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Abstract
We study the bottom of the spectrum of the Anderson Hamiltonian HL := −∂2x + ξ

on [0, L] driven by a white noise ξ and endowed with either Dirichlet or Neumann
boundary conditions. We show that, as L → ∞, the point process of the (appropri-
ately shifted and rescaled) eigenvalues converges to a Poisson point process on R
with intensity exdx , and that the (appropriately rescaled) eigenfunctions converge to
Dirac masses located at independent and uniformly distributed points. Furthermore,
we show that the shape of each eigenfunction, recentered around its maximum and
properly rescaled, is given by the inverse of a hyperbolic cosine. We also show that
the eigenfunctions decay exponentially from their localization centers at an explicit
rate, and we obtain very precise information on the zeros and local maxima of these
eigenfunctions. Finally, we show that the eigenvalues/eigenfunctions in the Dirichlet
and Neumann cases are very close to each other and converge to the same limits.

Keywords Anderson Hamiltonian · Hill’s operator · Localization · Riccati
transform · Diffusion
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354 L. Dumaz, C. Labbé

1 Introduction

Consider the Anderson Hamiltonian

HL = −∂2x + ξ, x ∈ (0, L), (1)

endowed with either Dirichlet or Neumann boundary conditions. Here, the potential ξ
is taken to be a realwhite noise on (0, L), that is, amean zero, delta-correlatedGaussian
field on (0, L). The operatorHL is a random Schrödinger operator, sometimes called
Hill’s operator, that models disordered solids in physics.

There is a competition between the two terms appearing in the operator: while the
eigenfunctions of the Laplacian are spread out over the whole box, the multiplication-
by-ξ operator tends to concentrate themass of the eigenfunctions in very small regions.
In his seminal article [5], Anderson showed that for a discrete version of the present
hamiltonian and in dimension 3, the bottom of the spectrum consists of localized
eigenfunctions. This phenomenon, now referred to as Anderson localization, has been
the object of numerous studies, see for instance [22] for an extended survey.

In the present paper, we establish a localization phenomenon at the bottom of the
spectrum ofHL when L → ∞.

This operator was first studied by the physicist Halperin [19], see also the work
of Frisch and Lloyd [13]. The focus in these works was on the macroscopic picture
of the eigenvalues in the large L limit. If N (λ) denotes the number of eigenvalues
smaller than λ, the density of states is defined as the derivative of the large L limit of
N (λ) divided by L . They found that the density of states of the operator HL admits
an explicit integral formula, see Equation (11) or Fig. 1.

Later on, Fukushima and Nakao [14] gave a precise formulation of the eigen-
value problem HLϕ = λϕ. They proved that for any fixed L , almost surely HL is a
self-adjoint operator on L2(0, L), bounded below, that admits a pure point spectrum
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Fig. 1 Density of states of the operatorHL (plain line) and of u �→ −∂2x u (dashed line)
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Localization of the continuous Anderson Hamiltonian in 1-D 355

(λk)k≥1, with λ1 < λ2 < . . ., and that the associated eigenfunctions (ϕk)k≥1 form an
orthonormal basis of L2(0, L) and are Hölder 3/2− (that is, Hölder 3/2 − ε for all
ε > 0). They also rigorously derived the density of states.

Subsequently, McKean [28] established that the first eigenvalue, appropriately
shifted and rescaled:

−4
√
aL(λ1 + aL), (2)

converges as L → ∞ to a Gumbel distribution and therefore falls in one of the
three famous extreme-value distributions (see also [36] for the aymptotics of the k-th
eigenvalue). The precise definition of aL is given right above Equation (12), let us
simply mention that as L → ∞ we have

aL ∼
(3
8
ln L

)2/3
.

Let us also cite the works [10,11] where the authors obtained an exact formula for
the density distribution of the first eigenvalue in terms of an integral over the circular
Brownian motion, and a precise asymptotic for its left tail. In these works, L is fixed
and the operator is endowed with periodic boundary conditions.

In all the aforementioned studies, the starting point is the Riccati transform which
maps the second order linear differential equation HLu = λ u into a first order non-
linear one, see below. We will also use this tool in the present paper.

Statement of our results

We are interested in the large L limit behavior of the smallest eigenvalues ofHL and of
their associated eigenfunctions.Wewill consider the operatorHL endowedwith either
Dirichlet boundary conditions: ϕ(0) = ϕ(L) = 0, or Neumann boundary conditions:
ϕ′(0) = ϕ′(L) = 0. In the sequel, if no mention is made of the boundary conditions,
then they are taken to be Dirichlet.

Let us introduce the rescaled eigenfunctions:

mk(dt) = Lϕ2
k (t L)dt, t ∈ (0, 1), (3)

that belong to the spaceP of probabilitymeasures on [0, 1] endowedwith the topology
of weak convergence. We also introduce Uk ∈ [0, L] be the (first, if many) point at
which the eigenfunction |ϕk | achieves its maximum.

Our first result shows that asymptotically in L , the eigenvalues form a Poisson point
process on R while the eigenfunctions converge to Dirac masses whose locations are
uniformly distributed over [0, L] and independent from the eigenvalues.

Theorem 1 The sequence of random variables
(
4
√
aL (λk + aL),Uk/L,mk

)
k≥1 con-

verges in law to
(
λ∞k ,U∞

k , δU∞
k

)
k≥1 where

(
λ∞k ,U∞

k

)
k≥1 is a Poisson point process

on R × [0, 1] with intensity exdx ⊗ dt (where the convergence holds for the set of
sequences of elements in R × [0, 1] × P endowed with the product topology).
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356 L. Dumaz, C. Labbé

In the following theorem, we obtain a very precise description of the asymptotic
behavior of the eigenfunctions. At a macroscopic level, we show that they decay
exponentially fast from their localization centers at rate

√
aL . At a microscopic level,

we show that the asymptotic shape around the maximum is given by the inverse of a
hyperbolic cosine at a space-scale of order (ln L)−1/3.

Let us set for i ≥ 1,

hi (t) :=
√
2

a1/4L

∣∣∣ϕi
(
Ui + t√

aL

)∣∣∣, t ∈ R,

where we implicitly set the value of this function to 0 whenever the argument of the
function on the right does not belong to [0, L]. Similarly, we define

bi (t) := 1√
aL

(
B

(
Ui + t√

aL

)
− B(Ui )

)
, t ∈ R,

where B(t) := 〈ξ, 1[0,t]〉, t ∈ [0, L]. Note that B is a Brownian motion. We also
define

h(t) := 1

cosh(t)
, b(t) := −2 tanh(t), t ∈ R.

Finally, denote by z0 := 0 < z1 < · · · < zi−1 < zi = L the zeros of the eigenfunction
ϕi .

Theorem 2 (Exponential decay and shape of the eigenfunctions) For every i ≥ 1,

• Exponential decay There exist deterministic constants C2 > C1 > 0 such that
with probability going to 1, for all t ∈ [0, L]:

C1 exp(−(
√
aL + κL)|t −Ui |)1{t∈D}≤

∣∣∣ ϕi (t)

ϕi (Ui )

∣∣∣≤C2 exp(−(
√
aL−κL)|t−Ui |),

(4)

where

κL := ln2 aL

a1/4L

, D = [0, L]\ ∪i
k=0

[(
zk − 3

8

ln aL√
aL

)
∨ 0,

(
zk + 3

8

ln aL√
aL

)
∧ L

]
.

• Shape around themaximum The processes hi and bi converge to h and b uniformly
over compact subsets of R in probability as L → ∞.

Remark 1.1 The lower bound in (4) does not hold near the zeros of the eigenfunctions
and that is the reason for the restriction to t ∈ D. Actually our proof shows that near
any zero zk we have

∀t ∈
[(

zk − 3

8

ln aL√
aL

)
∨ 0,

(
zk + 3

8

ln aL√
aL

)
∧ L

]
,
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Fig. 2 A very schematic plot of the fifth eigenfunction ϕ5 (not at scale). The main peak lies at U5, while
near Uk , for every k < 5, the eigenfunction has peaks of smaller order. Observe that the height of the
peak near Uk decays exponentially with the distance |Uk − U5|. Red dots correspond to the zeros of the
eigenfunction (color figure online)

ϕi (t) = ϕ′
i (zk)

sinh
(√

aL |t − zk |
)

√
aL

(1+ o(1)) ,

with a probability going to 1.

Remark 1.2 Note that h is the main eigenfunction of the operator−	+ b′ with b′ the
derivative of b.

When i > 1, we obtain further information about the eigenfunctions (see Fig. 2):

Theorem 3 (Local maxima and zeros) Fix i > 1. Let us order the locations of the
maxima of the i first eigenfunctions Uσ(1) < · · · < Uσ(i).

• Position of the local maximum There exists a constant C > 0 such that for all
k ∈ {1, . . . , i}, all the points where the eigenfunction |ϕi | reaches its maximum
over the time interval [zk−1, zk] lie at distance at most C/(

√
aL ln aL) from Uσ(k)

with probability going to 1.
• Deterministic shape around the local maxima For all k ∈ {1, . . . , i}, ϕi (Uσ(k) +

t√
aL

)/ϕi (Uσ(k)) converges to h uniformly over compact subsets ofR in probability.

• Zeros of the eigenfunction For k ∈ {1, . . . , i},

|zk −Uσ(k) − 3

4

ln aL√
aL

| ≤ (ln ln aL)2√
aL

, if Uσ(k) < Ui ,

|zk−1 −Uσ(k) + 3

4

ln aL√
aL

| ≤ (ln ln aL)2√
aL

, if Uσ(k) > Ui ,

with probability going to 1.
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358 L. Dumaz, C. Labbé

Remark 1.3 Thanks to (4), the amplitude of the local maxima on the time interval
[zk−1, zk] is of order |ϕi (Uσ(k))| = |ϕi (Ui )| exp

(
(−√

aL +O(κL))|Uσ(k)−Ui |
)
with

probability going to 1.

We now consider the case where HL is endowed with Neumann boundary condi-
tions: we denote by ϕ

(N )
k and λ

(N )
k the corresponding eigenfunctions and eigenvalues.

Notice that ϕ(N )
k , λ

(N )
k and ϕk, λk are all defined on a same probability space. Our next

result shows that the limiting behavior of the eigenvalues/eigenfunctions in the Neu-
mann case is the same as in the Dirichlet case. Furthermore, the convergence can be
taken jointly for the two types of boundary conditions and the limits are the same, thus
showing that the choice of Dirichlet/Neumann boundary conditions does not affect
the asymptotic behavior of the eigenvalues/eigenfunctions.

Theorem 4 For Neumann boundary conditions, the eigenvalues and eigenfunctions
satisfy the same results as those stated in Theorems 1, 2 and 3. Furthermore, for every
k ≥ 1,

(λ
(N )
k − λk)

√
aL , and (U (N )

k −Uk)
√
aL ,

converge to0 in probability as L → ∞andconsequently the limiting randomvariables
satisfy a.s.

λ
(N ),∞
k = λ∞k , and U (N ),∞

k = U∞
k .

Discussion

Before presenting the outline of the proof, let us give some motivations for studying
this operator. The parabolic Anderson model (PAM) is the following Cauchy problem:

∂t u(t, x) = ∂2x u(t, x) − ξ(x)u(t, x), u(0, x) = δ0(x), x ∈ R. (5)

One expects its solution at time t to be well approximated by the solution of the same
equation restricted to a segment [−L/2, L/2], with L = L(t) properly chosen, and
endowed with Dirichlet boundary conditions. Thus, the spectral decomposition ofHL

would yield

u(t, x) ≈
∞∑
k=1

exp(−λk t)ϕk(x)ϕk(0). (6)

The bottom eigenvalues and eigenfunctions ofHL in the large L limit should therefore
give the asymptotic behavior of the solution (6) when t → ∞: in particular, the
solution should concentrate on a few islands corresponding to the “supports” of the
first eigenfunctions. We will provide rigorous arguments on this heuristic discussion
in a future work.

If theAnderson operator ismultiplied by the imaginary unit on the right hand side of
(5), the equation becomes the famous Schrödinger equation which is of fundamental
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Localization of the continuous Anderson Hamiltonian in 1-D 359

importance in quantummechanics. In this case, one needs to study the whole spectrum
(not only its bottom part). This will be the object of a forthcoming work.

The discretization ofHL and (5) has been investigated in many papers for a general
dimension d. In this case, the Laplacian is discrete on a grid, for instance Zd , and
the white noise is replaced by i.i.d random variables. The discrete operator is first
defined on a finite box B, say B = [0, L]d ∩ Zd , and taken with Dirichlet boundary
conditions. We refer to the book of König [20] for a state of the art on the subject.
Analogous results to our Theorem 1 are known for some distributions of potentials,
see for instance Biskup and König [6].

When d = 1, much more precise results are known. Let us introduce the discrete
Anderson Hamiltonian

u �→ −	xu + ξ u,

acting on u : [0, L] ∩ Z → R with Dirichlet boundary conditions, and where 	x

denotes the discrete Laplacian and (ξ(x), x ∈ Z) are i.i.d random variables.
If the variance of ξ(0) does not depend on L , the eigenfunctions are localized

[9,16,25], and the local statistics of the eigenvalues are Poissonian [23,29,30]. On the
other hand, if ξ ≡ 0 then the eigenfunctions are spread out and the eigenvalues are
deterministic with locally regular spacings (clock-points).

The critical regime appears when the variance of ξ is of order 1/L . It has been
considered by Kritchevski, Valkó and Virág in [26]. They proved that delocalization
holds in this case and that the eigenvalues near a fixed bulk energy E have a point
process limit depending on only one parameter τ (which is a simple function of the
variance and energy E) they called Schrτ . Moreover, they showed that this point
process exhibits strong eigenvalue repulsion. Rifkind and Virág [34] also studied the
associated eigenfunctions. They found that the shape of the eigenfunctions near their
maxima is given by the exponential of a Brownian motion plus a linear drift, and is
independent of the eigenvalue. Note that heuristically, this regime corresponds to the
high eigenvalues and eigenfunctions of HL .

Another famous family of one-dimensional discrete random Schrödinger operators
is given by the tridiagonal matrices called β-ensembles. These operators seen from
the edge converge, in the large dimensional limit, to the stochastic Airy operator Aβ

formally defined as:

Aβ : u �→ −∂2x u +
(
x + 2√

β
ξ

)
u.

In the paper [3], the analogue of the result of McKean was proved, namely that the first
eigenvalue of the Airy operator properly rescaled converges to a Gumbel distribution
in the small β limit. The density of states was also derived. Using similar techniques to
the present paper, one should be able to prove the convergence of the point process of
the first eigenvalues (properly rescaled) to a Poisson point process of intensity exdx .
In the bulk, the eigenvalues of the β-ensembles converge towards the Sineβ process
[37]. In the small β limit, the Sineβ process was also shown to converge towards
a (homogeneous) Poisson point process [2] using its characterization via coupled
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360 L. Dumaz, C. Labbé

diffusions. Closely related discrete models are Jacobi matrices with random decaying
potential [26] and CMV matrices [24].

The analogue of HL in dimension d greater than 1 can be considered. However,
due to the irregularity of the white noise, the eigenvalue problem becomes singular
already in dimension 2 and one has to renormalize the operator by infinite constants.
This has been carried out under periodic b.c. by Allez and Chouk [1] in dimension
2, and by Gubinelli et al. [17] in dimension 3 by means of the recently introduced
paracontrolled calculus [15]; the construction of the operator under Dirichlet b.c. in
dimensions 2 and 3 has been performed in [27] using the theory of regularity structures
[18].

Another generalization would be to consider the multivariate Anderson Hamil-
tonian of the form −∂2x + W ′, operating on the vector-valued function space
L2([0, L],Rr ) and where W ′ is the derivative of a matrix valued Brownian motion.
This study has been done in the case of the stochastic Airy operator by Bloemendal and
Virág [8]. The eigenvalues of themultivariate AndersonHamiltonian are characterized
by a family of coupled SDEs studied by Allez and one of the authors in [4].

Main ideas of the proof

We now present the main arguments of the proof. For the sake of clarity, we restrict
ourselves to the case of Dirichlet boundary conditions.

The Riccati transform

For any a ∈ R, the differential equation− f ′′ + f ξ = −a f on [0, L] with initial con-
dition f (0) = 0, f ′(0) = 1 admits a unique solution (by classical ODE arguments).
The pair (−a, f ) is then an eigenvalue/eigenfunction of the operator HL if and only
if f (L) = 0. A very convenient tool for studying the solutions of this differential
equation is the so-called Riccati transform that maps f onto Xa := f ′/ f . One can
check that Xa starts from Xa(0) = +∞ and solves

dXa(t) = (a − Xa(t)
2)dt + dB(t), t ∈ [0, L], (7)

where B(t) := 〈ξ, 1[0,t]〉 is a one-dimensional Brownian motion. Note that, when-
ever Xa hits −∞ (that is, whenever f vanishes) it is restarted from +∞. The set of
eigenvalues is then in one-to-one correspondence with the set of points −a such that
Xa(L) = −∞.

The key point of theRiccati transform is that the processes Xa’s satisfy the following
monotonicity property: if a < a′ then Xa(·) ≤ Xa′(·) up to the first hitting time of−∞
of Xa , see Fig. 3. As a consequence, for any k ≥ 1, the r.v. −λk is the largest a ∈ R
such that Xa explodes exactly k times on [0, L]: the Riccati transform χk = ϕ′

k/ϕk

of the k-th eigenfunction ϕk is then given by X−λk . (Note that the above discussion
relies on deterministic arguments so that the characterization of the λk, ϕk’s in terms
of the processes Xa’s holds true almost surely.)
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Fig. 3 Ordering of the diffusions Xa until their first explosion time for a = 0, 55 (red), a = 0, 7 (purple),
a = 0, 845 (blue), a = 1, 3 (black) (color figure online)

The study of the eigenvalues/eigenfunctions thus boils down to the study of the
collection of coupled processes Xa’s. For any given a ∈ R, the process Xa is an
irreversible diffusion that evolves in the potential Va :

Va(x) = x3

3
− ax, for all x ∈ R, a ∈ R, (8)

which admits a well whenever a > 0 (see Fig. 7). For any a ∈ R, this diffusion hits
−∞ in finite time almost surely. The aforementioned result of McKean shows that,
as L becomes large, the first eigenvalue goes to −∞ at speed aL (and the same holds
for the next k eigenvalues). Therefore, to study the bottom of the spectrum ofHL we
can focus on diffusions with a large parameter a > 0.

A typical realization of the diffusion Xa for a fixed large a > 0 does the fol-
lowing. It comes down from +∞ very quickly and oscillates around

√
a (bottom

of the well of Va) for a long time. It makes many attempts to get out of the well,
and from time to time, it makes an exceptional excursion to −√

a, spends a very
short time near that point, and either goes back to

√
a or explodes to −∞ very

quickly.
Since the eigenvalues (λk, k ∈ N) depend on the realization of the underlying

noise ξ , the process χk is not a diffusion and actually does not look like a typi-
cal solution of (7). For instance, we will see later that χk spends a macroscopic
time near the unstable point −√|λk |, see Figs. 4 and 5. Nevertheless, we will see
that it is possible to extract information out of the realizations of typical diffusions
Xa’s.
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Fig. 4 Simulation ofχ1 (in black) and of two diffusions Xa (in red) and Xa′ (in blue) with a < −λ1 < a′
(color figure online)

Convergence of the eigenvalues

Let us present the main steps of the proof of our theorems. We start with the conver-
gence of the point process of the rescaled and recentered eigenvalues

QL :=
∑
k≥1

δ4
√
aL (λk+aL )

of Theorem 1. While tightness is easy to get, we identify the limit by showing that
for all fixed r1 < · · · < rk the random variable

(QL((r1, r2]), . . . ,QL((rk−1, rk])
)

converges to a vector of independent Poisson r.v. with parameters eri − eri−1 .
Observe thatQL((ri−1, ri ]) = #Xai − #Xai−1 where ai =

√
aL − ri/(4

√
aL). We

subdivide (0, L] into the 2n disjoint subintervals (tnj , t
n
j+1] with tnj = j2−nL , and we

introduce the diffusion X j
ai that starts from +∞ at time tnj and follows the SDE (7)

with parameter ai . Then, we show that with large probability for all i and j :

• Xai explodes at most one time on (tnj , t
n
j+1],

• Xai explodes on (tnj , t
n
j+1] if and only if X j

ai explodes on (tnj , t
n
j+1].

This holds because the potential Vai possesses a large well and the diffusion goes
down from +∞ into the well in a very short time: its starting point quickly becomes
irrelevant.

Therefore, it suffices to deal with the diffusions X j
ai restricted to (tnj , t

n
j+1]: these

diffusions are independent for different values of j , and aremonotone in i , so that a very
simple computation, see Lemma 2.7, allows to get the aforementioned convergence.
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Fig. 5 Simulation of χ1 (in black) with the two diffusions Xa (in red) and X̂a (in blue) until their first
explosion, with a < −λ1 (color figure online)

An important remark is that we only need the monotonicity of the coupled dif-
fusions for this part of the proof: we use no finer information about this coupling.
The arguments in the proof could be applied to other situations where the number of
explosions of coupled diffusions counts the eigenvalues (e.g. Airyβ [33], Sineβ [37]
or the Stochastic Bessel Operator [32]).

The first eigenfunction

Let us now concentrate on the asymptotic behavior of the first eigenfunction. Accord-
ing to the convergence (2), we consider a discretization ML of a small neighborhood
of aL of mesh ε/

√
aL for a fixed small ε > 0 and we will use precise estimates on the

typical behavior of Xa , simultaneously for all a ∈ ML . With large probability, −λ1
falls within this neighborhood of aL and there exist two points a, a′ in the discretiza-
tion such that −λ2 < a ≤ −λ1 < a′. By definition, Xa explodes one time and Xa′
does not explode on the time interval [0, L].

From the monotonicity property, we have Xa ≤ χ1 < Xa′ up to the first explosion
time of Xa . With large probability, Xa and Xa′ are “typical”: in particular, they remain
close to

√
a and

√
a′ respectively most of the time. If the mesh of the discretization

ML has been chosen small enough, we deduce that χ1 is squeezed in between those
two typical diffusions that are close to each other with large probability, up to the first
explosion time of Xa . However, this does not provide any good control on χ1 after
this explosion time. In particular, it does not say whether, for instance, χ1 remains
around −√|λ1|, or goes back to

√|λ1|. To push the analysis further, we rely on a
symmetry argument.
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364 L. Dumaz, C. Labbé

The Riccati transform can be applied not only forward in time from time 0 but also
backward in time from time L . This yields another set of diffusions (X̂a, a ∈ R),
called the time-reversed diffusions, which is equal in law to (−Xa, a ∈ R). Namely,
we have:

d X̂a(t) = V ′
a(X̂a(t))dt + d B̂(t),

starting from X̂a(0) = −∞ andwhere B̂(t) := B(L−t)−B(L). A coupling argument
shows that the number of explosions of Xa and X̂a coincide. This allows to say that
χ1, run backward in time from time L , is squeezed in between X̂a and X̂a′ up to the
explosion time of X̂a . Then, it remains to show that the explosion times of Xa and X̂a

are very close so that the intervals on which we bound the first eigenfunction overlap
(see Fig. 5).

Since Xa and Xa′ spend most of their time near
√
a � √

a′ � √
aL , we deduce

by inversing the Riccati transform, that the eigenfunction grows exponentially fast at
this rate up to the explosion time of Xa . Then, it follows the time-reversed diffusions
which spend most of their time near −√

aL so that the first eigenfunction decays
exponentially fast from the explosion time until time L . This proves the localization
of the first eigenfunction near the explosion time of Xa .

We push this analysis further and obtain a much more precise result on the local-
ization, namely the shape of the first eigenfunction of Theorem 2. The explosion of
Xa occurs right after an exceptional descent from +√

a to −√
a whose trajectory is

concentrated around the deterministic function t �→ −√
a tanh(

√
a t) (appropriately

shifted in time). This is a simple consequence of the large deviations principle satisfied
by the diffusion, that ensures that the trajectory on this exceptional descent is roughly
given by the solution of the ODE

dx(t) = V ′
a(x(t))dt .

We will obtain a precise statement about this fact thanks to the Girsanov Theorem.
We then show that χ1 remains very close to Xa upon this deterministic descent.
A careful argument, involving the time-reversed diffusion, shows that the maxi-
mum of ϕ1 is located at one of the zeros of χ1 achieved during this deterministic
descent: since all these zeros lie in a tiny region, we get a precise enough control
on the location of the maximum. Applying the inverse of the Riccati transform to
−√

a tanh(
√
a t), one gets the deterministic shape h(t) of the statement of the theo-

rem.
Up to this point, we have not proved yet that the localization center is asymptot-

ically uniform on [0, L]. To that end, we present a coupling argument that relates
the localization centers of the first eigenfunctions of HL and of the operator H̃L , the
latter being obtained upon replacing the white noise by its image through a Lebesgue
preserving bijection. This coupling argument eventually shows that the law of these
centers is invariant under (a large enough class of) Lebesgue preserving bijections so
that it is necessarily uniform.
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Fig. 6 Simulation of the Riccati transform of the first 4 eigenfunctions (successively black, blue, purple,
red). On the first picture, the position of the maxima of the first four eigenfunctions are represented with
their color. Notice that the number of explosions equals the numbering of the eigenfunction. The explosions
occur near the maxima of the previous eigenfunctions (color figure online)

The next eigenfunctions

For the k-th eigenfunction with k > 1, the situation is slightly more involved though
the strategy is the same. We show that with large probability, −λk falls in the afore-
mentioned neighborhood of aL and that there exist a, a′ in the discretization of that
neighborhood such that −λk+1 < a ≤ −λk < a′ ≤ −λk−1. The typical diffusions
Xa and Xa′ explode k and k − 1 times respectively. We show that they remain close
to each other up to the additional explosion time of Xa , thus providing a good control
on χk up to this time. Then, we rely on the time-reversed diffusions to complete the
picture, as in the case of the first eigenfunction. We refer to Fig. 6 for an illustra-
tion.

Organization of the paper

In Sect. 2, we collect some first estimates on the diffusion Xa and we prove the
convergence of the point process of eigenvalues towards the Poisson point process
with intensity exdx . The proofs of the first estimates are postponed to Sect. 4. In
Sect. 3, we prove Theorems 1, 2 and 3. The proofs are based on more precise esti-
mates on the diffusion Xa on its exceptional excursions to −√

a, which are obtained
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in Sect. 5. Finally, in Sect. 6 we prove Theorem 4 about Neumann boundary condi-
tions.

Notations

The first hitting time by a continuous function f of a point  ∈ R ∪ {−∞} is defined
as follows

τ( f ) := inf{t ≥ 0 : f (t) = },
Moreover, for any integrable function f we define its average on [s, t] by setting

 t

s
f (x)dx := 1

t − s

ˆ t

s
f (x)dx .

When s = t , we set this quantity to f (s).

2 Convergence of the eigenvalues towards the Poisson point process

The goal of this section is to prove that the point processQL := (4
√
aL(λk + aL)) of

the rescaled eigenvalues converges in law to a Poisson point process of intensity exdx .
This is the first step in the proof of Theorem 1. After some technical preliminaries on
the well-definiteness of our diffusions, we collect some first estimates on the diffusion
Xa , and then, we prove the convergence.

2.1 Technical preliminaries

For any given continuous function b starting from 0, we consider the ODE:

{
x(t) = − ´ t

0 V
′
a(x(s))ds + b(t), t > 0,

x(0) = +∞.

This ODE admits a unique solution that leaves +∞ at time 0+, and restarts from
+∞ whenever it hits −∞. Let B be a standard Brownian motion on the probability
space (�,F ,P). Without loss of generality, we can assume that B(ω) is continuous
for all ω ∈ �. We apply deterministically the solution map associated to the ODE
above for every realization of the Brownian motion. This yields a well-defined process
(Xa(t), t ≥ 0, a ∈ R).

Remark 2.1 Actually, the process can be initialized not only at time 0 but also at
some arbitrary time t0 ≥ 0. The above construction still applies, and yields a family
(Xt0

a (t), t ≥ t0, a ∈ R, t0 ≥ 0) with Xt0
a (t0) = +∞.

The monotonicity of the solution map associated to the ODE yields the following
property: if a < a′ and Xa(t) ≤ Xa′(t) then Xa(t + ·) ≤ Xa′(t + ·) up to the next
explosion time of Xa .
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Fig. 7 The potential Va when
a > 0

ΔV = 4
3 a3/2−√

a
√

a0

2.2 First estimates on the diffusion Xa

We now study the process just defined above:

dXa(t) = (a − Xa(t)
2)dt + dB(t), Xa(0) = +∞.

This diffusion evolves in the potential Va(x) = −ax + x3/3. It blows-up to−∞ in
finite time a.s. and immediately restarts from+∞. From now on, we let 0 = ζa(0) <

ζa(1) < ζa(2) < · · · be the successive explosion times of the diffusion Xa . When
a > 0, the potential Va has a well centered at

√
a. The diffusion has to cross the barrier

from
√
a to−√

a, which is of size 	Va = (4/3)a3/2, in order to explode to−∞ (see
Fig. 7).

The expectation of the first explosion time ζa(1) admits the following expression,
see [14]:

m(a) := E[ζa(1)] =
√
2π

ˆ +∞

0

dv√
v
exp

(
2av − 1

6
v3

)
(9)

= π√
a
exp

(
8

3
a3/2

)
(1+ o(1)) , when a → +∞. (10)

We see that the explosion time is of order exp(2	Va), which is in line with Kramers’
law.

Remark 2.2 Recall that the number of explosions of Xa in [0, L] is equal to the number
of eigenvalues below −a. By the law of large numbers, it readily implies that the
integrated density of states N (λ) mentioned in the introduction is precisely given by

N (λ) = 1

m(−λ)
for all λ ∈ R . (11)

The following result is due to McKean, we refer to [3,28] for a proof.

Proposition 2.3 As a → ∞, the r.v. ζa(1)/m(a) converges in distribution to an expo-
nential law of parameter 1.

As a direct corollary, we get the following result.

123



368 L. Dumaz, C. Labbé

Proposition 2.4 The point process of the explosion times of Xa rescaled by m(a)

converges in law, for the vague topology, to a Poisson point process on R+ with
intensity 1.

It is then natural to introduce L �→ aL as the reciprocal of a �→ m(a). A simple
computation yields the following asymptotics

aL =
(
3

8
ln L

)2/3

+ 3−1/3 · 2−1(ln L)−1/3
(
ln

(
31/3

2π
ln1/3 L

)
+ o(1)

)
. (12)

The diffusion Xa , with a close to aL , typically explodes a finite number of times on
the time interval [0, L]. More precisely, for all r ∈ R, using (10), we have as L → ∞:

m

(
aL + r√

aL

)
= π√

aL
exp

(
8

3
a3/2L + 4r

)
(1+ o(1)),

so that the order of magnitude of the number of explosions of Xa on [0, L] for a =
aL + r/(4

√
aL) is given by L/m(aL + r/(4

√
aL)) = exp(−r)(1+ o(1)).

Until the end of this subsection, we drop the subscript a from Xa and from the
explosion times ζa(k), k ≥ 0 to alleviate the notations. Let us analyse the diffusion X
until its first explosion time ζ := ζ(1). We set

ta = ln a√
a

, and ha = ln a

a1/4
. (13)

A typical realization of the process X is close to a deterministic path when it comes
down from +∞ (entrance) and when it explodes to −∞ (explosion):

1- Entrance Let  := √
a + ha . We have

τ(X) = 3

8
ta − ln ln a

2
√
a

+ O

(
1√
a

)
,

together with the bound

sup
t∈(0, 38 ta ]

∣∣X(t) −√
a coth(

√
at)

∣∣ ≤ 1.

2- Explosion Let  := −√
a − ha . We have

τ−∞(X) − τ(X) = 3

8
ta − ln ln a

2
√
a

+ O

(
1√
a

)
.

together with the bound

sup
t∈[τ(X),ζ )

∣∣X(t) +√
a coth(

√
a(ζ − t))

∣∣ ≤ 1.
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Wedenote byDN
a the event onwhich the N first trajectories (X(t), t ∈ [ζ(k), ζ(k+

1))) for k ∈ {0, . . . , N − 1} satisfy the estimates above.

Proposition 2.5 (Entrance and explosion) Fix N ∈ N. For all the parameters a large
enough, we have

P[DN
a ] ≥ 1− 1

ln a
.

The proof of Proposition 2.5 relies on a comparison with an ordinary differential
equation (in the same way as in [12]): it is postponed to Sect. 4.

For t0 > 0, let Xt0 be the diffusion following the same SDE as X but starting from
+∞ at time t0. The following synchronization estimate ensures that the diffusion Xt0

gets very close to the original diffusion X after a short time of order O(ta), and that
they stay together until their first explosion.

We set τ k−2
√
a
(X) := inf{t ≥ ζa(k − 1) : X(t) = −2

√
a}.

Proposition 2.6 (Synchronization)Fix N ≥ 1 and (t0(a))a>0 a family of deterministic
starting timeswhichmay depend on a. There exists C > 0 such that the following holds
true with a probability at least 1−O(1/ ln a) as a → ∞. If there exists k ∈ {1, . . . , N }
such that t0(a) ∈ [ζa(k − 1), ζa(k)) then we have the bounds

∣∣X(t) − Xt0(a)(t)
∣∣ ≤ ha, ∀t ∈ [

t0(a) + 3

8
ta, τ

k
−2

√
a(X)

]
,

∣∣τ−∞(Xt0(a)) − ζa(k)
∣∣ <

C√
a

.

The proof of Proposition 2.6 is based on a coupling with a stationary diffusion.
Since the arguments are rather standard, we postpone the proof to Sect. 4.

2.3 Proof of the convergence of the point process of the eigenvalues

We consider

QL :=
∑
k≥1

δ4
√
aL (λk+aL ),

which is a random element of the set of measures on R with finite mass on (−∞, r)
for any r ∈ R, and endowed with the topology that makes continuous the maps
μ �→ ´

f μ for all bounded and continuous functions f with support bounded on the
right. By [21, Lemma 14.15], the family (QL)L>1 is tight if for every r > 0 and every
ε > 0, there exists c > 0 such that

sup
L>1

P
[QL((−∞, r ]) > c

]
< ε. (14)
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Since QL((−∞, r ]) is equal to the number of explosions of XaL−r/(4
√
aL ) on the

time-interval [0, L], we deduce from Proposition 2.4 that there exists c′ > 0 such that

lim
L∈N,L→∞P

[QL((−∞, r ]) > c′
]

< ε,

and therefore, that there exist c > 0 such that

sup
L∈N

P
[QL((−∞, r ]) > c

]
< ε.

Since aL = a�L� + o(1/
√
a�L�), we can bound the number of explosions of

XaL−r/(4
√
aL ) by the number of explosions of Xa�L�−r ′/(4√a�L�) for some appropri-

ately chosen r ′, thus ensuring that the latter bound extends to all L ∈ (1,∞). We
deduce that (14) holds true, thus ensuring the tightness of (QL)L>1.

It remains to prove that any limitQ∞ is distributed as a Poisson point process with
intensity exdx . By classical arguments, it suffices to show that for every k ≥ 1, and
every −∞ = r0 < r1 < r2 < · · · < rk , if we set

QL(i) := QL((ri−1, ri ]), i = 1, . . . , k,

then (QL(1), . . . , QL(k)) converges in law to a vector of independent Poisson r.v. with
parameters pi where

pi := eri − eri−1 , i = 1, . . . , k.

Let us fix from now on r1 < r2 < · · · < rk , and notice that if we denote by #Xai the
number of explosions of Xai on [0, L], where ai = aL − ri/(4

√
aL), then we have

almost surely

QL(i) = #Xai − #Xai−1 , i = 1, . . . , k.

To identify the limiting lawof (QL (1), . . . , QL(k)),we followan indirect approach.
First, we introduce some simpler r.v. Q̃L(i) which are shown to converge to the right
limits, and then we prove that they are actually close in probability to the original
ones.

We discretize the time-interval [0, L] in such a way that the studied diffusions will
typically explode at most once on each sub-interval with large probability. Let n ≥ 1

be given. We set tnj := j2−nL for all j ∈ {0, . . . , 2n} and we let X j
a := X

tnj
a be the

diffusion starting from+∞ at time tnj . Themain idea of the proof is to approximate the

number of explosions of Xai on (tnj , t
n
j+1] by the number of explosions of X j

ai on the
same interval. Such an approximation is justified by Proposition 2.6. The advantage
of considering the diffusions X j

ai restricted to (tnj , t
n
j+1] is twofold: first, for every j ,

they are ordered in i by the monotonicity of the diffusions; second, for different values
j they are independent.
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For every j ∈ {0, . . . , 2n − 1}, and for every i ∈ {1, . . . , k}, we set Uj (i) = 1 if

X j
ai explodes on (tnj , t

n
j+1], andUj (i) = 0 otherwise. Recall that a1 > a2 > · · · > ak .

Note that on each time-interval (tnj , t
n
j+1], we have the ordering X j

ak ≤ · · · ≤ X j
a1 until

the first explosion of X j
ak .

Then, we set

Q̃(n)
L (i) :=

2n−1∑
j=0

(
Uj (i) −Uj (i − 1)

)
, i = 1, . . . , k.

Lemma 2.7 The vector (Q̃(n)
L (i))i=1,...,k converges in distribution, as L → ∞ and

then n → ∞, to a vector of independent Poisson r.v. with parameters pi .

Proof First of all, the collection (indexed by j = 0, . . . , 2n − 1) of the k-dimensional
vectors (Uj (i), i = 1, . . . , k) is i.i.d., and for every j we have almost surely Uj (1) ≤
· · · ≤ Uj (k) since a1 > · · · > ak . Henceforth we have for i ∈ {1, . . . , k − 1},

P[Uj (1) = · · · = Uj (i) = 0,Uj (i+1) = · · · = Uj (k) = 1] = P[Uj (i) = 0,

Uj (i+1) = 1] = P[Uj (i + 1) = 1] − P[Uj (i) = 1],

as well as

P[Uj (1) = · · · = Uj (k) = 0] = P[Uj (k) = 0],

and

P[Uj (1) = · · · = Uj (k) = 1] = P[Uj (1) = 1].

Consequently, the law of the vector Uj is completely characterized by its one-
dimensional marginals. Since m(aL)/m(ai ) → eri as L → ∞, Proposition 2.4 gives
as L → ∞

P[Uj (i) = 1] → 1− exp(−2−neri ),

for any j . Moreover, the random variables Uj , j ∈ {0, . . . , 2n − 1} are independent.
We have all the elements at hand to compute the limiting distributions of the Q̃(n)

L (i)’s.
Fix 1, . . . , k such that  = ∑k

1 i ≤ 2n . Then, we find:

lim
L→∞P

[ k⋂
i=1

{Q̃(n)
L (i) = i }

]

= lim
L→∞

(
2n

1, . . . , k, 2n − 

)
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( k∏
i=1

P[U1(1) = · · · = U1(i − 1) = 0,U1(i) = · · · = U1(k) = 1]i
)

× P[U1(1) = · · · = U1(k) = 0]2n−

=
(

2n

1, . . . , k, 2n − 

)

( k∏
i=1

(
1− exp(−2−neri ) − 1+ exp(−2−neri−1)

)i
)
exp(−2−nerk (2n − ))

=
k∏

i=1

(
eri − eri−1

)i

i ! e−(eri−eri−1 )(1+ O(2−n)),

so that the limiting distribution as n → ∞ is the product of Poisson distributions with
parameter pi . ��

We now introduce an event on which Q̃(n)
L and QL coincide. Let FL,n be the event

on which for every i ∈ {1, . . . , k} and j ∈ {0, . . . , 2n − 1}:
(i) Xai never explodes twice in any interval (tnj , t

n
j+1],

(ii) Xai explodes on (tnj , t
n
j+1] if and only if X j

ai explodes on (tnj , t
n
j+1].

On the eventFL,n , the auxiliary random variables Q̃(n)
L (i) indeed coincidewith QL(i).

If we prove that the probability ofFL,n tends to 1 when L → ∞ and then n → ∞,
then by Lemma 2.7 we get:

P[QL(1) = 1, . . . , QL(k) = k] =
k∏

i=1

pi
i

i ! e
−pi + εL,n,

where εL,n goes to 0 as L and then n go to infinity. This would ensure that the vector
QL converges in distribution to a vector of independent Poisson random variables
with parameters pi , and would conclude the proof of this section.

Therefore, it remains to show that P[FL,n] goes to 1 as L → ∞ and then n → ∞.
By Propositions 2.4 and 2.6, the probability that for all i ∈ {1, . . . , k}:
(a) Xai never explodes twice in any interval (tnj , t

n
j+1],

(b) Xai never explodes in any interval (tnj+1 − taL , t
n
j+1],

(c) the next explosion times of Xai and X j
ai after time tnj lie within a distance of

order 1/
√
aL from each other,

goes to 1 as L → ∞ and then n → ∞. Property (a) ensures (i). The monotonicity of
the diffusions ensures the following assertion: if X j

ai explodes on (tnj , t
n
j+1], then Xai

explodes on (tnj , t
n
j+1]. The converse assertion is implied by (b) and (c), so that (ii)

follows.
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3 Localization of the eigenfunctions

In this section, we first introduce the time-reversed diffusions associated to the eigen-
value problem. Then, we collect some fine estimates on the diffusion during its
exceptional excursion that leads it from

√
a to −√

a. Finally, we provide the proof of
Theorems 1, 2 and 3.

3.1 Time reversal

We define the time-reversed operator

ĤL = −∂2x + ξ̂ , x ∈ (0, L),

with homogeneous Dirichlet boundary conditions, where ξ̂ (·) := ξ(L − ·) in the
distributional sense. Let (ϕ̂k, λ̂k)k≥1 be the corresponding eigenfunctions/eigenvalues
and observe that almost surely for all k ≥ 1

ϕ̂k(·) = ϕk(L − ·), λ̂k = λk .

We can therefore study the Riccati transforms of the reversed operator and introduce
the associated family of diffusions. For convenience,we take the opposite of theRiccati
transform:

χ̂k(t) := − ϕ̂′
k(t)

ϕ̂k(t)
, t ∈ (0, L),

with boundary conditions χ̂k(0) = −∞ and χ̂k(L) = +∞. We then have the iden-
tity:

χ̂k(L − t) = χk(t).

It is natural to introduce the collection of diffusions (X̂a(t), t ≥ 0), a ∈ R, as solutions
of:

d X̂a(t) = V ′
a(X̂a(t))dt + d B̂(t), (15)

starting from X̂a(0) = −∞ and where B̂(t) := B(L − t) − B(L). We then let ζ̂a(k)
be the k-th explosion time of X̂a . We also set ζ̂a(0) = ζa(0) = 0.

Remark 3.1 Time 0 for the diffusion X̂a corresponds to time L for the diffusion Xa .

Lemma 3.2 Almost surely, for every k ≥ 1 if Xa explodes to −∞ exactly k times on
[0, L] then
(1) X̂a explodes exactly k times to +∞ on [0, L],
(2) for every i ∈ {1, . . . , k}, we have ζa(i − 1) ≤ L − ζ̂a(k − i + 1) ≤ ζa(i).
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Proof (1) is immediate as the numbers of explosions of Xa and X̂a are related to
the number of eigenvalues below −a of HL and ĤL , and these two operators share
the same eigenvalues. To prove the second property, note that almost surely, for all
t0 ∈ Q ∩ (0, L) the operators

H0,t0 := −∂2x + ξ, x ∈ (0, t0),

and

ĤL−t0,L := −∂2x + ξ̂ , x ∈ (L − t0, L),

share the same eigenvalues. Assume that for some i , L− ζ̂a(k−i+1) > ζa(i) and pick
a rational number t0 in between these two values. Since the diffusion Xa explodes at
least i times on the interval [0, t0], the operatorH0,t0 has at least i eigenvalues below
−a. On the other hand, the diffusion X̂a explodes at most i − 1 times on [L − t0, L]
so that the diffusion X̂ L−t0

a that starts at−∞ at time L − t0 cannot explode more than
i − 1 times either. Consequently, ĤL−t0,L has at most i − 1 eigenvalues below −a.
This raises a contradiction. The inequality ζa(i − 1) ≤ L − ζ̂a(k − i + 1) follows by
symmetry, thus concluding the proof. ��

3.2 Fine estimates on the exceptional excursions

In this subsection, we collect some precise estimates on the behavior of the diffusion
Xa during its first exceptional excursion to −√

a.
We let θa := τ−√

a(Xa) be the first hitting time of−√
a, υa be the last hitting time

of 0 before θa and ιa the last hitting time of
√
a before θa . We take similar definitions

for the time-reversed diffusion X̂a : θ̂a is the first hitting time of +√
a, υ̂a is the last

hitting time of 0 before θ̂a and ι̂a is the last hitting time of −√
a before θ̂a . Note that

θa < ∞ a.s. since Xa explodes in finite time a.s.
We call excursion of Xa a portion of the trajectory that starts at

√
a, reaches −√

a
while staying (strictly) below

√
a and then comes back to

√
a (either after an explosion

and a restart from+∞ or without explosion). Note that the diffusion Xa starts its first
excursion at time ιa .

In the next proposition, we control the behavior of Xa during its first excursion.
We refer to Fig. 8 for an illustration of the path Xa . Recall that ta = ln a/

√
a and

ha = ln a/a1/4.

Proposition 3.3 (Typical diffusion on its first excursion) There exists some constant
C > 0 such that for all a large enough, with a probability at least 1− O(1/ ln ln a),
the following holds:

(i) Oscillations around
√
a:

For all t ∈ [3
8
ta, τ−2

√
a(Xa)),

 t

3
8 ta

Xa(s)ds ∈
[√

a − ha,
√
a + ha

]
.
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(3/8)ta (3/4) ta (3/8)ta (3/8)ta

υa θa

√
a

−√
a

−√
a + 1

Oscillations around a

√
a − 1

ιa

O(1/a1/4)

O(m(a))

Fig. 8 Schematic path of Xa and its first excursion to −√
a in the case of an explosion

(ii) Crossing: For all t ∈ [ιa, θa],

∣∣Xa(t) −√
a tanh(−√

a(t − υa))
∣∣ ≤ C

√
a

ln a
,

and

υa − ιa ≥ (3/8)ta − C
ln ln a√

a
,

∣∣θa − υa − (3/8)ta
∣∣ ≤ C

ln ln a√
a

.

(iii) Explosion and/or return to
√
a: If after time θa the diffusion Xa explodes before

coming back to+√
a, then Xa stays below−√

a+1 in [θa, ζa(1)) and explodes
within a time (3/8) ta + (ln ln a)2/(4

√
a).

If it does not explode, Xa returns to
√
a within a time (3/4) ta+C(ln ln a)2/

√
a.

Remark 3.4

• In this proposition we do not bound from above υa − ιa , as we do not need to
control this time for our purposes.

• In (iii), the time necessary to explode (resp. return to
√
a) is in fact (3/8)ta +

O(ln ln a/
√
a) (resp. (3/4)ta + O(ln ln a/

√
a)). The choice of (ln ln a)2/

√
a is

arbitrary and any time of the form Ca ln ln a/
√
a with Ca → ∞ would give a

probability going to 1.

The next proposition controls the difference between two diffusions Xa and Xa+ε,
for ε not too large, during the first excursion of Xa . Again, the bounds are not optimal
but they suffice for our purposes.
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Proposition 3.5 (Coupling during the excursion) Let ε = εa ∈ (a−2/3, 1). There exists
some constant C > 0 such that with a probability at least 1−O(1/ ln a), the following
holds for all a large enough:

For all t ∈ [υa − 1
16 ta, υa + 1

16 ta],
∣∣Xa+ε(t) − Xa(t)

∣∣ ≤ 1,
For all t ∈ [υa + 1

16 ta, θa − 1
16 ta], Xa+ε(t) ≤ −√

a + C a3/7,
For all t ∈ [υa + 1

16 ta, θa], Xa+ε(t) ≤ √
a − 1.

As we will see later on, the above estimates provide a good control on the first
eigenfunction over the time-interval [ιa, θa] (for some well chosen a). We will control
the first eigenfunction after time θa by using the time-reversed diffusions. The idea is
that after the stopping time θa , the Brownian motion makes no exceptional event with
large probability so that the time reversal X̂a should oscillate around −√

a.

Proposition 3.6 (Control after time θa) For any c ≥ 1 and any L = La ≤ c m(a)

the following holds true with probability greater than 1 − (ln a)−1/2 for all a large
enough. If L ≥ θa + 10 ta and X̂a does not explode before time L − θa − 10 ta , then
it does not explode in the time-interval [0, L − θa] and we have the bounds:

X̂a(L − θa) ≤ −√
a + ha, sup

t∈[θa ,L]

 t

θa

X̂a(L − s)ds ≤ −√
a + ha .

Remark 3.7 For any ε = εa ∈ (a−2/3, 1), a straightforward adaptation of the proof of
Proposition 3.6 shows that under the same conditions we have the further bounds:

−√
a − ha ≤ X̂a+ε(L − θa), −√

a − ha ≤ inf
t∈[θa ,L−(3/8)ta ]

 t

θa

X̂a+ε(L − s)ds.

with probability greater than 1− (ln a)−1/2.

For the sake of readability, we postpone the proofs of those technical propositions
to Sect. 5 and proceed to the proof of the main results of this paper.

3.3 Preliminaries for the proof of Theorems 1, 2 and 3

The collection (indexed by L) of random variables

(
4
√
aL(λk + aL),Uk/L,mk

)
k≥1,

is tight sinceQL is tight, see Sect. 2, and since the remaining coordinates belong to the
product space [0, 1]N×PN which is compact. Let

(
λ∞k ,U∞

k ,m∞
k

)
k≥1 be the limit of a

converging subsequence. We already know that (λ∞k )k≥1 is a Poisson point process of
intensity exdx . Our goal is to show that for any k ≥ 1, (U∞

1 , . . . ,U∞
k ) is i.i.d. uniform

over [0, 1] and independent of Q∞, that m∞
i = δU∞

i
for every i ∈ {1, . . . , k} and to

obtain the precise description of the eigenfunctions of Theorems 2 and 3.
From now on, k is fixed. As in Sect. 2.3, we subdivide [0, L] into 2n macroscopic

sub-intervals [tnj , tnj+1] where tnj := j2−nL and denote by X j
a := X

tnj
a the diffusion
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−λ1−λ2−λ3−λ4

a1a1a2a3a4 a4

no explosion1 explosion2 explosions3 explosionsMore than 4 explosions

√
aL

a3 = a2

Fig. 9 Locations of the (opposite of the) eigenvalues together with their approximations ak and a′k . Black
dots correspond to points of ML

starting from +∞ at time tnj and by X̂ j+1
a := X̂

L−tnj+1
a the time-reversed diffusion

starting from−∞ at time L − tnj+1. The underlying idea of the proof is that, on every

time-interval [tnj , tnj+1], the diffusion X j
a is a faithful approximation of Xa until their

first explosions and the content of Propositions 3.3, 3.5 and 3.6 can be applied to X j
a

and X̂ j+1
a (on an interval of length 2−nL instead of L).

Remark 3.8 The aforementioned approximation is supported by the following heuris-
tics: the restriction of every eigenfunction of HL to a small interval surrounding its
maximum coincides, up to small errors, to the principal eigenfunction of the operator
HL restricted to that interval.

We gather in the following event the ingredients we need to approximate accurately
the Riccati transforms of the eigenfunctions by “typical” diffusions. Since we want
very precise control simultaneously on several diffusions and since one has to rule out
many undesired boundary effects, its definition is quite long. At first reading, one may
skip the details and proceed to the next subsection.

For any ε > 0, we consider the following discretization of mesh ε/
√
aL of the

interval [aL − 1/(ε
√
aL), aL + 1/(ε

√
aL)]:

ML :=
{
a ∈

[
aL − 1

ε
√
aL

, aL + 1

ε
√
aL

]
: ∃n ∈ Z, a = aL + nε√

aL

}
.

From now on, we will use the notation tL := taL = ln(aL)/
√
aL . Notice that,

for all a ∈ ML , the difference tL − ta = O
(
ln(aL)/(εa2L)

)
is negligible compared

to 1/
√
aL so that the estimates already obtained carry through without modifications

upon replacing ta by tL .
Let E(n, ε) be the event on which there exists a random subset

A := {ak < a′k ≤ ak−1 < a′k−1 ≤ · · · ≤ a1 < a′1}

of the grid ML such that the following conditions (a), (b) and (c) are fulfilled.
(a) Squeezing of the k first eigenvalues: We have (see Fig. 9)

ak ≤ −λk < a′k ≤ ak−1 ≤ · · · < a′2 ≤ a1 ≤ −λ1 < a′1.

(b) Control of the excursions and explosions For all a ∈ A and all j ∈
{0, . . . , 2n − 1} we have:
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(b)–(i) None of the explosion times of Xa fall at distance less than 2−2nL from any
tnj .

(b)–(ii) Over the time-interval [tnj , tnj+1], the diffusions Xa and X j
a start at most one

excursion to −√
a that hits −√

a before time tnj+1. Over the first and last

time-intervals (i.e. j = 0 and j = 2n − 1), the diffusion X j
a does not hit

−√
a.

(b)–(iii) If X j
a explodes on [tnj , tnj+1], then neither X j−1

a nor X j+1
a explodes on

[tnj−1, t
n
j ] and [tnj+1, t

n
j+2].

(b)–(iv) If X j
a explodes on [tnj , tnj+1], then so does X j

ak and their explosion times lie

at a distance at most (ln ln aL)2/(3
√
aL) from each other.

and similarly for the time reversed diffusions (up to obvious modifications in the
statement due to the identity in law between Xa and −X̂a).

(c) Synchronization and typical diffusions For all a ∈ A and all j ∈ {0, . . . , 2n−
1} we have:
(c)–(i) Synchronization of Xa and X j

a : if tnj ∈ [ζa(l − 1), ζa(l)) for some l ∈
{1, . . . , k} then

∣∣Xa(t) − X j
a (t)

∣∣ ≤ ha, ∀t ∈ [tnj +
3

8
tL , τ l−2

√
a(Xa)],

∣∣τ−∞(X j
a ) − ζa(l)

∣∣ <
C√
a

,

where τ l−2
√
a
(Xa) := inf{t ≥ ζa(l − 1) : Xa = −2

√
a}.

(c)–(ii) Typical behavior of X j
a and Xa : The diffusions X j

a and Xa follow the
behavior described in Proposition 3.3 and satisfy the conditions of the event
Dk

a .

(c)–(iii) Coupling: for all a′ ∈ A, X j
a and X j

a′ follow the behavior described in
Proposition 3.5.

(c)-(iv) Time-reversal: the diffusion X̂ j+1
a follows the behavior described in Propo-

sition 3.6.

and similarly for the time-reversed diffusions.

Proposition 3.9 There exists a constant C > 0 such that for all ε, we have

lim
n→∞

lim
L→∞

P(E(n, ε)) ≥ 1− Cε.

The proof of this proposition is postponed to Sect. 5.

Remark 3.10 It is not difficult to prove that properties (a), (b)–(i), (b)–(ii) and (b)–(iii)
holdwith large probability thanks to the convergence of the associated point processes.
However, the proof of (b)-(iv) is more involved and rely on coupling arguments for dif-
ferent parameters a’s. Note that (b)–(iii) and (b)–(iv) are used only for the localization
of the eigenfunctions ϕi for i ≥ 2 proved in paragraph 3.5.
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Remark 3.11 Note that (b)–(ii) implies that Xa explodes at most once in each inter-
val [tnj , tnj+1]. Therefore, (b)–(i) together with the synchronization 3.3 imply that Xa

explodes in [tnj , tnj+1] iff X j
a explodes in [tnj , tnj+1]. We deduce that the total number

of explosions of Xa on [0, L] equals the sum over j of the number of explosions of
X j
a on [tnj , tnj+1] on the event E(n, ε).

Remark 3.12 At a technical level, the symmetries that we rely on are similar in spirit
to those appearing in [31] where the invariant measure of the stochastic Allen–Cahn
equation is studied.

In the next subsection,we focus on thefirst eigenfunction:we show thatm∞
1 = δU∞

1
,

that the shape of ϕ1 around U1 is asymptotically given by the inverse of a hyperbolic
cosine and that ϕ1 decays at the exponential rate

√
aL from its localization center.

In the subsequent subsection, we prove the same results for the i-th eigenfunction
with i ∈ {2, . . . , k}, together with the behavior of its local maxima and zeros. In the
last subsection, we prove that the r.v. (U∞

1 , . . . ,U∞
k ) are i.i.d. uniform over [0, 1]

and independent of Q∞. These three subsections therefore conclude the proof of
Theorems 1, 2 and 3.

3.4 The first eigenfunction'1

Recall that we denote the Riccati transform of ϕ1 by χ1 = X−λ1 . Let a := a1 and
a′ := a′1 be the approximations of−λ1.Wework deterministically on the event E(n, ε)

for some arbitrary ε > 0. Recall that Xa and X̂a explode exactly one time on [0, L]
while Xa′ and X̂a′ do not explode.Moreover, these diffusions are “typical” in the sense
of (b) and (c) of E(n, ε).

There is an interval [tnj , tnj+1) that contains the (unique) explosion time of Xa which

occurs in [tnj + 2−2nL, tnj+1 − 2−2nL] by (b)-(i). Using 3.3, we know that X j
a and Xa

synchronize after time tnj + (3/8)tL and that X j
a explodes as well (only one time,

by (b)-(ii)). Moreover, using Lemma 3.2 on the interval [tnj , tnj+1], we deduce that

X̂ j+1
a (L − ·) explodes one time in [tnj , tnj+1] and by (b) and (c) again, that the time-

interval [tnj + 2−2nL, tnj+1 − 2−2nL] contains the explosion time of X̂a(L − ·) as
well.

The diffusion X j
a makes only one excursion to−√

a on the time interval [tnj , tnj+1)

((b)-(ii)) which therefore explodes to −∞ before coming back to
√
a: let us denote

by θ its first hitting time of −√
a after time tnj , by υ its last hitting time of 0 before

time θ and by ι its last hitting time of
√
a. The same holds for X̂ j+1

a and we use the
notations θ̂ , υ̂ and ι̂. See Fig. 10 for an illustration of the above diffusions.

For technical reasons, we are also led to set

ι+ := max(ι, tnj + (3/8)tL), ι̂+ := max(ι̂, L − tnj+1 + (3/8)tL).

Indeed, we will apply the synchronization estimates 3.3 which hold true only after
time tnj + (3/8)tL .
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θ

√
a

−√
a

tnj tnj+1

υXj
a

X̂j+1
a

Xa

Xa and Xj
a synchronized

Fig. 10 Typical behavior of Xa , X
j
a and X̂ j+1

a on the time-interval [tnj , tnj+1]

The next proposition gives a lower bound on the first eigenfunction ϕ1 around υ

and the exponential decay after time θ .

Proposition 3.13 On the event E(n, ε), the first eigenfunction satisfies the following:

(1) Lower bound around υ:

∀t ∈ [ι+, θ ], ϕ1(t)

ϕ1(υ)
≥ 1

cosh(
√
aL(t − υ))

(
1− 2C |t − υ|

√
aL

ln aL

)
.

(2) Exponential decay after time θ :

∀t ∈ [θ, L], ϕ1(t)

ϕ1(θ)
≤ exp

( − (
√
aL − κL)(t − θ)

)
,

∀t ∈
[
θ, L − 3

8
tL

]
,

ϕ1(t)

ϕ1(θ)
≥ exp

( − (
√
aL + κL)(t − θ)

)
,

where κL := ln2 aL/a1/4L .

Note that thanks to the time reversal, we get the upper bound:

∀t ∈ [L−θ̂ , L−ι̂+], ϕ1(t)

ϕ1(L−υ̂)
≤ 1

cosh(
√
aL(t−(L−υ̂)))

(
1+2C |t−(L−υ̂)|

√
aL

ln aL

)
,

(16)

as well as the exponential growth before time L − θ̂ .

Proof For (1), thanks to the synchronization, the Riccati transform χ1 is bounded

from below by X j
a −ha on the time interval [ι+, θ ]. The behavior of the first excursion

of X j
a described in (c)-(ii) yields:
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ϕ1(t)

ϕ1(υ)
≥ exp

(ˆ t

υ

X j
a (s)ds − ha |t − υ|

)

≥ exp

(ˆ t

υ

√
a tanh(−√

a(s − υ))ds −
(
C

√
aL

ln aL
+ ha)|t − υ|

))

≥ 1

cosh(
√
aL(t − υ))

(
1− 2C |t − υ|

√
aL

ln aL

)
,

which gives the inequality (1).
For (2): Let us first prove the exponential decay until L − (3/8)tL . By (c)-(ii), the

only explosion of X j
a on [tnj , tnj+1] occurs at time θ + (3/8)tL(1 + o(1)). Applying

Lemma 3.2, we deduce that X̂ j+1
a (L − ·) does not explode on [θ + 10tL , tnj+1] so

that (c)-(iv) yields the bound

 t

θ

X̂ j+1
a (L − s)ds ≤ −√

a + ha, t ∈ [θ, tnj+1 − (3/8)tL ]. (17)

We thus get the following bound for all t ∈ [θ, L − (3/8)tL ] and all L large enough:

ˆ t

θ

X̂a(L − s)ds ≤ −(
√
aL − κL/2)(t − θ).

Indeed, for t ≤ tnj+1− 3
8 tL this is a direct consequence of (17) and of the synchroniza-

tion estimate. For t > tnj+1 − 3
8 tL , it comes from (17), the synchronization estimate,

the typical behavior of X̂a , the fact that tnj+1− θ > 2−2nL and the simple calculation:

ˆ t

θ
X̂a(L−s)ds =

ˆ tnj+1− 3
8 tL

θ
X̂a(L−s)ds+

ˆ L− 3
8 tL

tnj+1− 3
8 tL

X̂a(L−s)ds−
ˆ L− 3

8 tL

t
X̂a(L − s)ds

≤ − (√
aL − 2haL

) (
tnj+1 −

3

8
tL − θ

)
− (√

aL − haL
) (

L − tnj+1

)

+ (
√
aL + haL )

(
L − 3

8
tL − t

)

≤ −(
√
aL − κL/2)(t − θ), (18)

for all L large enough. Since χ1(t) ≤ X̂a(L − t) for all t ∈ [θ, L), we deduce the
upper bound of the first inequality until time L − (3/8)tL but with the improved rate√
aL − κL/2.

For the lower bound, the proof is similar except that one has to replace X̂a and X̂ j
a

by X̂a′ and X̂ j
a′ and use Remark 3.7.

For the interval [L− (3/8)tL , L], thanks to (c)–(ii) and using the fact that X̂a′(t) ≤
χ1(L − t) ≤ X̂a(t) for all t ∈ (0, τ+∞(X̂a)) we get

sup
t∈(0,(3/8)tL ]

∣∣∣χ1(L − t) +√
aL coth(

√
aL(L − t))

∣∣∣ ≤ 1.

123



382 L. Dumaz, C. Labbé

We deduce that

∀t ∈ [L−(3/8)tL , L] , ϕ1(t)≤ϕ1

(
L−3

8
tL

)
exp

(
− (√

aL−1
) (

t−L+3

8
tL

))
,

and the desired upper bound follows, using the exponential decay until L − (3/8)tL
already established but with an improved rate, and L − θ ≥ 2−2nL − O(tL) (thanks
to (b)–(i) and (c)–(ii)). ��

We will now show that the times υ, L − υ̂ and U1 are very close to each other so
that the time intervals [ι+, θ ] and [L− θ̂ , L− ι̂+] overlap and the previous proposition
thus describes the behavior of the first eigenfunction around its maximum. This is
the key point and most difficult part of the proof. It relies on the ordering of the
forward/backward diffusions, the coupling of Xa and Xa′ and the exponential decays
of Proposition 3.13.

Proposition 3.14 On the event E(n, ε), the eigenfunction |ϕ1| reaches its maximum at
distance at most 2C/(

√
aL ln aL) from υ and L− υ̂. Moreover, for all t ∈ [L− θ̂ , θ ],

we have

ϕ1(t)

ϕ1(U1)
= 1

cosh(
√
aL(t −U1))

(
1+ O

(
|t −U1|

√
aL

ln aL

)
+ O

( 1

ln aL

))
(19)

Proof Let us first prove that all the points where the eigenfunction |ϕ1| reaches itsmax-
imum over the time-interval [υ− (1/16)tL , L] lie at distance at most 2C/(

√
aL ln aL)

from υ. Indeed:

• Using (c), for all t ∈ [υ − (1/16)tL , υ + (1/16)tL ], we have X j
a − 1 ≤ χ1(t) ≤

X j
a′(t) ≤ X j

a + 1 and:

−C

√
aL

ln aL
− 1 ≤ χ1(t) −

√
aL tanh(−

√
aL(t − υ)) ≤ C

√
aL

ln aL
+ 1. (20)

This implies that all the points where |ϕ1| reaches its maximum over [υ −
(1/16)tL , υ + (1/16)tL ] lie at distance at most 2C/(

√
aL ln aL) from υ.

• By (c)–(iii), the diffusion X j
a′ is below −√

a(1 + o(1)) on the interval [υ +
(1/16)tL , θ − (1/16)tL ]. Therefore, |ϕ1| decreases on this time interval and we
have the bound

|ϕ1

(
θ − 1

16
tL

)
| ≤ |ϕ1

(
υ + 1

16
tL

)
| exp

(
−√

a (1+ o(1)) tL

(
1

4
+ o(1)

))
,

where we used θ − υ = (3/8)tL(1 + o(1)). Since X j
a′ stays below

√
a on [θ −

(1/16)tL , θ ], we deduce that |ϕ1| remains below |ϕ1(υ+ 1
16 tL)| on the time interval

[υ + (1/16)tL , θ ].
• From Proposition 3.13, the eigenfunction |ϕ1| decays exponentially on the time-
interval [θ, L].
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By time-reversal, the eigenfunction |ϕ1| reaches itsmaximumover the time-interval
[0, L − υ̂ + (1/16)tL ] at distance at most 2C/(

√
aL ln aL) from L − υ̂.

Note that in the time-interval [L − τ̂+∞(X̂ j+1
a ), τ−∞(X j

a )], the diffusion X̂ j+1
a

(L − ·) is bounded from below by X j
a (·) as the Riccati transform of the first eigen-

function of the operator

−∂2x + ξ, x ∈ (tnj , t
n
j+1),

stays in between those two diffusions (see Fig. 10). Using that the diffusion X j
a

is bounded from below by t �→ √
a tanh(−√

a(t − υ)) − C
√
a/ ln a on the time

interval [ι, υ], we deduce that X̂ j+1
a (L − ·) cannot vanish on the time-interval

[ι, υ − 2C/(
√
a ln a)]. As it reaches √a in [ι, tnj+1] and makes at most one excur-

sion to
√
a on [tnj , tnj+1], we deduce that L − θ̂ is larger than ι and L − υ̂ is larger

than υ − 2C/(
√
aL ln aL). This implies that the maximum over the time-interval

[υ − (1/16)tL , L] is a maximum over the whole interval [0, L]. Therefore U1 and υ

are at distance smaller than 2C/(
√
aL ln aL) from each other and the same holds for

L − υ̂.
Using (20), we obtain for all t ∈ [υ − (1/16)tL , υ + (1/16)tL ]

1

cosh(
√
aL (t−υ))

(
1−2C |t−υ|

√
aL

ln aL

)
≤ ϕ1(t)

ϕ1(υ)
≤ 1

cosh(
√
aL (t−υ))

(
1+2C |t−υ|

√
aL

ln aL

)
,

and therefore ϕ1(U1)/ϕ1(υ) and ϕ1(U1)/ϕ1(L−υ̂) are both of order 1+O(1/ ln2 aL).
Note that tnj + (3/8)tL < L − θ̂ since otherwise there would be an explosion of

X̂a(L − ·) close to tnj thus violating (b)–(i); similarly we have θ < tnj+1 − (3/8)tL .
Then, combining the lower bound of Proposition 3.13-(1) and its time-reversed version
(16), together with the inequalities ι+ < L − θ̂ < θ < L − ι̂+ we obtain (19). ��

We now conclude the proof of the statements of Theorems 1 and 2 regarding the
first eigenfunction (except the statement on the law of U∞

1 , which is presented in
Sect. 3.6). We work on the event E(n, ε):

• Exponential decay
The simple inequalities e−|x | ≤ 1/ cosh(x) ≤ 2 e−|x | applied to (19), together
with Proposition 3.13-(2) and its time-reversed version give the exponential decay
on [0, L].

• Localization around U1 and shape of the eigenfunction
Using the exponential decay at rate

√
aL , we easily get

m1([θ/L, 1]) ≤ ϕ1(θ)2 O
( 1√

aL

)
.

Moreover, the time reversal gives:

m1([0, (L − θ̂ )/L]) ≤ ϕ1(L − θ̂ )2 O
( 1√

aL

)
.
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Integrating (19) of Proposition 3.14, we obtain

m1([L − θ̂/L, θ/L]) = ϕ1(U1)
2 2√

aL

(
1+ O

( 1

ln aL

))
.

Moreover, using that θ −U1 = (3/8)tL(1+ o(1)), we get

ϕ1(θ)

ϕ1(U1)
≤ exp(−(3/8) ln aL(1+ o(1))),

and similarly |ϕ1(L − θ̂ )| ≤ |ϕ1(U1)| exp(−(3/8) ln aL(1+ o(1))).
As m1 is a probability measure, we deduce that ϕ2

1(U1) = (
√
aL/2)(1 + o(1))

and the statement about the shape of the first eigenfunction follows. To obtain the
shape of the Brownian motion, it suffices to combine the identity

χ1(t) = χ1(U1) +
ˆ t

U1

(−λ1 −χ1(s)
2)ds + B(t) − B(U1),

with the estimate (20), noticing that |aL + λ1| = O(1/
√
aL).

It is then easy to see using again (19) that any interval centered around U1 and of
length much greater than 1/

√
aL has a mass going to 1 as L → ∞ so that m1 is

asymptotically as close as desired to a Dirac mass at U1/L .

3.5 The next eigenfunctions

Wenow turn to the i-th eigenfunction, for some i ∈ {2, . . . , k}. Let a = ai and a′ = a′i .
Again, we work deterministically on the event E(n, ε).

The main idea is that the trajectory χi follows the forward diffusions Xai and Xa′i
until the additional explosion of Xai . It then follows the time-reversed diffusions X̂ai

and X̂a′i up to time L (see Fig. 11).
There exist j1 < j2 < · · · < ji such that the i explosion times of Xa lie in the

intervals [tnj , tnj+1),  = 1, . . . , i . Each X j
a explodes once, by (b)–(i) and 3.3, and

makes only one excursion to −√
a, by (b)–(ii). We then call θ the location of its first

hitting time of −√
a (resp. θ̂ for the time-reversed diffusions). There exists a unique

i∗ ∈ {1, . . . , i} such that, for j∗ = ji∗ , X
j∗
a explodes but X j∗

a′ does not. Without loss
of generality, we can suppose that i∗ ≥ 2: indeed, the case i∗ = 1 corresponds to the
case i∗ = i upon reversing time.

Let us now study ϕi . We denote by 0 = z0 < z1 < · · · < zi = L the zeros of ϕi ,
or equivalently the explosion times of χi . We also let x be the (first if many) point
where |ϕi | reaches its maximum on the interval [z−1, z].
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√
aL

√
aL

z0 = 0 L = z4

4

close to the forward diffusion

close to the time-reversed diffusion

argmax ϕ4

z1 z2 z3

Fig. 11 Schematic path ofχ4

We first describe the behavior of ϕi on [z−1, z] with  < i∗.

Lemma 3.15 Let  < i∗. On the event E(n, ε), we have:

(I) Deterministic entrance and explosion:

∀t ∈
[
z−1, z−1 + 3

8
tL

]
, ϕi (t) = ϕ′

i (z−1)
sinh(

√
aL(t − z−1))√

aL
(1+ o(1)),

∀t ∈
[
z − 3

8
tL , z

]
, ϕi (t) = ϕ′

i (z)
sinh(

√
aL(t − z))√
aL

(1+ o(1)).

(II) Exponential decay: For all t ∈ [z−1 + 3
8 tL , z − 3

8 tL ]

1

100
exp

(
−

(√
aL+1

2
κL

)
|t−x|

)
≤ ϕi (t)

ϕi (x)
≤100 exp

(
−

(√
aL−1

2
κL

)
|t−x|

)
,

where κL := ln2 aL/a1/4L .
(III) Inverse of hyperbolic cosine around x:

∀t ∈ [L−θ̂, θ], ϕi (t)

ϕi (x)
= 1

cosh(
√
aL (t−x))

(
1+O

(
|t−x|

√
aL

ln aL

)
+O

( 1

ln aL

))
.

(IV) We have the bounds

|x + 3/8tL − θ| ≤ 5C ln ln aL√
aL

, |z − θ − 3/8tL | ≤ 2

3

(ln ln aL)2√
aL

.

Proof We treat in detail the case  = 1. The other cases follow from the same argu-
ments, one simply has to notice that the diffusions Xa and Xa′ have a delay at the
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starting time of the interval, but since this delay is negligible compared to tL the proof
carries through (indeed, the only probabilistic estimate in the proof of Lemma 4.2 is
a control of the Brownian motion on [0, tL ]).

Set j = j1. Let θa , θa′ be the first hitting times of−√
a,−√

a′ by X j
a and X j

a′ , and

similarly for υa, (ιa)+, υa′ , (ιa′)+. Moreover, let θ̂a , θ̂a′ be the first hitting times of
√
a,√

a′ by X̂ j+1
a and X̂ j+1

a′ . Applying the arguments of the proof of Proposition 3.13-(1)
we obtain

∀t ∈ [(ιa)+, θa], ϕi (t)

ϕi (υa)
≥ 1

cosh(
√
aL(t − υa))

(
1− 2C |t − υa |

√
aL

ln aL

)
.

Applying the arguments of the proof of the time-reversed version of Proposition 3.13-
(2) we obtain

∀t ∈ [0, L − ˆθa], ϕi (t)

ϕi (L − θ̂a)
≤ exp

(
−

(√
aL − 1

2
κL

)
(L − θ̂a − t)

)
,

∀t ∈ [(3/8)tL , L − ˆθa], ϕi (t)

ϕi (L − θ̂a)
≥ exp

(
−

(√
aL + 1

2
κL

)
(L − θ̂a − t)

)
.

(21)

Note that, compared to the original version of the bound, here we have an additional
factor 1/2 in front ofκL but in the proof, this prefactor can actually be chosen arbitrarily.
This is enough to deduce that the maximum of |ϕi | over [0, L − ˆθa] is achieved at
L − θ̂a .

The proof now deviates from that presented in the previous subsection for the
first eigenfunction. Indeed, we are in a situation where Xa and Xa′ remain close to
each other and explode roughly at the same time (while the latter did not explode in
the previous case). More precisely, by (b)–(iv) the explosions times of X j

a and X j
a′

lie at distance at most (ln ln aL)2/(3
√
aL) from each other. Since with (c)–(ii), their

behaviors are almost deterministic on a time-interval of length (3/8+ 3/4)tL before
their explosion times and since they are very close to each other on [υa−(1/16)tL , υa+
(1/16)tL ] we deduce that

0≤υa′ − υa≤2C/(ln aL
√
aL), which implies 0≤θa′ −θa ≤ 3C ln ln aL/

√
aL .

(22)

By monotonicity Xa ≤ χi ≤ Xa′ until the first explosion time of Xa . Using

the synchronization estimates 3.3, together with (c)–(ii) on X j
a and X j

a′ and (22), we
deduce that

∀t ∈ [(ιa)+, θa], −C

√
aL

ln aL
− 1 ≤ χi (t) −

√
aL tanh(−

√
aL(t − υa)) (23)

∀t ∈ [(ιa′)+, θa′ ], χi (t) −
√
aL tanh(−

√
aL(t − υa)) ≤ 3C

√
aL

ln aL
+ 1. (24)
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In addition, X j
a′ remains below −√

aL + 1 on [θa′ , ζa′ ], and it cannot be higher than
−√

aL + 2C
√
aL/ ln aL on the interval of time [θa, θa′ ] by (c)–(ii) and (22). We thus

deduce that χi (t) ≤ −√
aL + 2C

√
aL/ ln aL for all t ∈ [θa, z1]. Therefore all the

points where the maximum of |ϕi | over [(ιa)+ ∨ (ιa′)+, z1] is achieved lie at distance
at most 4C/(ln aL

√
aL) from υa .

Let us now prove that the intervals [0, L − θ̂a] and [(ιa)+ ∨ (ιa′)+, z1] overlap
(here the argument is the same as in the previous subsection). To that end, we observe
that X j

a′(t) ≤ X̂ j+1
a (L − t) for all t ∈ [L − τ̂+∞(X̂ j+1

a ), τ−∞(X j
a′)] and that the

latter interval is not empty (these two assertions follow from Lemma 3.2 and from
the fact that the Riccati transform of the first eigenfunction of −∂2x + ξ restricted to
(tnj , t

n
j+1) lies in between these two diffusions). Henceforth L− θ̂a > ιa′ and L− υ̂a >

υa′ −C/(ln aL
√
aL) > υa −C/(ln aL

√
aL). Moreover, L − θ̂a > tnj + (3/8)tL since

otherwise X̂a(L−·)would explode close to tnj . Therefore, L− θ̂a > (ιa′)+. The same

argument applies upon replacing X j
a′ by X j

a and yields the inequality L − θ̂a > (ιa)+
which concludes the proof of the overlapping.

Consequently, all the points where the maximum of |ϕi | over [0, z1] is achieved lie
at distance at most 4C/(ln aL

√
aL) from υa . This proves the first bound of (IV). The

second bound of (IV) is a consequence of the squeezing Xa ≤ χi ≤ Xa′ , of 3.3 and
(c)–(ii) and of (22).
Assertion (III) is deduced from |x1−υa | ≤ 4C/(ln aL

√
aL), combined with (23), (24)

and the inequality (ιa)+∨ (ιa′)+ ≤ L− θ̂a . It also ensures that for all t ∈ [L− θ̂a, θa]
1

10
exp

(
−

(√
aL+1

2
κL

)
|t−x1|

)
≤ ϕi (t)

ϕi (x1)
≤10 exp

(
−

(√
aL−1

2
κL

)
|t−x1|

)
.

Using (21), these inequalities still hold on [(3/8)tL , θa]. It remains to control the decay
on [θa, z1 − (3/8)tL ]: by the second bound of (IV) this interval has length at most
(ln ln aL)2/

√
aL . Furthermore on this interval of time, we have already seen that χi

remains below −√
aL + 2C

√
aL/ ln aL and by (c)–(ii) it remains above −√

aL − 2.
Henceforth, for all t ∈ [θa, z1 − (3/8)tL ]

1

2
exp

( −√
aL(t − θa)

) ≤ ϕi (t)

ϕi (θa)
≤ 2 exp

( −√
aL(t − θa)

)
.

This is enough to get (II).
Recall that Xa(t) ≤ χi (t) for all t ∈ (0, ζa(1)) and χi (t) ≤ Xa′(t) for all t ∈

(0, z1). The deterministic behavior of Xa and Xa′ near their starting point gives:

sup
t∈(0,(3/8)tL ]

∣∣∣χi (t) −
√
aL coth(

√
aLt)

∣∣∣ ≤ 1. (25)

Since ϕ′
i (t) = χi (t)ϕi (t), we deduce that for all 0 < t0 < t < τ−∞(χi ) we have

ϕi (t) = ϕ′
i (t0)

χi (t0)
e
´ t
t0
χi (s)ds .
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Using (25) and passing to the limit as t0 ↓ 0, we deduce that for all t ∈ (0, 3
8 tL ], we

obtain

ϕi (t) = ϕ′
i (0)

sinh(
√
aLt)√

aL
(1+ O(tL)). (26)

Regarding the behavior near z1: both Xa and Xa′ explode at a distance negligible
compared to tL from each other thanks to (b)–(iv). The first explosion time of χi
necessarily lies in between those two explosion times. The proof of Lemma 4.3 then
ensures that if we let y = −√

aL − hL then

∀t ∈ [τy(χi ), z1),
∣∣∣χi (t) +

√
aL coth(

√
aL(z1 − t))

∣∣∣ ≤ 1.

Indeed, the only probabilistic ingredient in that proof is a control on the Brownian
motion on an interval of size tL before the explosion time: on the event E(n, ε), we
have this control before the explosion times of Xa′ and Xa so that the control holds
true before the explosion time of χi . A similar calculation as above then shows that
for all t ∈ [τy(χi ), z1], we have

ϕi (t) = ϕ′
i (z1)

sinh(
√
aL(t − z1))√
aL

(1+ O(tL)).

Since z1 − τy(χi ) ≥ (3/8)tL − ln ln aL/
√
aL , and since χi (t) ≤ −√

aL +
2C

√
aL/ ln aL for all t ∈ [θa − ln ln aL/

√
aL , τy(χi )] we deduce that for all

t ∈ [z1 − (3/8)tL , z1]

ϕi (t) = ϕ′
i (z1)

sinh(
√
aL(t − z1))√
aL

(1+ o(1)).

��
Let us now describe what happens on the interval [zi∗−1, zi∗ ].

Lemma 3.16 On the event E(n, ε), the eigenfunction |ϕi | satisfies (I)–(III) of
Lemma 3.15 on the time interval [zi∗−1, zi∗ ]. Moreover all the points where the max-
imum over [zi∗−1, zi∗ ] is reached lie at distance at most 4C/(ln aL

√
aL) from each

other, and we have |xi∗ + 3/8tL − θi∗ | ≤ 5C ln ln aL/
√
aL .

Proof The proof follows from the same arguments as in the case of the first eigen-
function, one simply has to take into account the delay between Xa and Xa′ at the
beginning of the interval but this delay is negligible compared to tL . ��

Applying successively Lemma 3.15 and its time-reversed version, together with
Lemma 3.16, a straightforward calculation then shows that for all t ∈ [0, L]

1

100
exp

(−(
√
aL+κL)|t−xi∗ |

)
1{t∈D}≤ ϕi (t)

ϕi (xi∗)
≤100 exp

(−(
√
aL−κL)|t−xi∗ |

)
,
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where the set D is defined in the statement of Theorem 2. (Note that the improved
exponential rate

√
aL − (1/2)κL allows to compensate the “absence” of decay near

the zeros).
Recall that by (b)–(iii), |z − xi∗ | > 2−nL for all  �= i∗. Hence the maximum of

|ϕi | on [0, L] is |ϕi (xi∗)| and necessarily Ui = xi∗ . It is therefore easy to see that

mi

(
[0, 1]\

[ zi∗−1

L
,
zi∗
L

])
� ϕi (xi∗)

2Le−
1
2
√
aL2

−n L .

By Lemma 3.16, we also get

mi

([ zi∗−1

L
,
zi∗
L

])
= ϕi (xi∗)

2 2√
aL

(1+ o(1)).

Therefore,

mi ([0, 1]) = ϕi (xi∗)
2 2√

aL
(1+ o(1)).

Since mi is a probability measure, we deduce that

|ϕi (xi∗)| ∼ a1/4L /
√
2.

Finally, we claim that for all  ∈ {1, . . . , i} we have the bound

|x −Uσ()| ≤ 8C/(ln aL
√
aL).

The cases  < i∗ and  > i∗ are symmetric, so we only consider the former. Let us pro-
vide the arguments in the case  = 1, using the notations of the proof of Lemma 3.15
(in particular j = j1). If we let p be the smallest integer such that X j

ap explodes on

[tnj , tnj+1] but X j
a′p

does not, then υap lies at a distance at most 2C/(
√
aL ln aL) from

Uσ(1) and from υa . Since x1 lies at a distance at most 4C/(
√
aL ln aL) from υa , the

claim follows. Note that Uσ(i∗) = Ui .

The rest of the statements of Theorems 1, 2 and 3 regarding the i-th eigenfunction
directly follows from Lemmas 3.15 and 3.16, except the statement on the law of U∞

i
which will be proven in the next subsection.

3.6 Convergence towards uniform r.v.

Proposition 3.17 The r.v. (U∞
1 , . . . ,U∞

k ) are i.i.d. uniform over [0, 1] and indepen-
dent of Q∞.

This proposition, combined with the results of Sect. 2.3, show that (λ∞i ,U∞
i )i≥1 is

distributed as a Poisson point process on R× [0, 1] with intensity exdx ⊗ dt . Indeed,
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since the intensity is a product measure, the mere fact that (λ∞i )i≥1 and (U∞
i )i≥1 are

independent and have the right distributions yields the desired property.
Before we proceed to the proof, we prove a simple characterization of i.i.d. uniform

r.v. Let σ be a bijection from [0, 1] into itself and assume that there exists n0 ≥ 1
such that the restriction of σ to every interval of the form [sn0i , sn0i+1) is affine with
slope 1, where sn0i = i2−n0 for i ∈ {0, . . . , 2n0 − 1}. In other terms, σ is completely
characterized by its values at the points sn0i and in between we have σ(x) = σ(sn0i )+
(x − sn0i ), x ∈ [sn0i , sn0i+1).

Lemma 3.18 Let V1, . . . , Vk be [0, 1]-valued r.v., assumed to be almost surely distinct.
Suppose that for all bijections σ as above and for all j1, . . . , jk ∈ {0, . . . , 2n0 − 1}
we have

P
[
V1 ∈ [sn0j1 , sn0j1+1), . . . , Vk ∈ [sn0jk , sn0jk+1)

]

= P
[
σ(V1) ∈ [sn0j1 , sn0j1+1), . . . , σ (Vk) ∈ [sn0jk , sn0jk+1)

]
.

Then (V1, . . . , Vk) is i.i.d. uniform over [0, 1].

Proof Let π be the law of (V1, . . . , Vk). Let D be the set of all points v =
(v1, . . . , vk) ∈ [0, 1]k that have at least two coordinates equal.By assumption,π(D) =
0. Consider the 2kn0 dyadic hypercubes of the type [sn0j1 , sn0j1+1) × · · · × [sn0jk , sn0jk+1).
Call Dn0 the union of all such hypercubes that intersect D. We have Dn0 ↓ D as
n0 → ∞ so that π(Dn0) → 0. On the other hand, the assumption of the statement
ensures that π gives the same measure to every hypercube that does not intersect D.
The number of all such hypercubes is 2n0(2n0 − 1) . . . (2n0 − k + 1); notice that this
quantity is equivalent to 2kn0 as n0 → ∞. Since π([0, 1]k\Dn0) → 1, we deduce
that the measure of every hypercube that does not intersect D is equivalent to 2−kn0

as n0 → ∞. By a simple approximation argument, it is then easy to deduce that π(A)

equals the Lebesgue measure of A for all set A which is a product of intervals. As a
consequence, π is the Lebesgue measure on [0, 1]k and the statement of the lemma
follows. ��

Proof of Proposition 3.17 Observe that Q∞ is a Poisson point process with intensity
exdx that can be written

Q∞ =
∑
i≥1

δλ∞i ,

where (λ∞i )i≥1 is the limit in distribution (for the product topology) of
(
(λi +

aL)/4
√
aL

)
i≥1. Moreover, the r.v. U∞

1 , . . . ,U∞
k are all distinct a.s. Indeed, on the

event E(n, ε) the r.v. U1, . . . ,Uk all lie at a distance at least 2−n from one another so
that the r.v. U∞

1 , . . . ,U∞
k are all distinct with probability at least 1− O(ε); but since

ε can be taken as small as desired, the latter property holds almost surely.
It suffices to show that (U∞

1 , . . . ,U∞
k ) is i.i.d. uniform over [0, 1] and inde-

pendent of (λ∞1 , . . . , λ∞k ). Indeed, since k is arbitrary, such a result would ensure
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that (U∞
1 , . . . ,U∞

K ) is independent of (λ∞1 , . . . , λ∞K ) for any K ≥ k, so that
(U∞

1 , . . . ,U∞
k ) is independent from (λ∞i )i≥1 as required. If we show that

E

[ k∏
i=1

1U∞
i ∈[sn0ji ,s

n0
ji+1)

f (λ∞1 , . . . , λ∞k )
]
=E

[ k∏
i=1

1
σ(U∞

i )∈[sn0ji ,s
n0
ji+1)

f (λ∞1 , . . ., λ∞k )
]
,

(27)

holds for all continuous functions f on Rk with compact support, all integers
ji ∈ {0, . . . , 2n0 − 1} and all bijections σ as above, then Lemma 3.18 ensures that
(U∞

1 , . . . ,U∞
k ) is i.i.d. uniform on [0, 1], and classical arguments yield the indepen-

dence from (λ∞1 , . . . , λ∞k ).
To prove (27), we proceed as follows. Fix a bijection σ and an integer n0 ≥ 1 as

above. Let ξ̃ := ξ ◦ σ−1
L where σL : [0, L] " x �→ Lσ(x/L). In other words, we let

ξ̃ be the unique distribution on [0, L] such that

〈ξ̃ , f 〉 = 〈ξ, f ◦ σL〉, ∀ f ∈ C∞([0, L]).

Since σ preserves the Lebesgue measure on [0, 1], we deduce that ξ̃ has the same law
as ξ . Therefore, we can define the corresponding operator H̃ = −∂2x + ξ̃ as well as
the diffusions X̃a subject to the noise B̃. Similarly, we can introduce the r.v. ãi < ã′i
which approximate the k first eigenvalues of H̃L .

Take n ≥ n0. On the event E(n, ε), the following holds. For all a ≥ a0 such that
a ∈ ML , the number of explosions of Xa (resp. X̃a) coincides with the sum of the
number of explosions of X j

a (resp. X̃
j
a ), j = 0, . . . , 2n − 1. Furthermore, we have the

identity

X̃ j
a (s

n
j L + t) = X

2nσ−1(snj )
a

(
σ−1
L (snj L) + t

)
, t ∈ [0, 2−n L].

As a consequence, the number of explosions of Xa and X̃a coincide and we deduce
that ai = ãi and a′i = ã′i . This already ensures that the k first eigenvalues of HL and
H̃L lie at a distance at most ε/

√
aL from each other on the event E(n, ε). Additionally,

the r.v. Ũi/L falls into the same subinterval of length 2−n as σ(Ui/L). Since E(n, ε)

has a probability of order 1− O(ε) for L and n large enough, we find:

E

[ k∏
i=1

1Ũi /L∈[sn0ji ,s
n0
ji+1] f (λ̃1, . . . , λ̃k)

]

= E

[ k∏
i=1

1
σ(Ui /L)∈[sn0ji ,s

n0
ji+1] f (λ1, . . . , λk)

]
+ O(ε) +O

( ε√
aL

)
.
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On the other hand, sinceHL and H̃L have the same statistics, we immediately have

E

[ k∏
i=1

1Ũi /L∈[sn0ji ,s
n0
ji+1] f (λ̃1, . . . , λ̃k)

]

= E

[ k∏
i=1

1Ui /L∈[sn0ji ,s
n0
ji+1] f (λ1, . . . , λk)

]
.

By passing to the limit on a converging subsequence, we deduce that the identity (27)
holds up to an error of order ε, which can be taken as small as desired, thus concluding
the proof. ��

4 Proofs of some first estimates on the diffusion Xa

4.1 Invariant measure

For every given a > 0, the process (Xa(t), t ≥ 0) admits a unique invariant (but not
reversible) probability measure μa(dx) = fa(x)dx with

fa(x) = 2

m(a)
exp(−2Va(x))

ˆ x

−∞
exp(2Va(y))dy. (28)

To check this fact, one simply has to show that G∗ fa = 0, where G∗ is the forward
generator of the diffusion Xa

G∗ f (x) = 1

2
f ′′(x) + (

V ′
a(x) f (x)

)′
.

We also introduce the scale function associated with our diffusion:

S(x) =
ˆ x

−∞
exp(2Va(y))dy =

ˆ x

−∞
exp

(
−2ay + 2

3
y3

)
dy.

If we let Px be the law of our diffusion starting from x ∈ (y, z), then we have:

Px [τy < τz
] = S(z) − S(x)

S(z) − S(y)
. (29)

In the next lemma, we establish some useful estimates on the invariant measure

Lemma 4.1 For all y(a) that goes to∞ as a → ∞ but is negligible compared to a3/4,
we have the bound

μa

([√
a − y(a)

a1/4
,
√
a + y(a)

a1/4

])
≥ 1− e−y(a)2 ,
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uniformly over all a large enough.Furthermore, for all c ∈ (0, 1), there existsρ(c) > 0
such that

μa([(1− c)
√
a, (1+ c)

√
a]) ≥ 1− e−ρ(c)a3/2 ,

uniformly over all a large enough.

Proof Note that the density of the invariant measure writes:

∀x ∈ R, fa(x) = 2

m(a)
exp(−2V (x))S(x). (30)

Some rough estimates ensure that there exists ρ′ > 0 such that for all a large enough

μa
(
R\[−√

a/2, 3
√
a/2]) ≤ e−ρ′a3/2 .

Consequently, we can focus on the interval [−√
a/2, 3

√
a/2]. Therein, the scale

function is almost constant. Indeed, there exists ρ′′ > 0 such that for all
x ∈ [−√

a/2, 3
√
a/2], we have S(x) = S(

√
a)

(
1 + O(e−ρ′′a3/2)

)
. Moreover,

S(
√
a) = √

π/2 a−1/4 exp(4a3/2/3)(1 + o(1)). Thus, using (30) we find for all
x ∈ [−√

a/2, 3
√
a/2],

fa(x) =
√

2

π
a1/4 exp

(
−2

√
a

(
x −√

a
)2

(
1+

(
x −√

a
)

3
√
a

))
(1+ o(1)), (31)

Recall that fa integrates to 1. Therefore, to get the first bound of the statement it
suffices to control the integral of fa over [−√

a/2, 3
√
a/2]\[√a − y(a)

a1/4
,
√
a + y(a)

a1/4
]:

this follows from a simple computation based on (31). The second bound is obtained
similarly. ��

4.2 Entrance and exit

In this paragraph, we will evaluate how much time the diffusion takes to go from+∞
down to various levels around

√
a (resp. the time it takes to explode from various

levels near −√
a). Recall the definition of ta and ha given in (13).

Lemma 4.2 (Entrance) Take x(a) = √
a + ha/4 and M = 2

√
ta ln ln a. On the event

{supt∈[0,ta ] |B(t)| < M}, whose probability is at least 1− exp(−(ln ln a)2), we have

sup
t∈(0,τx(a)(X)]

∣∣X(t) −√
a coth(

√
at)

∣∣ � M . (32)

As a consequence, we get the following asymptotics for all u > 1 and all c ≥ 1/4:

τ√a+c ha (X) = 3

8

ln a√
a
+ 1

2
√
a
ln

2

c ln a
+ o

( 1√
a

)
, (33)
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τu
√
a(X) = C(u)√

a
+ o

( 1√
a

)
, (34)

where u �→ C(u) is the reciprocal of x �→ coth x.
Furthermore, we have the additional bound for all a large enough

sup
t∈(τx(a)(X), 38 ta ]

∣∣X(t) −√
a coth(

√
at)

∣∣ ≤ 1. (35)

Proof We adapt the arguments of the proof of [12, Proposition 2]. Let Z(t) = X(t)−
B(t). Necessarily, Z solves the ODE

dZ(t) =
(
a − Z(t)2

(
1+ B(t)

Z(t)

)2)
dt, Z(0) = +∞.

We are therefore led to considering the ODE

dF(t) =
(
a − CF(t)2

)
dt, F(0) = +∞,

with C being either C1 or C2 where

C1 =
(
1− M

(a) − M

)2
, C2 =

(
1+ M

(a) − M

)2
,

and (a) is a value in [x(a),∞) that will be chosen later on. The generic solution is
given by F(t) = √

a/C coth(
√
a C t) for all t > 0. On the event {supt∈[0,ta ] |B(t)| <

M} and for a large enough, we have the following bound

F2(t) ≤ Z(t) ≤ F1(t), t ∈ [0, τ(a)(X) ∧ ta].

Consequently the hitting time of (a) by the diffusion X satisfies

τ(a)+M (F2) ∧ ta ≤ τ(a)(X) ∧ ta ≤ τ(a)−M (F1) ∧ ta .

We now derive the asymptotics of these upper and lower bounds. Let ±(a) be (a)±
M .

When (a) = u
√
a, we have:

τ±(a)(F) = C(u)√
a

(
1+O

( M

±(a)

))
.

On the other hand, when (a) = √
a + c ln a

a1/4
, the asymptotic expansion of coth at

infinity readily yields

τ±(a)(F) = − 1

2
√
aC

ln
1

2

(±(a)√
a

√
C − 1+ o(e−2

√
aCτ±(a)(F))

)
,
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uniformly over allC in a neighborhood of 1. Since M # ((a)−√
a), a simple calcu-

lation shows that both τ(a)+M (F2) and τ(a)−M (F1) admit the following expansion

3

8

ln a√
a
+ 1

2
√
a
ln

2

c ln a
+ o

( 1√
a

)
,

as a → ∞.
We have proven the asserted asymptotics on the hitting times: they ensure that

τ(a)(X) < ta for a large enough, so that

F2(t) − M ≤ X(t) ≤ F1(t) + M, t ∈ [0, τ(a)(X)].

for all (a) ∈ [x(a),∞). It is simple to check that F2(t) − M ≤ √
a coth(

√
at) ≤

F1(t) + M for all t ≥ 0. Hence, for all (a) ∈ [x(a),∞)

sup
t∈[τ2(a),τ(a)]

∣∣X(t)−√
a coth(

√
at)

∣∣≤ sup
t∈[τ2(a)+M (F2),τ(a)−M (F1)]

∣∣(F1(t)+M)−(F2(t)−M)
∣∣

≤ sup
t∈[τ2(a)+M (F2),τ(a)−M (F1)]

∣∣∣ F1(t)
F2(t)

−1
∣∣∣F2(t)+2M .

From the explicit expressions of F1 and F2, we obtain:

sup
t>0

∣∣∣ F1(t)
F2(t)

− 1
∣∣∣ � M

(a)
,

uniformly over all choices of (a) ∈ [x(a),∞). Therefore,

sup
t∈[τ2(a)+M (F2),τ(a)−M (F1)]

∣∣∣ F1(t)
F2(t)

− 1
∣∣∣F2(t) � M,

so that

sup
t∈[τ2(a),τ(a)]

∣∣X(t) −√
a coth(

√
at)

∣∣ � M,

uniformly over all choices of (a) ∈ [x(a),∞). Patching together these estimates, we
get (32).

To complete the proof of the lemma, it remains to control the diffusion on the
interval [τx(a)(X), (3/8)ta] and on the event {supt∈[0,ta ] |B(t)| < M}. To that end, we
take (a) = √

a/2 and, by the arguments at the beginning of the proof, we find

F2(t) − M ≤ X(t) ≤ F1(t) + M, t ∈ [0, τ(a)(X) ∧ ta].

Since F2((3/8)ta)− M = √
a − O(M) and since F2 is decreasing, we easily deduce

that τ(a)+M (F2) > (3/8)ta and therefore τ(a)(X) > ta . This yields (35). ��
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We have an analogous result right before the explosion time, we keep the notations
from the previous lemma.

Lemma 4.3 (Explosion)On the event {supt∈[0,ta ]
∣∣B(τ−x(a)(X)+t)−B(τ−x(a)(X))

∣∣ <

M}, whose probability is at least 1− exp(−(ln ln a)2), we have:

sup
t∈[τ−x(a)(X),τ−∞(X))

∣∣∣X(t) +√
a coth(

√
a(τ−∞(X) − t))

∣∣∣ � M .

Therefore, for u > 1 and c ≥ 1/4, as a → ∞

τ−∞(X) − τ−√
a−c ha (X) = 3

8

ln a√
a
+ 1

2
√
a
ln

2

c ln a
+ o

( 1√
a

)
,

τ−∞(X) − τ−u
√
a(X) = C(u)√

a
+ o

( 1√
a

)
.

Proof The proof is essentially the same as that of Lemma 4.2 so we do not provide
the details. ��
Proof of Proposition 2.5 By Lemmas 4.2 and 4.3, the trajectory (X(t), t ∈ [0, ζ(1)))
satisfies the two requirements of the event DN

a with a probability at least 1 −
exp(−(ln ln a)2) uniformly over all a large enough. Since the random paths (X(t +
ζ(k)), t ∈ [0, ζ(k + 1) − ζ(k))), k ∈ {0, . . . , N } are i.i.d, we easily deduce the
statement of Proposition 2.5. ��

4.3 Oscillations

The goal of this subsection is to prove Proposition 2.6. From now on, Y is taken to
be a solution of (7) starting from the stationary measure μa . The key step consists in
showing that Y spends most of its time near

√
a. We introduce the notations:

τ≤( f ) := inf{t ≥ 0 : f (t) ≤ }, τ≥( f ) := inf{t ≥ 0 : f (t) ≥ }.
τ k−∞( f ) := inf{t ≥ τ k−1−∞ ( f ) : f (t) = −∞}, τ 0−∞( f ) := 0.

For r > 0, we define the following interval around the bottom of the well
√
a:

Ia(r) :=
[√

a − rha,
√
a + rha

]
.

We start with a simple estimate on the exit times of X .

Lemma 4.4 For any T > 0 and any 0 < d < D < 2
√
a we have

P(∃t ∈ [0, T ], X(t) /∈ [√a−D,
√
a+D] | X(0) ∈ [√a−d,

√
a+d])≤ 8

√
T

D−d
e−

(D−d)2
2T .
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Localization of the continuous Anderson Hamiltonian in 1-D 397

Proof We let A be the reflected Brownian motion starting from d, obtained as the
solution of the following Skorohod problem

d A(t) = dB(t) + d(t),
ˆ
t≥0

A(t)d(t) = 0, A(0) = d.

For x ∈ [√a − d,
√
a + d], consider the diffusion X starting from x . We claim that

A(t) − (X(t) −√
a) ≥ 0 for all t ≥ 0. Indeed, for any time t ≥ 0 at which A(t) =

X(t)−√
a, we have d(A(t)− (X(t)−√

a)) > 0 since either A(t) = X(t)−√
a = 0

and then dt > 0 and−V ′(X(t)) = 0, or A(t) = X(t)−√
a > 0 and then d(t) = 0

and−V ′(X(t)) < 0. Since A(t) has the same law as |B(t)+d| and since the supremum
(resp. the infimum) of B on [0, T ] has the same law as |B(T )| (resp. −|B(T )|) we
obtain

P( sup
t∈[0,T ]

X(t) >
√
a+D|X(0) = x) ≤ P( sup

t∈[0,T ]
A(t) > D) ≤ 2P(|B(T )| > D − d)

≤ 4
√
T

D − d
e−

(D−d)2
2T .

The same argument applies to bound X from below, thus concluding the proof. ��
Lemma 4.5 (Oscillations of Y ) There exists c > 0 such that the probability that

 t

0
Y (s)ds ∈ Ia(1/2), ∀t ∈ [0, τ≤−3

√
a],

is larger than 1− exp(−c(ln a)2) uniformly over all a large enough.

Remark 4.6 Wecould improve the bounds by choosing an interval of sizeC
√
ln a/a1/4

around
√
a at the cost of decreasing the lower bound on the probability.

Proof Let La = exp(b a3/2) for some large enough b > 0.We first control the integral
of the statement for all t ∈ [1/m(a), τ≤−3

√
a(Y ) ∧ τ≥4

√
a(Y ) ∧ La]. For any such t ,

we have:

ˆ t

0
Y (s)ds =

ˆ t

0
Y (s)1{Y (s)∈Ia(1/4)}ds +

ˆ t

0
Y (s)1{Y (s)/∈Ia(1/4)}ds.

For k ∈ N, we set

Ek :=
{ 2−k La

0
1{Y (s)/∈Ia(1/4)}ds ≥

1

a

}
.

Using the Markov inequality, we find P(Ek) ≤ a μa(Ia(1/4)c). Let k∗ be the smallest
integer such that 2−k∗La < 1/m(a). Observe that k∗ is of order a3/2 thanks to our
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398 L. Dumaz, C. Labbé

hypothesis on the growth of La so that thanks to Lemma 4.1,

P
[ ∪k∗

k=0 Ek
] ≤

∑
k≤k∗

P[Ek] � a5/2e−(ln a)2/16.

On the event Ec
k , we get for all t ∈ [2−k−1La, 2−k La] such that t ≤ τ≤−3

√
a(Y ) ∧

τ≥4
√
a(Y ), and all a large enough, the following upper bound

ˆ t

0
Y (s)ds ≤

(√
a + ha/4

)
t + 4

√
a
ˆ t

0
1{Y (s)/∈Ia(1/4)}ds

≤
(√

a + ha/2
)
t,

and the following lower bound

ˆ t

0
Y (s)ds ≥

(√
a − ha/2

)
t .

To conclude the proof, we show that with large probability Y does not hit [4√a,∞)

before (−∞,−3
√
a], nor exit Ia(1/4) within a time 1/m(a), and that Y hits

(−∞,−3
√
a] before time La . Regarding the first claim, we have for all a > 0 large

enough

P[τ≥4
√
a(Y ) < τ≤−3

√
a(Y )] =

ˆ
x∈R

Px [τ4√a < τ−3
√
a]μa(dx)

≤ μa([−2
√
a, 2

√
a]) P2

√
a[τ4√a<τ−3

√
a]+O(e−ρ′a3/2)

≤ e−ρa3/2 ,

for some positive ρ, using (29) and some simple estimates on the scale function. The
second claim follows from Lemma 4.4 combined with the bounds of Lemma 4.1
on the invariant measure. The last claim follows from P[τ≤−3

√
a(Y ) > La] ≤

P+∞[τ−∞(X)/m(a) > La/m(a)] and Markov’s inequality together with (10). ��
The following lemma shows that, after X has come down from infinity, X and Y

stay very close to each other until Y starts following its deterministic path to −∞.

Lemma 4.7 There exist b,C > 0 such that with probability at least 1 − e−b(ln ln a)2 ,
we have:

(i) τ≤−3
√
a(Y ) > (3/8)ta and τ≤−2

√
a(X) > (3/8)ta

(ii) |X(t) − Y (t)| ≤ ha/2 for all t ∈ [
(3/8)ta, τ≤−3

√
a(Y )

]
,

(iii)
∣∣τ−∞(X) − τ−∞(Y )

∣∣ < C√
a

(iv)
ffl t
(3/8)ta

X(s)ds ∈ Ia(1) for all t ∈ [(3/8)ta, τ−2
√
a(X)].
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Proof By Lemmas 4.4 and 4.1, it is simple to establish the first bound of (i) with
−3

√
a replaced by −2

√
a. Monotonicity then easily yields the second bound of (i).

Recall that X(t) ≥ Y (t) for all t ∈ [0, τ−∞(Y )) ⊃ [0, τ≤−3
√
a(Y )). The difference

Z = X − Y satisfies the ODE:

dZ(t) = −Z(t)(X(t) + Y (t)), t ≥ 0.

ByLemma 4.2, there exists z > 0 such that if we set t1 := (3/8)ta+ln(z/ ln a)/(2
√
a)

then with probability greater than 1− exp(−(ln ln a)2), we have X(t1) ∈ Ia(1/3). By
the first estimate on the invariant measure in Lemma 4.1, we deduce that there exists
c′ > 0 such that for all a large enough

P
[
Z(t1) ≤ ha/2

] ≥ P[X(t1) ∈ Ia(1/3),Y (t1) ∈ Ia(1/6)] ≥ 1− e−c′(ln ln a)2 .

ByLemma4.5 applied from time t1 (recall thatY is stationary)wehavewith probability
at least 1− e−c(ln a)2

 t

t1
Y (s)ds ∈ Ia(1/2), ∀t ∈ [t1, τ ′≤−3

√
a(Y )],

where τ ′≤−3
√
a
(Y ) := inf{t ≥ t1 : Y (t) ≤ −3

√
a}. By (i), we can assume that

τ ′≤−3
√
a
(Y ) = τ≤−3

√
a(Y ). Henceforth, there exists b′ > 0 such that the probability

that for all t ∈ [t1, τ≤−3
√
a(Y )]

Z(t)=Z(t1) exp(−
ˆ t

t1
(X(s)+Y (s))ds)≤Z(t1) exp(−2

ˆ t

t1
Y (s)ds)≤ha

2
e−2(

√
a−ha/2)(t−t1),

is larger than 1− exp(−b′(ln ln a)2) for all a large enough. This proves (ii). Applying
Lemma 4.3, we get (iii). Applying Lemma 4.5 from time (3/8)ta and using (ii), we
easily get (iv). ��

More can be said about X−Y . SinceY (τ−∞(Y )+t), t ≥ 0 has the same distribution
as X , we deduce that it satisfies the estimates (33) and (iv) of Lemma 4.7. Since with
large probability τ 1−∞(X)− τ 1−∞(Y ) is at most C/

√
a, a simple iteration of the proof

of Lemma 4.7 allows to prove that with probability at least 1− 2e−b(ln ln a)2 , we have
τ 2−3

√
a
(Y ) > τ−∞(X) + (3/8)ta , τ 2−2

√
a
(X) > τ−∞(X) + (3/8)ta as well as

|X(t) − Y (t)| ≤ ha/2, ∀t ∈ [τ−∞(X) + (3/8)ta, τ
2
−3

√
a(Y )],

and τ 2−∞(X) − τ 2−∞(Y ) ≤ C/
√
a. Iterating this, we get the following result.

Corollary 4.8 There exist b,C > 0 such that for any Na ≥ 1 with probability at least
1− Nae−b(ln ln a)2 the following holds for all a large enough. For all k ∈ {1, . . . , Na}
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400 L. Dumaz, C. Labbé

we have

τ k−3
√
a(Y ) > τ k−1−∞ (X) + 3

8
ta, τ k−2

√
a(X) > τ k−1−∞ (X) + (3/8)ta,

∣∣X(t) − Y (t)
∣∣ ≤ ha/2, for all t ∈ [τ k−1−∞ (X) + 3

8
ta, τ

k
−3

√
a(Y )],

∣∣τ k−∞(X) − τ k−∞(Y )
∣∣ <

C√
a

.

where τ k−3
√
a
(Y ) := inf{t ≥ τ k−1−∞ (Y ) : Y (t) = −3

√
a}.

We conclude this section with the proof of Proposition 2.6.

Proof of Proposition 2.6 Using Corollary 4.8, with probability greater than 1 −
e−b(ln ln a)2 , we have:

τ k−3
√
a(Y ) > τ k−1−∞ (X) + 3

8
ta, τ k−2

√
a(X) > τ k−1−∞ (X) + (3/8)ta,

∣∣X(t) − Y (t)
∣∣ ≤ ha/2, ∀t ∈

[
ζa(k − 1) + 3

8
ta, τ

k
−3

√
a(Y )

]
,

∣∣ζa(k) − τ k−∞(Y )
∣∣ <

C√
a

.

(36)

Let Z(t) = Xt0(t)− Y (t), τ := inf{t ≥ t0 : Y (t) ≤ −3
√
a} and τ ′ := inf{t ≥ t0 :

Y (t) = −∞} then the same arguments as in the proof of Lemma 4.7 ensure that with
probability at least 1− e−b(ln ln a)2 we have τ > t0 + (3/8)ta as well as

Z(t) ≤ ha/2, ∀t ∈ [t0 + (3/8)ta, τ ],
∣∣τ−∞(Xt0) − τ ′

∣∣ <
C√
a

.

By Lemma 4.4, Y (t) > 0 for all t ∈ [(t0 − (3/8)ta)+, t0 + (3/8)ta] with large
probability:we can thereforework on this event fromnowon. If t0 ∈ [ζa(k−1), ζa(k)),
then by (36) and the positivity of Y on [(t0 − (3/8)ta)+, t0 + (3/8)ta] we have t0 +
(3/8)ta < τ k−∞(Y ). Therefore τ ′ = τ k−∞(Y ) and τ = τ k−3

√
a
(Y ). Putting everything

together, we get the statement of the proposition. ��

5 Crossing of the well

This section is devoted to the proof of Propositions 3.3, 3.5, 3.6 and of part (b) of
Proposition 3.9. This is achieved through a series of technical lemmas. The proof
of Proposition 3.3 (i) and (ii) can be found at the end of Sect. 5.1. The proof of
Proposition 3.5 is in Sect. 5.2. The proofs of Proposition 3.3 (iii) and Proposition 3.6
can be found in Sect. 5.3. Finally, the proof of part (b) of Proposition 3.9 is presented
in Sects. 5.4 and 5.5.

123



Localization of the continuous Anderson Hamiltonian in 1-D 401

5.1 Bounds up to time�a

In the sequel, we take the following parameters:

T = 3

4
ta, δ = (ln a)2

a1/4
,

and we study the diffusion X when it crosses the region [−√
a,

√
a].

Let us introduce the diffusion:

dH(t) = (−a + H2(t))dt + dB(t),

whose drift is the opposite of the drift of X . This diffusion turns out to be a good
approximation of the diffusion X starting below

√
a and conditioned to hit −√

a
before

√
a (see also [12] where similar techniques were used). This can be stated

precisely thanks to Girsanov’s theorem.
We will denote by Px the law of this diffusion starting from x , while Px will denote

the law of Xa starting from x .

Lemma 5.1 (Diffusion from
√
a−δ to−√

a+δ)Recall that τ0 denotes the first hitting
time of 0 by X. For any c > 0, there exists C > 0 such that for all a large enough, we
have:

P√
a−δ

[
E(C)

∣∣ τ−√
a+δ < τ√a−δ/2 ∧ T

] ≤ a−c,

where E(C) is the following event

E(C) :=
{

sup
t∈[0,τ−√

a+δ]
∣∣X(t) −√

a tanh(−√
a(t − τ0))

∣∣ ≥ C

√
a

ln a

}

⋃ {∣∣τ0 − 3

8
ta

∣∣ ≥ C
ln ln a√

a

} ⋃ {∣∣τ−√
a+δ − τ0 − 3

8
ta

∣∣ ≥ C
ln ln a√

a

}
.

Notice that, eventually, the stopping time τ0 will correspond (up to a negligible error)
to the r.v. υa in the context of Proposition 3.3.

Proof To simplify the notations, we set

τ+ := τ√a−δ/2, τ− := τ−√
a+δ.

Ifwe stop the diffusions at time T∧τ−∧τ+, thenGirsanov’s Theorem [35, Th.VIII.1.7]
ensures that the Radon-Nikodym derivative of the law of Xa w.r.t. the law of H up
to time t is given by the exponential of Gt (H) := 2

´ t
0 (a − H(s)2)dH(s). Applying

Itô’s formula to V (H), a simple calculation yields:

Gt (H) = 2
(
Va(H(0)) − Va(H(t))

) + 2
ˆ t

0
H(s)ds.
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We thus get:

P√
a−δ

[
E ; τ− < τ+ ∧ T

]

P√
a−δ

[
τ− < τ+ ∧ T

] = E√
a−δ

[
E ; τ− < τ+ ∧ T ; exp(Gτ−(H))

]

E√
a−δ

[
τ− < τ+ ∧ T ; exp(Gτ−(H))]

= E√
a−δ

[
E ; τ− < τ+ ∧ T ; exp(2

´ τ−
0 H(t)dt)

]

E√
a−δ

[
τ− < τ+ ∧ T ; exp(2

´ τ−
0 H(t)dt)

]

≤ exp(4
√
a T )

P√
a−δ

[
E ; τ− < τ+ ∧ T

]

P√
a−δ

[
τ− < τ+ ∧ T

] . (37)

We now study H in the region [−√
a+δ,

√
a−δ/2]. Notice that Z := H−B satisfies

dZ(t) = (−a + (Z(t) + B(t))2)dt .

Set M := c0 ln a/a1/4 and assume that supt∈[0,T ] |B(t)| ≤ M holds true. Then, if
|H(t)| ∈ [√a/2,

√
a] we have

−a + (Z(t) + B(t))2 ≤ −a + Z(t)2
(
1+ M√

a/2− M

)2

≤ −a + Z(t)2
(
1+ 4M√

a

)2
, (38)

for a large enough. On the other hand, if |H(t)| ∈ [0,√a/2], we have

−a + (Z(t) + B(t))2 ≤ (−a + Z(t)2)

(
1− 4M√

a

)
. (39)

Therefore, whenever supt∈[0,T ] |B(t)| ≤ M , and |H(t)| ≤ √
a, we get thanks to (38)

and (39):

−a + (Z(t) + B(t))2 ≤ −a

(
1− 4M√

a

)
+ Z(t)2

(
1+ 4M√

a

)2

.

Similarly, we have the lower bound:

−a + (Z(t) + B(t))2 ≥ −a

(
1+ 4M√

a

)
+ Z(t)2

(
1− 4M√

a

)2

.

We deduce that when supt∈[0,T ] |B(t)| ≤ M and as long as |H(t)| ≤ √
a we have

Z−(t) ≤ Z(t) ≤ Z+(t) with

dZ+(t) =
(
−a

(
1− 4M√

a

)
+ Z+(t)2

(
1+ 4M√

a

)2
)
dt, Z+(0) = √

a − δ,
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dZ−(t) =
(
−a

(
1+ 4M√

a

)
+ Z−(t)2

(
1− 4M√

a

)2
)
dt, Z−(0) = √

a − δ.

Denote by κ = 4M/
√
a. Those last equations have explicit solutions given by

Z+(t) = −
√
a(1− κ)1/2

1+ κ
tanh(

√
a(1− κ)1/2(1+ κ)(t − A+)),

Z−(t) = −
√
a(1+ κ)1/2

1− κ
tanh(

√
a(1+ κ)1/2(1− κ)(t − A−)),

where

A+= 1

2
√
a

(
ln

2
√
a

δ
+3

√
a

2δ
κ+o

( 1

ln a

))
, A−= 1

2
√
a

(
ln

2
√
a

δ
−3

√
a

2δ
κ+o

( 1

ln a

))
.

Note that

A± = 3

8

ln a√
a
− ln ln a√

a
+ ln(2)

2
√
a
± 3c0√

a ln a
(1+ o(1)).

From there, simple calculations show that Z+(·) + M stays below
√
a − δ/2 and

passes below −√
a + δ before time T , while Z−(·) − M is above −√

a + δ at time
T −3 ln ln a/

√
a. Furthermore, Z+(·)+M and Z−(·)−M always stay at a distance of

order
√
a/ ln a from one another. Their respective crossing times of 0 lie at (3/8)ta +

O(ln ln a/
√
a) and are at a distance of order 1/(ln a

√
a) from one another. Recall

that Z−(t) − M ≤ H(t) ≤ Z+(t) + M for t ∈ [0, T ] when supt∈[0,T ] |B(t)| ≤ M
and supt∈[0,T ] |H(t)| ≤ √

a so that all the hitting times of 0 by H are located near the
crossing times of 0 of the latter two curves. Hence, there exists C > 0 such that on
the event supt∈[0,T ] |B(t)| ≤ M we have

sup
t∈[0,τ−√

a+δ]
∣∣H(t) −√

a tanh(−√
a(t − τ0))

∣∣ < C

√
a

ln a
,

∣∣τ0 − 3

8
ta

∣∣ < C
ln ln a√

a
,

∣∣τ−√
a+δ − τ0 − 3

8
ta

∣∣ < C
ln ln a√

a
.

Since for a large enough we have P(supt∈[0,T ] |B(t)| ≥ M) � exp(−M2/(2T )) =
a− 2

3 c
2
0 , we get

(37) ≤ exp(4
√
a T )

P[supt∈[0,T ] |B(t)|≥M]
P[supt∈[0,T ] |B(t)|≤M] � a3− 2

3 c
2
0 ,

for all a large enough. This concludes the proof. ��
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Lemma 5.2 (Time needed to go from
√
a − δ to −√

a + δ) For all r > 0 uniformly
over all large a we have:

P√
a−δ

[
τ−√

a+δ > T
∣∣∣ τ−√

a+δ < τ√a−δ/2

]
� a−r .

Proof Fix r > 0. We keep the notation of the preceding proof. Since

P√
a−δ

(
τ− ≥ T

∣∣ τ− < τ+
)
= lim

T ′→∞
P√

a−δ

(
T ≤ τ− < T ′ ∧ τ+

)

P√
a−δ

(
τ− < T ′ ∧ τ+

) ,

and since P√
a−δ

(
τ− < T ′ ∧ τ+

) ≥ P√
a−δ

(
τ− < T ∧ τ+

)
for T ′ > T , the lemma

will follow if we prove that for c large enough we have the following bound

sup
T ′>T

P√
a−δ

(
T ≤ τ− < T ′ ∧ τ+

)

P√
a−δ

(
τ− < T ∧ τ+

) � a−r . (40)

By Girsanov’s Theorem applied to the diffusions stopped at time T ′ ∧ τ− ∧ τ+, it
suffices to show that

sup
T ′>T

E√
a−δ

[
T ≤ τ− < T ′ ∧ τ+ ; e2

´ τ−
0 H(t)dt

]

E√
a−δ

[
τ− < T ∧ τ+ ; e2

´ τ−
0 H(t)dt

] � a−r .

We let n′ := �T ′/T � and we set for every n ≥ 0 and every x ∈ R

Ax (n) := Ex

[
τ− < τ+ ; τ− ∈ [nT , (n + 1)T ) ; e2

´ τ−
0 H(t)dt

]
.

We have

E√
a−δ

[
T ≤ τ− < T ′ ∧ τ+ ; e2

´ τ−
0 H(t)dt] ≤

n′∑
n=1

A√
a−δ(n).

Applying the Markov property at time T , and bounding H by
√
a on the interval

[0, T ), we get for all n ≥ 1 and x ∈ (−√
a + δ,

√
a − δ/2),

Ax (n) =Ex

[
T ≤ τ− < τ+ ; e2

´ T
0 H(s)ds ; AH(T )(n − 1)

]

≤ e2
√
aT Px

[
T ≤ τ−

]
sup

y∈(−√
a+δ,

√
a−δ/2)

Ay(n − 1).

On the other hand, we obviously have the bound

Ay(0) ≤ e2
√
aTPy

[
τ− < T ∧ τ+

] ≤ e2
√
aT .
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Thus, a simple recursion for the first bound and the monotonicity of the process for
the second bound, yields

A√
a−δ(n) ≤ e(n+1)2

√
aT sup

y∈(−√
a+δ,

√
a−δ/2)

Py
[
T < τ−

]n

≤ e(n+1)2
√
aTP√

a−δ/2
[
T < τ−

]n
.

By the computations made in the proof of Lemma 5.1, we have

P√
a−δ/2

[
T < τ−

]
� a−c′ ,

for any c′ > 0, as well as

E√
a−δ

[
τ− < T ∧ τ+ ; e2

´ τ−
0 H(t)dt] ≥ (1− O(a−c′))e−2

√
aT ≥ 1

2
e−2

√
aT .

Putting everything together, we get that for all T ′ > T ,

P√
a−δ

[
τ− < T

∣∣ τ− < τ+
]

� e4
√
aT

∑
n≥1

(e2
√
aT a−c′)n,

which is bounded by a term of order a−r , for any given r > 0, provided c′ is large
enough. ��

We now control the portion of trajectory from −√
a + δ to −√

a.

Lemma 5.3 For all C > 1 we have

P−√
a+δ

[
τ−√

a > C
ln ln a√

a
∧ τ−√

a+2δ

∣∣ τ−√
a < τ√a−δ/2

]
� (ln a)2−2C .

Proof We set S = C ln ln a√
a
, τ− := τ−√

a , τ+ := τ−√
a+2δ and τ++ := τ√a−δ/2. For

convenience, we also set I (a) := e2(V (−√
a+δ)−V (−√

a)) as this term will pop up in
many equations below. We are going to show that we have

P−√
a+δ

[
τ− < S ∧ τ+

]
� I (a)e−2

√
a S,

as well as

P−√
a+δ

[
S ∧ τ+ ≤ τ− < S′ ∧ τ++

]
� I (a)e−2

√
a S(ln a)2−2C ,

uniformly over all S′ > 0 and all a large enough. These two bounds yield the statement
of the lemma.
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To prove these bounds we apply Girsanov’s Theorem to the diffusions stopped at
time S′ ∧ τ− ∧ τ++. This will allow us to approximate our process by an Ornstein-
Uhlenbeck process and use standard estimates about OU. Regarding the first term, we
have:

P−√
a+δ

[
τ− < S ∧ τ+

]
= I (a)E−√

a+δ

[
e2

´ τ−
0 H(s)ds ; τ− < S ∧ τ+

]

≥ I (a)e−2
√
a S P−√

a+δ

[
τ− < S ∧ τ+

]
.

Now observe that the process Z(t) = H(t) +√
a solves

dZ(t) = Z(t)(Z(t) − 2
√
a)dt + dB(t), Z(0) = δ,

so that Z(t) ≤ U (t) for all t ∈ [0, τ−(H)∧τ+(H)]whereU is theOrnstein-Uhlenbeck
process defined by

dU (t) = −2(
√
a − δ)U (t)dt + dB(t), U (0) = δ.

Consequently, writing PU for the law of U , we get

P−√
a+δ

[
τ− < S ∧ τ+

]
≥ PU

δ

[
τ0 < S ∧ τ2δ

]

≥ PU
δ

[
τ0 < S

]
− PU

δ

[
τ0 > τ2δ

]
.

By the formulae [7, II.7.2.0.2 and II.7.2.2.2, p.542] we get the bounds

PU
δ

[
τ0 < S

]
= 1− O(δa

1
4 e−2(

√
a−δ)S),

and

PU
δ

[
τ0 > τ2δ

] =
´ √

2δ
√√

a−δ

0 ev2dv

´ 2
√
2δ
√√

a−δ

0 ev2dv

� e−ρa1/2δ2 ,

for some ρ > 0. Thus we get the asserted lower bound for the first term.
We turn to the second term. By Girsanov’s Theorem, we get

P−√
a+δ

[
S ∧ τ+ ≤ τ− < S′ ∧ τ++

]

= I (a)E−√
a+δ

[
e2

´ τ−
0 H(s)ds ; S ∧ τ+ ≤ τ− < S′ ∧ τ++

]

≤ I (a)E−√
a+δ

[
e2

´ τ−
0 H(s)ds ; S ∧ τ+ ≤ τ− < τ++

]
.

We bound the expectation at the last line by the sum of

A := E−√
a+δ

[
e2

´ τ−
0 H(s)ds ; S ≤ τ− < τ+

]
,
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and

B := E−√
a+δ

[
e2

´ τ−
0 H(s)ds ; τ+ ≤ τ− < τ++

]
,

and we bound these two terms separately. We start with A:

A ≤ e2(−
√
a+2δ)SP−√

a+δ

[
S ≤ τ− < τ+

]

≤ e2(−
√
a+2δ)S

(
1− P−√

a+δ

[
τ− < S ∧ τ+

)]
.

A previous calculation showed that

1− P−√
a+δ

[
τ− < S ∧ τ+

] = O(δa
1
4 e−2(

√
a−δ)S) + O(e−ρa1/2δ2) = O(

(ln a)2−2C)
,

so that we get the required bound for A. Regarding B, the proof is slightly more
involved. Let us first introduce:

B+ = E−√
a+δ

[
e2

´ τ+
0 H(s)ds ; τ+ < τ−

]
,

B− = E−√
a+2δ

[
e2

´ τ−√
a+δ

0 H(s)ds ; τ−√
a+δ < τ++

]
.

Applying the strong Markov property at time τ+ we get

B = E−√
a+δ

[
E−√

a+δ

[
e2

´ τ−
0 H(s)ds ; τ+ ≤ τ− < τ++

∣∣Fτ+
]]

= E−√
a+δ

[
e2

´ τ+
0 H(s)ds ; τ+ ≤ τ− ; E−√

a+2δ

[
e2

´ τ−
0 H(s)ds ; τ− < τ++

]]

= B+ · E−√
a+2δ

[
e2

´ τ−
0 H(s)ds ; τ− < τ++

]
.

Applying the strong Markov property at the first hitting time of −√
a + δ, we then

obtain:

B = B+B− · E−√
a+δ

[
e2

´ τ−
0 H(s)ds ; τ− < τ++

]

= B+B− · (B + D
)
,

where

D = E−√
a+δ

[
e2

´ τ−
0 H(s)ds ; τ− < τ+

]
≤ 1.

As a consequence, we find

B = B+B−
1− B+B−

D ≤ B+B−
1− B+B−

.
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We claim that

B+B− � e2ta
√
a−κ

√
aδ2 � a2e−ρ ln4 a . (41)

With this claim at hand, we deduce that B is bounded by a negligible term compared
to A, thus concluding the proof. We are left with the proof of the claim. We have

B+ ≤ P−√
a+δ

[
τ+ < τ−

] = PU
δ [τ2δ < τ0] � e−ρ

√
aδ2 .

To bound B−, we argue as follows. We set

E := sup
x∈(−√

a+δ,
√
a−δ/2)

Ex

[
e2

´ τ−√
a+δ

0 H(s)ds ; τ−√
a+δ < τ++

]
.

By considering the two complementary events τ−√
a+δ < ta and ta ≤ τ−√

a+δ , and by
applying the Markov property at time ta in the second case, we get

E ≤ e2ta
√
a + E e2ta

√
a sup
x∈(−√

a+δ,
√
a−δ/2)

Px [ta < τ−√
a+δ < τ++].

The proof of Lemma 5.1 ensures that, if H starts from
√
a − δ/2, then we have

τ−√
a+δ/2 < ta on the event {sup[0,ta ] |B(t)| ≤ c0 ln a/a1/4}, and therefore τ−√

a+δ <

ta on the same event. By monotonicity, this remains true if H starts from any point
in (−√

a + δ,
√
a − δ/2). Recall that P[sup[0,ta ] |B(t)| > c0 ln a/a1/4] � a−c20/2.

Consequently, choosing c0 large enough we get the crude bound

B− ≤ E ≤ e2ta
√
a

1− e2ta
√
aP[sup[0,ta ] |B(t)| > c0 ln a/a1/4] � a2,

uniformly over all a large enough which concludes the proof of the claim. ��
Proof of Proposition 3.3-(i) and (ii) Statement (i) is a consequence of Lemma 4.7.
Regarding (ii), we argue as follows.

After its first hitting time of
√
a − δ, we decompose the path Xa into two types of

“bridges”:

• those that start at
√
a− δ, hit

√
a before−√

a and are stopped at their next hitting
time of

√
a − δ,

• those that start at
√
a− δ, hit−√

a before
√
a, and are stopped at their next hitting

time of
√
a − δ (possibly after an explosion).

We are interested in the first bridge hitting −√
a. It follows the conditional law

P√
a−δ(· |τ−√

a < τ√a) up to its ending time. We first show that it does not hit√
a − δ/2 before its first hitting time of −√

a with large probability. Indeed if we
bound P√

a−δ[τ√a−δ/2 < τ−√
a] by 1, then we get

P√
a−δ

[
τ−√

a < τ√a−δ/2

∣∣τ−√
a < τ√a

] ≥ 1− P√
a−δ/2[τ−√

a < τ√a]
P√

a−δ[τ−√
a < τ√a]

.
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Using the scale function (29) and the fact that there exists c > 0 such that V (y+δ/2) <

V (y) − c
√
aδ2 uniformly over all y ∈ [√a − δ,

√
a − δ/2], we deduce that

P√
a−δ

[
τ−√

a < τ√a−δ/2

∣∣τ−√
a < τ√a

] ≥ 1− exp(−c (ln a)4).

Therefore, combining Lemmas 5.1, 5.2, 5.3 and this last inequality, we obtain that
there exists C > 0 such that with probability larger than 1− 1/ ln a, the trajectory of
the first bridge hitting −√

a stays below
√
a − δ/2 and:

• satisfies the complement of the event E(C),
• hits 0 before time (3/8)ta + C ln ln a/

√
a but after time (3/8)ta − C ln ln a/

√
a,

and hits −√
a + δ before time (3/4)ta + 2C ln ln a/

√
a but after time (3/4)ta −

2C ln ln a/
√
a,

• stays below−√
a+2δ on the time interval [τ−√

a+δ, τ−√
a] and τ−√

a−τ−√
a+δ <

C ln ln a/
√
a.

Therefore, for Xa in the time interval [ιa, θa], we deduce that:
• The first portion of the trajectory from ιa until its first hitting time of

√
a− δ stays

in the interval [√a − δ,
√
a] while the function t �→ −√

a tanh(−√
a(t − υa)) is

in [√a − (ln a)4C/a1/4,
√
a] for t ≤ υa − (3/8)ta + C ln ln a/

√
a. Since υa ≥

(3/8)ta − C ln ln a/
√
a, we deduce that these two curves are at distance smaller

than C
√
a/ ln a of each other (in fact, they are much closer).

• The next portion after its first hitting time of
√
a − δ stays below

√
a − δ/2

and takes a time 3/8 ta + O(ln ln a/
√
a) to reach 0 and then a time of the same

order to reach −√
a + δ, and stays at a distance of order at most

√
a/ ln a from√

a tanh(−√
a(t − τ0)) where τ0 is the first hitting time of 0 after ιa . This implies

that the first and the last hitting times of 0 of this portion of the trajectory are very
close to each other (at distance of order atmost 1/(

√
a ln a)): hence, we can replace

τ0 by υa in the hyperbolic tangent without modifying the order of magnitude of
the bound.

• The last portion of the trajectory stays below −√
a + 2δ and takes at most

C ln ln a/
√
a to hit −√

a.

This yields (ii). ��

5.2 Coupling of Xa and Xa+"

The next lemma controls the difference between Xa and Xa+ε, and yields in particular
the proof of Proposition 3.5.

Lemma 5.4 (Difference between Xa and Xa+ε) Take ε ∈ (0, 1]. There exists C > 0,
such that with probability at least 1− O(1/ ln a), the following holds true:

sup
t∈[υa−(1/16)ta ,υa+(1/16)ta ]

|Xa(t) − Xa+ε(t)| < 1,

sup
t∈[υa+(1/16)ta ,θa−(1/16)ta ]

Xa+ε(t) < −√
a + C a3/7,
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sup
t∈[θa−(1/16)ta ,θa ]

Xa+ε(t) ≤ √
a − 1.

Remark 5.5 Those bounds are not optimal because we overestimate the difference
between Xa and Xa+ε at the initial time where Xa starts its descent to −√

a. We
indeed expect that when ε is of order 1/

√
a, the difference between Xa and Xa+ε is

of order 1/a1/4 around time θa .

Proof Recall the decomposition of the process Xa from the previous proof and let σa
be the starting time of the bridge that starts at

√
a − δ and hits −√

a before
√
a. We

introduce the process Z(t) := Xa+ε(σa + t) − Xa(σa + t), which solves

dZ(t) = −Z(t)(Xa(σa + t) + Xa+ε(σa + t))dt + εdt .

Since Xa(σa + t) ≤ Xa+ε(σa + t) until Xa explodes, we deduce that

dZ(t) ≤ −2Xa(σa + t)Z(t)dt + εdt,

or, written in its integrated form

Z(t) ≤ Z(0)e−2
´ t
0 Xa(σa+s)ds + ε

ˆ t

0
e−2

´ t
s Xa(σa+r)dr ds.

ByLemma 5.1, we know that with probability at least 1−O(a−c), the process Xa(σa+
t) is bounded frombelowby Z−(t)−M until it hits−√

a+δ, where Z−was introduced
in the proof of Lemma 5.1. Since e2Mt ≤ 2 for all t ∈ [0, ta] and all a large enough,
we have the bound

Z(t) ≤ 2Z(0)e−2
´ t
0 Z−(s)ds + 2ε

ˆ t

0
e−2

´ t
s Z−(r)dr ds.

A simple integration yields for all t ≥ 0

ˆ t

0
Z−(s)ds = 1

(1− κ)2
ln

cosh
√
a− A−

cosh
√
a−(t − A−)

.

where a− := a(1+ κ)(1− κ)2.
Similarly, we get

ˆ t

0
e−2

´ t
s Z−(r)dr ds = (cosh

√
a−(t − A−))2/(1−κ)2

ˆ t

0

1
(
cosh

√
a−(s − A−)

)2/(1−κ)2
ds

≤ (cosh
√
a−(t − A−))2/(1−κ)2

ˆ t

0

1(
cosh

√
a−(s − A−)

)2 ds

≤ 1√
a−

(cosh(
√
a−(t−A−)))2/(1−κ)2

(
tanh

√
a−(t − A−)+ tanh

√
a−A−

)
.
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Fix ρ ∈ (0, 3/4). For all t ∈ [ρta, ( 34 − ρ)ta] we have

e−2
´ t
0 Z−(s)ds=

(cosh√a−(t−A−)

cosh
√
a−A−

) 2
(1−κ)2 � e−2

√
a (1+κ)1/2

1−κ

(
t∧(2A−−t)

)
≤a−2ρ+o(1).

(42)

Additionally, we have for all t ∈ [ρta, ( 34 − ρ)ta]

ε

ˆ t

0
e−2

´ t
s Z−(r)dr ds ≤ ε

2√
a−

e
2

(1−κ)2
√
a−|t−A−| ≤ εa

1
4−2ρ+o(1). (43)

From (42) and (43), we deduce that

∀t ∈
[
ρta,

(
3

4
− ρ

)
ta

]
, Z(t) ≤ 2Z(0)a−2ρ+o(1) + εa

1
4−2ρ+o(1).

By Lemmas 5.1, 5.2 and 5.3, we know that υa − σa and θa − υa are of order
3/8ta + O(ln ln a/

√
a) with probability 1 − O(1/ ln a). Furthermore, Xa+ε(σa) <

10
√
a with a huge probability so that Z(0) < 10

√
a. We thus easily get the first bound

of the statement of the lemma.
Notice that we also deduce that there exists C such that for all a large enough

sup
t∈[υa+(1/16)ta ,θa−(1/16)ta ]

Xa+ε(t) < −√
a + C a3/7,

which gives the second bound.
We turn to the third bound, for which we control Xa+ε on the time interval [θa −

(1/16)ta, θa]. We have:

dZ(t) = −2Xa(t)Z(t)dt − Z(t)2dt + εdt ≤ 2
√
aZ(t)dt − Z(t)2dt + εdt

=
(
a + ε − (Z(t) −√

a)2
)
dt,

for all t ≤ θa . Notice that Xa = −√
a + o(1) on this time interval. Consequently, for

all t ∈ [θa − 1
16 ta, θa] we have the trivial bound:

Xa+ε(t) ≤
√
a + ε tanh

(√
a + ε(t − Aε)

) + o(1),

where Aε is such that the r.h.s. coincides with Xa+ε(θa − 1
16 ta) at time θa − 1

16 ta . As
Xa+ε(θa − 1

16 ta) = −√
a + O(a3/7), we deduce the third bound of the statement. ��

Lemma 5.6 Take ε ∈ (a−2/3, 1). Assume that Xa(t)and Xa+ε(t) lie in [√a/2, 3
√
a/2]

for all t ∈ [0, 2ta]. If Xa+ε(0) < Xa(0), then by time 2ta and for all a large enough,
Xa+ε passes above Xa.
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Proof Assume that Xa+ε is below Xa up to time 2ta , then the difference Z(t) =
Xa(t) − Xa+ε(t) is positive and satisfies for all t ∈ [0, 2ta]:

Z(t) = Z(0) exp(−
ˆ t

0
(Xa + Xa+ε)(s)ds) − ε

ˆ t

0
exp(−

ˆ t

v

(Xa + Xa+ε)(s)ds)dv

≤ Z(0) exp(−√
at) − ε

ˆ t

0
exp(−3

√
a(t − v))dv

≤ Z(0) exp(−√
at) − ε

3
√
a

(1− e−3
√
at ).

By assumption Z(0) ≤ √
a. At time t = 2ta , we thus find

Z(t) ≤ a−
3
2 − ε

3
√
a

(1− o(1)).

We get Z(t) < 0 for all a large enough, thus raising a contradiction. ��

5.3 Bounds after time�a

Lemma 5.7 As a → +∞, we have P−√
a

(
τ−√

a−δ < τ−√
a+δ

) → 1/2. Furthermore,
there exists C > 0 such that for all a large enough and all x ∈ [−√

a− δ,−√
a+ δ],

Ex
[
τ−√

a+δ ∧ τ−√
a−δ

] ≤ C
ln ln a√

a
. (44)

Consequently,

P−√
a

[
τ−√

a−δ >
(ln ln a)2

4
√
a

∣∣ τ−√
a−δ < τ−√

a+δ

] ≤ 12C

ln ln a
,

and P−√
a

[
τ−√

a+δ >
(ln ln a)2

4
√
a

∣∣ τ−√
a+δ < τ−√

a−δ

] ≤ 12C

ln ln a
.

Proof Recall the identity (29). Since V (y) = V (−√
a)−(y+√

a)2
√
a+(y+√

a)3/3,
a simple computation yields the following asymptotics:

S
(−√

a + δ
) − S

(−√
a
) =

ˆ −√
a+δ

−√
a

exp(2Va(y))dy ∼
√

π

2
√
2
a−1/4 exp

(
4

3
a3/2

)
,

S
(−√

a + δ
) − S

(−√
a − δ

) =
ˆ −√

a+δ

−√
a−δ

exp(2Va(y))dy ∼
√

π√
2

a−1/4 exp

(
4

3
a3/2

)
.

(45)
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Therefore P−√
a[τ−√

a−δ < τ−√
a+δ

] → 1/2. We now estimate the expectation of
the time it takes to exit the interval (−√

a − δ,−√
a + δ) when starting at x ∈

[−√
a − δ,−√

a + δ]. Applying [35, Th VII.3.6], we find:

Ex [τ−√
a−δ ∧ τ−√

a+δ] = 2Px [τ−√
a−δ < τ−√

a+δ]
ˆ x

−√
a−δ

S(y) − S(−√
a − δ)

S′(y) dy

+ 2Px [τ−√
a+δ < τ−√

a−δ]
ˆ −√

a+δ

x

S(−√
a + δ) − S(y)

S′(y) dy.

Let us bound the first term on the r.h.s., the second term can be bounded in the same
way. Using the change of variable y = −√

a+u/a1/4, and neglecting the cubic terms
in the potential we get:

ˆ x

−√
a−δ

S(y) − S(−√
a − δ)

S′(y) dy ≤ 2√
a

ˆ (x+√
a)a1/4

−a1/4δ
exp(2u2)

ˆ u

−a1/4δ
exp(−2v2)dvdu.

If (x + √
a)a1/4 is bounded from above, the simple inequality

´∞
y exp(−2u2)du ≤

exp(−2y2)/(4y) that holds for y > 0 allows to prove that the term is of order
ln(δa1/4)/

√
a. If (x +√

a)a1/4 → +∞, the inequality

Px [τ−√
a−δ < τ−√

a+δ] ≤ C0

ˆ δa1/4

(x+√
a)a1/4

exp(−2y2)dy

allows to get the same bound. This yields (44). Thanks to Markov’s inequality and
since P−√

a

(
τ−√

a±δ < τ−√
a∓δ

)
> 1/3 for all a large enough, we get:

P−√
a

[
τ−√

a±δ >
(ln ln a)2

4
√
a

∣∣ τ−√
a±δ < τ−√

a∓δ

]
≤

P−√
a
[
τ−√

a−δ ∧ τ−√
a+δ > (ln ln a)2/(4

√
a)

]

P−√
a
[
τ−√

a±δ < τ−√
a∓δ

]

≤ 12C

ln ln a
,

as required. ��
We need a last lemma that controls the time needed by the diffusion Xa to return

to
√
a when it starts from −√

a + δ.

Lemma 5.8 There exists C > 0 such that for all a large enough, we have:

P−√
a+δ

[
τ√a ≤ 3

4
ta + C

ln ln a√
a

, τ√a < τ−√
a

]
≥ 1−O(

1/ ln a
)
.

Proof It suffices to introduce Z := X − B and adapt the proof of Lemmas 5.1, 5.2
and 5.3. ��

This readily implies the last event (iii) of Proposition 3.3:
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Proof of (iii) of Proposition 3.3 After time θa , the process Xa has the lawof the diffusion
starting from −√

a. If it exits the interval [−√
a − δ,−√

a + δ] through −√
a − δ

then by Lemma 5.7 it does so in a time smaller than (ln ln a)2/(4
√
a) with probability

at least 1−O(1/ ln ln a), and by Lemma 4.3 it stays below−√
a+1 and goes to−∞

within a time (3/8)ta , with probability at least 1− exp(−(ln ln a)2).
On the other hand, if it exits through −√

a + δ, then by Lemma 5.8 it reaches
√
a

without hitting −√
a within a time (3/4)ta + C ln ln a/

√
a with probability at least

1− O(1/ ln a). ��
Proof of Proposition 3.6 The r.v. θ ∧ L is a stopping time in the filtration Ft , t ≥ 0
of the underlying Brownian motion B. By the strong Markov property, the process
(B(t + θ ∧ L)− B(θ ∧ L), t ≥ 0) is a standard Brownian motion, independent from
Fθ∧L . Hence, conditionally given θ ∧ L , the process (X̂a(t), t ∈ [0, L − θ ∧ L]) has
the law of the time-reversed diffusion stopped at the deterministic time L − θ ∧ L .
The two bounds of the statement follow from the same type of arguments as those
presented in the proofs of Lemmas 4.5 and 4.7. In particular, we introduce a stationary
diffusion Ŷ (with the same law as the stationary diffusion−Y ) driven by B̂. We define
the event

A := {
Ŷ ((L − t) ∨ 0) ≤ −√

a + ha/2 for all t ∈ [θ, θ + 11ta]
}
.

From the estimates on the invariant measure collected in Lemma 4.1 and using a
comparison with a reflected Brownian motion (as in the proof of Proposition 2.6), we
deduce that there exists ρ > 0 such that P[A] > 1 − 1/ ln a for all a large enough.
Denote by B the event on which X̂a and Ŷ remain at a distance ha/2 from each other
on the interval [(3/8)ta, τ ] where τ is the first hitting time of 3

√
a by Ŷ and both of

them explode after time τ within a time O(1/
√
a). The proof of Lemma 4.7 ensures

that P[B] ≥ 1− 1/ ln a.
Define now the event C on which

 t

θ∧L
Ŷ (L − s)ds ≤ −√

a + ha/2, ∀t ∈ [θ ∧ L, L].

We claim that there exists c > 0 such that P[C |Fθ∧L ] > 1 − exp(−c(ln a)2), and
consequently P[C] > 1− exp(−c(ln a)2). Indeed, if we introduce the events

Ek :=
{ θ∧L+2−k (L−θ∧L)

θ∧L
1{−Ŷ (L−s)/∈Ia(1/4)}ds ≥

1

a

}
, k ≥ 1,

then, by the stationarity of Ŷ , we deduce that P[Ek |Fθ∧L ] ≤ a e−(ln a)2/16 so that the
proof of Lemma 4.5 carries through mutatis mutandis and yields the asserted bound
on the conditional probability of C.

Let D be the event on which Ŷ explodes to +∞ within a time of order 1/
√
a once

it has hit 3
√
a. By Lemma 4.3, P(D) > 1− exp(−(ln ln a)2).
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Therefore, on the event A ∩ B ∩ C ∩D, if ζ̂a(1) > L − θ − 10ta and θ < L then
Ŷ hasn’t reached 3

√
a by time L − θ − 10ta : indeed, if it had then by D it would

explode before time L − θ and this would contradictA. UsingA, this in turn ensures
that τ > L − θ . Since X̂a remains below Ŷ up to the first explosion time of the latter,
the bound of event A yields:

X̂a(L − t) ≤ −√
a + ha, ∀t ∈ [θ, θ + 10 ta],

so that X̂a does not explode before time L−θ .Moreover the boundof eventC combined
with the condition of event B yields the second bound of the proposition. ��

5.4 Proof of parts (b)–(i), (b)–(ii) and (b)–(iii) of Proposition 3.9

Let us fix ε > 0. Let a ∈ ML . Recall that by Proposition 2.4, the explosion times of
Xa (resp. X j

a ), rescaled by m(aL) = L , converge to a Poisson point process on R+
(resp. on [tnj ,+∞)) of intensity bounded from above by e4/ε as a ≥ aL − 1/(ε

√
aL).

Consequently, with probability 1−O(2−n) for all L large enough, Xa does not explode
on [(tnj − 2 · 2−2nL)∨ 0, (tnj + 2 · 2−2nL)∧ L], X j

a explodes at most once per interval
[tnj , tnj+3]. This yields (b)-(i) and (b)-(iii) for all a ∈ ML with probability 1− O(2−n)

for all L large enough (since there are of order 1/ε2 points in ML ).
It is easy to generalize [3, Thm 3.3] to show that the first hitting time of −√

a,
rescaled bym(a)/2, of the diffusion Xa starting from

√
a converges to an exponential

r.v. of parameter 1 when a → ∞ (its Laplace transform satisfies a similar fixed point
equation as in [3, Proposition 3.3] replacing −∞ in the first integral by −√

a and
taking y ≥ −√

a. The same proof then carries through, noting that we have to divide
m(a) by 2 so that the recursive integrals Rn(y, a) converges to 1). As a consequence,
we have the following counterpart of Proposition 2.4: the first hitting times of−√

a of
the successive excursions of Xa , rescaled by m(a), converge as a → ∞ to a Poisson
point process on R+ of intensity 2. Consequently the first hitting times of−√

a of the
successive excursions of Xa (resp. X

j
a ), rescaled bym(aL) = L , converge as L → ∞

to a Poisson point process on R+ (resp. on [tnj ,∞)) of intensity bounded from above

by 2e4/ε. Therefore for j = 0 and j = 2n−1,Xa and X j
a do not hit−√

a on [tnj , tnj+1]
with probability at least 1 − O(2−n). For any other given j , Xa and X j

a hit at most
once −√

a with probability at least 1 − O(2−2n) so that, taking a union bound over
all such j , we obtain a probability at least 1− O(2−n). Hence (b)-(ii) is satisfied with
probability at least 1− O(2−n) for all L large enough.

5.5 Proof of part (b)–(iv) of Proposition 3.9

Let a be the smallest point in ML . In the next lemma, we show that for a > a in ML ,
if X j

a explodes then X j
a

explodes roughly at the same time, and this proves (b)-(iv).
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Lemma 5.9 Fix n ≥ 1and take a ∈ ML.The followingholds for all j ∈ {0, . . . , 2n−1}
with probability at least 1 − O(1/ ln ln aL). If X j

a
makes at most one excursion to

−√
a on [tnj , tnj+1], then:

(A) on [tnj , tnj+1] the number of excursions of X j
a to −√

a is smaller than or equal

to the number of excursions of X j
a

to −√
a,

(B) if X j
a hits−√

a on [tnj , tnj+1] and then explodes without coming back to
√
a, then

so does X j
a
and their explosion times lie at a distance atmost (ln ln aL)2/(3

√
aL)

from each other.

Proof Notice that the difference a−a belongs to (a−2/3
L , 1). We are going to describe

the behavior of the two trajectories X j
a , X

j
a

by combining several estimates obtained
in previous lemmas. The bounds on the probabilities obtained in these lemmas ensure
that all what follows happens with probability greater than 1 − O(1/ ln ln aL). The
diffusion X j

a remains above X j
a

until the first explosion time of X j
a
, and cannot

reach −√
a before the first hitting time of −√

a by X j
a
. Let us denote this first

hitting time θ
j
a
. At time θ

j
a
, by the estimates of Proposition 3.5 the diffusion X j

a
lies in [−√

a,
√
a − 1] ⊂ [−√

a,
√
a − 1]. For convenience, let us distinguish

two cases: the diffusion is either in the interval [−√
a,−√

a + δ) or in the interval
[−√

a + δ,
√
a − 1], where δ = ln2(a)/a1/4.

In thefirst case, thanks toLemma5.7, it takes a time smaller than (ln ln aL)2/(4
√
aL)

to exit the interval [−√
a− δ,

√
a+ δ]with probability greater than 1−O(1/ ln ln a).

If it exits through−√
a−δ, then it takes a time (3/8)tL+O(ln ln aL/

√
aL) to explode

to −∞ (without hitting −√
a) by Lemma 4.3. From the ordering of the diffusions,

this implies that X j
a

explodes as well and that their explosion times are at distance at
most (ln ln aL)2/(3

√
aL) from one another. If it exits through −√

a + δ, then we get
to the second case.

In the second case, thanks to Lemma 5.8, it takes a time smaller than (3/4)tL +
O(ln ln aL/

√
aL) for the diffusion to reach

√
a without hitting−√

a. Moreover, after
this return time, it stays in the region [√a/2, (3/2)

√
a] during a time greater than

5tL (notice that this happens with a huge probability). Similarly, the diffusion X j
a

hits
√
a (with or without explosion) before time θ

j
a + (3/4)tL + o(tL) and stays

in the interval [√a/2, (3/2)
√
a] during a time greater than 5tL . We can therefore

apply Lemma 5.6 which states that X j
a passes above X j

a
before time θ

j
a
+ 5tL , thus

preventing X j
a to make a second excursion to −√

a before X j
a

makes itself a second
excursion to −√

a.

Therefore, with probability 1− O(1/ ln ln aL) if X j
a

makes only one excursion to
−√

a on [tnj , tnj+1] then (A) and (B) are satisfied. Since there are 2n different values
j , the statement follows. ��
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6 Neumann boundary conditions

When the operator is endowed with Neumann boundary conditions, we have ϕ′
k(0) =

ϕ′
k(L) = 0 so that necessarily ϕk(0), ϕk(L) �= 0 (otherwise, ϕk would be identically

zero). Consequently, the corresponding Riccati transforms χ(N )
k start and end at 0.

Therefore, we need to start our diffusions from 0 as well. To avoid confusions, we let
X (N )
a and X̂ (N )

a be the analogues of Xa and X̂a but starting from 0. Notice that we
have the following almost sure equivalences:

• a > −λ
(N )
1 if and only if X (N )

a does not explode on [0, L] and X (N )
a (L) > 0,

• −λ
(N )
k ≥ a > −λ

(N )
k+1 if and only if either

[
X (N )
a explodes k times on [0, L] and

X (N )
a (L) > 0

]
or

[
X (N )
a explodes k − 1 times on [0, L] and X (N )

a (L) ≤ 0
]
.

The strategy of proof is exactly the same as in the case of Dirichlet boundary
conditions: we decompose the interval [0, L] into subintervals of size 2−nL , and,
within these subintervals, we still consider the diffusions X j

a that start from+∞ (and
not from 0!) at time j2−nL . The only changes in the proof consist in dealing with the
boundary conditions of X (N )

a and X̂ (N )
a . One needs to show that with large probability

we have:

(1) The diffusion X (N )
a reaches a neighborhood of

√
a very quickly:

τx (X
(N )
a ) = (3/8)ta(1+ o(1)),

where x = √
a − ln a

a1/4
and

sup
t∈(0, 38 ta ]

∣∣∣X (N )
a (t) −√

a tanh(
√
at)

∣∣∣ ≤ 1.

(2) The diffusion X (N )
a synchronizes with X j

a for every j = 0, . . . , 2n − 1: the
content of Proposition 2.6 remains true upon replacing Xa by X (N )

a and t0 by
j2−nL .

(3) If X (N )
a does not explode more than k times, then X (N )

a (L) > 0.

The proofs of the two first estimates are essentially the same as those for Dirich-
let boundary conditions. The proof of the third estimate is a simple consequence of
the synchronization with the stationary diffusion proved in Lemma 4.7 for Dirichlet
boundary conditions, which can be adapted to the Neumann case, and of the fact that,
for a stationary diffusion Y the probability that Y (L) >

√
a/2 is overwhelming.

This being given, one considers a more restrictive event E(n, ε) than previously: one
also imposes that for all a ∈ ML , X

(N )
a satisfies the above bounds and (b)–(ii), and

similarly for X̂ (N )
a . This event E(n, ε) has a probability of order at least 1− O(ε).

We now work on E(n, ε). We know that for every a ∈ ML , the sum over j of the
number of explosions of X j

a coincides with the number of explosions of Xa . Thanks to
the additional properties collected above, this is also true for X (N )

a . Since in addition
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X (N )
a (L) > 0, the r.v.ai anda′i , whichwere defined inSect. 3, satisfyai ≤ −λ

(N )
i < a′i .

Since a′i − ai = ε/
√
aL , this immediately implies that (λ

(N )
i − λi )

√
aL goes to 0 in

probability. Then, the same monotonicity arguments as for the Dirichlet case allow
to boundχ(N )

i using the diffusions X (N )
ai , X (N )

a′i
and their time reversals. In particular,

the location of the maximum of ϕ
(N )
i is still very close to the point υ∗, defined as the

last zero of X j∗
ai where the time-interval [ j∗2−nL, ( j∗ + 1)2−nL] corresponds to the

additional explosion of X (N )
ai . This concludes the proof of Theorem 4.
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30. Molčanov, S.A: The local structure of the spectrum of the one-dimensional Schrödinger operator.

Commun. Math. Phys. 78(3), 429–446 (1980/81)
31. Otto, F., Weber, H., Westdickenberg, M.G.: Invariant measure of the stochastic Allen–Cahn equation:

the regime of small noise and large system size. Electron. J. Probab. 19(23), 76 (2014). https://doi.org/
10.1214/EJP.v19-2813

32. Ramírez, J.A., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys. 288(3),
887–906 (2009). https://doi.org/10.1007/s00220-008-0712-1

33. Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic airy spectrum, and a diffusion. J. Am.
Math. Soc. 24(4), 919–944 (2011). https://doi.org/10.1090/S0894-0347-2011-00703-0

34. Rifkind, B., Virág, B.: Eigenvectors of the critical 1-dimensional random Schrödinger operator. ArXiv
e-prints (2016). arXiv:1605.00118

35. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles ofMathematical Sciences], vol. 293, 3rd edn. Springer, Berlin
(1999)

36. Texier, C.: Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder.
J. Phys. A 33(35), 6095–6128 (2000). https://doi.org/10.1088/0305-4470/33/35/303

37. Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math.
177(3), 463–508 (2009). https://doi.org/10.1007/s00222-009-0180-z

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1303.5113
https://doi.org/10.1007/s00222-014-0505-4
https://doi.org/10.1007/s00023-006-0298-0
https://doi.org/10.1215/00127094-2009-001
https://doi.org/10.1215/00127094-2009-001
https://doi.org/10.1007/s00220-012-1537-5
https://doi.org/10.1007/s00220-012-1537-5
http://arxiv.org/abs/1809.03718
https://doi.org/10.1007/BF02188225
https://doi.org/10.1214/EJP.v19-2813
https://doi.org/10.1214/EJP.v19-2813
https://doi.org/10.1007/s00220-008-0712-1
https://doi.org/10.1090/S0894-0347-2011-00703-0
http://arxiv.org/abs/1605.00118
https://doi.org/10.1088/0305-4470/33/35/303
https://doi.org/10.1007/s00222-009-0180-z

	Localization of the continuous Anderson Hamiltonian in 1-D
	Abstract
	1 Introduction
	Statement of our results
	Discussion
	Main ideas of the proof
	The Riccati transform
	Convergence of the eigenvalues
	The first eigenfunction
	The next eigenfunctions

	Organization of the paper
	Notations

	2 Convergence of the eigenvalues towards the Poisson point process
	2.1 Technical preliminaries
	2.2 First estimates on the diffusion Xa
	2.3 Proof of the convergence of the point process of the eigenvalues

	3 Localization of the eigenfunctions
	3.1 Time reversal
	3.2 Fine estimates on the exceptional excursions
	3.3 Preliminaries for the proof of Theorems 1, 2 and 3
	3.4 The first eigenfunction 1
	3.5 The next eigenfunctions
	3.6 Convergence towards uniform r.v.

	4 Proofs of some first estimates on the diffusion Xa
	4.1 Invariant measure
	4.2 Entrance and exit
	4.3 Oscillations

	5 Crossing of the well
	5.1 Bounds up to time θa
	5.2 Coupling of Xa and Xa + ε
	5.3 Bounds after time θa
	5.4 Proof of parts (b)–(i), (b)–(ii) and (b)–(iii) of Proposition 3.9
	5.5 Proof of part (b)–(iv) of Proposition 3.9

	6 Neumann boundary conditions
	Acknowledgements
	References




