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Abstract
Let (Xn)n�0 be a Markov chain with values in a finite state space X starting at X0 =
x ∈ X and let f be a real function defined on X. Set Sn = ∑n

k=1 f (Xk), n � 1.
For any y ∈ R denote by τy the first time when y + Sn becomes non-positive. We
study the asymptotic behaviour of the probability Px

(
y + Sn ∈ [z, z + a], τy > n

)

as n → +∞. We first establish for this probability a conditional version of the local
limit theorem of Stone. Then we find for it an asymptotic equivalent of order n3/2 and
give a generalization which is useful in applications. We also describe the asymptotic
behaviour of the probability Px

(
τy = n

)
as n → +∞.

Keywords Markov chain · Exit time · Conditioned local limit theorem · Duality

Mathematics Subject Classification 60J10 · 60F05

1 Introduction

Assume that on the probability space (Ω,F , P) we are given a sequence of real
valued random variables (Xn)n�1. Consider the random walk Sn = ∑n

k=1 Xk , n � 1.
Suppose first that (Xn)n�1 are independent identically distributed of zero mean and
finite variance. For any y > 0 denote by τy the first time when y + Sn becomes
non-positive. The study of the asymptotic behaviour of the probability P(τy > n)

and of the law of y + Sn conditioned to stay positive (i.e. given the event {τy >

n}) has been initiated by Spitzer [31] and developed subsequently by Iglehart [20],
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Bolthausen [2], Doney [10], Bertoin and Doney [1], Borovkov [3,4], to cite only a few.
Important progress has been achieved recently by employing a new approach based
on the existence of the harmonic function by Denisov and Wachtel [6–8] (see also
Varopoulos [33,34] and Eichelbacher and König [11]). In this line Grama, Le Page
and Peigné [17] and the authors in [13,14] have studied sums of functions defined on
Markov chains under spectral gap assumptions. The goal of the present paper is to
complete these investigations by establishing local limit theorems for random walks
defined on finite Markov chains and conditioned to stay positive.

Local limit theorems for the sums of independent random variables without con-
ditioning have attracted much attention, since the pioneering work of Gnedenko [12]
and Stone [32]. The first local limit theorem for a random walk conditioned to stay
positive has been established in Iglehart [21] in the context of walks with negative
drift EX1 < 0. Caravenna [5] studied conditioned local limit theorems for random
variables in the domain of attraction of the normal law and Vatutin and Wachtel [35]
for random variables Xk in the domain of attraction of the stable law. Denisov and
Wachtel [8] obtained a local limit theorem for random walks in Z

d conditioned to stay
in a cone based on the harmonic function approach.

Local limit theorems without conditioning for Markov chains are known as early as
the work of Kolmogorov [24] and the background contributions due to Nagaev [27,28]
who initiated the study of Markov chains by spectral methods. The work of Doeblin–
Fortet [9] and the theorem of Ionescu-Tulcea and Marinescu [22] allowed to weaken
Nagaev’s conditions to deal withMarkov kernels having a contraction property. In this
spirit Le Page [25] proved a local limit theorem for products of random matrices and
Guivarc’h and Hardy [18] and Hennion and Hervé [19] obtained local limit theorems
for sums Sn = ∑n

k=1 f (Xk), where (Xn)n�0 is a Markov chain and f a real function
defined on the state space of the chain, which will be also the setting of our paper.

Much less is known on the conditioned local limit theorems. We are aware only of
the results of Presman [29,30] who has considered the case of finite Markov chains
in a more general setting but which, because of rather stringent assumptions, do not
cover the results of this paper. We can note also the work of Le Page and Peigné [26]
where a conditioned local limit theorem is established for the stochastic recursion in
a rather different setting.

Let us briefly review the main results of the paper concerning conditioned local
limit behaviour of the walk Sn = ∑n

k=1 f (Xk) defined on a finite Markov chain
(Xn)n�0. From more general statement of Theorem 2.4, under the conditions that the
underlying Markov chain is irreducible and aperiodic and that (Sn)n�0 is centred and
non-lattice, for fixed x ∈ X and y ∈ R, it follows that, uniformly in z � 0,

lim
n→∞

(

nPx
(
y + Sn ∈ [z, z + a], τy > n

) − 2aV (x, y)√
2πσ 2

ϕ+
(

z√
nσ

))

= 0,

(1.1)

where ϕ+(t) = te− t2
2 1{t�0} is the Rayleigh density. The relation (1.1) is an extension

of the classical local limit theorem by Stone [32] to the case of Markov chains. We
refer to Caravenna [5] and Vatutin and Wachtel [35], where the corresponding results
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Conditioned local limit theorems for randomwalks defined on… 671

have been obtained for independent random variables in the domains of attraction of
the normal and stable law respectively.

We note that while (1.1) is consistent for large z, it is not informative for z in a
compact set. A meaningful local limit behaviour for fixed values of z can be obtained
from our Theorem 2.5. Under the same assumptions, for any fixed x ∈ X, y ∈ R and
z � 0,

lim
n→+∞ n3/2Px

(
y + Sn ∈ [z, z + a], τy > n

)

= 2V (x, y)√
2πσ 3

∫ z+a

z

∫

X

V ∗ (
x ′, z′

)
ν(dx ′)dz′. (1.2)

For sums of independent randomvariables similar limit behaviourwas found inVatutin
and Wachtel [35]. It should be noted that (1.1) and (1.2) complement each other: the
main term in (1.1) is meaningful for large z such that z ∼ n1/2 as n → ∞, while (1.2)
holds for z in compact sets.

We also state extensions of (1.1) and (1.2) to the joint law of Xn and y + Sn .
These extensions are useful in applications, in particular, for determining the exact
asymptotic behaviour of the survival time for branching processes in a Markovian
environment. They also allow us to infer the local limit behaviour of the exit time τy
(see Theorem2.8): under the assumptionsmentioned before, for any x ∈ X and y ∈ R,

lim
n→+∞ n3/2Px

(
τy = n

) = 2V (x, y)√
2πσ 3

∫ +∞

0
E

∗
ν

(
V ∗(X∗

1, z); S∗
1 � z

)
dz.

The approach employed in this paper is different from that in [26,29,30] which all
are based on Wiener-Hopf arguments. Our technique is close to that in Denisov and
Wachtel [8], however, in order tomake it work for the randomwalk Sn = ∑n

k=1 f (Xk)

defined on theMarkov chain (Xn)n�0, we have to overcome some essential difficulties.
One of them is related to the problem of the reversibility of the Markov walk (Sn)n�0.
Let us explain this point in more details. When (Xn)n�1 are Z-valued independent
identically distributed random variables, let (S∗

n )n�1 be the reversed walk given by
S∗
n = ∑n

k=1 X
∗
k , where (X∗

n)n�1 is a sequence of independent identically distributed
randomvariables of the same law as−X1. Denote by τ ∗

z the first timewhen (z+S∗
k )k�0

becomes non-positive. Then, due to exchangeability of the random variables (Xn)n�1,
we have

P(y + Sn = z, τy > n) = P(z + S∗
n = y, τ ∗

z > n). (1.3)

This relation does not hold any more for the walk Sn = ∑n
k=1 f (Xk), where (Xn)n�0

is aMarkov chain. Even though (Xn)n�0 takes values on a finite state spaceX and there
exists a dual chain (X∗

n)n�0, the main difficulty is that the function f : X 	→ R can be
arbitrary and therefore the Markov walk (Sn)n�0 is not necessarily lattice valued. In
this case the Markov chain formed by the couple (Xn, y + Sn)n�0 cannot be reversed
directly as in (1.3). We cope with this by altering the arrival interval [z, z + h] in the
following two-sided bound
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672 I. Grama et al.

∑

x∗∈X
E

∗
x∗

(
ψ∗
x (X∗

n)1{z+S∗
n∈[y−h,y], τ∗

z >n}
)

ν(x∗)

� Px (y + Sn ∈ [z, z + h], τy > n)

�
∑

x∗∈X
E

∗
x∗

(
ψ∗
x (X∗

n)1
{
z+h+S∗

n∈[y,y+h], τ∗
z+h>n

}
)

ν(x∗), (1.4)

where ν is the invariant probability of the Markov chain (Xn)n�1, ψ∗
x : X 	→ R+

is a function such that ν
(
ψ∗
x

) = 1 (see (6.2) for a precise definition) and S∗
n =

−∑n
k=1 f

(
X∗
k

)
, ∀n � 1. Following this idea, for a fixed a > 0 we split the interval

[z, z + a] into p subintervals of length h = a/p and we determine the exact upper
and lower bounds for the corresponding expectations in (1.4). We then patch up the
obtained bounds to obtain a precise asymptotic as n → +∞ for the probabilities
Px (y + Sn ∈ [z, z + a], τy > n) for a fixed a > 0 and let then p go to +∞. This
resumes very succinctly how we suggest generalizing (1.3) to the non-lattice case.
Together with some further developments in Sects. 7 and 8, this allows us to establish
Theorems 2.4 and 2.5.

The outline of the paper is as follows:

• Section 2: We give the necessary notations and formulate the main results.
• Section 3: Introduce the dual Markov chain and state some of its properties.
• Section 4: Introduce and study the perturbed transition operator.
• Section 5: We prove a local limit theorem for sums defined on Markov chains.
• Section 6: We collect some auxiliary bounds.
• Sections 7, 8 and 9: Proofs of Theorems 2.4, 2.5 and 2.7, 2.8, respectively.
• Section 10: We state auxiliary assertions which are necessary for the proofs.

Let us end this section by fixing some notations. The symbol cwill denote a positive
constant depending on the all previously introduced constants. Sometimes, to stress the
dependence of the constants on some parameters α, β, . . . we shall use the notations
cα, cα,β, . . . . All these constants are likely to change their values every occurrence.
The indicator of an event A is denoted by 1A. For any bounded measurable function f
on X, random variable X in X and event A, the integral

∫
X
f (x)P(X ∈ dx, A) means

the expectation E ( f (X); A) = E ( f (X)1A).

2 Notations and results

Let (Xn)n�0 be a homogeneous Markov chain on the probability space (Ω,F , P)

with values in the finite state space X. Denote by C the set of complex functions
defined on X endowed with the norm ‖·‖∞: ‖g‖∞ = supx∈X |g(x)|, for any g ∈ C .
Let P be the transition kernel of the Markov chain (Xn)n�0 to which we associate the
following transition operator: for any x ∈ X and g ∈ C ,

Pg(x) =
∑

x ′∈X
g(x ′)P(x, x ′).
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Conditioned local limit theorems for randomwalks defined on… 673

For any x ∈ X, denote by Px and Ex the probability, respectively the expectation,
generated by the finite dimensional distributions of theMarkov chain (Xn)n�0 starting
at X0 = x . We assume that the Markov chain is irreducible and aperiodic, which is
equivalent to the following hypothesis.

Hypothesis M1 The matrix P is primitive: there exists k0 � 1 such that for any x ∈ X

and any non-negative and non identically zero function g ∈ C ,

Pk0g(x) > 0.

Let f be a real valued function defined on X and let (Sn)n�0 be the process defined
by

S0 = 0 and Sn = f (X1) + · · · + f (Xn) , ∀n � 1.

For any starting point y ∈ Rwe consider theMarkov walk (y+ Sn)n�0 and we denote
by τy the first time when the Markov walk becomes non-positive:

τy := inf {k � 1, y + Sk � 0} .

Under M1, by the Perron–Frobenius theorem, there is a unique positive invariant
probability ν on X satisfying the following property: there exist c1 > 0 and c2 > 0
such that for any function g ∈ C and n � 1,

sup
x∈X

|Ex (g (Xn)) − ν(g)| = ∥
∥Png − ν(g)

∥
∥∞ � ‖g‖∞ c1e

−c2n, (2.1)

where ν(g) = ∑
x∈X g(x)ν(x).

The following two hypotheses ensure that the Markov walk has no drift and is
non-lattice, respectively.

Hypothesis M2 The function f is centred:

ν ( f ) = 0.

Hypothesis M3 For any (θ, a) ∈ R
2, there exists a sequence x0, . . . , xn in X such

that

P(x0, x1) · · ·P(xn−1, xn)P(xn, x0) > 0

and

f (x0) + · · · + f (xn) − (n + 1)θ /∈ aZ.

Under Hypothesis M1, it is shown in Sect. 4 that Hypothesis M3 is equivalent to
the condition that the perturbed operator Pt has a spectral radius less than 1 for t �= 0;
for more details we refer to Sect. 4. Furthermore, in the Appendix (see Lemma 10.3,
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674 I. Grama et al.

Sect. 10), we show that Hypotheses M1–M3 imply that the following number σ 2,
which is the limit of Ex (S2n )/n as n → +∞ for any x ∈ X, is not zero:

σ 2 := ν( f 2) + 2
+∞∑

n=1

ν
(
f Pn f

)
> 0. (2.2)

Under spectral gap assumptions, the asymptotic behaviour of the probability
Px

(
τy > n

)
and of the conditional law of the Markov walk y+Sn√

n
given the event

{τy > n} have been studied in [14]. It is easy to see that under M1, M2 and (2.2) the
conditions of [14] are satisfied (see Sect. 10). We summarize the main results of [14]
in the following propositions.

Proposition 2.1 (Preliminary results, part I)AssumeHypothesesM1–M3. There exists
a non-degenerate non-negative function V on X × R such that

1. For any (x, y) ∈ X × R and n � 1,

Ex
(
V (Xn, y + Sn) ; τy > n

) = V (x, y).

2. For any x ∈ X, the function V (x, ·) is non-decreasing and for any (x, y) ∈ X×R,

V (x, y) � c (1 + max(y, 0)) .

3. For any x ∈ X, y ∈ R and δ ∈ (0, 1),

(1 − δ)max(y, 0) − cδ � V (x, y) � (1 + δ)max(y, 0) + cδ.

Since the function V satisfies the point 1, it is said to be harmonic for the killed
Markov walk (y + Sn)n�0.

Proposition 2.2 (Preliminary results, part II) Assume Hypotheses M1–M3.

1. For any (x, y) ∈ X × R,

lim
n→+∞

√
nPx

(
τy > n

) = 2V (x, y)√
2πσ

,

where σ is defined by (2.2).
2. For any (x, y) ∈ X × R and n � 1,

Px
(
τy > n

)
� c

1 + max(y, 0)√
n

.

Define the support of V by

supp(V ) := {(x, y) ∈ X × R : V (x, y) > 0}. (2.3)
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Conditioned local limit theorems for randomwalks defined on… 675

Note that from property 3 of Proposition 2.1, for any fixed x ∈ X, the function
y 	→ V (x, y) is positive for large y. For further details on the properties of supp(V )

we refer to [14].

Proposition 2.3 (Preliminary results, part III) Assume Hypotheses M1–M3.

1. For any (x, y) ∈ supp(V ) and t � 0,

Px

(
y + Sn
σ
√
n

� t

∣
∣
∣
∣ τy > n

)

−→
n→+∞ �+(t),

where �+(t) = 1 − e− t2
2 is the Rayleigh distribution function.

2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n � 1, t0 > 0, t ∈ [0, t0] and
(x, y) ∈ X × R,

∣
∣
∣
∣Px

(
y + Sn � t

√
nσ, τy > n

) − 2V (x, y)√
2πnσ

�+(t)

∣
∣
∣
∣ � cε,t0

(
1 + max(y, 0)2

)

n1/2+ε
.

In the point 1 of Proposition 2.2 and the point 2 of Proposition 2.3, the function V
can be zero, so that for all pairs (x, y) satisfying V (x, y) = 0 it holds

lim
n→+∞

√
nPx

(
τy > n

) = 0

and

lim
n→+∞

√
nPx

(
y + Sn � t

√
nσ, τy > n

) = 0.

We note that, for the convenience of the reader, Propositions 2.1, 2.2 and 2.3 are
formulated here under Hypotheses M1–M3, but they can be stated under much more
general conditions, in particular for Markov chains with countable state spaces, see
[14].

Now we proceed to formulate the main results of the paper. Our first result is
an extension of Gnedenko–Stone local limit theorem originally stated for sums of
independent random variables. The following theorem generalizes it to the case of
sums of random variables defined on Markov chains conditioned to stay positive.

Theorem 2.4 Assume Hypotheses M1–M3. Let a > 0 be a positive real. Then there
exists ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0), non-negative functionψ ∈ C , y ∈ R

and n � 3ε−3, we have

sup
x∈X, z�0

n

∣
∣
∣
∣Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

) − 2aν (ψ) V (x, y)√
2πσ 2n

ϕ+
(

z√
nσ

)∣
∣
∣
∣

� c (1 + max(y, 0)) ‖ψ‖∞
(√

ε + cε (1 + max(y, 0))

nε

)

,

where ϕ+(t) = te− t2
2 1{t�0} is the Rayleigh density and the constants c and cε may

depend on a.
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676 I. Grama et al.

Note that Theorem 2.4 is meaningful only for large values of z such that z ∼ n1/2

as n → ∞. Indeed, the remainder term is of order n−1−ε, with some small ε > 0,
while for a fixed z the leading term is of order n−3/2. When z = cn1/2 the leading
term becomes of order n−1 while the remainder is still o(n−1). To deal with the case
of z in compact sets a more refined result will be given below. We will deduce it from
Theorem 2.4, however for the proof we need the concept of duality.

Let us introduce the dual Markov chain and the corresponding associated Markov
walk. Since ν is positive on X, the following dual Markov kernel P∗ is well defined:

P∗ (
x, x∗) = ν (x∗)

ν(x)
P

(
x∗, x

)
, ∀(x, x∗) ∈ X

2. (2.4)

It is easy to see that ν is also P∗-invariant. The dual of (Xn)n�0 is the Markov chain(
X∗
n

)
n�0 with values in X and transition probability P∗. Without loss of generality we

can consider that the dual Markov chain
(
X∗
n

)
n�0 is defined on an extension of the

probability space (Ω,F , P) and that it is independent of the Markov chain (Xn)n�0.
We define the associated dual Markov walk by

S∗
0 = 0 and S∗

n =
n∑

k=1

− f
(
X∗
k

)
, ∀n � 1. (2.5)

For any z ∈ R, define also the exit time

τ ∗
z := inf

{
k � 1 : z + S∗

k � 0
}
. (2.6)

For any ∈ X, denote by P
∗
x and E

∗
x the probability, respectively the expectation,

generated by the finite dimensional distributions of theMarkov chain (X∗
n)n�0 starting

at X∗
0 = x . It is shown in Sect. 3 that the dual Markov chain

(
X∗
n

)
n�0 satisfies

Hypotheses M1–M3 as do the original chain (Xn)n�0. Thus, Propositions 2.1–2.3
hold also for

(
X∗
n

)
n�0 with V , τ, (Sn)n�0 and Px replaced by V ∗, τ ∗, (S∗

n )n�0 and
P

∗
x . Note also that both chains have the same invariant probability ν. Denote by Eν ,

E
∗
ν the expectations generated by the finite dimensional distributions of the Markov

chains (Xn)n�0 and (X∗
n)n�0 in the stationary regime.

Our second result is a conditional version of the local limit theorem for fixed x, y
and z.

Theorem 2.5 Assume Hypotheses M1–M3.

1. For any non-negative function ψ ∈ C , a > 0, x ∈ X, y ∈ R and z � 0,

lim
n→+∞ n3/2Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

= 2V (x, y)√
2πσ 3

∫ z+a

z
E

∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.
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Conditioned local limit theorems for randomwalks defined on… 677

2. Moreover, there exists c > 0 such that for any a > 0, non-negative function
ψ ∈ C , y ∈ R, z � 0 and n � 1,

sup
x∈X

Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

� c ‖ψ‖∞
n3/2

(
1 + a3

)
(1 + z) (1 + max(y, 0)) .

In the particular case when ψ = 1, the previous theorem rewrites as follows:

Corollary 2.6 Assume Hypotheses M1–M3.

1. For any a > 0, x ∈ X, y ∈ R and z � 0,

lim
n→+∞ n3/2Px

(
y + Sn ∈ [z, z + a], τy > n

)

= 2V (x, y)√
2πσ 3

∫ z+a

z

∫

X

V ∗ (
x ′, z′

)
ν(dx ′)dz′.

2. Moreover, there exists c > 0 such that for any a > 0, y ∈ R, z � 0 and n � 1,

sup
x∈X

Px
(
y + Sn ∈ [z, z + a], τy > n

)
� c

n3/2

(
1 + a3

)
(1 + z) (1 + max(y, 0)) .

Note that the assertion 1 of Theorem 2.5 and assertion 1 of Corollary 2.6 hold for
fixed a > 0, x ∈ X, y ∈ R and z � 0 and that these results do not cover the case when
z is not in a compact set, for instance when z ∼ n1/2.

The following result extends Theorem 2.5 to some functionals of the trajectories
of the chain (Xn)n�0. For any (x, x∗) ∈ X

2, the probability generated by the finite
dimensional distributions of the two dimensional Markov chain (Xn, X∗

n)n�0 starting
at (X0, X∗

0) = (x, x∗) is given by Px,x∗ = Px × P
∗
x∗ . Let Ex,x∗ be the corresponding

expectation. For any l � 1, denote by C+(Xl ×R+) the set of non-negative functions
g: X

l × R+ → R+ satisfying the following properties:

– for any (x1, . . . , xl) ∈ X
l , the function z 	→ g(x1, . . . , xl , z) is continuous,

– there exists ε > 0 such that maxx1,...xl∈X supz�0 g(x1, . . . , xl , z)(1 + z)2+ε <

+∞.

Theorem 2.7 Assume Hypotheses M1–M3. For any x ∈ X, y ∈ R, l � 1, m � 1 and
g ∈ C+ (

X
l+m × R+

)
,

lim
n→+∞ n3/2Ex

(
g (X1, . . . , Xl , Xn−m+1, . . . , Xn, y + Sn) ; τy > n

)

= 2√
2πσ 3

∫ +∞

0

∑

x∗∈X
Ex,x∗

(
g
(
X1, . . . , Xl , X

∗
m, . . . , X∗

1, z
)

×V (Xl , y + Sl) V
∗ (

X∗
m, z + S∗

m

) ; τy > l, τ ∗
z > m

)
ν(x∗)dz.

As a consequence of Theorem 2.7 we deduce the following asymptotic behaviour
of the probability of the event

{
τy = n

}
as n → +∞.
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Theorem 2.8 Assume Hypotheses M1–M3. For any x ∈ X and y ∈ R,

lim
n→+∞ n3/2Px

(
τy = n

) = 2V (x, y)√
2πσ 3

∫ +∞

0
E

∗
ν

(
V ∗(X∗

1, z); S∗
1 � z

)
dz.

3 Properties of the dual Markov chain

In this section we establish some properties of the dual Markov chain and of the
corresponding Markov walk.

Lemma 3.1 Suppose that the operator P satisfies HypothesesM1–M3. Then the dual
operator P∗ satisfies alsoM1–M3.

Proof By the definition of P∗, for any x∗ ∈ X,

∑

x∈X
ν(x)P∗ (

x, x∗) =
∑

x∈X
P

(
x∗, x

)
ν
(
x∗) = ν(x∗),

which proves that ν is also P∗-invariant. Thus Hypothesis M2, ν( f ) = ν(− f ) = 0, is
satisfied for both chains. Moreover, it is easy to see that for any n � 1, (x, x∗) ∈ X

2,

(
P∗)n (x, x∗) = Pn(x∗, x)ν(x∗)

ν(x)
.

This shows that P∗ satisfies M1 and M3. �
Note that the operator P∗ is the adjoint operator of P in the space L2 (ν) : for any

functions g and h on X,

ν
(
g
(
P∗)n h

) = ν
(
hPng

)
.

In particular for any n � 1, ν
(
f (P∗)n f

) = ν ( f Pn f ) and we note that

σ 2 = ν
(
(− f )2

)
+

∑

n

ν
(
(− f )

(
P∗)n (− f )

)
.

The following assertion plays a key role in the proofs.

Lemma 3.2 (Duality)For any probabilitymeasurem onX, any n � 1 and any function
F from X

n to R,

Em (F (X1, . . . , Xn−1, Xn)) = E
∗
ν

(

F
(
X∗
n, X

∗
n−1, . . . , X

∗
1

) m
(
X∗
n+1

)

ν
(
X∗
n+1

)

)

.
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Proof We write

Em (F (X1, . . . , Xn−1, Xn))

=
∑

x0,x1,...,xn−1,xn ,xn+1∈X
F (x1, . . . , xn−1, xn)m(x0)

Px0 (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn, Xn+1 = xn+1) .

By the definition of P∗, we have

Px0 (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn, Xn+1 = xn+1)

= P(x0, x1)P(x1, x2) . . .P(xn−1, xn)P(xn, xn+1)

= P∗(x1, x0)
ν(x1)

ν(x0)
P∗(x2, x1)

ν(x2)

ν(x1)
. . .P∗(xn, xn−1)

ν(xn)

ν(xn−1)
P∗(xn+1, xn)

ν(xn+1)

ν(xn)

= ν(xn+1)

ν(x0)
P

∗
xn+1

(
X∗
1 = xn, X

∗
2 = xn−1, . . . , X

∗
n = x1, X

∗
n+1 = x0

)

and the result of the lemma follows. �

4 The perturbed operator

For any t ∈ R, denote by Pt the perturbed transition operator defined by

Pt g(x) = P
(
eit f g

)
(x) = Ex

(
eit f (X1)g(X1)

)
, for any g ∈ C , x ∈ X,

where i is the complex i2 = −1. Let also rt be the spectral radius of Pt . Note that for
any g ∈ C , ‖Pt g‖∞ �

∥
∥eit f g

∥
∥∞ = ‖g‖∞ and so

rt � 1. (4.1)

We introduce the two following definitions:

– A sequence x0, x1, . . . , xn ∈ X, is a path (between x0 and xn) if

P(x0, x1) · · ·P(xn−1, xn) > 0.

– A sequence x0, x1, . . . , xn ∈ X, is an orbit if x0, x1, . . . , xn, x0 is a path.

Note that under Hypothesis M1, for any x0, x ∈ X it is always possible to connect x0
and x by a path x0, x1, . . . , xn, x in X.

Lemma 4.1 Assume Hypothesis M1. The following statements are equivalent:

1. There exists (θ, a) ∈ R
2 such that for any orbit x0, . . . , xn in X, we have

f (x0) + · · · + f (xn) − (n + 1)θ ∈ aZ.
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680 I. Grama et al.

2. There exist t ∈ R
∗, h ∈ C \{0} and θ ∈ R such that for any (x, x ′) ∈ X

2,

h(x ′)eit f (x ′)P(x, x ′) = h(x)eitθP(x, x ′).

3. There exists t ∈ R
∗ such that

rt = 1.

Proof The point 1 implies the point 2. Suppose that the point 1 holds. Fix x0 ∈ X

and set h(x0) = 1. For any x ∈ X, define h(x) in the following way: for any path
x0, . . . , xn, x in X we set

h(x) = eitθ(n+1)e−it( f (x1)+···+ f (xn)+ f (x)),

where t = 2π
a . Note that if a = 0, then the point 1 holds also for a = 1 and so,

without lost of generality, we assume that a �= 0. We first verify that h is well defined
on X. Recall that under Hypothesis M1, for any x ∈ X it is always possible to connect
x0 and x by a path. We have to check that the value of h(x) does not depend on the
choice of the path. Let p, q � 1 and x0, x1, . . . , xp, x in X and x0, y1, . . . , yq , x in X

be two paths between x0 and x . We complete these paths to orbits as follows. Under
Hypothesis M1, there exist n � 1 and z1, . . . , zn in X such that

P(x, z1) · · ·P(zn, x0) > 0,

i.e. the sequence x, z1, . . . , zn, x0 is a path. So, the sequences x0, x1, . . . ,
xp, x, z1, . . . , zn and x0, y1, . . . , yq , x, z1, . . . , zn are orbits. By the point 1, there
exist l1, l2 ∈ Z such that

f (x1) + · · · + f (xp) + f (x)

= al1 − ( f (z1) + · · · + f (zn) + f (x0)) + (p + n + 2)θ

= al1 − al2 + (
f (y1) + · · · + f (yq) + f (x)

)

− (q + n + 2)θ + (p + n + 2)θ.

Therefore,

eitθ(p+1)e−it( f (x1)+···+ f (xp)+ f (x)) = e−it(al1−al2)eitθ(q+1)e−it( f (y1)+···+ f (yq )+ f (x))

and since ta = 2π it proves that h is well defined. Now let (x, x ′) ∈ X
2 be such that

P(x, x ′) > 0. There exists a path x0, x1, . . . , xn, x between x0 and x and so

h(x) = eitθ(n+1)e−it( f (x1)+···+ f (xn)+ f (x)).

Since x0, x1, . . . , xn, x, x ′ is a path between x0 and x ′, we have also

h(x ′) = eitθ(n+2)e−it( f (x1)+···+ f (xn)+ f (x)+ f (x ′)) = h(x)eitθe−it f (x ′).
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Note that since the modulus of h is 1, this function belongs to C \{0}.
The point 2 implies the point 1 Suppose that the point 2 holds and let x0, . . . , xn be

an orbit. Using the point 2 repeatedly, we have

h(x0) = h(x1)e
itθe−it f (x0) = · · ·

= h(xn)e
itθne−it( f (x0)+···+ f (xn−1)) = h(x0)e

itθ(n+1)e−it( f (x0)+···+ f (xn)).

Since h is a non-identically zero function with a constant modulus, necessarily, h is
never equal to 0 and so f (x0) + · · · + f (xn) − (n + 1)θ ∈ 2π

t Z.
The point 2 implies the point 3 Suppose that the point 2 holds. Summing on x ′ we

have, for any x ∈ X,

P
(
heit f

)
(x) = Pt h(x) = h(x)eitθ .

Therefore h is an eigenvector of Pt associated to the eigenvalue eitθ which implies
that rt �

∣
∣eitθ

∣
∣ = 1 and by (4.1), rt = 1.

The point 3 implies the point 2 Suppose that the point 3 holds. There exist h ∈
C \{0} and θ ∈ R such that Pt h = heitθ . Without loss of generality, we suppose that
‖h‖∞ = 1. Since Pn

t h = heitnθ for any n � 1, by (2.1), for any x ∈ X, we have

|h(x)| = ∣
∣Pn

t h(x)
∣
∣ � Pn |h| (x) −→

n→+∞ ν (|h|) . (4.2)

From (4.2), letting x0 ∈ X be such that |h(x0)| = ‖h‖∞ = 1, it is easy to see that

|h(x0)| �
∑

x∈X
|h(x)| ν(x) � |h(x0)| .

From this it follows that the modulus of h is constant on X: |h(x)| = |h(x0)| = 1 for
any x ∈ X. Consequently, there exists α: X → R such that for any x ∈ X,

h(x) = eiα(x). (4.3)

With (4.3) the equation Pt h = heitθ can be rewritten as

∀x ∈ X,
∑

x ′∈X
eiα(x ′)eit f (x

′)P(x, x ′) = eiα(x)eitθ .

Since eiα(x)eitθ ∈ {z ∈ C : |z| = 1} and eiα(x ′)ei f (x
′) ∈ {z ∈ C : |z| = 1}, for any

x ′ ∈ X, the previous equation holds only if h(x ′)eit f (x ′) = eiα(x ′)eit f (x
′) = eiα(x)eitθ =

h(x)eitθ for any x ′ ∈ X such that P(x, x ′) > 0. �
Define the operator norm ‖·‖C→C on C as follows: for any operator R: C → C ,

set

‖R‖C→C := sup
g∈C \{0}

‖R(g)‖∞
‖g‖∞

.
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Lemma 4.2 Assume Hypotheses M1 and M3. For any compact set K included in R
∗

there exist constants cK > 0 and c′
K > 0 such that for any n � 1,

sup
t∈K

∥
∥Pn

t

∥
∥
C→C � cK e

−c′
K n .

Proof By Lemma 4.1, under Hypotheses M1 and M3, we have rt �= 1 for any t �= 0
and hence, using (4.1),

rt < 1, ∀t ∈ R
∗.

It is well known that

rt = lim
n→+∞

∥
∥Pn

t

∥
∥1/n
C→C .

Since t 	→ Pt is continuous, the function t 	→ rt is the infimum of the sequence of
upper semi-continuous functions t 	→ ∥

∥Pn
t

∥
∥1/n
C→C and therefore is itself upper semi-

continuous. In particular, for any compact set K included in R
∗, there exists t0 ∈ K

such that

sup
t∈K

rt = rt0 < 1.

We deduce that for ε = (1 − supt∈K rt )/2 > 0 there exists n0 � 1 such that for any
n � n0,

∥
∥Pn

t

∥
∥1/n
C→C � sup

t∈K
rt + ε < 1.

Choosing cK ′ = − ln
(
supt∈K rt + ε

)
and cK = maxn�n0

∥
∥Pn

t

∥
∥
C→C ecK ′n + 1, the

lemma is proved. �
In the proofs we make use of the following assertion which is a consequence of the

perturbation theory of linear operators (see for example [23]). The point 5 is proved
in Lemma 2 of Guivarc’h and Hardy [18].

Proposition 4.3 Assume HypothesesM1 andM2. There exist a real ε0 > 0 and oper-
ator valued functions Πt and Qt acting from [−ε0, ε0] to the set of operators onto C
such that

1. the maps t 	→ Πt , t 	→ Qt and t 	→ λt are analytic at 0,
2. the operator Pt has the following decomposition,

Pt = λtΠt + Qt , ∀t ∈ [−ε0, ε0],

3. for any t ∈ [−ε0, ε0],Πt is a one-dimensional projector andΠt Qt = QtΠt = 0,
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4. there exist c1 > 0 and c2 > 0 such that, for any n ∈ N
∗,

sup
t∈[−ε0,ε0]

∥
∥Qn

t

∥
∥
C→C � c1e

−c2n,

5. the function λt has the following expansion at 0: for any t ∈ [−ε0, ε0],
∣
∣
∣
∣λt − 1 + t2σ 2

2

∣
∣
∣
∣ � c |t |3 .

Note that λ0 = 1 and Π0(·) = Π(·) = ν(·)e, where e is the unit function of X:
e(x) = 1, for any x ∈ X.

Lemma 4.4 Assume Hypotheses M1 and M2. There exists ε0 > 0 such that for any
n � 1 and t ∈ [−ε0

√
n, ε0

√
n],

∥
∥
∥
∥P

n
t√
n

− e− t2σ2
2 Π

∥
∥
∥
∥
C→C

� c√
n
e− t2σ2

4 + ce−cn .

Proof By the points 2 and 3 of Proposition 4.3, for any t/
√
n ∈ [−ε0, ε0],

Pn
t√
n

= λnt√
n
Π t√

n
+ Qn

t√
n
.

By the points 1 and 4 of Proposition 4.3, for n � 1,

∥
∥
∥
∥Π t√

n
− Π

∥
∥
∥
∥
C→C

� sup
u∈[−ε0,ε0]

∥
∥Π ′

u

∥
∥
C→C

|t |√
n

� c
|t |√
n
, (4.4)

sup
t/

√
n∈[−ε0,ε0]

∥
∥
∥
∥Q

n
t√
n

∥
∥
∥
∥
C→C

� ce−cn . (4.5)

Let α be the complex valued function defined on [−ε0, ε0] by α(t) =
1
t3

(
λt − 1 + t2σ 2

2

)
for any t ∈ [−ε0, ε0]\{0} and α(0) = 0. By the point 5 of Propo-

sition 4.3, there exists c > 0 such that

∀t ∈ [−ε0, ε0], |α(t)| � c. (4.6)

With this notation, we have for any t/
√
n ∈ [−ε0, ε0],

∣
∣
∣
∣λ

n
t√
n

− e− t2σ2
2

∣
∣
∣
∣ �

∣
∣
∣
∣
∣

(

1 − t2σ 2

2n
+ t3

n3/2
α

(
t√
n

))n

−
(

1 − t2σ 2

2n

)n
∣
∣
∣
∣
∣

︸ ︷︷ ︸
=:I1

+
∣
∣
∣
∣
∣

(

1 − t2σ 2

2n

)n

− e− t2σ2
2

∣
∣
∣
∣
∣

︸ ︷︷ ︸
=:I2

. (4.7)
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Without loss of generality, the value of ε0 > 0 can be chosen such that ε20σ
2 � 1 and

so for any t/
√
n ∈ [−ε0, ε0], we have 1 − t2σ 2

2n � 1/2. Therefore,

I1 �
(

1 − t2σ 2

2n

)n
∣
∣
∣
∣
∣
∣

⎛

⎝1 + t3

n3/2
(
1 − t2σ 2

2n

)α

(
t√
n

)
⎞

⎠

n

− 1

∣
∣
∣
∣
∣
∣

�
(

1 − t2σ 2

2n

)n n∑

k=1

(
n
k

)
∣
∣
∣
∣
∣
∣

t3

n3/2
(
1 − t2σ 2

2n

)α

(
t√
n

)
∣
∣
∣
∣
∣
∣

k

=
(

1 − t2σ 2

2n

)n
⎡

⎣

⎛

⎝1 + |t |3
n3/2

(
1 − t2σ 2

2n

)

∣
∣
∣
∣α

(
t√
n

)∣
∣
∣
∣

⎞

⎠

n

− 1

⎤

⎦ .

Using the inequality 1+u � eu for u ∈ R, the fact that 1− t2σ 2

2n � 1/2 and the bound
(4.6), we have

I1 � e− t2σ2
2

(

e
c|t |3√

n − 1

)

.

Next, using the inequality eu − 1 � ueu for u � 0 and the fact that |t | /√n � ε0,

I1 � e− t2σ2
2

c√
n

|t |3 ecε0t2 . (4.8)

Again, without loss of generality, the value of ε0 > 0 can be chosen such that cε20 �
σ 2/8 (this have no impact on (4.6) which holds for any [−ε′

0, ε
′
0] ⊆ [−ε0, ε0]). Thus,

from (4.8) it follows that

I1 � c√
n
e− t2σ2

4 . (4.9)

Using the inequalities 1 − u � e−u for u ∈ R and ln(1 − u) � −u − u2 for u � 1,
we have

I2 = e− t2σ2
2 −

(

1 − t2σ 2

2n

)n

� e− t2σ2
2 − e− t2σ2

2 − t4σ4
4n

� t4σ 4

4n
e− t2σ2

2 � c√
n
e− t2σ2

4 . (4.10)

Putting together (4.7), (4.9) and (4.10), we obtain that, for any t/
√
n ∈ [−ε0, ε0],

∣
∣
∣
∣λ

n
t√
n

− e− t2σ2
2

∣
∣
∣
∣ � c√

n
e− t2σ2

4 . (4.11)
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In the same way, one can prove that

|t |
∣
∣
∣
∣λ

n
t√
n

∣
∣
∣
∣ � e− t2σ2

4 . (4.12)

The right hand side in the assertion of the lemma can be bounded as follows:

∥
∥
∥
∥P

n
t√
n

− e− t2σ2
2 Π

∥
∥
∥
∥
C→C

�
∣
∣
∣
∣λ

n
t√
n

∣
∣
∣
∣

∥
∥
∥
∥Π t√

n
− Π

∥
∥
∥
∥
C→C

+
∣
∣
∣
∣λ

n
t√
n

− e− t2σ2
2

∣
∣
∣
∣ ‖Π‖C→C +

∥
∥
∥
∥Q

n
t√
n

∥
∥
∥
∥
C→C

.

Using (4.4), (4.5), (4.11) and (4.12), we obtain that, for any t/
√
n ∈ [ε0, ε0],

∥
∥
∥
∥P

n
t√
n

− e− t2σ2
2 Π

∥
∥
∥
∥
C→C

� c√
n
e− t2σ2

4 + ce−cn .

�

5 A non asymptotic local limit theorem

In this section we establish a local limit theorem for the Markov walk jointly with the
Markov chain. Our result is similar to that in Grama and Le Page [15] where the case
of sums of independent random variables is considered under the Cramér condition.
We refer to Guivarc’h and Hardy [18] for a local limit theorem for Markov chains
with compact state spaces. In contrast to previous results for Markov chains our local
limit theorem gives an explicit dependence of the constant in the remainder term on
the target function h applied to the random walk y + Sn (see Lemmata 5.1, 5.4 and
Corollary 5.5). All these results are stated for Markov chains with finite state spaces to
shorten the exposition, but, a closer analysis of the proofs shows that, under appropriate
spectral gap assumptions, these assertions can be extended to more general Markov
chains, including the chains with denumerable state spaces.

We first establish a local limit theorem for integrable functions with Fourier trans-
forms with compact supports. For any integrable function h: R → R denote by ĥ its
Fourier transform:

ĥ(t) =
∫

R

e−i tuh(u)du, ∀t ∈ R.

When ĥ is integrable, by the inversion formula,

h(u) = 1

2π

∫

R

eitu ĥ(t)dt, ∀u ∈ R.
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For any integrable functions h and g, let

h ∗ g(u) =
∫

R

h(v)g(u − v)dv

be the convolution of h and g. Denote by ϕσ the density of the centred normal law
with variance σ 2:

ϕσ (u) = 1√
2πσ

e− u2

2σ2 , ∀u ∈ R. (5.1)

Lemma 5.1 Assume Hypotheses M1–M3. For any A > 0, any integrable function h
on R whose Fourier transform ĥ has a compact support included in [−A, A], any real
function ψ defined on X and any n � 1,

sup
y∈R

√
n
∣
∣
∣Ex (h (y + Sn) ψ (Xn)) − h ∗ ϕ√

nσ (y)ν (ψ)

∣
∣
∣

� ‖ψ‖∞
(

c√
n

‖h‖L1 + ∥
∥ĥ

∥
∥
L1 cAe

−cAn
)

.

Proof By the inversion formula and the Fubini theorem,

I0 := √
n
∣
∣
∣Ex (h (y + Sn) ψ (Xn)) − h ∗ ϕ√

nσ (y)ν (ψ)

∣
∣
∣

=
√
n

2π

∣
∣
∣
∣Ex

(∫

R

eit(y+Sn)ĥ(t)dtψ (Xn)

)

−
∫

R

ĥ(t)ϕ̂√
nσ (t)eitydtν (ψ)

∣
∣
∣
∣

=
√
n

2π

∣
∣
∣
∣

∫

R

eity
(

Pn
t ψ(x) − e− t2σ2n

2 ν (ψ)

)

ĥ(t)dt

∣
∣
∣
∣ .

Since ĥ(t) = 0 for any t /∈ [−A, A], we write

I0 �
√
n

2π

∣
∣
∣
∣

∫

ε0�|t |�A
eity

(

Pn
t ψ(x) − e− t2σ2n

2 ν (ψ)

)

ĥ(t)dt

∣
∣
∣
∣

︸ ︷︷ ︸
=:I1

+
√
n

2π

∣
∣
∣
∣

∫

|t |�ε0

eity
(

Pn
t ψ(x) − e− t2σ2n

2 ν (ψ)

)

ĥ(t)dt

∣
∣
∣
∣

︸ ︷︷ ︸
=:I2

, (5.2)

where ε0 is defined by Lemma 4.4.
Bound of I1 By Lemma 4.2, for any ε0 � |t | � A, we have

∥
∥Pn

t ψ
∥
∥∞ � ‖ψ‖∞ cA,ε0e

−cA,ε0n .
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Consequently,

I1 �
√
n

2π

(

‖ψ‖∞ cA,ε0e
−cA,ε0n + e− ε20σ2n

2 |ν(ψ)|
)

∥
∥ĥ

∥
∥
L1

� ‖ψ‖∞
∥
∥ĥ

∥
∥
L1 cA,ε0e

−cA,ε0n . (5.3)

Bound of I2 Substituting s = t
√
n, we write

I2 = 1

2π

∣
∣
∣
∣

∫

|s|�ε0
√
n
e
i sy√

n

(

Pn
s√
n
ψ(x) − e− s2σ2

2 ν (ψ)

)

ĥ

(
s√
n

)

ds

∣
∣
∣
∣

� 1

2π

∫

|s|�ε0
√
n

∣
∣
∣
∣P

n
s√
n
ψ(x) − e− s2σ2

2 ν (ψ)

∣
∣
∣
∣

∣
∣
∣
∣ĥ

(
s√
n

)∣
∣
∣
∣ ds.

By Lemma 4.4, for any |s| � ε0
√
n, we have

∣
∣
∣
∣P

n
s√
n
ψ(x) − e− s2σ2

2 ν (ψ)

∣
∣
∣
∣ �

∥
∥
∥
∥P

n
s√
n
(ψ) − e− s2σ2

2 Π (ψ)

∥
∥
∥
∥∞

� ‖ψ‖∞
∥
∥
∥
∥P

n
s√
n

− e− s2σ2
2 Π

∥
∥
∥
∥
C→C

� ‖ψ‖∞
(

c√
n
e− s2σ2

4 + ce−cn
)

.

Therefore,

I2 � ‖ψ‖∞
(

c√
n

∫

R

e− s2σ2
4

∥
∥ĥ

∥
∥∞ ds + ce−cn

∥
∥ĥ

∥
∥
L1

)

� ‖ψ‖∞
(

c√
n

‖h‖L1 + ce−cn
∥
∥ĥ

∥
∥
L1

)

. (5.4)

Putting together (5.2), (5.3) and (5.4), concludes the proof. �

We extend the result of Lemma 5.1 for any integrable function (with not necessarily
integrable Fourier transform). As in Stone [32], we introduce the kernel κ defined on
R by

κ(u) = 1

2π

(
sin

( u
2

)

u
2

)2

, ∀u ∈ R
∗ and κ(0) = 1

2π
.

The function κ is integrable and its Fourier transform is given by

κ̂(t) = 1 − |t | , ∀t ∈ [−1, 1], and κ̂(t) = 0 otherwise.
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Note that

∫

R

κ(u)du = κ̂(0) = 1 =
∫

R

κ̂(t)dt .

For any ε > 0, we define the function κε on R by

κε(u) = 1

ε
κ
(u

ε

)
.

Its Fourier transform is given by κ̂ε(t) = κ̂(εt). Note also that, for any ε > 0, we have

∫

|u|� 1
ε

κ(u)du � 1

π

∫ +∞
1
ε

4

u2
du = 4

π
ε. (5.5)

For any non-negative and locally bounded function h defined on R and any ε > 0,
let hε and hε be the “thickened” functions: for any u ∈ R,

hε(u) = sup
v∈[u−ε,u+ε]

h(v) and hε(u) = inf
v∈[u−ε,u+ε] h(v).

For any ε > 0, denote byHε the set of non-negative and locally bounded functions h
such thath,hε andhε aremeasurable from (R,B (R)) to (R+,B (R+)) andLebesgue-
integrable (whereB (R),B (R+) are the Borel σ -algebras).

Lemma 5.2 For any function h ∈ Hε, ε ∈ (0, 1/4) and u ∈ R,

hε ∗ κε2(u) −
∫

|v|�ε

hε (u − v) κε2(v)dv � h(u) � (1 + 4ε) hε ∗ κε2(u).

Proof Note that for any |v| � ε and u ∈ R, we have u ∈ [u − v − ε, u − v + ε]. So,

hε (u − v) � h(u) � hε (u − v) . (5.6)

Using the fact that
∫
R

κε2(u)du = 1 and (5.5), we write

h(u) =
∫

|v|�ε

h(u)κε2(v)dv + h(u)

∫

|v|�ε

κε2(v)dv

�
∫

|v|�ε

hε (u − v) κε2(v)dv + h(u)
4

π
ε.

Therefore,

h(u)

(

1 − 4

π
ε

)

�
∫

R

hε (u − v) κε2(v)dv = hε ∗ κε2(u).
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For any ε ∈ (0, 1/4),

h(u) � 1

1 − 2ε
hε ∗ κε2(u) � (1 + 4ε) hε ∗ κε2(u).

Moreover, from (5.6),

h(u) �
∫

|v|�ε

h(u)κε2(v)dv

�
∫

|v|�ε

hε (u − v) κε2(v)dv

= hε ∗ κε2(u) −
∫

|v|�ε

hε (u − v) κε2(v)dv.

�
Lemma 5.3 Let ε > 0 and h ∈ Hε.

1. For any y ∈ R and n � 1,

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y) �

√
n
(
h ∗ ϕ√

nσ

)
(y) + c

∥
∥h2ε − h

∥
∥
L1 + cε ‖h‖L1 ,

where ϕ√
nσ (·) is defined by (5.1).

2. For any y ∈ R and n � 1,

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y) � c

∥
∥hε

∥
∥
L1 .

3. For any y ∈ R and n � 1,

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y) �

√
n
(
h ∗ ϕ√

nσ

)
(y) − c

∥
∥h − h2ε

∥
∥
L1 − cε ‖h‖L1 .

Proof For any ε > 0, |v| � ε and u ∈ R it holds [u−v−ε, u−v+ε] ⊂ [u−2ε, u+2ε].
Therefore,

hε(u − v) � h2ε(u) and hε(u − v) � h2ε(u). (5.7)

Consequently, for any u ∈ R,

hε ∗ κε2(u) � h2ε(u)

∫

|v|�ε

κε2(v)dv +
∫

|v|�ε

hε(u − v)κε2(v)dv

� h2ε(u) +
∫

|v|�ε

hε(u − v)κε2(v)dv.
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From this, using the bound
√
nϕ√

nσ (·) � 1/(
√
2πσ) and (5.5), we obtain that

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y) �

√
n
(
h2ε ∗ ϕ√

nσ

)
(y)

+ 1√
2πσ

∫

R

∫

|v|�ε

hε(u − v)κε2(v)dvdu

�
√
n
(
h2ε ∗ ϕ√

nσ

)
(y) + 2

√
2

π3/2σ
ε
∥
∥hε

∥
∥
L1 .

Using again the bound
√
nϕ√

nσ (·) � 1/(
√
2πσ), we get

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y)

�
√
n
(
h ∗ ϕ√

nσ

)
(y) +

∫

R

∣
∣h2ε(u) − h(u)

∣
∣ du√

2πσ
+ cε

∥
∥hε

∥
∥
L1

�
√
n
(
h ∗ ϕ√

nσ

)
(y) + c

∥
∥h2ε − h

∥
∥
L1 + cε

∥
∥h2ε

∥
∥
L1

�
√
n
(
h ∗ ϕ√

nσ

)
(y) + (c + cε)

∥
∥h2ε − h

∥
∥
L1 + cε ‖h‖L1 ,

which proves the claim 1.
In the same way,

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y) � 1√

2πσ

∥
∥hε ∗ κε2

∥
∥
L1 = 1√

2πσ

∥
∥hε

∥
∥
L1 ,

which establishes the claim 2.
By (5.7) and (5.5),

hε ∗ κε2(u) � h2ε(u)

∫

|v|�ε

κε2(v)dv �
(

1 − 4

π
ε

)

h2ε(u).

Integrating this inequality and using once again the bound
√
nϕ√

nσ (·) � 1√
2πσ

, we
have

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y) �

√
n

(

1 − 4

π
ε

)

h2ε ∗ ϕ√
nσ (y)

�
√
n
(
h2ε ∗ ϕ√

nσ

)
(y) − 4

π
ε

1√
2πσ

∥
∥h2ε

∥
∥
L1 .

Inserting h, we conclude that

√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y)

�
√
n
(
h ∗ ϕ√

nσ

)
(y) − 1√

2πσ

∥
∥h − h2ε

∥
∥
L1 − cε

∥
∥h2ε

∥
∥
L1
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�
√
n
(
h ∗ ϕ√

nσ

)
(y) − c

∥
∥h − h2ε

∥
∥
L1 − cε ‖h‖L1 .

�
We are now equipped to prove a non-asymptotic theorem for a large class of func-

tions h.

Lemma 5.4 Assume HypothesesM1–M3. Let ε ∈ (0, 1/4). For any function h ∈ Hε,
any non-negative function ψ ∈ C and any n � 1,

sup
x∈X, y∈R

√
n
∣
∣
∣Ex (h (y + Sn) ψ (Xn)) − h ∗ ϕ√

nσ (y)ν (ψ)

∣
∣
∣

� c ‖ψ‖∞
(∥
∥h − h2ε

∥
∥
L1 + ∥

∥h2ε − h
∥
∥
L1

)

+ c ‖ψ‖∞
∥
∥h2ε

∥
∥
L1

(
1√
n

+ ε + cεe
−cεn

)

,

where ϕ√
nσ (·) is defined by (5.1). Moreover,

sup
x∈X, y∈R

√
nEx (h (y + Sn) ψ (Xn)) � c ‖ψ‖∞

∥
∥h2ε

∥
∥
L1

(
1 + cεe

−cεn
)
.

Proof We prove upper and lower bounds for
√
nEx (h (y + Sn) ψ (Xn)) from which

the claim will follow.
The upper bound By Lemma 5.2, we have, for any x ∈ X, n � 1, y ∈ R and

ε ∈ (0, 1/4),

Ex (h (y + Sn) ψ (Xn)) � (1 + 4ε) Ex
(
hε ∗ κε2 (y + Sn) ψ (Xn)

)

Since hε is integrable, the function u 	→ hε ∗ κε2(u) is integrable and its Fourier

transform u 	→ ĥε(u)̂κε2(u) has a support included in [−1/ε2, 1/ε2]. Consequently,
by Lemma 5.1,

I0 := √
nEx (h (y + Sn) ψ (Xn))

�
√
n (1 + 4ε)

(
hε ∗ κε2

) ∗ ϕ√
nσ (y)ν (ψ)

+ 2 ‖ψ‖∞
(

c√
n

∥
∥hε ∗ κε2

∥
∥
L1 +

∥
∥
∥̂hεκ̂ε2

∥
∥
∥
L1

cεe
−cεn

)

.

Using the points 1 and 2 of Lemma 5.3 and the fact that |ν (ψ)| � ‖ψ‖∞, we deduce
that

I0 �
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) + ‖ψ‖∞

(
c
∥
∥h2ε − h

∥
∥
L1 + cε ‖h‖L1

)

+ 4εc
∥
∥hε

∥
∥
L1 ‖ψ‖∞

+ 2 ‖ψ‖∞
(

c√
n

∥
∥hε ∗ κε2

∥
∥
L1 +

∥
∥
∥̂hεκ̂ε2

∥
∥
∥
L1

cεe
−cεn

)

.
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Note that
∥
∥hε ∗ κε2

∥
∥
L1 = ∥

∥hε

∥
∥
L1 and

∥
∥
∥̂hεκ̂ε2

∥
∥
∥
L1

�
∥
∥hε

∥
∥
L1

∫

R

κ̂ε2(t)dt = ∥
∥hε

∥
∥
L1

∫

R

κ̂(ε2t)dt = 1

ε2

∥
∥hε

∥
∥
L1 .

Consequently,

I0 �
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) + c ‖ψ‖∞

∥
∥h2ε − h

∥
∥
L1

+ c ‖ψ‖∞
∥
∥hε

∥
∥
L1

(
1√
n

+ ε + cεe
−cεn

)

. (5.8)

From (5.8), taking into account that
√
n
(
h ∗ ϕ√

nσ

)
(y) � c ‖h‖L1 , we deduce, in

addition, that

I0 � c ‖ψ‖∞
∥
∥h2ε

∥
∥
L1

(
1 + cεe

−cεn
)
. (5.9)

The lower bound By Lemma 5.2, we write that

I0 �
√
nEx

(
hε ∗ κε2 (y + Sn) ψ (Xn)

)

︸ ︷︷ ︸
=:I1

− √
nEx

(∫

|v|�ε

hε (y + Sn − v) κε2(v)dvψ (Xn)

)

︸ ︷︷ ︸
=:I2

. (5.10)

Bound of I1 The Fourier transform of the convolution hε∗κε2 has a compact support
included in [−1/ε2, 1/ε2]. So by Lemma 5.1,

I1 �
√
n
(
hε ∗ κε2

) ∗ ϕ√
nσ (y)ν (ψ)

−‖ψ‖∞
(

c√
n

∥
∥hε ∗ κε2

∥
∥
L1 +

∥
∥
∥ ̂hε ∗ κε2

∥
∥
∥
L1

cεe
−cεn

)

,

Using the point 3 of Lemma 5.3 and the fact that |ν (ψ)| � ‖ψ‖∞,

I1 �
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) − c ‖ψ‖∞

(∥
∥h − h2ε

∥
∥
L1 + ε ‖h‖L1

)

− ‖ψ‖∞
(

c√
n

∥
∥hε ∗ κε2

∥
∥
L1 +

∥
∥
∥ ̂hε ∗ κε2

∥
∥
∥
L1

cεe
−cεn

)

.

Since
∥
∥hε ∗ κε2

∥
∥
L1 = ∥

∥hε

∥
∥
L1 � ‖h‖L1 and since

∥
∥
∥ ̂hε ∗ κε2

∥
∥
∥
L1

�
∥
∥hε

∥
∥
L1

∥
∥̂κε2

∥
∥
L1 =

1
ε2

∥
∥hε

∥
∥
L1 � 1

ε2
‖h‖L1 , we deduce that
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I1 �
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) − c ‖ψ‖∞

∥
∥h − h2ε

∥
∥
L1

− c ‖ψ‖∞ ‖h‖L1

(
1√
n

+ ε + cεe
−cεn

)

. (5.11)

Bound of I2 With the notation gε,v(u) = hε (u − v), we have

I2 =
∫

|v|�ε

√
nEx

(
gε,v (y + Sn) ψ (Xn)

)
κε2(v)dv.

Consequently, using (5.9), we find that

I2 � c ‖ψ‖∞
(
1 + cεe

−cεn
)
∫

|v|�ε

∥
∥
∥
(
gε,v

)
2ε

∥
∥
∥
L1

κε2(v)dv.

Note that, for any u and v ∈ R,

(
gε,v

)
2ε(u) = sup

w∈[u−2ε,u+2ε]
hε (w − v) � sup

w∈[u−2ε,u+2ε]
h (w − v) = h2ε(u − v).

So,
∥
∥
∥
(
gε,v

)
2ε

∥
∥
∥
L1

�
∥
∥h2ε

∥
∥
L1 and

I2 � c ‖ψ‖∞
∥
∥h2ε

∥
∥
L1

(
1 + cεe

−cεn
)
∫

|v|�ε

κε2(v)dv.

By (5.5),

I2 � c ‖ψ‖∞
∥
∥h2ε

∥
∥
L1

(
ε + cεe

−cεn
)
. (5.12)

Putting together (5.10), (5.11) and (5.12), we obtain that

I0 �
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) − c ‖ψ‖∞

∥
∥h − h2ε

∥
∥
L1

− c ‖ψ‖∞
∥
∥h2ε

∥
∥
L1

(
1√
n

+ ε + cεe
−cεn

)

. (5.13)

Putting together the upper bound (5.8) and the lower bound (5.13), the first inequal-
ity of the lemma follows. The second inequality is proved in (5.9). �

We now apply Lemma 5.4 when the function h is an indicator of an interval.

Corollary 5.5 Assume Hypotheses M1–M3. For any a > 0, ε ∈ (0, 1/4), any non-
negative function ψ ∈ C and any n � 1,
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sup
x∈X, y∈R, z�0

√
n
∣
∣
∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a]) − aϕ√

nσ (z − y)ν (ψ)

∣
∣
∣

� c(a + ε) ‖ψ‖∞
(

1√
n

+ a

n
+ ε + cεe

−cεn
)

,

where ϕ√
nσ (·) is defined by (5.1). In particular, there exists c > 0 such that for any

a > 0,

sup
x∈X, y∈R, z�0

√
nEx (ψ (Xn) ; y + Sn ∈ [z, z + a]) � c(1 + a2) ‖ψ‖∞ . (5.14)

Proof Let z � 0, a > 0, ε ∈ (0, 1/4). For any y ∈ R set

h(y) = 1[z,z+a](y).

It is clear that

hε(y) = 1[z−ε,z+a+ε](y) and hε(y) = 1[z+ε,z+a−ε](y),

where by convention 1[z+ε,z+a−ε](y) = 0 when a � 2ε. It is also easy to see that

∥
∥h − h2ε

∥
∥
L1 = ∥

∥h2ε − h
∥
∥
L1 = 4ε and

∥
∥h2ε

∥
∥
L1 = a + 4ε.

Taking into account these last equalities and using Lemma 5.4, we find that

∣
∣
∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a]) − 1[z,z+a] ∗ ϕ√

nσ (y)ν (ψ)

∣
∣
∣

� c(a + ε) ‖ψ‖∞
(

1√
n

+ ε + cεe
−cεn

)

. (5.15)

Moreover, the convolution 1[z,z+a] ∗ ϕ√
nσ is equal to

1[z,z+a] ∗ ϕ√
nσ (y) =

∫

R

1{z�y−u�z+a}
e
− u2

2nσ2√
2πnσ

du

= Φ√
nσ (y − z) − Φ√

nσ (y − z − a),

whereΦ√
nσ (t) = ∫ t

−∞
e
− u2

2nσ2√
2πnσ

du is the distribution function of the centred normal law

of variance nσ 2. By the Taylor-Lagrange formula, there exists ξ ∈ (y − z − a, y − z)
such that

Φ√
nσ (y − z − a) = Φ√

nσ (y − z) − aϕ√
nσ (y − z) + a2

2
ϕ′√

nσ
(ξ).
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Using the fact that supu∈R |u| e−u2 � c,

∣
∣
∣1[z,z+a] ∗ ϕ√

nσ (y) − aϕ√
nσ (z − y)

∣
∣
∣ � ca2

n
. (5.16)

Putting together (5.15) and (5.16), we conclude that

∣
∣
∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a]) − aϕ√

nσ (z − y)ν (ψ)

∣
∣
∣

� c(a + ε) ‖ψ‖∞
(

1√
n

+ a

n
+ ε + cεe

−cεn
)

.

�

6 Auxiliary bounds

We state two bounds on the expectation Ex
(
ψ(Xn) ; y + Sn ∈ [z, z + a], τy > n

)
.

The first one is of order 1/n and independent of z. Then we reverse the Markov chain
to improve it to a bound of order 1/n3/2. We refer to Denisov and Wachtel [8] for
related results in the case of lattice valued independent random variables.

Lemma 6.1 Assume HypothesesM1–M3. There exists c > 0 such that for any a > 0,
non-negative function ψ ∈ C , y ∈ R and n � 1

sup
x∈X, z�0

Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

� c

n
‖ψ‖∞ (1 + a2) (1 + max(y, 0)) .

Proof We split the time n into two parts k := �n/2� and n−k. By theMarkov property,

E0 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

=
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ (Xk) ; y′ + Sk ∈ [z, z + a], τy′ > k

)

× Px
(
Xn−k = x ′, y + Sn−k ∈ dy′, τy > n − k

)

�
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ (Xk) ; y′ + Sk ∈ [z, z + a])

× Px
(
Xn−k = x ′, y + Sn−k ∈ dy′, τy > n − k

)
.

Using the uniform bound (5.14) in Corollary 5.5, we obtain that

E0 � c ‖ψ‖∞√
k

(1 + a2)Px
(
τy > n − k

)
.
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By the point 2 of Proposition 2.2, we get

E0 � c ‖ψ‖∞ (1 + a2) (1 + max(y, 0))√
k
√
n − k

.

Since n − k � n/2 and k � n/4 for any n � 4, the lemma is proved (the case when
n � 4 is trivial). �
Lemma 6.2 Assume HypothesesM1–M3. There exists c > 0 such that for any a > 0,
non-negative function ψ ∈ C , y ∈ R, z � 0 and n � 1

sup
x∈X

Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

� c ‖ψ‖∞
n3/2

(1 + a3) (1 + z) (1 + max(y, 0)) .

Proof Set again k = �n/2�. By the Markov property

E0 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

=
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ (Xk) ; y′ + Sk ∈ [z, z + a], τy′ > k

)

︸ ︷︷ ︸
=:E ′

0

× Px
(
Xn−k = x ′, y + Sn−k ∈ dy′, τy > n − k

)
. (6.1)

Using Lemma 3.2 with m = δx ′ and

F(x1, . . . , xk) = ψ(xk)1{y′+ f (x1)···+ f (xk)∈[z,z+a],∀i∈{1,...,k}, y′+ f (x1)+···+ f (xi )>0},

we have

E ′
0 = E

∗
ν

(

ψ
(
X∗
1

) 1{x ′}
(
X∗
k+1

)

ν
(
X∗
k+1

) ; y′ + f
(
X∗
k

) + · · · + f
(
X∗
1

) ∈ [z, z + a],

∀i ∈ {1, . . . , k}, y′ + f
(
X∗
k

) + · · · + f
(
X∗
k−i+1

)
> 0

)

.

By the Markov property,

E ′
0 = E

∗
ν

(
ψ

(
X∗
1

)
ψ∗
x ′

(
X∗
k

) ; y′ + f
(
X∗
k

) + · · · + f
(
X∗
1

) ∈ [z, z + a],
∀i ∈ {1, . . . , k}, y′ + f

(
X∗
k

) + · · · + f
(
X∗
k−i+1

)
> 0

)
.

where

ψ∗
x ′(x∗) = E

∗
x∗

(
1{x ′}

(
X∗
1

)

ν
(
X∗
1

)

)

= P∗(x∗, x ′)
ν(x ′)

= P(x ′, x∗)
ν(x∗)

� 1

infx∈X ν(x)
. (6.2)
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On the event
{
y′ + f

(
X∗
k

) + · · · + f
(
X∗
1

) ∈ [z, z + a]
} = {

z + a + S∗
k ∈[

y′, y′ + a
]}
, we have

{∀i ∈ {1, . . . , k}, y′ + f
(
X∗
k

) + · · · + f
(
X∗
k−i+1

)
> 0, y′ > 0

}

⊂ {∀i ∈ {1, . . . , k − 1}, z + a − f
(
X∗
k−i

) − · · · − f
(
X∗
1

)
> 0, z + a + S∗

k > 0
}

= {
τ ∗
z+a > k

}
.

So, for any y′ > 0,

E ′
0 � c ‖ψ‖∞ P

∗
ν

(
z + a + S∗

k ∈ [y′, y′ + a], τ ∗
z+a > k

)
.

Using Lemma 6.1 we have uniformly in y′ > 0,

E ′
0 � c ‖ψ‖∞

k
(1 + a2) (1 + max(z + a, 0)) � c ‖ψ‖∞

k
(1 + a3) (1 + z) . (6.3)

Putting together (6.3) and (6.1) and using the point 2 of Proposition 2.2,

E0 � c ‖ψ‖∞
k

(1 + a3) (1 + z) Px
(
τy > n − k

)

� c ‖ψ‖∞
k
√
n − k

(1 + a3) (1 + z) (1 + max(y, 0)) .

Since n − k � n/2 and k � n/4 for any n � 4, the lemma is proved. �

7 Proof of Theorem 2.4

The aim of this section is to bound

E0 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)
(7.1)

uniformly in the end point z. The point is to split the time n into n = n1 + n2, where
n2 = ⌊

ε3n
⌋
and n1 = n − ⌊

ε3n
⌋
, and ε ∈ (0, 1). Using the Markov property, we

shall bound the process between n1 and n by the local limit theorem (Corollary 5.5)
and between 1 and n1 by the integral theorem (Proposition 2.3). Following this idea
we write

E0 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n1

)

︸ ︷︷ ︸
=:E1

− Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], n1 < τy � n

)

︸ ︷︷ ︸
=:E2

. (7.2)

For the ease of reading the bounds of E1 and E2 are given in separate sections.
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698 I. Grama et al.

7.1 Control of E1

Lemma 7.1 Assume Hypotheses M1–M3. For any a > 0 and ε ∈ (0, 1/4) there exist
c = ca > 0 depending only on a and cε > 0 such that for any non-negative function
ψ ∈ C , any y ∈ R and n ∈ N, such that ε3n � 1 we have

sup
x∈X,z�0

n

∣
∣
∣
∣E1 − a√

n2σ
ν (ψ) Ex

(

ϕ

(
y − z + Sn1√

n2σ

)

; τy > n1

)∣
∣
∣
∣

� c (1 + max(y, 0)) ‖ψ‖∞
(

ε + cε√
n

)

.

where E1 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n1

)
, n2 = ⌊

ε3n
⌋
, n1 = n −

⌊
ε3n

⌋
and ϕ(t) = e− t2

2 /
√
2π .

Proof By the Markov property,

E1 =
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ [z, z + a])
︸ ︷︷ ︸

=:E ′
1

× Px
(
y + Sn1 ∈ dy′, Xn1 = x ′, τy > n1

)
. (7.3)

From now on we consider that the real a > 0 is fixed. By Corollary 5.5, for any
ε5/2 � ε ∈ (0, 1/4),

√
n2

∣
∣
∣E ′

1 − aϕ√
n2σ (z − y′)ν (ψ)

∣
∣
∣ � c ‖ψ‖∞

(
1√
n2

+ ε5/2 + cεe
−cεn2

)

,

with c depending only on a. Consequently, using (7.3) and the fact that n2 = ⌊
ε3n

⌋
�

cεn,

∣
∣
∣E1 − aν (ψ) Ex

(
ϕ√

n2σ
(
y − z + Sn1

) ; τy > n1
)∣
∣
∣

� c ‖ψ‖∞√
n2

(
cε√
n

+ ε5/2 + cεe
−cεn

)

Px
(
τy > n1

)
.

Therefore, by (5.1) and the point 2 of Proposition 2.2, we obtain that

∣
∣
∣
∣E1 − a√

n2σ
ν (ψ) Ex

(

ϕ

(
y − z + Sn1√

n2σ

)

; τy > n1

)∣
∣
∣
∣

� c ‖ψ‖∞
1 + max(y, 0)√

n2
√
n1

(
cε√
n

+ ε5/2
)

.
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Since n2 � ε3n
(
1 − 1

ε3n

)
and n1 � n

2 , we have

c ‖ψ‖∞
1 + max(y, 0)√

n2
√
n1

(
cε√
n

+ ε5/2
)

� c ‖ψ‖∞
1 + max(y, 0)

ε3/2n

(
1 + cε

n

)(
cε√
n

+ ε5/2
)

� c ‖ψ‖∞
1 + max(y, 0)

n

(

ε + cε√
n

)

and the lemma follows. �
Tofind the limit behaviour of E1,wewill develop 1√

n2
Ex

(
ϕ
(
y+Sn1−z√

n2σ

)
; τy > n1

)
.

To this aim, we prove the following lemma which we will apply first with the standard
normal density function ϕ, and later on with the Rayleigh density ϕ+.

Lemma 7.2 Assume Hypotheses M1–M3. Let Ψ : R → R be a non-negative differ-
entiable function such that Ψ (t) → 0 as t → +∞. Moreover we suppose that Ψ ′

is a continuous function on R such that max(|Ψ (t)| , ∣∣Ψ ′(t)
∣
∣) � ce− t2

4 . There exists
ε0 ∈ (0, 1/2) such that for any ε ∈ (0, ε0), y ∈ R, m1 � 1 and m2 � 1, we have

sup
x∈X, z�0

∣
∣
∣
∣Ex

(

Ψ

(
y + Sm1 − z√

m2σ

)

; τy > m1

)

− 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t − z√

m2σ

)

ϕ+(t)dt

∣
∣
∣
∣

� cε
(1 + max(y, 0))2

mε
1
√
m2

+ c
1 + max(y, 0)√

m1

(

e
−c

m1
m2 + ε4

)

,

where ϕ+(t) = te− t2
2 .

Proof Let x ∈ X, y ∈ R, z � 0, m1 � 1 and m2 � 1 and fix ε1 ∈ (0, 1). We consider
two cases. Assume first that z � √

m1σ/ε1. Using the regularity of the function Ψ ,
we note that

J0 := Ex

(

Ψ

(
y + Sm1 − z√

m2σ

)

; τy > m1

)

= −
∫ +∞

0

√
m1

m2
Ψ ′

(√
m1

m2
t − z√

m2σ

)

Px

(
y + Sm1√

m1σ
� t, τy > m1

)

dt .

Denote by J1 the following integral:

J1 := − 2V (x, y)√
2πm1σ

∫ +∞

0

√
m1

m2
Ψ ′

(√
m1

m2
t − z√

m2σ

)(

1 − e− t2
2

)

dt . (7.4)
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700 I. Grama et al.

Using the point 2 of Proposition 2.3, with t0 = 2/ε1, there exists ε0 > 0 such that for
any ε ∈ (0, ε0),

|J0 − J1| � cε,ε1

(1 + max(y, 0))2

m1/2+ε
1

∫ 2
ε1

0

√
m1

m2

∣
∣
∣
∣Ψ

′
(√

m1

m2
t − z√

m2σ

)∣
∣
∣
∣ dt

+
(
2V (x, y)√
2πm1σ

+ Px
(
τy > m1

)
) ∫ +∞

2
ε1

√
m1

m2

∣
∣
∣
∣Ψ

′
(√

m1

m2
t − z√

m2σ

)∣
∣
∣
∣ dt .

By the point 2 of Proposition 2.1 and the point 2 of Proposition 2.2, with
∥
∥Ψ ′∥∥∞ =

supt∈R
∣
∣Ψ ′(t)

∣
∣,

|J0 − J1| � cε,ε1

(1 + max(y, 0))2

mε
1
√
m2

∥
∥Ψ ′∥∥∞

+ c
1 + max(y, 0)√

m1

√
m1

m2

∫ +∞
2
ε1

e−
(√

m1
m2

t− z√
m2σ

)2

4 dt

� cε,ε1

(1 + max(y, 0))2

mε
1
√
m2

+ c
1 + max(y, 0)√

m1

∫ +∞
√

m1
m2

(
2
ε1

− z√
m1σ

) e− s2
4 ds.

Since z �
√
m1σ

ε1
, we have 2

ε1
− z√

m1σ
� 1

ε1
� 1 and so

|J0 − J1| � cε,ε1

(1 + max(y, 0))2

mε
1
√
m2

+ c
1 + max(y, 0)√

m1
e
− m1

8m2

∫

R

e− s2
8 ds. (7.5)

Moreover, by the definition of J1 in (7.4), we have

J1 = 2V (x, y)√
2πm1σ

[

−Ψ

(√
m1

m2
t − z√

m2σ

)(

1 − e− t2
2

)]t=+∞

t=0

+ 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t − z√

m2σ

)

te− t2
2 dt

= 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t − z√

m2σ

)

ϕ+(t)dt . (7.6)

Now, assume that z >
√
m1σ

ε1
. We write

J0 � cEx

⎛

⎝e
− (y+Sm1−z)

2

4m2σ2 ; y + Sm1 �
√
m1σ

2ε1
, τy > m1

⎞

⎠

+ ‖Ψ ‖∞ Px

(

y + Sm1 >

√
m1σ

2ε1
, τy > m1

)
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� ce
− m1

16m2ε21 Px
(
τy > m1

) + ‖Ψ ‖∞
2ε1√
m1σ

Ex
(
y + Sm1; τy > m1

)
.

Using the points 3 and 1 of Proposition 2.1, we can verify that

Ex
(
y + Sm1; τy > m1

)
� Ex

(
2V

(
y + Sm1 , Xm1

) + c; τy > m1
)

� 2V (x, y) + c.

So by the point 2 of Proposition 2.2 and the point 2 of Proposition 2.1,

J0 � c
1 + max(y, 0)√

m1
e
− cm1

m2 + cε1√
m1

(1 + max(y, 0)) .

In the same way,

J1 = 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t − z√

m2σ

)

ϕ+(t)dt

� c (1 + max(y, 0))√
m1

[∫ 1
2ε1

0
e
− m1

4m2

(
t− z√

m1σ

)2

ϕ+(t)dt + ‖Ψ ‖∞
∫ +∞

1
2ε1

te− t2
2 dt

]

� c (1 + max(y, 0))√
m1

[

e
− m1

16m2ε21

∫ +∞

0
ϕ+(t)dt + ‖Ψ ‖∞ e

− 1
16ε21

∫ +∞

0
te− t2

4 dt

]

� c (1 + max(y, 0))√
m1

(

e
− cm1

m2 + e
− c

ε21

)

.

From the last two bounds it follows that for any z >
√
m1σ

ε1
,

|J0 − J1| � J0 + J1 � c (1 + max(y, 0))√
m1

(

e
− cm1

m2 + ε1

)

. (7.7)

Putting together (7.6), (7.7) and (7.5) and taking ε1 = ε4, we obtain the desired
inequality for any z � 0,

|J0 − J1| � cε
(1 + max(y, 0))2

mε
1
√
m2

+ c (1 + max(y, 0))√
m1

(

e
− cm1

m2 + ε4
)

.

�
Lemma 7.3 Assume HypothesesM1–M3. There exists ε0 ∈ (0, 1/2) such that for any
ε ∈ (0, ε0), y ∈ R, n ∈ N such that ε3n � 1, we have

sup
x∈X, z�0

∣
∣
∣
∣

n√
n2

Ex

(

ϕ

(
y + Sn1 − z√

n2σ

)

; τy > n1

)

− 2V (x, y)√
2πσ

ϕ+
(

z√
nσ

)∣
∣
∣
∣

� cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,
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where ϕ(t) = e− t2
2 /

√
2π , ϕ+(t) = te− t2

2 1{t�0}, n2 = ⌊
ε3n

⌋
and n1 = n − ⌊

ε3n
⌋
.

Proof Denote

J0 := Ex

(

ϕ

(
y + Sn1 − z√

n2σ

)

; τy > n1

)

and

J1 := 2V (x, y)√
2πn1σ

∫ +∞

0
ϕ

(√
n1
n2

t − z√
n2σ

)

ϕ+(t)dt

= 2V (x, y)√
2πn1σ

∫ +∞

0

√
n2
n1

ϕ√
n2
n1

(

t − z√
n1σ

)

ϕ+(t)dt

= 2V (x, y)√
2πσ

√
n2
n1

ϕ√
n2
n1

∗ ϕ+
(

z√
n1σ

)

, (7.8)

where ϕ{·}(·) is defined in (5.1). By Lemma 7.2 we have

n1√
n2

|J0 − J1| � cεn1
(1 + max(y, 0))2

nε
1n2

+ cn1
1 + max(y, 0)√

n1
√
n2

(

e
−c

n1
n2 + ε4

)

.

Since n
2 � n1 � n and ε3n − 1 � n2 � ε3n,

n√
n2

|J0 − J1| � cε
(1 + max(y, 0))2

nε
+ c

1 + max(y, 0)

ε3/2

(
1 + cε

n

) (
e
− c

ε3 + ε4
)

� cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε. (7.9)

Let J2 be the following term:

J2 := 2V (x, y)√
2πσ

√
n2
n1

ϕ+
(

z√
n1σ

)

. (7.10)

Using (7.8),

|J1 − J2| � 2V (x, y)√
2πσ

√
n2
n1

∫

R

ϕ√
n2
n1

(t)

∣
∣
∣
∣ϕ+

(
z√
n1σ

− t

)

− ϕ+
(

z√
n1σ

)∣
∣
∣
∣ dt .

By the point 2 of Proposition 2.1, we write

n√
n2

|J1 − J2| � c (1 + max(y, 0))
∥
∥ϕ′+

∥
∥∞

∫

R

ϕ√
n2
n1

(t) |t | dt

� c (1 + max(y, 0))

√
n2
n1

∫

R

ϕ(s) |s| ds
� c (1 + max(y, 0)) ε3/2. (7.11)
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Putting together (7.9) and (7.11), we obtain that

sup
x∈X,z�0

n√
n2

|J0 − J2| � cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε. (7.12)

It remains to link J2 from (7.10) to the desired equivalent.We distinguish two cases.

If z
σ

�
√
n

ε
,

∣
∣
∣
∣

n√
n2

J2 − 2V (x, y)√
2πσ

ϕ+
(

z√
nσ

)∣
∣
∣
∣

� cV (x, y)

∣
∣
∣
∣
n

n1
ϕ+

(
z√
n1σ

)

− ϕ+
(

z√
nσ

)∣
∣
∣
∣

� cV (x, y)

(

‖ϕ+‖∞
∣
∣
∣
∣
n

n1
− 1

∣
∣
∣
∣ +

∣
∣
∣
∣

1√
n1

− 1√
n

∣
∣
∣
∣

∣
∣
∣
z

σ

∣
∣
∣
∥
∥ϕ′+

∥
∥∞

)

� cV (x, y)

(
n2
n1

+ 1√
n1

∣
∣
∣
∣1 −

√

1 − n2
n

∣
∣
∣
∣

√
n

ε

)

� cV (x, y)

(

ε3 + ε3

ε

)

.

If z
σ

>
√
n

ε
�

√
n1
ε

, we have

∣
∣
∣
∣

n√
n2

J2 − 2V (x, y)√
2πσ

ϕ+
(

z√
nσ

)∣
∣
∣
∣ � cV (x, y) sup

u� 1
ε

ϕ+ (u) � cV (x, y)e
− c

ε2 .

Therefore, using the point 2 of Proposition 2.1, we obtain that in each case

∣
∣
∣
∣

n√
n2

J2 − 2V (x, y)√
2πσ

ϕ+
(

z√
nσ

)∣
∣
∣
∣ � c (1 + max(y, 0)) ε2. (7.13)

Putting together (7.12) and (7.13), proves the lemma. �
Another consequence of Lemma 7.2 is the following lemma which will be used in

Sect. 8.

Lemma 7.4 Assume HypothesesM1–M3. There exists ε0 ∈ (0, 1/2) such that for any
ε ∈ (0, ε0), y ∈ R, n ∈ N such that ε3n � 2, we have

sup
x∈X

∣
∣
∣
∣
n3/2

n2 − 1
Ex

(

ϕ+
(

y + Sn1√
n2 − 1σ

)

; τy > n1

)

− V (x, y)

σ

∣
∣
∣
∣

� cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,

where ϕ+(t) = te− t2
2 1{t�0} is the Rayleigh density function, n1 = n − ⌊

ε3n
⌋
and

n2 = ⌊
ε3n

⌋
.
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Proof Using Lemma 7.2 with Ψ = ϕ+, m1 = n1, m2 = n2 − 1 and z = 0,

n3/2

n2 − 1
|J0 − J1|

� cε
(1 + max(y, 0))2 n3/2

(n2 − 1)3/2nε
1

+ c
(1 + max(y, 0)) n3/2

(n2 − 1)
√
n1

(

e
−c

n1
(n2−1) + ε4

)

� cε
(1 + max(y, 0))2

nε
+ c

(1 + max(y, 0))

ε3

(
1 + cε

n

) (
e
− c

ε3 + ε4
)

� cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε, (7.14)

where

J0 := Ex

(

ϕ+
(

y + Sn1√
n2 − 1σ

)

; τy > n1

)

and

n3/2

n2 − 1
J1 := n3/2

n2 − 1

2V (x, y)√
2πn1σ

∫ +∞

0
ϕ+

(√
n1

n2 − 1
t

)

ϕ+(t)dt

= n3/2

n2 − 1

2V (x, y)√
2πn1σ

√
n1

n2 − 1

∫ +∞

0
t2e−

(
n1

n2−1+1

)

t2

2 dt

= n3/2

(n2 − 1)3/2
2V (x, y)√

2πσ

∫ +∞

0
t2

√
2π(n2 − 1)

n − 1
ϕ√

n2−1
n−1

(t)dt

where ϕ{·}(·) is defined in (5.1). So,

n3/2

n2 − 1
J1 = n3/2√

n − 1(n2 − 1)

2V (x, y)

σ

n2 − 1

2(n − 1)

= n3/2

(n − 1)3/2
V (x, y)

σ
.

By the point 2 of Proposition 2.1,

∣
∣
∣
∣
n3/2

n2 − 1
J1 − V (x, y)

σ

∣
∣
∣
∣ � c

n
(1 + max(y, 0)) . (7.15)

The lemma follows from (7.14) and (7.15). �
Thanks to Lemmata 7.1 and 7.3 we can bound E1 from (7.2) as follows.
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Conditioned local limit theorems for randomwalks defined on… 705

Lemma 7.5 Assume Hypotheses M1–M3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N

such that ε3n � 1, we have

sup
x∈X, z�0

n

∣
∣
∣
∣E1 − 2aν (ψ) V (x, y)√

2πσ 2
ϕ+

(
z√
nσ

)∣
∣
∣
∣

� c (1 + max(y, 0)) ‖ψ‖∞
(

ε + cε (1 + max(y, 0))

nε

)

,

where E1 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n1

)
, n1 = n − ⌊

ε3n
⌋
and ϕ+ is

the Rayleigh density function: ϕ+(t) = te− t2
2 1{t�0}.

Proof From Lemmas 7.1 and 7.3, it follows that

n

∣
∣
∣
∣E1 − 2aν (ψ) V (x, y)√

2πσ 2
ϕ+

(
z√
nσ

)∣
∣
∣
∣

� c (1 + max(y, 0)) ‖ψ‖∞
(

ε + cε√
n

)

+
∣
∣
∣
∣
aν (ψ)

σ

∣
∣
∣
∣

(

cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε

)

� c (1 + max(y, 0)) ‖ψ‖∞
(

ε + cε (1 + max(y, 0))

nε

)

.

�

7.2 Control of E2

In this section we bound the term E2 defined by (7.2). To this aim let us recall and
introduce some notations: for any ε ∈ (0, 1), we consider n2 = ⌊

ε3n
⌋
, n1 = n−n2 =

n − ⌊
ε3n

⌋
, n3 = ⌊ n2

2

⌋
and n4 = n2 − n3. We define also

E21 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], y + Sn1 � ε

√
n, n1 < τy � n

)
(7.16)

E22 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], y + Sn1 > ε

√
n, n1 < τy � n1 + n3

)

(7.17)

E23 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], y + Sn1 > ε

√
n, n1 + n3 < τy � n

)

(7.18)

and we note that

E2 = E21 + E22 + E23. (7.19)
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Lemma 7.6 Assume Hypotheses M1–M3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N

such that ε3n � 1, we have

sup
x∈X,z�0

nE21 � c ‖ψ‖∞ (1 + max(y, 0))

(√
ε + cε (1 + max(y, 0))

nε

)

where E21 is given as in (7.16) by

E21 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], y + Sn1 � ε

√
n, n1 < τy � n

)

and n1 = n − ⌊
ε3n

⌋
.

Proof Using theMarkov property and the uniform bound (5.14) of Corollary 5.5, with
n2 = ⌊

ε3n
⌋
,

E21 =
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ [z, z + a], τy′ � n2
)

× Px
(
Xn1 = x ′, y + Sn1 ∈ dy′, y + Sn1 � ε

√
n, τy > n1

)

� c ‖ψ‖∞√
n2

Px
(
y + Sn1 � ε

√
n, τy > n1

)
.

We note that ε
√
n

σ
√
n1

� ε

σ
√
1−ε3

� 2
σ
ε and so by the point 2 of Proposition 2.3 with

t0 = 2ε/σ :

E21 � c ‖ψ‖∞√
n2

(
cV (x, y)√

n1
�+

(
ε
√
n

σ
√
n1

)

+ cε

(
1 + max(y, 0)2

)

n1/2+ε
1

)

.

Using the point 2 of Proposition 2.1 and taking into account that n2 � ε3n
(
1 − cε

n

)
,

n1 � n/2 and that �+(t) � �+(t0) � t20
2 for any t ∈ (0, t0),

nE21 � c ‖ψ‖∞
ε3/2

(
1 + cε

n

)
(1 + max(y, 0))

(

ε2 + cε (1 + max(y, 0))

nε

)

� c ‖ψ‖∞ (1 + max(y, 0))

(√
ε + cε (1 + max(y, 0))

nε

)

,

which implies the assertion of the lemma. �
Lemma 7.7 Assume Hypotheses M1–M3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R, and
n ∈ N satisfying ε3n � 2, we have

sup
x∈X,z�0

nE22 � c ‖ψ‖∞ (1 + max(y, 0))
(
e− c

ε + cε

nε

)
,
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where E22 is given as in (7.17) by

E22 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], y + Sn1 > ε

√
n, n1 < τy � n1 + n3

)

and n1 = n − ⌊
ε3n

⌋
, n2 = ⌊

ε3n
⌋
and n3 = ⌊ n2

2

⌋
.

Proof By the Markov property,

E22 =
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ [z, z + a], τy′ � n3
)

︸ ︷︷ ︸
E ′
22

× Px
(
Xn1 = x ′, y + Sn1 ∈ dy′, y + Sn1 > ε

√
n, τy > n1

)
. (7.20)

Bound of E ′
22 By the Markov property and the uniform bound (5.14) in Corol-

lary 5.5, with n4 = n2 − n3 = n − n1 − n3,

E ′
22 =

∑

x ′′∈X

∫

R

Ex ′′
(
ψ

(
Xn4

) ; y′′ + Sn4 ∈ [z, z + a])

× Px ′
(
Xn3 = x ′′, y′ + Sn3 ∈ dy′′, τy′ � n3

)

� c ‖ψ‖∞√
n4

Px ′
(
τy′ � n3

)
.

Let (Bt )t�0 be the Brownian motion defined by Proposition 10.4. Denote by An the
following event:

An =
{

sup
t∈[0,1]

∣
∣S�tn� − σ Btn

∣
∣ � n1/2−ε

}

,

and by An its complement. We have

E ′
22 � c ‖ψ‖∞√

n4

[
Px ′

(
τy′ � n3, An3

) + Px ′
(
τy′ � n3, An3

)]
. (7.21)

Note that for any x ′ ∈ X and any y′ > ε
√
n,

Px ′
(
τy′ � n3, An3

)
� P

(

τ bm
y′−n1/2−ε

3

� n3

)

,

where, for any y′′ > 0, τ bmy′′ is the exit time of the Brownian motion starting at y′′

defined by (10.7). Since y′ > ε
√
n, it implies that

Px ′
(
τy′ � n3, An3

)
� P

(

inf
t∈[0,1] σ Btn3 � n1/2−ε

3 − y′
)
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� P

(

inf
t∈[0,1] σ Btn3 �

(
ε3n

2

)1/2−ε

− ε
√
n

)

� P

(

inf
t∈[0,1] σ Btn3 � −ε

√
n

(

1 − ε1/2−3ε

nε

))

.

Since
√
n/

√
n3 �

√
2/ε3/2,

Px ′
(
τy′ � n3, An3

)
� P

(∣
∣
∣
∣
Bn3√
n3

∣
∣
∣
∣ � ε

√
n

σ
√
n3

(

1 − 1

nε

))

� P

(

|B1| �
√
2

σ
√

ε

(

1 − 1

nε

))

� ce− c
ε

(
1− c

nε

)

. (7.22)

Therefore, putting together (7.21) and (7.22) and using Proposition 10.4,

E ′
22 � c ‖ψ‖∞√

n4

(
ce− c

ε

(
1− c

nε

)

+ Px ′
(
An3

))
� c ‖ψ‖∞√

n4

(

e− c
ε

(
1− c

nε

)

+ cε

nε
3

)

.

Since n4 � n2/2 � ε3n
2

(
1 − cε

n

)
and n3 � n2/2 − 1 � ε3n

2

(
1 − cε

n

)
, we have

E ′
22 � c ‖ψ‖∞

ε3/2
√
n

(
1 + cε

n

) (
e− c

ε e
cε
nε + cε

nε

)
� c ‖ψ‖∞√

n

(
e− c

ε + cε

nε

)
. (7.23)

Inserting (7.23) in (7.20) and using the point 2 of Proposition 2.2 and the fact that
n1 � n/2, we conclude that

E22 � c ‖ψ‖∞ (1 + max(y, 0))

n

(
e− c

ε + cε

nε

)
.

�
Lemma 7.8 Assume Hypotheses M1–M3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R, and
n ∈ N such that ε3n � 3, we have

sup
x∈X,z�0

nE23 � c ‖ψ‖∞ (1 + max(y, 0))
(
ε + cε

nε

)
,

where E23 is given as in (7.18) by

E23 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], y + Sn1 > ε

√
n, n1 + n3 < τy � n

)

and n1 = n − ⌊
ε3n

⌋
, n2 = ⌊

ε3n
⌋
and n3 = ⌊ n2

2

⌋
.
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Proof By the Markov property,

E23 �
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ [z, z + a], n3 < τy′ � n2
)

︸ ︷︷ ︸
=:E ′

23

Px
(
Xn1 = x ′, y + Sn1 ∈ dy′, y + Sn1 > ε

√
n, τy > n1

)
. (7.24)

We consider two cases: when z � ε
√
n

2 and when z >
ε
√
n

2 .

Fix first 0 � z � ε
√
n

2 . Using Corollary 5.5, we have for any y′ > ε
√
n,

E ′
23 � Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ [z, z + a])

� aν(ψ)√
2πn2σ

e
− (z−y′)2

2n2σ2 + c ‖ψ‖∞√
n2

(
1√
n2

+ ε5/2 + cεe
−cεn2

)

� c ‖ψ‖∞
ε3/2

√
n

(
1 + cε

n

)
(

e
− ε2n

8n2σ2 + cε√
n

+ ε5/2 + cεe
−cεn

)

� c ‖ψ‖∞
ε3/2

√
n

(
1 + cε

n

)(

e− c
ε + cε√

n
+ ε5/2

)

.

So, when 0 � z � ε
√
n

2 , we have

E ′
23 � c ‖ψ‖∞√

n

(
cε√
n

+ ε

)

. (7.25)

Now we consider that z >
ε
√
n

2 . Using Lemma 3.2 with m = δx ′ and

F(x1, . . . , xn2)

= ψ(xn2)1
{
y′+ f (x1)+···+ f (xn2 )∈[z,z+a], ∃k∈{n3+1,...,n2−1}, y′+ f (x1)+···+ f (xk )�0

},

we obtain

E ′
23 := Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ [z, z + a], n3 < τy′ � n2
)

� E
∗
ν

⎛

⎝ψ
(
X∗
1

) 1{x ′}
(
X∗
n2+1

)

ν
(
X∗
n2+1

) ; y′ + f
(
X∗
n2

) + · · · + f
(
X∗
1

) ∈ [z, z + a],

∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f
(
X∗
n2

) + · · · + f
(
X∗
n2−k+1

)
� 0

⎞

⎠ .

By the Markov property,

E ′
23 � ‖ψ‖∞ E

∗
ν

(
ψ∗
x ′

(
X∗
n2

) ; y′ + f
(
X∗
n2

) + · · · + f
(
X∗
1

) ∈ [z, z + a],
∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f

(
X∗
n2

) + · · · + f
(
X∗
n2−k+1

)
� 0

)
.
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where ψ∗
x ′ is a function defined on X by the equation (6.2). We note that, on the event

{
y′ + f

(
X∗
n2

) + · · · + f
(
X∗
1

) ∈ [z, z + a]
} = {

z + S∗
n2 ∈ [

y′ − a, y′]}, we have
{∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f

(
X∗
n2

) + · · · + f
(
X∗
n2−k+1

)
� 0

}

⊂ {∃k ∈ {n3 + 1, . . . , n2 − 1}, z − f
(
X∗
n2−k

) − · · · − f
(
X∗
1

)
� 0

}

= {
τ ∗
z � n2 − n3 − 1

}
.

Consequently,

E ′
23 � c ‖ψ‖∞ P

∗
ν

(
z + S∗

n2 ∈ [y′ − a, y′], τ ∗
z � n4 − 1

)
,

with n4 = n2 − n3 = ⌊
ε3n

⌋ −
⌊

ε3n
2

⌋
� ε3n

2

(
1 − cε

n

)
. Proceeding in the same way as

for the term E ′
22 in (7.23) and using the fact that z is larger than cε

√
n, we have

E ′
23 � c ‖ψ‖∞√

n

(
e− c

ε + cε

nε

)
. (7.26)

Putting together (7.25) and (7.26), for any z � 0, we obtain

E ′
23 � c ‖ψ‖∞√

n

(
ε + cε

nε

)
.

Inserting this bound in (7.24) and using the point 2 of Proposition 2.2, we conclude
that

E23 � c ‖ψ‖∞ (1 + max(y, 0))

n

(
ε + cε

nε

)
.

�
Putting together Lemmas 7.6, 7.7 and 7.8, by (7.19), we obtain the following bound

for E2:

Lemma 7.9 Assume Hypotheses M1–M3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N

such that ε3n � 3, we have

sup
x∈X,z�0

nE2 � c ‖ψ‖∞ (1 + max(y, 0))

(√
ε + cε (1 + max(y, 0))

nε

)

,

where E2 is given as in (7.2) by

E2 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], n1 < τy � n

)

and n1 = n − ⌊
ε3n

⌋
.
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7.3 Proof of Theorem 2.4

By (7.1) and (7.2),

Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

) = E1 + E2.

Lemma 7.5 estimates E1 and Lemma 7.9 bounds E2. Taking into account these two
lemmas, Theorem 2.4 follows.

8 Proof of Theorem 2.5

8.1 Preliminary results

Lemma 8.1 Assume Hypotheses M1–M3. For any a > 0 and p ∈ N
∗, there exists

ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0) there exists n0(ε) � 1 such that any
non-negative function ψ ∈ C , any y′ > 0, z � 0, k ∈ {0, . . . , p − 1} and n � n0(ε),
we have

sup
x ′∈X

E ′
k � 2a√

2π p(n2 − 1)σ 2
ϕ+

(
y′

σ
√
n2 − 1

)

E
∗
ν

(

ψ
(
X∗
1

)
V ∗

(

X∗
1, zk + a

p
+ S∗

1

)

; τ ∗
zk+ a

p
> 1

)

+ c ‖ψ‖∞
n

(1 + z)

(

ε + cε (1 + z)

nε8

)

and

inf
x ′∈X

E ′
k � 2a√

2π p(n2 − 1)σ 2
ϕ+

(
y′

σ
√
n2 − 1

)

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, zk + S∗

1

) ; τ ∗
zk > 1

)

− c ‖ψ‖∞
n

(1 + z)

(

ε + cε (1 + z)

nε8

)

where E ′
k = Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈
(
zk, zk + a

p

]
, τy′ > n2

)
, zk = z + ka

p and

n2 = ⌊
ε3n

⌋
.

Proof Using Lemma 3.2 with m = δx ′ and

F(x1, . . . , xn2)

= ψ(xn2)1
{
y′+ f (x1)···+ f (xn2 )∈

(
zk ,zk+ a

p

]
,∀i∈{1,...,n2}, y′+ f (x1)+···+ f (xi )>0

},
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we have

E ′
k = E

∗
ν

(

ψ
(
X∗
1

)
ψ∗
x ′

(
X∗
n2

) ; y′ + f
(
X∗
n2

) + · · · + f
(
X∗
1

) ∈
(

zk, zk + a

p

]

,

∀i ∈ {1, . . . , n2}, y′ + f
(
X∗
n2

) + · · · + f
(
X∗
n2−i+1

)
> 0

)

.

where ψ∗
x ′ is the function defined on X by (6.2).

The upper bound Note that, on the event
{
y′ + f

(
X∗
n2

) + · · · + f
(
X∗
1

) ∈
(
zk, zk + a

p

]}
=

{
zk + a

p + S∗
n2 ∈

[
y′, y′ + a

p

)}
, we have

{∀i ∈ {1, . . . , n2}, y′ + f
(
X∗
n2

) + · · · + f
(
X∗
n2−i+1

)
> 0, y′ > 0

}

⊂
{

∀i ∈ {1, . . . , n2 − 1}, zk + a

p
− f

(
X∗
n2−i

) − · · · − f
(
X∗
1

)
> 0,

zk + a

p
+ S∗

n2 > 0

}

=
{
τ ∗
zk+ a

p
> n2

}
. (8.1)

So, for any y′ > 0,

E ′
k � E

∗
ν

(

ψ
(
X∗
1

)
ψ∗
x ′

(
X∗
n2

) ; zk + a

p
+ S∗

n2 ∈
[

y′, y′ + a

p

)

, τ ∗
zk+ a

p
> n2

)

�
∑

x ′′∈X

∫ +∞

0
ψ

(
x ′′)

E
∗
x ′′

(
ψ∗
x ′

(
X∗
n2−1

) ; z′′

+S∗
n2−1 ∈

[

y′, y′ + a

p

]

, τ ∗
z′′ > n2 − 1

)

× P
∗
ν

(

X∗
1 = dx ′′, zk + a

p
+ S∗

1 ∈ dz′′, τ ∗
zk+ a

p
> 1

)

.

Using Theorem 2.4 for the reversed chain with ε′ = ε8, we obtain that

E ′
k �

2aν
(
ψ∗
x ′
)

√
2π(n2 − 1)pσ 2

ϕ+
(

y′
√
n2 − 1σ

) ∑

x ′′∈X

∫ +∞

0
ψ

(
x ′′) V ∗ (

x ′′, z′′
)

× P
∗
ν

(

X∗
1 = dx ′′, zk + a

p
+ S∗

1 ∈ dz′′, τzk+ a
p

> 1

)

+ c
∥
∥ψ∗

x ′
∥
∥∞ ‖ψ‖∞

n2 − 1
E

∗
ν

((

1 + max

(

zk + a

p
+ S∗

1 , 0

))

×
⎛

⎝
√

ε8 +
cε

(
1 + max

(
zk + a

p + S∗
1 , 0

))

(n2 − 1)ε8

⎞

⎠ , τ ∗
zk+ a

p
> 1

⎞

⎠ .
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Note that by (6.2), ν
(
ψ∗
x ′
) = 1 and

∥
∥ψ∗

x ′
∥
∥∞ � c. So,

E ′
k � 2a√

2π(n2 − 1)pσ 2
ϕ+

(
y′

√
n2 − 1σ

)

× E
∗
ν

(

ψ
(
X∗
1

)
V ∗

(

X∗
1, zk + a

p
+ S∗

1

)

, τ ∗
zk+ a

p
> 1

)

+ c ‖ψ‖∞
ε3n

(
1 + cε

n

)
(1 + z)

(

ε4 + cε (1 + z)

nε8

)

and the upper bound of the lemma is proved.
The lower bound Similarly as in the proof of the upper bound we note that, on the

event
{
y′ + f

(
X∗
n2

) + · · · + f
(
X∗
1

) ∈
(
zk, zk + a

p

]}
=

{
zk + S∗

n2 ∈
[
y′ − a

p , y′
)}

,

we have

{∀i ∈ {1, . . . , n2}, y′ + f
(
X∗
n2

) + · · · + f
(
X∗
n2−i+1

)
> 0

}

⊃ {∀i ∈ {1, . . . , n2 − 1}, zk − f
(
X∗
n2−i

) − · · · − f
(
X∗
1

)
> 0

}

= {
τ ∗
zk > n2 − 1

} ⊃ {
τ ∗
zk > n2

}
. (8.2)

Let y′+ := max(y′ − a/p, 0) and a′ := min(y′, a/p) ∈ (0, a]. For any η ∈ (0, a′),

E ′
k � E

∗
ν

(

ψ
(
X∗
1

)
ψ∗
x ′

(
X∗
n2

) ; zk + S∗
n2 ∈

[

y′ − a

p
, y′

)

, τ ∗
zk > n2

)

�
∑

x ′′∈X

∫ +∞

0
ψ

(
x ′′)

E
∗
x ′′

(
ψ∗
x ′

(
X∗
n2−1

) ; z′′

+S∗
n2−1 ∈ [

y′+, y′+ + a′ − η
]
, τ ∗

z′′ > n2 − 1
)

× P
∗
ν

(
X∗
1 = dx ′′, zk + S∗

1 ∈ dz′′, τ ∗
zk > 1

)
.

Using Theorem 2.4,

E ′
k �

2(a′ − η)ν
(
ψ∗
x ′
)

√
2π(n2 − 1)σ 2

ϕ+
(

y′+√
n2 − 1σ

) ∑

x ′′∈X

∫ +∞

0
ψ

(
x ′′) V ∗ (

x ′′, z′′
)

× P
∗
ν

(
X∗
1 = dx ′′, zk + S∗

1 ∈ dz′′, τ ∗
zk > 1

)

− c
∥
∥ψ∗

x ′
∥
∥∞ ‖ψ‖∞

n2 − 1
E

∗
ν

((
1 + max

(
zk + S∗

1 , 0
))

×
(
√

ε8 + cε

(
1 + max

(
zk + S∗

1 , 0
))

(n2 − 1)ε8

)

, τ ∗
zk > 1

)

� 2(a′ − η)√
2π(n2 − 1)σ 2

ϕ+
(

y′+√
n2 − 1σ

)

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, zk + S∗

1

)
, τ ∗

zk > 1
)

− c ‖ψ‖∞
ε3n

(
1 + cε

n

)
(1 + z)

(

ε4 + cε (1 + z)

nε8

)

.

123



714 I. Grama et al.

Note that, if y′ � a/p we have

(a′ − η)ϕ+
(

y′+√
n2 − 1σ

)

=
(
a

p
− η

)

ϕ+

(
y′ − a

p√
n2 − 1σ

)

�
(
a

p
− η

)

ϕ+
(

y′
√
n2 − 1σ

)

− ∥
∥ϕ′+

∥
∥∞

a2

p2
√
n2 − 1σ

and if 0 < y′ � a/p we have

(a′ − η)ϕ+
(

y′+√
n2 − 1σ

)

= 0

�
(
a

p
− η

)

ϕ+
(

y′
√
n2 − 1σ

)

− ∥
∥ϕ′+

∥
∥∞

ay′

p
√
n2 − 1σ

�
(
a

p
− η

)

ϕ+
(

y′
√
n2 − 1σ

)

− ∥
∥ϕ′+

∥
∥∞

a2

p2
√
n2 − 1σ

.

Moreover, using the points 1 and 2 of Proposition 2.1, we observe that

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, zk + S∗

1

)
, τ ∗

zk > 1
)

� c ‖ψ‖∞ (1 + z) .

Consequently, for any y′ > 0,

E ′
k �

2
(
a
p − η

)

√
2π(n2 − 1)σ 2

ϕ+
(

y′
√
n2 − 1σ

)

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, zk + S∗

1

)
, τ ∗

zk > 1
)

− cε ‖ψ‖∞
n3/2

(1 + z) − c ‖ψ‖∞
n

(1 + z)

(

ε + cε (1 + z)

nε8

)

.

Taking the limit as η → 0, the lower bound of the lemma follows. �

Lemma 8.2 Assume Hypotheses M1–M3. For any a > 0 and p ∈ N
∗, there exists

ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0) there exists n0(ε) � 1 such that any
non-negative function ψ ∈ C , any y ∈ R, z � 0 and n � n0(ε), we have

sup
x∈X

n3/2E0 � 2aV (x, y)

p
√
2πσ 3

p−1∑

k=0

E
∗
ν

(

ψ
(
X∗
1

)
V ∗

(

X∗
1, zk + a

p
+ S∗

1

)

; τ ∗
zk+ a

p
> 1

)

+ pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))

(

ε + cε (1 + z + max(y, 0))

nε8

)

and
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inf
x∈X n

3/2E0 � 2aV (x, y)

p
√
2πσ 3

p−1∑

k=0

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, zk + S∗

1

) ; τ ∗
zk > 1

)

− pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))

(

ε + cε (1 + z + max(y, 0))

nε8

)

where E0 = Ex
(
ψ (Xn) ; y + Sn ∈ (z, z + a] , τy > n

)
and for any k ∈ {0, . . . , p−

1}, zk = z + ka
p .

Proof Set n1 = n − ⌊
ε3n

⌋
and n2 = ⌊

ε3n
⌋
. By the Markov property, for any p � 1,

E0 =
∑

x ′∈X

∫ +∞

0
Ex ′

(
ψ

(
Xn2

) ; y′ + Sn2 ∈ (z, z + a] , τy′ > n2
)

× Px
(
Xn1 = dx ′, y + Sn1 ∈ dy′, τy > n1

)

=
∑

x ′∈X

∫ +∞

0

p−1∑

k=0

E ′
k × Px

(
Xn1 = dx ′, y + Sn1 ∈ dy′, τy > n1

)
,

where for any k ∈ {0, . . . , p − 1},

E ′
k = Ex ′

(

ψ
(
Xn2

) ; y′ + Sn2 ∈
(

zk, zk + a

p

]

, τy′ > n2

)

and zk = z + ka
p .

The upper bound By Lemma 8.1,

E0 � 2a

p(n2 − 1)
√
2πσ 2

p−1∑

k=0

Ex

(

ϕ+
(

y + Sn1
σ
√
n2 − 1

)

; τy > n1

)

J1(k)

+
p−1∑

k=0

c ‖ψ‖∞
n

(1 + z)

(

ε + cε (1 + z)

nε8

)

Px
(
τy > n1

)
,

where J1(k) = E
∗
ν

(

ψ
(
X∗
1

)
V ∗

(
X∗
1, zk + a

p + S∗
1

)
; τ ∗

zk+ a
p

> 1

)

, for any k ∈
{0, . . . , p − 1}. By Lemma 7.4 and the point 2 of Proposition 2.2,

n3/2E0 � 2a

p
√
2πσ 2

p−1∑

k=0

J1(k)
V (x, y)

σ

+ 1

p

p−1∑

k=0

J1(k)

(
cε (1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε

)

+ pc ‖ψ‖∞ (1 + z)

(

ε + cε (1 + z)

nε8

)

(1 + max(y, 0)) .
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Note that, using the points 1 and 2 of Proposition 2.1, we have

1

p

p−1∑

k=0

J1(k) � c ‖ψ‖∞ (1 + z).

Therefore

n3/2E0 � 2aV (x, y)

p
√
2πσ 3

p−1∑

k=0

J1(k)

+ pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))

(

ε + cε (1 + z + max(y, 0))

nε8

)

and the upper bound of the lemma is proved.
The lower bound The proof of the lower bound is similar to the proof of the upper

bound and therefore will not be detailed. �

8.2 Proof of Theorem 2.5

The second point of Theorem 2.5 was proved by Lemma 6.2. It remains to prove the
first point. Let ψ ∈ C , a > 0, x ∈ X, y ∈ R and z � 0. Suppose first that z > 0. For
any n � 1 and η ∈ (0,min(z, 1)),

Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)
� E0(η), (8.3)

where E0(η) = Ex
(
ψ (Xn) ; y + Sn ∈ (z − η, z + a] , τy > n

)
. Taking the limit as

n → +∞ in Lemma 8.2, we have, for any p ∈ N
∗ and ε ∈ (0, ε0(p)),

lim sup
n→+∞

n3/2E0(η)

� 2(a + η)V (x, y)√
2π pσ 3

p−1∑

k=0

E
∗
ν(ψ(X∗

1)V
∗(X∗

1, zk,η

+ a + η

p
+ S∗

1 ); τ ∗
zk,η+ a+η

p
> 1)

+ pc ‖ψ‖∞ (1 + z − η) (1 + max(y, 0)) ε,

with zk,η = z − η + k(a+η)
p for k ∈ {0, . . . , p − 1}. Taking the limit as ε → 0,

lim sup
n→+∞

n3/2E0(η)

� 2(a + η)V (x, y)√
2π pσ 3

p−1∑

k=0

E
∗
ν(ψ(X∗

1)V
∗(X∗

1, zk,η

+ a + η

p
+ S∗

1 ); τ ∗
zk,η+ a+η

p
> 1).
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By the point 2 of Proposition 2.1, the function u 	→ V ∗ (x∗, u − f (x∗))1{u− f (x∗)>0}
is monotonic and so is Riemann integrable. Since X is finite, we have

lim
p→+∞

a + η

p

p−1∑

k=0

E
∗
ν

(

ψ
(
X∗
1

)
V ∗

(

X∗
1, zk,η + a + η

p
+ S∗

1

)

; τ ∗
zk,η+ a+η

p
> 1

)

= E
∗
ν

(

ψ
(
X∗
1

)
∫ z+a

z−η

V ∗ (
X∗
1, z

′ + S∗
1

)
1{z′+S∗

1>0}dz′
)

=
∫ z+a

z−η

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Therefore,

lim sup
n→+∞

n3/2E0(η) � 2V (x, y)√
2πσ 3

∫ z+a

z−η

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Taking the limit as η → 0 and using (8.3), we obtain that, for any z > 0,

lim sup
n→+∞

n3/2Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

= 2V (x, y)√
2πσ 3

∫ z+a

z
E

∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′. (8.4)

If z = 0, we have

Ex
(
ψ (Xn) ; y + Sn ∈ [0, a], τy > n

) = Ex
(
ψ (Xn) ; y + Sn ∈ (0, a], τy > n

)
.

Using Lemma 8.2 and the same arguments as before, it is easy to see that (8.4) holds
for z = 0.

Since [z, z + a] ⊃ (z, z + a] we have obviously

Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a], τy > n

)

� Ex
(
ψ (Xn) ; y + Sn ∈ (z, z + a], τy > n

)
.

Using this and Lemma 8.2 we obtain (8.4) with lim inf instead of lim sup, which
concludes the proof of the theorem.

9 Proof of Theorems 2.7 and 2.8

9.1 Preliminaries results

Lemma 9.1 Assume Hypotheses M1–M3. For any x ∈ X, y ∈ R, z � 0, a > 0, any
non-negative function ψ: X → R+ and any non-negative and continuous function g:
[z, z + a] → R+, we have
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lim
n→+∞ n3/2Ex

(
g (y + Sn) ψ (Xn) ; y + Sn ∈ [z, z + a), τy > n

)

= 2V (x, y)√
2πσ 3

∫ z+a

z
g(z′)E∗

ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Proof Fix x ∈ X, y ∈ R, z � 0, a > 0, and let ψ : X → R+ be a non-negative
function and g: [z, z + a] → R+ be a non-negative and continuous function. For any
measurable non-negative and bounded function ϕ: R → R+, we define

I0(ϕ) := n3/2Ex
(
ψ (Xn) ϕ (y + Sn) ; τy > n

)
.

We first prove that for any 0 � α < β we have

I0
(
1[α,β)

) −→
n→+∞

2V (x, y)√
2πσ 3

∫ β

α

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

(9.1)

Since [α, β) ⊂ [α, β], the upper limit is a straightforward consequence of Theo-
rem 2.5:

lim sup
n→+∞

I0
(
1[α,β)

)
� lim sup

n→+∞
n3/2Ex

(
ψ (Xn) ; y + Sn ∈ [α, β], τy > n

)

= 2V (x, y)√
2πσ 3

∫ β

α

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

and for the lower limit, we write for any η ∈ (0, β − α),

lim inf
n→+∞ I0

(
1[α,β)

)
� lim inf

n→+∞ n3/2Ex
(
ψ (Xn) ; y + Sn ∈ [α, β − η], τy > n

)

= 2V (x, y)√
2πσ 3

∫ β−η

α

E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Taking the limit as η → 0, it proves (9.1).
From (9.1), by linearity, for any non-negative staircase function

ϕ = ∑N
k=1 γk1[αk ,βk ), where N � 1, γ1, . . . , γN ∈ R+ and 0 < α1 < β1 = α2 <

· · · < βN , we have

lim
n→+∞ I0 (ϕ) = 2V (x, y)√

2πσ 3

∫ βN

α1

ϕ(z′)E∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Since g is continuous on [z, z + a], for any ε ∈ (0, 1) there exists ϕ1,ε and ϕ2,ε
two stepwise functions on [z, z + a) such that g − ε � ϕ1,ε � g � ϕ2,ε � g + ε.
Consequently,
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∣
∣
∣
∣ lim
n→+∞ I0(g) − 2V (x, y)√

2πσ 3

∫ z+a

z
g(z′)E∗

ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′

∣
∣
∣
∣

� 2V (x, y)√
2πσ 3

ε

∫ z+a

z
E

∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Taking the limit as ε → 0, concludes the proof of the lemma. �
For any l � 1 we denote by C+

b

(
X
l × R

)
the set of measurable non-negative

functions g: X
l × R → R+ bounded and such that for any (x1, . . . , xl) ∈ X

l , the
function z 	→ g(x1, . . . , xl , z) is continuous.

Lemma 9.2 Assume HypothesesM1–M3. For any x ∈ X, y ∈ R, z � 0, a > 0, l � 1,
any non-negative functions ψ: X → R+ and g ∈ C+

b

(
X
l × R

)
, we have

lim
n→+∞ n3/2Ex

(
g (X1, . . . , Xl , y + Sn) ψ (Xn) ; y + Sn ∈ [z, z + a), τy > n

)

= 2√
2πσ 3

∫ z+a

z
Ex

(
g
(
X1, . . . , Xl , z

′) V (Xl , y + Sl) ; τy > l
)

× E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

Proof We reduce the proof to the previous case using the Markov property. Fix x ∈ X,
y ∈ R, z � 0, a > 0, l � 1, ψ : X → R+ and g ∈ C+

b

(
X
l × R

)
. For any n � l + 1,

by the Markov property,

I0 := n3/2Ex
(
g (X1, . . . , Xl , y + Sn) ψ (Xn) ; y + Sn ∈ [z, z + a), τy > n

)

= Ex

(
n3/2 Jn−l (X1, . . . , Xl , y + Sl) , τy > l

)
,

where for any (x1, . . . , xl) ∈ X
l , y′ ∈ R and k � 1,

Jk(x1, . . . , xl , y
′) = Exl

(
g
(
x1, . . . , xl , y

′ + Sk
)
ψ (Xk) ; y′

+Sk ∈ [z, z + a), τy′ > k
)
.

By the point 2 of Theorem 2.5,

n3/2 Jn−l (X1, . . . , Xl , y + Sl) � c ‖g‖∞ ‖ψ‖∞ (1 + z) (1 + max (y + Sl , 0)) .

Consequently, by the Lebesgue dominated convergence theorem (in fact the expecta-
tion Ex is a finite sum) and Lemma 9.1,

lim
n→+∞ I0 = 2√

2πσ 3

∫ z+a

z
Ex

(
g
(
X1, . . . , Xl , z

′) V (Xl , y + Sl) ; τy > l
)

× E
∗
ν

(
ψ

(
X∗
1

)
V ∗ (

X∗
1, z

′ + S∗
1

) ; τ ∗
z′ > 1

)
dz′.

�
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Lemma 9.2 can be reformulated for the dual Markov walk as follows:

Lemma 9.3 Assume Hypotheses M1–M3. For any x ′ ∈ X, z � 0, y′ � 0, a > 0,
m � 1 and any function g ∈ C+

b (Xm × R), we have

lim
n→+∞ n3/2E∗

ν

(

g
(
X∗
m, . . . , X∗

1, y
′ − S∗

n

) 1
{
X∗
n+1=x ′}

ν
(
X∗
n+1

) ;

z + S∗
n ∈ [y′, y′ + a), τ ∗

z > n

)

= 2√
2πσ 3

∫ y′+a

y′
E

∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′ − y′′ + z

)
V ∗ (

X∗
m, z + S∗

m

) ; τ ∗
z > m

)

V
(
x ′, y′′) dy′′.

Proof Fix x ′ ∈ X, z � 0, y′ � 0, a > 0, m � 1 and g ∈ C+
b (Xm × R). Let ψ∗

x ′ be
the function defined on X by (6.2) and consider for any n � m + 1,

I0 := n3/2E∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′ − S∗

n

)
ψ∗
x ′

(
X∗
n

) ; z + S∗
n ∈ [y′, y′ + a), τ ∗

z > n
)
.

By Lemma 9.2 applied to the dual Markov walk, we have

I0 −→
n→+∞

2√
2πσ 3

∑

x∗∈X

∫ y′+a

y′
E

∗
x∗

(
g
(
X∗
m, . . . , X∗

1, y
′ + z − y′′)

V ∗ (
X∗
m, z + S∗

m

) ; τ ∗
z > m

)

× Eν

(
ψ∗
x ′ (X1)

V
(
X1, y

′′ + S1
) ; τy′′ > 1

)
dy′′ν(x∗).

Moreover, using (6.2) and the fact that ν is P-invariant, for any x ′ ∈ X, y′′ � 0,

Eν

(
ψ∗
x ′ (X1) V

(
X1, y

′′ + S1
) ; τy′′ > 1

)

=
∑

x1∈X

P(x ′, x1)
ν(x1)

V
(
x1, y

′′ + f (x1)
)
1{y′′+ f (x1)>0}ν(x1)

= Ex ′
(
V

(
X1, y

′′ + S1
) ; τy′′ > 1

)
.

By the point 1 of Proposition 2.1, the function V is harmonic and so

lim
n→+∞ I0 = 2√

2πσ 3

∫ y′+a

y′
E

∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′ − y′′ + z

)

V ∗ (
X∗
m, z + S∗

m

) ; τ ∗
z > m

)

× V
(
x ′, y′′) dy′′.

�
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Lemma 9.4 Assume HypothesesM1–M3. For any x ∈ X, y ∈ R, z � 0, a > 0, m � 1
and any function g ∈ C+

b (Xm × R), we have

lim
n→+∞ n3/2Ex

(
g (Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a], τy > n

)

= 2V (x, y)√
2πσ 3

∫ z+a

z
E

∗
ν

(
g
(
X∗
m, . . . , X∗

1, z
′) V ∗ (

X∗
m, z′ + S∗

m

) ; τ ∗
z′ > m

)
dz′.

Proof Fix x ∈ X, y ∈ R, z � 0, a > 0, m � 1 and g ∈ C+
b (Xm × R). For any

n � m, consider

In(x, y) := Ex
(
g (Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a], τy > n

)
. (9.2)

For any l � 1 and n � l + m, by the Markov property, we have

n3/2 In(x, y) = Ex

(
n3/2 In−l (Xl , y + Sl) ; τy > l

)
. (9.3)

For any p � 1 and 0 � k � p we define zk := z + ak
p . For any x ′ ∈ X, y′ > 0,

n � l + m and p � 1, we write

n3/2 In−l(x
′, y′) =

p−1∑

k=0

n3/2Ex ′
(
g
(
Xn−l−m+1, . . . , Xn−l , y

′ + Sn−l
) ;

y′ + Sn−l ∈ (zk, zk+1], τy′ > n − l
)
.

Using Lemma 3.2, we get

n3/2 In−l(x
′, y′) =

p−1∑

k=0

n3/2E∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′ − S∗

n−l

)
ψ∗
x ′

(
X∗
n−l

) ; y′

− S∗
n−l ∈ (zk, zk+1],

∀i ∈ {1, . . . , n − l}, y′ + f
(
X∗
n−l

) + · · · + f
(
X∗
n−l−i+1

)
> 0

)
,

where ψ∗
x ′ is defined by (6.2).

The upper bound Using (8.1), we have

n3/2 In−l(x
′, y′)

�
p−1∑

k=0

n3/2E∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′ − S∗

n−l

)
ψ∗
x ′

(
X∗
n−l

) ;

zk+1 + S∗
n−l ∈ [

y′, y′ + a/p
)
, τ ∗

zk+1
> n − l

)
.
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By Lemma 9.3,

lim sup
n→+∞

n3/2 In−l(x
′, y′)

� 2√
2πσ 3

p−1∑

k=0

∫ y′+a/p

y′
Jk(y

′ − y′′)V
(
x ′, y′′) dy′′,

where for any k � 0 and t ∈ R,

Jk(t) := E
∗
ν

(
g
(
X∗
m, . . . , X∗

1, t + zk+1
)
V ∗ (

X∗
m, zk+1 + S∗

m

) ; τ ∗
zk+1

> m
)

.

Note that for any t ∈ [−a/p, 0]

Jk(t) � E
∗
ν

(

sup
t∈[−a/p,0]

g
(
X∗
m, . . . , X∗

1, t + zk+1
)
V ∗ (

X∗
m, zk+1 + S∗

m

) ; τ ∗
zk+1

> m

)

︸ ︷︷ ︸
=:J p

k

.

(9.4)

Since y′′ 	→ V
(
x ′, y′′) is non-decreasing (see the point 2 of Proposition 2.1), we have

lim sup
n→+∞

n3/2 In−l(x
′, y′) � a

p

p−1∑

k=0

2J p
k√

2πσ 3
V

(

x ′, y′ + a

p

)

.

Moreover, by (9.2) and the point 2 of Theorem 2.5,

n3/2 In−l(Xl , y + Sl) � ‖g‖∞ c (1 + z) (1 + max(y + Sl , 0)) .

Consequently, by (9.3) and the Lebesgue dominated convergence theorem (or using
just the fact that X is finite),

lim sup
n→+∞

n3/2 In(x, y) � a

p

p−1∑

k=0

2J p
k√

2πσ 3
Ex

(

V

(

Xl , y + Sl + a

p

)

; τy > l

)

.

Using the point 3 of Proposition 2.1, for any δ ∈ (0, 1),

lim sup
n→+∞

n3/2 In(x, y) � a

p

p−1∑

k=0

2J p
k√

2πσ 3
Ex

(

(1 + δ)

(

y + Sl + a

p

)

+ cδ ; τy > l

)

and again using the point 3 of Proposition 2.1, for any δ ∈ (0, 1),
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lim sup
n→+∞

n3/2 In(x, y)

� a

p

p−1∑

k=0

2J p
k√

2πσ 3
Ex

(
1 + δ

1 − δ
V (Xl , y + Sl) + 2

a

p
+ cδ; τy > l

)

.

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the
limit as l → +∞,

lim sup
n→+∞

n3/2 In(x, y) � a

p

p−1∑

k=0

2J p
k√

2πσ 3

1 + δ

1 − δ
V (x, y).

Taking the limit as δ → 0,

lim sup
n→+∞

n3/2 In(x, y) � a

p

p−1∑

k=0

2J p
k√

2πσ 3
V (x, y). (9.5)

For any (x∗
1 , . . . , x

∗
m) ∈ X

m and u ∈ R, let

gm(u) := g
(
x∗
m, . . . , x∗

1 , u
)
,

V ∗
m(u) := V ∗(x∗

m, u − f (x∗
1 ) − · · · − f (x∗

m))1{u− f (x∗
1 )>0,...,u− f (x∗

1 )−···− f (x∗
m )>0}.

(9.6)

The function u 	→ gm(u) is uniformly continuous on [z, z+a]. Consequently, for any
ε > 0, there exists p0 � 1 such that for any p � p0,

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t + zk+1) V
∗
m(zk+1) � a

p

p−1∑

k=0

(gm (zk+1) + ε) V ∗
m(zk+1).

Moreover, using the point 2 of Proposition 2.1, it is easy to see that the function
u 	→ V ∗

m(u) is non-decreasing and so is Riemann-integrable. Therefore, as p → +∞,
we have

lim sup
p→+∞

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t + zk+1) V
∗
m(zk+1) �

∫ z+a

z

(
gm

(
z′
) + ε

)
V ∗
m(z′)dz′.

Thus, when ε → 0,

lim sup
p→+∞

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t + zk+1) V
∗
m(zk+1) �

∫ z+a

z
gm

(
z′
)
V ∗
m(z′)dz′.(9.7)
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Moreover, since u 	→ V ∗
m(u) is non-decreasing,

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t + zk+1) V
∗
m(zk+1) � ‖g‖∞ V ∗

m(z + a)a.

Consequently, by the Lebesgue dominated convergence theorem, (9.4), (9.7) and the
Fubini theorem,

lim sup
p→+∞

a

p

p−1∑

k=0

2J p
k√

2πσ 3
V (x, y)

= 2V (x, y)√
2πσ 3

E
∗
ν

⎛

⎝lim sup
p→+∞

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

g
(
X∗
m, . . . , X∗

1, t + zk+1
)

×V ∗ (
X∗
m, zk+1 + S∗

m

) ; τ ∗
zk+1

> m

⎞

⎠

� 2V (x, y)√
2πσ 3

∫ z+a

z
E

∗
ν

(
g
(
X∗
m, . . . , X∗

1, z
′) V ∗ (

X∗
m, z′ + S∗

m

) ; τ ∗
z′ > m

)
dz′.

By (9.5), we obtain that,

lim sup
n→+∞

n3/2 In(x, y)

� 2V (x, y)√
2πσ 3

∫ z+a

z
E

∗
ν

(
g
(
X∗
m, . . . , X∗

1, z
′) V ∗ (

X∗
m, z′ + S∗

m

) ; τ ∗
z′ > m

)
dz′.

The lower bound Repeating similar arguments as in the upper bound, by (8.2), we
have for any x ′ ∈ X, y′ > 0, l � 1, n � l + m + 1, p � 1,

n3/2 In−l(x
′, y′) �

p−1∑

k=0

n3/2E∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′ − S∗

n−l

)
ψ∗
x ′

(
X∗
n−l

) ;

zk + S∗
n−l ∈ [y′ − a/p, y′), τ ∗

zk > n − l
)

=
p−1∑

k=0

n3/2E∗
ν

(
g
(
X∗
m, . . . , X∗

1, y
′+ + a′ − S∗

n−l

)
ψ∗
x ′

(
X∗
n−l

) ;

zk + S∗
n−l ∈ [y′+, y′+ + a′), τ ∗

zk > n − l
)
,

where y′+ = max(y′ −a/p, 0) and a′ = min(y′, a/p) ∈ (0, a/p). Using Lemma 9.3,

lim inf
n→+∞ n3/2 In−l(x

′, y′) �
p−1∑

k=0

2√
2πσ 3

∫ y′++a′

y′+
Lk(y

′+ + a′ − y′′)V
(
x ′, y′′) dy′′,
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where, for any t ∈ R,

Lk(t) := E
∗
ν

(
g
(
X∗
m, . . . , X∗

1, t + zk
)
V ∗ (

X∗
m, zk + S∗

m

) ; τ ∗
zk > m

)
.

Since y′′ 	→ V
(
x ′, y′′) is non-decreasing (see the point 2 of Proposition 2.1), we have

lim inf
n→+∞ n3/2 In−l(x

′, y′) � a′
p−1∑

k=0

2L p
k√

2πσ 3
V

(
x ′, y′+

)
,

where

L p
k := E

∗
ν

(

inf
t∈[0,a/p] g

(
X∗
m , . . . , X∗

1 , t + zk
)
V ∗ (

X∗
m , zk + S∗

m

) ; τ ∗
zk > m

)

. (9.8)

Moreover, by the point 3 of Proposition 2.1, for any δ ∈ (0, 1),

a′V (x ′, y′+) � (1 − δ)a′y′+ − cδ � (1 − δ)

(

y′ − a

p

)
a

p
− cδ

� a

p

1 − δ

1 + δ
V (x ′, y′) − a

p
cδ −

(
a

p

)2

− cδ.

Consequently, using (9.3) and the Fatou Lemma,

lim inf
n→+∞ n3/2 In(x, y)

�
p−1∑

k=0

2L p
k√

2πσ 3
Ex

(
a

p

1 − δ

1 + δ
V (Xl , y + Sl) − cδ

(
1 + a2

)
; τy > l

)

.

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the
limit as l → +∞ and then as δ → 0,

lim inf
n→+∞ n3/2 In(x, y) � a

p

p−1∑

k=0

2L p
k√

2πσ 3
V (x, y). (9.9)

Using the notation from (9.6) and the fact that u 	→ gm(u) is uniformly continuous
on [z, z + a], for any ε > 0,

lim inf
p→+∞

a

p

p−1∑

k=0

inf
t∈[0,a/p] gm (t + zk) V

∗
m(zk) �

∫ z+a

z

(
gm

(
z′
) − ε

)
V ∗
m(z′)dz′.

Taking the limit as ε → 0,

lim inf
p→+∞

a

p

p−1∑

k=0

inf
t∈[0,a/p] gm (t + zk) V

∗
m(zk) �

∫ z+a

z
gm

(
z′
)
V ∗
m(z′)dz′.
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By the Fatou lemma, (9.8) and (9.9), we conclude that

lim inf
n→+∞ n3/2 In(x, y) � 2V (x, y)√

2πσ 3
E

∗
ν

⎛

⎝lim inf
p→+∞

a

p

p−1∑

k=0

inf
t∈[0,a/p] g

(
X∗
m, . . . , X∗

1, t + zk
)

×V ∗ (
X∗
m, zk + S∗

m

) ; τ ∗
zk > m

⎞

⎠

� 2V (x, y)√
2πσ 3

∫ z+a

z
E

∗
ν

(
g
(
X∗
m, . . . , X∗

1, z
′) V ∗ (

X∗
m, z′ + S∗

m

) ; τ ∗
z′ > m

)
dz′.

�
From now on, we consider that the dual Markov chain

(
X∗
n

)
n�0 is independent

of (Xn)n�0. Recall that its transition probability P∗ is defined by (2.4) and that, for
any z � 0, the associated Markov walk (z + S∗

n )n�0 and the associated exit time
τ ∗
z are defined by (2.5) and (2.6) respectively. Recall also that for any (x, x∗) ∈ X

2,
we denote by Px,x∗ and Ex,x∗ the probability and the expectation generated by the
finite dimensional distributions of the Markov chains (Xn)n�0 and (X∗

n)n�0 starting
at X0 = x and X∗

0 = x∗ respectively.

Lemma 9.5 Assume HypothesesM1–M3. For any x ∈ X, y ∈ R, z � 0, a > 0, l � 1,
m � 1 and any function g ∈ C+

b

(
X
l+m × R

)
, we have

lim
n→+∞ n3/2Ex (g (X1, . . . , Xl , Xn−m+1, . . . , Xn, y + Sn) ; y

+Sn ∈ (z, z + a], τy > n
)

= 2√
2πσ 3

∫ z+a

z

∑

x∗∈X
Ex,x∗

(
g
(
X1, . . . , Xl , X

∗
m , . . . , X∗

1 , z
′)

×V (Xl , y + Sl ) V
∗ (

X∗
m , z′ + S∗

m

) ; τy > l, τ ∗
z′ > m

)
dz′ν(x∗).

Proof Fix x ∈ X, y ∈ R, z � 0, a > 0, l � 1, m � 1 and g ∈ C+
b

(
X
l+m × R

)
. For

any n � l + m, by the Markov property,

I0 := n3/2Ex
(
g (X1, . . . , Xl , Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a], τy > n

)

=
∑

x1,...,xl∈Xl

n3/2Exl (g (x1, . . . , xl , Xn−l−m+1, . . . , Xn−l , yl + Sn−l ) ;

yl + Sn−l ∈ (z, z + a], τyl > n − l
) × Px

(
X1 = x1, . . . , Xl = xl , τy > l

)
,

where yl = x1 + · · · + xl . Using the Lebesgue dominated convergence theorem (or
simply the fact that X

l is finite) and Lemma 9.4, we conclude that

lim
n→+∞ I0 = 2√

2πσ 3

∑

x1,...,xl∈Xl

V (xl , yl) Px
(
X1 = x1, . . . , Xl = xl , τy > l

)

×
∫ z+a

z
E

∗
ν

(
g
(
x1, . . . , xl , X

∗
m, . . . , X∗

1, z
′)
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V ∗ (
X∗
m, z′ + S∗

m

) ; τ ∗
z′ > m

)
dz′.

�

9.2 Proof of Theorem 2.7

For any l � 1, denote byC+(Xl×R+) the set of non-negative functions g:Xl×R+ →
R+ satisfying the following properties:

– for any (x1, . . . , xl) ∈ X
l , the function z 	→ g(x1, . . . , xl , z) is continuous,

– there exists ε > 0 such that maxx1,...xl∈X supz�0 g(x1, . . . , xl , z)(1 + z)2+ε <

+∞.

Fix x ∈ X, y ∈ R, l � 1, m � 1 and g ∈ C+ (
X
l+m × R

)
. For brevity, denote

gl,m(y + Sn) = g (X1, . . . , Xl , Xn−m+1, . . . , Xn, y + Sn) .

Set

I0 := n3/2Ex
(
gl,m(y + Sn); τy > n

)

=
+∞∑

k=0

n3/2Ex
(
gl,m(y + Sn); y + Sn ∈ (k, k + 1], τy > n

)

︸ ︷︷ ︸
=:Ik (n)

.

Since g ∈ C+ (
X
l+m × R

)
, we have

Ik(n) � N (g)

(1 + k)2+ε
n3/2Px

(
y + Sn ∈ (k, k + 1], τy > n

)
,

where N (g) = maxx1,...,xl+m∈X supz�0 g(x1, . . . , xl+m, z)(1 + z)2+ε < +∞. By the
point 2 of Theorem 2.5, we have

Ik(n) � cN (g)(1 + max(y, 0))

(k + 1)1+ε
.

Consequently, by the Lebesgue dominated convergence theorem,

lim
n→+∞ I0 =

+∞∑

k=0

lim
n→+∞ n3/2Ex

(
gl,m(y + Sn); y + Sn ∈ (k, k + 1], τy > n

)
.

By Lemma 9.5,

lim
n→+∞ I0

= 2√
2πσ 3

+∞∑

k=0

∫ k+1

k

∑

x∗∈X
Ex,x∗

(
g
(
X1, . . . , Xl , X

∗
m, . . . , X∗

1, z
′) V (Xl , y + Sl)
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×V ∗ (
X∗
m, z′ + S∗

m

) ; τy > l, τ ∗
z′ > m

)
dz′ν(x∗),

which establishes Theorem 2.7.

9.3 Proof of Theorem 2.8

Theorem 2.8 will be deduced from Theorem 2.7.
Let x ∈ X, y ∈ R and n � 1. Since X is finite we note that ‖ f ‖∞ = supx∈X | f (x)|

exists. This implies

Px
(
τy = n + 1

) = Px
(
y + Sn + f (Xn+1) � 0, y + Sn ∈ [

0, ‖ f ‖∞
]
, τy > n

)
.

By the Markov property,

Px
(
τy = n + 1

) = Ex
(
g(Xn, y + Sn) ; τy > n

)
,

where, for any (x ′, y′) ∈ X × R,

g(x ′, y′) = Px ′
(
y′ + f (X1) � 0

)
1{y′∈[0,‖ f ‖∞]}

= 1{y′∈[0,‖ f ‖∞]}
∑

x1∈X
P(x ′, x1)1{y′+ f (x1)�0}.

Since g(x ′, ·) is a staircase function, for any ε > 0 there exist two functions ϕε and
ψε on X × R and N ⊂ X × R such that

– for any x ′ ∈ X, the functions ϕε(x ′, ·) and ψε(x ′, ·) are continuous and have a
compact support included in

[−1, ‖ f ‖∞ + 1
]
,

– for any (x ′, y′) ∈ (X × R) \N , it holds ϕε(x ′, y′) = g(x ′, y′) = ψε(x ′, y′),
– for any (x ′, y′) ∈ X × R, it holds 0 � ϕε(x ′, y′) � g(x ′, y′) � ψε(x ′, y′) � 1,
– the set N is sufficiently small:

∫ ‖ f ‖∞+1

−1
E

∗
ν

(
V ∗ (

X1, z + S∗
1

) ; τ ∗
z > 1, (X1, z) ∈ N

)
dz � ε. (9.10)

The upper bound For any ε > 0, using Theorem 2.7, we have

I+ := lim sup
n→+∞

n3/2Px
(
τy = n + 1

)

� lim sup
n→+∞

n3/2Ex
(
ψε(Xn, y + Sn); τy > n

)

= 2√
2πσ 3

∫ +∞

0

∑

x∗∈X
Ex,x∗

(
ψε

(
X∗
1, z

)
V (X1, y + S1)

V ∗(X∗
1, z + S∗

1 ); τy > 1, τ ∗
z > 1

)
ν(x∗)dz.
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Using the point 1 of Proposition 2.1,

I+ � 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞+1

0
E

∗
ν

(
ψε

(
X∗
1, z

)
V ∗(X∗

1, z + S∗
1 ); τ ∗

z > 1
)
dz

� 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0
E

∗
ν

(
g
(
X∗
1, z

)
V ∗(X∗

1, z + S∗
1 ); τ ∗

z > 1
)
dz

︸ ︷︷ ︸
=:I1

+ 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞+1

0
E

∗
ν

(
V ∗(X∗

1, z + S∗
1 ); τ ∗

z > 1,
(
X∗
1, z

) ∈ N
)
dz

︸ ︷︷ ︸
=:I2

.

(9.11)

Since ν is P∗-invariant, we have

I1 = 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0

∑

x∗∈X
g
(
x∗, z

)
V ∗(x∗, z − f (x∗))

1{z− f (x∗)>0}ν(x∗)dz

= 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0

∑

x∗,x1∈X
1{z+ f (x1)�0}P(x∗, x1)ν(x∗)V ∗(x∗, z − f (x∗))

1{z− f (x∗)>0}dz

= 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0

∑

x∗,x1∈X
1{z+ f (x1)�0}P∗(x1, x∗)ν(x1)V

∗(x∗, z − f (x∗))

1{z− f (x∗)>0}dz

= 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0

∑

x1∈X
1{z+ f (x1)�0}ν(x1)E

∗
x1

(
V ∗(X∗

1, z + S∗
1 ); τ ∗

z > 1
)
dz.

Using the point 1 of Proposition 2.1,

I1 = 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0
E

∗
ν

(
V ∗(X∗

1, z) ; S∗
1 � z

)
dz. (9.12)

Moreover, by (9.10), we get

I2 � 2V (x, y)√
2πσ 3

ε. (9.13)

Putting together (9.11), (9.12) and (9.13) and taking the limit as ε → 0, we obtain
that

I+ � 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0
E

∗
ν

(
V ∗(X∗

1, z) ; S∗
1 � z

)
dz. (9.14)
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Lower bound In a similar way, using Theorem 2.7, we write

I− := lim inf
n→+∞ n3/2Px

(
τy = n + 1

)

� lim inf
n→+∞ n3/2Ex

(
ϕε(Xn, y + Sn); τy > n

)

= 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞+1

0
E

∗
ν

(
ϕε

(
X∗
1, z

)
V ∗(X∗

1, z + S∗
1 ); τ ∗

z > 1
)
dz

� I1 − I2.

Using (9.12) and (9.13) and taking the limit as ε → 0, we obtain that

I− � 2V (x, y)√
2πσ 3

∫ ‖ f ‖∞

0
E

∗
ν

(
V ∗(X∗

1, z); S∗
1 � z

)
dz,

which together with (9.14) concludes the proof.

10 Appendix

10.1 The non degeneracy of theMarkov walk

In [14], it is proved that the statements of Propositions 2.1–2.3 hold undermore general
assumptions (see Hypotheses M1-M5 of [14]). We will link these assumptions to our
Hypotheses M1–M3. The assumptions M1-M3 in [14], with the Banach space C , are
well known consequences of Hypothesis M1 of this paper. Hypothesis M4 in [14] is
also obvious with N = N1 = · · · = 0. By HypothesisM2, to obtain HypothesisM5 of
[14], it remains only to prove that σ defined by (2.2) is strictly positive. First we give
a necessary and sufficient condition. Recall that the words path and orbit are defined
in Sect. 4.

Lemma 10.1 Assume Hypothesis M1. The following statements are equivalent:

1. The Cesáro mean of f on the orbits is constant: there exists m ∈ R such that for
any orbit x0, . . . , xn we have

f (x0) + · · · + f (xn) = (n + 1)m.

2. There exist a constantm ∈ R and a function h ∈ C such that for any (x, x ′) ∈ X
2,

P(x, x ′) f (x ′) = P(x, x ′)
(
h(x) − h(x ′) + m

)
.

3. The following real σ̃ 2 is equal to 0

σ̃ 2 = ν
(
f 2

)
− ν ( f )2 + 2

+∞∑

n=1

[
ν
(
f Pn f

) − ν ( f )2
]

= 0.
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Proof The point 1 implies the point 2 Suppose that the point 1 holds. Fix x0 ∈ X and
set h(x0) = 0. For any x ∈ X, we define h(x) in the following way: for any path
x0, x1, . . . , xn, x in X, we set

h(x) = − f (x) − f (xn) − · · · − f (x1) + (n + 1)m.

We shall verify that h is well defined. By Hypothesis M1, we can find at least a
path to define h(x). Now we have to check that this definition does not depend on
the choice of the path. Let x0, x1, . . . , xp, x and x0, y1, . . . , yq , x be two paths. By
Hypothesis M1, there exists a path x, z1, . . . , zn, x0 in X between x and x0. Since
x0, x1, . . . , xp, x, z1, . . . , zn and x0, y1, . . . , yp, x, z1, . . . , zn are two orbits, by the
point 1, we have

− f (x) − f (xp) − · · · − f (x1) + (p + 1)m

= f (x0) + f (z1) + · · · + f (zn) − (n + 1)m

= − f (x) − f (yq) − · · · − f (y1) + (q + 1)m

and so the function h is well defined onX. Now let (x, x ′) ∈ X
2 such thatP(x, x ′) > 0.

By Hypothesis M1, there exists x0, x1, . . . , xn, x a path between x0 and x . Since

P(x0, x1) · · ·P(xn, x)P(x, x ′) > 0,

by the definition of h, we have

h(x) = − f (x) − f (xn) − · · · − f (x1) + (n + 1)m

h(x ′) = − f (x ′) − f (x) − f (xn) − · · · − f (x1) + (n + 2)m.

In particular

h(x ′) = − f (x ′) + h(x) + m.

The point 2 implies the point 1 Suppose that the point 2 holds and let x0, . . . , xn be
an orbit. Using the point 2,

h(x0) = h(xn) − f (x0) + m = · · · = h(x0)

− f (x0) − f (xn) − · · · − f (x1) + (n + 1)m,

and the point 1 follows.
The point 2 implies the point 3 Suppose that the point 2 holds. Denote by f̃ the

ν-centred function:

f̃ (x) = f (x) − ν( f ), ∀x ∈ X. (10.1)

By the point 2, for any x ∈ X,

P f̃ (x) = h(x) − Ph(x) + m − ν( f ). (10.2)
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Using the fact that ν is P-invariant, we obtain that ν
(
f̃
)

= 0 = m − ν( f ) and so,

m = ν( f ). (10.3)

Consequently, by (10.2), Pn f̃ = Pn−1h − Pnh for any n � 1 and therefore,

n∑

k=1

Pk f̃ = h − Pnh. (10.4)

Let

Θ̃ :=
+∞∑

k=0

Pk f̃

be the solution of the Poisson equation Θ̃ −PΘ̃ = f̃ , which by (2.1), is well defined.
Taking the limit as n → +∞ in (10.4) and using (2.1),

PΘ̃ = Θ̃ − f̃ = h − ν(h).

Therefore, for any (x, x ′) ∈ X
2,

Θ̃(x ′) − PΘ̃(x) = f̃ (x ′) + PΘ̃(x ′) − PΘ̃(x) = f̃ (x ′) + h(x ′) − h(x).

Using the point 2 and (10.3), it follows that

Θ̃(x ′) − PΘ̃(x) = 0, (10.5)

for any (x, x ′) ∈ X
2 such that P(x, x ′) > 0. Moreover,

σ̃ 2 = ν
(
f̃ 2

)
+ 2

+∞∑

n=1

ν
(
f̃ Pn f̃

)
= ν

(
f̃
(
f̃ + 2PΘ̃

))

= ν
((

Θ̃ − PΘ̃
) (

Θ̃ + PΘ̃
))

.

Since ν is P-invariant,

σ̃ 2 = ν
(
P

(
Θ̃2

))
− 2ν

((
PΘ̃

)2
)

+ ν

((
PΘ̃

)2
)

=
∑

(x,x ′)∈X

[

Θ̃(x ′)2 − 2Θ̃(x ′)PΘ̃(x) +
(
PΘ̃(x)

)2
]

P(x, x ′)ν(x)

=
∑

(x,x ′)∈X

(
Θ̃(x ′) − PΘ̃(x)

)2
P(x, x ′)ν(x). (10.6)
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By (10.5), we conclude that σ̃ 2 = 0.
The point 3 implies the point 2 Suppose that the point 3 holds. By (10.6), for any

(x, x ′) ∈ X such that P(x, x ′) > 0 we have

Θ̃(x ′) − PΘ̃(x) = 0.

Let h = PΘ̃ . Since Θ̃ is the solution of the Poisson equation,

f̃ (x ′) + h(x ′) − h(x) = 0.

By the definition of f̃ in (10.1), for any (x, x ′) ∈ X such that P(x, x ′) > 0,

f (x ′) = h(x) − h(x ′) + m,

with m = ν( f ). �
Note that under Hypothesis M2, Lemma 10.1 can be rewritten as follows.

Lemma 10.2 Assume Hypotheses M1 and M2. The following statements are equiva-
lent:

1. The mean of f on the orbits is equal to zero: for any orbit x0, . . . , xn, we have

f (x0) + · · · + f (xn) = 0.

2. There exists a function h ∈ C such that for any (x, x ′) ∈ X
2,

P(x, x ′) f (x ′) = P(x, x ′)
(
h(x) − h(x ′)

)
.

3. The real σ 2 is equal to 0:

σ 2 = ν
(
f 2

)
+ 2

+∞∑

n=1

ν
(
f Pn f

) = 0.

Now we prove that the Hypothesis M3 (the “non-lattice” condition), implies that
the Markov walk has non-zero asymptotic variance.

Lemma 10.3 Under Hypotheses M1–M3, we have

σ 2 = ν
(
f 2

)
+ 2

+∞∑

n=1

ν
(
f Pn f

)
> 0

Proof We proceed by reductio ad absurdum. Suppose that σ 2 = 0. By Lemma 10.2,
for any orbit x0, . . . , xn , we have

f (x0) + · · · + f (xn) = 0,

which implies the negation of Hypothesis M3 with θ = a = 0. �
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10.2 Strong approximation

Let (Bt )t�0 be the standard Brownian motion on R defined on the probability space
(Ω,F , P). Consider the exit time

τ bmy := inf{t � 0, y + σ Bt � 0}, (10.7)

where σ is defined by (2.2). It is proved in Grama, Le Page and Peigné [16] that there
is a version of theMarkov walk (Sn)n�0 and of the standard Brownian motion (Bt )t�0
living on the same probability space which are close enough in the following sense:

Proposition 10.4 There exists ε0 > 0 such that, for any ε ∈ (0, ε0], x ∈ X and n � 1,
without loss of generality (on an extension of the initial probability space) one can
reconstruct the sequence (Sn)n�0 with a continuous time Brownian motion (Bt )t∈R+ ,
such that

Px

(

sup
0�t�1

∣
∣S�tn� − σ Btn

∣
∣ > n1/2−ε

)

� cε

nε
.
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