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Abstract

We study the overlaps between eigenvectors of nonnormal matrices. They quantify
the stability of the spectrum, and characterize the joint eigenvalues increments under
Dyson-type dynamics. Well known work by Chalker and Mehlig calculated the expec-
tation of these overlaps for complex Ginibre matrices. For the same model, we extend
their results by deriving the distribution of diagonal overlaps (the condition num-
bers), and their correlations. We prove: (i) convergence of condition numbers for
bulk eigenvalues to an inverse Gamma distribution; more generally, we decompose
the quenched overlap (i.e. conditioned on eigenvalues) as a product of independent
random variables; (ii) asymptotic expectation of off-diagonal overlaps, both for micro-
scopic or mesoscopic separation of the corresponding eigenvalues; (iii) decorrelation
of condition numbers associated to eigenvalues at mesoscopic distance, at polynomial
speed in the dimension; (iv) second moment asymptotics to identify the fluctuations
order for off-diagonal overlaps, when the related eigenvalues are separated by any
mesoscopic scale; (v) a new formula for the correlation between overlaps for eigen-
values at microscopic distance, both diagonal and off-diagonal. These results imply
estimates on the extreme condition numbers, the volume of the pseudospectrum and
the diffusive evolution of eigenvalues under Dyson-type dynamics, at equilibrium.
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1 Introduction

1.1 The Ginibre ensemble

Throughout this article we will consider a complex Ginibre matrix Gy = (G;;) IN =1
where the G;;’s are independent and identically distributed complex Gaussian random
variables, with distribution p = u®™):

@

1 N
Gy < mc(o, mIcl), w(dh) = ;e—NWzdm(x), (1.1)

where m is the Lebesgue measure on C. As proved in [28], the eigenvalues of Gy
have joint distribution

N
1
PNt damEN (@) = o= [Ty = ml [ [ w@ho. (2
Jj<k k=1

where Zy = N-NWN=-D/2 ]_[ﬁv: 1 J!. The above measure is written Py, with corre-
sponding expectation [Ey. The limiting empirical spectral measure converges to the
circular law, i.e. % 38, — %Itmddm()»).

The statistics of eigenvalues of Ginibre matrices have been studied in great details,
and other non-Hermitian matrix models are known to be integrable, see e.g. [23,37].
Much less is known about the statistical properties of eigenvectors of non-Hermitian
ensembles.

1.2 Overlaps

Almost surely, the eigenvalues of a Ginibre matrix are distinct and G can be diag-

onalized with left eigenvectors denoted (L,~)lN= |» Tight eigenvectors (R,-)IN= |» defined
by GR; = AjR;, L'G = A;L} (for a column vector X, we write X' = (x1, ..., X),
x* = (X1, ..., %, and ||x| = (x*x)!/?). Right and left eigenvectors are biorthogonal

basis sets, normalized by
L;Rj = §jj. (1.3)
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In other words, defining X with ith column R;, we have G = XAX -1 with A =
diag(Aq, ..., Ay), and L} is the ith row of ¥ = X~!. Because of the normalization
(1.3), the first interesting statistics to quantify non-orthogonality of the eigenbasis is

Oij = (RER)(LELy). (1.4)

These overlaps are invariant under the rescaling R; — ¢; R;, L; — ¢; 'L ; and the diag-
onal overlaps &;; = || R;||?||L; || directly quantify the stability of the spectrum. Indeed,
if we assume all eigenvalues of G are distinct and denote A;(¢) the eigenvalues of
G + 1 E, standard perturbation theory yields (in this paper || M|| = supy,=1 |Mx[2)

oY?* = lim sup ¢ (1) — Al
S o o

so that the ﬁili/ 2 ’s are also called condition numbers. They also naturally appear through
the formulas /% = | R;L!|l or 6}/% =limsup,_,; [z — G)~"I| - |z — ;| We refer
to [52, Sects. 35 and 52] for further discussion and references about the relevance of
condition numbers to the perturbative theory of eigenvalues, and to estimates of the
pseudospectrum.

Eigenvector overlaps also play a fundamental role in non perturbative dynamical
settings. First, the large off-diagonal &;;’s appear when G is the generator of evo-
lution in real or imaginary time, see [13, Appendix B]. More generally, eigenvector
correlations are as relevant as eigenvalue distributions in determining evolution at
intermediate times, a well known fact in hydrodynamic stability theory [53]. Sec-
ond, the overlaps also fully characterize the eigenvalue increments when all matrix
entries undergo independent Brownian motions, as shown in “Appendix A”, for any
deterministic initial condition. For the Dyson Brownian motion on Hermitian matri-
ces, the eigenvalues evolution is autonomous and coincides with Langevin dynamics
for a one-dimensional log-gas. On the contrary, in the nonnormal setting, the Dyson
and Langevin dynamics strongly differ. More about the Dyson-type dynamics in the
context of the Ginibre ensemble can be found in [11,30], and the Langevin equation
related to (1.2) is studied in [7].

1.3 Overlaps statistics

The statistical study of overlaps started with the seminal work of Chalker and Mehlig
[12,13,43]. They estimated the large N limit of the expectation of diagonal and off-
diagonal overlaps, for the complex Ginibre ensemble: for any |z1], |z2] < 1,

E(n v =z2) ~ N(A-|z, (1.5)
N—o0o
E(On | M =21, 2 =22)

11—z 1 — (14 Nlzj — ))e Ner-al’ e
N—oo N |z1 —z2f* 1 — e-Nlzi—22 ’ :
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400 P.Bourgade, G. Dubach

with (1.6) uniformly in |z; — z»| from the macroscopic up to the microscopic N~!/2

scale.! In[13], (1.5) and (1.6) were rigorously established for z; = 0, and convincing
heuristics extended them anywhere in the bulk of the spectrum. From (1.5), one readily
quantifies the instability of the spectrum, an order N greater than for normal matrices
in the bulk, and more stable closer to the edge.

An increasing interest in the statistical properties of overlaps for nonnormal matri-
ces followed in theoretical physics [5,29,33,48,50], often with interest in calculating
overlaps averages beyond the Ginibre ensemble. For example, eigenvector overlaps
appear to describe resonance shift if one perturbs a scattering system [25-27]. This
was experimentally verified [31]. Remarkably, the exact statistics (1.6) appeared very
recently in an experiment from [15] for microscopic separation of eigenvalues, suggest-
ing some universality of this formula. Unfortunately, many of the models considered in
the physics literature are perturbative, and most of the examined statistics are limited
to expectations.

In the mathematics community, the overlaps were recently studied in [54]. Walters
and Starr extended (1.5) to any z; in the bulk, established asymptotics for z; at the
edge of the spectrum, and suggested an approach towards a proof of (1.6). They also
studied the connection between overlaps and mixed matrix moments. Concentration
for such moments for more general matrix models was established in [21], together
with applications to coupled differential equations with random coefficients. We con-
tinue the rigorous analysis of overlaps by deriving the full distribution of the condition
numbers for bulk eigenvalues of the complex Ginibre ensembles. We also establish
(1.6) and an explicit formula for the correlation between diagonal and off-diagonal
overlaps, on any scale including microscopic. These formulas have consequences on
the volume of the pseudospectrum and eigenvalues dynamics.

Motivated by our explicit distribution for the overlaps, Fyodorov [24] recently
derived the distribution of diagonal overlaps for real eigenvalues of real Ginibre matri-
ces, as well as an alternative proof for the distribution of diagonal overlaps for the
complex Ginibre ensemble. Fyodorov’s method relies on the supersymmetry approach
in random matrix theory, while our technique is probabilistic, as described below.

1.4 Main results

Equation (1.5) suggests that the overlaps have typical size of order N. For the complex
Ginibre ensemble, we confirm that this is indeed the typical behavior, identifying the
limiting distribution of &'11. We recall that a Gamma random variable y,, has density

1 oa—1,—x
X et on R;.

Theorem 1.1 (Limiting distribution of diagonal overlaps) Let k > 0 be an arbitrarily

1
constant. Uniformly® in |z| < 1 — N™27%, the following holds. Conditionally on
Al = z, the rescaled diagonal overlap Oy converges in distribution to an inverse

1 Our formula (1.6) differs from the analogues in [12,13,43,54] through the additional denominator, due
to eigenvalues repulsion: we consider conditional expectation instead of averages.

2 More precisely, for any smooth, bounded, compactly supported function f and deterministic sequence

(zn) such that [zy] < 1 — N_%"'K wehaveE(f(ﬁ“/(N(] — \zN|2))) | X1 = ZN) — Ef(y{l).
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Gamma random variable with parameter 2 as N — 0o, namely

O @ 1
ﬁ PR

_— . 1.7
NO—1B) 7 (1.7

Our proof also gives convergence of the expectation, in the complex Ginibre case, so
that it extends (1.5). Equation (1.7) means that for any continuous bounded function

f we have
u — o e‘%
. (f (W) = Z) - /0 f() —5-dt. (1.8)

This =3 asymptotic density was calculated for N = 2 in [13, Sect. V.A.2], where this
heavy tail was suggested to remain in the large N limit.

Theorem 1.1 requires integrating over all the randomness of the Ginibre ensemble,
in this sense this is an annealed result. It derives from a quenched result, when con-
ditioning on all eigenvalues: the overlap &1 can then be decomposed as a product
of independent random variables, see Theorem 2.2. Very similar results have been
recently established for the Quaternionic Ginibre Ensemble [19], as well as for the
Spherical and Truncated Unitary Ensembles [20].

We observe that the limiting density in (1.8) vanishes exponentially fast at 0, so
that it is extremely unlikely to find any bulk overlap of polynomial order smaller than
N': the spectrum is uniformly unstable. This is confirmed by the following bound on
the extremes of condition numbers.

Corollary 1.2 (Bounds on the condition numbers) Let k, ¢ > 0, k < ko < 1/2 be fixed

and Qy C {1 — N—2+<0 <zl <1 -— N*%J”‘} be deterministic, measurable. Then
with probability tending to 1 as N — 00, the following event holds: for any A; € Q,

1
N§+K76 < ﬁii < N1+K0+5m(QN)1/2.

In particular, all bulk overlaps are in [N'=¢, N3/2%¢] with large probability. In terms
of polynomial scales in N, the above lower bound is clearly optimal, and we believe
the upper bound is also the best possible.

The next result is a rigorous proof of (1.6) in the bulk of the spectrum. It answers
Conjecture 4.5 in [54] and gives firm grounds to the heuristic arguments of Chalker and
Mehlig [13]. Different heuristics towards Theorem 1.3 for more general ensembles
recently appeared in [46], based on diagrammatics. Another recent approach [14]
allows to compute the conditional expectation of more general multi-index overlaps
when eigenvalues are conditioned to be at macroscopic distance.

Theorem 1.3 (Expectation of off-diagonal overlaps, microscopic and mesoscopic
scales) For any k € (0, 1/2), any ¢ > 0 and C > 0 the following holds. Uniformly in

1
71, 22 such that |z1| < 1 = N72™ w = /N|z1 — 22| € [N~C, N¥=¢], we have

=217 1= (1 + |)e !

E0n|r =z1,0= =-N
(Or2 | A1 =21,0 =22) PR [ Z ol

(1+OW~2%)) . (1.9)
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In particular, under the same hypothesis, in the mesoscopic regime |w| — o0, Eq. (1.9)
simplifies to

1 —-z122
—— (1 4+ 0(1)), 1.10
N —Zzl4( (D) (1.10)

E(@n|ra =z, =2)=
showing that the expectation of off-diagonal overlaps decreases with the separation
of eigenvalues. Our next result, about second moments at any scale, allows to identify
the natural size of off-diagonal overlaps, and gives polynomial decay of correlations
between condition numbers.

Theorem 1.4 (Correlations of overlaps: microscopic and mesoscopic scales) Let k €
0,1/2) and o € (0, k). Let ¢ > 0. Then uniformly in z1, 7o such that |z71] < 1 —

N7 o = /Nlz1 — 22| € [IN"2+, N9, we have

N2 (1 =z = |z21?)

E(100uP =24 =2) = (1+0mv2e0+),

leo|*
(1.11)
E (01100 | A1 =21, 22 = 22)
N2(1 — 12112 (1 — 12-1%) 1 R
— ( |Z1| )( |Z2| ) + |C!)| 62 (1 +O(N2(G_K)+£)). (112)
low|* 1 —elol
For the mesoscopic scales |w| — 00, the above asymptotics become
1—1z11) (1 = |z22)?
E(100 | = 2100 = ) ~ LD 22l (113
lz1 — 22]

E@0nOn|i=z1,ha=2)~E@n | M =20E@»n | =2). (1.14)

Equations (1.10) and (1.13) suggest that for any mesoscopic separation of eigenvalues,
O'1» does not concentrate, because E(| 0> |2) is of larger order than E(& 12)2. Contrary
to (1.6), (1.13) therefore identifies the size of off-diagonal overlaps, at mesoscopic
scales.

The covariance bounds from Theorem 1.4 yield effective estimates on the volume
of the pseudospectrum, defined through o, (G) = {z Nz—=G|I7! > e7! } We state
the result when the pseudospectrum is intersected with a mesoscopic ball, although it
clearly holds on any domain within the bulk that is regular enough.

Corollary 1.5 (Volume of the pseudospectrum) Let k > a > 0 be any constants and

1 1 1
By C{lz] <1 = N"27€Y} be a ball with radius at least N~27%, at most N~27%7¢,
Then the volume of the pseudospectrum in By is deterministic at first order: for any
c >0,

lim lim P
N—o00e—0

( m (0¢(G) N By)
1—c¢

< Ezsz@N(l_mz)dm(z) < 1+c> =1. (1.15)
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Finally, we remark that our results shed some light on natural matrix dynamics on
nonnormal matrices, the Dyson-type evolution where all matrix entries follow inde-
pendent complex Ornstein-Uhlenbeck processes. Under this evolution, the eigenvalues
follow the dynamics (see Proposition A.1)

dip(t) = dM(t) — %Ak(t)dt

where the martingales (My)1<k<n have brackets (M;, M;) = 0 and d(M;, Vj), =
O (t) %. Based on this observation, Theorem 1.1, Theorem 1.3 and some bound from
[24], we show that the eigenvalues propagate with diffusive scaling, at equilibrium,
but slower when close to the boundary.

Corollary 1.6 (Diffusive exponent for eigenvalues dynamics) Let c¢,a > 0 be arbi-
trarily. Consider the matrix dynamics (A.1) with initial condition G (0) distributed as
(1.1). Let Z C {lz| <1 —c}beaball,andt < N~°. Then as N — 0o we have

d
E(A1 () = 21(0) P15, 0yes) = t/gg(l - |z|2)$(1 +o(1), (1.16)

E (0‘1 () = 210D (G2(1) — )\2(0))]1{)»1(O)Gﬂ}m{“\l(0)*12(0)\<N_”}) = o(tN ).
(1.17)

Given the time scale in (1.16), we expect that, conditionally on {A;(0) = z}, the
process

(i (t5) — 2ogs<t

Vil —1z%)

converges in distribution to a normalized complex Brownian motion as N — oo (¢
is any scale N~!17¢ < 1t < N79), ie. %@(Bs(“ + igx(i))o@gl with B® and B®
independent standard Brownian motions. Moreover, from (1.17), we expect that these
limiting processes associated to different eigenvalues are independent.

1.5 About the proofs

Our analysis of the condition numbers starts with the observation of Chalker and
Mehlig: the overlaps coincide with those of the Schur form of the original oper-
ator, a particularly simple decomposition when the input is a Ginibre matrix.
We refer the reader to (2.2) for this key structure at the source of our induc-
tions.

In Sect. 2 our method to prove Theorem 1.1 follows from a simple, remarkable
identity in law: the quenched overlap (i.e. conditionally on eigenvalues and integrat-
ing only over the complementary randomness of the Ginibre ensemble) is a product
of N — 1 independent random variables, see Theorem 2.2. In the specific case A = 0,
for the complex Ginibre ensemble, this split of the distribution of 1| remains in the
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404 P.Bourgade, G. Dubach

annealed setting, as a consequence of a theorem of Kostlan: the radii of eigenval-
ues of complex Ginibre matrices are independent random variables. For the Ginibre
ensemble with conditioned eigenvalue, we give the extension of Kostlan’s theorem
in Sect. 5. This concludes a short probabilistic proof of Theorem 1.1 in the case
X =0.

The extension to general A; in the bulk proceeds by decomposition of ] into
a long-range factor, which gives the deterministic 1 — |z|?> coefficient, and a short-
range factor, responsible for the y{l fluctuations. Concentration of the long-range
contribution relies on rigidity results for eigenvalues, from [9,10]. To prove that the
short-range contribution is independent of the position of A, we need strong form
of invariance for our measure, around the conditioned point Aj. While translation
invariance for P follows easily from the explicit form of the Ginibre determinantal
kernel, the invariance of the conditioned measure requires more involved tools such
as the negative association property for determinantal point processes, see Sect. 4.
Corollary 1.2 directly follows from our estimates on the speed of convergence to the
inverse Gamma distribution, as explained in Sect. 2.

The proof of Theorems 1.3 and 1.4 in Sect. 3 follows the same scheme: first a
quenched identity, then an explicit formula obtained for z; = 0 and a localization
procedure to isolate the short and long-range contributions. The main difference with
the proof of Theorem 1.1 concerns the special case z; = 0, the other step being more
robust. Due to conditioning on z», rotational invariance of the remaining eigenval-
ues is broken and there is no analogue of Kostlan’s theorem to obtain the explicit
joint distribution of &3, 011 and ;. Despite this lack of rotational invariance,
Chalker and Mehlig had already obtained a closed-form formula for E(&'1;) when
z1 = 0. Remarkably, the second moments are also explicit (although considerably
more involved) even for finite N, see Proposition 3.6. Our correlation estimates on
overlaps imply Corollary 1.5 by a second moment method. It is plausible yet unclear
that Theorem 1.4 admits generalizations to joint moments with an arbitrary num-
ber of conditioned eigenvalues. In fact, our second moment calculation involves a
P-recursive sequence [see (3.23)], for which explicit solutions are not expected in
general. We hope to address the general study of relevant holonomic sequences in
future work.

In “Appendix A”, we consider eigenvalues dynamics. After deriving the relevant
stochastic differential equations in Proposition A.1, we show that Corollary 1.6 follows
from Theorem 1.1 and Theorem 1.3. The diagonal overlaps dictates the eigenvalues
quadratic variation, the off-diagonal overlaps their correlations.

Finally, although this article focuses on the eigenvalues condition numbers, the
Schur decomposition technique also readily answers the natural question of angles
between normalized Ginibre eigenvectors, as explained in “Appendix B”.

1.6 Numerical test for universality of the distribution of overlaps
Universality of eigenvector statistics recently attracted a lot of attention for random

Hermitian matrices. For the Gaussian orthogonal and unitary ensembles, the eigenvec-
tors basis is Haar distributed on the corresponding unitary group. As a consequence,
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o 0s 1 15 2 25 3 35 0 0s 1 15 2 25 3 35 0 05 1 15 2 25 3 35

(a) Complex Ginibre ensemble, en- (b) Complex Bernoulli, indepen- (¢) Complex Uniform, entries are
tries have density (1.1). dent £1 real and imaginary parts. uniform on {|z| < 1}.

ii
N2 %)
the matrix entries. The average is performed otver all bulk eigenvalues of a 600 x 600 matrix, sampled 100
times. The curve gives the density of the inverse Gamma distribution with parameter 2

Fig. 1 The histogram of the overlaps associated to bulk eigenvalues for different densities of

projections of eigenvectors on deterministic directions are asymptotically normal, as
the projection of the uniform measure on high dimensional spheres (a result due to
Lévy and Borel). These eigenvector statistics are now known to be universal [8,39,51],
holding for generalized Wigner matrices.

The situation is quite different for eigenvectors of dense random non Hermitian
matrices: orders of magnitude such as delocalization are known [49] , but universal-
ity seems out of reach with current techniques. In Fig. 1, we numerically investigate
whether the inverse Gamma distribution from Theorem 1.1 describes the typical behav-
ior of condition numbers. This leads us to conjecture that for any complex random
matrix with i.i.d. entries with substantial real and imaginary parts, the normalized
condition numbers converge to the inverse Gamma distribution with parameter two.

1.7 Notations and conventions

The partial sums of the exponential are written

Ja Xi
el (x) = = (1.18)

i=k
and we abbreviate ¢; = e,((oo>, e = e(()N). Throughout the paper, 0 < x < lisa
smooth cut-off function on Ry such that x(x) = 1 forx < 1/2 and O for x > 1. We
write f = O(¢) if | f| < C|¢| for some C > 0 which does not depend on N, and
f =o(p) if | f|/I¢] — 0as N — oo. Along this work, the constants C and c are
some universal (resp. typically large and small) constants that may vary from line to

line.

2 Diagonal overlaps

This section first gives aremarkable identity in law for the diagonal overlap conditioned
on the eigenvalues, Theorem 2.2. Eigenvalues are then integrated, first for A1 at the
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406 P.Bourgade, G. Dubach

center of the spectrum thanks to a variant of Kostlan’s theorem, then anywhere in the
bulk.

2.1 The quenched diagonal overlap

For all i # j we denote o;; = ﬁ and «;; = 0. These numbers satisfy
. =%
ook
ajj +aj; =0, ajj‘i‘oljk:#. 2.1
ik

We first recall the analysis of the overlaps given by Chalker and Mehlig, and include
the short proof for completeness.

Proposition 2.1 (From [12,13,43]) The following joint equality in distribution holds:

N N N
O =Y 16>, On=-bY bid., On=1+0> |4
i=I i=2 i=2

where by = dr = 1, di = 0, and the next terms are defined by the recurrence

i—1 i—1
bi = ay; Zkaki fori >2, di = ay; deTk,» fori > 3.
k=1 k=1

The T;; are independent complex Gaussian variables, centered and with variance
NL

Proof The overlaps are unchanged by an unitary change of basis, and therefore we
can study directly the overlaps of the matrix 7. As proved in [44, Appendix 35], this
Schur transform 7 has the eigenvalues of G as diagonal entries, and independently

. S . . d
the upper triangle consists in uncorrelated Gaussian random variables, T;; @ Gij:

M Ty ... TN
0 Ay ... Thy

r=|. 1. (2.2)
0 ... 0 Ay

For T, the right eigenvectors are of type
Ry =(1,0,...,00,  Ry=(a,1,0,...,0),
and the left eigenvectors are denoted

Ly=(b1,....by)', La=(di,...,dy)".
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Biorthogonality relations give by = 1,d; = 0,d> = 1 and a = —b;. The formulas
given for the overlaps follow, and the recurrence formulas proceed from the definition
of the eigenvectors, i.e. L’j T =2 L‘j. O

Proposition 2.1 shows that the eigenvectors, and thus the overlaps, are obtained
according to a very straightforward random process. Indeed, let us consider the
sequences of column vectors:

Bk=(l,b2,...,bk)t so that L| = By,
Dy =(0,1,d3,...,dy)" sothat L, = Dy,
Te = (T1kt1, > Texs1)' (subset of the k + 1 th column of T).

For any k, T} is a k-dimensional centered Gaussian vector with independent coordi-
nates and variance 1/N. We denote the corresponding o -algebras

Fao=0 (T, 1 <k <n) =0 (T; j+1,1 <i < j<n).

In particular, b, = MT_‘ZM € F1. Therecurrence formula from Proposition 2.1 becomes

bn+l = U],n+1 B,tzTnv dn+1 = 241 D:lTn, n> 1. (2.3)

Theorem 2.2 The following equality in law holds conditionally on {\1, ..., AN}:

N 2
@ [ X |
Oy = | | (1+—)
ey NAi — Anl?

where the X,,’s are independent standard complex Gaussian random variables (X, @

JLE(J% + i43) with standard real Gaussians N1, N3).

Remark 2.3 In particular

N
erow =] (1+ Tty e 24

where Er is partial integration in the upper-diagonal variables (7;;) j~;. We therefore
recover the result by Chalker and Mehlig [12,13,43].

Proof For fixed N and 1 < n < N we shall use the notations
O = B2, 6% = —by BiD,, 03 = (1 + b:P)IDal> (25)
Note that
T12 ‘2

1 2
o =1, 07 =1+'b2'2=1+‘—xl—xz
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408 P.Bourgade, G. Dubach

and, with (2.3),

|a1,n+l B,t1Tn|2)

+1 2 = kll+ B
n

=ﬁ<n><1+ | X411 )
H Ny — dn1 2/

B'T, . . . . .
where X,4+1 := VN ﬁ is a F;,-measurable Gaussian with variance 1, independent
n

of F,—_1. We have therefore proved the expected factorization with independent X,,’s,
by an immediate induction. O

2.2 The annealed diagonal overlap at the origin

We recall that a Gamma random variable y,, has density ﬁx“‘le_x onR,,and a

Beta random variable S, 5 has density rr(;“);ff;)x“’l (1 —x)b-1 Tj0,17(x).

Proposition 2.4 Conditionally on {A1 = 0}, the following equality in distribution
holds:

d 1
o, 2 , (2.6)
B2.N-1

In particular, E (011 | A1 = 0) = N and N~' 0y converges weakly to )/271.

Proof With the notations from Theorem 2.2, we have (|X2|2,...,|Xn[?) @
(yl(z), . yl(N)), a collection of N — 1 independent Gamma random variables with

parameter 1. Moreover, still conditionally on A; = 0, from Corollary 5.6 we have

(N|x2)%, ..., Njan |2} @ {y2, ..., ¥n}, a set of independent Gamma random vari-
ables with corresponding parameters. Theorem 2.2 therefore yields, conditionally on
A1 =0,

where all random variable are independent. Equation (2.6) then follows immediately
from Lemma 2.5 below. This readily implies

rHr(N +1
M@MM=®=E@Q4%D%6%%J=N. @7

The convergence in distribution follows from a simple change of variables: for any
bounded test function f,
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1 ! 1 N! N—2
E<f<N,32,N—1>) _/0 f<ﬂ> W T

o N-—1 1\ dr
= t 11— — = 2.8
0= ( Nt) 3 2.8)
which clearly converges to the right hand side of (1.8) as N — oo. O

Lemma 2.5 The following equalities in distribution hold, where all random variables
with different indexes are independent:

Ya (d)
= Ba.b> (2.9)
Ya+ ¥ ¢
r @
[18i1 = Bav-r. (2.10)
j=2

Proof Equation (2.9) is standard, see e.g. [34, Chapter 25]. The equality (2.10) follows
by immediate induction from the following property [17]: if B, , and B, are
independent, their product has distribution 8, 4. a

2.3 The annealed diagonal overlap in the bulk

With the following theorem, we first recall how the expectation of diagonal overlaps
is accessible, following [12,13,43,54]. We then prove Theorem 1.1.

The following was proved by Chalker and Mehlig for z = 0. They gave convincing
arguments for any z in the bulk, a result then proved by Walters and Starr. Explicit
formulae have also been recently obtained in [1] for the conditional expectation of
diagonal and off-diagonal overlaps with respect to any number of eigenvalues. We
include the following statement and its short proof for the sake of completeness.

Theorem 2.6 (From [12,13,43,54]) For any z € D, we have

—c(z)N
IE(ﬁnI?»l=z)=N(1—|z|2)+O<\/ﬁe )

1 —|z]?

where ¢(z) = |z|* — 1 —log(|z|?) > 0.

Proof From (2.4), we can write

N
1
]E(ﬁll|)‘l:Z):E<H<l+m>|X1=Z>.

k=2
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410 P.Bourgade, G. Dubach

Theorem 5.3 with g(A) =1+ & N then gives

<l_[g()tk) | A = Z) det(fij)i<i,j<n—1 where f;;

(2)
k=2 ZN

1 e 1
= i_'/)v—w—l <N + |z—k|2> w(dr).

This is the determinant of a tridiagonal matrix, with entries [we use (5.1)]

1 N 1472 z z

Jii = N IN—T Jii+1 = N Sii-1= TN

Denoting x = N|z|> and d; = det((M;;)1<i,j<k), with the convention dy = 1 we
have

x+2
N

dk=<l+

dy =

x+1 1 X
k de—l Tk N2k

di—2,
kD)
sothatay = dyN 2 satisfiesag =1,a; = x + 2,
x+1 X
=1+ Ak—1 — ~ak—2.

k
This gives a; = (k + 1)e(k+])(x) — xe®(x) by an immediate induction. Thus, we
conclude

(N)
eV (x)
E (011 | M =Z)=N—e<N*1)(x) - (2.11)
From the asymptotics
¢ N
(N) _ X X x X
eV (x)=e¢e" — — = +O<—>
g] e N!(1—z[?)
eN 1=z +logz*)
=140l — ),
V2N = [z]?)
the expected formula follows. O

The following proofs make use of special integrability when the conditioned par-
ticle is at the center, together with a separation of the short-range and long-range
eigenvalues. This separation of scales idea is already present in [13], though not rig-
orous. To illustrate the main ideas, we first give an alternative proof of Theorem 2.6
(with deteriorated error estimate) which does not rely on explicit formulas, but rather
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on rigidity and translation invariance. We then prove the main result of this section,
Theorem 1.1.

Proof (Alternative proof of Theorem 2.6) We denote v, the measure (1.2) conditioned
to A1 = z. Note that v, is a determinantal measure as it has density [ [,; ;< A —

)»j|2€_ 32 VG for some external potential V' (which depends on z). With a slight
abuse of language, we will abbreviate E,, (X) = E(X | A; = z) even for X a function
of the overlaps.

The proof consists in three steps: we first show that we can afford a small cutoff of
our test function around the singularity, then we decompose our product into smooth
long-range and a short-range parts. The long range concentrates, and the short range
is invariant by translation.

First step: small cutoff Let g,(A) = 1 + Remember that from (2.4),

1
Niz—r?
E,, (O1) = E,, (]_[fvz2 gz()\i)> . We denote n; (1) = g (M), - y-a, With A =
A(x) alarge enough chosen constant, and first prove the following elementary equal-

1ty:

N N
E,, <H g (M)) =E,, (1"[ hza,-)) +O(NT). (2.12)
i=2

=2

Note that the exponent N ~3 here is just chosen for the sake of concreteness. The left

-1
handsidecoincideswithEN_l(1‘[?’:2(|z—/\,~|2+N—1)) (EN_1 (r[ﬁiz(|z—x,~|2))) ,
so that (2.12) follows if we can prove

N
_ _ 2_
En-1 (]‘[<|z—xi|2+N e N ”))

i=2

N

_ _ 2_ _

—Eva (l_[(iz—xi|2+N ey N ”) =O0(N"5), (213)
=2

N
En_1 <H(Iz — hi |2)eN(|Z21)> >N, (2.14)

=2

for a constant B sufficiently larger than C. Equation (2.14) follows from Lemma 2.11.
For equation (2.13), note that the left hand side has size order

N

_ _ 2_

]EN—I (l_[(|z _)"l|2 + N l)e N(lZl 1))]lEli:A;—z|<NA>
i=2

N 1/2
= O(NiA/lo)]EN—l <1_[(|Z _ )\i|2 + N1)262N(Z|21)> ,
i=2
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412 P.Bourgade, G. Dubach

by Cauchy—Schwarz inequality, union bound, and considering that A can be taken as
large as needed. This last expectation is bounded by Lemma 2.11, which concludes
the proof of (2.12) by choosing A large enough.

Second step: the long-range contribution concentrates We smoothly separate the short-
range from a long-range contributions on the right hand side of (2.12). For this, we
define:

Xes(h) = X(N%—‘Wz - x|) with 8 € (0, x) (2.15)
1
14 _ _
fr) = Nle = )»Iz(l Xz,5(X)) (2.16)
[ 1= s () dm)
fi=(N 1)/@ NP (2.17)

hz 1) = ghi(k)+h§(k)’
1
hi(A) =log (1 + mﬂk_beﬂ)Xz‘B()\),

ht(n) = log (1 + (1 = xe5(0), (2.18)

—7)
Nz — A2
Note that
N

1
* 2 m(l — X2.6(A)). (2.19)

N -
Yoo - f

i=2

<

N -
> Rt - £
i=2

To bound the first term on the right hand side, we rely on [10, Lemma 3.2]: for any
o such that oz||fz/é||oo < 1/3 (in practice ||fz/é||00 < N2 5o that we will choose
a = cN? for some fixed small c), we have

Cavar (S 1) (2.20)

X

for some C which does not depend on N. We first bound the above variance. Introduce a
partitionof type 1 = x +Y_ k>1 £(27Kx) forany x > 0, with & smooth, compactly sup-
ported. Let fz‘fk(x) = fLVEQT* N2z and K = min{k > 1: 2KN—1/2H0 >
C} where C and therefore K only depend on §. Then ), ff ) = Zle > fﬁk(ki)
with probability 1 — e~V (here we use that there are no eigenvalues |A;| > 1+ ¢ with
probability 1 — e~¢®N thanks to the Corollary 5.5). Moreover, from [9, Theorem

1.2], forany ¢ > 0 and D > 0, there exists Ng > 0 such that forany N > Ny, |z| < 1
and 1 < k < K we have

Py-—i ('Z fLG0) — (N =1) /M I
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This implies the same estimate for the conditioned measure by a simple Cauchy—
Schwarz inequality:

P,, (‘Z fL00) = (N — 1)/|.7,<1 fh

< NPy (}Z L0 — (N =1)

- N—25+£>

172
ff,k - N—25+s)

|z]<1

N 172

2 D

]EN—I (l_[ |Z _ )\[|4€_2N(|Z‘ —1)) < N_7+2C.
i=2

where we used Lemma 2.11. We conclude that for any ¢ > 0 and D we have
Po (1 FL00) = il > N72F) < NP,

so that Var, (X)L, fL04) = O~ and B, (1), ff00) = f +
O(N~2%8) Asa consequence, (2.20) becomes

Evz <ea(2fv=2 ff()w)_f_z)> < eca2N745+€+C‘a|N725+£' (2'21)
The same reasoning yields

]Evz (@a ZIN=2 m (IXZ,S()“i))> g eC()lzlvi&erg"t‘C‘C\ll]\/iz(s+£ . (222)
The choice o = ¢N? in (2.21), (2.22) together with (2.19) implies

P, (A) < e~N° where A = {

N -
> hiGa) — f
i=2

> N—28+5 } .

This yields, for some p = 1 + c(k), c(k) > 0 and some g, r > 1,

E, (eZ,<h§(x,v>+h§<x,v))1 A)

<E,. (ep > h;un)l/p E, (eq > hﬁ()u‘))l/q P, (A)l/r < e~ N (2.23)

Here we used that the third term has size order e~ <N E, the second one is of order
e4f: = O(NC) from (2.21), (2.22), and so is the first one from Lemma 2.9 (we needed
the initial small cutoff changing g into 4 in order to apply this Lemma). Moreover,
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E, (eZi(hg(xi)+h§(A,-))]lAC> = (14+O(N~2+)E, <€2,. h;(k»ﬂi)

—(1+O(N"P+)E,, (eZ,- hi(xnﬂzh) ,

and this last expectation is of order e~V * for the same reason as (2.23). To summarize,
with the previous two equations we have proved (up to exponentially small error terms)

N -
B, (H hz(M)> = (1 +ON"2F)) el B, (er hm») .

i=2

Third step: the local part is invariant. With p = 1 in (2.33), we have
E,, (EZ" hi()"")) =E, (eZi hf)()ui)) +0 (e—cNZK) -

This yields

N o N
E,, (1"[ hzui)) = (1+O(N"?* )l E,, (H ho(xi)) :

i=2 i=2

FromLemma2.8,e/s=/0 = 1—|z|2 and from (2.7), (2.12) we have E,, (]‘[{V: ) ho(x,-))
= N + O(N~2). This concludes the proof. O
Proof of Theorem 1.1 We follow the same method as in the previous proof, except that

we won’t need a small a priori cutoff: we are interested in convergence in distribution,
oyl
notinL".

First step: the long-range contribution concentrates We smoothly separate the short-
range from a long-range contributions in Theorem 2.2:

o1 D X 00 X0+ XN gL0i X0,
< [?
Nz — A2
< [?
Nz — A2

8:0..x) = log (1+ )50,

g£0x) = log (1+ )1 = e (o). (2.24)

For the convenience of the reader we recall the notations defined above :
X5 = x (NP2 = 4]) with 8 € (0,x)

¢ _ |x|2
fr(hx) = m(l — Xz,8(A))

|
© o [ 1= g0 dm()
fo=N 1>/D Wyt
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Let G be the distribution of (X3, ..., Xx). For any ¢ > 0, by Gaussian tail we have
GB) = 1—e N where B = {|X;> < N/ forall2 <i < NJ.

Moreover,

N
1> gl Xi) — fillp

i=2

N N
_ 1
<UD fE0a X)) — ol + CNF2Y V(T xes ). (225)
=2 =2

To bound the first term on the right hand side, we first integrate over the Gaussian
variables:

Ev:xg <e“(ZiN=2 fz@()\l-,xi)f—z))

1

SN | e ——
Ve ] 1—a I—xz,5(Ai)
i=2 Nlz—2i?

- (ea(Z{Vz FLo=f)+ca? oI, W(l—xz,aui))2>
XX Lo,

CaZN—45+s+CaN—25+s
<e

)

where, for the last inequality, we used (2.21) and (2.22) together with the Cauchy—
Schwarz inequality, with @ = ¢N?® for some fixed small enough ¢ being admissible.
With (2.25), we obtain

N
> et Xi) — f

Py.xg(A) < e~N° where A = :
=2

> N25+€} . (2.26)

Let & € R be fixed. From the above bound we have

O N .
. ((N(l - |z|2)) = Z)

o g0 X4 g0 X \ .
=E, xg Lac | +0@™")

N(1— 1z

o2 B0 XD+
= Euz xG

i§
. —28+¢
e ) e | +0 (1gIN+)
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gZév 8. X+ fo
= Evzxg T

i&
) + O(JE|N~2FF),

where we used efz/(l —1z1%) = efo, from Lemma 2.8.
We now define the function a, (omitting the dependence in & in the notation)
through

=M — g (eng;'(A,x;)) .

Note that a,; does not depend on i because the X;’s are identically distributed. We want

to apply Lemma 4.3. Note that a; is supported on |z — A| < CN=>% and Re(a;) <0,
so that (4.3) and (4.4) are automatically satisfied and (N||v];)" < CN 2r8 hence (4.2)
holds for the choice r = 3, § = «/10. For this choice of §, we therefore have

EV: (eZzN:2 az()»i)) — ]Euo (eZzsz aO(M)) +0 (e—CN2K) (2.27)

uniformly in &. This proves

O s
E{l ——— =
((N(1—|z|2>> - Z)

- %‘
Y g5 0u X0+ o\
e _
= Eyyxg <— + O(|E|N~2F8)

N
o1\ "
=E ((%) | A = 0) + O(JE|N~2Fe), (2.28)
Together with Proposition 2.4, this concludes the proof of Theorem 1.1. O

Proof of Corollary 1.2 We start with the lower bound. From (2.26) we have

ﬁ s £ £ 3
P(l _1|IZ|2 <N |n= z) <Pyxg (ezgvgz“i'x")*f" < N‘T) +0(e™M).

We now apply Lemma 2.10 to justify that z can essentially be replaced by z = 0 in the
above left hand side. From (2.27), the Fourier transforms of g,, go are exponentially
close uniformly in the Fourier parameter £. By choosing in Lemma 2.10 R = T =
V" and F smooth bounded equal to 1 on the interval (—oo, (1 —&/21log N — fo)],
Oon[(1 —¢/2logN — fo + 1, 00), we have

P, xg (ezfgg(x,,x,.)% - N“%)

N s r 3 €
< Pyyxg (622 8o Xt fo o NI_Z) + O(e_N /10)
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NE‘/'O NE‘/'O

< IP’(ﬁ“ < N8 = o) +0e Ny =0 M), (2.29)

where this last probability was estimated thanks to Proposition 2.4. For |z] < 1 —
N~ 3K , this yields

_Ne/10

IED(ﬁu < NTIHNIE o = Z) =0(e ),

and we conclude by a union bound (an error bound o(N ~!) above would be enough).
For the upper estimate, in the same way as previously, for any x > 0 we obtain

For x > N, the following is easy to justify:

1/x
POy >x |2 =0)=NN — 1)/ u(l — )N 2du
0

N—1 [ 1\V 2 a /00 dt N2
=L 1 — — = &0
N Jyn Nt 13 N 1 2x2
‘We obtained

N
ZP (Ai €EQN,Oi > NHKOHW(QN)Iﬂ)

i=l1
— NP4 € Qy) P (ﬁ“ > N0 Q)2 | A € QN>
011 3
— > NITEm@Y? A eQ
e m(Qn) "7 | A € 2y
N2 N—ZE
(N%+8m(QN)1/2)2

< NP € QN)]P<

< Nm(Q2n)

N

which concludes the proof by a union bound. O

Remark 2.7 One may wonder about the true asymptotics of the greatest overlap over
the whole spectrum. The above bounds could easily be refined to prove that for any
C>0and N < x < N,

N

N2 1— 2 2d N3
SE 50~y [ LU ¥
P D 2x b4 6x

If the overlaps are sufficiently independent (a fact suggested by (1.14)), this hints
towards convergence of the maximum to a Fréchet distribution: for any fixed y > 0,
as N — oo
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i e
Pl max —— <y —>e 7.
1<i<N N3/2

Remember that 0 < x < 1 is a smooth cut-off function on R such that y (x) = 1
for x < 1/2 and O for x > 1, and we denote

xes 0 = 2 (NT71z =),

The following three lemmas were used in the previous proofs.

1
Lemma 2.8 There exists a constant c(y ) such that for any |z| < 1 — N727% we have

1 1—
_/ L(Z)\)dm(k) = (1 —28)log(N) +log(1 — [z*) 4+ ¢(x).
T JDp |Z —M

Proof For z = 0, this is an elementary calculation in polar coordinates, so that we
only need to show that for any given 0 < ¢ < 1 — |z| we have (here D, is the disk
with center a, radius €)

1 1 1
- — —dm(\) — / ——dm) = log(1 — |z)?). (2.31)
7 o i— AP e U.MM2 &

og r logr

Denote x + iy = re'? and a = |z|. Note that r% = Oy (x
Green’s theorem we have

: ey = ([ / )b“” loglre™ —al ( _ aydy - ydx).
—_ m X —d — X
D-D, 1z — Al? an  Jom.) Irel? —al? Yoy

The second integral clearly does not depend on a. The first integral can be split into

)+ ay(y ), so that by

1[ loglre? —al,  a [ loglre” —al i)y
oD

@7 —aP " 2x Jup 17 —aP?

To calculate the first integral above, we expand log |ei9 —al=N"Y p>1 %(ae 7i0)p’
|ei0 _ a|*2 — Zk,ﬁ)o ak+Eei(k7@)0’ and obtain

1 [ log |rel? — a|d9 _, Z aPthrt 21og(1 - a2)'

i le? —aP P 1—a?

p=lk=p+t
In the same way, we have
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a log lrel? — al

0, —i0
—_— do
2 Jop e —al? (€t

k+l+p 1 1 — 2 1 1 — 2
B a P log(1—a?) | ,log(1 —a?)
=da Z + Z p T 1=a2 ta 1—a2
pelk+l=p+t p=lhk—l=p+L
To summarize we have proved that
1 1 2
— 2dm()») log(1 —a”)+c¢
D-D, |2 — 2|
where ¢ does not depend on z, and (2.31) follows. O

Lemma 2.9 Let hi be given by (2.18). For any k € (0, 1/2), there exists c(k), C(k) >
0 such that for any |z] < 1 — N*%J”( and p € [1, 1 + c(k)], we have

N psiq.
E,, <eP ) hz(m) < NC®,

Proof First, the result is true for z = 0. Indeed,

N

s ({1 ) ) - Fle((+5)) -ons

’ (2.32)

where we used Corollary 5.6.
We want to apply Lemma 4.3 to conclude the proof. For this we need to check
conditions (4.2), (4.3) and (4.4) for our function f = phi, and v = e/ — 1. First

note that ||v]|; < CIN*A<|M<1 (N\AZ\)I’ < CN™PNACP=2) 5o that (4.2) holds by
choosing p = 1 + c(x) with c(«x) small enough. To prove (4.3) and (4.4), we rely on
Lemma 4.2:

E,, (epz,(vzz hi(M)) =E,, <6PZIN:2 h(s)()»i)) (1 +o(1))

cal(oo ) ) L2 e

where we used (4.2) for the first equation, and the calculation f ;’i A pre—x < N€. We
therefore obtained

E,. (eP ¥y h‘;(?»i)) =E, (ep ¥ h?(%‘)) +0 (e—ch") (2.33)

forany 1 < p < 1 4 c(k) with c(x) small enough. Equations (2.32) and (2.33)
conclude the proof. O

To quantitatively invert the Fourier transform, we use the following crude bound,
see [4, Lemma 2.6] following from [6, Corollary 11.5].
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420 P.Bourgade, G. Dubach

Lemma 2.10 There exists a constant ¢ such that if u and v are probability measures
on R with Fourier transforms [ (1) = [ €"*u (dx) and ¥ (1) = [ " v (dx), then for
any R, T > 0 and any function f : R — R with Lipschitz constant C,

C A
I (f) —vHl< e +elfleo {RTIL 7,1y (A = D) lloo
+u ([=R, RI) + v ([—R, RI%)}. (2.34)

The following crude a priori estimates are used in this paper. Note that for z strictly
in the bulk of the spectrum (|z| < 1 — ¢ for fixed ¢ > 0), the first statement is a simple
consequence of the main result in [55].

Lemma 2.11 For any p,k > 0, there exists C > 0 such that, for large enough N,
uniformly in |z1|, |22] < 1 — N_%'H( we have

N

N~¢ <Ew (H 21 — Af|2"e—1’N<'“2—”> <N (2.35)
N 1\? 2

N~C <Ew (H (m — Ml + N) e~ PNl -”) <NE, (2.36)
N 2 2

N~C <En (H |21 = AilPlaa — i Pe NIRTED N ”) <NC @37

Proof We start with the lower bounds, which are elementary: as E(eX) > X we
have

N
_ 2_
Ey (l_[ lz1 — )Ll.|2pe pN(|z1l 1))

i=1

Typ <

2 exp (2PN / log(lz1 — AD) <01N(?~) - T) dm(Z)) = exp(O(1)),

where for the last inequality we used that the density of states for the Ginibre ensemble
is close to the uniform measure on the disk with high accuracy (see e.g. [9, Lemma
4.5]). This proves the lower bounds in (2.35) and the lower bounds for (2.36), (2.37)
hold by the same argument.

For the upper bounds, we only need to prove (2.36), as (2.35) will follow by mono-
tonicity, and (2.37) by the Cauchy—Schwarz inequality from (2.35). Remember the
notation (2.15) and abbreviate log, (x) = log(l)cl2 + 1/N). We can bound

N
E e LY —evaar-n
v Tz = 2l +5) e

i=1

< En (ezl’ZIOgMZI—M>Xz1.a<ki>—2prlog |21—sz1,5(/\))7
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1
xEx <62pZlogN(z1—)»,-)(l—le,(s(ki))—2pNflog |ZI_M(1_X21,5(}L)).) 2 (2.38)

For the first expectation corresponding to the short range, we apply Lemma 4.2,
observing that N ||v|; = O(N?%) is negligible for § small enough. We obtain that this
first expectation is equivalent to

Eyn (EZpZlogN(mxo,a(x,-)—szJ’logMlxaam) < NC.

where the above inequality follows from Corollary 5.5.

The second expectation in (2.38) is the Laplace transform of smooth linear statistics,
so that the loop equations techniques apply to prove it is of polynomial order, see [40,
Theorem 1.3]. More precisely, [40] applies to the smooth function (1 — x;, s) log
instead of (1 — xz,,5)logy, but we can decompose logy (1) = 2log]|A| + log(1l +
] Azl ——>). With the Cauchy—Schwarz inequality we separate contribution from these two
functions, then the analogue (for the unconditioned measure) of (2.21) shows the
Laplace transform of linear statistics of (1 — x, s) log(1 + ﬁ) is O(1), and finally

[40, Theorem 1.3] bounds the contribution of (1 — ., s) log |A| by O(N©). O

3 Off-diagonal overlaps

In this section we consider the distribution of N Ginibre points conditioned to {A; =
z1, A2 = z2}. We will successively prove identities for the quenched off-diagonal
overlaps, for all z1, z2, and then get explicit relations for z; = 0 in the annealed
setting. Finally, these new correlation identities are extended to any z1, z2 in the bulk
of the spectrum by a decomposition of short and long range contributions.

3.1 The quenched off-diagonal overlap

Contrary to the diagonal overlap, the factorization here doesn’t involve independent
variables.

Proposition 3.1 The following equality in law holds, conditionally on {A1, ..., An}:

o9 - ‘AT_le‘ l_[( N(Al—kf;(m))’

where, conditionally on F,_», Z, is a product of two (correlated) complex Gaussian
random variables, and E(Z,, | F,,—») = 1.

Proof As for the diagonal overlap, we simply compute, with the notation (2.5),

Pl

ﬁ(2)=—b 2__
12 D2 A — Ao
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and
ﬁfgﬂ) =—b Br[z+1Dﬂ+l = —by(B.Dyy + byy1dyt1)
= _b_Z(Bytl[)n + al,n+lB,t1Tna2,n+lD;lTn)
. B'T,D!T,
— —B'D <1+a a—w)
2D, Un 1,n+19%2 n+1 B}an
= ﬁ’l(;)(l i Znt1 )
N(kl - An—i—l)()&Z - )Ln-i-l)
where

B\T, DT,

= 3.1
BD (3.1)

Zpy1 =
Clearly, conditionally on F,_1, Z,+1 is a product of two complex Gaussian random

variables, a distribution which depends on ﬁ](;). Moreover, B,, D, € F,—1 and T}, is
independent of F,,_{, so that E(Z,,+{ | F,—1) = 1. O

Remark 3.2 By successive conditional expectations with respect to F,_2, ..., Fi,
Proposition 3.1 implies

N

1 1
Er (O) = ——+ 1 — ), 32

an important fact already proved in [12,13,43].

3.2 The annealed off-diagonal overlap: expectation

Remarkably, the works [12,13,43] also explicitly integrated the random variable (3.2)
over A3, ..., Ay, in the specific case A1 = 0. We state the resulting asymptotics and
add the proof from Chalker and Mehlig, for completeness.

Corollary 3.3 (Chalker, Mehlig [12,13,43]) For any ¢ > 0, there exists ¢ > 0 such

that uniformly in |z| < N—¢,

11— (14 N|z>)e NP
NizlF 1= eNEP

E(@n |2 =01 =2)= 4 O(ech).

Proof From (3.2), we want to evaluate

N
1 1

E (0 k:O,)»: =——FK l—- — )\,:O,)L =2

(O12 | M 2=72) EE (k|:3|( Nkk(z—)»k)>| 1 2 )
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From Theorem 5.4 with g(A) = 1 — we find that

()»)

N 1
E (l_[ g [ A1 =0, = z) Z(O 5 det(fi, I = 4

k=2

where

1 Lo
i = i / AT Az = AP g((dh)

_ 1711y 21 a2 L=
_(i+1)!/x Y (m o= AP = SR A))M(d/\).

This matrix is tridiagonal with entries

1 |z|? 1 z z

Jii = Nit+l (i + )N (i + HNIHD Jiiv1 = Nz+1’ fii-1= TN

Letd, = det(fi,j)szl and x = N|z|2. With the convention dy = 1 we have

1 /3 «x
di=—(>+>),
! N2<2+2)
x+1 1 x 1
i = (1 iy 1> NET A T g e e

Ktk
so that ay = di N G2 satisfiesag = 1, a; = 3/2 4+ x/2,

1_|_)c+1 X
ap = Ap—1 — —Aj—_2.
k k+1 k—1 kk2

An immediate induction gives a; = (k + 2)x_ze§k+2) (x). Thus, we conclude

N eV ()

E@pn| M =0,A=2)=— )
xz egN)(x)

The proof is then concluded by standard asymptotics. O

With Corollary 3.3, the expectation of &1 is known for A; = 0. To extend the
result to anywhere in the bulk of the spectrum, we mimic the alternative proof of
Theorem 2.6, from Sect. 2.3.

Proof of Theorem 1.3 We denote v, ., the measure (1.2) conditionedtoA; = z1, A2 =
2. Note that v, ,, is a determinantal measure. With a slight abuse of language, we
will abbreviate qu.zz (X) = E(X | A1 = z1, A2 = z2) even for X a function of the
overlaps.
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424 P.Bourgade, G. Dubach

We follow the same three steps as in the alternative proof of Theorem 2.6. Strictly
speaking, if we were to impose |z; — z2| > N~C for some fixed C, we would not
need the first step below, as the singularity 1/|z| is integrable, contrary to our previous
singularity 1/|z|>. However, in Theorem 1.3 we allow z1 and z5 to be arbitrarily close,
so we first perform an initial small cutoff.

1

NN Remember that, from (3.2)

First step: small cutoff Let g;, ,,(A) =1+

N
1
Ey, ., (0n) = —mEvzwz (H 821,22 ()»i)) .

n=3

We denote h, -, (A) = g2,.2,(M) ;g Where 2 = {3 —z1] < N™*} U {] — 2] <
N~4}. For A a large enough constant, the analogue of (2.12) holds:

N N
E.. ., (1"[ gm@(xi)) =E,, ., (]‘[ hm,zz(xo) +OWNT).  (33)

i=3 =3
Indeed, by making explicit the above conditional measures, (3.3) follows from
N —_— 2 2
En-2 (H(Im —2ilPlz2 = M + N7 = 2 (z2 — a))e NI TDN *”)
i=3
N ) 2
—En-2 (]‘[(m —2ilPlz2 = Ml + N7 = 22 = Ay g e N0 “N“ZZ'“) =oW?),

i=3

(3.4)

and

N

2 2

Ex-2 (H(m — AilPlzz = g P)e N AP =D-N Gz —“) >NOL 3S)
i=3

with B much larger than Cy. Lemma 2.11 gives (3.5). The left hand side of (3.4) has
size order

N
_ _ _ 2_1y_ 2_
Ey— (H(Im — i N (22 = 2P+ NHe Nl =D=N(z| Dllat:x,-dé’)
i=3
— O(N—A+C2)

by the Cauchy—Schwarz inequality and Lemma 2.11, for some C, which does not
depend on A. This concludes the proof of (3.3) by choosing A large enough.

Second step: the long-range contribution concentrates We smoothly separate the short-
range from a long-range contributions on the right hand side of (3.3):

s 0
hzy(A) = €hZ|~12 Wthz, o, ()‘)7
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1
N(zi —A)(z2 —A)

h;, ., (A) = log (1 + ]lwg?)xz,a(?\),

() = log (14 )1 = 22500,

N(z1 —A)(z2 — M)

and we denote z = (21 +22)/2, recall |21 — 2] < N™277%, . 5(4) = X(N%_‘Slz -

A|> and choose § € (k — &, k). In the definition of A$ we can choose any branch

21,22°
for the logarithm, this won’t have any impact on the rest of the proof. In the long-
range contribution 2¢ _, the logarithm is defined by continuity from log(1) = 0. Let

21,22
_ 1 _ N 21 1—xz5(A)

fira® = om0 — xes() and £y 2, = o G dm .
Note that

N 1

l
|th 200 = Faol 1Y fL 00 = Fanl+ 5
=3

N 1 N 1
(; Vo o X)) + ; e pewriUe xz,aui))) . (3.6)

The last two sums are bounded as in (2.22). For the first term on the right hand side,
we bound the real and imaginary parts separately: similarly to (2.20), we have

]EU (ea (ZIN:B Refzgl.zg ()‘i)_EVzl,zz (ZzN:3 Re-ffl,zz Ql))))
21,22
v (e 4 00) -
where @« = ¢N?? for some fixed ¢ and C which does not depend on N. We
first bound the above variance. Remember we have a partition of type 1 = x+

Zk>1 £(27*x) for any x > 0, with & smooth, compactly supported. Let Zl k) =
L EQTENY2z — ))) and K = min{k > 1 : 2KN71/2%5 > 10}. Then
oo = 28 fLi () with probability 1 — e, and with [9, Theorem
1.2], for any ¢ > 0 and D > 0, there exists Nyo > 0 such that for any N > Ny and

1 < k < K we have (we now omit to write the real part, being understanding that f
is either Re f or Im f')

Py_> (

The same estimate holds for the conditioned measure by the Cauchy—Schwarz inequal-
ity:

Zfzgl,Zz,k()‘i) - (N - 2)/ ffl,zz,k > N_25+8> <N7P,
lz]<1

L ( Z Ioy ki) — (N —2)/| lfzel,zz,k| > N28+s)
Z|I<
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1/2
<Py_2 (| SO ) — (N =2) - £h ool > N—”“) N€
Z

N N 1/2

1—[ _ 2_ _ 2 D

]EN—2 ( |Zl _ )\i|4€ 2N(|Z]‘ 1) | | |Z2 _ )\,[|4€ 2N(|Z2| 1)) < N 2+2C.
i=2 =2

for some C which only depends on «, where we used Lemma 2.11. We conclude that
for any small ¢ > 0 and D we have

~1~2(Z faz( = faal > N7 28+€><N "

so that Var,_ 2(2 L S, 00) = ON~%) and E,, 2(2 LS 00) =
le,zz +O(N~2+2) Asa consequence, (3.7) becomes

Ew ) ea(Z{V:3 ffl,;z (Ai)_le,zz) g eCaZN*4‘3“+C¢xN’2HS. (38)
21,22

With & = ¢N?, we obtain

~1 2 21 zz fZl 2

(A) < e N° where A = {

> N_26+8} .

This yields, for some p = 1 + c¢(k), c(k) > 0 and some g, r > 1,

E (eZAh;;I,12<A,->+h§il,zz<x,->)]lA)

Vz1.20

<E (pz, 1ZZ(M) VP e

. l/q NE
(quf hﬁl.zz@z)) P < eV (3.9)

Vz1.2 Vz1.20

Here we used that the third term has size order e~“V°, the second one is

of order eqf W = O(NC), and so is the first one from Lemma 3.8 and
1 1

14 = )»)(Zz /\)I <+5 —Alz)(l + ¥ Moreover,

Vz1.22

E (eZi(hil’ZZ(A‘i)-"_hﬁl’ZZ(A'.))ILAC)
= (1 +OW 2HNE,  (eXithatite)

— (1O PR, (i alt ey, G0

and this last expectation is of order e~V * for the same reason as (3.9). To summarize,
with the previous two equations we have proved (up to exponentially small additive
error terms)
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N —
]EUZ],Z2 (l_[ th»ZZ ()‘t)) - (1 + O(N_23+5))ele.zz Evm.zZ (eZi hquzoﬁ)) ’

i=3

Third step: the local part is invariant. For our test function A%
check the conditions of Lemma 4.4, so that

El)z],jz (eZi h§1,2_2 (}Li)) = Evo,zzle (eZi h{),qul (M)) +0 (€7CN2K) .
This yields

N
Evzl,zz (1_[ hz .z Qi))
i=3

~ ~ N
= (1 +O(N"?*)efaa=foau B, (H ho,z,—2, (M)) :
i=3

L the reader can easily

From Lemma 3.4, el foan—a = =(l-z122) ¥ v . Together with Corollary 3.3, this
concludes the proof. O

Lemma 3.4 Forany A1, Ao € D,

1 1
— —_dm(z) = IOg (
T

1 — Atk )
DA —2)(—2)

A1 — 2?2/

Proof We consider the following domains, assuming 0 < |X;| < |A2] < 1 and
e > 0 is small enough. The following computation still holds if |A1] = |Az2],
as long as A1 # X,. Integrability is clear, as the poles are simple and isolated.
Moreover, under these conditions, the integral cancels on the disks D; and D,.

D(0, |A1] =),
D A17€)7
/\275)7

(
(
(
Ry = D(0, |\ +¢) = D(0,[\1| — &),
(
(
(

Dy
Dy
Do

Il
T

) -
Ry = D(0,|X2| —€) — D(0, |M\1] +¢),
R'S D 0 |/\2|+€) D(ov‘)‘Z‘ 75)7
/ R47D 0 1) (0')\2|+E)

Integration over the domain Dy yields

l b
Do (b1 —2)(A2 — 2)

1offl=e rdrdd il=e 1 r2 ok
T Jl=0 A2 (1 _ ﬂ) (1 _ @) r=0  Arh2 T AAA2
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[A1]—e 2r o _ )
= / _—2dr =log(A1A2) —log(A1ho — (JA1] — €)7). (3.11)
r=0 AA2—T

The same type of expansion shows that the integral over R, vanishes and the contri-
bution from Ry is

1 1 B
N ——{. =1log(l — A1hs) —1 A 25070, (312
7 Jry (M —2)(A2 —2) m(z) = log(l = 1122) —log((A2] + £)" = A142). (3.12)

As the expression is integrable, on the domains R, R3 there is no contribution as
& — 0. Summing (3.11) and (3.12) gives the result. O

3.3 The quenched off-diagonal overlap: second moments

The main result of this subsection is the following lemma, which gives the expectation
of second moments of overlaps conditionally on the eigenvalues positions. For this,
we define

|B. D, |? )
X, = " ,
" (annannn2
11+ YiaVonl? VY2l )
j=—, A= "2 272 ENERE
vi= gy (|yl,m,n|2 A+ a4+ oy ) G

Lemma3.5 Forany2 < n < N — 1 we have

E(Xu+1 | Fu-1) = Ap+1Xn. (3.14)
In particular,
(ETuﬁqu)):(wzF 0 ) 14 <Ib2|2 0 )(1>
Er (01102 | F1) 0 1412 JALT N0 T+1ba? )\ 1)
(3.15)

Proof We recall the notation (3.1) and the property E(Z,+1 | Fn—1) = 1. A short

AP

calculation also gives ]E(|Z,,+1|2 | Fuol) = 1+ ‘ B Abbreviating y; =

Yk.n+1, this gives
E (1B Dast | Foer )
= E(1ByDa 11 + 1175 Zos1 | Fai)
= [BYDuPE (1 + 7172Zuss + T2 Zant + 1192 Znst | Fac )

= |1+ y17%1BL Dul? + 1172121 Ba 12 Do I*. (3.16)
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We now denote X = X, = «/—”}’;Tﬁ, Y =Y.t \/_HBT,II\’ so that E(| X ,41/% |

tp 12
Fact) = EQ¥ari? | Fact) = 1 and B X1 Yar | Facp) = 1+ ol
This yields

E (1| Bust 121 D I | For )
= E (I BaPIDaIA(1 + 1 XP) (1 + 112 P) | o )
= 1BuIPIDalPE (1+ 1 X2 + 1y2Y P+ Iy XY | Foc )
= (L+ 1 P) (1 +172P) 1 Bal*1Dall? + [y1v21 B, Dal. (3.17)

Equations (3.16) and (3.17) together conclude the proof of (3.14). Denoting Y, =
Er (X, | F1), we obtain

- (Uf) 2 (Uf) E((nBlj%%jnz) 'ﬂ> - (Uf) (1 ff;i;z)

and (3.15) immediately follows. ]

3.4 The annealed off-diagonal overlap: second moments for 1 = 0

We now want to integrate (3.15) over the eigenvalues A3, ..., Ay, first in the special
case A1 = 0. This requires some new notations. We abbreviate

§=N|r —Aa)? —5+ 1+52 be—gt=? 1+‘32
L ) 4 VT T 4
and will often use the property
1 1
S=a——-=b——. (3.18)
a b

We also define the following rational fractions of x

1 —x!

ur(x) =1-— K13

(k+2)(k+3)

dy(x,8) = —————
Kx0) e§k+l)(5)

1 k) 5’4k(x)
<uk(X)W ey’ (8) — o
1 X2+ (k+2)x + (k+ Dk +3) k+1>
‘T o S (3.19)
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430 P.Bourgade, G. Dubach

We can now state the following main proposition on which Theorem 1.4 depends. The
reason why such formulas exist relies on two algebraic facts.

(1) The A,’s from (3.13) are diagonalizable in the same basis, see (3.20). Their
commutation was expected, our choice of eigenvalues ordering being arbitrary,
while the left hand side of (3.15) is intrinsic.

(i) More surprisingly, the obtained holonomic sequence (3.23) is exactly solvable.

Proposition 3.6 Conditionally on {,1 = 0, Ay = z}, we have

E( O = — ( T a8+ — o dya(b5)
[O0n]7) = 72 g 2@ @29 ),
1 a*

E(0110) = 1 a2 ((a n 1)2dN—2(Cl»3) + mdN—z(b, 5))-

Proof Importantly, the matrices A,,3 < n < N, can be diagonalized in the same
basis: from (3.13) an elementary calculation based on (2.1) gives

—N[A — Ao 1
An=(1+|m,n|2)<1+|yz,n|2>12+|m,nyz,n|2( el 0>, (3.20)

so thatits eigenvectors clearly do not depend on n. With these notations, the eigenvalues
of A, are

Ar(m) = (L4 11,0+ 1y2l® = Viayanl’a
A—(m) = L+ YDA + 120D = Viay2nl®b,

and the orthogonal basis

U— 1 (a —1 )
/1 + Cl2 1 a
diagonalizes all A,’s simultaneously: UA, U’ = diag(A4(n), A_(n)). Then (3.15),

together with the codiagonalization of the A,’s, E|T|> =1and E(T|*) = 2, yields
the following simple expression:

2 2
2 a 4
( Er(10121%) ) _ 1 (<a+1>2d+ + (a—41>2d‘) : (3.21)

- 2 1
Er(01102) I4a \ hds + G%55d-
N N
di = [[rsm). do =T]r-. (3.22)
n=3 i=3

Note that we have not yet used z; = 0: the above formula holds for any given z1, z».
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The remarkable fact is that in the specific case z; = 0, E(d+) and E(d_) can
be calculated, as shown below (here E denotes integration over all variables except
A1, A2). We start with E(d ). From Theorem 5.4, the following representation holds:

N
dt . .. _
E (1_[ Ar(m) | X1 =0,4 = Z) - & i )i<ij<n=2

0,2)
n=3 ZN

where ZI(\(])’Z) is given by (5.2) and

1 o
fm~=m/w ARz = APAg O (da)
_ 1
TG+ 1!

/Ai*II\f*‘(IA|2|z AP+ NP+ N7z = AP = N7 a = D).

We expand |1 — z|> = |A|? + |z|> — ZA — zA. The resulting matrix is thus tridiagonal
with

1
fi,ifl = —Zm,
fim 1 ANV 122 N YzP=N2@-1)
bETONiF] (i + 1)N? i(i +1HNi-1 ’
_ i+ 2
fz,z+1 = —ZW‘
With the notation dy = det(fij)i<i j<k, the recurrence dy = fyrdi—1 —

k(kt3
Jk.k—1fk—1kdr—2 holds, so that defining ax = dx N G2 we have

g (1428 1zt kL
k= k+1 " kk+ 1)t 2 ke

. . g1
with the convention ag = 1 and a1 = 2 + % + 1 g . Note that for z = 0 we have

6 =0anda = 1, hence

k
0. o 2\ (k+2)(k+3)
ak._ak(z—O)_ZJI:[z(l+j+l)— 3 .

. _ 1
As a consequence, gy = Z—{; satisfles go =1, g1 =1 + % + 1+, and
k

gk =mi(k,a)gi—1 —ma(k,a)gr—2,

@ Springer



432 P.Bourgade, G. Dubach
kay=14+—— 419
m _ l-a
1 a k+3 @ k(k+3)
(k +1)?
ka)=8—o0o 2 3.23
mak,a) = & T 3 (3-23)

We cannot see an a priori reason why this equation could be solved, but it can be. We
remark that the function u; = uy(a) from (3.19) also satisfies the induction

up = my(k, ayug—1 —mak, a)up_».

The reader who would like to check the above equation can substitute § = a — -

(3.24)

1
a

and verify that the Laurent series in a on both sides of (3.24) coincide. This equation

implies

k=2

uy u
gk—1—— =mi(k,a)gk—1 — ma(k, a)gr—1—— (3.25)
Uk—1 Uk—1
Subtracting (3.25) from (3.23) gives
Uk Uf—2 Uk—-2
O = gk — gk—1—— = —ma(k, a)(é’kfz - gkfl_) =my(k, a) Sk—1,
Uujp— Ujp— Uj—
which yields
K u 1 k+1 u
]_[mz(j, )22 8 = g1 20 5, (3.26)
i uj_ k+3)k+2 Uk—1
Together with 5" f’; i + & m % from (3.26) we obtain
k 1 i+ 1 . u
B 36y STyt M0 5 80
Uy st G+3)'j+2 Uj_1U;j ug
A calculation gives 18| = %(a —a Y1 +a1), so that
L B S 1
BE—61+a )Y — Y — (3.27)
Uk o G+ j+2 wujqu; uo
Note that
1 (G+2)(+3) 11
uj_luj_ 1—6171 Uj—1 Uuj ’

which simplifies (3.27) into

d R AW
Z - 5]+7
ot '(]-‘,—2) uj ug

1+a*'
l—a

8k

Uk
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1+a! (&1 8 1 : 18 1
—6 ( R — )81— =
1—a~ — uj G+D'G+3) JIG+2) kl\(k +2) ux — 3uo uo
k—1 k
1 1 : 1 8 ) 1
s 4 8 — e
a—1 Gg+2)! G+D! k'(k+2) ux  3ug uo
a+1[ 1 8 askt s s s 1
=6 fzzf-l- -+ — |+ —
a—11\aé = jt o k+1D! 2 klNk4+2)ur  3ug uo

where we used § = a — a~! and (3.19) at several steps. The above formula can be
written in terms of (1.18) and further simplified as

a+1 1
—1asé

Bug | at+la+k+2)+a'k+ DE+3) g

o
—6 5 6
8k =bur s Tsaes (0 = =7 60 k +3)!

By definition of g, ax = gkag, that is

Yy 0 oy Uk
e = Uk o 1)28(k+2)(k+3)e ©)) o (k+2)(k+3)
+a+la+(k+2) +a Yk + 1)(k+3»)5,<_1
a—1 (k+ 1)! ’

Then, using the normalizing constant (5.2), we obtain

Ed,) = dv-2 an—2 _ dan—
+= 0. ~ N=2WN+Dh — (N—1
Z](V,Z) ZE\(/)’Z)N% ei )(5)

as 8 = N|z|*. We find

N(N +1)
2O
un-—2(a) SN2 duy—2(a)
<( R
1 a*>+Na+(N—-D(N+1) N_1>
+ 1)
(a—1)2 (N +1)!

(3.28)

which has been defined as dy_»(a, §). The formula for [E(d_) is obtained in the exact
same way, with the only difference that a is replaced by b. Finally, conditionally on
{x1 =0, =z}, (3.21) gives

(Eum% ) _ 1 ((a+1)2E(d+)+ G ))
T, 0 a4

E(01102)) 1442 E(dy) + E(d_)

(a+1)? (a—1)?
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We can replace E(dy) and E(d_) by their exact expressions to obtain the claimed
formula. O

Proposition3.7 Let o € (0, 1/2). Denoting @ = ~/N|z|, uniformly in |z| €
[0, N_%"'“] we have

N2

E (100 2 =002 =2) = o (1+omv> 1), (3.29)
N2 1 4 _ —lof?

E(0110n | A =0, =2) = N Itlel —e ™ 1+0(N*"1H). (330
w1 — elol

Proof We consider asymptotics in Proposition 3.6. First, the term 35— is obviously

(N+1)'
negligible. Second, we always have a > 1 and |b| > ¢/8 > N2, so that uy_»(a) =

14+ON"Y, uy_a(b) =1+ ON*~1). Moreover,

V@ =@ -1 (1+0w™h),
2

N (5) = <e5 15— %) (1+0w™).

2 2
From (3.18), we have (1+a)§(1—a)2 = (1+b)§(17b)2 = 52,50 that (3.28) and its analogue
for d_ give
2 2 2 2
u N 82 Sa—1)
dy)y=— [ —1-5-= "2
@it = me o (e 2 2d )
(1 n O(N_l)), (3.31)
“C _pay=—2 2 S GO
P E——— — (-1 -5 - — —(a
(a—1)? 82(ed — 1) 2 2
(1 n O(Nz"‘l)). (3.32)
We observe that
1 8(a— 1)2 82
- 1 .
a’+1 ( 2a ( 1’ o+ 2

and the previous three equations give

5 B B B 1 a2 2 )
E(|On]" | A1 =0, =x) = T2 <(a+ I)ZE( +)+ @ 1)2E(d—)

N? 82 8 o1
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- |N|24 (1 +O(N%~ 1))

The similar computation for E(01 0%, | A1 = 0, Ap = z) involves the two terms

U mid — N?
@r i =g
1 82 b o
((a—l)Z(a+1)2< _1_3_?>_2a(a+1)2)(1+0(N ))’
a* N?
@ 1)2]E(d)— "

a’ B 8 ba’ 201
((a—1)2(a+1)2 (e —1—5—7)+2(a_1)2> (1+O(N )).

Moreover, some algebra gives

1 1 a® 1+ 682
1+a? <(a—1)2(a+1)2 (a—1)2(a+1)2> 82

1 sa’ b _ G+ 1)(32+3+2)
1+a2\2@—-12 2a(@+1)>2 28

Once combined, these four equations yield

E(010»n | A =01 =2)

1 a
" 1+a2 ((a+1)2E(d+)+( 1)2E(d ))

N? (1442 G+ 1DE*+5+2) >
Sy (PN D (1 ONH)
e6—1< 52 ( 2)+ 28 ) +O( )
N Lol — el
et 1 —elel

4

(1 + O(NZO’—I)) ,
which concludes the proof. O

3.5 The annealed off-diagonal overlap: second moments in the general case

We can now prove Theorem 1.4. We closely follow the method developed first in
our alternative proof of Theorem 2.6, in Sect. 2.3, then in our proof of Theorem 1.3
in Sect. 3.2. In particular, following the proof of Theorem 1.3, we denote v, ., the
measure (1.2) conditioned to A = z1, A2 = 20.
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Proof of Theorem 1.4 Remember the notation (3.22). Assume we can prove (under the
hypothesis of Theorem 1.4) that

Ev.py (@) = (1= 211 = [Py, ., @) (140N 249) . (333)

By, (@) = (1= 1)1 = 2By, , (@) (140N >79)). (3.34)

.22 -2

From (3.31) and (3.32), a calculation gives IE\,O_ZZ_ZI dy) >0, E
that (3.33), (3.34) together with (3.21) give

ey (|6)12|2) Vo, (4 12|2) —2k+¢
21,22 =(1-— 1— \2p—71 1 N .
(qu,zz (ﬁ11622)> ( 21l )( 122 )<EVU S (01102) ( + O( ))

(d-) > 0, so

V0,29 —z1

Together with Proposition 3.7, this concludes the proof. We therefore only need to
show (3.33). The proof for (3.34) is identical up to trivial adjustments.

First step: small cutoff Our test function of interest and its short-range cut version are

1 1
=1+ —m V(14—
822 ( +N|z1—x|2)< +NIZ2—M2>

a 1

i 3.35
N2 |z1 — AMP|za — AJ? 5:3)
1 1
B )= (14— Tup) (1 4+ —— 1,4,
21.2() ( + Nizi — A2 A(;éw?) < + Niza — A2 A¢ﬂ>
a ! 1 (3.36)
N2\z1 — A2za — A2 M2 :

where Z = {|A —z1| < N"4} U {|A — 22| < N~4}. We first prove (3.3) for our new
definition of g;, ;,, Az, z,. It follows from

N
1 1 a _ 2 1 2_
s ([1((1r-7 £ s+ 5 ) v

(3.37)
N

_EN_2<]—[<<|Z1—A| + *]53>(| 22— nlP A+ A]\fj)
i=3

W ) e NEAPDNGRPD) — oy =A/24C) (338)
TNT M ’ '

and (3.5), for some C which does not depend on A. Equation (3.38) holds as the left
hand side is bounded by

s (f1(-m ) (a-5)
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N
(1 _ n]lm%) e—N(Imlz—l)—N(lzzz—l))
3
N 1 2
= O(N"A)Ey_» (]_[ <<|Z1 - nlP+ N)

i=3

e 12
<|ZZ—)L1'|2+N>> e—2N(|21|2—1)—2N(|222—1)) C(3.39)

where we used the Cauchy—Schwarz inequality and

2 1 2 1 a
‘(|Z] — Ail +N> <|22—)»i| +N> -
< (|Zl — Ml + l) <|Zz - M2+ i)
N N

Indeed, after rescaling and shifting and introducing z so that |z|*> = &, the above bound
follows from

20+ M)A +z =A%) —a
= ((1+ MDA+ [z =A%) —8)
+ A+ DA+ |z =2
1

+G—a)>1+8—a=1——-2>0.
a

We used (1 + |A|?)(1 4 |z — A|?) > 8, as proved by a simple optimization. The last
expectation in (3.39) has size order at most N € from Lemma 2.11, which concludes
the proof of our initial short-range cutoff by choosing A large enough.

Second step: the long-range contribution concentrates We smoothly separate the short-
range from a long-range contributions in (3.36):

Zl Zz()‘) _ e 1 2()»)+h ( )
21 2 (V) = (oghzy 2, (M) xz.6(A),
B, 00 = (oghy 5 0)(1 = xos (),

1
and, as earlier in this article, we denote z = (z1 + z2)/2, recall |z; — z2| < N —2to,
1
Xz.6(A) = x <N7_5|z — k|>, and choose § € (o, k). Note that our notation § in this

step of the proof is unrelated to 8§ = N|A; — A2|? in the previous step We define
1 1 7
le 22( ) (lel_)\lz + lel_MZ)(l - XZ,(S()\')) and fZl,Zz (N 2) f]]]) 71,22 )")
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dm()). Note that

z] 12 fZl 22 Zl ZZ fZI 22

al de N NZU
+ — (1 — 1)) + "t a- Y ,

where we used a < N2°.
With the exact same reasoning as from (2.20) to (2.21) (with v, replaced by v, ,,),

we obtain that Z 3 f Z i) — le 2, 1s exponentially concentrated on scale N~ 20+e
Moreover, similarly, to (2.22), we now have

E, (e“ YiL W(l Xz5(Ai ))) < (COPN I CaN e
122
With @ = ¢ N, we therefore obtain

1’1 ) 11 z2 fZl 22

(A) < e N° where A = {

- NZG 25+8} )

This yields, for some p = 1 + ¢(«), c(k) > 0 and some ¢, r > 1,
s . ¢ )
E,. (eZ,-(hzlyzz(/\l)+hzl‘22(,\,))]lA)
/ ~NE
<Ev11_12< PNz 2 O )) pEle‘zz ( a3 hty o O )) PAYT < N
(3.40)

Here we used that the third term has size order e~ N E, the second one is of order

el = O(N©), and so is the first one from Lemma 3.8. Moreover,
K} 4 .
]EVzl.zz (eZi (hzl,zz ()Ll)+hz1 2 ()L'))]}.AC)
_ 20-28+¢ bSO+
=(1+O0W ))qu‘zz( o G+ e, z)

_ (1 4 O(N20—28+€))E (eZ" ]7§1.z2(}"')+ﬁ1~32 ﬂAc) ,

Vz1.20

Following similar arguments as (3.9), (3.10), still relying on Lemma 3.8, we finally
obtain

N
Bv,\ o (l_[ hzy iz (i )) =(1+0WN%*" 25+€))ef1 2 By, (eZi hqyzz()ﬁ)) ‘

i=3
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Third step: the local part is invariant. For our test function i, _ , the reader can easily

check the conditions of Lemma 4.4: the only new ingredient is

dm()) log N
2 2 < 27
e 121 — Alflz2 — Al |z1 — z2]

so that in this setting, the existence of r > 2, d < « such that (N|v|[{)" < N¢ means
>

: log N 2te 2k—g N S ST
that there exists ¢ > 0 such that (m) <N ¢ je |z1—z2o| > N"2727¢,

as we assumed by hypothesis. This gives

E, (eZi hgl,zz (}‘i)) —F (eZi hf),zz—zl OV')) +0 (e—ch'() .

21,22 — FV0,2p-71

This yields

N
Evzl 22 (1_[ hz.z Qi))
i=3

- ~ N
— (1 + O(N20—28+6))ef11,zz—f0,22—2| E"O,zzfq <1_[ hO,Zz—Zl()‘i)> .
i=3

From Lemma 2.8, e fom— = (1 — |z11%)(1 — |z2|%). With Proposition 3.7, this
concludes the proof. O

Lemma3.8 Forany0 <o <d < «k < 1/2, there exists p > 1, C > 0 such that for
any |z1] <1 — N7V |z — 2] < N=1t0 = (z1 + 22)/2, we have

N | 1 PXz.s(Mk) c
e 1!:[3(( +N|Ak—Z1|2) < +N|)‘k_12|2>)

Proof The above left hand side is at most

(P=Dxz.5 () “N(z1P=1)=N(lz2|2—
B (1 (04 ) (1 ) (2t = Ml + )12 = f? o+ e N P-bN )

N Nz =1 = N(l2 2 —
E (TTis 21 — 2 Plzz = agPem NP =D-Nizk-D)

With Lemma 2.11 and the Cauchy—Schwarz inequality, we therefore just need to prove

that
N 1 4(p=Dxz,6 k) c
S (((—— <we
]1:[3 Nk — z1]?

We can apply Lemma 4.2 (for p small enough we have N|v||; = O(1)) to compare
it to the case z; = 0, which is easily shown to be O(N°) by Corollary 5.6. O
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3.6 Proof of Corollary 1.5

Following a notation from [52],letx (A ;) = & 12 be the condition number associated
to A ;. As the spectrum of a G is almost surely simple, from [52, Equation (52.11)] we
know that

_oy e KDL K (Ae)
=)l IZ—)»‘,'|+ ,;|Z_)»k|

as z — Aj. Together with 0. (G) = {z : |z — G||! > &'}, this gives the following
almost sure asymptotics:

m@(G)NAN) ~ Y wk()e)
A.je:@N

Denoting cy = N? f:@N(l — Izlz)%, we therefore have

1in1]P<1—c< —1

e—0

m(og(Gz) &) _, +C) 5 (‘ Yae, O
TTESCN CN

From Corollary 1.2,
P@i: A € By : |0ii] > N') = 0(1),

hence we only need to prove

]P) Z)\,j E;%y, ﬁ//
CN

-1

<c,0; <Nforall ) e @N> — 1. (3.41)

We proceed by bounding the second moment

2
N
El| X gii—cv| [T1a<no
i=1

)»jel%n

<E Z ﬁfjnﬁ“g,vm (3.42)
)\../’E!@n

+E Y. GiOjilg, 0,<n0 (3.43)
)L,',)Ljeggn,i;ﬁj
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+ey—2eNE | D Ou | +2enE| Y Giillzyempo,sn0 | B44)
ri€PBy A €By

To bound the first term, note that

N10
E (ﬁ]gj]l)\_/ez%’zv,ﬁ_/_/éNm) < C/gg [) X]P(ﬁjj 2 x| Aj = z)dxdm(z).
N

Following the same reasoning as (2.29), we have

P(0j; 2x|hj=2) <P(O); =xN (1 -z [1; =0)+ 0N

CN2+28(1 _ |Z|2)2
2

< +0™V,

where we used Proposition 2.4. Denoting a the center of Ay, we therefore bounded
the right hand side of (3.42) by N3+3¢(1 — |a|*)?m(%y) < %, because m(By) >
N~1%2¢ and ¢ is arbitrary.
To bound (3.43), we first consider close eigenvalues and bound 0;; 0';; < %(ﬁizi +
0%):
Jji

E > 0o
)\iy)\je%nsi#j

. _1
< CNE (ﬁflﬂﬁ”@m,he%ﬂ {] A =M< N z“} |)

< CN'*E (ﬁ%l]lﬁ“@mme%) m(ABy) < CN¥¥ (1 — 1a]?)? <« 3.

1
01, 0j; <N pj—aj| <N~ 27

In the second estimate, we used the local law for Ginibre matrices: from [9, Theorem
4.1] the above number of close eigenvalues is at most C N¢ for some large C, with
probability at least 1 — N~ for arbitrarily large D. The third estimate was obtained
in the same way we bounded (3.42).

For eigenvalues at mesoscopic distance in [N —g+e N — g+ 4], the contribution of
(3.43) is obtained thanks to (1.12):

£ > Gii0jj
)Li,k,‘e.%n,N_%“ﬂ)Li_)hil
=N(N - DE <ﬁ“ﬁzzﬂkl,kze%’N,N’%“kmfm)
dm(z1) dm(z2)
b4

=NN-1) | }E(ﬁuﬁzz |2 =z1h2 = 22) + 0N

B fvﬂ{\zlfzsz*’Z”

=N(N—-1)

dm(z1) dm]izz) + 0N

} N2(1 = [z1) (1 = |22 +OWNT ) ==

J S
K4 %,ﬁ{\zrzzlﬂ‘/ 7t

=& (1 +O(N"9)).
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Finally, the line (3.44) is easily shown to be of order —c N(l + N7¢) thanks to (1.5)
and (2.30). We conclude that the left hand side of (3.42) is at most N~ which
concludes the proof of (3.41) by Markov’s inequality.

CN,

4 Translation invariance for conditioned measures

Recall that the Ginibre kernel is

(H 4 lu? )N 1(Nzw)k

=0

Kn(z,w) =

=~

. o N
We also denote its bulk limit as ky (z, w) = Ye N +72-—20),

Lemma4.1 Let k > 0. There exists ¢ = c(k) > 0 such that for any |z|, |lw| <

1
1 — N72% we have

Ky (z,w) = ky(z, w) + O(e™™)
Proof This is a straightforward adaptation of the proof of [9, Lemma 4.2]. O

. . _1
We denote %, s the ball with center a and radius N 2+8,

Lemma4.2 Let 0 < § < k < 1/2 be fixed constants. Consider any C-valued mea-

surable function f supported on By s, la] < 1 — N_%J”‘, and v(z) = e/ ® — 1. For
any r > 2 there exists ¢, C > 0 depending only on k, §, r such that

E (eZ{LI f(ki—a)) -E (ezfil f(M)) 10 (e_chK eC(Nnvw) '

Proof Let K\ (z, w) = Ky (z—a, w—a). Wedefine || K | = Sup,_,, cqupp(vy | K (. w)].

We successively compare linear statistics for K 1(5'), kf\;l), ky and K. First note that
ky is the kernel of a translation invariant point process, so that comparison between
kj(\‘f) and ky is trivial. For the other steps, we use [2, Lemma 3.4.5] and obtain

’E (eZlN:l f()»i—a)) i o) (eZ,NZI f(A,-))‘

00
n 2
(a) (a) |\n—1 (a) (a)
< Y2l (max (KL, KD K~ k)
+ max(1Kx . Ty 1)~ 1Ky — k) .

Clearly, || Kyl < % and we bound || KI(\;’) — Ky with Lemma 4.1. We conclude that
for a universal large enough C, and 1/r 4+ 1/s = 1, we have
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‘]E <eZlN:1 f(’xi_“)> —E (EZ,N:l f()»i))‘

(e.¢] 1+ﬂ n
—cN2% n'2 1 N _cN2 CN I
¢ Z (n!)l/s (n!)l/r ;”"'”1 < Ce e ,

n=1
where in the last inequality we used Holder’s inequality and r > 2. O

Lemma 4.3 Rememberv(z) = e/ @ — 1 and By, 5 is the ball with center a and radius
N2 Let0 <8 <k < 1 /2 be fixed constants. Consider any C-valued measurable

Sunction f supported on By s, and la| < 1 — N=2%%. Assume also that either @) or
(>ii) below holds:

(@) Re(f) =0;

(i) there existd > 0, p > l andr > 2 such thatrd < 2k, f =0on |z| < ede,
and (f+ = max(Re f, 0))

(Nl < N9, 4.2)

log leX=2 F+ 0=, < N, 43)

log |eXf=2 f+ G|, < N9 (4.4)

where the LP norm is taken with respect to En_.

Then for any q < 2«, uniformly in f satisfying the above hypothese, we have

E (eZi]V:z fi—a) [ A = a)

=F (erN:z FOD | o = 0) (1 +0 <e_CNq>> +0 (e—cN") .

Proof In this proof we first consider the most difficult case (ii), and we will finally
mention the simple modifications required for (i). We start with

]EN—] (@ZIN:Z fi—a) ]_[;N:2 |)"l _ a|26_N(|a‘2_1)>

Ey-1 (T} 14 — aPPe-NeP-D)

Ey (eZzN:z fOi=a) | 3, = a) _

4.5)
Fix some constants «1, k2 such that d < g < k2 < k1 < 2« and define X;‘(A) =

Pal<e-N"I > J =1,2. We first show we can afford imposing x5 (A;) = 0: for some

positive g, r such that p~! + ¢~ + =1 = 1, we have

N N
N . _ )
En_1 (ez,»_z fi—a) <1 _ l_[(l _ Xf(M))) l—[ Ihi — al2e~Nal 1))
i=2 i=2

N 2
[]1% —af2eNtai=D (4.6)

i=2

< HGZ{V:Z fOi—a)

N
1=[Ta—=xs
i=2

Lr

L4 L
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where L? = L?(IPy_1). By hypotheses (4.3) and (4.4), the first norm is at most eV
The second is at most NPy_;(|A2] < e V?) < e N2, The third norm is at most
N€, as a simple consequence of Lemma 2.11. These estimates also hold for f = 0,
so that we proved

Ex (eZzN=2 fQi—a) | Ay = Cl)
Ey-1 (X /=0 [T, (1 = x§ i)l — alPe Va0 ) 4 O(e=eN*)

En-1 ([Tl = 1§ 02 — aPeN0aP=D) 4 OeeN™)

4.7

If |A —al < e N and A —al > e_NKZ,Z <i < N, we have

N N
[T —al = (1+0 (™ ) [T1xi =2l
i=2 =2

e~Nlal’ (1 +0 (e_CNKI)) e~ NP,

The expectation in the numerator of (4.7) is therefore (in the first equation below X
has distribution U, the uniform measure on the unit disk with center a and radius
e~ N with volume by = m (e 2N")):

N
N K
Epy_ xu (ezfz 0= T = x§ aDlr: — A |2e—N“12—”) (1+0 (=)

i=2

€NZN 1 N N K
_ —Ey (ezizf(ki—a) 1_[(1 — Xg(M))Xf(M)) (1 +0 <e_CN 1))

~ Zn-1 by i
4.8)
We now want to remove the constraint on (Ai)f.vz 5 1.€. prove
1 N N
7En <e2f=2f Gimo TTa - xg(m)x?(m)
N i=2
1 "
= b_]EN <gzrgv:2f()ti—a)xil()\‘1)> +O(€_CN 2). (49)
N

This requires alonger argument. Let ¢ = {|z—a| < e Ny i=1or2,& = Zjlv 83i»
& =YY 6, Then,
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N

X FO=0 (1 T = x§ G )
i=2

< e RTGOE () 0 (1)
< X RS g (8 — )y ) + X2 RTODE (80) xi ). (4.10)

To bound the first term, we use the negative association property of determinantal
point processes for disjoint sets (see e.g. [42]), using f} > 0 and f = 0 on %5:

Eyn (eZtNZZRef()“i)g(L@‘zl _ %?)S(r@?))

<Ey (erN=z f+<*f>) Ey (628 — 29) Ey (£(5) . @.11)

By (4.3) and (4.4), the first expectation above has size order at most eV “ The second
is of order ¢ °¥*? and the third one is bounded by Nby (1 4 o(1)), so that the first
term in (4.10) gives an error O(bye <V .

For the second term in (4.10), we also use the negative association property and
f =0o0n%5:

Ey (eXi=RelCOF () ) )

<Ey (eX=/+00) By @i 0) < By E#Dxf ().

Together with

E (E(#9)x! (1) < E (EBDEHD) — 1) = /

|Kn(z1, 22)|* < N?b3,,
(B
4.12)

we have proved that the second term in (4.10) gives an error O(bye N “2). This

concludes the proof of (4.9), so that the numerator in (4.7) is

Nz 1
¢ 4N (_]EN (eZisz f(li—a)Xil(Al))
Zn-1 \by

(1+0(e¥)) +0 (M) +0 (=)

"Zy (LEN (X rm0y2 ) (140 (7)) +O(60Nq)),

"~ Zn-1 \by

eNZN
Zn-1

way, the denominator in (4.7) is ezNNZ_’;’ (1+0(emN 2 ). so that we obtained

where we used

~ ¢1 N for some cy, ¢y, as obtained from (1.2). In the same
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Ex (ezzziz fi—a) |y = a)
= %EN (elezz f(Ai*cz)Xiz()\l)) (1 10 (eﬂ'Nq>) 0N

= %EN (EZINZI f(’\"—“)xf()ul)> (1 +0 (e—ch>) + 0N

= NLbNEN (eZIN=1 f(ki—a)s(gg?)) (1 +0 (e—ch)) + O(e_CNq), 4.13)

where we successively used that fact that f vanishes on %{ and symmetrized.
To conclude the proof, we therefore just need

" 1 : P
£100) = £3(0) +0(e™N™), where fy(w) = o—Ey (Ximi /i)

N
4.14)
From Lemma 4.2 we know that uniformly on |w| < 1 we have

faw) = fo(w) + 0N,

which proves (4.14) by Cauchy’s theorem, and therefore the lemma in case (ii).

Under the assumption (i), up to (4.13) the results hold and the reasoning is simplified
as all L? norms related to f can be bounded by 1. To justify an analogue of (4.13)
and the end of the reasoning, we first replace f by f = f1(za) and note that

1 N N 7
_ Yim fi—a) _ )i, fi—a)) ,a
pel(C e ) xi (M))‘
2
< EEN(E(%’?)(S(%’EI) — 1)) = O(N°by),
so that by symmetrizing we now obtain

SN, fi—a) (5 — Y L YN Foi—a) e opa N2
Ey (e |7 =a) NbNEN(e §) + 0N,

The rest of the proof is identical to case (i). O

We now state and prove an analogue of Lemma 4.3 when conditioning on two
points. We will only need case (ii), as we are interested in expectations in Sect. 3, not
in convergence in distribution.

Lemmad.4 Let 0 < § < k < 1/2 be fixed constants and C > 0 fixed, arbitrarily
large. Consider any C-valued measurable function f supported on % s, la|, |b| <
1 —N_%+K, and N~ € < |b—al < N2+ Assume that there exists d < 2k, p>1
andr > 2 such that f =0on|z| < e_Nd, onlz— (b —a) < e_Nd, and (4.2), (4.3)
and (4.4) hold. Then for any q < 2k we have
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En (X149 |5 = a, 20 = b)
=By (X570 | =000 =b—a) (140 () ) +0 (V).
Proof We start similarly to the proof of Lemma 4.3, by writing
Ex (eZiN:z FO=0) |3 =a,ay = b)

N o _ 2_ _ 2_
Ey_» (eZ,zg fri—a) I_LN=3 IA; — af2e~NUalP=1) HzN=3 A — b|2e= NI 1))

En—a ([T i — al2e NP T 3 — b= NbE=D)
(4.15)

Again, we fix some constants k1, kp such thatd < ky < k1 < 2k and define x7 (L) =
Pl <oV Jj = 1,2, x = a, b. The strict analogue of (4.6) holds, so that the left

hand side of (4.15) can be written

N N K
B2 (X5 740 [T, (1 = g Gl — alPe M9 =D [T (1 = )2 Ga)liy — blPeVIPF=D) 1 OV

Ev-2 (TTLs(1 = x§ ()i — aPe NP0 [T = )} Gl — bPeNPE=D) 4 Oe=eN")
(4.16)
The analogue of (4.8) then holds exactly in the same way: the expectation in the
numerator of (4.16) is

eZNZN 1
T o5 o &N
la —b12Zy—2 b%,

N
(erN=3 OO T = x5 (1 = Xzb(?\i))xf(?»l)xf’(?xz)) (1+0(e V™).
i=3

Again, we want to remove the constraint on (Ai)f\’: 3 i.e. prove

N

1 N o

T Ew (ezi3 PO TTa - x$ouna - xf(M))xf’(M)xf’(Az))
N =3

1 N L _eNK
= 7 Ev (ezfzs s ”)xfm)x{’(xz)) +0(e N,
N

With the negative association property, the strict analogues of Eqgs. (4.10), (4.11) and
(4.12) hold, so that the numerator in (4.16) is

Nz 1 K
¢ N —En (eZzN=® f()»i*cl)xla()hl)xf?()\z)> +0 (efaN 2)

la —bI?Zy—2 \ b3,
+ 0 (e_”NKZ)
N
e ZN 1 N  roy._ AN
T la—bPZy (b_zEN (X570 0xt Goxt 02)) +0 (e CNZ))
- N
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ON .
where we used eZNZ;V ~ ¢1 N for some cy, ¢p, as obtained from (1.2). In the same

way, the denominator in (4.16) is mf:rTZZNH (1 +0 (e—cN"z)), giving

En (eZiN=3 SO =ahe = b)
1 N o _ _
= b—2EN (eZi=3f()u a)Xf‘()"l)X{’(}\Z)) (1 +O(€ ch)>+O(e ch)
N
1 N _ _ _
— b_zEN (gzl':1 [ a)Xla()‘l)le()Q)) (1+O(€ CNq)>~|—O(e ch)
N
1

T NN — D2 ZIN: fli=a) < b —cN1 —cN4
NN - 1)1912VEN (e 1 5(%1)5(%’1)) (1 +0(e )) + OGN,

4.17)

where we successively used that fact that f vanishes on %{ U %’f , BN %’f = O (this
holds because |a — b| > N~C) and symmetrized. To conclude the proof, we therefore
just need 9;,z, f4,5(0, 0) = 9;,2, f0.6—a (0, 0) + O(e_CNq), where

1

NN 1)b2 Ey (eZ,N:l f(ki—a)+115(=@‘f)+12§($11’))) (4.18)
- N

Sfap(z1,22) =

This follows from Lemma 4.2 and Cauchy’s Theorem, similarly to the end of the proof
of Lemma 4.3. O

5 Andréief’s identity and Kostlan’s theorem

This section gives applications of Andréief’s identity to the conditioned measures
of interest in this work. In particular, it proves some slight extensions of Kostlan’s
theorem (Corollary 5.5), following a method from [18]. The common main tool will
be the following classical Lemma, by Andréief [3] (see [16] for a short proof). Note
that the original proof of Kostlan’s theorem [38] and some of its extensions [32] were
based on different arguments.

Lemma 5.1 (Andréief’s identity) On a measured space (E, E, 1) For any functions
@i ¥/ € La)Y,

1
m / det ((]5, ()»j)) det (I//l (Xj)) w(dAy) ... u(dAiy) = det (fi,j)
- JEN

where fi j = _/E¢i(l)lﬁj(l)u(d?\)-
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Theorem 5.2 Let E =C, g € Ly(w), and {Ay, ..., An} eigenvalues from the Ginibre

ensemble. Then
N
E <H g(xk)> =N
k=1

AN
i j=1

1 17—
where fi; = / KA g G u(dh).
Proof The following is elementary:
f|A| fdu(h) = I 5.1
The proof then follows from Andréief’s identity. O

Theorem 5.3 We have (remember i = n™™))

N
1
E (H g | A = Z) Z(Z) det(fi )} = :

k=2

1 o
where f; j = F[,\’*W*Hz — A2g(Mp(dr)

and

N(N—1)
79 = N5 e<N*1>(N|z|2).

Proof Using Andréief’s identity with ¢; (1) = A\~ 'g(W)]z — A%, ¥;(A) = A1, we
find

N
1
E (1"[ g0u) | 1 = z) — det(fi D2
k=2 Zy

where

1
Z(Z) _det(M’/)lj 1’ Ml/ —l /\)\’l 1)\] 1|Z )"|2/'L(d)\')

By expanding |z — A|> = |z|? + |A|? — zA — ZA, we see that that M is tridiagonal, with
entries (remember (5.1))

1 2P z z
M;; = N TN M1 = N M1 =—
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Denoting x = N|z|? and dy = det((M;j)1<i, j<k), with the convention dp = 1 we
have

1
4= %
N
xy 1 x 1
dp = (1 + E) mdk—l - %de—2
k(k+1) .
sothatay = dy N 2 satisfiesag = 1,a; = 1 + x,
(1+7)an -3
ap = — 1 — —aj_».
k k Ag—1 kak 2
This gives a; = e® (x) by an immediate induction. O

Theorem 5.4 We have

N
1 _
E <H g | M =040 = z) =05 det(fi,j)f\szz1 where
k=3 Zy

fij / ATz = AP g(M(dh)

TS
and Vot
_ =D eg B )(N|Z|2)

Nlz|?
Proof By Andréief’s identity, the result holds with

VAR (5.2)

1 S
0, - —15j—
Zy? = detMiN 2 Mij = (l.+1)!/k’ DAz = AP p(da).

Expanding |z — A|> = |z|> 4+ |A|> — zA — ZA, we see that M is tridiagonal with entries

1 z|? z z

M = — Mg = e Mg = —
i Nl+l (l+l)Nl ii+1 N1+l i,i—1 (l+1)Nl

Denoting x = N|z|2 and d = det((M;;)1<i,j<k)» with the convention dy = 1 we
have

2+x
dy ===,
= 9N2

X 1 X 1
d=(1+—"—)——di 1 — ————d; ».
¢ <+k+1>N"+1kl k+ 1 N2 2

kk+3)
sothatay = dy N~ 2 satisfiesag = 1,a; =1+ x/2,

1+ X X
ap = — ) Af—1 — ap—o.
k K+ 1) T ey
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This gives the expected result by an immediate induction. O

Kostlan’s theorem now comes as a corollary, as well as a similar property for the
Ginibre ensemble conditioned on A1 = 0.

Corollary 5.5 (Kostlan) The set N{|A1|?, ..., |An|?} is distributed as {y1, ..., YN}, a
set of (unordered) independent Gamma variables of parameters 1,2, ..., N.

Proof Letg € C[X]and use Theorem 5.2 with the radially symmetric function g (|-|?).
The relevant matrix is then diagonal, with coefficients

1 .
fui = 5 [ PP e

NZOD e —r —(i—1)
= m/_or g(r/N)e "dr =N E(g(yvi/N)).

In other words,

N N
E (]‘[ g(|xi|2>> =E (1"[ g(Vi/N)) :
i=1

i=1

Note that these statistics characterize the distribution of a set of unordered points, as
such expressions with polynomial g generate all symmetric polynomials, as stated
in Lemma 5.7, and the gamma distributions are characterized by their moments. For

more details, see [18]. We conclude that N{|A1|%, ..., |An|*} 4 {vi,....,vn} O
Corollary 5.6 Conditioned on {»; = 0}, {N|x2|?, ..., N|Ay|?} is distributed as
{y2,... YN}, a set of (unordered) independent Gamma variables of parameters

2,3,...,N.

Proof Similarly to the proof of Corollary 5.5, we take g € C[X] and the radially
symmetric function g(| - |?). In Theorem 5.3, we have

1 . N—i 0o )
fii =1 / P (AP (dr) = —— f _, 78U /NyeT dr = NE g (i1 /N)].

This together with our expression for Zﬁzo) in Theorem 5.3 yields

N N
E (]"[ g(nil®) [ 2 = 0) =E (H g()/i))
=2

i=2

and we conclude in the same way that N{|A>|%, ..., |An|*} 4 {ya, ..., vn}. O
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For the proof of the following lemma, we refer to [18]. We define the product sym-
metric polynomials as the symmetric polynomials given by products of polynomials
in one variable:

N
PSc(N) = { [[Pxi | Pecix] }

i=1
Lemma 5.7 PSc(N) spans the vector space of symmetric polynomials of N variables.

Acknowledgements The authors thank the referees for particularly precise and pertinent suggestions which
helped improving this article.

Appendix A: Eigenvalues dynamics

This Appendix derives the Dyson-type dynamics for eigenvalues of nonnormal
matrices. More precisely, we consider the Ornstein-Uhlenbeck version so that the
equilibrium measure is the (real or complex) Ginibre ensemble. These dynamics take
a particularly simple form in the case of complex Gaussian addition, where the drift
term shows no interaction between eigenvalues: only the correlation of martingale
terms is responsible for eigenvalues repulsion.

We also describe natural dynamics with equilibrium measure given by the real
Ginibre ensemble. Then, the eigenvalues evolution is more intricate.

It was already noted in [11] that eigenvectors impact the eigenvalues dynamics for
nonnormal matrices, and the full dynamics in the complex case have been written
down in [30].

Complex Ginibre dynamics

Let G (0) be a complex matrix of size N, assumed to be diagonalizedas YGX = A =

Diag(Aq, ..., An), where X, Y are the matrices of the right- and left-eigenvectors of

G (0). We also assume that G (0) has simple spectrum, and X, Y invertible. The right

eigenvectors (x;) are the columns of X, and the left-eigenvectors (y;) are the rows of

Y. They are chosen uniquely such that XY = I and, forany 1 <k < N, Xy = 1.
We now consider the complex Dyson-type dynamics: forany 1 <i, j < N,

dBij0) 1o r)dt (A.1)
\/N 2 lj( ) :

dG;;(t) =

where the B;;’s are independent standard complex Brownian motions: +/2 Re(B;;)
and /2 Im(B;;) are standard real Brownian motions. One can easily check that G ()
converges to the Ginibre ensemble as t — 0o, with normalization (1.1).

In the following, the bracket of two complex martingales M, N is defined by bilin-
earity: (M, N) = (ReM,Re N) — (Im M,Im N)+i(Re M,Im N)+i{Im M, Re N).
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Proposition A.1 The spectrum (A1(t), ..., A, (1)) is a semimartingale satisfying the
system of equations

1
dAg () = dMy(r) — Ekk (H)dr
where the martingales (My)1<k<n have brackets (M;, M ;) = 0 and
— dt
d(M;, M), = ﬁij(t)ﬁ-

Remark A.2 As explained below, this equation (in particular the off-diagonal brackets)
is coherent with the eigenvalues repulsion observed in (1.2). Contrary to the Hermitian
Dyson Brownian motion, all eigenvalues are martingales (up to the Ornstein Uhlen-
beck drift term), so that their repulsion is not due to direct mutual interaction, but to
correlations between these martingales at the microscopic scale.

For example, assume that G (0) is already at equilibrium. Using physics conventions,
for any bulk eigenvalues A1, A, satisfying w = O(1) (remember w = VNG = 12)),
Proposition A.1 and Theorem 1.4 imply

E(dhdig | A =z1, 00 =22) ~E(O1n | A =21, A0 = 22)
1 1=+ |oP)e e’

& =P dr
N AT — el

in the bulk. By considering the real part in this equation and denoting dA| = dx;+idyy,
di> = dx; 4 idy;, we have in particular E(dx;dx; + dy;dyz) < 0, and this negative
correlation is responsible for repulsion: the eigenvalues tend to move in opposite
directions. Moreover, as eigenvalues get closer on the microscopic scale, w — 0 and
the repulsion gets stronger:

E(dhdig | A =21, 00 = 22) ~ —————dr.

On the other hand, for mesoscopic scale N -2« A1 — Az]|, Proposition A.l

2
and Theorem 1.4 give E (d)qd@ ~ —%dt = o(dr), so that increments are

uncorrelated for large N.

For a given differential operator f > f’, we introduce the matrix C = X~ X’.
Along the following lemmas, all eigenvalues are assumed to be distinct. In our appli-
cation, this spectrum simplicity will hold almost surely for any ¢+ > 0 as G(0) has
simple spectrum.

LemmaA.3 We have X' = XC and Y = —CY.

Proof The first equality is the definition of C. For the second one, XY = I gives
XY+ X'Y =0,hence Y/ = —X~'X'Y = —CY. O
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Lemma A.4 The first order perturbation of eigenvalues is given by i = yrG'xi.

Proof We have A’ = (YGX) =Y GX +YGX+YGX =YGX+YGXC —
CYGX = YG'X + AC — CA = YG'X + [A, C]. Therefore ., = (YG'X)u +
[A, Clik = ykG'xk. o

y,ij
Aj—Ai®

LemmaA.5 Foranyi # j, Cij =

Proof For such i, j, A; ;= 0. With the same computation as in the previous lemma,
this gives (YG/X),']' +[A,C];j =0. Thus (A; — A;)Cij = —(YG/X),']' = —y,-G’xj,
from which the result follows. O

LemmaA.6 Forany 1 <k <N, Crx = =14 Xu i’kG_if

Proof We use the assumption Xy, = 1. From this, and the definition of C, we get

n
X =0=(XOpx = ZXlelk = Xk Crx + ZXlelk-

=1 1k
As a consequence, Cyx = — Zl £k X11Cy and we obtain the result thanks to the
previous lemma. O

From now on the differential operator will be either dreg,, (G' = Eup =

{8ia8jb}1<i,j<N)> OF dm G,y» (G' = iEgp). In both cases, G” = 0. We denote CRe
and C'™ accordingly. In particular, for any k and i # j the following holds:

ORe Gup M = YikaXb ks Om Gaprk = 1Yka Xp i
YiaXpi Y. X
ClR-ez iaAbj CIISISZ_ZX la b,k’

) kl
Aj— A s Ak — M
YiaXpi Yiu X
o N P Ty (A.2)
Aj— A IZk M — Al
Lemma A.7 We have
YiaXpi
aReGab ij = Z(Xll - ijX]l) e ’
M
I#]j
Y1 Xpj
almGab ij —IZ(th Xl/X/l) - )f .
I#] !
1
ORe G Yij = Z XiY1a Xpi Yij + Yia Xp1 Y1),
1 MM
Om G ¥ ij = IZ N — Ay (thYlaXluYt/ + YzaXlel/)
1#i
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Proof Below is the computation for dre G, Xij. We use X "= XC and (A.2):

n
YiaXpi
Xjj=(XCij =) XuCij =}  Xi;—— le
=1 I#] I

Yia Xpj Yia Xpj
_le X:X/l)L a_)f Z(th Xt/X/l) - )f
i T g !

The case 0im G, X;; is obtained similarly, as are the formulas for Y. O

Lemma A.8 The second order perturbation of eigenvalues is given by

Proof We compute the perturbation for dre G, . Differentiating A a second time gives
)»;{, = y,’{G’xk + ykGka + ykG/x,’{ = YlgaXhak + YkaX;g’ly

Replacing X’ and Y’ with their expressions yields

A”—Z ! (Xk1YiaXpkYia + YiaXp1Via) X
k= )Lk_)hl kiflaAbkLka kaAblLla b,k
Ik
YiaXp i
— Al

+ Yia Y _(Xp — Xo, kal)

I#J
l;ék
+ YiaXp1Yia Xp ko — YiaXp k X1t Yia Xp 1)
_ 22 Yia Xb1Y1a Xp k
Ak — Al

(XlelaXb,kYkaXb,k + Yia Xp1Yia Xp k

)

I#k
which concludes the proof, the other cases being similar. O
For the proof of Proposition A.1, we need the following elementary lemma.
LemmaA.9 Let v =inf{t > 0:3i # j, A;(t) = A;(t)}. Then T = oo almost surely.

Proof The set of matrices G with Jordan form of type

AN-1

MGBWGB)»N—zéB( 0 In_i

) (respectively A1 @ - - D Ay—2 D An—1 D An—1)

is a submanifold M (resp. M>) of CcVN ? with complex codimension 1 (resp. 3), see
e.g. [36,47]. Therefore, almost surely, a Brownian motion in CcN : starting from a
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diagonalizable matrix with simple spectrum will not hit M or M>. This concludes
the proof. O

All derivatives can therefore be calculated, as eigenvalues and eigenvectors are
analytic functions of the matrix entries (see [35]).

Proof of Proposition A.1 In our context,the Itd formula will take the following form:
for a function f from C" to C of class C2, where B, = (Bl, ..., B') is made of
independent standard complex Brownian motions, we have

df(B) =) <;—deer + alaf dImB;'>

- dRe z; mz;
1/ 9%f 32 f

+= + dz. A3
2(; 9 Re z;2 81mz,-2> (=

For any given 0 < & < min{|A;(0) — A;(0)],7 # j}, let
Te=inf{t 2 0:3 # j, |4 () —Xj(1)] < e} (A4)

Eigenvalues are smooth functions of the matrix coefficients on the domain N; - ; {|A; —
Ajl > &}, so that Eq. (A.3) together with Lemmas A.4 and A.8 gives the following
equality of stochastic integrals, with substantial cancellations of the drift term:

n
dB;i(t A Te) Gij
At AT = Y YiXj (J— - —d@ A )
i j=1 VN 2
1 YiXiuYiXi YiiX i Yi X
+N Z ( kl}\'jl l)i jk . kl}L Jjl l)i 'lk>d(l/\‘f5)
LTk k— M k— Al
- dB;j(t ATe) 1 -
ij e
= Z YkinkT -3 Z YiGij X jed(r A Te)
i,j=1 i,j=1
n
dBl'j(t/\Tg) 1
= Z YkinkT — E)\.kd([ N 'L'g).

i,j=1
Taking ¢ — 0 in the above equation together with Lemma A.9 yields

dB;;i(t 1
ij () — —Ardt.
VN 2

n
da(t) = ) YuXje
i.j=1

The eigenvalues martingales terms are correlated. Their brackets are

_ 1 "
i )i =~ D YiaXpiVjeXa jd{Bap, dBea)s
a,b,c,d=1
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i~ w dr dr
= (X' X)i(YY )ijﬁ = ﬁij(t)ﬁa (A.5)
d{ri, Aj); =0. (A.6)
This concludes the proof. O
Proof of Corollary 1.6

Let Ay e = {suppgy<; [21(s) — A1(0)] < N¢t'/2}. We start by proving that
P(A; ) =1—o0(1). (A7)

From Proposition A.1 and Itd’s formula, we have

t ¢
e%xl(t)—)\l(O):/ e2dM; (s), (A.8)
0

which is a local martingale. It is an actual martingale because

]E(/S )_/t (sﬁll(s) )_
(| ezdMi(s)), | = Ele2————=ds ) =0(r) < o0, (A.9)
0 0 N

where in the last equality we used E(071(s)) = O(N), which follows from (2.11).
The estimate (A.7) follows by Doob’s and Markov’s inequalities.
For (1.16), we start with

t

o
|e%k1(t)—)»1(0)|2=2R€/ e%)\l(s)_)‘l(o)e%dMl(s)—i—/ es@
0 0

ds. (A.10)

This implies

O11(s)

t
E (etMl(t) - Kl(O)Izﬂ{A.(O)e%}) = /0 E <€‘Y ﬂ{x.(@)ega}) ds +o().
(A.11)

Here, we used that (Re fo e%kl(s) —kl(O)e%dMl (s)); is an actual martingale,
because the expectation of its bracket is

! s o (S)
/0 eS]E(IeZM(S)—M(O)IZ 5 IL{M(O)eé?}dS>

' o
< 2/ R <|,\1(s)|2 1 lllv(s)ds) < o0,
0

where for the last inequality we used (2.11).
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To evaluate the right hand side of (A.11), we would like to change A1 (0) € % into
A (s) € A. First,

O11(s)
‘]E ( N LA (L 0ez — Li)es)
O11(s)
<E(T]ldist()\,l(s),aﬂ)glvgll/z :O(Nb"t]/Z), (Alz)

where for the last inequality we used (2.11), again. Moreover, if 1/p 4+ 1/q = 1 with
p < 2. we have

p\ 1/p
E <ﬁl;v(S)1(At,s)") <E <<ﬁn(s)) ) IP’((AQ)“)W o, e

N

where we used [24, Theorem 2.3] to obtain that uniformly in the complex plane and
in N, 011/ N has finite moment of order p < 2. Equations (A.11), (A.12) and (A.13)

imply

! O11(s)
E (IM(I) - ?»1(0)|2]1A1(0)e%) = /0 E (%Mxm)@@}) ds + o(2),

and one concludes the proof of (1.16) with (2.11).
The proof of (1.17) is identical, except that we rely on the off-diagonal bracket
d{A1, Ma2)s = O12(s) dﬁs, the estimate (1.9), and the elementary inequality

1012 = [(RFR)(LTL)| < IR INRMILIILi |

1 1
<3 (IRIPILAP + 1R PILS ) = 5 (611 + O2)

to bound the (first and p-th) moment of &1, in the whole complex plane based on
those of 011, Op,.

Real Ginibre dynamics

We now consider G(0) a real matrix of size N, again assumed to be diagonalized
as YGX = A = Diag(A1, ..., n), where X, Y are the matrices of the right- and
left-eigenvectors of G (0). We also assume that G (0) has simple spectrum, and X, Y
invertible. We keep the same notations for the right eigenvectors (x;), columns of X,
and the left-eigenvectors (y;), rows of Y. They are again chosen such that XY = [
and, forany 1 <k < N, Xi = 1.

In this subsection, the real Dyson-type dynamics are (1 < i, j < N),

dBi; (@) lG»-(z)dz (A.14)
N '

dG;;(t) =
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where the B;;’s are independent standard Brownian motions. One can easily check
that G (t) converges to the real Ginibre ensemble as  — oo.

Note that the real analogue of Lemma A.9 gives weaker repulsion: the set of real
matrices with Jordan form of type

AN— 1
M@m@h\/—z@( 1\61)»/\/—1)

is a submanifold M of RN 2, supported on Ay_1 € R, with real codimension 1 (as
proved by a straightforward adaptation of [36, Theorem 7]). Denoting T = inf{r >
0:3i # j,2;() = A;(®)}, under the dynamics (A.14) for any ¢ > O we therefore
have

P(t <t) >0,

so that we can only state the real version of Proposition A.1 up to time 7. In fact,
collisions occur transforming pairs of real eigenvalues into pairs of complex conjugate
eigenvalues, a mechanism coherent with the random number of real eigenvalues in the
real Ginibre ensemble [22,41].

The overlaps (1.4) are enough to describe the complex Ginibre dynamics, and so
are they for the real Ginibre ensemble, up to the introduction of the following notation:
we define i € [1, N] through Aj = i, i.e. i is the index of the conjugate eigenvalue to
Ai. Note thati = i if Ai € R. For real matrices, if L, R; are eigenvectors associated
to Aj, L;, R; are eigenvectors for A, so that

05 = (R{R)(L3Li) = (RS R)(LYLy).

Proposition A.10 The spectrum (A1(t), ..., A, (1)) evolves according to the following
stochastic equations, up to the first collision:

Oy 1
dit ATy =dMee AT+ [ v S | 4@ A )
I#k

where the martingales (My)1<k<n have brackets

d(t A T)
N

d(it A1)

. d(Mi, Mj)ne = O;5(1) N

d<Mi, Mj)t/\r = ﬁ,‘f(t)
Note that the real eigenvalues have associated real eigenvectors. For those, 0,; =
O, and the variation is real: real eigenvalues remain real as long as they do not collide.

Remark A.11 Proposition A.10 is coherent with the attraction between conjugate
eigenvalues exhibited in [45]. In fact, if n = Im(X ;) > O, the drift interaction term
with Ag is O/ (A — Ak) = —iO0kx/(21), so that these eigenvalues attract each other
stronger as they approach the real axis.
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For the proof, we omit the details and only mention the differences with respect to
Proposition A.1. We apply the Itd formula for a € function f from R” to C, with
argument U; = (U}, ..., U[") is made of independent Ornstein-Uhlenbeck processes.
Together with the perturbation formulas for A;, Lemmas A.4 and A.8 , we obtain
(remember the notation (A.4))

n
dB;i(t A 1
dAit ATe) = Z Yii X jk (M — =G;;d@t A r€>

ij=1 VN 2
Y Y X
ZZ ki ]l li Jkd(l/\r‘g)
i,j l#k
dBij(t/\Tg)
= YiXip————
.Z HETTUN
i,j=1
X' X)) (YY! 1
Z( )\)lk(k )kl_EAk e A7),
IZh k— Ag

We can take ¢ — 0 in the above formulas and the brackets are calculated as follows,
concluding the proof:

d(hi, A j)iae = Z YiaXp.i¥jeXd jd(Bap. dBea)ine
a,b,c,d=1
— d(t A1) d(t AT)
= (X'X)ij(YY");; = 0;;(t) N (A.15)
n
1
i Ajdine =~ D YiaXi¥jeXa jd(Bap, dBea)ine
a,b,c,d=1
d(t A1) d(t A1)
= (X'X);j (YY", = 00— (A.16)

Appendix B: Normalized eigenvectors

This paper focuses on the condition numbers and off-diagonal overlaps, but the Schur
decomposition also easily gives information about other statistics such as the angles
between eigenvectors. We include these results for the sake of completeness. We denote
the complex angle as

RTRQ

arg(Aj, Ap) = ——,
g 22) = R TR
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where the phases of Rj(1) and R, (1) can be chosen independent uniform on [0, 27).
We also define

Z

NSENTE

P(z) =

Proposition B.1 Conditionally on A1 = z1, > = 72, we have

(d) X
welh, 22) = @ (m)
1 — X2

where X ~ ¢ (0, lId).

In particular, for A1, Ao at mesoscopic distance, the complex angle converges in
distribution to a Dirac mass at 0. Therefore in such a setting eigenvectors strongly
tend to be orthogonal: matrices sampled from the Ginibre ensemble are not far from
normal, when only considering eigenvectors angles. The limit distribution becomes
non trivial in the microscopic scaling |A; — A2| ~ N~1/2 it is the pushforward of a
complex Gaussian measure by &.

Proof From Proposition 2.1 we know that R Ry = R?IRT,Z, IR1ll = lIRT.1]| and
IR2|l = ||R72ll, where Rr; (and Lt ;) are the normalized bi-orthogonal bases of
right and left eigenvectors for 7', defined as (2.2). The first eigenvectors are written

Rr.1 = (1,0,...,0) and Ry = (a,1,0...,0) where a = —by = —MT}M, with

T2 complex Gaussian .4 (0, ﬁld), independent of A1 and A,. This gives

b
V1+ b

and concludes the proof. O

arg(Ay, A2) = —

From Proposition B.1, the distribution of the angle for fixed A; and random A,
can easily be inferred. For example, if A, is chosen uniformly among eigenvalues in a
macroscopic domain 2 C {|z| < 1} withnonempty interior, we obtain the convergence
in distribution (X is uniform on €2, independent of .4")

A7

Nlarg(A1, A 2z, 2
|larg(A1, A" — o — XoP

When z; = 0 and z; is free, the following gives a more precise distribution, for finite
N and in the limit.

Corollary B.2 Conditionally on {}| = 0} we have

d) (d)
Nlarg(hr, 20)2 L NByy ~> X

where Uy is an independent random variable uniform on {2, ..., N}, and X has
,—t
density 17(1+)‘1R+ ).
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Proof From Corollary 5.6, N|Aa|> ~ vuy - Together with Lemma 2.5, this gives

|12
Nio? (d) Y1 (d)
|arg(u, do)? = —2_ = Bruy-
|- Y1 + YUNn
Niaa P2

The limiting density then follows from the explicit distribution of S random
variables. O
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