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Abstract

Let (X,,),n>0 be a Markov chain with values in a finite state space X starting at X =
x € X and let f be a real function defined on X. Set §,, = Zzzl f(Xp),n > 1.
For any y € R denote by 7, the first time when y + S, becomes non-positive. We
study the asymptotic behaviour of the probability Py (y + S, € [z, z +al, Ty > n)
as n — +o00. We first establish for this probability a conditional version of the local
limit theorem of Stone. Then we find for it an asymptotic equivalent of order n3/2 and
give a generalization which is useful in applications. We also describe the asymptotic
behaviour of the probability P, (ry = n) asn — +o0.

Keywords Markov chain - Exit time - Conditioned local limit theorem - Duality

Mathematics Subject Classification 60J10 - 60F05

1 Introduction

Assume that on the probability space (£2, .%#,P) we are given a sequence of real
valued random variables (X,),,>1. Consider the random walk S, = ZZ:] Xi,n > 1.
Suppose first that (X,),>1 are independent identically distributed of zero mean and
finite variance. For any y > 0 denote by 7, the first time when y + S, becomes
non-positive. The study of the asymptotic behaviour of the probability P(zy, > n)
and of the law of y + S, conditioned to stay positive (i.e. given the event {7, >
n}) has been initiated by Spitzer [31] and developed subsequently by Iglehart [20],
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Bolthausen [2], Doney [10], Bertoin and Doney [1], Borovkov [3,4], to cite only a few.
Important progress has been achieved recently by employing a new approach based
on the existence of the harmonic function by Denisov and Wachtel [6-8] (see also
Varopoulos [33,34] and Eichelbacher and Konig [11]). In this line Grama, Le Page
and Peigné [17] and the authors in [13,14] have studied sums of functions defined on
Markov chains under spectral gap assumptions. The goal of the present paper is to
complete these investigations by establishing local limit theorems for random walks
defined on finite Markov chains and conditioned to stay positive.

Local limit theorems for the sums of independent random variables without con-
ditioning have attracted much attention, since the pioneering work of Gnedenko [12]
and Stone [32]. The first local limit theorem for a random walk conditioned to stay
positive has been established in Iglehart [21] in the context of walks with negative
drift EX| < 0. Caravenna [5] studied conditioned local limit theorems for random
variables in the domain of attraction of the normal law and Vatutin and Wachtel [35]
for random variables X in the domain of attraction of the stable law. Denisov and
Wachtel [8] obtained a local limit theorem for random walks in Z¢ conditioned to stay
in a cone based on the harmonic function approach.

Local limit theorems without conditioning for Markov chains are known as early as
the work of Kolmogorov [24] and the background contributions due to Nagaev [27,28]
who initiated the study of Markov chains by spectral methods. The work of Doeblin—
Fortet [9] and the theorem of Ionescu-Tulcea and Marinescu [22] allowed to weaken
Nagaev’s conditions to deal with Markov kernels having a contraction property. In this
spirit Le Page [25] proved a local limit theorem for products of random matrices and
Guivarc’h and Hardy [18] and Hennion and Hervé [19] obtained local limit theorems
for sums §,, = ZZ: 1 f(Xy), where (X,,),,>0 is a Markov chain and f a real function
defined on the state space of the chain, which will be also the setting of our paper.

Much less is known on the conditioned local limit theorems. We are aware only of
the results of Presman [29,30] who has considered the case of finite Markov chains
in a more general setting but which, because of rather stringent assumptions, do not
cover the results of this paper. We can note also the work of Le Page and Peigné [26]
where a conditioned local limit theorem is established for the stochastic recursion in
a rather different setting.

Let us briefly review the main results of the paper concerning conditioned local
limit behaviour of the walk S, = Y ;_, f(Xx) defined on a finite Markov chain
(X»)n>0. From more general statement of Theorem 2.4, under the conditions that the
underlying Markov chain is irreducible and aperiodic and that (S,,), >0 is centred and
non-lattice, for fixed x € X and y € R, it follows that, uniformly in z > 0,

. 2aV(x,y) < _
nlggo <an (y + Sy €lz,z+al, Tty > ”) o2 b+ <ﬁa>> =0

(1.1)

t2
where ¢ (1) = te™ Z 1;>0 is the Rayleigh density. The relation (1.1) is an extension
of the classical local limit theorem by Stone [32] to the case of Markov chains. We
refer to Caravenna [5] and Vatutin and Wachtel [35], where the corresponding results
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have been obtained for independent random variables in the domains of attraction of
the normal and stable law respectively.

We note that while (1.1) is consistent for large z, it is not informative for z in a
compact set. A meaningful local limit behaviour for fixed values of z can be obtained
from our Theorem 2.5. Under the same assumptions, for any fixed x € X, y € R and
720,

lim n¥/2P, (y + Sy € [z, 2 +al, Ty > n)

n— 400
_ Ve y)/ /V* ¥, ') v(dx')dz'. (1.2)

2no?

For sums of independent random variables similar limit behaviour was found in Vatutin
and Wachtel [35]. It should be noted that (1.1) and (1.2) complement each other: the
main term in (1.1) is meaningful for large z such that z ~ n'/? as n — oo, while (1.2)
holds for z in compact sets.

We also state extensions of (1.1) and (1.2) to the joint law of X, and y + S,.
These extensions are useful in applications, in particular, for determining the exact
asymptotic behaviour of the survival time for branching processes in a Markovian
environment. They also allow us to infer the local limit behaviour of the exit time 7,
(see Theorem 2.8): under the assumptions mentioned before, forany x € Xandy € R,

2V (x,
lim n3/2]P’X (ry = n) = M

n——+00 - V2ro3

The approach employed in this paper is different from that in [26,29,30] which all
are based on Wiener-Hopf arguments. Our technique is close to that in Denisov and
Wachtel [8], however, in order to make it work for the random walk S,, = ZZ:l f(Xr)
defined on the Markov chain (X, ), >0, we have to overcome some essential difficulties.
One of them is related to the problem of the reversibility of the Markov walk (S,,),>0.
Let us explain this point in more details. When (X,,),,>1 are Z-valued independent
identically distributed random variables, let (S;),>1 be the reversed walk given by
Sk =3 k1 Xg, where (X}),> is a sequence of independent identically distributed
random variables of the same law as — X1. Denote by 7 the first time when (z+5; ) x>0
becomes non-positive. Then, due to exchangeability of the random variables (X;),>1,
we have

Ej (V¥(XT.2); ST > z)dz.

Ply+ Sy =z,7y>n) =P+ S, =y, t7 >n). (1.3)

This relation does not hold any more for the walk S,, = ZZ:] f(Xk), where (X,,),>0
is a Markov chain. Even though (X},),, > takes values on a finite state space X and there
exists a dual chain (X}}), >0, the main difficulty is that the function f : X — R can be
arbitrary and therefore the Markov walk (S,),>0 is not necessarily lattice valued. In
this case the Markov chain formed by the couple (X, y + S,),>0 cannot be reversed
directly as in (1.3). We cope with this by altering the arrival interval [z, z + A] in the
following two-sided bound
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Z Es (‘p;((X;)IL{HS;;e[y_h,yL r;‘>n}) v(x™)

x*eX

<P+ Sy elz,z+hl 7y >n)

< Z E;* (Wr(X;)l{z+h+S,’;e[y,y+h],r;‘+h>n}> v(x*)’ (1.4)

x*eX

where v is the invariant probability of the Markov chain (X,),>1, ¥ : X > Ry
is a function such that v (1//;‘ ) = 1 (see (6.2) for a precise definition) and S =
— Y i1 f(X%), Vo > 1. Following this idea, for a fixed a > 0 we split the interval
[z, z + a] into p subintervals of length 7 = a/p and we determine the exact upper
and lower bounds for the corresponding expectations in (1.4). We then patch up the
obtained bounds to obtain a precise asymptotic as n — +oo for the probabilities
Py(y + Sy € [z,z +al], Ty > n) for a fixed @ > 0 and let then p go to +0co. This
resumes very succinctly how we suggest generalizing (1.3) to the non-lattice case.
Together with some further developments in Sects. 7 and 8, this allows us to establish
Theorems 2.4 and 2.5.
The outline of the paper is as follows:

Section 2: We give the necessary notations and formulate the main results.
Section 3: Introduce the dual Markov chain and state some of its properties.
Section 4: Introduce and study the perturbed transition operator.

Section 5: We prove a local limit theorem for sums defined on Markov chains.
Section 6: We collect some auxiliary bounds.

Sections 7, 8 and 9: Proofs of Theorems 2.4, 2.5 and 2.7, 2.8, respectively.
Section 10: We state auxiliary assertions which are necessary for the proofs.

Let us end this section by fixing some notations. The symbol ¢ will denote a positive
constant depending on the all previously introduced constants. Sometimes, to stress the
dependence of the constants on some parameters «, 3, ... we shall use the notations
Ca» Ca,B, - - - - All these constants are likely to change their values every occurrence.
The indicator of an event A is denoted by 1 4. For any bounded measurable function f
on X, random variable X in X and event A, the integral fx f(x)P(X € dx, A) means
the expectation E (f(X); A) = E(f(X)14).

2 Notations and results

Let (X»)n>0 be a homogeneous Markov chain on the probability space (£2, .7, P)
with values in the finite state space X. Denote by ¥ the set of complex functions
defined on X endowed with the norm |[|-||o: lIglloe = SUP,ex |g(x)], for any g € €.
Let P be the transition kernel of the Markov chain (X},),,>0 to which we associate the
following transition operator: for any x € X and g € %,

Pg(x) = ) g()P(x,x"),

x'eX
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For any x € X, denote by P, and E, the probability, respectively the expectation,
generated by the finite dimensional distributions of the Markov chain (X},),, >0 starting
at Xo = x. We assume that the Markov chain is irreducible and aperiodic, which is
equivalent to the following hypothesis.

Hypothesis M1 The matrix P is primitive: there exists ko > 1 such that for any x € X
and any non-negative and non identically zero function g € G,

Pkog(x) > 0.

Let f be areal valued function defined on X and let (S,,),, >0 be the process defined
by

So=0 and S,=fXD+---+f(Xn), V=1

For any starting point y € R we consider the Markov walk (y + S;,),>0 and we denote
by 7, the first time when the Markov walk becomes non-positive:

Tty :=inf {k > 1, y + 5 < 0}.

Under M1, by the Perron-Frobenius theorem, there is a unique positive invariant
probability v on X satisfying the following property: there exist c; > 0 and ¢ > 0
such that for any function g € € andn > 1,

sup [Ey (g (Xn)) = v(@)] = [P"g —v(9) |, <lIgloocre™", (2.1)
xeX

where v(g) = ), cx g(X)v(x).
The following two hypotheses ensure that the Markov walk has no drift and is
non-lattice, respectively.

Hypothesis M2 The function f is centred:

v(f) =0.
Hypothesis M3 For any (6, a) € R2, there exists a sequence X, ..., X, in X such
that
P(xo, x1) -+ - POxy—1, x0)P (x5, x0) > 0
and

fxo)+ -+ fxp) —(n+1)0 ¢ aZ.
Under Hypothesis M1, it is shown in Sect. 4 that Hypothesis M3 is equivalent to

the condition that the perturbed operator P; has a spectral radius less than 1 for ¢ # 0;
for more details we refer to Sect. 4. Furthermore, in the Appendix (see Lemma 10.3,
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Sect. 10), we show that Hypotheses M1-M3 imply that the following number o2,
which is the limit of E, (S,%)/n as n — +oo for any x € X, is not zero:

+0o0
o? =v(fH+2) v(fP"f) > 0. (2.2)

n=1

Under spectral gap assumptions, the asymptotic behaviour of the probability

Py (ty > n) and of the conditional law of the Markov walk 2 +j” given the event

{ty > n} have been studied in [14]. It is easy to see that under M1, M2 and (2.2) the
conditions of [14] are satisfied (see Sect. 10). We summarize the main results of [14]
in the following propositions.

Proposition 2.1 (Preliminary results, part I) Assume Hypotheses M1-M3. There exists
a non-degenerate non-negative function V. on X x R such that

1. Forany (x,y) e X xRandn > 1,
Ey (V(Xn,y+ S5 1y >n) =V(x,y).
2. Foranyx € X the function V (x, -) is non-decreasing and for any (x, y) € XxR,
Vix,y) <c(l+max(y,0)).
3. Foranyx € X,y e Rand é € (0, 1),
(I =8)max(y,0) —cs < V(x,y) < (1 4+68)max(y, 0) + cs.

Since the function V satisfies the point 1, it is said to be harmonic for the killed
Markov walk (y + S;)n>0.

Proposition 2.2 (Preliminary results, part IT) Assume Hypotheses M1-M3.
1. Forany (x,y) €e X x R,

. 2V (x,y)
il (2 > ) = =5,

where o is defined by (2.2).
2. Forany (x,y) e XxRandn > 1,

1 + max(y, 0)
c———-.

Jn

P, (ry > n) <

Define the support of V by
supp(V) :={(x,y) e X xR :V(x,y) > 0}. 2.3)
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Note that from property 3 of Proposition 2.1, for any fixed x € X, the function
y — V(x,y) is positive for large y. For further details on the properties of supp (V)
we refer to [14].

Proposition 2.3 (Preliminary results, part III) Assume Hypotheses M1-M3.
1. Forany (x,y) € supp(V)andt > 0,

S,
IP)x<y+—"<t
o/n

‘L'y>n> — ®T(1),

n——+00

2
where ®T(t) = 1 — e~ 7 is the Rayleigh distribution function.
2. There exists ey > 0 such that, for any ¢ € (0,¢&0), n > 1, 19 > 0, t € [0, 1] and
(x,y) e X xR,

2V(x,y)

2nno

(1 + max(y, 0)2)

P, (y + 8, < t/no, Ty > n) — i/ire

<I>+(t)‘ < Cep

In the point 1 of Proposition 2.2 and the point 2 of Proposition 2.3, the function V
can be zero, so that for all pairs (x, y) satisfying V (x, y) = 0 it holds

lim /nP, (ry > n) =0

n——+00

and

lim /nPy (y + S, <tv/no, 1y > n) =0.

n——+00

We note that, for the convenience of the reader, Propositions 2.1, 2.2 and 2.3 are
formulated here under Hypotheses M1-M3, but they can be stated under much more
general conditions, in particular for Markov chains with countable state spaces, see
[14].

Now we proceed to formulate the main results of the paper. Our first result is
an extension of Gnedenko—Stone local limit theorem originally stated for sums of
independent random variables. The following theorem generalizes it to the case of
sums of random variables defined on Markov chains conditioned to stay positive.

Theorem 2.4 Assume Hypotheses M1-M3. Let a > 0 be a positive real. Then there
exists gy € (0, 1/4) such that for any e € (0, &¢), non-negative functiony € ¢,y € R
andn > 3¢73, we have

sup n |Ey (W (Xn); y+ Su€lz,z+al, Ty > ”)
xeX, 20 2wo’n

ce (1 + max(y, O)))

24 () Vxy) ( z )‘

né

< c (1 +max(y,0) ¥l («/ﬂ

2
where ¢4 (1) = te™T 1,>0y is the Rayleigh density and the constants ¢ and c; may
depend on a.
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Note that Theorem 2.4 is meaningful only for large values of z such that z ~ n'/?

as n — 00. Indeed, the remainder term is of order n~!~¢, with some small ¢ > 0,
while for a fixed z the leading term is of order n=3/2. When z = cn!/? the leading
term becomes of order n~! while the remainder is still o(n~1). To deal with the case
of z in compact sets a more refined result will be given below. We will deduce it from
Theorem 2.4, however for the proof we need the concept of duality.

Let us introduce the dual Markov chain and the corresponding associated Markov
walk. Since v is positive on X, the following dual Markov kernel P* is well defined:

P* (x, x*) = vv(();;)P(x*,x), V(x, x*) e X2, (2.4)

It is easy to see that v is also P*-invariant. The dual of (X,),>0 is the Markov chain
(X ,’;)n>0 with values in X and transition probability P*. Without loss of generality we
can consider that the dual Markov chain (X :)n>0 is defined on an extension of the

probability space (§2, %, P) and that it is independent of the Markov chain (X,,),>o0.
We define the associated dual Markov walk by

S§=0 and S;=> —f(X). Va1 (2.5)
k=1

For any 7 € R, define also the exit time

tF=inf{k > 1:z4 S <0}. (2.6)
For any € X, denote by P} and E? the probability, respectively the expectation,
generated by the finite dimensional distributions of the Markov chain (X ), >0 starting
at Xj = x. It is shown in Sect. 3 that the dual Markov chain (X}}), -, satisfies
Hypotheses M1-M3 as do the original chain (Xy),>(. Thus, Propositions 2.1-2.3
hold also for (X,*;)n>0 with V, 7, (Sy)n>0 and P, replaced by V*, 7%, (5F),>0 and
IP¥. Note also that both chains have the same invariant probability v. Denote by E,,
E?¥ the expectations generated by the finite dimensional distributions of the Markov
chains (X,),>0 and (X}}),>0 in the stationary regime.

Our second result is a conditional version of the local limit theorem for fixed x, y
and z.

Theorem 2.5 Assume Hypotheses M1-M3.

1. For any non-negative function y € ¢, a >0, x € X, y e Rand z > 0,

im n PR (¢ (Xa)s y + Sy € 2.2 +al, 7y > n)
2V(x, ta
=J2(_Tay3) ES (y (X5) V(X124 7)o > 1)de.

z
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2. Moreover, there exists ¢ > 0 such that for any a > 0, non-negative function
YvebC yeR z=20andn > 1,

supEy (Y (Xpn); y+ Sp €[z, 2+al, 7y > n)
xeX

cllYll o (1

<
N LA

+ a3) (1+2z) (1 4+ max(y,0)).

In the particular case when ¢ = 1, the previous theorem rewrites as follows:

Corollary 2.6 Assume Hypotheses M1-M3.
1. Foranya >0, x €e X,y e Randz > 0,

lim n*?Py (y + S, € [z, z +al, ©y > n)

n—+00
2V(x y)/ /V* x z v(dx Ydz'.

2. Moreover, there exists ¢ > 0 such that foranya >0,y € R,z > 0andn > 1,

supPy (y+ Sy €lz,z+al, 1y >n) < — 3/2 <1+a )(1+z)(1+max(y,0)).

xeX

Note that the assertion 1 of Theorem 2.5 and assertion 1 of Corollary 2.6 hold for
fixeda > 0,x € X,y € Rand z > 0 and that these results do not cover the case when
z is not in a compact set, for instance when z ~ nl/2,

The following result extends Theorem 2.5 to some functionals of the trajectories
of the chain (X,),>0. For any (x, x*) € X2, the probability generated by the finite
dimensional distributions of the two dimensional Markov chain (X, X;}),>0 starting
at (Xo, X3) = (x, x¥) is given by Py« = P, x P}.. Let iy + be the corresponding
expectation. For any / > 1, denote by €+ (X! x R ) the set of non-negative functions
g: X! x Ry — Ry satisfying the following properties:

— for any (x1,...,x7) € X!, the function z > g(x1, ..., x1, 2) is continuous,
— there exists & > 0 such that max,, yex sup, > g(x1, ..., x, )1 + )2t <
“+00.

Theorem 2.7 Assume Hypotheses M1-M3. Foranyx € X, y e R, 1 > 1,m > 1 and
g€ ¢t (X1+n1 % R+),

lim nPEy (¢ (X1v ooy Xty Xnomsts oo Xny ¥+ Sp) 3 Ty > 1)

n—+
+o00
27m/ D e (g(X1... X1 X5y XL 2)
x*eX

xV (X, y+S)Vv* (X;Z,z+S;;l); Ty >1, > m) v(x*)dz.

As a consequence of Theorem 2.7 we deduce the following asymptotic behaviour
of the probability of the event {7, = n} asn — +oc.
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Theorem 2.8 Assume Hypotheses M1-M3. Forany x € Xandy € R,

2V (x, oo
lim n*°P, (ty = n) = x, 7)

n—+00 J2no3 Jo Ey (V¥(XT,2); 87 > 2)dz

3 Properties of the dual Markov chain

In this section we establish some properties of the dual Markov chain and of the
corresponding Markov walk.

Lemma 3.1 Suppose that the operator P satisfies Hypotheses M1-M3. Then the dual
operator P* satisfies also M1-M3.

Proof By the definition of P*, for any x* € X,

Z v(x)P* (x,x*) = ZP(x*,x) v (x*) =v(x"),

xeX xeX

which proves that v is also P*-invariant. Thus Hypothesis M2, v(f) = v(—f) = 0, is
satisfied for both chains. Moreover, it is easy to see that for any n > 1, (x, x™) € X2,

v(x™)

v(x)

(P*)" (x, x*) = P"(x*, x)

This shows that P* satisfies M1 and M3. |

Note that the operator P* is the adjoint operator of P in the space L2 (v) : for any
functions g and 4 on X,

v (g (P*)n h) =v (hP"g).
In particular forany n > 1, v (f P*" f) = v (fP" f) and we note that
7 =0 (17) + e (D @Y 1),

The following assertion plays a key role in the proofs.

Lemma 3.2 (Duality) For any probability measure mon X, anyn > 1 and any function
F from X" to R,

X*
Em (F (X1, ..., Xno1, X)) = B3 | F (X2, X}, ..., XT) m (Xo) :
v (Xyi)
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Proof We write

Em (F (X19 e Xn—la Xﬂ))

= > F (X1, ... Xn—1. Xn) m(x0)
X0 X1 sees Xn—15%n , Xn4+1€X
]Pxo Xi=x1,X2=x2,.... X1 =251, Xpn = X, Xn—H = xn+l) .

By the definition of P*, we have

]Pxo X1 =x1,Xo=x2,..., Xpn_1 =xp-1, Xy = Xp, X1 = Xng1)
= P(xo, x)P(x1, x2) .. . P(xp—1, x0)P(xp, xn+1)
= P01 10 D ) T2 ) (1, P
v(x0) v(x1) V(xXp—1) v(x,)
V(Xn41)
= v(jco) IE”;;’+1 (X’f =X, X5 =Xn ..., Xy =x1, X, = xo)
and the result of the lemma follows. O

4 The perturbed operator

For any ¢ € R, denote by P; the perturbed transition operator defined by
Po(x)=P (ei’fg) x) =, (eitf(xl)g(XQ) , forany g € %, x € X,

where i is the complex i = - 1. Let also r; be the spectral radius of P;. Note that for
any g € 6, [Pigllo < [ g] ., = llgllo and so

re < 1. A.1)

We introduce the two following definitions:

— A sequence xg, X1, ..., X, € X, is a path (between xo and xj,) if
P(xo, x1) - - P(xy—1, xn) > 0.

— A sequence xg, X1, ..., X, € X, is an orbit if xo, x1, ..., Xn, X0 is a path.

Note that under Hypothesis M1, for any xp, x € X it is always possible to connect xg
and x by a path xop, xq, ..., x,, x in X.

Lemma 4.1 Assume Hypothesis M 1. The following statements are equivalent:

1. There exists (8, a) € R2 such that for any orbit xg, . .., x, in X, we have

fxo)+ -+ fxp) — (n+ 1) € aZ.
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2. There existt € R*, h € €\{0} and 6 € R such that for any (x, x') € X2,
R CP(x, x') = h(x)e"P(x, x').
3. There exists t € R* such that
re = 1.

Proof The point 1 implies the point 2. Suppose that the point 1 holds. Fix xp € X
and set (xg) = 1. For any x € X, define & (x) in the following way: for any path
X0, - .., X, X in X we set

h(x) = 00D =it (f )+t f o)+ ()

where t = 27” Note that if @ = 0, then the point 1 holds also for @ = 1 and so,
without lost of generality, we assume that a 7= 0. We first verify that 4 is well defined
on X. Recall that under Hypothesis M1, for any x € X it is always possible to connect
xo and x by a path. We have to check that the value of /(x) does not depend on the

choice of the path. Let p, ¢ > 1 and xo, x1, ..., xp, x in X and xo, y1, ..., yg, X in X
be two paths between xo and x. We complete these paths to orbits as follows. Under
Hypothesis M1, there existn > 1 and z1, ..., z, in X such that

P(x,z1)---P(zn, x0) > 0,

i.e. the sequence x,zi,...,2Zn,Xo 1S a path. So, the sequences xg,x,...,
Xp,X,21,...,2n and Xo, Y1, ..., Yg. X, 21, ..., 2, are orbits. By the point 1, there
exist /1, [» € Z such that

fOD 4+ flxp) + f(x)
=aly — (fz) + -+ f(zn) + f(x0) + (p +n+2)0

=ali —al+ (f1) + -+ f(g) + f(x))
—(g+n+2)0+(p+n+2)06.

Therefore,

ATOPHD) =it (f (1)t f ()1 (X)) i@l —al2) fitf(q+1) =it (f ()£ (i) + £ ()

and since ra = 2 it proves that & is well defined. Now let (x, x") € X2 be such that
P(x, x’) > 0. There exists a path xq, x1, ..., X,, X between xo and x and so

h(x) = 00D =it (f e+t f o)+ ()

Since xg, X1, ..., Xn, X, X is a path between xo and x’, we have also

h(x') = 100+ =it (fODF AL G+ DL D) = py(x) 10 e =itS )
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Note that since the modulus of % is 1, this function belongs to €\ {0}.
The point 2 implies the point 1 Suppose that the point 2 holds and let xo, ..., x, be
an orbit. Using the point 2 repeatedly, we have

h(x0) = h(xp)e?e 0 = ...
— h(xn)eithe—it(f(xo)+---+f(xn-1)) — h(xO)eiIG(n-H)e—it(f(xo)—i--u-}—f(xn)).

Since & is a non-identically zero function with a constant modulus, necessarily, 4 is
never equal to O and so f(xo) +---+ f(xy) —(n+ 1)0 € 27”2.

The point 2 implies the point 3 Suppose that the point 2 holds. Summing on x” we
have, for any x € X,

P (he”f) (x) = P,h(x) = h(x)el™.

Therefore 4 is an eigenvector of P; associated to the eigenvalue /¢ which implies
thatr, > || = 1 and by (4.1), 7, = 1.

The point 3 implies the point 2 Suppose that the point 3 holds. There exist 1 €
%\{0} and 6 € R such that P,z = he'"”. Without loss of generality, we suppose that
Ihllo = 1. Since P'h = hel™ for any n > 1, by (2.1), for any x € X, we have

|h(x)] = [P{R(x)| < P" |k (x) —> v (|h]). (4.2)
n—-+00
From (4.2), letting xo € X be such that |h(xo)| = [|h]lo = 1, it is easy to see that

h(x0)l < D 1h(x)]v(x) < [h(xo)] -

xeX

From this it follows that the modulus of % is constant on X: |k (x)| = |h(xg)| = 1 for
any x € X. Consequently, there exists &: X — R such that for any x € X,

h(x) = €™, 4.3)
With (4.3) the equation P;h = hel’? can be rewritten as

Vx € X, Z eia(x’)eitf(x’)P(x’ x/) _ eia(x)eité.
x'eX

Since e@™el? ¢ (7 € C:|z] =1} and ei“(x’)fzif(x') € {z € C:zg| =1), for any
x’ € X, the previous equation holds only if /1 (x")el/ ) = @) pltf (X)) — pler(x) pit0
h(x)e® for any x” € X such that P(x, x’) > 0. O

Define the operator norm ||-||¢_, on € as follows: for any operator R: € — ¥,
set

IR
IRllg—q == sup ———=.

gerroy N8lloo
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Lemma 4.2 Assume Hypotheses M1 and M3. For any compact set K included in R*
there exist constants cx > 0 and c’K > 0 such that for anyn > 1,

sup [Py < cxe k",
tekK

Proof By Lemma 4.1, under Hypotheses M1 and M3, we have r; # 1 forany r # 0
and hence, using (4.1),

r <1, vt € R*.
It is well known that

. 1
n= tim [RIL".

Since ¢ + P; is continuous, the function # > r; is the infimum of the sequence of
. . . 1 .. .

upper semi-continuous functions ¢ > ||P;’ ||<g/i<5 and therefore is itself upper semi-

continuous. In particular, for any compact set K included in R*, there exists tg € K

such that

supr; =ryy < 1.
tek

We deduce that for ¢ = (1 — sup,cg 71)/2 > 0 there exists np > 1 such that for any
n = no,

1
||P;1 (@ﬂ/i(g <supry+e < 1.
tek
Choosing cg’ = —In (sup,eK re + 8) and cxg = max, x, ||P;’ g€ K"+ 1, the
lemma is proved. O

In the proofs we make use of the following assertion which is a consequence of the
perturbation theory of linear operators (see for example [23]). The point 5 is proved
in Lemma 2 of Guivarc’h and Hardy [18].

Proposition 4.3 Assume Hypotheses M1 and M2. There exist a real eg > 0 and oper-
ator valued functions I, and Q; acting from [—eg, €o] to the set of operators onto €
such that

1. the mapst — Il;, t — Q; and t — A; are analytic at 0,
2. the operator P; has the following decomposition,

Pl‘ = )"ZHI + Qh Vt € [_801 80]7
3. foranyt € [—ey, €ol, I1; is a one-dimensional projector and I1; Q; = Q:I1; = 0,
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4. there exist c; > 0 and ¢ > 0 such that, for any n € N*,

C—E g Cle_czn’

w | o

t€[—e0,e0

5. the function A; has the following expansion at Q: for any t € [—e&g, €0],

2.2

t
x,—1+T" <cliP.

Note that g = 1 and ITo(-) = I1(-) = v(-)e, where ¢ is the unit function of X:
e(x) =1, for any x € X.

Lemma 4.4 Assume Hypotheses M1 and M2. There exists ¢y > O such that for any
n>landt € [—eg/n, g0/l
< —e 7 e .

Proof By the points 2 and 3 of Proposition 4.3, for any t//n € [—so, €0l,

202

P", —e 211

7

C 22

P, =\ . +Q" .
Jn N Jn

By the points 1 and 4 of Proposition 4.3, forn > 1,

Iz |t]

nm. —1I1 < osup I — < c—, 4.4
” Vi H‘ﬁa%’ h uel[—eg,e0] ” u||<gﬁ<g «/ﬁ = ﬁ

sup 0" < ce . (4.5)
t//nel—eo,e0l Vi llg—¢€

Let o be the complex valued function defined on [—e&g, ] by «(f) =
z% (A, -1+ %) for any t € [—¢q, €9]\{0} and «(0) = 0. By the point 5 of Propo-
sition 4.3, there exists ¢ > 0 such that

vVt € [—¢o0, €0], la(f)] < c. (4.6)

With this notation, we have for any t//n € [—&o, €],

. t202+ 3 r\\" . 2o2\"
A _(1_
2n - A2 \Jn 2n

A

n
o
Jn

4.7
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Without loss of generality, the value of gy > O can be chosen such that 8(2)0’2 < land
so for any t//n € [—&g, o], we have 1 — o2 > 1/2. Therefore,

n
ne(1-22Y (14 & ! 1
< (1= — | — -
! 2n n3/2 <1 _ t2202> Jn
n
k

() £ b ()
S [ ER

Using the inequality 1 +u < " foru € R, the fact that 1 — % > 1/2 and the bound
(4.6), we have

N

252 [ ci®
I <e 2 (eﬁ—l .

Next, using the inequality e — 1 < ue" for u > 0 and the fact that |7] /4/n < &,

_i%? ¢ 2
I <e 7 — 1]} eceor, (4.8)

NG
Again, without loss of generality, the value of &g > 0 can be chosen such that ce(z) <

02/8 (this have no impact on (4.6) which holds for any [—e(’), 86] C [—e&0, €0]). Thus,
from (4.8) it follows that

I < —e 4. (4.9)

Using the inequalities 1 —u < e™ foru € Rand In(1 —u) > —u — u? foru < 1,
we have

1252 t20'2 1252 262 et
h=e 2 —(1-— <e 2 —e 2 In

2n
ol ap c i (4.10)
X 4 X —=¢€ . .
4n Jn
Putting together (4.7), (4.9) and (4.10), we obtain that, for any ¢//n € [—&, £0l,
n 22 C 242
Mo —em T2 | < —=e T+ 4.11)
W NG
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In the same way, one can prove that

252
<e # . (4.12)

lt] (A",

7

The right hand side in the assertion of the lemma can be bounded as follows:

; 252
P, —e 211
n

)Ln

< A
v

C—C

Hn, _n
v

C—C

n _2g? n
M —em T gy + || Q%

n

+

v

C—C

Using (4.4), (4.5), (4.11) and (4.12), we obtain that, for any t/./n € [0, €0],

tzaz

P!, —e 2

I7 < —e
NG Gz NN

a

T4 4 ce .

5 A non asymptotic local limit theorem

In this section we establish a local limit theorem for the Markov walk jointly with the
Markov chain. Our result is similar to that in Grama and Le Page [15] where the case
of sums of independent random variables is considered under the Cramér condition.
We refer to Guivarc’h and Hardy [18] for a local limit theorem for Markov chains
with compact state spaces. In contrast to previous results for Markov chains our local
limit theorem gives an explicit dependence of the constant in the remainder term on
the target function & applied to the random walk y + S, (see Lemmata 5.1, 5.4 and
Corollary 5.5). All these results are stated for Markov chains with finite state spaces to
shorten the exposition, but, a closer analysis of the proofs shows that, under appropriate
spectral gap assumptions, these assertions can be extended to more general Markov
chains, including the chains with denumerable state spaces.

We first establish a local limit theorem for integrable functions with Fourier trans-
forms with compact supports. For any integrable function 4: R — R denote by T its
Fourier transform:

h(t) = / e "ph(u)du, VieR.
R
When 7 is integrable, by the inversion formula,

1 PN
h(u) = —/ e™Mh()dt, VYu eR.
2 R
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For any integrable functions % and g, let
hxgu) = / h(v)g(u —v)dv
R

be the convolution of /& and g. Denote by ¢, the density of the centred normal law
with variance o2

e 22, VueR. (5.1)

3

() =
Yo (u) mo

Lemma5.1 Assume Hypotheses M1-M3. For any A > O, any integrable function h
on R whose Fourier transform h has a compact support included in [— A, A], any real
function r defined on X and any n > 1,

Sup /7 [Ex (h (v + $:) ¥ (X)) = h % ¢ ig (1) ()|

yeR

c

< ¥ lloo (ﬁ Iallpr+ 7] CAeCA">-
Proof By the inversion formula and the Fubini theorem,

o= Vi B (b (3 + 50 ¥ (X)) — @ g (0w ()]
Vi lg, ( /R 1OHSIT (1) dry (Xn>) - fR ﬁ<r>aﬁa<r)eif>’dtv<w>’

T

a /e”y <P:’1//(x)—et2022nv(¢)>ﬁ(t)dt
R

T om

Since iz\(t) =0foranyt ¢ [—A, A], we write

NG

2

Iy

N

/ s e (P;wf(x) _ e, (I/f)) h(t)dr
SIS

=:I

Zazn

ﬁ/ ity <P;Hp(x)—e’z v(¢)>ﬁ(z)dz
Ir1<e0

2

) (5.2)

=:Ip

where ¢ is defined by Lemma 4.4.
Bound of I By Lemma 4.2, for any ¢ < |t| < A, we have

[P | < 1 oo caepeche0",
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Consequently,

Jn e _ g -~
I e L N e LCOT N T

<N lloo |17 1 ca,epe ™40, (5.3)

Bound of I, Substituting s = t./n, we write

1 i 22 /s
Hh=— NG I)ns _ =y (24
2% 0 /lslgsoﬁe ( ﬁllf(x) e (1/,)> (ﬁ) ]
262 R
<i P”sw(x)—ezv(w)Hh<i) ds.
27 Jis1<eon | VR N

By Lemma 4.4, for any |s| < g9+/n, we have

Py (x) _engzv(w)‘ < ‘
Jn

252
P (y)—e 2711 w)H
i %0

s2g2

P, —e 2 HH
g C—C

<l (c —22 | e
X 00 :7:6 ce .
n

< ||1/f||oo’

Therefore,
c _s2o? —cn |7
L < Yoo NG Re ] o ds A cem [R]]
< c h —en | 5.4
S loo (Bl +ce™ ] 1 ) 54
Putting together (5.2), (5.3) and (5.4), concludes the proof. O

We extend the result of Lemma 5.1 for any integrable function (with not necessarily
integrable Fourier transform). As in Stone [32], we introduce the kernel « defined on
R by

i 2
K(M)=L<m> , YueR* and K(O):%,

2w 5
The function « is integrable and its Fourier transform is given by
k) =1—|t|, VYtel[-1,1], and k(1) =0 otherwise.
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Note that
/ k(wdu =x0)=1= / K(H)dr.
R R

For any ¢ > 0, we define the function «; on R by

Ke(u) = él( (Z) .

&

Its Fourier transform is given by k. (1) = & (¢t). Note also that, for any ¢ > 0, we have

1 [T 4 4
k(u)du < — —du = —e. (5.5)
lul > LR I T

o |—

For any non-negative and locally bounded function / defined on R and any ¢ > 0,
let he and &, be the “thickened” functions: for any u € R,

he(u) = sup h(v) and h (u) = inf h(v).

velu—e,u+el velu—e,u+tel
For any ¢ > 0, denote by .77 the set of non-negative and locally bounded functions %

such that i, h, and h, are measurable from (R, Z (R)) to (R, % (R;)) and Lebesgue-
integrable (where # (R), % (R..) are the Borel o-algebras).

Lemma 5.2 For any function h € ¢, ¢ € (0, 1/4) and u € R,

h, x Kk (u) — / h, (u—v)k2W)dv < h(u) < (14 4¢) N * kp2(u).

lv[>e

Proof Note that for any |v| < eandu € R, we have u € [u — v — &, u — v + ¢€]. So,
by (=) <h@u) <he (w—v). (5.6)

Using the fact that [ k.2 (u)du = 1 and (5.5), we write

h(u) = / h(u)kg2(v)dv + h(u) kg2 (v)dv
[vl<e [v|=e
— 4
< f he (u —v) k2 (V)dv + h(u)—e.
lvl<e T
Therefore,

h(u) (1 — ie) < / he (U —v)k2(v)dv = N % kg2 (u).
b R
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For any ¢ € (0, 1/4),

h(u) < he % K,2(u) < (1 +4de) he * k2 (u).

1—-2¢
Moreover, from (5.6),
h(u) > / h(u)kg2(v)dv
lv|<e
> / h, (u—v) k2 (v)dv
lvl<e
=l_18>x</c€z(u)—f h, (u—v)k2(v)dv.

[v|>e

Lemmab5.3 Lere > 0and h € J,.
1. Foranyy e Randn > 1,

Vit (e 5 k2) % g ) < N/ (k0 g ) () + ¢ e = B 1+ ce

where @ Jno () is defined by (5.1).
2. Foranyy €e Randn > 1,

Vi (he % k2) % @ g () < R 1
3. Foranyy €e Randn > 1,
Vi (5 52) 59 i) = V1 (B0 o ) 0) =€ [ = by, |1 = ce

Proof Foranye > 0,|v| < eandu € Ritholds[u—v—e¢, u—v+e] C [u—2¢, u+2¢].
Therefore,

ho(u—v) >y ) and e —v) < hoe(w). (5.7)

Consequently, for any u € R,

he % K, () < hoe (1) K2 (v)dv + f he(u — v)K,2(v)dv
lvl<e [v|>e
< Ezg(u) +/ Eg(u — v)k2(v)dv.
lv|>e
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From this, using the bound \/ﬁ%/rm () < 1/(~/2mo) and (5.5), we obtain that

it (e #k2) 50 i () < V1 (Bae 5 9.y ) )
+ \/1_6 / /|U|>€Eg(u—v)xez(u)dvdu

< i (s i) ) + e [T

Using again the bound ﬁ¢ﬁ6(~) < 1/(V/2mo), we get

Vi (he % Kkg2) % @ s ()
< it (5 vgio) 0+ [ Jiasto - | =

— +ce |,
<V (hx 0 gan ) O+ € e = hls + ce uhknu

<Vt (g ) 0) + (€ c0) [Tae = B 1+ ce

which proves the claim 1.
In the same way,

(R I
Vi (e % k2) % 9 i (¥) < Nor [ e | = NorPs [7ell o

which establishes the claim 2.
By (5.7) and (5.5),

4
h, xk2(u) > ﬁzg("‘)[ kg2 (v)dv > (1 — —8) hy (u).
lvl<e T

Integrating this inequality and using once again the bound /n¢ Vo () < > we
have
4
ﬁ(ﬁg*KgZ)*<Pﬁg(y) \/_ __8 hz(c;*(pﬁo(y)
> i (e 0 ) ) = ;w— e 11 -
Inserting &, we conclude that
\/E (hg * ng) * (pﬁg (Y)
1
> (10 0 ) ) = o = = o s ]
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> (0o ) 00 = ¢ 1= ha, | 1 = ce Al
]

We are now equipped to prove a non-asymptotic theorem for a large class of func-
tions h.

Lemma 5.4 Assume Hypotheses M1-M3. Let ¢ € (0, 1/4). For any function h € 7€,
any non-negative function W € € and anyn > 1,

sup /1

xeX, yeR

<l lloo (I = hac o + 26 = 1] 1)

+ el [Rael (5 o+ oo
o0 £ Ll ﬁ ° s

where @ Jno () 1s defined by (5.1). Moreover,

By (h (5 + S0 ¥ (X)) = h % i (0 ()]

sup VAE; (h (v + S0 ¥ (X)) < ¢ W llog [2e ] 1 (1 + coe™) .
xeX, yeR

Proof We prove upper and lower bounds for o/nEy (h (y + S,,) ¥ (X,,)) from which
the claim will follow.

The upper bound By Lemma 5.2, we have, forany x € X, n > 1, y € R and
e €(0,1/4),

Ey (h (y+ S0) ¥ (X)) < (14 48) By (he % ic2 (v + Sp) ¥ (X))

Since %, is integrable, the function u +> h, * k,2(u) is integrable and its Fourier

transform u > (u)k,2 (1) has a support included in [—1/ &2, 1/&%]. Consequently,
by Lemma 5.1,

Iy := V/nEx (h (y + S2) ¥ (X))
SV (1 +4e) (he % Kk.2) % @ fg (V)Y (W)

=
heky2

—cen
Ccé€ .
A )

Using the points 1 and 2 of Lemma 5.3 and the fact that |v (/)| < ||[¥/ || o, We deduce
that

+2 1l (% e ke o + |

To <V (56 i ) G ) + 1l (¢ e = B 1+ ce 11 1)
+dec e 1 1Vl
+z||w||oo< ; cge_C€”>.

hekg2

*ng”Ll —i—‘

% e
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Note that |k * k2|, = |he |, and
hia|  <|n Ka(ndr = || Rnir = < [
izl < s [ R =R, [ #@na = 51l

Consequently,

lo <V (% gig ) I () + €1l [Ti2e = A,
1

eyl e, (ﬁ

+¢ +csec£”>. (5.8)

From (5.8), taking into account that /1 (h * @ m,) (y) < cllhll;1, we deduce, in
addition, that

Io < cll¥lioo [h2e| 1 (14 cce™"). (5.9

The lower bound By Lemma 5.2, we write that

10 P \/E]Ex (&5 * K2 (y + Sn) 1# (Xn))

=1

— ﬁEx (/ h, (v + Sy —v) k2 (v)dvy (Xn)> . (5.10)
v|=e

=1

Bound of I The Fourier transform of the convolution /1, *k 2 has a compact support
included in [—1/82, 1/52]. So by Lemma 5.1,

I = (b *k2) % @ g (DY (Y)

cge"€”> ,
LI

Using the point 3 of Lemma 5.3 and the fact that [v ()| < |V ]l oos

— ¥l (% Y Es e

1= (B i ) 099 @) = e 1l (I = hay |1 + & 111 1)

—cen
Cgl .
A )

—_—
h, x Kk

—_—
h, * K2

— ¥l (% [, 5] o + |

Since [, + k1 = |1

< |11 and since‘

el o S [®e ] =

EL2 ”ﬁs”Ll < Eiz 2]l 1, we deduce that
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1= (g gig ) 0 @) = €Wl [ = ha ],

1 .
—cl¥lloe Al (ﬁ +8+C89_Lsn)- (5.11)

Bound of I, With the notation g, ,(#) = h, (u — v), we have

L= VB (86w (v + S) ¥ (X)) k2 (v)dv.

lv|>e

Consequently, using (5.9), we find that

(gE’U)ZE

I < el (14 coe™") /

v > I k2 (v)dv.
vlze

Note that, for any # and v € R,

(8ew)y, )= sup  h,(w—v)<  sup  h(w—v)=hy(u—v).
welu—2e,u+2¢] welu—2¢,u+2¢]

So,

(g&v)zg

<]
b < e 1l [T 1 (1 + coe™e") / 2 (v)dv.
[v|=e

By (5.5),
L <clYlloo [h2e] 1 (6 4 coe™"). (5.12)
Putting together (5.10), (5.11) and (5.12), we obtain that

Io =N/ (B g ) G @) = €Wl | = o

_ I
—cl1¥lloo [ h2e | (ﬁ +e+c5ec£">. (5.13)

Putting together the upper bound (5.8) and the lower bound (5.13), the first inequal-
ity of the lemma follows. The second inequality is proved in (5.9). O

We now apply Lemma 5.4 when the function % is an indicator of an interval.

Corollary 5.5 Assume Hypotheses M1-M3. For any a > 0, ¢ € (0, 1/4), any non-
negative function € € and anyn > 1,
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sup  /n

xeX, yeR, z2>0

E, W (Xn); y+Spelz,z+al) —CIQO\/;ZU(Z — v )

1 a —en
<cla+e) Vi ﬁ+;+8+csé’ ),

where ¢ /5 (-) is defined by (5.1). In particular, there exists ¢ > 0 such that for any
a>0,

sup nEy (Y (Xn); y+ Sy €[z z4al) <c(l+a*) ¥l - (5.14)
xeX, yeR, z>0

Proof Letz > 0,a > 0,e € (0, 1/4). For any y € R set
h(y) = Lz z4a1 (V).
It is clear that
he(¥) = Lo zratrel(y)  and  h (y) = Ly za—e) (D).
where by convention 1[;1¢ ;4+4—¢](¥) = 0 when a < 2¢. It is also easy to see that
n = haells = e —nl =46 and e,y = a+de.

Taking into account these last equalities and using Lemma 5.4, we find that

By (f (X); v+ S €[22+ al) = Lieha) % yn 000 ()

Sca+e) Yl (% +e+ Cse_c‘”’> : (5.15)

Moreover, the convolution 1z 44] * ¢ s, is equal to

w2

67 2n02

Lz, 2401 * @ fuo (V) = /Rﬂ{zgy—ugwa}mdu
= @ no‘(y _Z) - (pﬁa(y —Z _a)7

W2
e 2no2

where @ N (1) = f i 0 Jano du is the distribution function of the centred normal law

of variance no 2. By the Taylor-Lagrange formula, there exists £ € (y —z —a, y — z)
such that

2
@ o (¥ =2 =) = B iy (v =) = a9 o (v = 2) + 0, (6).
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. 2
Using the fact that sup,cp |ule™ <ec,

2
ca
[ Eiecbar * 00 () — a9 o 2 = )] < 5 (5.16)

Putting together (5.15) and (5.16), we conclude that

Ee () (X)5 3+ 80 € 2,2+ al) — ag gy (2 = )9 ()

1 a —en
<cla+e) Vs ﬁ+;+€+cse ).

6 Auxiliary bounds

We state two bounds on the expectation E, (w(X,,) sy +Spelz, z+al, Ty > n)
The first one is of order 1/n and independent of z. Then we reverse the Markov chain
to improve it to a bound of order 1/n3/2. We refer to Denisov and Wachtel [8] for
related results in the case of lattice valued independent random variables.

Lemma 6.1 Assume Hypotheses M1-M3. There exists ¢ > 0 such that for any a > 0,
non-negative function € €,y € Randn > 1

sup E, (df Xn); y+ Sy €lz,z+al, Ty > n)
xeX, z2>0

¢
<~ W lloe (14 %) (1 + max(y, 0)).
Proof We split the time n into two parts k := |n/2] and n —k. By the Markov property,

Eo:=E, (¥ (Xn); y+ Sy €lz,z+al, ty >n)

+o0
ZZ/ Ev (¥ (Xi); ¥ + Sk € [z, 2 +al, Tty > k)
xex”0

xPy (Xnk =x", y+ Sk €dy, 1y > n—k)

+00
< Z/O Ev (¥ (Xi); ¥ + Sk € [z, 2 +al)
x'eX

X Py (Xnk =x", y+ Spk€dy, 1y >n—k).
Using the uniform bound (5.14) in Corollary 5.5, we obtain that

Yl
vk

Ep < (1+ad)P, (ty > n —k).
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By the point 2 of Proposition 2.2, we get

cll¥lloo (1+a?) (1 4+ max(y, 0))

Eyp <
Vin =k
Sincen — k > n/2 and k > n/4 for any n > 4, the lemma is proved (the case when
n<4is tr1v1a1). O

Lemma 6.2 Assume Hypotheses M1-M3. There exists ¢ > 0 such that for any a > 0,
non-negative function € ¢,y € R, z > 0andn > 1

sup E, (lﬁ (Xn); y+ Sy €lz,z+al, 7y > }’l)
xeX

< 2 (140 (140 (14 max(y, 0).

Proof Set again k = |n/2]. By the Markov property
Ey :=E, (l/f(X ); y+ Sy €lz,z+al, 1y >n)

—Z[ Ev (¥ (Xp); ¥ + Sk € [z, 2+ al, Ty > k)

x'eX

::E(/)
x P, (Xn—k =x,y+S-—redy, ry>n— k) . 6.1)
Using Lemma 3.2 with m = §,/ and
Fxt, oo xi) = Y X)Ly poo) -t fap)elz ztal, Viell, k), b f ()4t £ (x1)>0} s

we have

Teen (X5
Ey=E; <w (D) = E)ﬁ "j;)
+

Viefl,... k], y’+f(x,t)+~-~+f(x,1‘_,.+1)>0>.

Y (X + -+ (X)) elzz+al,

By the Markov property,

=5 0 K5 8 ) ) el
Viell,. Y (X)) + f(Xk—i+1) > 0).

where

w:/(x*) _ ]E;* (]l{x/ XT)) _ P*(x*, x') B P(x/, x*) _

. (6.2)

}
v (X7) v(x) v infrex v(x)
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On the event {y + f(X{)+ -+ f(X{)elz.z+al} = {z+a+Sfe
[,y + a]}, we have

Vie{l,....k}, y'+ fF (X)) 4+ + f(Xiip) =0,y >0}
c{vie{l,....k—1}, z+a— f(X;_;))— = f(X])>0,z+a+ S >0}

= {Tz*+a > k}'
So, for any y’ > 0,
Ey<cllYll Py (z+a+ S5 ey, y +al tiy, > k).

Using Lemma 6.1 we have uniformly in y’ > 0,

c”w”w(l+a2)(l+max(z+a,0))< C||1/f||oo(l+a3)(1+z) (63)

E) <
0 k k

Putting together (6.3) and (6.1) and using the point 2 of Proposition 2.2,

¢ ¥ llo
k
_ el

S kvn—k

Sincen —k > n/2 and k > n/4 for any n > 4, the lemma is proved. O

Eop < (1+a) (1 +2) P (ry > n —k)

(1+a*) (1 +2) (1 +max(y,0)).

7 Proof of Theorem 2.4

The aim of this section is to bound
Eo:=E, (¥ (Xn); y+ Sy €lz,z+al, ty >n) (7.1

uniformly in the end point z. The point is to split the time » into n = n| + ny, where
ny = |&>n] andny = n — |&’n|, and & € (0, 1). Using the Markov property, we
shall bound the process between n1 and n by the local limit theorem (Corollary 5.5)
and between 1 and n by the integral theorem (Proposition 2.3). Following this idea
we write

Eg=E (¢ (X»); y+ Su €lz,2+al, 7, > m)
=E
—Ee (¥ (Xn); y+Su€lz.z+al, np <1y <n). (7.2)

=:E;

For the ease of reading the bounds of E| and E» are given in separate sections.
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7.1 Control of E;

Lemma 7.1 Assume Hypotheses M1-M3. For any a > 0 and ¢ € (0, 1/4) there exist
¢ = ¢4 > 0depending only on a and c. > 0 such that for any non-negative function
V€€ anyy € Randn €N, such that €>n > 1 we have

sup n|E;

a y—2z+ 8,
— v(Yy) E (w(—);r,>n1)‘
xeX,z>20 /120 ! /120 ’

< (I +max(y, 0) 1Vl (8 + %) :

where E1 = E, (w Xn); y+ Sy €lz,z+al, ty > nl), ny, = LSSHJ, ng=n-—
2
|e3n ] and (1) = e T /27,

Proof By the Markov property,

+<>o
E| = Z/ Xn,): ¥ + Sny, €[z, 2+ al)

x'eX ,
=:E]

X Py (y+ Sn, €dy, X, =X, 1y > ny). (7.3)

From now on we consider that the real a > 0 is fixed. By Corollary 5.5, for any
2 <ee(0,1/4),

iz | Ef = ap e (= YW ()] < c||w||oo( +85/2+cecwz>

J

with ¢ depending only on a. Consequently, using (7.3) and the fact that n, = |_s3nJ >
Ceh,

Ei —av () E, ((pMU (y—z45u): 7 >n1)‘

Yl ( ce 5/2 —cen
< — 4+ Py (T .
NG NG cee x( y >n1)

Therefore, by (5.1) and the point 2 of Proposition 2.2, we obtain that

a y—2+8n\.
= gt (¢ (5 ) o o)

<elle- ?Tf/(ﬁo) <ﬁ 4 5/2)

@ Springer



Conditioned local limit theorems for random walks defined on... 699

Since ny > &n (1 — i) andn; > 2, we have

1 ,0
el +ﬁ’jﬁ )( N 5/2>

1+ ,0 e
S el g IO D) (14 ;)( 5/2)
Ce

1 + max(y, 0)
Sl — (8 +

%)

and the lemma follows. |

Tofind the limit behaviour of £y, we will develop —-E, (¢ (“21= )5 7, > my ).

To this aim, we prove the following lemma which we will apply first with the standard
normal density function ¢, and later on with the Rayleigh density ¢ .

Lemma 7.2 Assume Hypotheses M1-M3. Let ¥: R — R be a non-negative differ-
entiable function such that ¥ (t) — 0 as t — +00. Moreover we suppose that W'

is a continuous function on R such that max(|¥ (¢)], 4. There exists
€0 € (0, 1/2) such that for any ¢ € (0,&0), y e R, my > 1 andmz 1, we have

S _
(o () o)

sup
xeX, z2>0
2V (x, +oo ,
ey W( mi,_ _Z )mnm
V2rmio Jo my Jmoo
2 m
<c8(1+nlax(y’0)) 4 Lm0, 0) ( iy 4 g )
ny.\/ma /m

o

where ¢4 (t) = te 7.

Proof Letx € X,y e R,z >0,m; > landmy > 1 and fix g1 € (0, 1). We consider

two cases. Assume first that z < /mjo/e;1. Using the regularity of the function ¥,
we note that

O—E( <y+Sm1_ );Ty>m]>
Foo z y+ Sy
/ [ — P L <, dr.
f < mz 4/77’120’) x(4/m10' Ty >m1>

Denote by J; the following integral:

P 2V(xy) +°°/ ( Z )(1__
1= — m2 \/m_za e

S

) dr. (7.4)
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Using the point 2 of Proposition 2.3, with #y = 2/¢, there exists &g > 0 such that for

any ¢ € (0, &),
(1 + max(y, 0))> :
IJo = Jil S Ceey ———307 1/2+e / 11// mz - Jmao
2V (x, y) / Mg (2
227 1 p, — W\t
+ <\/T1 + Py (7y > ml)) 2 o my . Jmao

By the point 2 of Proposition 2.1 and the point 2 of Proposition 2.2, with H v’ H o =

dt

dr.

(1 4+ max(y, 0))? H

1Jo — Ji| < Cee, oo

mi./ma
2
1 4+ max(y, 0) [m; /+°° 7<V Wét*«/';t;zt’)
+c—-——= [ — e 3 dr
Jmi my J2
€]
(14 max(y,0)* = 14+max(y,0) [+® 2
< Ceg 2 +c (2 e  ds.
Vi v Vi (3-7)
. /mio 2 4 1
Since z < o ,wehaveg — Jm%a > o > 1 and so
1 N0)) R ,0) _m 2
o — 11| < CHI( +mgaX(y ) L + max(y ) 3'"2/e*?ds. (7.5)
m{/my N R
Moreover, by the definition of J; in (7.4), we have
2V (x, 2\ =+
5= 2 [—w( R >(1—e_2>]
V2mrmio my /Mmoo /=0
2V(x, +oo 2
4 ) w( oy 2 )te_Zdt
J2rmio Jo mo Jmoo
2V(x,y) [T ( mi z )
= — "4 —f — t)dr. 7.6
JZmio Jo my' o ) O 70

Now, assume that z > —”r,';l'a We write

2
(o+Sm—2) oy
——— mio
JO < C]Ex e 4myo2 Y —+ Sm1 < 2—, Ty > m|
&1

/M0
+ ”lp”oon <y + Sm1 > 2—8;’ Ty > ml)
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mj

- 2
<ce 'TP (Ty > ml) + ¥l

2¢e1

Jmio

Using the points 3 and 1 of Proposition 2.1, we can verify that

Ex (y + Spys Ty > mi).

Ex (y+ Sz Ty > mi) <Ec V(¥ + Smys X)) + 65 7y > mp) <2V (x,y) +ec.
So by the point 2 of Proposition 2.2 and the point 2 of Proposition 2.1,

1+max(y 0) _om cel

Jo "+

//\

(1 + max(y, 0)).

Jim Jmi
In the same way,
2V(x,y) [+ ( m z )
J = — v —t — t)dt
! J2rmio Jo my Jmoo ¢+(0)

1 2
1 ,0 LU W PR too o 2
< ¢ + max(y, 0)) f“ e (1= i) 0. (H)dt + ||q/||oo/ te— 7 dt
A/ 0 1

2e]

c(l+max(y,0) | —7o=> /*"O el _ﬁ
< SO+ maxG,0) | T,z or(Odt + (W]l e T T
Jmi 0 0
_ e+ max(y.0) (6_21 ) es%> |
Jm

Jmio

e

C(1+maX(y,0))( o )
_— my +81
Jmi

4

Putting together (7.6), (7.7) and (7.5) and taking ¢ = &, we obtain the desired
inequality for any z > 0,

From the last two bounds it follows that for any z >

[Jo— il < Jo+ J1 < (7.7)

1 + max(y, 0 2 (14 max ,0 emy
o — 1| < S( (,0)) n ( (y ))(e )

& "2 +8
mi./ma Jmi

m}

Lemma 7.3 Assume Hypotheses M1-M3. There exists g € (0, 1/2) such that for any
e€(0,e0),yeR ne N such that €3n > 1, we have

G () o) e ()
ﬁ x \ ¥ \/EU s Ly 1 ma P+ ﬁa

(1 4+ max(y, 0))?

né‘

sup
xeX, z2>0

+c (1 +max(y, 0)) e,

~X *te
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2 2
where ¢(t) = e*%/«/er, oy (t) = te™T Ly>op n2 = L83nJ andny =n — L83nJ.

y+S, —z
Jo :=E, (90 (#) ; Ty > nl)

2V(x,y) ni z
Jamo Jo ( —fvn—z )*"“”‘”

_ 2V y) +oo
<p Z @4 (1)ds
J2rn o N

v yw— ( ) .
\/E n "2 * Ot \/_U ( . )

where ¢y} (-) is defined in (5.1). By Lemma 7.2 we have

Proof Denote

and

Ji =

nz_lr_s

ni
— |Jo — J1l < ceny

Jm nina N Jaiym

Since 5 < nj < nand &3n — 1 < np < &3n,

(1 4+ max(y, 0))? n 1 + max(y, 0) ( e )

n 1 + max(y, 0))? 1 + max(y, 0 c _c
o — il < e RO OO (14 ) (75 4%

2 S né ¢ g3/2 ’
1 ,0))?
< o LM O (1 4 max(y, 0)) e 19)
n

Let J> be the following term:

2V VN2
e 2N Y < < ) (7.10)
J2ro  ng Jnio
Using (7.8),
2V(x,y) /n2 z z
[Ji—hl S ———— | ¢ ;@) |p —t)—9 dr.
J2mo n1 Jr \/ﬁ * Jnio + Jnio
By the point 2 of Proposition 2.1, we write
n
— < ! 7
NG [J1 — 2 < ¢ (1 + max(y, 0)) H<P+HOO/R§0E(I)IIICU
< c(1+max<y,0>)‘/"—2/ ¢(s) Is| ds
n1 Jr
< ¢ (1 4+ max(y, 0)) &3/2. (7.11)
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Putting together (7.9) and (7.11), we obtain that

n (1 + max(y, 0))?
sup —— o = Ja| S o

xeX,z20 /12

+ ¢ (1 + max(y,0))e. (7.12)

It remains to link J> from (7.10) to the desired equivalent. We distinguish two cases.
g/
o ~

e

n_, 2V (x,y) < z >‘
V2t Jame U\ o

<eren e (o) -+ (555
SOV, Yy nlfﬂ+ NGT P+ Jno

n 1 1 z ,
S eV ) (Iorloo | =1+ | 7= = = BIram
<CV(’“”(Z—?+\/L”—I - 1= %ﬁ)

83
<cVix,y) (83 + ;) .

If >Lﬁ>\/'W
&

= Y-, we have

Q[

‘ N

[N

n_, 2V (x,y) < z >’< Vi) s (w0 < eV )7'
—J2 — s cVix, u u) <cVix,yle .
D Ao P+ ﬁa y P ¢+ y

u}%

Therefore, using the point 2 of Proposition 2.1, we obtain that in each case

n_, ey, ( < )‘<c(1+max(y 0)) &2 (7.13)
2= < , . .
VN2 2no - Vno
Putting together (7.12) and (7.13), proves the lemma. m]

Another consequence of Lemma 7.2 is the following lemma which will be used in
Sect. 8.

Lemma 7.4 Assume Hypotheses M1-M3. There exists gy € (0, 1/2) such that for any
e € (0,¢0), y € R, n € Nsuch that &3n > 2, we have

n3/? E y+ Sy, . Vix,y)
— |\ | — ) Ty > | —

su
x6§ ny — 1 A/ny — lo o
1 ,0))?
< C‘EM + c (1 +max(y’ O)) e,

nS

2
where ¢4 (1) = te™T 1y;>0y is the Rayleigh density function, ny = n — LSSHJ and
ny=|e’n|.
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Proof Using Lemma 7.2 with ¥ = ¢, m; =ny,mp =ny — land z =0,

3/2
[Jo — Jil
ny —1
(1 +max(y,0)>n%2 (14 max(y, 0)) n’/2 .
< ¢ EETEYPY: +c = e ‘D gt
(n2 — 1)%/%nj (ny — 1) /n1
1 + max(y, 0 2 1 + max(y, 0 _c
< 8( g(y D~ S 3(y ))( . )( 53+g4>
n &
1 ,0))?
< SW + ¢ (1 4+ max(y, 0)) &, (7.14)
where
)i o)
Jo=E —_— | Ty >N
’ X<“”+<mo o
and

3/2 32 2y (x,y) [+
n n X,y ni
Jp = t t)dr
1 T Bnio Jo <P+<,/n2_1 >90+()
n¥? 2V(x,y) [ n / s 7 () zdt
- no — 1./ 2xno nz—l
3/2 2V( ) +o00 2 ( _
n X,y 2 T(nz
= ‘ \/—w o (s
(no — 132 270 Jo n—1 v 2

where ¢} (+) is defined in (5.1). So,

n3/? I = n3/2 2V(x,y) np—1
m— 1T i—lma—1) o 2m-1)
32 Vix,y)
T -1 o

By the point 2 of Proposition 2.1,

3/2 \%
P 2 YO € max(y, 0)). (7.15)
ny —1 n
The lemma follows from (7.14) and (7.15). O

Thanks to Lemmata 7.1 and 7.3 we can bound E; from (7.2) as follows.
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Lemma 7.5 Assume Hypotheses M1-M3. For any a > 0 there exists ey € (0, 1/4)
such that for any ¢ € (0, &g), any non-negative function y € €, anyy € Randn € N
such that 3n > 1, we have

sup n|E e y)¢ ( Z )‘
|-
xeX, z=0 2no? ' ﬁo
ce (1 +max(y,0))
<c(1+max(y,0) ¥l (8+ : né )’

where E| = E, (1// Xn); y+Su€lz,z+al, ty > nl), ng=n-— LSSHJ and ¢4 is

2
the Rayleigh density function: ¢4 (t) = te™T Li>o)-

Proof From Lemmas 7.1 and 7.3, it follows that

‘ 2av (Y) V(x,y) ( 4 )‘
n|E;— o+

V2mo? Vno
< e (1 +max(y, 0)) [l (e + %)

av(1ﬁ)‘< (1 + max(y, 0))>
+ - Ce

né‘

+ ¢ (1 + max(y, 0)) 8)

ce (1 + max(y, O)))

nS

<o +max(y,0) [Vl <8 +

7.2 Control of E;

In this section we bound the term E» defined by (7.2). To this aim let us recall and
introduce some notations: for any ¢ € (0, 1), we consider n, = L83HJ Al =n—ny =

n— |_£3nJ, n3 = L’%J and n4 = no — n3. We define also

Ep =E (Y (Xn); y+ Sy €lz,z2+al, y+ S, <evn,ni <ty <n) (7.16)
<

Ey :=E, (w(Xn); y+Su€lz,z+al, y+ Sy >evn, ni <ty <ny —|—n3)
(7.17)
Exy:=E (Y (Xn): y+ Sy €lz.z+al, y+ Sy >ev/n, ni+n3 <1y <n)
(7.18)
and we note that
E> = E>1 + Exn + Ens. (7.19)
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Lemma 7.6 Assume Hypotheses M1-M3. For any a > 0 there exists ey € (0, 1/4)
such that for any ¢ € (0, &g), any non-negative function y € €, anyy € Randn € N
such that 3n > 1, we have

ce (1 + max(y, 0))
sup nEy<c||w||oo(1+max(y,0>)<ﬁ+ Al )
xeX,z2>0 n

where E»1 is given as in (7.16) by

Eyi =Ey (Y (Xp); y+Sp€lz,z+al, y+ Sy <evn, nyp <1y <n)
andny =n — L83nJ.
Proof Using the Markov property and the uniform bound (5.14) of Corollary 5.5, with

ny = LSSHJ,

+o00
Ey = Z\/(‘) Ex/ (w (XnQ); y’ =+ Snz € lz,z+ al, Ty < nz)

x'eX
x P, (X,,1 =x,y+ 8, €dy, y+ S, <evn, 1y > n1)
cliyll

<7;°Px(y+5,” <evn, Ty >ny).

ea/n 2 . .. .
We note that U://;Tl < . ;;83 < Z¢ and so by the point 2 of Proposition 2.3 with

to =2¢/o:
NVl (V. y) . eﬁ) ce (14 max(y, 0)?)
Ens—0m ( N ® (am + 17+ :

Using the point 2 of Proposition 2.1 and taking into account that ny > &3n (1 — &),

n
2
ni > n/2 and that ®* (1) < ®* (r9) < 2 forany 1 € (0, 19),

cllYlls

£3/2

nks <

(1+ ) (4 max(y, 0) (82 4 e max(y, O)))
n n

ce (1 + max(y, 0)))

nS

< cll¥ll o (1 4+ max(y, 0)) (JE+

which implies the assertion of the lemma. O

Lemma 7.7 Assume Hypotheses M1-M3. For any a > 0 there exists gy € (0, 1/4)
such that for any ¢ € (0, &), any non-negative function € €, any y € R, and
n € N satisfying &3n > 2, we have

Ce

sup nEz < ¢ Y llog (14 max(y, 0)) (77 + ),
xeX,z20 n
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where Eo; is given as in (7.17) by
En=E, (¥ (Xp); y+Su€lz.z+al, y+ Sy > evn, ni <1y <nj +n3)
andn; =n — LESHJ, ny = L83nJ and n3 = L%J

Proof By the Markov property,

+o00
Ex» = Z /(; E, (Iﬂ (an); Yy + Sy, €lz,z+al, Ty < n3)

x'eX

/
E22

X Py (Xp, =x's y+ Sp, €dy, y+ Sy, > ev/n, 1y >ni). (7.20)

Bound of E), By the Markov property and the uniform bound (5.14) in Corol-
lary 5.5, withng = np —n3 =n —ny; —n3,

Eéz = Z /RIEX// (w (X,,4) Y+ Su, €2, 2 +a])

x"eX

x P,/ (Xn3 =x", ¥y + Sy, €dy”’, 7y < n3)
cllvll

< o0
N

Let (B;);>0 be the Brownian motion defined by Proposition 10.4. Denote by A, the
following event:

P, (‘Cyf < n3) .

Ap = { sup iS\_th — 0By < ”1/2_8} )
t€[0,1]

and by A, its complement. We have

cY o
NG

Note that for any x” € X and any y’ > &4/n,

I
Ey <

[Py (vy < n3, Apy) + Py (1y < n3, Ayy)]. (7.21)

P, (Ty’ < n3, An3) <P (Tf,mnl/zs < ”3) ,
3

where, for any y” > 0, r;’,’,” is the exit time of the Brownian motion starting at y”
defined by (10.7). Since y’ > 4/n, it implies that

Px’ ('L'y/ < ns, An3) < P <t€i%(])f1]o'Btn3 < n;/Z—s _ y/>
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&3\ 1/2e
< IP’( inf]aB,,,3 < < ) —gﬁ)

t€[0,1 2
el/2-3¢
<IP< inf o By, g—eﬁ(l— ))
tef0,1] ; n¢

Since 1/ /15 > v/2/¢3/2,

Px/ (‘L'y/ < ns, Anz) < P ‘ Bn3

ﬁ>a_f_3(1_i))

1|>0{/§5(1—%>>

< ce(1=5), (7.22)

/N

~
—_—~

o

Therefore, putting together (7.21) and (7.22) and using Proposition 10.4,

cliyll _c(j_< — cliyll _c(l—<)  Ce
E/ < o0 ( s(l ns) ]P) (A ) < o0 .&;(1 ng) — .
<= = (e + Py (Any) NS +n§

3 3

Since ng = n2/2 > 5 (1 — <) andnz > ny/2 — 1> & (1 — <), we have

o < Vs (140) (et +52) < % (F+%). 23

28 m Ty ne

Inserting (7.23) in (7.20) and using the point 2 of Proposition 2.2 and the fact that
n1 = n/2, we conclude that

1 c
Eyp < ¢ ¥l (1 +max(y, 0)) (e_g +C_g>.

n né

]

Lemma 7.8 Assume Hypotheses M1-M3. For any a > 0 there exists ¢y € (0, 1/4)
such that for any ¢ € (0, g9), any non-negative function € €, any y € R, and
n € N such that €3n > 3, we have

C
sup_ nEzs < ¢ [Yllog (1 4+ max(y, 0)) (e + ).
xeX,z20 n

where Eo3 is given as in (7.18) by
Ey =E, (I/I(Xn)v y+ Sy €lz,z+al, y+Sn1 > ea/n, np+n3 < Ty <I’l)

andny =n — L83nJ, ny = L83”J and n3 = L%J
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Conditioned local limit theorems for random walks defined on... 709

Proof By the Markov property,

+oo
E23 Z/ ); y/+Snze[Z,Z+a], I’l3<‘l,'y/<n2)
x'eX ;
=:Ey
Po(Xoy =2, v+ Sy €dy, y+ 80y > e/ 1y >mi). (124)

We consider two cases: when z < %ﬁ and when z > 8*2/';.

Fix first 0 < z < 8‘2/7'. Using Corollary 5.5, we have for any y' > e4/n,

Eé?, < Ey (1ﬁ (an) ; y/ + S, €lz,2+ a])
<awweﬁ¢§+wWQ(1
= N 2mnyo Jn2 Jns

2

Yoo ¢ o, Ce 5/2 —cen
< (1) (e P+ e e
c ||W||oo ( e _c Ce 5/2
< l+—) e+ — 7).
32 n n Jn
So, when 0 < z < sf , we have

By < 2 ¥ leo <— + ) (7.25)

+ 5/2+C e cgnz)

Vo \Jn

Now we consider that z > 8“2/5. Using Lemma 3.2 with m = §, and

F(x]5 . xnz)

we obtain
! ’
Eby :=Ey (¥ (Xny)5 Y + S, € [z, 2+ al, n3 < 1y < m2)

Ly (X5
<E} (w(xf)(M)- Y+ (X)) ++ f(XT) €lzz+al,

v (X;‘z_H)

3ke{ns+1,....n0—1}, y/+f(X,’:2)+---+f(X;§2_k+1)<O).

By the Markov property,
Ey < Wl Ey (Wi (X5,): ¥ + f(X],) + +f( D) elz.z+al
Eke{n3+1,...,n2—1},y’+f(n) s (X, ip1) <0O).

@ Springer



710 |. Grama et al.

where ¥7, is a function defined on X by the equation (6.2). We note that, on the event
V+7r(X5)++7(X7) elz,z+al} ={z+S;, €[y —a.y']}, we have

[Fkefns+1,...on— 1y + F(X5)+ -+ f (X}, 441) <O
C{ke{n+1.....m— 1}, z— (X)) —- — f(X]) <0}

={t;<n2—n3—1}.

Consequently,
En<clYlloP;(z4+ S, ey —a, ¥y, tf <ng—1),

. 3 3 , .
withng =n, —n3z = Ls3nJ - L%J > 5 (1 - %) Proceeding in the same way as

for the term EJ, in (7.23) and using the fact that z is larger than ce/n, we have

C c C
E} < ”%00 (6_5 n n—i) : (7.26)

Putting together (7.25) and (7.26), for any z > 0, we obtain

7
Ey <

W (o )

Inserting this bound in (7.24) and using the point 2 of Proposition 2.2, we conclude
that

Eys < ¢ [¥lloo (1 4 max(y, 0)) (£+ C_s)

n né

O

Putting together Lemmas 7.6, 7.7 and 7.8, by (7.19), we obtain the following bound
for E;:

Lemma 7.9 Assume Hypotheses M1-M3. For any a > 0 there exists ey € (0, 1/4)
such that for any ¢ € (0, &g), any non-negative function y € €, anyy € Randn € N
such that 3n > 3, we have

ce (1 +max(y, 0
sup nEp < c|[¥llo (1 + max(y, 0)) <J5+ & - o ))> ;
xeX,z>20 n

where E is given as in (7.2) by
Ey=E¢ (Y (Xn): y+Su €lz.z+al, m <7y <n)

andny =n — L83nJ.
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Conditioned local limit theorems for random walks defined on... 711

7.3 Proof of Theorem 2.4

By (7.1) and (7.2),
Ex (¥ (X2); y+ Sy €[z, 2+al, Ty > n) = E| + Ea.

Lemma 7.5 estimates E| and Lemma 7.9 bounds E». Taking into account these two
lemmas, Theorem 2.4 follows.

8 Proof of Theorem 2.5
8.1 Preliminary results

Lemma 8.1 Assume Hypotheses M1-M3. For any a > 0 and p € N*, there exists
eo € (0,1/4) such that for any ¢ € (0, g9) there exists no(e) > 1 such that any
non-negative function € €, anyy' >0,z >0,k e€{0,..., p— 1} andn > no(e),
we have

sup E],{ < 2a (er( y/ >
x'eX V2w p(ny — 1)o? o/ny — 1
a
Ej(lﬂ(X]")V*( T,zk+;+ST);r;;+;>l)
ce (1 +Z)>

C
+—W”°°(1+z) <s+ -
n né¢

and

S 2a < y >
in >
vex K V2w p(ngy — 1)02(ﬂ+ oa/ny—1

Ey (v (XT) V* (X7, 2 + S7) T > 1)
c ce (142
- ||w||c,o(1+z)<8+ (1 ))
n né

where E; = By (I/I (Xn): ¥ + Sny € (Zk, Tk + %] ) Ty > n2>, %k =2+ k—[f and
ny=|en|.
Proof Using Lemma 3.2 with m = §,» and

F(x1,...,x,)
= ¢(xn2)1{

VA G0 oy )€ (20,248 | Vi€ o, ¥/ f )+ £ ()0
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712 |. Grama et al.

we have

a

E, =E! (w (XD v (X)) Y+ (X)) +---+ f(X]) € (Zk,zk + ;},
Viell,....omb ¥+ f(X5)+-+ f (X, _in1) >0).

where /7, is the function defined on X by (6.2).
The upper bound Note that, on the event {y'+ f (X)) +-- + f(X}) €

(Zk,Zk-i-%]] = {Zk+%+S;’,‘2 € [y’,y’+%)},we have
(Vi € (Loreomad ¥+ £ (X + o F (Xfyir) = 0. > 0}
C {Vi e{l,...,np—1}, zk+%—f(X,’1“27i)—~--—f(XT) >0,
ot St sy >o}
p
= {Tz*w% >n2}. 8.1)

So, for any y’ > 0,
/ * K\ ok (pk ). a * ro 4 *
EkgEv w(Xl)lﬂx/(an),Zk-i-;-i-SnzG y’y+; ,er+%>n2

too /" * * * -
<[ T E () <
x"eX 0

a
+8,,-1 € |:y/, vy + —] LT >y — 1)
P

x P (szdx”, zk—i—%—}—STedz”, T > 1).
[’

8

Using Theorem 2.4 for the reversed chain with ¢’ = ¢°, we obtain that

/ 2av (’ﬁ:/) < y > /+OO o
E, < v ’
“S amnn — po2 T\ Ym = 1o x% A v (") V(. 2")

x Py (Xf =dx”, zx + % +57 edd, 7 p0 > 1)

cllv®
+ MEﬁ ((1 + max (zk +24 ST, O>>
ny — p

Ce (1 + max (zk + £ 4+ 87, 0))
x | Ves+ 4
(na — 1)*

*
’ Tzﬁ-% > 1
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Note that by (6.2), v () = 1and |[y% |

< c. So,

<o ()
k= Zn(nz—l)paz(p+ n, — lo
a
x E (w(x’f)v*< T,zk+;+sf), e > 1)
CIIWIIOO< Ce s e (1+2)
1 —) 1 U+
52 (1) Ao (e +

ne®

and the upper bound of the lemma is proved.
The lower bound Similarly as in the proof of the upper bound we note that, on the

event{y/+f(Xj;2)+-~+f(XT) € (ZIka"i‘%:“ = {Zk—i-S;fz € [y/—%,y’”,
we have
(Vie{l,....na}, ¥+ f(X3,) + -+ f(X},_i11) > 0}
S{Vie{l,....na =1}, zu — f (X}, ;) = = f(X]) > 0}
= {r;;( >ny — 1} D {‘L’Z( >n2}. (8.2)

Let y, :=max(y’ —a/p,0) and a’ := min(y’, a/p) € (0, a]. For any € (0, a’),
a
B2 (v 0w ) s, [y - 4) o)
+OO
[

x'eX
+S0, 1€V Y +d —n]. T >na—1)
xPy(Xf=dx", e+ Sf ed’, ©f > 1).

lk

Using Theorem 2.4,
2@ — v (¥) ( )
E/ 2 X / // V*
k —/_Zn(nz ~ o2 P+ Vi — 1o x%:x (x b4 )

x Py (X7 =dx", zx + Sf €d”, ¢ > 1)
WVl Wloo g (4 1 .+ 57, 0))

ny— 1 Tk 1

1 %
5 <\/g>8+ ce ( +max(zk4;S ,O))) o s 1)
(na — 1)* '

2(a" =) Y
2@(}12 “ o2t <\/nz—tla> Ey (v (X)) V" (Xi 2+ 81) s v > 1)

C”d/”oo Ce 4 ce (1+2)
-, (l—i—;)(l—i-z)(e —i——neg )
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714 I.Grama et al.

Note that, if y’ > a/p we have

/ a
i % N (e_ e
(a TI)€0+< Tz—IU)_(P 77><P+( T—10>
a v a?
> (5-n)er (=5 ) - Wi e 5=
p ny —lo pv/ny — lo

and if 0 < y’ < a/p we have

y/
d - <_+> o
> (ﬁ - n) ¢+ (y—/> SN
“\p Vhny —lo tloo ), /s — 1o
> (i_n>¢ (y—/> — | e
“\p * Jny — lo +lloo p2Jny — 1o’
Moreover, using the points 1 and 2 of Proposition 2.1, we observe that
Ey (v (X7) V* (X + 87) . w5 > 1) S eyl (1 +2).
Consequently, for any y’ > 0,

E/ > ﬂ§0+ ()’—/> E* (w (XT) V* (XTsZk + Sik) , ‘E* - l)
CT V2 - o2 \Wmp— 1o ) *

& o0 o0 & 1 .
_cellvll (1+z)—c”ﬁ” (1+Z)(8+c ( —gkz))'

n3/2 ne
Taking the limit as n — 0, the lower bound of the lemma follows. |
Lemma 8.2 Assume Hypotheses M1-M3. For any a > 0 and p € N*, there exists

eo € (0,1/4) such that for any ¢ € (0, g9) there exists no(e) = 1 such that any
non-negative function € €, any y € R, z > 0 and n > no(¢), we have

P

2aV(x,y) ( ( ) )
3/2 *

supn’/“Ey < ——— E; X,zk+ + S a > 1
xeg N Z 1 ) R

+ pe ¥l (14 2) (1 + max(y, 0)) (8 L e (Lt 2+ max(y, 0))>

ne®

and
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Conditioned local limit theorems for random walks defined on... 715

. 2aV (x, y) &
;2§n3/2E0 > % SOES (v (X)) V(X + ST) T > 1)
k=0

— pe ¥ lloe (1 +2) (1 4 max(y, 0)) (8 L e (Lt 2+ max(y, 0)))

ne®

where Eg = E, (W(Xn); y+Sy €z, z+al, 7y >n)andf0ranyk€{0,...,p—
1}, zk=z+k7".

Proof Setn; =n — L83nJ and np = L83nj. By the Markov property, for any p > 1,

+00
EO = Z / Ex/ (I/I (an), y’ + Snz S (Z, Z +a] s ‘L'y/ > n2)

X Py (Xp, =dx', y+ Sy, €dy', 7y > ny)

400 P—1
:Z/ ZE,QX]I”X(X,”:dx’,y+S,,ledy/,ry>n1),
0 k=0

x'eX

where forany k € {0, ..., p — 1},

a
E,=Ey <I/f (Xn): ¥ + Sny € <Zk, %+ ;i| ) Ty > nz)

andzp =z + ka
The upper bound By Lemma 8.1,

-1
2a L y+S,
Ep < E ( (—1);r,>n1>fl(k)
p(ny — D202 kX:(:) A\ o/ny —1 Y
p—1
c ce (142
+Z ||W||OO(I+Z)<8+ 8(_8 )>Px(fy>nl)’
n né
k=0
where Ji(k) = EX (w (X]") V* (XT,zk + % + S]"); t;;Jr% > 1), for any k €
{0,..., p — 1}. By Lemma 7.4 and the point 2 of Proposition 2.2,

Vix,y)
o

1
2a 14
32
n'*Ey < ———— Ji(k)
pV2mo? kXZ(:)

1 (1 2
+—ZJ1(k)<C (L max(y. 0 +c(1+max(y,0>)a>
pk=0 "

+ pell¥lle (1+2) (e + L;Z)) (1 + max(y, 0)).
n

@ Springer
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Note that, using the points 1 and 2 of Proposition 2.1, we have
— le(k) Y lloe (1+2).

Therefore

p—1
2aV (x, y)
3/2
n’’“Ey < Ji(k)
wens

+ pell¥lloe (1 4 2) (1 + max(y, 0)) <€ +

ce (1 + z + max(y, O)))

ne®

and the upper bound of the lemma is proved.
The lower bound The proof of the lower bound is similar to the proof of the upper
bound and therefore will not be detailed. O

8.2 Proof of Theorem 2.5

The second point of Theorem 2.5 was proved by Lemma 6.2. It remains to prove the
first point. Let € ¥,a > 0, x € X, y € R and z > 0. Suppose first that z > 0. For
any n > 1 and n € (0, min(z, 1)),

E: (¥ (Xn); ¥+ Sy €[z, 2 +al, 7y > n) < Eo(n), (8.3)

where Eg(n) = Ex (¥ (Xn): y 4+ Sp € (2 —n,2+al, Ty > n). Taking the limit as
n — 400 in Lemma 8.2, we have, for any p € N* and ¢ € (0, go(p)),

1imsupn3/2Eo(r/)
n—+00
2(a+n)V(x y)
—_— Ey (W (XD V*(XT, zk
NS kZo Y(X] 1> 2k,
a—+
T )

+ pelldllo (1 +z—n)(1 + max(y, 0)) &,
withzg p =z —n+ @ fork € {0, ..., p — 1}. Taking the limit as ¢ — O,

lim sup n3/? Eo(n)

n—+00

2 Ve y) ks
< 2@ VOO D) N g (X VX 2

/ 3
27 po =0
+
+—n+S1) r atn > 1).
P k57
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Conditioned local limit theorems for random walks defined on... 717

By the point 2 of Proposition 2.1, the function u > V* (x*, u — f(x™)) Lyy— r(x+)>0
is monotonic and so is Riemann integrable. Since X is finite, we have

-1

v* a+n
p£+oo P ~ ( < an+T+Sl n+a+n > 1
=E*< X7) / (X717 +Sl)1{z+s*>o}dZ>
zta
Z/ Ef ( (X7) V(X2 + S7); o8 > 1)dz.
2=
Therefore,

2V (x,
lim supn3/2E0(n) < M

~X
n—+00 \/27[63 z—n

Taking the limit as n — 0 and using (8.3), we obtain that, for any z > 0,

E; (v (X7) V* (X1.2' + 87): o > 1) dZ.

limsupn3/2EX (w (Xp): y+Spelz,z+al, ty > n)

n——+00
_ 2V(x,y)
2ro3 ),

If z = 0, we have

a
Ey (v (XT) V¥ (X1, 2+ 87): o0 > 1)de. (8.4)

Ex (I/I(Xn)v y+ 8, €10,al, Ty >I1) =Ey (’ﬁ(Xn), y+ Sy, € (0,al, Ty > n)
Using Lemma 8.2 and the same arguments as before, it is easy to see that (8.4) holds
forz =0.

Since [z, z 4+ al] D (z, z + a] we have obviously

E: (¥ (Xn); y+ Sy € lz,2+al, 1, > n)
Ee (¥ (Xa); y+ Sn € (z,z2+al, Ty >n).

Using this and Lemma 8.2 we obtain (8.4) with liminf instead of lim sup, which
concludes the proof of the theorem.

9 Proof of Theorems 2.7 and 2.8
9.1 Preliminaries results
Lemma 9.1 Assume Hypotheses M1-M3. Foranyx € X,y e R,z > 0, a > 0, any

non-negative function \: X — Ry and any non-negative and continuous function g:
[z, z +a] — Ry, we have
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718 |. Grama et al.

lim n3/?E, (O+S)Y Xp); y+Sp€lz.z+a), Ty >n)

n—-+o00

_2V(x,y) [

=" ). gEE; (v (XT) V* (XT.2 4+ 87): © > 1) de.

Proof Fix x € X,y € R,z > 0,a > 0, and let : X — R, be a non-negative
function and g: [z, z + a] — R4 be a non-negative and continuous function. For any
measurable non-negative and bounded function ¢: R — R, we define

Io(p) == n*PEx (¥ (Xn) @ (v + S0): 7y > n).
We first prove that for any 0 < o < B we have

Io (1 W& (Pow iy xr VE(XE 2+ 5F): o5 > 1) de
0( [a’ﬁ))n—>—+>oo mo_3 Y v(w( 1) ( 1,Z+ 1), TZ/> ) Z.

.1

Since [o, B) C [«, B], the upper limit is a straightforward consequence of Theo-
rem 2.5:

lim sup Iy (]l[a’/g)) < lim supn3/2]Ex (1// (Xn); y+ Sy €la, Bl, Ty > n)

n—-+00 n— 400
2V (x, B
_ V) Ey (v (X7) V* (XT. 2+ 87); o > 1)dZ.
27‘[0’3 o
and for the lower limit, we write for any n € (0, 8 — «),

.. .. 3/2 .
lim inf Io (Lo,p)) > lim inf By (¢ (Xn); y + Sy € o, B =], 7y > n)

n——+00
2V (x, B—n
= 2D [T g () v (K ST e )
2wo3 Jo
Taking the limit as n — 0, it proves (9.1).
From (9.1), by linearity, for any non-negative staircase function
0 = Z,](V:l Vilig gy, where N > 1, yy,...,yvn € Ry and 0 < oy < 1 = a2 <
- < Bn, we have

lim ]0 ((,0) — M Py @(Z’)]E* (w (X*) V*( * Z/ + S*) . 'L’*, > 1) dz/.
H—> 400 /_27_[0_3 " v 1 1 1)
Since g is continuous on [z, z 4+ a], for any ¢ € (0, 1) there exists ¢ and @2 ¢
two stepwise functions on [z,z +a) suchthat g — e < 91, < g < e < g+ ¢
Consequently,
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Conditioned local limit theorems for random walks defined on... 719

lim Io(e) 2V(x,y) [t

im -

n—+o00 0ls «/EO"% z
2V(x,y) [t
e

2ro3  J;

g@E; (¥ (XT) VF (X1, 2+ 81); w5 > 1)de

Ey (v (X7) Vv (X1.2'+ 87)s o > 1) dZ.

Taking the limit as ¢ — 0, concludes the proof of the lemma. O

For any [ > 1 we denote by ‘5; (Xl X R) the set of measurable non-negative
functions g: X' xR — R bounded and such that for any (xq,...,x;) € X!, the
function z — g(x1, ..., x, z) is continuous.

Lemma 9.2 Assume Hypotheses M1-M3. Foranyx € X,y e R, z>0,a > 0,1 > 1,
any non-negative functions : X — Ry and g € ‘Kb"’ (X’ X R), we have

lim n*?E, (g(X1, ..., X1,y +S) ¥ (Xa); y+ Sy € [z.2+a), Ty > n)

n——+00

2 Z+a
Z—/ Ev(g (X1, . X0, 2) V(X1 y + 8D 5 7y > 1)
2mo3 J;
X B (y (X7) V¥ (X, 2+ 87); o > 1) dZ.

Proof We reduce the proof to the previous case using the Markov property. Fix x € X,
yeR, 220,a>0,l>1,¥:X—> Ryand g e%bJr(Xl xR).Foranyn >1+1,
by the Markov property,

Io==n"Ee (g (X1, ..., X1y + S) ¥ (Xa); y+ Su €[z, 24 ), Ty > n)

=By (0200t (X1 Xy + 8D, 1y = 1),

where for any (x1,...,x) € X!,y e Randk > 1,

e onxn y) =By (g (xnn o xn Y+ S) ¥ (X s Y
+Sk €[z, 2+a), Ty > k).

By the point 2 of Theorem 2.5,
m3 20 (Xa, . Xy + 8D < eliglloo 1Wlloe (14 2) (14 max (v + S, 0)).

Consequently, by the Lebesgue dominated convergence theorem (in fact the expecta-
tion [E, is a finite sum) and Lemma 9.1,

] 2 z+a ,
nETooI(): \/EUS/Z‘ E, (g(Xl,...,Xl,z)V(Xl,y—i—S[), Ty >l)

< By (v (X7) Vv (XT. 2+ 87) s o > 1) de.
O
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Lemma 9.2 can be reformulated for the dual Markov walk as follows:

Lemma 9.3 Assume Hypotheses M1-M3. Forany x’ € X,z >0,y > 0,a > 0,
m > 1 and any function g € ‘5;‘ (X" x R), we have

Lixs, =}
1 3/2]E* X*,..., *’ /_S* n+17" :
n—y—&r-loon ( mn 1Yy n) (X:+1)
+Sely.y+a), >n>

2 y+a
ZW/ Ey (8 (Xps o XT0 =" +2) VI (X 2+ 8p) 5 7 > m)
y

1% (x/’ y//) dy”.

Proof Fixx’ € X,2>0,y >0,a >0,m >1land g € ‘5;‘(Xm x R). Let ¥, be
the function defined on X by (6.2) and consider for any n > m + 1,

Io:=mPE} (g (X, . X5,y = SHYE (X)) 2+ S ely. Y +a), ©F > n).

By Lemma 9.2 applied to the dual Markov walk, we have

I Z y+a X* * /+Z_ //)
0n—>+00 2ro3 FeX oty Y
VE(Xz ot 8): o o)

E, (¥ (X1)
V (X1, Y "+ 81); iy > 1) dy"v(x™).

Moreover, using (6.2) and the fact that v is P-invariant, for any x” € X, y” > 0,
Ey (U3 (XD V (X1, + $1) 5 7y > 1)

P(x’, xl)
=Y =V (Y FOD) Lyt =00 (1)
v(xy)
XIEX

=Ey (V(X1,Y"+81); 1y > 1)

By the point 1 of Proposition 2.1, the function V is harmonic and so

s 2 y+a * * k / 4
= s [ B i )

V(X2 85): 7 m)
<V (x/’ y//) dy”.
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Lemma 9.4 Assume Hypotheses M1-M3. Foranyx e X,y e R, z>0,a >0,m > 1
and any function g € %;r X" x R), we have

lim n3/2Ex (g (Xn—m+1s-->» Xn, y+Su); y+ Sp € (z,z+al, Ty > n)

n—-+o0o

_2V(x,y) [t

- V2ra3 ) E} (8 (X5 - X1, 2) V(X5 2+ 5) 5 w2 > m) de'.

Proof Fix x € X,y e R,z >0,a >0,m > land g € %;(X’" x R). For any
n > m, consider

Lix,y) =E: (§ Xnomts s X, Y+ S0 y+Su €z, z244al, iy >n).  (9.2)

Forany! > 1 and n > [ 4+ m, by the Markov property, we have
P06 y) = B (02 Lt (X1 v+ 505 1 > 1) 9.3)

Forany p > 1 and 0 < k < p we define z; ::z+%.Foranyx’eX,y/ > 0,
n>l+mandp > 1, we write

p—1
n3/21n—l(x/v y/) = Z n3/2Ex’ (g (Xn—l—m+l’ ey X, y/ + Sn—l) ;
k=0
Y 4 Sp—i € 2k, k1], Ty > n—1).
Using Lemma 3.2, we get
p—1

PGy = PR (g (X XY = S U (X))
k=0

— Sy_; € 2k, 2kt1],
Vie{l,...on=0, Y+ f(X; )+ +F(Xi__is1) >0).

where V7, is defined by (6.2).
The upper bound Using (8.1), we have

(¥
p—1
< Z”ME: (8 (X XY = Su ) Ui (X)) s
k=0
k1 + S, € [y’, y' _|_a/p), IZM >n— l).
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By Lemma 9.3,

limsup /21, (x', y')
n——+00

2 p_l y,+a/p / VA I 14 "
<mz Jk()’_)’)V(X,)’)dy,
k=0 7Y

where for any k > 0 and ¢ € R,

Tk+1

Ji(t) :=E} (g (X, Xt o) V(X e + S0 T > m) .

Note that for any t € [—a/p, 0]

Je(t) < EX ( sup g (Xh. .. XTot i) V(X 2k + S:,) ; T;;(H > m)
te[—a/p,0]

—_.JP
=]

(9.4)

Since y” > V (x’, y”) is non-decreasing (see the point 2 of Proposition 2.1), we have

a2 2g? a
limsupn®? 1L, (x',y) < = k_y (x/, vy + —) .
n—>+o§ " h ,; V203 P

Moreover, by (9.2) and the point 2 of Theorem 2.5,
n 2L (X y + 8) < llgllo e (1 +2) (1 +max(y + 5, 0)).

Consequently, by (9.3) and the Lebesgue dominated convergence theorem (or using
just the fact that X is finite),

li ) )<a§ 29¢ E (v(x +S+a> l)
im sup n” x,y) < — —_— Iy =), > 1.
n%+o£) ! pk:O \/27'[0’3 * P Y

Using the point 3 of Proposition 2.1, for any § € (0, 1),

p—1 J4
2J a
lim sup n/?1, (x,y)é2 E —k R <(1+8)<y+51+—)+ca;r >l>
c ’ P i V2mo? ' p ’

n—+00
and again using the point 3 of Proposition 2.1, for any § € (0, 1),
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lim sup 3, (x,y)

n——+00

p 1
2Jk

1+6 a
( — V(Xz,y—I-Sz)—l—Z;—i-Ca; ry>l).

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the
limit as [ — 400,

a = 1 14
20 146
lim supn3/21 (x,y) < +

—V(x,y).
n—+o00 " Z«/ 31_8 (x )’)

Taking the limit as § — O,

—1

lim sup n3/21,,(x, y) < Z V(x y). 9.5)
n——+o0o 0
Forany (x},...,x5) € X" and u € R, let
gm() =g (xp, ..., x}, u) ,
Vip ) i= V3O, u — fO) = = FO) L f ) >0, f )= £ (1) >0}
(9.6)

The function u +— g, («) is uniformly continuous on [z, z + a]. Consequently, for any
¢ > 0, there exists pp > 1 such that for any p > po,

p—1
a

* a - k
- E sup  gm (¢ + zk+1) Vi (zk+1) < — E (&m hk+1) + &)V, (2ht1).
p k=0 t€l—a/p,0] p _

Moreover, using the point 2 of Proposition 2.1, it is easy to see that the function
u — V. (u) is non-decreasing and so is Riemann-integrable. Therefore, as p — +o0,
we have

p—1

] a z+a
lim sup — Z sup g (t + zk11) Vi (2kg1) < / (gm () + &) Vi(2hdz'.
p—+oo P g 1€l—a/p,0] z

Thus, when ¢ — 0,

p—1

. a z+a
limsup— Y sup g (t + 2kg1) Vi (k1) < / 2m () Vi ()dZ.9.7)
p—>+oo P k=0 1€l—a/p.0] z
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Moreover, since u — V" (u) is non-decreasing,

p—1
a
— sup  gm (t + 2kg1) Vo (2kt1) < 18lloo Vi (z + a@)a.

P Zyrel=a/p,0]
Consequently, by the Lebesgue dominated convergence theorem, (9.4), (9.7) and the
Fubini theorem,

p—1 p

a 2
lim sup — k Vix,y)
p—-+oo P ]; /\/27‘[03

p—1
a
E* limsup—z sup g(X::,,...,X’f,t+Zk+1)

_2V(x,y)
! p—>+oo P k=0 '€l—a/p,0]

- 2no3

* * *) . ok
xV (Xm,zk_H +Sm), T, >m

z+ta
_ 2V y) E: (g (X, L) V(X S5 T > m)de

By (9.5), we obtain that,

lim sup n®/2 I, (x, y)
n—+o0
2V(x,y) [t
<m0 Ei(e (X XT ) V(G 8 5 7 > m)d2
2
The lower bound Repeating similar arguments as in the upper bound, by (8.2), we
have forany x’ € X,y >0,l > 1,n>1l4+m+1,p > 1,

p—1
WPt 2 Y (g (X XT Y = ST W (X))
k=0
e+ Sy ey —a/p.y). T >n—1)
p—1
= ZnyzEj (g (X::w B X>1k’ y/+ +a' — S:_l) 1,0:/ (X:—l) ;
k=0

w+ S ey, +ad) ot >n—1),

where y, = max(y'—a/p,0)anda’ = min(y’, a/p) € (0, a/p). Using Lemma 9.3,
+

—

<

2 Vi +a’
liminf 20,0 > o= [T L+ =0V ()
=0 Y

/
+

=~
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where, for any t € R,
L) :=E5 (g (X - XTot+2) V(X 2k + Si) s 00 > m).

Since y” + V (x', y”') is non-decreasing (see the point 2 of Proposition 2.1), we have

p—1 2Ll7
.. 3/2 /
lim inf 0¥/ 1, - (x', y>>a§ V(. ¥y,
where
L/f =E (te[%)rg/mg (X;‘n ..... X7, t+ Zk) v* (X:;, % + S:;) ;T > m) . 9.8)

Moreover, by the point 3 of Proposition 2.1, for any § € (0, 1),

AV V) = (1= 8a'y, —cs > (1_5)<y_£>z_05
p)p

Consequently, using (9.3) and the Fatou Lemma,

lim inf n*/? 1, (x, y)

n—-+o00o

/ ’ 5 > .

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the
limit as / — +oo and then as § — 0,

p—1 b4
liminf 0¥, (e, ) > 53 2R vy, (9.9)
n—+00 p =0 «/EO‘3

Using the notation from (9.6) and the fact that u +— g, («#) is uniformly continuous
on [z, z + a], for any ¢ > 0,

p—1

a z+a
lim inf — f t v ") —e) Vi(zhdZ
I 2 o ¢+ 0V > [ (o () =) i

Taking the limit as ¢ — 0,

p—1

a z+a
lim inf & ¢ V N V*iHdZ .
;g}ﬁygop g te[O /]gm( +zi) Vi, (2i) = /Z 8m (Z) m(2)dz
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By the Fatou lemma, (9.8) and (9.9), we conclude that

—1
o 2V(x,y) L at—~ .
liminf 7321, (x, v) > ———2"E* | liminf — f X*. .. X5t
i fnf 10 (x,3) > o B | Hmnf 0 ) a8 (X Xt 4 2)

XV*(X;;,Zk-I—S;;); Tt >m

Zk

2V(x,y) [*te

NG Ey (g (X X1, 2) VI (X 2 4 S3) 5 70 > m)de.

O
From now on, we consider that the dual Markov chain (X ;zk)n>o is independent
of (Xn)n>0- Recall that its transition probability P* is defined by (2.4) and that, for
any z > 0, the associated Markov walk (z + S;7),>0 and the associated exit time
‘L’Z* are defined by (2.5) and (2.6) respectively. Recall also that for any (x, x*) € X2,
we denote by Py ,« and E, ,+ the probability and the expectation generated by the
finite dimensional distributions of the Markov chains (X,),>0 and (X}),>0 starting
at Xo = x and X} = x™ respectively.

Lemma 9.5 Assume Hypotheses M1-M3. Foranyx € X,y e R, z>0,a > 0,1 > 1,
m > 1 and any function g € ‘5;’ (XH’” X R), we have

lim n*?E, (g (X1,..., X1y Xnomt1s s Xu, v+ S0y

n—+00

1S, €z tal > )

2 zta
= m[ Z Ee v (g (X1s...s X, X5, X1.7)

x*eX

xV (X, y+S)V* (X;“n,z/ + S;‘;l); Ty > 1, rz*/ > m) dz'v(x™®).

Proof Fix x e X,y e R,z >0,a >0,/ >1,m > 1and g € €, (X'* x R). For
any n > [ + m, by the Markov property,

Iy ;== l’l3/2Ex (g (X1,..., X1 Xn—m+1s -+ Xn, Yy +8n); y+ Sy € (z,z+al, Ty >I’l)
= Y By @@ X X mtts oo Xty 4 Sui)s
X1, x eX!
Vi+ St €@ z4al, ty >n—1) xPy (X1 =x1,..., X =x,1 > 1),

where y; = x1 + - - - + x;. Using the Lebesgue dominated convergence theorem (or
simply the fact that X/ is finite) and Lemma 9.4, we conclude that

. 2
nEToolozm Z V (xr, y1) Py (Xlley--~,Xl=Xl,‘Cy>l)
xl,...,xleX’
Z+a
X/ Ei(g(xl,...,xl,X:‘n,..., T,z’)
Z
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V* (X,*n, 7+ S;:;); T > m) dz’.

9.2 Proof of Theorem 2.7

Forany/ > 1,denote by (X! xR, ) the set of non-negative functions g: X/ x R, —
R satisfying the following properties:

— for any (x1,...,x7) € X!, the function z > g(x1, ..., X1, 2) is continuous,
— there exists & > 0 such that maxy,  yex sup,>o g(x1, ..., x5, (1 + 2)¥te <
+00.

FixxeX,yeR, 1> 1,m>1andg € €T (X' x R). For brevity, denote
gim(y+Sp) =g X1, ..., Xoi, Xn—mt1, oo Xny y + Sn) -
Set
Iy == n*’E, (gl,m(y +80); Ty > n)

“+00
=Y PR, (@m(y+ S v+ Sp € ko k+11, 7y > n).
k=0

=i (n)

Since g € € (XH"” X R), we have

N(g) 3/2
len) < e PPy (y + Sy € (k. k+ 11, 7y > n),
where N(g) = maxXy,, _ x,,eX SUP;>0 8(X1, -« ., Xim, 2)(1 + 2)>t¢ < +00. By the

point 2 of Theorem 2.5, we have

c¢N(g)(1 +max(y, 0))
(k 4 1)l+e

I (n) <

Consequently, by the Lebesgue dominated convergence theorem,

—+00
Jim fo=3 0 lim n*PEy (qm(y + S0 y+Sp € K k+ 11, 7y > n).
By Lemma 9.5,
lim Iy
n——+00
25"y
- Ev e (g (X1s oo X0 Xy o, X5, 2) V(X0 y + S)
3 / X, X m 1
mo? (0
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XV (Xp. 2 +8p): 1y > 1, 1 > m)d'v(x™),
which establishes Theorem 2.7.

9.3 Proof of Theorem 2.8

Theorem 2.8 will be deduced from Theorem 2.7.
Letx € X,y € Randn > 1. Since X is finite we note that || f ||, = sup,x | f(x)|
exists. This implies

Px(fy:n+1)=Px(y+Sn+f(Xn+l)go’ y+ S € [07 ”f”oo]y Ty >I’l).
By the Markov property,

]P)x(f)7:n+1):Ex(g(xnsy+sn); Ty>n),
where, for any (x’, ') € X x R,

g, y) =Pu (3 + F(X1) <0) Lyepo 1)

= Liyelol £} Z P, x) Lyt £ () <0)-

X]EX

Since g(x’, -) is a staircase function, for any ¢ > 0 there exist two functions ¢, and
YeonX x Rand N C X x R such that

— for any x’ € X, the functions ¢.(x’, -) and . (x’, -) are continuous and have a
compact support included in [—1, || fllo + 1],

for any (x', y') € (X x R) \N, itholds ¢, (x", y") = g(x', y') = e (x', y"),

— forany (x', ") € X x R,itholds 0 < ¢ (x', y) < g(x’, y) < ¥ (x', y)) < 1,
the set N is sufficiently small:

1/ lloot+1
/ E: (V' (X124 87): 7 > 1 (X1.2) € N)dz <& (9.10)
-1

The upper bound For any ¢ > 0, using Theorem 2.7, we have

I :=limsupn®?Py (ty = n + 1)

n——+00

< lim sup ¥y (Ve (X, y + Sn); Ty > n)

n——+00

2 +00
Zm/o ZE’“>X* (Ve (XT.2) VX1, y + S1)
x*eX

VA XT. 24+ 85D 1y > 1, 18 > 1) v(x™)dz.
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Using the point 1 of Proposition 2.1,

2V (x, y) I/ lloot1

V2o

2V(x y) || Slloo

\/_0

I'" < E} (Ve (X7 2) VE(XT. 2+ 87 7 > 1) dz

Ej (¢ (X7,2) VF (X}, 2+ SP; o > 1)de

=1
2V (x,y) Hfl\oo+l

—_— V*(XT, S 1 N)dz
V2mad Jo B (VF(XT, 2+ SP; o > 1, (X}.2) € N)

=1

©.11)

Since v is P*-invariant, we have
2V (x,y) I1f oo
I = —= (x*, 2) V¥x* 2 — f(x™)
NOY L Z

]l{z—f(x*)>0}v(x>k)dz

2Vi(x,y) Ml
= — Loy fop<oPG, x)v () V™, 2 — f(x™))
2 3
V2mo? Jo
x*,x1eX

Liz— rxy>0ydz
_2V(x, ) I/ lloo

2ra3 Jo

x*eX

Lt o <o P (e, x5 v () Vi (x*, 2 — f(x™)
x*,xleX
Liz— pe#)>0)dz
2V y) (Ml

5703 Jo Z ]l{z+f(x])<o}v(x1)]E:1 (V*(X*, 4+ ST); ‘L'Z>|< > 1) dz.

X1 eX
Using the point 1 of Proposition 2.1,

2V(x,y) (Ml

I = e ), Ey (V¥(XT.2); S§ = 2)dz. (9.12)
Moreover, by (9.10), we get
2V (x,
L <2V, (9.13)
2ro3

Putting together (9.11), (9.12) and (9.13) and taking the limit as ¢ — 0, we obtain
that

2V (x, y) I lloo
VZnod

I" < B (VA(X},2); S >2)dz. (9.14)
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Lower bound In a similar way, using Theorem 2.7, we write

I~ —hmlnfn/IF’ (r _n—|—1)

n—-+00

> liminf 2’/ *Ey (¢e (X, y + Su)i Ty > 1)

n—+400

oo
_ V&) ¥ (o (X7, 2) VAXT 24+ 8D o7 > 1) dz

- V2703
> 1 — .

Using (9.12) and (9.13) and taking the limit as ¢ — 0, we obtain that

2V(x,y) (Ml

~ 2no3

which together with (9.14) concludes the proof.

Es (V*(X].2); ST > 2)dz,

10 Appendix
10.1 The non degeneracy of the Markov walk

In [14], itis proved that the statements of Propositions 2.1-2.3 hold under more general
assumptions (see Hypotheses M1-M5 of [14]). We will link these assumptions to our
Hypotheses M1-M3. The assumptions M1-M3 in [14], with the Banach space &, are
well known consequences of Hypothesis M1 of this paper. Hypothesis M4 in [14] is
also obvious with N = N; = - - - = 0. By Hypothesis M2, to obtain Hypothesis M5 of
[14], it remains only to prove that o defined by (2.2) is strictly positive. First we give
a necessary and sufficient condition. Recall that the words path and orbit are defined
in Sect. 4.

Lemma 10.1 Assume Hypothesis M1. The following statements are equivalent:

1. The Cesdro mean of f on the orbits is constant: there exists m € R such that for
any orbit x, . .., X, we have

fxo) + -+ flxn) = (n+ Dm.
2. There exista constantm € Rand afunctionh € € such thatforany (x, x') € X2,
P(x, x) f(x') =P(x,x") (h(x) — h(x") + m).

3. The following real 5 is equal to 0

&2=v(f>—v(f)2+22[ (fP"f) — v(_f)2]=o

n=1
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Proof The point I implies the point 2 Suppose that the point 1 holds. Fix x¢ € X and
set h(xg) = 0. For any x € X, we define A (x) in the following way: for any path
X0, X1, - .., Xp, X In X, we set

h(x) = —f(x) = fln) == f(x1) + (n+ Dm.

We shall verify that & is well defined. By Hypothesis M1, we can find at least a
path to define 4 (x). Now we have to check that this definition does not depend on

the choice of the path. Let xo, x1, ..., xp, x and xo, y1, ..., Y4, X be two paths. By
Hypothesis M1, there exists a path x, z1, ..., z,, X9 in X between x and xg. Since
X0s X1y oy Xp, X, 215 .-+, 2Zp and X0, Y1, ..., Yp, X, 21, . .., Zn are two orbits, by the

point 1, we have

—f) = fxp) == fx)+(p+Dm
=fxo)+ f)+ -+ fz) —(n+1Dm
=—fX)—fO)—-—fO1)+ @+ Dm

and so the function / is well defined on X. Now let (x, x’) € X2 such that P(x, x") > 0.
By Hypothesis M1, there exists xg, x1, ..., X,, x a path between x¢ and x. Since

P(xg, x1) - - - P(xp,, x)P(x, x") > 0,
by the definition of &, we have

h(x) ==f(x) = fln) == fx1) + (n+ Dm
h(x") = = f(x') = f(x) = fxn) = = f(x1) + (n+2)m.

In particular
h(x) = = f(x') + h(x) + m.

The point 2 implies the point 1 Suppose that the point 2 holds and let xg, . . ., x, be
an orbit. Using the point 2,

h(x0) = h(xp) — f(x0) +m = --- = h(xo)
—fx0) = fxn) =+ = fx1) + (n+ Dm,

and the point 1 follows. y
The point 2 implies the point 3 Suppose that the point 2 holds. Denote by f the
v-centred function:
f=f0—v(f), VxeX (10.1)
By the point 2, for any x € X,
Pf(x) = h(x) —Ph(x) +m — v(f). (10.2)
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Using the fact that v is P-invariant, we obtain that v ( f ) =0=m —v(f) and so,

m = v(f). (10.3)

Consequently, by (10.2), P" f = P"~!'h — P"} for any n > 1 and therefore,

n
> P f=h—Ph (10.4)
k=1
Let
+o0 _
6:=) Py
k=0

be the solution of the Poisson equation 6 —PO = f , which by (2.1), is well defined.
Taking the limit as n — 400 in (10.4) and using (2.1),

PO =0 —f=h—vh).
Therefore, for any (x, x') € X2,
O —POKX) = f(X)+POGK) —PO(x) = f(x') + h(x)) — h(x).
Using the point 2 and (10.3), it follows that
O(x") —PO(x) =0, (10.5)
for any (x, x') € X? such that P(x, x’) > 0. Moreover,

7 = (P) #2200 (70°7) = (7 (7 +200))

. ((6-v8) (6 +78)).

Since v is P-invariant,

s, (P <02)> — o ((P@)2> T ((P@)2>

- [@”(x/)z —26(PO(x) + (P@(x))2j| P(x, x')v(x)
(x,x")eX
- (é(x’) - P(:)(x))zP(x, X (x). (10.6)

(x,x")eX
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By (10.5), we conclude that 52 =0.
The point 3 implies the point 2 Suppose that the point 3 holds. By (10.6), for any
(x, x") € X such that P(x, x’) > 0 we have
O —POKx) =0.

Let i = P@. Since @ is the solution of the Poisson equation,

&) +h(x) = hx) =0.
By the definition of f in (10.1), for any (x, x’) € X such that P(x, x') > 0,

f&) =hx)—h&x") +m,

with m = v(f). O
Note that under Hypothesis M2, Lemma 10.1 can be rewritten as follows.

Lemma 10.2 Assume Hypotheses M1 and M2. The following statements are equiva-
lent:

1. The mean of f on the orbits is equal to zero: for any orbit xg, . . ., X,, we have
fxo) + -+ f(xn) =0.
2. There exists a function h € € such that for any (x, x') € X2,
P(x,x") f(x") =P(x, x") (h(x) — h(x)) .

3. The real 62 is equal to 0:
+o00
o=y (fz) +2Y v (fPf) =o0.
n=1

Now we prove that the Hypothesis M3 (the “non-lattice” condition), implies that
the Markov walk has non-zero asymptotic variance.

Lemma 10.3 Under Hypotheses M1-M3, we have
+o0
o2 = v(f2> +23 v (fP"f) >0
n=1

Proof We proceed by reductio ad absurdum. Suppose that o> = 0. By Lemma 10.2,
for any orbit xg, . .., x,, we have

fxo) + -+ fxn) =0,

which implies the negation of Hypothesis M3 with § = a = 0. O
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10.2 Strong approximation

Let (B;);>0 be the standard Brownian motion on R defined on the probability space
(82, %, P). Consider the exit time

" =inf{t >0, y+ 0B, <0}, (10.7)

where o is defined by (2.2). It is proved in Grama, Le Page and Peigné [16] that there
is a version of the Markov walk (S;,),>0 and of the standard Brownian motion (B;);>0
living on the same probability space which are close enough in the following sense:

Proposition 10.4 There exists &g > O such that, for any ¢ € (0, 9], x € Xandn > 1,
without loss of generality (on an extension of the initial probability space) one can
reconstruct the sequence (Sp), >0 with a continuous time Brownian motion (B;)eR,,
such that

12— Ce
P, sup }S\_sz —0Buy| >n'?7f) < —.
0<t<1 n
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