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Abstract
We prove the superposition principle for probability measure-valued solutions to non-
local Fokker–Planck–Kolmogorov equations, which in turn yields the equivalence
betweenmartingale problems for stochastic differential equationswith jumps and such
non-local partial differential equations with rough coefficients. As an application, we
obtain a probabilistic representation for weak solutions of fractional porous media
equations.
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1 Introduction

1.1 Background

Let P(Rd) be the space of all probability measures on R
d endowed with the weak

convergence topology. Let b : R+ × R
d → R

d be a measurable vector field. In [2],
Ambrosio studied the connection between the continuity equation

∂tμt = div(bμt ), (1.1)

and the ordinary differential equation (ODE for short)

dωt = bt (ωt )dt . (1.2)

The following superposition principle was proved therein: Suppose that t �→ μt ∈
P(Rd) is a solution of (1.1) and satisfies

∫ T

0

∫
Rd

|bt (x)|
1 + |x |μt (dx)dt < ∞, ∀T > 0,

then there exists a probability measure η on the space C of continuous functions from
R+ to R

d , which is concentrated on the set of all ω such that ω is an absolutely
continuous solution of (1.2), and for every function f ∈ Cb(R

d) and all t ≥ 0,

∫
Rd

f (x)μt (dx) =
∫
C

f
(
ωt

)
η(dω).

In other words, the measure μt coincides with the image of η under the evaluation
map ω �→ ωt . Consequently, the well-posedness of ODE (1.2) is equivalent to the
existence and uniqueness of solutions for the continuity Eq. (1.1). In particular, the
well-posedness of ODE (1.2) with BV drift whose distributional divergence belongs to
L∞ was obtained in a generalized sense. See also [3–5,29] and the references therein
for further developments.

The stochastic counterpart of the above superposition principle was established
by Figalli [15]. In this situation, the continuity equation becomes the Fokker–Planck–
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Superposition principle for non-local FPK operators 701

Kolmogorov equation, while theODEbecomes a stochastic differential equation (SDE
for short). More precisely, let Xt solve the following SDE in R

d :

dXt = bt (Xt )dt + σt (Xt )dWt , (1.3)

where b : R+ × R
d → R

d and σ : R+ × R
d → R

d ⊗ R
d are measurable functions,

Wt is a standard Brownian motion defined on some probability space (�,F ,P). Let
μt ∈ P(Rd) be the marginal law of Xt . By Itô’s formula, μt solves the following
Fokker–Planck–Kolmogorov equation in the distributional sense

∂tμt = (
At + Bt

)∗
μt , (1.4)

where for f ∈ C2
b (R

d),

At f (x) := tr(at (x) · ∇2 f (x)), Bt f (x) := bt (x) · ∇ f (x) (1.5)

with at (x) = 1
2 (σtσ

T
t )(x), and A ∗

t and B∗
t stand for the adjoint operators of At and

Bt , respectively. When the coefficients a and b are bounded measurable, the super-
position principle for Eq. (1.4) was proved by Figalli [15, Theorem 2.6], which says
that every probabilitymeasure-valued solution to the Fokker–Planck–Kolmogorov Eq.
(1.4) yields a martingale solution for the operator At + Bt on the path space C (or
equivalently, a weak solution for SDE (1.3)). We would like to mention that Kurtz in
[20, Theorem 2.7] has already proven such a principle if a and b are time-independent
and bounded measurable (see [20, Remark 2.8(a)]). In [32], Trevisan extended it to
the following natural integrability assumption:

∫ T

0

∫
Rd

(
|bt (x)| + |at (x)|

)
μt (dx)dt < ∞, ∀T > 0. (1.6)

More precisely, for any probability measure-valued solution μ of (1.4), under (1.6),
there is a weak solution X to SDE (1.3) so that for each t > 0,

μt = Law of Xt . (1.7)

It should be noticed that if μt does not have finite first moment, then (1.6) may not
be satisfied for b and σ with at most linear growth. Recently, in [12], Bogachev,
Röckner and Shaposhnikov obtained the superposition principle under the following
more natural assumption:

∫ T

0

∫
Rd

|〈x, bt (x)〉| + |at (x)|
1 + |x |2 μt (dx)dt < ∞, ∀T > 0. (1.8)

The proofs in [12] depend on quite involved uniqueness results for Fokker–Planck–
Kolmogorov equations obtained in [11]. The superposition principle obtained in
[15,32] has been used in the study of the uniqueness of FPKEs with rough coefficients
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702 M. Röckner et al.

(see e.g. [25,36]), probabilistic representations for solutions to non-linear partial dif-
ferential equations (PDEs for short) [6] as well as distribution dependent SDEs (see
[7,26]).

On the other hand, let (Xt )t≥0 be a Feller process inR
d with infinitesimal generator

(L ,Dom(L )) (see [24, page 88]). One says that L satisfies a positive maximum
principle if for all 0 ≤ f ∈ Dom(L ) reaching a positive maximum at point x0 ∈ R

d ,
then L f (x0) ≤ 0. Suppose that C∞

c (Rd) ⊂ Dom(L ). The well-known Courrège
theorem states thatL satisfies the positive maximum principle if and only ifL takes
the following form

L f (x) =
d∑

i, j=1

ai j (x)∂
2
i j f (x) +

d∑
i=1

bi (x)∂i f (x) + c(x) f (x)

+
∫
Rd

(
f (x + z) − f (x) − 1|z|≤1z · ∇ f (x)

)
νx (dz), (1.9)

where a = (ai j )1≤i, j≤d is a d × d-symmetric positive definite matrix-valued mea-
surable function on R

d , b : R
d → R

d , c : R
d → (−∞, 0] are measurable functions

and νx (dz) is a family of Lévy measures (see [28]). In particular, if we let μt be the
marginal law of Xt , then by Dynkin’s formula,

∂tμt = L ∗μt .

We naturally ask that for any probability measure-valued solution μt to the above
Fokker–Planck–Kolmogorov equation, is it possible to find some process X so that
μt is just the law of Xt for each t ≥ 0? In the next subsection, under some growth
assumptions on the coefficients, we shall give an affirmative answer.

1.2 Superposition principle for non-local operators

Our aim in this paper is to develop a non-local version of the superposition principle.
Let {νt,x }t≥0,x∈Rd be a family of Lévy measures over R

d , that is, for each t ≥ 0 and
x ∈ R

d ,

gν
t (x) :=

∫
B�

|z|2νt,x (dz) < ∞, νt,x (B
c
� ) < ∞, (1.10)

where � > 0 is a fixed number, and B� := {z ∈ R
d : |z| < �}. Without loss of

generality we may assume

� ≤ 1/
√
2.

We introduce the following Lévy type operator: for any f ∈ C2
b (R

d),

Nt f (x) := N ν
t f (x) := N νt,x f (x) :=

∫
Rd

	 f (x; z)νt,x (dz), (1.11)
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Superposition principle for non-local FPK operators 703

where

	 f (x; z) := f (x + z) − f (x) − 1|z|≤�z · ∇ f (x). (1.12)

Let us consider the following non-local Fokker–Planck–Kolmogorov equation (FPKE
for short):

∂tμt = L ∗
t μt , (1.13)

where Lt is a general diffusion operator with jumps, i.e.,

Lt := At + Bt + Nt

withAt andBt being defined by (1.5) andNt being defined by (1.11). We introduce
the following definition of weak solution to Eq. (1.13).

Definition 1.1 (Weak solution) Let μ : R+ → P(Rd) be a continuous curve. We call
μ = (μt )t≥0 a weak solution of the non-local FPKE (1.13) if for any R > 0 and t > 0,

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0

∫
Rd

1BR (x)
(
|as(x)| + |bs(x)| + gν

s (x)
)
μs(dx)ds < ∞,

∫ t

0

∫
Rd

(
νs,x (B

c
�∨(|x |−R)) + 1BR (x)νs,x (B

c
� )

)
μs(dx)ds < ∞,

⎫⎪⎪⎬
⎪⎪⎭

(1.14)

and for all f ∈ C2
c (R

d) and t ≥ 0,

μt ( f ) = μ0( f ) +
∫ t

0
μs(Ls f )ds, (1.15)

where μt ( f ) := ∫
Rd f (x)μt (dx).

We point out that unlike the local case considered in [2,12,15,32], where the local
integrability of the coefficients with respect to μt (dx)dt implies the well-definedness
of the integrals in (1.15), it is even not clear whether the above integral in (1.15) makes
sense in the non-local case since in generalN ν

t f does not have compact support for
f ∈ C2

c (R
d). This is the reason why we need the second assumption in (1.14).

Remark 1.2 Under (1.14), one has
∫ t
0 μs(|Ls f |)ds < ∞ for any f ∈ C2

c (R
d). Let us

only show

∫ t

0
μs(|N ν

s f |)ds < ∞.

Note that for x, z ∈ R
d , by Taylor’s expansion, there is a θ ∈ [0, 1] such that

f (x + z) − f (x) − z · ∇ f (x) =
∑

i, j=1,...,d

zi z j∂i∂ j f (x + θ z)/2. (1.16)
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704 M. Röckner et al.

Suppose that the support of f is contained in a ball BR . By definition we have

|	 f (x; z)| ≤ ‖ f ‖∞1|z|>�(1|x+z|<R + 1|x |<R) + ‖∇2 f ‖∞1|z|≤�|z|21|x |<R+�.

Hence,

∫ t

0
μs(|N ν

s f |)ds �
∫ t

0

∫
Rd

[
νs,x (B

c
�∨(|x |−R)) + 1BR (x)νs,x (B

c
� )

]
μs(dx)ds

+
∫ t

0

∫
Rd

1BR+�
(x)gν

s (x)μs(dx)ds < ∞.

Let D be the space of all R
d -valued càdlàg functions on R+, which is endowed

with the Skorokhod topology so that D becomes a Polish space. Let Xt (ω) = ωt be
the canonical process. For t ≥ 0, let B0

t (D) denote the natural filtration generated by
(Xs)s∈[0,t], and let

Bt := Bt (D) := ∩s≥tB0
t (D), B := B(D) := B∞(D).

Now we recall the notion of martingale solutions associated with Lt in the sense of
Stroock–Varadhan [31].

Definition 1.3 (Martingale Problem) Let μ0 ∈ P(Rd), s ≥ 0 and τ ≥ s be a Bt -
stopping time. We call a probability measure P ∈ P(D) a martingale solution (resp. a
“stopped” martingale solution) ofLt with initial distribution μ0 at time s if

(i) P(Xt = Xs, t ∈ [0, s]) = 1 and P ◦ X−1
s = μ0.

(ii) For any f ∈ C2
c (R

d), M f
t (resp. M f

t∧τ ) is a Bt -martingale under P, where

M f
t := f (Xt ) − f (Xs) −

∫ t

s
Lr f (Xr )dr , t ≥ s. (1.17)

All the martingale solutions (resp. “stopped” martingale solutions) associated with
Lt with initial law μ0 at time s will be denoted by Mμ0

s (L ) (resp. Mμ0
s,τ (L )). In

particular, ifμ0 = δx (theDiracmeasure concentrated on x), we shallwriteMx
s (L ) =

Mδx
s (L ) for simplify.

Remark 1.4 Under (1.18) below, (ii) in Definition 1.3 is equivalent to that for any
f ∈ C2(Rd) with | f (x)| ≤ C log(2 + |x |), M f

t is a local Bt -martingale under P.
Indeed, let χ ∈ C∞

c (Rd) be a smooth function with χ(x) = 1 for |x | < 1 and
χ(x) = 0 for |x | > 2. For each n,m ∈ N, define fn(x) := f (x)χ(x/n) and τm :=
inf{t > s : |Xt |∨ |Xt − Xt−| ≥ m}. By (ii) of Definition 1.3, one knows that M fn

t∧τm
is

a Bt -martingale. Since | f (x)| ≤ C log(2+|x |), by definition (1.11) and (1.18) below,
it is easy to see that for each fixed m ∈ N,

sup
n

sup
r∈[0,t]

sup
|x |≤m

|Lr fn(x)| < ∞.
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Superposition principle for non-local FPK operators 705

Thus, for each t > s, by the dominated convergence theorem, we have

lim
n→∞ E

(∫ t∧τm

s
|Lr fn(Xr ) − Lr f (Xr )|dr

)
= 0.

Therefore, for each t > s,

lim
n→∞ E|M fn

t∧τm
− M f

t∧τm
| = 0,

which implies that M f
t∧τm

is a Bt -martingale for each m ∈ N, and also M f
t is a local

Bt -martingale since τm → ∞ as m → ∞.

Throughout this paper, we make the following assumption:

�ν
a,b := sup

t,x

[ |at (x)| + gν
t (x)

1 + |x |2 + |bt (x)|
1 + |x | + �

ν
t (x)

]
< ∞, (1.18)

where gν
t (x) is defined by (1.10) and

�
ν
t (x) :=

∫
Bc

�

log
(
1 + |z|

1+|x |
)

νt,x (dz), (1.19)

and if νt,x is symmetric, then we define

�
ν
t (x) :=

∫
|z|>1+|x |

log
(
1 + |z|

1+|x |
)

νt,x (dz). (1.20)

The main result of this paper is as follows.

Theorem 1.5 (Superposition principle) Under (1.18), for any weak solution (μt )t≥0
of FPKE (1.13) in the sense of Definition 1.1, there is a martingale solution P ∈
Mμ0

0 (Lt ) such that

μt = P ◦ X−1
t , ∀t ≥ 0.

Remark 1.6 Under (1.18), condition (1.14) holds. In fact, it suffices to check that

sup
t,x

(
νt,x (B

c
�∨(|x |−R)) + 1BR (x)νt,x (B

c
� )

)
< ∞, ∀R > 0. (1.21)

By definition we have

νt,x (B
c
�∨(|x |−R)) ≤

∫
Bc

�

log
(
1 + |z|

1+|x |
)

/ log
(
1 + �∨(|x |−R)

1+|x |
)

νt,x (dz)

= �
ν
t (x)/ log

(
1 + �∨(|x |−R)

1+|x |
)

≤ �
ν
t (x)/ log

(
1 + �

1+�+R

)
,
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706 M. Röckner et al.

and

1BR (x)νt,x (B
c
� ) ≤ 1BR (x)

∫
Bc

�

log
(
1 + |z|

1+|x |
)

/ log
(
1 + �

1+|x |
)

νt,x (dz)

= 1BR (x)�ν
t (x)/ log

(
1 + �

1+|x |
)

≤ �
ν
t (x)/ log

(
1 + �

1+R

)
.

Hence, (1.21) follows by (1.18).

Remark 1.7 Note that our result does not cover the one in [12] (see the above (1.8)).
The results in [12] allow to treat SDEs with singular and linear growth coefficients,
while our assumption (1.18) only allows the coefficients being of linear growth. Here
the main issue is that the elegant push-forward method used in [32] seems not valid
in the non-local case. Moreover, in our proof, we borrow some technique from [12]
to construct the approximation sequence (see Proposition 3.2 below).

Example 1.8 Let νt,x (dz) = κt (x, z)dz/|z|d+α with α ∈ (0, 2), that is, Nt is an α-
stable like operator.

(i) If |κt (x, z)| ≤ c(1 + |x |)α∧1/(1 + 1α=1 log(1 + |x |)), then supt,x �
ν
t (x) < ∞.

Indeed, by definition we have

�
ν
t (x) � (1 + |x |)α∧1

1 + 1α=1 log(1 + |x |)
∫
Bc

�

log
(
1 + |z|

1+|x |
) dz

|z|d+α
.

We calculate the right hand integral which is denoted byI as follows: using polar
coordinates and integration by parts,

I = c
∫ ∞

�

log
(
1 + r

1+|x |
)
r−1−αdr

� log
(
1 + �

1+|x |
)

+
∫ ∞

�

r−α (1 + |x | + r)−1 dr

� (1 + |x |)−1 + (1 + |x |)−1
∫ 1+|x |

�

r−αdr +
∫ ∞

1+|x |
r−1−αdr

� (1 + |x |)−1 + (1 + |x |)−(α∧1)(1 + 1α=1 log(1 + |x |)) + (1 + |x |)−α

� (1 + |x |)−(α∧1)(1 + 1α=1 log(1 + |x |)).

Thus, we have �
ν
t (x) ≤ C .

(ii) If κt (x, z) is symmetric, that is, κt (x, z) = κt (x,−z), and |κt (x, z)| ≤ c(1+|x |)α ,
α ∈ (0, 2). Then supt,x �

ν
t (x) < ∞. In fact, by (1.20) we have for any β ∈

(0, α ∧ 1),

�
ν
t (x) � (1 + |x |)α

∫
|z|>1+|x |

(
1 + |z|

1+|x |
)β dz

|z|d+α

� (1 + |x |)α−β

∫
|z|>1+|x |

dz

|z|d+α−β
,
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Superposition principle for non-local FPK operators 707

which in turn yields supt,x �
ν
t (x) < ∞.

As far as we know, there are very few results concerning the superposition prin-
ciple for non-local operators. In the constant non-local case, the third author of the
present paper [36] used the superposition principle to show the uniqueness of non-local
FPKEs. Recently, Fournier andXu [16] proved a non-local version to the superposition
principle in a special case, that is,

N ν
t f (x) =

∫
Rd

[ f (x + z) − f (x)]νt,x (dz),

and (μt )t≥0 have finite first order moments, i.e.,

∫
Rd

|x |μt (dx) < ∞, ∀t ≥ 0.

These two assumptions rule out the interesting α-stable processes (see Example 1.8
above). To drop these two limitations, we employ some techniques from [12]. It should
be emphasized that the elegant push-forward method used in [32] does not seem to
work in the non-local case. Here the main obstacles are to show the tightness and
taking limits. One important motivation for studying the superposition principle for
nonlocal operators is to solve the Boltzman equation as explained in Subsection 1.2
of [16] (see also [17]).

1.3 Equivalence between FPKEs andmartingale problems

The following corollary is a direct consequence of Theorem 1.5 and [14, Theorem
4.4.2] (see also [21, Corollary 1.3] and [32, Lemma 2.12]). For the readers’ conve-
nience, we provide a detailed proof here.

Corollary 1.9 Under (1.18), thewell-posedness of theFokker–Planck–KolmogorovEq.
(1.13) is equivalent to the well-posedness of the martingale problem associated with
L . More precisely, we have the following equivalences:

• (Existence) For any ν ∈ P(Rd), the non-local FPKE (1.13) admits a solution
(μt )t≥0 with initial value μ0 = ν if and only ifMν

0(L ) has at least one element.
• (Uniqueness) The following two statements are equivalent.

(i) For each (s, ν) ∈ R+ × P(Rd), the non-local FPKE (1.13) has at most one
solution (μt )t≥s with μs = ν.

(ii) For each (s, ν) ∈ R+ × P(Rd),Mν
s (L ) has at most one element.

Proof We only prove the uniqueness part. (ii)⇒(i) is easy by Theorem 1.5. We show
(i)⇒(ii). For given (s, ν) ∈ R+×P(Rd) and let P1, P2 ∈ Mν

s (L ). To show P1 = P2,
it suffices to prove the following claim by induction:

(Cn) for given n ∈ N, and for any s ≤ t1 < t2 < tn and strictly positive and
bounded measurable functions f1, . . . , fn on R

d ,

E
P1( f1(Xt1) · · · fn(Xtn )) = E

P2( f1(Xt1) · · · fn(Xtn )). (1.22)
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708 M. Röckner et al.

First of all, by Theorem 1.5 and the assumption, one sees that (C1) holds. Next we
assume (Cn) holds for some n ≥ 2. For simplicity we write

η := f1(Xt1) · · · fn(Xtn ),

and for i = 1, 2, we define new probability measures

dP̃i := ηdPi/

∫
�

ηdPi ∈ P(D), ν̃i := P̃i ◦ X−1
tn ∈ P(Rd).

Now we show

P̃i ∈ Mν̃i
tn (L ), i = 1, 2.

Let M f
t be defined by (1.17). We only need to prove that for any t ′ > t ≥ tn and

bounded Bt -measurable ξ ,

E
P̃i

(
M f

t ′ ξ
)

= E
P̃i

(
M f

t ξ
)

⇔ E
Pi (M f

t ′ ξη) = E
Pi (M f

t ξη),

which follows since Pi ∈ Mν
s (L ). Thus, by induction hypothesis and Theorem 1.5,

ν̃1 = ν̃2 ⇒ P̃1 ◦ X−1
tn+1

= P̃2 ◦ X−1
tn+1

, ∀tn+1 > tn .

which in turn implies that (Cn+1) holds. The proof is complete. ��

1.4 Fractional porousmedia equation

Probabilistic representationof solution toPDEs is a powerful tool to study their analytic
properties (well-posedness, regularity, etc) since it allows us to use many probabilistic
tools (see [7–9]). As an application of the superposition principle obtained in Theorem
1.5, we intend to derive a probabilistic representation for the weak solution of the
following fractional porous media equation (FPME for short):

∂t u = �α/2(|u|m−1u), u(0, x) = ϕ(x), (1.23)

where the porous media exponent m > 1, α ∈ (0, 2) and �α/2 := −(−�)α/2 is the
usual fractional Laplacian with, up to a constant, alternative expression

�α/2 f (x) = P.V.

∫
Rd

( f (x + z) − f (x))dz/|z|d+α, (1.24)

where P.V. stands for the Cauchy principal value. This equation is a typical non-linear,
degenerate and non-local parabolic equation, which appears naturally in statistical
mechanics and population dynamics in order to describe the hydrodynamic limit of
interacting particle systems with jumps or long-range interactions. In the last decade,
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Superposition principle for non-local FPK operators 709

there are many works devoted to the study of Eq. (1.23) from the PDE point of view,
see [23] and the recent survey paper [33], the monograph [34] and the references
therein.

Let Ḣα/2(Rd) be the homogeneous fractional Sobolev space defined as the com-
pletion of C∞

0 (Rd) with respect to

‖ f ‖Ḣα/2 :=
(∫

Rd
|ξ |α| f̂ (ξ)|2dξ

)1/2

= ‖(−�)α/4 f ‖2,

where f̂ is the Fourier transform of f . The following notion about the weak solution
of FPME is introduced in [22, Definition 3.1].

Definition 1.10 A function u is called a weak or L1-energy solution of FPME (1.23)
if

• u ∈ C([0,∞); L1(Rd)) and |u|m−1u ∈ L2
loc((0,∞); Ḣα/2(Rd));

• for every f ∈ C1
0(R+ × R

d),

∫ ∞

0

∫
Rd

u · ∂t f dxdt =
∫ ∞

0

∫
Rd

(|u|m−1u) · �α/2 f dxdt;

• u(0, x) = ϕ(x) almost everywhere.

The following result was proved in [22, Theorem 2.1, Theorem 2.2].

Theorem 1.11 Let α ∈ (0, 2) and m > 1. For every ϕ ∈ L1(Rd), there exists a unique
weak solution u for Eq. (1.23). Moreover, u enjoys the following properties:

(i) if ϕ ≥ 0, then u(t, x) > 0 for all t > 0 and x ∈ R
d;

(ii) ∂t u ∈ L∞((s,∞); L1(Rd)) for every s > 0;
(iii) for all t ≥ 0,

∫
Rd u(t, x)dx = ∫

Rd ϕ(x)dx;
(iv) if ϕ ∈ L∞(Rd), then for every t > 0,

‖u(t, ·)‖∞ ≤ ‖ϕ‖∞;

(v) for some β ∈ (0, 1), u ∈ Cβ((0,∞) × R
d).

Our aim in this subsection is to represent the above solution u as the distributional
density of the solution to a nonlinear stochastic differential equation driven by the α-
stable process Lt withLévymeasure dz/|z|d+α .More precisely, consider the following
distribution dependent stochastic differential equation (DDSDE for short) driven by
the d-dimensional isotropic α-stable process Lt :

dYt = ρYt
(
Yt−

)m−1
α dLt , ρY0(x) = ϕ(x), (1.25)

where ρYt (x) := (dLYt /dx)(x) denotes the distributional density of Yt with respect
to Lebesgue measure. We introduce the following notion about the above DDSDE
(1.25).
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710 M. Röckner et al.

Definition 1.12 Let (�,F ,P; (Ft )t≥0) be a stochastic basis and (Y , L) two Ft -
adapted càdlàg processes. Forμ ∈ P(Rd), we call (�,F ,P; (Ft )t≥0; Y , L) a solution
of (1.25) with initial law μ if

(i) L is an α-stable process with Lévy measure dz/|z|d+α;
(ii) for each t ≥ 0, P ◦ Y−1

t (dx) = ρYt (x)dx ;
(iii) Yt solves the following SDE:

Yt = Y0 +
∫ t

0
ρYs

(
Ys−

)m−1
α dLs .

The following is the second main result of this paper.

Theorem 1.13 Let ϕ ≥ 0 be bounded and satisfy
∫
Rd ϕ(x)dx = 1. Let u be the unique

weak solution to FPME (1.23) given by Theorem 1.11 with initial value ϕ. Then there
exists a weak solution Y to DDSDE (1.25) such that

ρYt (x) = u(t, x), ∀t ≥ 0.

Remark 1.14 Here an open question is to show the uniqueness of weak solutions to
the nonlinear SDE (1.25), which can not be derived from the uniqueness of FPME
(1.23). We will study this in a future work.

Wemention that in the 1-dimensional case, such kind of probabilistic representation
for the classical porous media equation (i.e., α = 2) was obtained in [8], see also [10]
and [6,7] and for the generalization to the multi-dimensional case and more general
non-linear equations. We also mention that there has been an increasing interest in
DDSDEs driven by Brownian motion in the last decade, see [7,26] and in particular,
[13] as well as the references therein. As far as we know, even the weak existence
result for DDSDE (1.25) driven by Lévy noise in Theorem 1.13 is also new.

This paper is organized as follows: In Sect. 2, we study the Eq. (1.13) with smooth
and non-degenerate coefficients. Then we prove Theorems 1.5 and 1.13 in Sects. 3
and 4, respectively. Throughout this paper we shall use the following conventions:

• The letter C denotes a constant, whose value may change in different places.
• We use A � B to denote A ≤ CB for some unimportant constant C > 0.
• N0 := N∪{0},R+ := [0,∞),a∨b := max(a, b),a∧b := min(a, b),a+ := a∨0.
• ∇x := ∂x := (∂x1, . . . , ∂xd ), ∂i := ∂xi := ∂/∂xi .
• S

d+ is the set of all d × d-symmetric and non-negative definite matrices.

2 Proof of Theorem 1.5: smooth and nondegenerate coefficients

First of all, we show the following well-posedness result about the martingale problem
associatedwithLt ,which extendsStroock’s result [30] to unbounded coefficients case,
and is probably well-known at least to experts. However, since we can not find it in
the literature, we provide a detailed proof here.
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Theorem 2.1 Suppose that the following conditions are satisfied:

(A) at (x) : R+ × R
d → S

d+ is continuous and at (x) is invertible;
(B) bt (x) : R+ × R

d → R
d is locally bounded and measurable;

(C) for any A ∈ B(Rd), (t, x) �→ ∫
A(1 ∧ |z|2)νt,x (dz) is continuous;

(D) the following global growth condition holds:

�̄ν
a,b := sup

t,x

( |at (x)| + 〈x, bt (x)〉+ + gν
t (x)

1 + |x |2 + 2�
ν
t (x)

)
< ∞,

where gν
t (x) and �

ν
t (x) are defined by (1.10) and (1.19), respectively.

Then for each (s, x) ∈ R+×R
d , there is a uniquemartingale solutionPs,x ∈ Mx

s (Lt ).
Moreover, the following assertions hold:

(i) For each A ∈ B(D), (s, x) �→ Ps,x (A) is Borel measurable.
(ii) The following strong Markov property holds: for every bounded measurable f

and any finite stopping time τ ,

E
P0,x ( f (τ + t, Xτ+t )|Bτ ) = (

E
Ps,y ( f (s + t, Xs+t ))

)∣∣
(s,y)=(τ,Xτ )

.

Remark 2.2 Condition (D) ensures the non-explosion of the solution.

To prove this theorem we first show the following Lyapunov type estimate.

Lemma 2.3 Let ψ ∈ C2(R; R+) with limr→∞ ψ(r) = ∞ and

0 < ψ ′ ≤ 1, ψ ′′ ≤ 0. (2.1)

Fix y ∈ R
d and define a Lyapunov function Vy(x) := ψ(log(1+ |x − y|2)). Then for

all t ≥ 0 and x ∈ R
d , we have

Lt Vy(x) ≤ 2

( |at (x)| + 〈x − y, bt (x)〉+ + gν
t (x)

1 + |x − y|2 + 2H ν
t (x, y)

)
, (2.2)

where gν
t (x) is defined by (1.10), and

H ν
t (x, y) :=

∫
Bc

�

log
(
1 + |z|

1+|x−y|
)

νt,x (dz). (2.3)

Proof By definition, it is easy to see that

∇Vy(x) = 2(x − y)

1 + |x − y|2ψ ′(log(1 + |x − y|2))

and

∇2Vy(x) = 4(x − y) ⊗ (x − y)

(1 + |x − y|2)2 (ψ ′′ − ψ ′)(log(1 + |x − y|2))
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+ 2I

1 + |x − y|2ψ ′(log(1 + |x − y|2)).

Thus by (2.1), one gets that

A a
t Vy(x) ≤ 2|at (x)|

1 + |x − y|2 , Bb
t Vy(x) ≤ 2〈x − y, bt (x)〉+

1 + |x − y|2 .

On the other hand, recalling (1.12), we have for |z| ≤ � ≤ 1/
√
2,

	Vy (x; z) = Vy(x + z) − Vy(x) − z · ∇Vy(x) = zi z j∂i∂ j Vy(x + θ z)/2

= 2〈z, x − y + θ z〉2
(1 + |x − y + θ z|2)2 (ψ ′′ − ψ ′)(log(1 + |x − y + θ z|2))

+ |z|2
1 + |x − y + θ z|2ψ ′(log(1 + |x − y + θ z|2))

(2.1)≤ |z|2
1 + |x − y + θ z|2 ≤ |z|2

1 + |x − y|2/2 − |z|2 ≤ 2|z|2
1 + |x − y|2 ,

where θ ∈ [0, 1]. Similarly, by the mean value formula, we have

Vy(x + z) − Vy(x) = ψ ′(θ∗)
[
log

(
1 + |x − y + z|2) − log

(
1 + |x − y|2)]

≤ log

(
1 + 2|〈x − y, z〉| + |z|2

1 + |x − y|2
)

≤ log

(
1 + |z|√

1 + |x − y|2
)2

≤ log

(
1 + 2|z|

1 + |x − y|
)2

≤ log

(
1 + |z|

1 + |x − y|
)4

,

where θ∗ ∈ R. Hence,

N ν
t Vy(x) ≤

∫
Rd

	Vy (x; z)νt,x (dz) ≤ 2
gν
t (x)

1 + |x − y|2 + 4H ν
t (x, y).

Combining the above calculations, we obtain (2.2). ��
The following stochastic Gronwall inequality for continuous martingales was

proved by Scheutzow [27], and for general discontinuous martingales in [35, Lemma
3.7].

Lemma 2.4 (Stochastic Gronwall inequality) Let ξ(t) and η(t) be two non-negative
càdlàg adapted processes, At a continuous non-decreasing adapted processwith A0 =
0, Mt a local martingale with M0 = 0. Suppose that

ξ(t) ≤ η(t) +
∫ t

0
ξ(s)dAs + Mt , ∀t ≥ 0.
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Then for any 0 < q < p < 1 and stopping time τ > 0, we have

[
E(ξ(τ )∗)q

]1/q ≤
(

p
p−q

)1/q(
EepAτ /(1−p)

)(1−p)/p
E

(
η(τ)∗

)
,

where ξ(t)∗ := sups∈[0,t] ξ(s).

The following localization lemma is well known (see e.g. [31, Theorem 1.3.5]).
Although it is only proved for the probability measures on the space of continuous
functions, by checking the proof therein, one sees that it also works for D.

Lemma 2.5 Let (Pn)n∈N ⊂ P(D) be a family of probability measures and (τn)n∈N a
non-decreasing sequence of stopping times with τ0 ≡ 0. Suppose that for each n ∈ N,
Pn equals Pn−1 on Bτn−1(D), and for any T ≥ 0,

lim
n→∞ Pn(τn ≤ T ) = 0.

Then there is a unique probability measure P ∈ P(D) such that P equals Pn onBτn (D)

and Pn weakly converges to P as n → ∞.

We now use the above localization lemma to give

Proof of Theorem 2.1 Let χ ∈ C∞
c (Rd) be a smooth function with

χ(x) = 1, |x | < 1, χ(x) = 0, |x | > 2.

For any n ∈ N, define

χn(x) := χ(x/n)

and

ant (x) := at (xχn(x)), bnt (x) := χn(x)bt (x), νnt,x (dz) := χn(x)νt,x (dz).

By the assumptions (A)–(C), one can check that (an, bn, νn) satisfies for any T > 0,

(A′) ant (x) : [0, T ] × R
d → S

d+ is bounded continuous and ant (x) is invertible.
(B′) bnt (x) : [0, T ] × R

d → R
d is bounded measurable.

(C′) For any A ∈ B(Rd), (t, x) �→ ∫
A(1 ∧ |z|2)νnt,x (dz) is bounded continuous.

LetL n
t be defined in terms of (an, bn, νn). For each n ∈ N and (s, x) ∈ R+ ×R

d , by
[19, Theorem 2.34, p. 159], there is a unique martingale solution P

n
s,x ∈ Mx

s (L
n
t ),

and the following properties hold:

(i) For each A ∈ B(D), (s, x) �→ P
n
s,x (A) is Borel measurable.

(ii) The following strong Markov property holds: for any bounded measurable f and
finite stopping time τ ,

E
P
n
0,x ( f (τ + t, Xτ+t )|Bτ ) = (

E
Ps,y ( f (s + t, Xs+t ))

)∣∣
(s,y)=(τ,Xτ )

.
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714 M. Röckner et al.

Moreover, if we define

τn := inf{t ≥ s : |Xt | > n},

then by [19, Theorem 2.41, p. 161], for any m ≥ n, the “stopped” martingale problem
Mx

s,τn (L
m
t ) admits a unique solution, that is,

P
m
s,x |Bτn (D) = P

n
s,x |Bτn (D).

To show the well-posedness, by Lemma 2.5, it suffices to show that for any T > 0,

lim
n→∞ P

n
s,x (τn ≤ T ) = 0.

Let V (x) := log(1+ |x |2). By the definition of martingale solution (see Remark 1.4),
there is a càdlàg local P

n
s,x -martingale Mt such that

V (Xt∧τn ) = V (x) +
∫ t∧τn

s
L n

r V (Xr )dr + Mt

= V (x) +
∫ t∧τn

s
Lr V (Xr )dr + Mt

(2.2)≤ V (x) + 2�̄ν
a,b · (t − s) + Mt ,

where �̄ν
a,b is defined in (D). By Lemma 2.4 and condition (D), we obtain

sup
n

E
P
n
s,x

(
sup

t∈[s,T∧τn ]
V

1
2 (Xt )

)
< +∞,

which in turn implies that

P
n
s,x (τn ≤ T ) = P

n
s,x

(
sup

t∈[s,T∧τn ]
|Xt | > n

)
≤ 1

V
1
2 (n)

E
P
n
s,x

(
sup

t∈[s,T∧τn ]
V

1
2 (Xt )

)
n→∞→ 0.

The proof is complete. ��
Now we can give the proof of Theorem 1.5 under the assumptions (A)–(D).

Theorem 2.6 Assume that (A)–(D) hold. Then for anyμ0 ∈ P(Rd), there are a unique
solution (μt )t≥0 to FPKE (1.13) and a unique martingale solution P0,μ0 ∈ Mμ0

0 (L )

so that μt = P0,μ0 ◦ X−1
t .

Proof Let μ0 ∈ P(Rd) and P0,x ∈ Mx
0(L ). Clearly,

P0,μ0 :=
∫
Rd

P0,xμ0(dx) ∈ Mμ0
0 (L ),
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and μt := P0,μ0 ◦ X−1
t solves FPKE (1.13). It remains to show the uniqueness for

(1.13). Following the same argument as in [16], due to Horowitz and Karandikar [17,
Theorem B1], we only need to verify the following five points:

(a) C2
c (R

d) is dense in C0(R
d) with respect to the uniform convergence.

(b) (t, x) → Lt f (x) is measurable for all f ∈ C2
c (R

d).
(c) For each t ≥ 0, the operator Lt satisfies the maximum principle.
(d) There exists a countable family ( fk)k∈N ⊂ C2

c (R
d) such that for all t ≥ 0,

{Lt f , f ∈ C2
c (R

d)} ⊂ {Lt fk, k ∈ N},

where the closure is taken in the uniform norm.
(e) For each x ∈ R

d , Mx
0(L ) has exactly one element.

Note that (a)–(c) are obvious and (e) is proven in Theorem 2.1. Thus we only need
to check (d). Let ( fk)k∈N be a countable dense subset of C2

c (R
d), that is, for any

f ∈ C2
c (R

d) with support in BR , where R ≥ 2, there is a subsequence fkn with
support in B2R such that

lim
n→∞

(
‖ fkn − f ‖∞ + ‖∇ fkn − ∇ f ‖∞ + ‖∇2 fkn − ∇2 f ‖∞

)
= 0.

We want to show

lim
n→∞ ‖Lt ( fkn − f )‖∞ = 0.

Without loss of generality, we may assume f = 0 and proceed to prove the following
limits:

lim
n→∞ ‖At fkn‖∞ = 0, lim

n→∞ ‖Bt fkn‖∞ = 0, lim
n→∞ ‖N ν

t fkn‖∞ = 0.

The first two limits are obvious. Let us focus on the last one. By definition we have

|	 fkn (x; z)| = | fkn (x + z) − fkn (x) − 1|z|≤�z · ∇ fkn (x)|
≤ 1|z|>�| fkn (x + z)| + 1|z|>�1B2R (x)‖ fkn‖∞

+ 1|z|≤�1B2R+2� (x)‖∇2 fkn‖∞|z|2.

Note that

1|z|>�1B5R (x) ≤
[
log(1 + �

1+5R )
]−1

log
(
1 + |z|

1+|x |
)

,

and if |x | > 5R, then for |x + z| ≤ 2R,

|z|
1+|x | ≥ |x |−|x+z|

1+|x | ≥ |x |−2R
1+|x | > 1

2 ,
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and thus,

1|z|>�1Bc
5R

(x)1Bc
2R

(x + z) ≤
[
log( 32 )

]−1
log

(
1 + |z|

1+|x |
)

.

Therefore,

|N ν
t fkn (x)| ≤

∫
Rd

|	 fkn (x; z)|νt,x (dz) ≤ ‖∇2 fkn‖∞ sup
x∈B2R+2

∫
B1

|z|2νt,x (dz)

+ C‖ fkn‖∞
∫
Bc
1

log
(
1 + |z|

1+|x |
)

νt,x (dz)

= ‖∇2 fkn‖∞ sup
x∈B2R+2

gν
t (x) + C‖ fkn‖∞ sup

x∈Rd
�

ν
t (x),

which in turn implies by (1.18) that

lim
n→∞ ‖N ν

t fkn‖∞ = 0.

The proof is compete. ��

3 Proof of Theorem 1.5: general case

Let μt be a solution of (1.13) in the sense of Definition 1.1. In order to show the
existence of a martingale solution P ∈ Mμ0

0 (Lt ) so that

μt = P ◦ X−1
t ,

we shall follow the same lines of argument as in [12,15,32]. Here and below we use
the following convention: for t ≤ 0,

μt (dx) := μ0(dx), at (x) = 0, bt (x) = 0, νt,x (dz) = 0.

3.1 Regularization

Let ρt ∈ C∞
c ([0, 1]; R+) with

∫ 1
0 ρt(s)ds = 1 and ρx ∈ C∞

c (B1; R+) with∫
Rd ρx(x)dx = 1. For ε > 0, define

ρt
ε(t) := ε−1ρt(t/ε), ρx

ε (x) := ε−dρx(x/ε), ρε(t, x) := ρt
ε(t)ρ

x
ε (x).

Given a locally finite signed measure ζt (dx)dt on R
d+1, we define

ρε ∗ ζ(t, x) :=
∫
Rd+1

ρε(t − s, x − y)ζs(dy)ds.
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Throughout this section we shall fix

� ∈ (0, 1/
√
2).

We first show the following regularization estimate.

Lemma 3.1 Let a, b and ν be as in the introduction. For ε ∈ (0, �), we have

|ρε ∗ (aμ)|(t, x)
1 + |x |2 ≤ sup

s,y

2|as(y)|
1 + |y|2 (ρε ∗ μ)(t, x),

|ρε ∗ (bμ)|(t, x)
1 + |x | ≤ sup

s,y

2|bs(y)|
1 + |y| (ρε ∗ μ)(t, x).

Moreover, if we let

ν̄ε
t,x (dz) :=

∫
Rd+1

ρε(t − s, x − y)νs,y(dz)μs(dy)ds,

then we also have

gν̄ε

t (x)

1 + |x |2 ≤ sup
s,y

2gν
s (y)

1 + |y|2 (ρε ∗ μ)(t, x),

H ν̄ε

t (x, y) ≤ 2 sup
s,y′

H ν
s (y′, y)(ρε ∗ μ)(t, x),

where gν
t (x) and H ν

t (x, y) are defined by (1.10) and (2.3), respectively.

Proof Note that for |x − y| ≤ � ≤ 1/
√
2,

(1 + |y|2)/2 ≤ 1 + |x |2 ≤ 2(1 + |y|2). (3.1)

Fix ε ∈ (0, �) below. By definition we have

|ρε ∗ (aμ)|(t, x)
1 + |x |2 ≤

∫
Rd+1

ρε(t − s, x − y)
|as(y)|
1 + |x |2μs(dy)ds

≤ 2
∫
Rd+1

ρε(t − s, x − y)
|as(y)|
1 + |y|2μs(dy)ds,

and

|ρε ∗ (bμ)|(t, x)
1 + |x | ≤

∫
Rd+1

ρε(t − s, x − y)
|bs(y)|
1 + |x |μs(dy)ds

≤ 2
∫
Rd+1

ρε(t − s, x − y)
|bs(y)|
1 + |y|μs(dy)ds.
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Similarly, by Fubini’s theorem and (3.1), we have

gν̄ε

t (x)

1 + |x |2 =
∫
Rd+1

∫
B�

|z|2
1 + |x |2 ρε(t − s, x − y)νs,y(dz)μs(dy)ds

≤ 2
∫
Rd+1

∫
B�

|z|2
1 + |y|2 ρε(t − s, x − y)νs,y(dz)μs(dy)ds

= 2
∫
Rd+1

gν
s (y)

1 + |y|2 ρε(t − s, x − y)μs(dy)ds,

and

H ν̄ε

t (x, y) =
∫
Rd+1

∫
Bc

�

log
(
1 + |z|

1+|x−y|
)

ρε(t − s, x − y′)νs,y′(dz)μs(dy
′)ds

≤
∫
Rd+1

∫
Bc

�

log
(
1 + 2|z|

1+|y′−y|
)

ρε(t − s, x − y′)νs,y′(dz)μs(dy
′)ds

≤ 2
∫
Rd+1

H ν
s (y′, y)ρε(t − s, x − y′)μs(dy

′)ds.

Combining the above calculations, we obtain the desired estimates. ��
Let φ(x) := (2π)−de−|x |2/2 be the normal density. For ε ∈ (0, �), as in [12], we

define the approximation sequence με
t ∈ P(Rd) by

με
t (x) := (1 − ε)(ρε ∗ μ)(t, x) + εφ(x). (3.2)

We have the following easy consequence.

Proposition 3.2 (i) For each t ≥ 0 and ε ∈ (0, �), we have

0 < με
t (x) ∈ C∞(R+;C∞

b (Rd)),

∫
Rd

με
t (x)dx = 1.

(ii) For each t ≥ 0, με
t weakly converges to μt , that is, for any f ∈ Cb(R

d),

lim
ε→0

∫
Rd

f (x)με
t (x)dx =

∫
Rd

f (x)μt (dx).

(iii) με
t solves the following Fokker–Planck–Kolmogorov equation:

∂tμ
ε
t = (A ε

t + Bε
t + N ε

t )∗με
t =: (L ε

t )∗με
t ,

where A ε
t , B

ε
t and N ε

t are defined as in the introduction in terms of

aε
t (x) := (1 − ε)[ρε ∗ (aμ)](t, x) + εφ(x)I

με
t (x)

, (3.3)
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bε
t (x) := (1 − ε)[ρε ∗ (bμ)](t, x) + εφ(x)x

με
t (x)

, (3.4)

and

νε
t,x (dz) := 1 − ε

με
t (x)

∫
Rd+1

ρε(t − s, x − y)νs,y(dz)μs(dy)ds. (3.5)

(iv) The following uniform estimates hold: for any ε ∈ (0, �),

sup
t,x

[
|aε

t (x)| + gνε

t (x)

1 + |x |2 + |bε
t (x)|

1 + |x |

]
≤ 1 + 2 sup

t,x

[ |at (x)| + gν
t (x)

1 + |x |2 + |bt (x)|
1 + |x |

]

(3.6)

and

sup
t,x

H νε

t (x, y) ≤ sup
t,x

H ν
t (x, y), y ∈ R

d . (3.7)

Proof Thefirst two assertions are obvious by definition. Let us show (iii). By definition,
it suffices to prove that for any f ∈ C∞

c (Rd) and t ≥ 0,

με
t ( f ) = με

0( f ) +
∫ t

0
με
s (L

ε
s f )ds, (3.8)

where

με
t ( f ) :=

∫
Rd

f (x)με
t (x)dx .

Note that for any f ∈ C∞
c (Rd),

�φ + div(x · φ) ≡ 0 ⇒
∫
Rd

φ(x)(� f (x) − x · ∇ f (x))dx = 0.

By Fubini’s theorem and a change of variables, it is easy to see that (3.8) holds. Finally,
estimate (3.6) follows by Lemma 3.1. ��

The following result follows by Theorem 2.6.

Lemma 3.3 For any ε ∈ (0, �) and (s, x) ∈ R+ × R
d , there is a unique martingale

solution P
ε
s,x ∈ Mx

s (L
ε
t ). In particular, there is also a martingale solution Q

ε ∈
Mμε

0
0 (L ε

t ) so that for each t ≥ 0,

με
t (x)dx = Q

ε ◦ X−1
t (dx).
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720 M. Röckner et al.

Proof By Theorem 2.6, it suffices to check that (aε, bε, νε) satisfies conditions (A)–
(D). First of all, (A) and (B) are obvious, and (D) follows by (3.6). It remains to check
(C). We only check that for any ε ∈ (0, �), n ∈ N and x, x ′ ∈ Bn , t, t ′ ∈ [0, n],

∫
Rd

(1 ∧ |z|2)|νε
t,x − νε

t ′,x ′ |(dz) ≤ cn,ε(|t − t ′| + |x − x ′|). (3.9)

Noting that

inf
t

inf
x∈Bn

με
t (x) ≥ ε inf

x∈Bn
φ(x),

we have by definition that for all x, x ′ ∈ Bn and t, t ′ ∈ [0, n],

|νε
t,x − νε

t ′,x ′ |(dz) ≤
∫
Rd+1

∣∣∣∣ρε(t − s, x − y)

με
t (x)

− ρε(t ′ − s, x ′ − y)

με
t ′(x

′)

∣∣∣∣ νs,y(dz)μs(dy)ds

≤ cn,ε(|t − t ′| + |x − x ′|)
∫ n+1

0

∫
Bn+1

νs,y(dz)μs(dy)ds.

Estimate (3.9) then follows since sups,y∈[0,n+1]×Bn+1

∫
Rd (1 ∧ |z|2)νs,y(dz) < ∞. ��

3.2 Tightness

We first prepare the following result (cf. [11, Proposition 7.1.8]).

Lemma 3.4 Forμε
0 ∈ P(Rd)beingdefinedby (3.2), there exits a functionψ ∈ C2(R+)

with the properties

ψ ≥ 0, ψ(0) = 0, 0 < ψ ′ ≤ 1, −2 ≤ ψ ′′ ≤ 0, lim
r→∞ ψ(r) = +∞,

and such that

sup
ε∈[0,�)

∫
Rd

ψ
(
log(1 + |x |2))με

0(dx) < ∞. (3.10)

Proof Since με
0 weakly converges to μ0 as ε → 0, we have

lim
n→∞ sup

ε∈[0,�)
με
0(B

c
n) = 0.

In particular, we can find a subsequence nk such that for zk := log(1 + n2k),

zk+1 − zk ≥ zk − zk−1 ≥ 1,
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and

sup
ε∈[0,�)

∫
Rd

1[zk ,∞)(log(1 + |x |2))με
0(dx) = sup

ε∈[0,�)
με
0(B

c
nk ) ≤ 2−k .

Let z0 = 0 and define

ψ0(s) :=
∞∑
k=0

1[zk ,zk+1](s)
[
k − 1 + s − zk

zk+1 − zk

]
.

Clearly, we have

∫
Rd

ψ0(log(1 + |x |2))με
0(dx) ≤

∞∑
k=0

k
∫
Rd

1[zk ,∞)(log(1 + |x |2))με
0(dx) ≤

∞∑
k=0

k

2k
.

However, ψ0 does not belong to the class C2(R+). Let us take

ψ(t) :=
∫ t

0
g(r)dr

with g ∈ C1(R+), 0 ≤ g ≤ 1, −2 ≤ g′ ≤ 0, and

g(z) = ψ ′
0(z) if z ∈ (zk, zk+1 − k−1).

It is easy to see that such a function g always exists. The proof is complete. ��
Lemma 3.5 Let H ν

t (x, y) be defined by (2.3). We have

H ν
t (x, y) ≤ 2(1 + |y|)�ν

t (x), ∀t ≥ 0, x, y ∈ R
d . (3.11)

Proof Recall that

H ν
t (x, y) =

∫
Bc

�

log
(
1 + |z|

1+|x−y|
)

νt,x (dz).

If |x | ≤ 2|y|, then

H ν
t (x, y) ≤

∫
Bc

�

log (1 + |z|) νt,x (dz) ≤
∫
Bc

�

log
(
1 + (1+2|y|)|z|

1+|x |
)

νt,x (dz)

≤
∫
Bc

�

log
(
1 + |z|

1+|x |
)1+2|y|

νt,x (dz) = (1 + 2|y|)�ν
t (x).

If |x | > 2|y|, then 2|x − y| ≥ 2|x | − 2|y| ≥ |x | and

H ν
t (x, y) ≤

∫
Bc

�

log
(
1 + 2|z|

2+|x |
)

νt,x (dz) ≤ 2�
ν
t (x).
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The proof is complete. ��
Now, we prove the following tightness result.

Lemma 3.6 The family of probability measures (Qε)ε∈(0,�) is tight in P(D).

Proof By Aldous’ criterion (see [1] or [19, p.356]), it suffices to check the following
two conditions:

(i) For any T > 0, it holds that

lim
N→∞ sup

ε
Q

ε

(
sup

t∈[0,T ]
|Xt | > N

)
= 0.

(ii) For any T , δ0 > 0 and stopping time τ < T − δ0, it holds that

lim
δ→0

sup
ε

sup
τ

Q
ε (|Xτ+δ − Xτ | > λ) = 0, ∀λ > 0.

Verification of (i) Let ψ be as in Lemma 3.4 and V (x) := ψ(log(1 + |x |2)). By the
definition of martingale solution (see Remark 1.4), (2.2) and (3.6), there is a càdlàg
local Q

ε-martingale Mε
t and constant C independent of ε such that for all t ≥ 0,

V (Xt ) = V (X0) +
∫ t

0
L ε

r V (Xr )dr + Mε
t ≤ V (X0) + Ct + Mε

t .

By Lemma 2.4 , there is a constant C > 0 such that for all T > 0,

sup
ε∈(0,�)

E
Q

ε

(
sup

t∈[0,T ]
V

1
2 (Xt )

)
≤ C sup

ε∈(0,�)
(EQεV (X0))

1
2
(3.10)
< ∞, (3.12)

which in turn implies that (i) is true.
Verification of (ii) Let τ ≤ T − δ0 be a bounded stopping time. For any δ ∈ (0, δ0),
by the strong Markov property we have

Q
ε (|Xτ+δ − Xτ | > λ) = E

Q
ε
(
P

ε
s,y (|Xs+δ − y| > λ)

∣∣
(s,y)=(τ,Xτ )

)
. (3.13)

Recalling that Vy(x) := ψ(log(1 + |x − y|2), and by (2.2), (3.6), (3.7), (3.11) and
(1.18) we deduce that

L ε
t Vy(x) ≤ 2

(
|aε

t (x)| + 〈x − y, bε
t (x)〉+ + gνε

t (x)

1 + |x − y|2 + 2H νε

t (x, y)

)

≤ C

(
1 + |x |2 + |x − y|(1 + |x |)

1 + |x − y|2 + H ν
t (x, y)

)
≤ C(1 + |y|2),
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where C > 0 is independent of t, x, y and ε. Furthermore, we have

Vy(Xt ) = Vy(Xs) +
∫ t

s
L ε

r Vy(Xr )dr + Mε
t

≤ Vy(Xs) + C(1 + |y|2)(t − s) + Mε
t ,

where (Mε
t )t≥s is a local P

ε
s,y-martingale with Mε

s = 0. By Lemma 2.4 again and
since Vy(y) = 0, we obtain

E
P

ε
s,y

(
Vy(Xs+δ)

1/2
)

≤ C(1 + |y|)δ1/2.

Hence,

P
ε
s,y (|Xs+δ − y| > λ) = P

ε
s,y

(
Vy(Xs+δ) > ψ(log(1 + λ2))

)

≤ E
P

ε
s,y

(
Vy(Xs+δ)

1/2
)

/ψ1/2(log(1 + λ2))

≤ C(1 + |y|)δ1/2/ψ1/2(log(1 + λ2)),

and by (3.13) and (3.12),

Q
ε (|Xτ+δ − Xτ | > λ) ≤ Q

ε(|Xτ | > R) + C(1 + R)δ1/2/ψ1/2(log(1 + λ2))

≤ C/ψ1/2(log(1 + R2)) + C(1 + R)δ1/2/ψ1/2(log(1 + λ2)).

Letting δ → 0 first and then R → ∞, one sees that (ii) is satisfied. ��

3.3 Limits

In order to take weak limits, we rewrite

Bt f (x) + Nt f (x) = b̃t (x) · ∇ f (x) +
∫
Rd

	π
f (x; z)νt,x (dz) =: B̃t f (x) + Ñt f (x),

where

b̃t (x) := bt (x) +
∫
Rd

[
π(z) − z1|z|≤�

]
νt,x (dz), (3.14)

and

	π
f (x; z) := f (x + z) − f (x) − π(z) · ∇ f (x). (3.15)

Here, π : R
d → R

d is a smooth symmetric function satisfying

π(z) = z, |z| ≤ �, π(z) = 0, |z| > 2�.
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As in (1.11), we shall also write Ñt f (x) = Ñ ν
t f (x) = Ñ νt,x f (x). We have the

following result.

Lemma 3.7 For any f ∈ C2
c (R

d)with support in BR, there is a constant C = C( f ) >

0 such that for all x ∈ R
d and z, z′ ∈ R

d with |z′| ≤ |z|,

|	π
f (x; z) − 	π

f (x; z′)| ≤ C(|z − z′| ∧ �)(1BR+�
(x)1|z|≤�|z| + 1|z|>�∨(|x |−R)).

Proof Note that

Q := |	π
f (x; z) − 	π

f (x; z′)| = | f (x + z) − f (x + z′) − (π(z) − π(z′)) · ∇ f (x)|.

We make the following decomposition:

Q = Q · 1|z|≤� + Q · 1|z|>�1|x |≤R + Q · 1|z|>�1|x |>R =: Q1 + Q2 + Q3.

For Q1, since supp( f ) ⊂ BR and |z′| ≤ |z|, we have by (1.16) that

|Q1| ≤ |z − z′|2‖∇2 f ‖∞1BR+�
(x)1|z|≤� ≤ C(|z − z′| ∧ �)|z|1BR+�

(x)1|z|≤�.

For Q2, we have

|Q2| ≤
(
| f (x + z) − f (x + z′)| + |π(z) − π(z′)| · ‖∇ f ‖∞

)
1|z|>�1|x |≤R

≤ C(|z − z′| ∧ �)1|z|>�1|x |≤R .

As for Q3, we have

|Q3| = | f (x + z) − f (x + z′)| · 1|z|>�1|x |>R ≤ C(|z − z′| ∧ �)1|z|>�∨(|x |−R),

where we have used that for |z′| ≤ |z| ≤ |x | − R,

f (x + z) = f (x + z′) = 0.

Combining the above calculations, we obtain the desired estimate. ��
The following approximation result will be crucial for taking weak limits.

Lemma 3.8 For any δ ∈ (0, 1) and R, T > 0, there is a family of Lévy measures
ηt,x (dz) such that for any f ∈ C2

c (BR),

∫ T

0

∫
Rd

sup
x∈B1(y)

|Ñ νs,y f (x) − Ñ ηs,y f (x)|μs(dy)ds ≤ δ, (3.16)

and

sup
s,y

‖Ñ ηs,y f ‖∞ < ∞, (s, y, x) �→ Ñ ηs,y f (x) is continuous.
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Moreover, there are continuous functions ā : [0, T ] × R
d → R

d ⊗ R
d and b̄ :

[0, T ] × R
d → R

d with compact supports such that

∫ T

0

∫
Rd

(
|ās(x) − as(x)|

1 + |x |2 + |b̄s(x) − b̃s(x)|
1 + |x |

)
μs(dx)ds ≤ δ, (3.17)

where b̃ is defined by (3.14).

Proof (i) By the randomization of kernel functions (see [18, Lemma 14.50, p.469]),
there is a measurable function

ht,x (θ) : [0, T ] × R
d × (0,∞) → R

d ∪ {∞}

such that

νt,x (A) =
∫ ∞

0
1A(ht,x (θ))dθ, ∀A ∈ B(Rd).

In particular, we have

Ñ νs,y f (x) =
∫ ∞

0
	π

f (x; hs,y(θ))dθ =: Ñ hs,y f (x), (3.18)

and

gν
t (x) =

∫ ∞

0
1B�

(ht,x (θ))|ht,x (θ)|2dθ, νt,x (B
c
� ) =

∫ ∞

0
1Bc

�
(ht,x (θ))dθ.

We introduce X := [0, T ] × R
d × (0,∞) and a locally finite measure γ over X by

γ (dθ, dx, dt) := �t,x (θ)dθμt (dx)dt

with �t,x (θ) := 1B�
(ht,x (θ))1BR+�+1(x) + 1Bc

�∨(|x |−R−1)
(ht,x (θ)) so that

∫
X

(
|ht,x (θ)|2 ∧ �2

)
γ (dθ, dx, dt) =

∫ T

0

∫
Rd

gν
t (x)1BR+�+1(x)μt (dx)dt

+ �2
∫ T

0

∫
Rd

νt,x (B
c
�∨(|x |−R−1))μt (dx)dt

(1.14)
< ∞.

(3.19)

��
Claim There is a sequence of measurable functions {h̄nt,x (θ), n ∈ N} so that for each
n ∈ N, (t, x, θ) �→ h̄nt,x (θ) is continuous with compact support, and

|h̄nt,x (θ)| ≤ |ht,x (θ)|, (3.20)
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and

lim
n→∞

∫
X

(
|h̄nt,x (θ) − ht,x (θ)|2 ∧ �2

)
γ (dθ, dx, dt) = 0. (3.21)

Proof of Claim Fix m ∈ N. Since 1(0,m)(θ)γ (dθ, dx, dt) is a finite measure over X,
by Lusin’s theorem, there exists a family of continuous functions {h̄ε

t,x (θ), ε ∈ (0, 1)}
with compact support in (t, x, θ) such that

|h̄ε
t,x (θ)| ≤ |ht,x (θ)|, h̄ε

t,x (θ) → ht,x (θ), ε → 0, γ − a.s.

Thus by the dominated convergence theorem,

lim
ε→0

∫
X

(
|h̄ε

t,x (θ) − ht,x (θ)|2 ∧ �2
)
1(0,m)(θ)γ (dθ, dx, dt) = 0.

On the other hand, by (3.19) and the monotone convergence theorem, we have

lim
m→∞

∫
X

(
|ht,x (θ)|2 ∧ �2

)
1[m,∞)(θ)γ (dθ, dx, dt) = 0.

By a diagonalizaion argument, we obtain the desired approximation sequence. The
claim is proven.

(ii) Let f ∈ C2
c (BR). By (3.18), (3.20) and Lemma 3.7, we have for all x ∈ B1(y),

|Ñ hs,y f (x) − Ñ h̄ns,y f (x)| ≤
∫ ∞

0
|	π

f (x; hs,y(θ)) − 	π
f (x; h̄ns,y(θ))|dθ

�
∫ ∞

0

(
|hs,y(θ)|1B�

(hs,y(θ))1BR+�
(x) + 1Bc

�∨(|x |−R)
(hs,y(θ))

)

×
(
|hs,y(θ) − h̄ns,y(θ)| ∧ �

)
dθ

≤
(∫ ∞

0

(
|hs,y(θ)|21B�

(hs,y(θ))1BR+�+1(y) + 1Bc
�∨(|y|−R−1)

(hs,y(θ))
)
dθ

) 1
2

×
(∫ ∞

0

(
|hs,y(θ) − h̄ns,y(θ)|2 ∧ �2

)
�s,y(θ)dθ

) 1
2

=
(
1BR+�+1(y)g

ν
s (y) + νs,y(B

c
�∨(|y|−R−1))

) 1
2

×
(∫ ∞

0

(
|hs,y(θ) − h̄ns,y(θ)|2 ∧ �2

)
�s,y(θ)dθ

) 1
2

.

Hence, by (1.18) and (1.21) we further have

∫ T

0

∫
Rd

sup
x∈B1(y)

|Ñ hs,y f (x) − Ñ h̄ns,y f (x)|μs(dy)ds
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�
( ∫ T

0

∫
Rd

∫ ∞

0

(
|hs,y(θ) − h̄ns,y(θ)|2 ∧ �2

)
�s,y(θ)dθμs(dy)ds

) 1
2

=
(∫

X

(|hs,y(θ) − h̄ns,y(θ)|2 ∧ �2)γ (dθ, dy, ds)

) 1
2 (3.21)→ 0.

(iii) For fixed n ∈ N, since f ∈ C2
c (BR), by the above claim that (s, y, θ) �→ h̄ns,y(θ)

is continuous and has compact support, and the dominated convergence theorem, we
have that

(s, y, x) �→ Ñ h̄ns,y f (x) =
∫ ∞

0
	π

f (x; h̄ns,y(θ))dθ is continuous.

Moreover, we have

|Ñ h̄ns,y f (x)| ≤
∫ ∞

0
|	π

f (x; h̄ns,y(θ))|dθ ≤ C
∫ ∞

0

(
|h̄ns,y(θ)|2 ∧ 1

)
dθ.

Since h̄ns,y(θ) has compact support in (s, y), we have

sup
s,y

‖Ñ h̄ns,y f ‖∞ < ∞.

Finally we only need to take n large enough and define

ηt,x (A) :=
∫ ∞

0
1A(h̄nt,x (θ))dθ.

(iv) Now let us show (3.17). By Lusin’s theorem, the set of continuous functions with

compact supports is dense in L1([0, T ] × R
d , μt (dx)dt). Since

at (x)
1+|x |2 and b̃t (x)

1+|x | are
bounded by (1.18), the existence of ā and b̄ with property (3.17) follows. ��

Now we are in a position to give:

Proof of Theorem 1.5 LetQ be any accumulation point of (Qε)ε∈(0,�) (see Lemma 3.6).
By taking weak limits for

με
t = Q

ε ◦ X−1
t ,

we obtain

μt = Q ◦ X−1
t .

It remains to show that Q ∈ Mμ0
0 (Lt ). We need to show that for any f ∈ C2

c (R
d),

Mt := f (Xt ) − f (X0) −
∫ t

0
Ls f (Xs)ds
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is aBt -martingale underQ. Let J := {t ≥ 0 : Q(�Xt �= 0) > 0}, which is a countable
subset of R+. Since t �→ Mt is right continuous and bounded, to show that Mt is a
Bt -martingale under Q, it suffices to prove that for any s < t /∈ J and any bounded
Bs-measurable continuous functional gs on D,

E
Q(Mtgs) = E

Q(Msgs).

Since Q
ε ∈ M

με
0

0 (L ε), by the definition of martingale solution, we have

E
Q

ε

(Mε
t gs) = E

Q
ε

(Mε
s gs),

where

Mε
t := f (Xt ) − f (X0) −

∫ t

0
L ε

s f (Xs)ds.

Since limε→0 E
Q

ε
( f (Xt )gs) = E

Q( f (Xt )gs) for t /∈ J (see [19, Proposition 3.4,
page 349]), we only need to show the following three limits:

lim
ε→0

E
Q

ε

(
gs

∫ t

s
A ε

r f (Xr )dr

)
= E

Q

(
gs

∫ t

s
Ar f (Xr )dr

)
, (3.22)

lim
ε→0

E
Q

ε

(
gs

∫ t

s
B̃ε

r f (Xr )dr

)
= E

Q

(
gs

∫ t

s
B̃r f (Xr )dr

)
, (3.23)

lim
ε→0

E
Q

ε

(
gs

∫ t

s
Ñ νε

r f (Xr )dr

)
= E

Q

(
gs

∫ t

s
Ñ ν

r f (Xr )dr

)
. (3.24)

Below we assume that the support of f is contained in the ball BR . Let us first show
(3.24). Fix δ ∈ (0, 1). Let ηt,x (dz) be as given by Lemma 3.8, and recall that νε is
defined by (3.5). We write

∣∣∣∣EQ
ε

(
gs

∫ t

s
Ñ νε

r f (Xr )dr

)
− E

Q

(
gs

∫ t

s
Ñ ν

r f (Xr )dr

)∣∣∣∣
≤

∣∣∣∣EQ
ε

(
gs

∫ t

s
Ñ νε

r f (Xr )dr

)
− E

Q
ε

(
gs

∫ t

s
Ñ ηε

r f (Xr )dr

)∣∣∣∣
+

∣∣∣∣EQ
ε

(
gs

∫ t

s
Ñ ηε

r f (Xr )dr

)
− E

Q
ε

(
gs

∫ t

s
Ñ η

r f (Xr )dr

)∣∣∣∣
+

∣∣∣∣EQ
ε

(
gs

∫ t

s
Ñ η

r f (Xr )dr

)
− E

Q

(
gs

∫ t

s
Ñ η

r f (Xr )dr

)∣∣∣∣

+
∣∣∣∣EQ

(
gs

∫ t

s
Ñ η

r f (Xr )dr

)
− E

Q

(
gs

∫ t

s
Ñ ν

r f (Xr )dr

)∣∣∣∣ =:
4∑

i=1

Ii (ε),
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where ηε is defined similarly as in (3.5) with ν being replaced by η. For I1(ε), by
definition, we have

I1(ε) ≤ ‖gs‖∞E
Q

ε

(∫ t

s
|Ñ νε

r f (Xr ) − Ñ ηε

r f (Xr )|dr
)

= ‖gs‖∞
∫ t

s

∫
Rd

|Ñ νε

r f (x) − Ñ ηε

r f (x)|με
r (x)dxdr

= (1 − ε)‖gs‖∞
∫ t

s

∫
Rd

|Ñ ν̄ε

r f (x) − Ñ η̄ε

r f (x)|dxdr

= (1 − ε)‖gs‖∞
∫ t

s

∫
Rd

∣∣∣∣
∫
Rd

	π
f (x; z)(ν̄ε

r ,x − η̄ε
r ,x )(dz)

∣∣∣∣ dxdr ,

where 	π
f (x; z) is defined by (3.15) and

ν̄ε
r ,x (dz) :=

∫
Rd+1

ρε(r − s, x − y)νs,y(dz)μs(dy)ds.

By Fubini’s theorem we further have

I1(ε) ≤ ‖gs‖∞
∫ t

s

∫
Rd

∣∣∣∣
∫
Rd+1

ρε(r − s, x − y)

×
(
Ñ νs,y f (x) − Ñ ηs,y f (x)

)
μs(dy)ds

∣∣∣∣dxdr

≤ ‖gs‖∞
∫ T

0

∫
Rd

sup
x∈B1(y)

|Ñ νs,y f (x) − Ñ ηs,y f (x)|μs(dy)ds
(3.16)≤ ‖gs‖∞δ.

For I2(ε), recalling (3.2), we have

I2(ε) ≤ ‖gs‖∞E
Q

ε

(∫ t

s
|Ñ ηε

r f (Xr ) − Ñ η
r f (Xr )|dr

)

= ‖gs‖∞
∫ t

s

∫
Rd

|Ñ ηε

r f (x) − Ñ η
r f (x)|με

r (x)dxdr

= ‖gs‖∞
∫ t

s

∫
Rd

|(1 − ε)Ñ η̄ε

r f (x) − με
r (x)Ñ

η
r f (x)|dxdr

≤ (1 − ε)‖gs‖∞
∫ t

s

∫
Rd

∫
Rd+1

ρε(r − s, x − y)

× |Ñ ηs,y f (x) − Ñ ηr ,x f (x)|μs(dy)dsdxdr

+ ε‖gs‖∞
∫ t

s

∫
Rd

|φ(x)Ñ η
r f (x)|dxdr .
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Since (s, y, x) �→ Ñ ηs,y f (x) is continuous and ‖Ñ η f ‖∞ < ∞, by the dominated
convergence theorem, we get

lim
ε→0

I2(ε) = 0.

Concerning I3(ε), it follows by the definition of weak convergence that

lim
ε→0

I3(ε) = 0.

For I4(ε), we have

I4(ε) ≤ ‖gs‖∞
∫ t

s

∫
Rd

|Ñ η
r f (x) − Ñ ν

r f (x)|μr (dx)dr
(3.16)≤ ‖gs‖∞δ.

Since δ is arbitrary, combining the above calculations, we obtain (3.24). The proofs for
(3.22) and (3.23), by (3.17), are completely the same as above. The proof is complete.

��

4 Proof of Theorem 1.13

Let u be the unique weak solution of FPME (1.23) given by Theorem 1.11 with initial
value ϕ ≥ 0 being bounded and

∫
Rd ϕ(x)dx = 1. Let

σt (x) := |u(t, x)|m−1
α , κt (x) := u(t, x)m−1, νt,x (dz) := κt (x)dz

|z|d+α .

By the change of variable we have

νt,x (A) =
∫
Rd

1A(σt (x)z)
dz

|z|d+α
, A ∈ B(Rd \ {0}), (4.1)

and

Nt f (x) := P.V.

∫
Rd

( f (x + σt (x)z) − f (x))
dz

|z|d+α
= κt (x)�

α/2,

where the second equality is due to (1.24). By Definition 1.10 it is easy to see that
u(t, x) solves the following non-local FPKE:

∂t u = N ∗
t u, u(0, x) = ϕ(x),

that is, for every t > 0 and f ∈ C2
0 (R

d),

∫
Rd

f (x)u(t, x)dx =
∫
Rd

f (x)ϕ(x)dx +
∫ t

0

∫
Rd

κs(x)�
α/2 f (x)u(s, x)dxds.
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Note that for each t > 0,

|σt (x)| = |u(t, x)|m−1
α ≤ ‖ϕ‖

m−1
α∞ .

Thus, by Example 1.8 with the above νt,x and Theorem 1.5 with μ0(dx) = ϕ(x)dx,
there is a martingale solution P ∈ M μ0

0 (Nt ) so that

P ◦ X−1
t (dx) = u(t, x)dx, t ≥ 0.

By (4.1) and [19, Theorem 2.26, p.157] (see Remark 4.1 below), there are a stochastic
basis (�,F ,P; (Ft )t≥0) and a Poisson random measure N on R

d × [0,∞) with
intensity |z|−d−αdzdt , as well as an Ft -adapted càdlàg process Yt such that

P ◦ Y−1
t (dx) = P ◦ X−1

t (dx), t ≥ 0,

and

dYt =
∫

|z|≤1
σt (Yt−)z Ñ (dz, dt) +

∫
|z|>1

σt (Yt−)zN (dz, dt),

where Ñ (dz, dt) := N (dz, dt) − |z|−d−αdzdt . Finally we just need to define

Lt :=
∫ t

0

∫
|z|≤1

z Ñ (dz, ds) +
∫ t

0

∫
|z|>1

zN (dz, ds),

then L is a d-dimensional isotropic α-stable process with Lévy measure dz/|z|d+α ,
and

dYt = σt (Yt−)dLt .

The proof is finished. ��
Remark 4.1 For a more recent general analysis on the equivalence of stochastic equa-
tions and martingale problem, we refer to [21].
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