ry) with fol p'(s)ds = 1 and p* € C°(Bj;R;) with
Jra P*(x)dx = 1. For ¢ > 0, define

pi(t) =& plt/e), pX(x) i=e"Yp (x/e),  pe(t. x) = pl(t)p}(x).
Given a locally finite signed measure ¢;(dx)dz on R4t we define

Pe ¥ (1, x) 1= / Pe(t — 5, x — ¥)¢s(dy)ds.
Rd+!1
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Throughout this section we shall fix
£ e (0,1/32).
We first show the following regularization estimate.
Lemma 3.1 Let a, b and v be as in the introduction. For € € (0, £), we have

|pe x (@@, x) _  2la; (V)

su * t,Xx),
It 2P =< s,fl+|y|2(p‘g w)(t, x)

[oe * (bu)|(z, x) 2|bs (y)1
—_— < sup — % f,x).
T+ x| =< s,)Iz) T+ Dl (pe * w)(t, x)

Moreover, if we let

Dix(dz) = /Rdﬂ Pe(t — 5, x — y)vs y(dz) s (dy)ds,

then we also have
v 2oV
gt (X)z Ssup gs (Y)2
1+ x| s,y 141y

H,Da(x, y) < 2sup H (Y, y)(pe % p) (2, x),
s,y

(pe * w)(t, x),

where g/ (x) and H! (x, y) are defined by (1.10) and (2.3), respectively.
Proof Note that for [x — y| < £ < 1/+/2,
(I +1yP)/2 < T+ 1xP <20+ 1y, 3.1
Fix ¢ € (0, £) below. By definition we have
| pe * (ap)(z, x) las (Y]

< r—s,x — dy)d
1+|X|2 —A{FA 108( §, X y)1+|x|2MY( y) S

las ()
<2 t—s,x — dy)ds,
=< /RM pe(t — s, x y)1+|y|2us( y)ds

and

[oe * (D)|(2, x) / [Ds (¥)]
—_—— < r—s5,x— dy)d
T+ x| = o et —s,x y)1 lxIMS( y)ds

|bs (¥)]
< 2/ Pe(t — s, x — y)— Y ps(dy)ds.
RA+1 1+ |y]
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Similarly, by Fubini’s theorem and (3.1), we have

g () |z
13r|x|2 N /RM/B T P 750 7 ey (@0 (d0ds
4
|z
=2 i s 1+|y|2)08 x — Y)vs,y(dz)ps (dy)ds
12
8 ()
= 2/1;{11“ I jr |y|2pa(t — 5, x = y)us(dy)ds,

log (1 + %) et — 5, % — ¥y (d2) s (dy)ds
tog (14 1251 ) per = 5. x = ¥y (dD)pss (dy)ds
<2 / H (¥, y)pe(t — s, x — y) s (dy)ds.

Combining the above calculations, we obtain the desired estimates. O

Letp(x) := (271)"16:’“"2/2 be the normal density. For ¢ € (0, £), as in [12], we
define the approximation sequence ¢ € PRY) by

pi (x) = (1 — &)(pe % p)(t, x) + ¢ (x). (3.2)

We have the following easy consequence.

Proposition 3.2 (i) Foreacht > 0 and ¢ € (0, £), we have
0 < i (x) € C¥(Ry; CRRY)), / JE ey = 1.
R4
(ii) Foreacht > 0, uf weakly converges to i, that is, for any [ € Cp(RY),

lim fR Fougdx = /R Fom(dx).
(iii) pf solves the following Fokker—Planck—Kolmogorov equation:
dpy = (I + B + N i = (L) i,
where o/f, %7 and N,® are defined as in the introduction in terms of

(I =8)pe * (@), x) + edp (x)I
g (x)

al (x) = : (3.3)
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(I —&)lpe * (b)1(t, x) + e (x)x
()

b (x) = , (3.4)

and

1—¢
s (x) Jan

vy x(dz2) == pe(t — s, x — y)vg y(dz)ps(dy)ds. (3.5

(iv) The following uniform estimates hold: for any ¢ € (0, £),

Sup[lafu)lwf%x) Ibf(X)l] - Hsup[mf(x)wg,“(x) |bz<x>|}
t,x t,x

1+ |x]2 1+ x| 1+ 2 1+ x|
(3.6)
and
sup Ht”g (x,y) <supH/(x,y), y€ RY, 3.7
t,x t,x

Proof The first two assertions are obvious by definition. Let us show (iii). By definition,
it suffices to prove that for any f € C2° (]Rd) andr > 0,

HECH) = 15(f) + /0 s s, (3.8)
where
HE(f) = /R Feou .
Note that for any f € C°(RY),

A¢~|—div(x~¢)50:>/d(b(x)(Af(x)—x'Vf(x))dx =0.
R

By Fubini’s theorem and a change of variables, it is easy to see that (3.8) holds. Finally,
estimate (3.6) follows by Lemma 3.1. O

The following result follows by Theorem 2.6.

Lemma3.3 Forany ¢ € (0,€) and (s, x) € Ry x RY, there is a unique martingale
solution P§ . € M{(Zf). In particular, there is also a martingale solution Q° €

Mgo (ZF) so that for each t > 0,

né(x)dx = Q° o X, ' (dx).
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Proof By Theorem 2.6, it suffices to check that (a®, b®, v®) satisfies conditions (A)-
(D). First of all, (A) and (B) are obvious, and (D) follows by (3.6). It remains to check
(C). We only check that for any ¢ € (0, £), n € Nand x, x" € By, t,t' € [0, n],

/d(l A |Z|2)|Vf’x - Vf/,xf|(dZ) <cne(jt — 1|+ |x — x')). (3.9)
R
Noting that
e e )
H;f xlggn Mi(x) > e xlglgn @ (x),
we have by definition that for all x, x" € B, and ¢, ¢’ € [0, n],

pet =s.x=y)  pe(t' 5.2 =)
i (x) pi (")

[V, — v l(d2) < /

Rd+!1

Vs,y (dz)pus(dy)ds

n+1
= Cn,s(|t - t/| +lx = )C/|)/ / Vs,y(dz)ﬂs(dy)ds-
0 By

Estimate (3.9) then follows since sup; (0, n411x B Jra (1 A |z|2)vs,y(dz) <o0. O

3.2 Tightness
We first prepare the following result (cf. [11, Proposition 7.1.8]).

Lemma 3.4 Forpug e P(RY) being defined by (3.2), there exits a functionyy € C2(R,.)
with the properties

r—0oQ
and such that

sup / w(log(l + |x|2))u8(dx) < 00. (3.10)
e€l0,6) JRE

Proof Since pi weakly converges to o as € — 0, we have

lim sup py(By) =0.

=30 eel0,0)
In particular, we can find a subsequence ny such that for z; := log(1 + nz),
Tkl — Tk = Tk — k-1 = 1,
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and

sup / 1iz.00) (log(1 + |x[P)pf(dx) = sup pf(BS) <27,
e€[0,0) JRA £€[0,0)

Let zo = 0 and define

Yols) == Zl[a,zml(s) [ —1+ _—Zk}

P Th+1 — Tk

Clearly, we have

oo

k
/ Yo(log(l + |x] >)uo(dx)<z / 1z .00) (log (1 + || ))/Lo(dx)<22k

However, {9 does not belong to the class C 2(R+). Let us take

t
Vi) = /O ¢ (rdr

withg e C'(Ry),0<g<1,-2<g <0, and

g(2) =Y(2) if z€ (zp,zhp — kD).

It is easy to see that such a function g always exists. The proof is complete. O

Lemma3.5 Let H'(x, y) be defined by (2.3). We have
H’(x,y) <21+ |yDh/(x), Vi>0,x,y e R4, (3.1

Proof Recall that

H'(x,y) = /B tog (1+ 1) via(do).

1
If x| <2|y|, then
0w = [ g v < [ tog (14 G2 ) v @)
B{ Bj
RN y
< [ tog(1+ 7)) v = A+ 2R ).
BZ

If x| > 2|y|, then 2|x — y[ = 2|x| — 2|y[ = |x| and

H(x,y) 5/ log(l + 21"1,) v (dz) < 20 (x).

@ Springer



722 M. Réckner et al.

The proof is complete. O
Now, we prove the following tightness result.
Lemma 3.6 The family of probability measures (Q%)gc(0,¢) is tight in P (D).

Proof By Aldous’ criterion (see [1] or [19, p.356]), it suffices to check the following
two conditions:

(i) Forany T > 0, it holds that

lim supQ® | sup |X;|>N]=0.
N—oo ¢ 1€[0,T]
(ii) For any T, 9 > 0 and stopping time T < T — Jy, it holds that

ginbsupsupQ‘E (| Xeqs — X >2) =0, VA>0.
—U ¢ T

Verification of (i) Let ¢ be as in Lemma 3.4 and V (x) := ¥ (log(1 + |x|?)). By the
definition of martingale solution (see Remark 1.4), (2.2) and (3.6), there is a cadlag
local Q°-martingale M} and constant C independent of ¢ such that for all # > 0,

13
V(X,) = V(Xo) +/ LEV(X,)dr + ME < V(Xo) + Ct + M?.
0

By Lemma 2.4, there is a constant C > 0 such that for all 7 > 0,

3 3.10
sup ECQ ( sup v%(x,)) <C sup ELV(Xp)? "2 oo, (3.12)

£€(0,0) te(0,T] £€(0,0)
which in turn implies that (i) is true.

Verification of (ii) Let t < T — §( be a bounded stopping time. For any § € (0, §p),
by the strong Markov property we have

Q (Xers = Xel > 1) =E¥ (B (X5 =1 > D) yeysy) - G13)

Recalling that Vy(x) := ¥ (log(1 + [x — y|2), and by (2.2), (3.6), (3.7), (3.11) and
(1.18) we deduce that

laf ()| + (x — y, bECO) T + g2 (x)

LEV,(x) <2 ( +2H" (x, y))

1+ [x —y|?
14 x4 |x — y|(1+ |x
SC( e + 1 =y |D+wuyofca+m%
L+ Jx =yl
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where C > 0 is independent of ¢, x, y and . Furthermore, we have

t
Vy(Xy) = Vy(Xs) -l-/ ZLEVy(X)dr + M7

IA

Vy(Xs) 4+ C(1+ [y1H)(t —5) + M,

where (M} ), is a local IP’i),—martinga]e with M{ = 0. By Lemma 2.4 again and

since Vy(y) = 0, we obtain
7 (Vy (X)) = €+ Iy
Hence,

Pi,y (X545 =yl > 4) = ]P’i’y (V}‘(Xs+5) > ¥ (log(1 + Az)))
< B (VX472 92 log(1 4+ 52))
< C(1L+|yDs'? /¢! (og(1 + 12)),

and by (3.13) and (3.12),

Q° (X4 — Xc| > 1) < Q°(IX¢| > R) 4+ C(1 + R)8Y? /2 (log(1 4 22))
< C/y21og(1 + RH) + C(1 + RS2 /¢ 12 (log(1 + 22)).

Letting 6 — O first and then R — oo, one sees that (ii) is satisfied. m|
3.3 Limits
In order to take weak limits, we rewrite
B f () + N f () = b)Y F () + /R OT e b)) = T f )+ ),
where

by (x) := by (x) + /H;d [7(2) — 21)z1=¢]vr x (d2), (3.14)
and

@?(x;z) =f(x+2)— f(x)—n(2) - Vfx). (3.15)
Here, 7 : RY — R? is a smooth symmetric function satisfying

w(z) =2z, |z| <€, 7w(zx) =0, |z| >2¢L.
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As in (1.11), we shall also write ,/flzf(x) = f/Z”f(x) = j”'v«“f(x). We have the
following result.

Lemma 3.7 Forany f € CC2 (RY) with support in B, there is a constant C = C(f) >
0 such that for all x € R¢ and z, 7/ € R with |Z'| < |z|,

|©% (x5 2) — OF(x; N = Clz =2 I AOApg,, () z1<elz] + Lizj>ev(x—R))-
Proof Note that
2:=10%(x;2) —OF(x; N = [f(x +2) = fx +2) = (w(2) = 7)) - VF ().
We make the following decomposition:
2=2 1<+ 2 1g=elix<r + 2 Lgselpsr =0 21 + 22 + 25,
For 21, since supp(f) C Bg and |7’| < |z|, we have by (1.16) that
211 < Iz = ZPIVZ fllool e (D1pr=e < Clz = 21 A D23y, ()20
For 25, we have
121 = (If & +2) = F &+ D+ 7@ = 7@ 1V flloo ) e eai<r
<C(z =2 AL =¢1x <k-
As for 23, we have
23] = |f(x +2) = fOr + 2D Apzgselix=r < Clz = ZTA O 0v(x-R)
where we have used that for |z/| < |z| < |x| — R,
fx+2)=flx+27)=0.

Combining the above calculations, we obtain the desired estimate. O

The following approximation result will be crucial for taking weak limits.

Lemma3.8 Forany § € (0,1) and R, T > O, there is a family of Lévy measures
0¢.x(dz) such that for any f € CCZ(BR),

T ~ ~
/o fRd sup [ A f(x) = A f ()| s (dy)ds <6, (3.16)

X€B1(y)
and

sup ||</FVV'7S-~Vf||0<> <00, (5,y,X) JV”*-"f(x) is continuous.
s,y
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Moreover, there are continuous functions a : [0, T] x RY > R QR and b -
[0, T1 x RY — R? with compact supports such that

. . -z
/ /d <Ias(X) as ()| n |bs (x) bs(X)I) 1s(dx)ds < 5., (3.17)
o Jr

14 |x|? 1+ |x]

where b is defined by (3.14).

Proof (i) By the randomization of kernel functions (see [18, Lemma 14.50, p.469]),
there is a measurable function

hi(0) [0, T] x R x (0, 00) — R? U {00}
such that
o0
Vvix(A) = / 14(h, 2 (9))d0, VA € BRY).
0
In particular, we have
T f )= [ Oy @8 = T p, Gas)

and

o0

8/ (x) =/O 1, (he (0)) |y £ (0)17d6, v ((BY) =/0 1ge (hs < (6))d6.

We introduce X := [0, T'] x RY x (0, 00) and a locally finite measure y over X by
y(dO, dx, dt) := g, »(0)dOu, (dx)dt

with 0, x(0) := 1p, (h; x(0)1pg, .y, (x) + 1p¢ (hyx(6)) so that

v(Ix|—-R—1)
T

/ (112 @)% A €2) (@6, dx. dr) = / / 81 (1o (O (dx)ds

X 0 JR4

5 [T . (1.14)
+ £ dVt»x(Bev(|x|—R—1))/‘t(dx)dt < 0.
o Jr
(3.19)

O

Claim There is a sequence of measurable functions {fzf‘,x (0), n € N} so that for each
neN, (t,x,0)— I_zf’ () is continuous with compact support, and

|} (@) < |y x(0)], (3.20)
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and
lim / (|ﬁ;1x(9) — hex (O A Ez)y(dﬁ, dx, dr) = 0. (3.21)
n—oo X ’

Proof of Claim Fix m € N. Since 1(9,m)(0)y (df, dx, d?) is a finite measure over X,
by Lusin’s theorem, there exists a family of continuous functions {4 , (¢), ¢ € (0, 1)}
with compact support in (¢, x, 6) such that

;O] < e x O], 17 () = hy x(6), & > 0,y —a.s.

Thus by the dominated convergence theorem,
1imO/ (u}fx(e) — hix (O A 52)1(0,,,,)(9);/@9, dx, dr) = 0.
£— X ’
On the other hand, by (3.19) and the monotone convergence theorem, we have

lim / (|ht,x(9)|2 A z2)1[m,oo) ©)y (8, dx, dr) = 0.
m—0o0 X

By a diagonalizaion argument, we obtain the desired approximation sequence. The
claim is proven.
(i1) Let f € CS(BR). By (3.18), (3.20) and Lemma 3.7, we have for all x € By (y),

| A () = A5 ()] < /0 |07 (x: hy y(0)) — O (x: AT (0))]d6

Sfo (|hs,y(9)|13g(hs,}'(e))lBR+g(x)+lB” (hx,y(g))>

v (|x|=R)

x (|hw(9) — i) A e)de
1

* 2
S (‘/() (lhs,}’(9)|2lBe (hs,y(e))lBR+g+1 ()’) + lB” (hsyy(e)))de)

ev(|yl=R=1)

1
x ( f (1hs.y0) = B2, @) Aez)g‘v,ywme)z
A :

1
. 2
= (IBR+z+1 (Mg () + sty(BEv(M—R—l)))

1

oo _ 2
x( / (|hs,y<9>—h:?,y(enzMz)gs,yw)de) .
0

Hence, by (1.18) and (1.21) we further have

T _
/0 A sup [ A0 £() — A5 £(x) s (dy)ds

4 xeBi(y)
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T 00 _ %
S([L [ (oo - i,@F A 2o, @00 @as)
0 JR4JO

1
2 (3.21)

- (/qhw(e) — R} (O Aez)y(de,dy,ds)) =70.
X

(iii) For fixed n € N, since f € CCZ(BR), by the above claim that (s, y, ) > l_z?’y(e)
is continuous and has compact support, and the dominated convergence theorem, we
have that

_ o0
(5, v, %) > Ny f(x) = f ©7 (x; k" (9))d6 is continuous.
,

Moreover, we have
. o) _ oo,
e peol = [ 105 @nids < € [ (1, @)F A1)s.
0 0

Since /E;?, y(6) has compact support in (s, y), we have
sup [l 477 o < o0,
8,y

Finally we only need to take n large enough and define

M (A) = /0 14 ,(6))de.

(iv) Now let us show (3.17). By Lusin’s theorem, the set of continuous functions with

compact supports is dense in L' ([0, T] x R?, i, (dx)dr). Since ﬂg |)2 and ﬁ_(fx )I are
bounded by (1.18), the existence of @ and b with property (3.17) follows. O

Now we are in a position to give:

Proof of Theorem 1.5 Let (Q be any accumulation point of (Q°).¢(0,¢) (see Lemma 3.6).
By taking weak limits for

ui=Q o X,
we obtain
me=QoXx; .

It remains to show that Q € M{,°(.%;). We need to show that for any f € C2(R?),

t
M, = (X)) — f(Xo) — /0 2, F(X,)ds
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is a B;-martingale under Q. Let J := {t > 0 : Q(AX; # 0) > 0}, which s a countable
subset of R. Since t — M; is right continuous and bounded, to show that M; is a
B;-martingale under Q, it suffices to prove that for any s < ¢ ¢ J and any bounded
Bs-measurable continuous functional gz on D,

EY(M:g;) = E%(Myg;).
Since Q¢ € ///(;L 0 (XZ%), by the definition of martingale solution, we have
EY (Mfg,) = EY (M),
where

t
ME = (X)) — f(Xo) — /0 S F(X,)ds.

Since lim,— o EQ (f(X,)gs) = EQ(f(X,)gs) for t ¢ J (see [19, Proposition 3.4,
page 349]), we only need to show the following three limits:

t t
lim B (gs / ﬁfrgf(xr)dr) =E¢ (gs / szfrﬂxr)dr), (3.22)
St N St N
lim B (gs / %ff(xr)dr) =E¢ (gs / %f(Xr)dr), (323)
‘ ts _ st B
lim EY (gs / N f(Xr)dr> —EQ (gs / N f(Xr)dr). (3.24)

Below we assume that the support of f is contained in the ball Bg. Let us first show
(3.24). Fix § € (0, 1). Let 1, x(dz) be as given by Lemma 3.8, and recall that v* is
defined by (3.5). We write

t t
o o ) 5 [ )
t t
EY (gs f JVI“f(X»dr)—E@ (gs / JV??@f(X»dr)‘
t 1
+ |EY (gs / j’?gf(xr)dr> - EY (gs / N f(X,)dr)‘

N

t t
+ |E¢ (gs / ﬁf(&)dr) —E® (gx / ﬁ”f(xodr)‘

o o 4
+ B9 (gs / JVr"f(Xr)dr> ~EY (gs / m“f(xr>dr>‘ =2 1),
N s i=1

=
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where 1 is defined similarly as in (3.5) with v being replaced by 7. For I;(¢), by
definition, we have

r— ~ ¢
1) < l1gs looEY ( / A (X)) = AT f<xr>|dr)
t ~E ~ &
_ ||gs||oo/ A;{d A F ) = A F G0 IE () dxdr

t ~%E ~c
— —e>||gs||oo/ /R A F ) — A f)ldxdr

t
= (-2l [ [ ‘f O (x; 2) (7%, — 7.)(d2)
s JRA |JRA

where G)’} (x; z) is defined by (3.15) and

dxdr,

vy (d2) == /ﬂédﬂ pe(r —s,x — y)vs,y(dz)ps (dy)ds.

By Fubini’s theorem we further have

t
11<s>s||gs||oo// / per — 5, % — ¥)
s ]Rd Rd+1

x (A7 f o) = A7 £ () ) s (dy)ds

dxdr

T
— —_ (3.16)
< llgsllso / / sup [ A7 () — A 0ty (dy)ds 2 (g llooS.
0 JRI xeBy(y)

For I, (¢), recalling (3.2), we have

r . —
L(e) < llgsllocEY ( f A F(X) — JV,"f<Xr)|dr>
t = —
= llgslioo / fR AT G0 = AT Gl () dxdr

' — _
— lgsloo / fR 0= AT F )~ WA ldxdr

t
s(l—s)ngsnoo/// pelr =5, — )
s ]Rd ]Rd+1

X [ A5 £(x) — A F(x)| s (dy)dsdxdr

t ~
+ ellgslioe / /};@ BT (o)l dxdr
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Since (s, y, x) — Q/V”Svyf(x) is continuous and ||f/f17'7f||Oo < 00, by the dominated

convergence theorem, we get
lim I,(¢) = 0.
e—0
Concerning /3(¢), it follows by the definition of weak convergence that
lim I3(¢) = 0.
e—0

For 14(¢), we have

t ~ ~ (3.16)
1) =< gl [ [ 17770 = T 0l @nar O Ll

Since § is arbitrary, combining the above calculations, we obtain (3.24). The proofs for
(3.22) and (3.23), by (3.17), are completely the same as above. The proof is complete.

4 Proof of Theorem 1.13

O

Let u be the unique weak solution of FPME (1.23) given by Theorem 1.11 with initial

value ¢ > 0 being bounded and f]Rd ¢(x)dx = 1. Let

K (x)dz

m—1 _
0 () = u(t, 01", k() = ule, )" v c(de) = S

By the change of variable we have

d
v x(A) = f 1A(Gz(X)Z)TZ+, A e BRI\ {0},
Rd |z]4Fe

and

d
Hf ) =PV [ (0 002) = ) i = k(A

.1

where the second equality is due to (1.24). By Definition 1.10 it is easy to see that

u(t, x) solves the following non-local FPKE:
du = A u, u0,x) = p(x),

that is, forevery t > O and f € C%(]Rd),

t
ff(x)u(t,x)dx:f f(x)tp(x)dx+// 15 (X)AY? £ (x)u(s, x)dxds.
R4 R4 0 JRY
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Note that for each ¢ > 0,

m—1

m=1 =
lor ()| = lu(t, x)| @ < gl -

Thus, by Example 1.8 with the above v, , and Theorem 1.5 with po(dx) = ¢(x)dx,
there is a martingale solution P € //lé‘ %(N;) so that

Po X, ' (dx) = u(r, x)dx, >0.
By (4.1) and [19, Theorem 2.26, p.157] (see Remark 4.1 below), there are a stochastic
basis (2, F, P; (F;):>0) and a Poisson random measure N on RY x [0, o0) with
intensity |z|~?~%dzdt, as well as an F;-adapted cadlag process Y; such that

Po Y ldx) =Po X 1(dx), >0,

and

arvi= [ oo+ [ ooz, d,
lz|=1

z[>1

where N(dz, dt) := N(dz, dr) — |z|~4~*dzdr. Finally we just need to define

t t
Ll‘ = / f ZN(dZ, dS) + / / ZN(dZa ds)7
0 Jz|=1 0 Jiz|>1

then L is a d-dimensional isotropic a-stable process with Lévy measure dz/|z|? 1%,
and

dY[ = Ut(Yt—)st-
The proof is finished. O

Remark 4.1 For a more recent general analysis on the equivalence of stochastic equa-
tions and martingale problem, we refer to [21].
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