
Probability Theory and Related Fields (2019) 175:1123–1176
https://doi.org/10.1007/s00440-019-00912-6

Rigidity of the three-dimensional hierarchical Coulomb gas

Sourav Chatterjee1

Received: 4 March 2018 / Revised: 21 March 2019 / Published online: 5 April 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
A random set of points in Euclidean space is called ‘rigid’ or ‘hyperuniform’ if the
number of points falling inside any given region has significantly smaller fluctuations
than the corresponding number for a set of i.i.d. random points. This phenomenon has
received considerable attention in recent years, due to its appearance in randommatrix
theory, the theory of Coulomb gases and zeros of random analytic functions. However,
most of the published results are in dimensions one and two. This paper gives the first
proof of hyperuniformity in a Coulomb type system in dimension three, known as the
hierarchical Coulomb gas. This is a simplified version of the actual 3D Coulomb gas.
The interaction potential in this model, inspired by Dyson’s hierarchical model of the
Ising ferromagnet, has a hierarchical structure and is locally an approximation of the
Coulomb potential. Hyperuniformity is proved at both macroscopic and microscopic
scales, with upper and lower bounds for the order of fluctuations that match up to
logarithmic factors. The fluctuations have cube-root behavior, in agreement with a
well-known prediction for the 3D Coulomb gas. For completeness, analogous results
are also proved for the 2D hierarchical Coulomb gas and the 1D hierarchical log gas.
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1 Introduction and results

1.1 Interacting gases

The probability density of n independent and identically distributed points in R
d can

always be represented as

1

Z
exp

(
−β

n∑
i=1

V (xi )

)

where V is some real-valued function on R
d , β is some positive parameter, and Z is

the normalizing constant.
Suppose that we want to introduce some interactions between the points. The sim-

plest way to do that is to introduce a pairwise interaction term in the exponent; the
new density is of the form

1

Z
exp

⎛
⎝−β

∑
1≤i< j≤n

w(xi , x j ) − βn
n∑

i=1

V (xi )

⎞
⎠ ,

where w is a symmetric real-valued function on R
d × R

d , known as the interaction
potential. The factor n is put in front of the second term to ensure that the two terms
are of comparable size, which is necessary for ensuring that the system has nontrivial
properties in the large n limit. A particularly important type of interaction potentials
are the Coulomb potentials, defined as

w(x, y) =

⎧⎪⎨
⎪⎩

|x − y| if d = 1,

− log |x − y| if d = 2,

|x − y|2−d if d ≥ 3,

where |x − y| is the Euclidean distance between x and y. With w as above and
V (x) = |x |2, we get the so-called Coulomb gases.

The 1D Coulomb gas is a very well-understood exactly solvable system, stud-
ied thoroughly by physicists [37,60,66,67] and mathematicians [1,29]. In higher
dimensions, much less is known. For β = 1, the 2D Coulomb gas is an exactly
solvable model due to its relationship with the Ginibre ensemble of random matrices
[49]. The Ginibre ensemble has received widespread attention from mathematicians
[2,3,18,26,27,47,50,80,87]. For general β, however, the 2DCoulomb gas has no repre-
sentation as an exactly solvablemodel. Fortunately, a number of results are now known
for the case of general β. Large deviation principles for the 2D Coulomb gas were
proved in [11,52,78], and extended to general dimensions in [34,83]. Concentration
inequalities were proved in [33] and dynamical properties have been recently studied
in [17]. The ground state in a related model was studied in [79]. Local properties have
been studied in great depth in the recent papers [6,7,62,64,82].
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Rigidity of the three-dimensional hierarchical Coulomb gas 1125

In dimensions three and higher, very precise information about the normalizing
constants has been obtained in [63,81]. For a comprehensive survey, see [84]. Further
results are provable by the techniques of these papers but have not been written up
yet, as I learned from Sylvia Serfaty in a personal communication.

Another widely studied example is the 1D log gas, where d = 1, w(x, y) =
− log |x − y| and V (x) = x2. For β = 1, 2 and 4, the log gases arise as eigenvalues
of various random matrix ensembles and are exactly solvable. Precise fluctuation
estimates for these special values ofβ were obtained in [57]. There is now considerable
information available about other values of β and more general V [10,23–25,28,85].
Asymptotic series expansions for the normalizing constants were computed in [20–
22]. Central limit theorems have been investigated in [9,19,61]. For an introduction to
log gases and their connections with random matrices, see [4,36,42]. A recent survey
is given in [6].

1.2 Hyperuniformity

If we have a collection of n independent and identically distributed points in Rd , then
the number of points that fall in a given set has fluctuations of order n1/2 as n → ∞.
If a random point process has the property that this order of fluctuations is o(n1/2),
then it is called ‘rigid’ or ‘hyperuniform’. More generally, a point process is called
hyperuniform if its empirical measure has smaller fluctuations than the empirical
measure of a collection of i.i.d. random points. In this paper I will use the terms
‘rigidity’ and ‘hyperuniformity’ interchangeably, but in general hyperuniformity is
probably a more suitable term for the phenomenon described above, since rigidity has
also been used to mean other things in the literature.

Sometimes point processes are very rigid, such as eigenvalues of various random
matrix ensembles, for which the order of fluctuations may be as small as O(

√
log n)

or even O(1) if one considers integrals of the empirical measure with respect to
smooth functions. Rigidity/hyperuniformity has been established for many processes
in dimensions one and two. For example, rigidity of the eigenvalues of random unitary
matrices was proved in [38,91]. Rigidity of eigenvalues in the standard hermitian
random matrix ensembles follow from the results of [23–25,35,43,76,88]. Rigidity
of eigenvalues of non-hermitian random matrices has been studied in [18,26,27,47,
89]. Another class of 2D processes that exhibit hyperuniformity are zeros of random
analytic functions. This has been investigated in [44,45,47,48,54,73–75]. In recent
work, rigidity of the 2D Coulomb gas has been established in [6,7,62].

However, no such results for interacting particle systems of the above kind are
known in dimensions three and higher. The only random point process which has
been shown to be hyperuniform in any dimension d ≥ 3, as far as I know, is the point
process obtained by giving i.i.d. random perturbations to the vertices of Zd . This is a
recent result [77], improving on an earlier work in d ≤ 2 [53]. The notion of rigidity in
these papers is somewhat different than hyperuniformity. For interacting systems such
as Coulomb gases, the detailed information about the normalizing constants obtained
in [81,84] provide some control on the order of fluctuations in d ≥ 3, but do not
establish that the order of fluctuations is smaller than n1/2. There is a remark in [62]
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1126 S. Chatterjee

that the 2D techniques of that paper can be extended to higher dimensions for proving
rigidity of integrals of smooth functions with respect to the empirical measure of a
Coulomb gas, but the details have not yet been written up.

A class of processes that are related to Coulomb gases in dimension one but not in
higher dimensions, are the so-called orthogonal polynomial ensembles (see [59] for a
survey). These are generalizations of the 1D determinantal point processes arising in
random matrix theory, and have nice mathematical structures that allow various exact
calculations. A general central limit theorem for orthogonal polynomial ensembles
was proved in [86]. Rigidity/hyperuniformity for orthogonal polynomial ensembles
(beyond randommatrix eigenvalues) have been investigated in recent years, for exam-
ple in [16,30,31,56] in dimensions one and two, and [5] in dimension three.

There is a considerable amount of work by physicists on hyperuniformity. For
example, [72] and [71] give physics proofs of hyperuniformity in 3DCoulombsystems.
A non-rigorous computation of covariances in Coulomb systems in all dimensions
greater than one was given in [65]. More recently, a physics proof of hyperuniformity
of free fermions at zero temperature (a certain kind of determinantal point process)
was given in [32] in d ≤ 3, based on an asymptotic formula for the variance of the
number of points falling in a given region. This formula was later extended to arbitrary
dimensions in [90]. Similar formulas have been very recently obtained for the 1D log
gas (with general β and special V ) in [69,70]. For an extensive list of references to
the physics literature, see the recent survey [46].

1.3 The hierarchical Coulomb gasmodel

In this paper, we consider a model of an interacting gas of n particles in the 3D unit
cube [0, 1]3, which have joint probability density

1

Z(n, β)
exp

⎛
⎝−β

∑
1≤i< j≤n

w(xi , x j )

⎞
⎠ , (1.1)

where w(x, y) is a symmetric potential that behaves like the Coulomb potential |x −
y|−1 at short distances, and Z(n, β) is the normalizing constant. The potential w is
defined as follows.

The unit cube in R3 can be partitioned into 8 sub-cubes of side-length 1/2. Each of
these sub-cubes can be further partitioned into 8 sub-cubes of side-length 1/4, and so
on, generating a tree of dyadic sub-cubes. For any two distinct points x and y in the
unit cube, let w(x, y) = 2k , where k is the smallest number such that x and y belong
to distinct dyadic sub-cubes of side-length 2−k . There may be some ambiguity about
points on the boundaries of the cubes, but since they form a set of measure zero, they
do not matter. This w is our potential, which defines our point process through the
density (1.1). Note that w is symmetric but not translation invariant.

For typical x and y which are close together, w(x, y) behaves like a multiple of the
Coulomb potential |x − y|−1. Indeed, it is not hard to prove that there is a constant C
such that for all x and y,
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Rigidity of the three-dimensional hierarchical Coulomb gas 1127

w(x, y) ≤ C

|x − y| .

Conversely, there is a constant c > 0 such that for any 0 < δ < 1, the average value
of w(x, y) over all pairs (x, y) with |x − y| = δ is bounded below by c/δ.

Replacing the Euclidean distance by a hierarchical distance as above is a famous
idea of Dyson [40,41], who formulated and analyzed a hierarchical version of the 1D
Ising model with long range interactions. This is now known as ‘Dyson’s hierarchical
model’. Dyson’s work has inspired a large body of literature on hierarchical models
over the years, and is still an active area of research. The model proposed above is
sometimes called the ‘hierarchical Coulomb gas’. The 2D hierarchical Coulomb gas
has received considerable attention in the mathematical physics literature [14,15,39,
51,58,68]. However, not much is known about this model in dimensions three and
higher.

Just as the Coulomb potential is the Green’s function for Brownian motion, the
potential w can also be realized as the Green’s function of a certain continuous time
random walk on the unit cube, following a method developed in [12,13] for con-
structing Markov semigroups on ultrametric spaces. More generally, the prescription
given in [12,13] can be used for a large class of hierarchical potentials arising from
Dyson-type constructions.

The chief reason why the hierarchical structure of the potential helps in the analysis
is that it does an automatic ‘coarse-graining’ of the interactions. The total interaction
between the particles in two disjoint dyadic cubes is determined solely by the numbers
of particles in those cubes, rather than their exact locations.

One of our main results, stated in the next subsection, is that if U is a nonempty
open subset of the unit cube with a nicely behaved boundary, then the number of
points falling in U has fluctuations of order at most n1/3

√
log n, thereby establishing

the hyperuniformity of our point process. This is matched up to a logarithmic factor
by a lower bound of order n1/3. We also establish microscopic hyperuniformity in a
local neighborhood of any given point. Finally, the analogous results in dimensions
one and two are established for the sake of completeness.

1.4 Results in 3D

Take any d ≥ 1, and letU be a nonempty open subset of Rd . Let ∂U be the boundary
ofU . For each ε > 0, let ∂Uε be the set of all points that are at distance ≤ ε from ∂U .
Let diam(U ) denote the diameter of U . We will say that the boundary of U is regular
if there is some constant C such that for all 0 < ε ≤ diam(U ),

Leb(∂Uε) ≤ Cε, (1.2)

where Leb stands for Lebesgue measure.
Now let d = 3, and let U be a nonempty open subset of [0, 1]3 whose boundary

is regular in the sense defined above. Take any n ≥ 2 and β > 0, and consider an
interacting gas of n particles behaving according to the model defined above. Let
N (U ) be the number of particles that fall in U . Our first theorem says that the gas

123



1128 S. Chatterjee

is macroscopically hyperuniform in the sense that N (U ) has fluctuations of order at
most n1/3

√
log n, instead of n1/2 as would be the case for a gas of i.i.d. particles.

Theorem 1.1 (Macroscopic hyperuniformity in 3D) Let U and N (U ) be as above.
Then

E(N (U )) = Leb(U )n

and

Var(N (U )) ≤ C(U , β)n2/3 log n,

where C(U , β) is a constant that depends only on U and β.

The next theorem shows that when ∂U is smooth, n1/3 is actually the correct order
of fluctuations of N (U ), up to possible logarithmic corrections.

Theorem 1.2 (Lower bound in 3D) Let U be a nonempty connected open subset of
[0, 1]3 whose boundary is a smooth, closed, orientable surface. Let N (U ) be as in
Theorem 1.1. Then N (U ) has fluctuations of order at least n1/3, in the sense that there
are three constants n0 ≥ 1, c1 > 0 and c2 < 1, depending only on U and β, such
that for any n ≥ n0 and any −∞ < a ≤ b < ∞ with b − a ≤ c1n1/3, we have
P(a ≤ N (U ) ≤ b) ≤ c2.

Incidentally, the n1/3 order of fluctuations matches a well-known prediction from
physics [55,65,72] for the 3D Coulomb gas model (see also [75]). The 1/3 exponent
is also reminiscent of a famous classical result [8] about irregularities in distributions
of arbitrary sequences of points in Euclidean space.

Let us now turn our attention to hyperuniformity in the microscopic scale. Take any
point x ∈ (0, 1)3. Blow up the neighborhood of x by a factor of n1/3 by applying the
blow-up map y �→ n1/3(y − x) to the points in our interacting gas. Since the original
process had an expected density of n particles per unit volume, the new process has
an expected density of one particle per unit volume. Studying the blown up process is
the standard way of investigating the local behavior of interacting gases [84].

Let U be a nonempty open subset of R3 whose boundary is regular in the sense
defined above. For each λ > 0, let λU denote the set {λy : y ∈ U }, and let Nx (λU )

be the number of points from the blown up process that land in λU . The following
theorem shows that for λ 	 1, Nx (λU ) has fluctuations of order at most λ

√
log λ.

This is smaller than λ3/2, the corresponding order of fluctuations for a Poisson point
process. This proves the hyperuniformity of our interacting gas at the microscopic
scale.

Theorem 1.3 (Microscopic hyperuniformity in 3D) Let U and Nx (λU ) be as above.
Then for any λ such that diam(λU ) ≥ 1,

lim
n→∞E(Nx (λU )) = Leb(λU ) = λ3Leb(U ),
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and

lim sup
n→∞

Var(Nx (λU )) ≤ C(U , β)λ2 log(4λdiam(U )),

where C(U , β) is a constant that depends only on U and β.

Theorems 1.1 and 1.3 are both special cases of a more general theorem (Theorem
2.13 in Sect. 2.4), which gives hyperuniformity at all scales.

Finally, let us consider linear statistics. Any function f : [0, 1]3 → R defines a
linear statistic

X( f ) :=
n∑

i=1

f (Xi ), (1.3)

where X1, . . . , Xn is a realization of our point process. In particular, N (U ) is a linear
statistic, with f being the indicator function ofU .We have the following two theorems
about fluctuations of linear statistics when f is continuous. The results are not as
definitive as the other results of this section, since the upper and lower bounds do not
match.

If f is Lipschitz, we get the following slight improvement of the bound given in
Theorem 1.1.

Theorem 1.4 (Upper bound for linear statistics in 3D) Suppose that f : [0, 1]3 → R

is a Lipschitz function with Lipschitz constant L. Let X1, . . . , Xn be a realization of
points from our model in dimension two. Let X( f ) be the linear statistic defined in
(1.3). Then

Var(X( f )) ≤ C(β)L2n2/3,

where C(β) is a constant that depends only on β.

The next theorem gives a lower bound of order n1/6 on the order of fluctuations
of X( f ) when f is a non-constant linear function. This does not match the upper
bound from Theorem 1.4, but is nonetheless growing polynomially in n, deviating
from the O(1) rate for smooth linear statistics in dimensions one and two [6,7,23–
27,35,38,57,62,88,91].

Theorem 1.5 (Lower bound for linear statistics in 3D) Let f : [0, 1]3 → R be a
non-constant linear function, and let X( f ) be as in (1.3). Then X( f ) has fluctuations
of order at least n1/6, in the sense that there are three constants n0 ≥ 1, c1 > 0 and
c2 < 1, depending only on U and β, such that for any n ≥ n0 and any −∞ < a ≤
b < ∞ with b − a ≤ c1n1/6, we have P(a ≤ X( f ) ≤ b) ≤ c2.

It is not clear whether n1/3 or n1/6 is the correct order of fluctuations for smooth
linear statistics. Theorem 1.2 does not provide any strong evidence in favor of n1/3,
because, as we will see later for the 2D hierarchical Coulomb gas, linear statistics of
smooth functionsmay havemuch smaller fluctuations than linear statistics of indicator

123
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functions.However, there is a recent result [5]which shows thatn1/3 is the correct order
of fluctuations for smooth linear statistics of a 3D orthogonal polynomial ensemble.
Although orthogonal polynomial ensembles are not related to Coulomb type systems
in dimension three, this gives some support in favor of n1/3.

1.5 Results in 2D and 1D

In dimension two, we will modify w to mimic the logarithmic potential of the 2D
Coulomb gas. This is done by declaring w(x, y) = the minimum k such that x and
y belong to distinct dyadic sub-squares of [0, 1]2 of side-length 2−k . We will use the
same formula in dimension one as well (with dyadic intervals instead of squares), so
that w mimics the logarithmic potential of 1D log gases. With these modifications,
we have the following analogs of Theorem 1.1. With N (U ) as in Theorem 1.1, it says
that N (U ) has fluctuations of order at most n1/4 log n in dimension two, and log n in
dimension one.

Theorem 1.6 (Macroscopic hyperuniformity in 2D and 1D) Consider the model
defined above in dimension d = 1 or 2. Let U and N (U ) be as in Theorem 1.1.
Then

E(N (U )) = Leb(U )n

and

Var(N (U )) ≤ C(U , β)n(d−1)/d(log n)2,

where C(U , β) is a constant that depends only on U and β.

The following theorem shows that in dimension two, N (U ) has fluctuations of order
at least n1/4, matching the above upper bound up to a logarithmic factor.

Theorem 1.7 (Lower bound in 2D) Let U be a nonempty connected open subset of
[0, 1]2 whose boundary is a simple, smooth, closed curve. Let N (U ) be as in The-
orem 1.6. Then N (U ) has fluctuations of order at least n1/4, in the sense that there
are three constants n0 ≥ 1, c1 > 0 and c2 < 1, depending only on U and β,
such that for any n ≥ n0 and any −∞ < a ≤ b < ∞ with b − a ≤ c1n1/4, we
have P(a ≤ N (U ) ≤ b) ≤ c2.

Like the n1/3 rate in the 3D case, the n1/4 rate was also predicted in the physics
literature [55,65,72] for the 2D Coulomb gas. The n1/4 fluctuation in the special case
of β = 1 in the 2D Coulomb gas (corresponding to the exactly solvable Ginibre
ensemble) can be established by standard techniques, as I learned from Paul Bourgade
in a personal communication.

We also have the following analog of Theorem 1.3. With Nx (λU ) as in Theorem
1.3, it shows that for λ 	 1, Nx (λU ) has fluctuations of order at most λ1/2 log λ in
dimension two, and log λ in dimension one.
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Theorem 1.8 (Microscopic hyperuniformity in 2D and 1D) Consider the model
defined above in dimension d = 1 or 2. Let U and Nx (λU ) be as in Theorem 1.3.
Then for any λ such that diam(λU ) ≥ 1,

lim
n→∞E(Nx (λU )) = Leb(λU ) = λdLeb(U ),

and

lim sup
n→∞

Var(Nx (λU )) ≤ C(U , β)λd−1(log(7λddiam(U )d))2,

where C(U , β) is a constant that depends only on U and β.

As before, Theorems 1.6 and 1.8 are special cases of a more general theorem
(Theorem 3.10 in Sect. 3.4) that gives hyperuniformity at all scales.

Finally, let us consider linear statistics. It has been proved recently in [6,7,62] that
for the 2D Coulomb gas, linear statistics of smooth functions have O(1) fluctuations.
For Lipschitz f , the following theorem shows that for our model in dimension two,
the fluctuations of X( f ) are at most of order (log n)3/2 instead of n1/4. Unlike The-
orem 1.4, this is a big improvement of the bound from Theorem 1.6, and is within a
logarithmic factor of the O(1) bound from [6,7,62].

Theorem 1.9 (Upper bound for linear statistics in 2D and 1D) Let d = 1 or 2. Suppose
that f : [0, 1]d → R is a Lipschitz function with Lipschitz constant L. Let X1, . . . , Xn

be a realization of points from our model in dimension d, and let X( f ) be the linear
statistic defined in (1.3). Then

Var(X( f )) ≤ C(β)L2(log n)d+1,

where C(β) is a constant that depends only on β.

2 Proofs in 3D

The rest of this paper is devoted to proofs. In this section, we will prove the theorems
of Sect. 1.4.

2.1 Notation

It is helpful to define some precise notations and terminologies. For a slight technical
convenience, we will replace the unit cube by the half-open unit cube [0, 1)3. Clearly,
this will not alter the conclusions.

A dyadic sub-interval of the half-open unit interval [0, 1) is an interval of the form
[i2−k, (i + 1)2−k), where k ≥ 0 and 0 ≤ i ≤ 2k − 1. A dyadic sub-cube of the
half-open unit cube [0, 1)3 is a sub-cube of the form I1 × I2 × I3, where I1, I2 and

123



1132 S. Chatterjee

I3 are dyadic sub-intervals of [0, 1) of equal length. Let Dk be the set of all dyadic
sub-cubes of [0, 1)3 of side-length 2−k , and let

D :=
∞⋃
k=0

Dk

be the set of all dyadic sub-cubes of [0, 1)3. Then D has a natural tree structure, with
each node having 8 children. We will freely use the terms ‘child’, ‘parent’, ‘ancestor’
and ‘descendant’ with respect to this tree.

For any two distinct points x, y ∈ [0, 1)3, let k(x, y) be the smallest k such that
x and y belong to distinct elements of Dk . Then our potential w is the function
w(x, y) = 2k(x,y). For x = y, let w(x, y) = ∞.

For each n ≥ 2, let �n be the set of all n-tuples of points from [0, 1)3. Define the
energy of a configuration (x1, . . . , xn) ∈ �n as

Hn(x1, . . . , xn) :=
∑

1≤i< j≤n

w(xi , x j ).

For β > 0, let μn,β be the probability measure on �n that has density

1

Z(n, β)
e−βHn(x1,...,xn)

with respect to Lebesgue measure on �n , where Z(n, β) is the normalizing constant.
The measure μn,β defines our model of an interacting gas at inverse temperature β.

For certain technical reasons, we will also define the model for n = 0 and n = 1.
When n = 0, there are no points. When n = 1, there is one point which is uniformly
distributed in the cube. We will let Z(0, β) = Z(1, β) = 1 for any β.

2.2 Preliminary calculations

In the following, all integrals are over [0, 1)3 and all double integrals are over [0, 1)3×
[0, 1)3, unless otherwise specified.
Lemma 2.1 For each x ∈ [0, 1)3,∫

w(x, y) dy = 7

3
.

Consequently, ∫∫
w(x, y) dx dy = 7

3
.

Proof Take any x . For each k, let Dk be the element of Dk that contains x . It is easy
to see that the set of all y with w(x, y) = 2k is exactly the union of all members of
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Dk that are contained in Dk−1, except the one that contains x . The Lebesgue measure
of this set is 8−k · 7. Thus,

∫
w(x, y) dy = 7

∞∑
k=1

2k8−k = 7

3
.

The second assertion is obvious from the first. 
�
Let us now investigate energy-minimizing configurations of finite size. Henceforth,

Ln will denote the minimum possible energy of a configuration of n points. The
following result gives upper and lower bounds for Ln .

Theorem 2.2 There is a positive constant C1 such that for each n ≥ 2,

(
n

2

)
7

3
− C1n

4/3 ≤ Ln ≤
(
n

2

)
7

3
.

Proof Let Y1, . . . ,Yn be i.i.d. uniform random points from [0, 1)3. Then by symmetry,

Ln ≤ E(Hn(Y1, . . . ,Yn)) =
∑

1≤i< j≤n

E(w(Yi ,Y j )) =
(
n

2

)
E(w(Y1,Y2)).

By Lemma 2.1, E(w(Y1,Y2)) = 7/3. This proves the upper bound. For the lower
bound, let k be an integer such that

n−1/3 ≤ 2−k ≤ 2n−1/3.

Take any configuration of n points. For each D ∈ D, let nD be the number of points
in D. Summing up the contributions to the energy from each cube, it is not difficult to
see that

Hn(x1, . . . , xn) =
∞∑
j=1

∑
D∈D j

2 j
(
nD

2

)
+ 2

(
n

2

)
≥

k∑
j=1

∑
D∈D j

2 j
(
nD

2

)
+ 2

(
n

2

)

=
k∑
j=1

∑
D∈D j

2 j−1n2D −
k∑
j=1

2 j−1n + 2

(
n

2

)
.

By the Cauchy–Schwarz inequality, for each j ,

∑
D∈D j

n2D ≥ 1

|D j |

⎛
⎝ ∑

D∈D j

nD

⎞
⎠

2

= n2

8 j
.
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Thus,

Hn(x1, . . . , xn) ≥ n2

2

k∑
j=1

4− j − n4/3 + 2

(
n

2

)
= n2

6
(1 − 4−k) − n4/3 + 2

(
n

2

)

≥ n2

6
(1 − 4n−2/3) − n4/3 + 2

(
n

2

)
.

Since this lower bound holds for any configuration of n points, this completes the
proof. 
�

2.3 Estimates for the partition function

The following lemmagives important information about the ratio Z(n+1, β)/Z(n, β).
Theorem 2.2 is a crucial ingredient in the proof of this lemma. Recall that Z(0, β) =
Z(1, β) = 1. For a measurable function f : �n → R, we will denote its expected
value under μn,β by μn,β( f ).

Lemma 2.3 There is a constant C2 such that for any n ≥ 0 and β > 0,

e−7βn/3 ≤ Z(n + 1, β)

Z(n, β)
≤ e−7βn/3+C2βn1/3 .

Proof First suppose that n ≥ 2. For x1, . . . , xn, xn+1 ∈ [0, 1)3, let

fn(x1, . . . , xn, xn+1) :=
n∑

i=1

w(xi , xn+1),

so that

Hn+1(x1, . . . , xn+1) = fn(x1, . . . , xn, xn+1) + Hn(x1, . . . , xn).

By the above representation and Jensen’s inequality,

Z(n + 1, β)

Z(n, β)
=

∫∫
e−β fn(x1,...,xn ,xn+1) dxn+1 dμn,β(x1, . . . , xn)

≥ exp

(
−β

∫∫
fn(x1, . . . , xn, xn+1) dxn+1 dμn,β(x1, . . . , xn)

)
.
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Rigidity of the three-dimensional hierarchical Coulomb gas 1135

But by Lemma 2.1,

∫∫
fn(x1, . . . , xn, xn+1) dxn+1 dμn,β(x1, . . . , xn)

=
n∑

i=1

∫∫
w(xi , xn+1) dxn+1 dμn,β(x1, . . . , xn)

=
n∑

i=1

∫
7

3
dμn,β(x1, . . . , xn) = 7n

3
.

This gives the desired lower bound. Next, note that

Z(n, β)

Z(n + 1, β)
= μn+1,β(eβ fn(x1,...,xn ,xn+1)).

Therefore by Jensen’s inequality and the invariance of μn+1,β under permutations of
coordinates,

Z(n, β)

Z(n + 1, β)
≥ exp(βμn+1,β( f (x1, . . . , xn+1)) = exp(βnμn+1,β(w(x1, xn+1)))

= exp

⎛
⎝ βn(n+1

2

) ∑
1≤i< j≤n+1

μn+1,β(w(xi , x j ))

⎞
⎠

= exp

(
βn(n+1
2

)μn+1,β(Hn+1(x1, . . . , xn+1))

)
.

But by Theorem 2.2,

μn+1,β(Hn+1(x1, . . . , xn+1)) ≥ Ln+1 ≥ 7

3

(
n + 1

2

)
− C1(n + 1)4/3.

This gives the required upper bound and completes the proof of the lemma for n ≥ 2.
When n = 0, the bounds hold trivially. When n = 1, the lower bound follows from
an application of Jensen’s inequality and Lemma 2.1. The upper bound can be forced
to hold for n = 1 by choosing C2 sufficiently large. 
�

Lemma 2.3 is iterated to obtain the following corollary.

Corollary 2.4 For any n ≥ 0, β > 0, and any k ≥ −n,

Z(n + k, β)

Z(n, β)
≤ exp

(
−7βnk

3
− 7βk(k − 1)

6
+ C2β|k|(n + |k|)1/3

)
,

where C2 is the constant from Lemma 2.3.
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Proof First suppose that k ≥ 0. By the upper bound from Lemma 2.3,

Z(n + k, β)

Z(n, β)
=

k−1∏
i=0

Z(n + i + 1, β)

Z(n + i, β)

≤
k−1∏
i=0

exp

(
−7β(n + i)

3
+ C2β(n + i)1/3

)

≤ exp

(
−7βnk

3
− 7βk(k − 1)

6
+ C2βk(n + k)1/3

)
.

Next, suppose that k < 0. Let l = |k|. Then by the lower bound from Lemma 2.3,

Z(n + k, β)

Z(n, β)
=

l−1∏
i=0

Z(n − i − 1, β)

Z(n − i, β)
≤

l−1∏
i=0

exp

(
7β(n − i − 1)

3

)

= exp

(
7βnl

3
− 7βl(l + 1)

6

)
.

To complete the proof, note that l = −k and l(l + 1) = k(k − 1). 
�

2.4 Proofs of the upper bounds

Let us now fix some n ≥ 0 and β > 0. In the following, (X1, . . . , Xn) will denote a
randomconfigurationdrawn from themeasureμn,β .Wewill assume that (X1, . . . , Xn)

is defined on some abstract probability space (�,F ,P). Expectation, variance and
covariance with respect to P will be denoted by E, Var and Cov respectively.

Lemma 2.5 Let D1, . . . , D8 denote the 8 elements of D1, and for each 1 ≤ i ≤ 8, let
Ni := |{ j : X j ∈ Di }|. Then for each i , E(Ni ) = n/8 and

Var(Ni ) ≤ K (β)n2/3,

where K (β) is a non-increasing function of β.

Proof We have already defined universal constants C1 and C2 in the previous subsec-
tions. In this proof, wewill continue to use this convention and denote further universal
constants by C3,C4, . . . without explicitly mentioning that they denote universal con-
stants on each occasion.

The identity E(Ni ) = n/8 follows by symmetry. We will now prove the claimed
bound on the variance. The cases n = 0 and n = 1 are trivial, so let us assume that
n ≥ 2. First, note that energy of a configuration is the sum of the energies within each
Di , plus the interactions between the Di ’s. From this observation it is easy to deduce
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Rigidity of the three-dimensional hierarchical Coulomb gas 1137

the recursive relation

Z(n, β) =
∑

0≤n1,...,n8≤n
n1+···+n8=n

n!
n1!n2! . . . n8!e

−2β
∑

1≤i< j≤8 ni n j

8∏
i=1

(8−ni Z(ni , 2β))

=
∑

0≤n1,...,n8≤n
n1+···+n8=n

8−nn!
n1!n2! . . . n8!e

−2β
∑

1≤i< j≤8 ni n j

8∏
i=1

Z(ni , 2β).

Moreover, for any (n1, . . . , n8) occurring in the above sum,

P(N1 = n1, . . . , N8 = n8)

= 8−nn!
n1!n2! · · · n8!e

−2β
∑

1≤i< j≤8 ni n j

∏8
i=1 Z(ni , 2β)

Z(n, β)
.

Choose nonnegative integersm1, . . . ,m8 such thatm1+· · ·+m8 = n and |mi−n/8| ≤
1 for each i . It is not difficult to see that such integers can be found for any n. For
convenience, let

f (n1, . . . , n8) := n!
n1!n2! · · · n8! ,

g(n1, . . . , n8) := e−2β
∑

1≤i< j≤8 ni n j = e−βn2+β
∑8

i=1 n
2
i ,

h(n1, . . . , n8) :=
8∏

i=1

Z(ni , 2β).

Take any k1, . . . , k8 ∈ Z such that k1 + · · · + k8 = 0 and 0 ≤ mi + ki ≤ n for each i .
Then by Corollary 2.4,

h(m1 + k1, . . . ,m8 + k8)

h(m1, . . . ,m8)

≤
8∏

i=1

exp

(
−14βmiki

3
− 14βki (ki − 1)

6
+ 2C2β|ki |(n + |ki |)1/3

)

≤
8∏

i=1

exp

(
−14β(nki/8 − |ki |)

3
− 14βki (ki − 1)

6
+ 4C2β|ki |n1/3

)

≤ exp

(
−14β

6

8∑
i=1

k2i + C3βn
1/3

8∑
i=1

|ki |
)

.
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Next, note that

g(m1 + k1, . . . ,m8 + k8)

g(m1, . . . ,m8)
= exp

(
β

8∑
i=1

(mi + ki )
2 − β

8∑
i=1

m2
i

)

= exp

(
β

8∑
i=1

(2miki + k2i )

)

≤ exp

(
β

8∑
i=1

(2nki/8 + 2|ki | + k2i )

)

= exp

(
β

8∑
i=1

(2|ki | + k2i )

)
.

Therefore,

P(N1 = m1 + k1, . . . , N8 = m8 + k8)

P(N1 = m1, . . . , N8 = m8)

≤ f (m1 + k1, . . . ,m8 + k8)

f (m1, . . . ,m8)
exp

(
−4β

3

8∑
i=1

k2i + C4βn
1/3

8∑
i=1

|ki |
)

.

This shows that there are positive constants C5 and C6 such that if

max
1≤i≤8

|ki | ≥ C5n
1/3,

then

P(N1 = m1 + k1, . . . , N8 = m8 + k8)

P(N1 = m1, . . . , N8 = m8)

≤ f (m1 + k1, . . . ,m8 + k8)

f (m1, . . . ,m8)
e−C6βn2/3 . (2.1)

Let A denote the set of all (n1, . . . , n8) such that each ni is a nonnegative integer,
n1 + · · · + n8 = n, and

max
1≤i≤8

|ni − mi | ≥ C5n
1/3.

Then by (2.1), for any (n1, . . . , n8) ∈ A,

P(N1 = n1, . . . , N8 = n8)

P(N1 = m1, . . . , N8 = m8)
≤ f (n1, . . . , n8)

f (m1, . . . ,m8)
e−C6βn2/3 .
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Now recall the multinomial formula∑
0≤n1,...,n8≤n
n1+···+n8=n

f (n1, . . . , n8) = 8n .

A simple calculation using Stirling’s formula shows that

f (m1, . . . ,m8)8
−n ≥ C7n

−4.

Thus,

P((N1, . . . , N8) ∈ A) ≤ P((N1, . . . , N8) ∈ A)

P(N1 = m1, . . . , N8 = m8)

=
∑

(n1,...,n8)∈A

P(N1 = n1, . . . , N8 = n8)

P(N1 = m1, . . . , N8 = m8)

≤ e−C6βn2/3 8n

f (m1, . . . ,m8)
≤ C8n

4e−C6βn2/3 .

Therefore for each i ,

Var(Ni ) ≤ E(Ni − mi )
2 ≤ C2

5n
2/3 + n2P((N1, . . . , N8) ∈ A)

≤ C2
5n

2/3 + C8n
6e−C6βn2/3 .

The above inequality shows that

Var(Ni ) ≤ K (β)n2/3,

where K (β) is a decreasing function of β. 
�
For any Borel set A ⊆ [0, 1)3, let

X(A) := {X j : X j ∈ A}.

and let N (A) := |X(A)|. For each k ≥ 0, let Fk be the σ -algebra generated the
random variables {N (D) : D ∈ Dk}. Note that {Fk}k≥0 is a filtration of σ -algebras.
This filtration will play an important role in the subsequent discussion.

Lemma 2.6 Conditional on Fk , the random sets {X(D) : D ∈ Dk} are mutually
independent. Moreover, for any D ∈ Dk , conditional on Fk , X(D) has the same
distribution as a scaled version of a point process from the measure μN (D),2kβ .

Proof Take any k. Note that the joint density of (X1, . . . , Xn) at a point (x1, . . . , xn)
may be written as

1

Z(n, β)
exp

⎛
⎝−β

∑
D∈Dk

HD(x1, . . . , xn) − βRk(x1, . . . , xn)

⎞
⎠ ,
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where HD(x1, . . . , xn) is the contribution due to the interactions between points in
D, and Rk(x1, . . . , xn) is the contribution due to the interactions between points in
different members ofDk . The crucial property of the potentialw is that Rk(x1, . . . , xn)
is a function of {nD : D ∈ Dk}, where nD = |{ j : x j ∈ D}|. The claims follow easily
from this observation. 
�

Lemma 2.6 allows us to compute conditional means and variances.

Lemma 2.7 If D ∈ Dk and D′ is a child of D, then

E(N (D′)|Fk) = N (D)

8

and

Var(N (D′)|Fk) ≤ K (β)N (D)2/3,

where K is the function from Lemma 2.5.

Proof The formula for the conditional expectation follows from Lemma 2.6 and sym-
metry, and the bound on the conditional variance follows from Lemmas 2.5, 2.6, and
the observation that K (2kβ) ≤ K (β) since K is a non-increasing function of β. 
�

The above lemma leads to the following conclusions about unconditional means
and variances.

Lemma 2.8 For any D ∈ D, E(N (D)) = Leb(D)n and

Var(N (D)) ≤ 8K (β)Leb(D)2/3n2/3,

where K is the function from Lemma 2.5.

Proof Suppose that D ∈ Dk . The formula for the expectation follows easily by iterat-
ing the formula for the conditional expectation from Lemma 2.7, and observing that
Leb(D) = 8−k . Next, let D′ be the parent of D. Then by Lemma 2.7 and the formula
for expected value,

E(N (D)2) = E(N (D)2 − (E(N (D)|Fk−1))
2) + E((E(ND|Fk−1))

2)

= E(Var(N (D)|Fk−1)) + 8−2
E(N (D′)2)

≤ K (β)E(N (D′)2/3) + 8−2
E(N (D′)2)

≤ K (β)(E(N (D′)))2/3 + 8−2
E(N (D′)2)

= K (β)4−k+1n2/3 + 8−2
E(N (D′)2).

Iterating this, we get

E(N (D)2) ≤ K (β)n2/3(4−k+1 + 8−24−k+2 + 8−44−k+3 + · · · ) + 8−2kn2

≤ 8K (β)4−kn2/3 + 8−2kn2,

which completes the proof since E(N (D)) = Leb(D)n = 8−kn. 
�
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Rigidity of the three-dimensional hierarchical Coulomb gas 1141

Now take any nonempty open set U ⊆ [0, 1)3 with regular boundary. Let U be the
set of all D ∈ D such that D ⊆ U but the parent cube of D is not contained in U .

Lemma 2.9 The set U is the disjoint union of all elements of U .

Proof SinceU is open, each point inU belongs to some dyadic cube that is contained
in U . Some ancestor of this cube must belong to U . This shows that U is the union of
the members of U . It is easy to see that the elements of U are disjoint. 
�
Corollary 2.10 E(N (U )) = Leb(U )n.

Proof Just observe that by Lemmas 2.8 and 2.9,

E(N (U )) =
∑
D∈U

E(N (D)) =
∑
D∈U

Leb(D)n = Leb(U )n,

where we have implicitly used the fact that U is a countable collection. 
�
For each j , let U j := U ∩ D j . Let V j denote the set of all D ∈ D j that intersect

bothU andUc. Note that U j and V j do not overlap. For any dyadic cube D, let p(D)

denote the proportion of D that belongs toU . Let M0 = Leb(U )n and for each j ≥ 1,
let

Mj :=
j∑

i=0

∑
D∈Ui

N (D) +
∑
D∈V j

p(D)N (D).

Lemma 2.11 The sequence {Mj } j≥0 is a martingale with respect to the filtration
{F j } j≥0.

Proof Take any j ≥ 1. Then

E(Mj |F j−1) =
j−1∑
i=0

∑
D∈Ui

N (D) +
∑
D∈U j

E(N (D)|F j−1)

+
∑
D∈V j

p(D)E(N (D)|F j−1)

=
j−1∑
i=0

∑
D∈Ui

N (D) +
∑

D∈U j∪V j

p(D)E(N (D)|F j−1)

Take any D ∈ V j−1. Then each child of D is either a member of U j , or a member of
V j , or has no intersection with U . Conversely, every member of U j ∪ V j is the child
of some member of V j−1. Lastly, note that if D1, . . . , D8 are the children of a dyadic
cube D, then

p(D) = 1

8

8∑
i=1

p(Di ).
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Combining these observations and applying Lemma 2.7, we get

∑
D∈U j∪V j

p(D)E(N (D)|F j−1) =
∑

D∈V j−1

p(D)N (D),

which completes the proof. 
�
For the remainder of this section, let A(U ) be a constant such that for all 0 < ε ≤

diam(U ),

Leb(∂Uε) ≤ A(U )ε. (2.2)

By the regularity condition, we can choose A(U ) to be finite. The martingale property
of Mj and our previous calculations lead to the following conclusion.

Lemma 2.12 For any j ≥ 1 such that
√
3 · 2− j+1 ≤ diam(U ),

Var(Mj ) ≤ C(β)A(U )n2/3 + Var(Mj−1),

where C(β) is a constant that depends only on β.

Proof By the martingale property,

Var(Mj ) = E(Var(Mj |F j−1)) + Var(E(Mj |F j−1))

= E(Var(Mj |F j−1)) + Var(Mj−1). (2.3)

Now,

Var(Mj |F j−1) = Var

⎛
⎝ ∑

D∈U j∪V j

p(D)N (D)

∣∣∣∣F j−1

⎞
⎠

=
∑

D,D′∈U j∪V j

p(D)p(D′)Cov(N (D), N (D′)|F j−1). (2.4)

If D and D′ have different parents, then N (D) and N (D′) are conditionally indepen-
dent by Lemma 2.6, and hence the conditional covariance is zero. Otherwise, Lemma
2.7 and the Cauchy–Schwarz inequality imply that

|Cov(N (D), N (D′)|F j−1)| ≤ K (β)N (D′′)2/3,

where D′′ is the parent of D and D′. Thus, by Lemma 2.8,

|E(Cov(N (D), N (D′)|F j−1))| ≤ K (β)(Leb(D′′)n)2/3

= K (β)(8− j+1n)2/3.
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Rigidity of the three-dimensional hierarchical Coulomb gas 1143

On the other hand, each D ∈ U j ∪V j has at most 7 sibling cubes that belong toU j ∪V j .
Since p(D)8− j = p(D)Leb(D) = Leb(D ∩U ), this shows that

E(Var(Mj |F j−1)) ≤ K (β)(8− j+1n)2/3
∑

D∈U j∪V j

7p(D)

= 28K (β)n2/32 j
∑

D∈U j∪V j

Leb(D ∩U ).

Note that each element of ⋃
D∈U j∪V j

(D ∩U )

is within distance
√
3 ·2− j+1 from ∂U . Since

√
3 ·2− j+1 ≤ diam(U ), inequality (2.2)

gives

∑
D∈U j∪V j

Leb(D ∩U ) ≤ A(U )
√
3 · 2− j+1.

Consequently,

E(Var(Mj |F j−1)) ≤ C(β)A(U )n2/3,

where C(β) depends only on β. The proof is completed by plugging this bound into
(2.3). 
�

We now have all the ingredients for proving the following theorem, which implies
Theorems 1.1 and 1.3 and special cases.

Theorem 2.13 (Hyperuniformity at all scales) Let U and N (U ) be as in Theorem 1.1.
Suppose that diam(U ) ≥ n−1/3. Let A(U ) be the constant defined in (2.2). Then

E(N (U )) = Leb(U )n

and

Var(N (U )) ≤ C(β)A(U )n2/3 log(4n1/3diam(U )) + C(β)Leb(U )2/3n2/3,

where C(β) is a constant that depends only on β.

Proof Throughout this proof, C(β) will denote any constant that depends only on β.
The value of C(β) may change from line to line or even within a line.

The formula for the expectation follows from Corollary 2.10. It remains to prove
the variance bound. Choose k such that

1

2
n−1/3 ≤ √

3 · 2−k ≤ n−1/3.
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Note that by Lemma 2.9, any point in U either belongs to some D ∈ U j for some
j ≤ k, or belongs to some D ∈ U j for some j > k. In the latter case, there is an
ancestor of D that belongs to Vk . Thus,

U =
⎛
⎝ k⋃

j=0

U j

⎞
⎠ ∪

⎛
⎝ ⋃

D∈Vk

(D ∩U )

⎞
⎠ ,

and so

N (U ) =
k∑
j=0

∑
D∈U j

N (D) +
∑
D∈Vk

N (D ∩U ).

Consequently, by Lemmas 2.6, 2.8 and Corollary 2.10,

E(N (U )|Fk) =
k∑
j=0

∑
D∈U j

N (D) +
∑
D∈Vk

E(N (D ∩U )|Fk)

=
k∑
j=0

∑
D∈U j

N (D) +
∑
D∈Vk

p(D)N (D) = Mk .

Therefore,

Var(N (U )) = E(Var(N (U )|Fk)) + Var(E(N (U )|Fk))

= E(Var(N (U )|Fk)) + Var(Mk). (2.5)

GivenFk , the random variables {N (D∩U ) : D ∈ Dk} are independent by Lemma 2.6.
Therefore, by Lemma 2.8 and Corollary 2.10,

Var(N (U )|Fk) = Var

⎛
⎝ ∑

D∈Vk

N (D ∩U )

∣∣∣∣Fk

⎞
⎠ =

∑
D∈Vk

Var(N (D ∩U )|Fk)

≤
∑
D∈Vk

E(N (D ∩U )2|Fk)

≤
∑
D∈Vk

E(N (D ∩U )|Fk)N (D) =
∑
D∈Vk

p(D)N (D)2.

By Lemma 2.8 and our choice of k,

E(N (D)2) = Var(N (D)) + (E(N (D)))2 ≤ C(β)
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for all D ∈ Vk . Also, each element of

⋃
D∈Vk

(D ∩U )

is within distance
√
3 · 2−k of ∂U , and p(D)8−k = Leb(D ∩U ). Since

√
3 · 2−k ≤ n−1/3 ≤ diam(U )

by our choice of k and the assumption that diam(U ) ≥ n−1/3, this gives

E(Var(N (U )|Fk)) ≤ C(β)8k
∑
D∈Vk

Leb(D ∩U )

≤ C(β)8k A(U )2−k

= C(β)A(U )4k ≤ C(β)A(U )n2/3.

Let l be the smallest integer such that
√
3 · 2−l ≤ diam(U ). Note that l ≤ k. Together

with (2.5) and Lemma 2.12, the above inequality shows that

Var(N (U )) ≤ C(β)A(U )n2/3(k − l + 1) + Var(Ml).

By the definition of l, Ui if empty for all i < l. Therefore

Ml =
∑

D∈Ul∪Vl

p(D)N (D).

Note that for any D ∈ Ul ∪ Vl , Lemma 2.8 gives

Var(p(D)N (D)) = p(D)2Var(N (D)) ≤ C(β)p(D)2Leb(D)2/3n2/3

≤ C(β)(p(D)Leb(D))2/3n2/3

= C(β)Leb(D ∩U )2/3n2/3 ≤ C(β)Leb(U )2/3n2/3.

Moreover, it is easy to see that U intersects at most 64 members of Dl , and therefore
|Ul ∪ Vl | ≤ 64. From these observations, we get

Var(Ml) ≤ C(β)Leb(U )2/3n2/3.

Finally, note that by the lower bound on
√
3 · 2−k and the upper bound on

√
3 · 2−l ,

we get

2k−l ≤ 2n1/3diam(U ),

and hence k − l + 1 ≤ log2(4n
1/3diam(U )). This completes the proof of the theorem.


�
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Proof of Theorem 1.1 This is a direct application of Theorem 2.13. The condition
diam(U ) ≥ n−1/3 is irrelevant because the variance bound can be enforced for small
n by adjusting the constant C(U , β). 
�
Proof of Theorem 1.3 Let V := n−1/3λU + x . Note that Nx (λU ) = N (V ). Also, note
that

Leb(V ) = λ3n−1Leb(U ),

A(V ) = λ2n−2/3A(U ),

diam(V ) = λn−1/3diam(U ).

In particular, the condition diam(V ) ≥ n−1/3 is equivalent to diam(λU ) ≥ 1. The
proof is now just an application of Theorem 2.13, and the observation that since
x ∈ (0, 1)3, V is eventually contained in (0, 1)3 as n gets large. 
�

Finally, let us prove Theorem 1.4.

Proof of Theorem 1.4 Here C(β) denotes any constant that depends only on β. Let
f (D) be the average value of f in a dyadic square D ∈ D. For each k, let fk be the
function that is identically equal to f (D) within each D ∈ Dk . Let

Wk := X( fk).

By Lemmas 2.6 and 2.7, it is easy to see that {Wk}k≥0 is martingale with respect to
the filtration {Fk}k≥0. Moreover, for any k,

E(X( f )|Fk) = X( fk). (2.6)

Now choose k such that

n−1/3 ≤ 2−k ≤ 2n−1/3.

Then by (2.6) and the martingale property of {Wj } j≥0,

Var(X( f )) = E(Var(X( f )|Fk)) +
k∑
j=1

E(Var(X( f j )|F j−1)). (2.7)

Take any j . For each D ∈ D j−1, let c(D) denote the set of 8 children of D. By Lemma
2.6 and Lemma 2.7,

Var(X( f j )|F j−1) = Var

⎛
⎝ ∑

D∈D j

f (D)N (D)

∣∣∣∣F j−1

⎞
⎠

=
∑

D∈D j−1

Var

⎛
⎝ ∑

D′∈c(D)

f (D′)N (D′)
∣∣∣∣F j−1

⎞
⎠
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=
∑

D∈D j−1

E

⎛
⎜⎝

⎛
⎝ ∑

D′∈c(D)

f (D′)N (D′) − f (D)N (D)

⎞
⎠

2 ∣∣∣∣F j−1

⎞
⎟⎠ .

Now notice that for any D ∈ D j−1,

∑
D′∈c(D)

f (D′)N (D′) − f (D)N (D)

=
∑

D′∈c(D)

( f (D′) − f (D))

(
N (D′) − N (D)

8

)
.

Recall that L is the Lipschitz constant of f . For any D′ ∈ c(D),

| f (D′) − f (D)| ≤ √
3L2− j+1.

Thus,

⎛
⎝ ∑

D′∈c(D)

( f (D′) − f (D))

(
N (D′) − N (D)

8

)⎞
⎠

2

≤ 4− j+2L2

⎛
⎝ ∑

D′∈c(D)

∣∣∣∣N (D′) − N (D)

8

∣∣∣∣
⎞
⎠

2

≤ 4− j+4L2
∑

D′∈c(D)

(
N (D′) − N (D)

8

)2

.

Therefore, by Lemma 2.7,

E

⎛
⎜⎝

⎛
⎝ ∑

D′∈c(D)

f (D′)N (D′) − f (D)N (D)

⎞
⎠

2 ∣∣∣∣F j−1

⎞
⎟⎠

≤ 4− j+4L2
∑

D′∈c(D)

Var(N (D′)|F j−1) ≤ 4− j+6L2K (β)N (D)2/3.

Consequently, by Lemma 2.8,

E(Var(X( f j )|F j−1)) ≤ C(β)L24− j
∑

D∈D j−1

E(N (D)2/3)

≤ C(β)L24− j
∑

D∈D j−1

(E(N (D)))2/3 ≤ C(β)L22− j n2/3.
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Next, for D ∈ Dk , let

s(D) :=
∑

j : X j∈D
f (X j ),

so that

X( f ) =
∑
D∈Dk

s(D).

Then by Lemma 2.6,

Var(X( f )|Fk) =
∑
D∈Dk

Var(s(D)|Fk)

≤
∑
D∈Dk

E((s(D) − f (D)N (D))2|Fk).

By the Lipschitz condition,

|s(D) − f (D)N (D)| ≤ √
3L2−k N (D)

for each D ∈ Dk . Thus, by Lemma 2.8 and our choice of k,

E((s(D) − f (D)N (D))2) ≤ 4−k+1L2
E(N (D)2) ≤ C(β)L24−k .

Consequently,

E(Var(X( f )|Fk)) ≤ C(β)L24−k |Dk | ≤ C(β)L22k ≤ C(β)L2n1/3.

The proof is now easily completed by combining the steps. 
�

2.5 Proofs of the lower bounds

Let us now prove Theorem 1.2. We will continue using the notations introduced in the
previous sections. We need to prove some simple geometric facts. Let

T := {z + [0, 1)3 : z ∈ Z
3}.

Our first geometric lemma is very simple.

Lemma 2.14 Let T be as above. Take any D ∈ T and any x ∈ D. Let δ be the distance
of x from the boundary of D. Then any plane through x bifurcates D into two parts,
each of which has volume at least 2πδ3/3.
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Proof The open ball of radius δ around x is contained in D. Any plane P through x
bifurcates this ball into two parts of volume 2πδ3/3 each. The proof is completed by
observing that these two hemispheres are contained in the two parts of D obtained by
bifurcating using P . 
�

The second lemma is an easy fact about intervals.

Lemma 2.15 Let I be a closed interval of the real line of length at least δ ∈ [0, 1].
Then I has a closed subinterval J of length δ/4 such that any integer is at a distance
at least δ/4 from J .

Proof If I contains no integers, thenwe can take J to be an interval of length δ/4 that is
at distance at least δ/4 from each endpoint of I . If I contains an integer n, then at least
one of the two intervals [n, n+δ/2] and [n−δ/2, n]must be contained in I . In the first
case take J = [n + δ/4, n + δ/2] and in the second case take J = [n − δ/2, n − δ/4].
Since δ ≤ 1, there is no integer within distance δ/4 from J . 
�

The next lemma is intuitively obvious but a little tedious to prove. The constants
are probably not optimal, but that does not matter for us.

Lemma 2.16 Take any x ∈ R
3 and a unit vector u = (u1, u2, u3) ∈ S2. Let P be the

plane that contains x and is perpendicular to u. Suppose that

min{|u1|, |u2|, |u3|} ≥ 0.1. (2.8)

Then there is an element D ∈ T , within Euclidean distance
√
402 from x, which is

bifurcated by the plane P in such a way that each part has volume at least 6 × 10−8.

Proof Take any x = (x1, x2, x3) ∈ R
3 and u = (u1, u2, u3) ∈ S2 as in the statement

of the lemma. Let P0 be the plane with normal vector u that contains the origin. Define

y1 = sign(u1), y2 = sign(u2), y3 = −|u1| + |u2|
u3

.

Then y = (y1, y2, y3) ∈ P0. Also, we have |y1| = 1, |y2| = 1, and by condition (2.8)
and the fact that |u3| ≤ 1,

|y3| = |u1| + |u2|
|u3| ≥ |u1| + |u2| ≥ 0.2.

Now consider the set

I1 = {x1 + αy1 : 0 ≤ α ≤ 1}.

Since |y1| = 1, I1 is an interval of length 1. By Lemma 2.15, I1 has a subinterval of
I2 of length 0.25 such that any integer is at least at a distance 0.25 from I2. Moreover,
since |y1| = 1, I2 is of the form

{x1 + αy1 : a ≤ α ≤ b},
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where b − a = 0.25. Let

I3 := {x2 + αy2 : a ≤ α ≤ b}.

Since |y2| = 1, I3 has length 0.25. Thus by Lemma 2.15, I3 contains a subinterval I4
of length 0.0625 such that any integer is at a distance at least 0.0625 from I4. Again,
since |y2| = 1, this implies that I4 is of the form

{x2 + αy2 : c ≤ α ≤ d},

where a ≤ c ≤ d ≤ b and d − c = 0.0625. Let

I5 := {x3 + αy3 : c ≤ α ≤ d}.

Since |y3| ≥ 0.2, I5 has length at least 0.0125. Consequently by Lemma 2.15, I5
has a subinterval I6 of length 0.003125 such that any integer is at a distance at least
0.003125 from I6.

In particular, there is some α ∈ [0, 1] such that x1 + αy1 ∈ I2, x2 + αy2 ∈ I4 and
x3 + αy3 ∈ I6. The distance of xi + αyi from the nearest integer is at least 0.003125
for each i . Thus, the distance of the point x + αy from the boundary of the cube
D ∈ T that contains x + αy is at least 0.003125. By Lemma 2.14 and the fact that
x + αy ∈ P , this proves P bifurcates D into two parts, each of which has volume at
least 6 × 10−8. Lastly, note that

|(x + αy) − x | ≤ |y| =
√
y21 + y22 + y23

≤
√
1 + 1 + (1 + 1)2

0.12
≤ √

402,

since |u1| ≤ 1, |u2| ≤ 1 and |u3| ≥ 0.1. This completes the proof of the lemma. 
�
Now recall that the boundary of the set U in the statement of Theorem 1.2 is a

smooth, closed, orientable surface. In particular, we can choose a unit normal vector
u(x) at each x ∈ ∂U such that the map x �→ u(x) is smooth.

Lemma 2.17 Take any x ∈ ∂U such that the normal vector u(x) satisfies (2.8). Then
there is some j0 depending only on U (but not on x), such that for all j ≥ j0, there is
some D ∈ D j at distance at most

√
402 · 2− j from x, which satisfies

10−8 ≤ Leb(D ∩U )

Leb(D)
≤ 1 − 10−8. (2.9)

Proof From the given properties of ∂U , it is clear that ∂U has uniformly bounded
curvature. Consequently, there is a constant C depending only onU , such that for any
x ∈ ∂U and any ε ∈ (0, 1), B(x, ε) ∩ ∂U lies inside a slab of width Cε2 around Tx ,
where B(x, ε) is the Euclidean ball of radius ε around x , and Tx is the tangent plane
at x . The rest of the proof is an easy application of Lemma 2.16 and scaling. 
�
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The above lemma leads to the following result, which is a key component of the
proof of Theorem 1.2.

Lemma 2.18 There is some K1 > 0 and some j1 ≥ 1 depending only on U such that
for any j ≥ j1, there is a set of at least K14 j cubes D ∈ D j that satisfy (2.9) and the
union of these cubes has diameter at most diam(U )/3.

Proof Let P be the plane through the origin that is perpendicular to the vector (1, 1, 1).
Let α0 be the largest α such that the plane Pα := (α, α, α)+ P intersects the closure of
U . Let x be a point of intersection. Then x ∈ ∂U , and Pα0 = Tx . Consequently, there
is some 0 < ε < diam(U )/7 such that for every y ∈ B(x, ε) ∩ ∂U , u(y) satisfies
(2.8). Due to the boundedness of the curvature of ∂U , a small enough choice of ε

guarantees that for any δ ∈ (0, 1), there are at least Cδ−2 points in B(x, ε) ∩ ∂U ,
where C is a positive constant that depends only onU , such that any two points are at
distance at least 50δ from each other.

Take δ = 2− j , and choose a collection of points as above. Then by Lemma 2.17,
there is an element of D j within distance 21δ from each point, that satisfies (2.9).
Since the points are separated by distance at least 50δ from each other, these elements
of D j are distinct. Since ε < diam(U )/7, a large enough choice of j ensures that the
union of these cubes has diameter less than diam(U )/3. 
�

Lastly, we need a lemma about our point process. Recall that for any D ∈ D, N (D)

is the number of points landing in D.

Lemma 2.19 For any n ≥ 1, β > 0, j ≥ 0 and D ∈ D j ,

P(N (D) ≥ 2) ≤ exp

(
−2 j+1β + 7β

3

(
n

2

))
.

Proof The n = 1 case is trivial, so let us take n ≥ 2. By Jensen’s inequality and
Lemma 2.1,

Z(n, β) ≥ exp

(
−7β

3

(
n

2

))
.

On the other hand, if a configuration x1, . . . , xn has two or more points in D, then

Hn(x1, . . . , xn) ≥ 2 j+1.

Thus, if A is the set of all such configurations, then

∫
A
e−βHn(x1,...,xn) dx1 · · · dxn ≤ e−2 j+1βLeb(A) ≤ e−2 j+1β.
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Combining, we get

P(N (D) ≥ 2) = μn,β(A) ≤ exp

(
−2 j+1β + 7β

3

(
n

2

))
,

which completes the proof. 
�
Finally, we are ready to prove Theorem 1.2. Recall the filtration {Fk}k≥0 defined

earlier.

Proof of Theorem 1.2 In this proof, the phrase ‘n sufficiently large’ will mean ‘n ≥ n0,
where n0 depends only on U and β’. Also, C will denote any positive universal
constant, C(β) will denote any positive constant that depends only on β, and C(U , β)

will denote any positive constant that depends only on U and β.
Choose k such that

n−1/3 ≤ 2−k ≤ 2n−1/3. (2.10)

Then for any D ∈ Dk , Lemma 2.8 gives

E(N (D)2) ≤ K2(β), (2.11)

where K2(β) is a positive integer that depends only on β. Let

m := 1000K2(β).

Let j > k be the smallest number such that

2 j−k+1 ≥ 7

3

(
m

2

)
+ 1.

Note that 0 ≤ j − k ≤ C(β).
Take any D ∈ Dk . LetD j (D) denote the set of elements ofD j that are descendants

of D. Take any D′ ∈ D j (D). If N (D) ≤ m, then by Lemmas 2.6 and 2.19,

P(N (D′) ≥ 2|Fk) ≤ e−2kβ ≤ e−βn1/3 .

Consequently,

P(N (D) ≤ m, N (D′) ≥ 2) = E(P(N (D′) ≥ 2|Fk); N (D) ≤ m)

≤ e−βn1/3
P(N (D) ≤ m) ≤ e−βn1/3 .

In particular, if E is the event

{N (D) ≤ m and N (D′) ≥ 2 for some D ∈ Dk and some D′ ∈ D j (D)},
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then a union bound gives

P(E) ≤
∑
D∈Dk

∑
D′∈D j (D)

P(N (D) ≤ m, N (D′) ≥ 2)

≤ |D j |e−βn1/3 ≤ C(β)ne−βn1/3 . (2.12)

We will need this inequality later.
Now, ifn is sufficiently large, then there is a setC′ ⊆ D j that satisfies the conclusions

of Lemma 2.18. In particular, |C′| ≥ C(U , β)4 j . Moreover, since each element of C′
satisfies (2.9), these cubes must lie entirely within distance

√
3 · 2− j from ∂U . If n is

large enough, then
√
3 · 2− j ≤ diam(U ). Therefore by the regularity of ∂U , we have

|C′| ≤ C(U , β)4 j .
Let C denote the set of all members of Dk who are ancestors of elements of C′. By

dropping some elements from C′ if necessary, we can ensure that each member of C
has exactly one descendant in C′. Since 0 ≤ j − k ≤ C(β), this gives the inequalities

C1(U , β)4k ≤ |C| = |C′| ≤ C2(U , β)4k, (2.13)

where C1(U , β) and C2(U , β) are positive constants that depend only on U and β.
Let Q be the union of the elements of C. Recall that by Lemma 2.18 and the relation
between C and C′,

diam(Q) ≤ diam(U )

3
+ 2

√
3 · 2−k,

which is less than diam(U )/2 if n is sufficiently large. Thus, if n is large enough and√
3 · 2−k ≤ ε ≤ diam(Q), then

ε + √
3 · 2−k ≤ 2ε ≤ 2 diam(Q) ≤ diam(U ).

Moreover, each point in Q is at distance at most
√
3 · 2−k from U . Therefore,

Leb(∂Qε) ≤ Leb(∂Uε+√
3·2−k ) ≤ A(U )(ε + √

3 · 2−k) ≤ 2A(U )ε.

On the other hand, if 0 < ε ≤ √
3 · 2−k , then

Leb(∂Qε) ≤
∑
D∈C

Leb(∂Dε) ≤
∑
D∈C

A(D)ε ≤ C
∑
D∈C

4−kε = C |C|4−kε.

Therefore, by (2.13), for 0 < ε ≤ √
3 · 2−k ,

Leb(∂Qε) ≤ C(U , β)ε.

Combining the two cases, we get A(Q) ≤ C(U , β). Consequently, by Theorem 2.13,

Var(N (Q)) ≤ C(U , β)n2/3 log n, (2.14)
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provided that n is sufficiently large. Also, by Lemma 2.8 and our choice of k,

E(N (Q)) = Leb(Q)n = |C|8−kn ≥ |C|.

Thus, by (2.13), (2.14) and Chebychev’s inequality,

P

(
N (Q)

|C| ≥ 1

2

)
≥ 1 − 4Var(N (Q))

|C|2 ≥ 1 − C(U , β)n−2/3 log n. (2.15)

Now let

a1 := 1

|C|
∑
D∈C

N (D) = N (Q)

|C| , a2 := 1

|C|
∑
D∈C

N (D)2,

p1 := |{D ∈ C : N (D) > 0}|
|C| , p2 := |{D ∈ C : N (D) > m}|

|C| ,

q := |{D ∈ C : 0 < N (D) ≤ m}|
|C| .

By (2.11), E(a2) ≤ K2(β). Thus,

P(a2 ≥ 2K2(β)) ≤ 1

2
. (2.16)

By the Paley–Zygmund second moment inequality,

p1 ≥ a21
a2

,

and so by (2.15) and (2.16),

P

(
p1 ≥ 1

8K2(β)

)
≥ P

(
a1 ≥ 1

2
, a2 ≤ 2K2(β)

)
≥ 1

2
− C(U , β)n−2/3 log n.

Choose n so large that the above lower bound at least 1/3. Next, note that by Lemma
2.8 and Markov’s inequality,

E(p2) ≤ 1

m|C|
∑
D∈C

E(N (D)) ≤ 8

m
,

and hence

P

(
p2 ≥ 32

m

)
≤ 1

4
.
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Since q = p1 − p2 and

1

8K2(β)
≥ 64

m
,

this gives

P

(
q ≥ 32

m

)
≥ P

(
p1 ≥ 64

m
, p2 ≤ 32

m

)
≥ 1

3
− 1

4
= 1

12
. (2.17)

Let C0 be the set of all D ∈ C such that 0 < N (D) ≤ m. Let C′
0 be the set of all

elements of C′ that are contained in elements of C0. Let

r := 1

|C′
0|

∑
D∈C′

0

N (D) (2.18)

if C′
0 �= ∅ and let r = 0 otherwise. By Lemma 2.7, if C′

0 is nonempty,

E(r |Fk) = 1

8 j−k |C0|
∑
D∈C0

N (D) ≥ C(β), (2.19)

and by Lemmas 2.6 and 2.7,

Var(r |Fk) ≤ C(β)

|C′
0|

= C(β)

|C|q ≤ C(β)

n2/3q
. (2.20)

By the last two inequalities and Chebychev’s inequality, we see that there is a positive
constant K3(β) depending only on β such that if q ≥ 32/m and n is sufficiently large,
then

P(r ≥ K3(β)|Fk) ≥ 1 − C(U , β)n−2/3.

Therefore by (2.17), if n is sufficiently large,

P

(
r ≥ K3(β), q ≥ 32

m

)
≥ 1

13
. (2.21)

Thus, for sufficiently large n,

P(|C′
0| ≥ K4(β)n2/3) ≥ 1

13
,

where K4(β) is a positive constant that depends only on β.
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Now recall the event E defined earlier. Let Ec denote the complement of E . If Ec

happens, then C′
0 = C∗, where

C∗ := {D ∈ C′
0 : N (D) = 1}. (2.22)

Combining this with (2.12), this shows that for sufficiently large n,

P(|C∗| ≥ K4(β)n2/3) ≥ P({|C′
0| ≥ K4(β)n2/3} ∩ Ec)

≥ P(|C′
0| ≥ K4(β)n2/3) − P(E) ≥ 1

14
. (2.23)

By Lemma 2.6, the random variables {N (D ∩ U ) : D ∈ D j } are independent
given F j . If N (D) = 1, then the conditional distribution of N (D ∩ U ) given F j

is Bernoulli(p(D)), where p(D) = Leb(D ∩U )/Leb(D). Let

M :=
∑
D∈C∗

N (D ∩U ).

Since 10−8 ≤ p(D) ≤ 1 − 10−8 for each D ∈ C∗, the Berry–Esseen theorem for
sums of independent random variables shows that for any interval I ,

P(M ∈ I |F j ) ≤ C(|I | + 1)√|C∗| , (2.24)

where |I | denotes the length of I . Since

N (U ) =
∑
D∈D j

N (D ∩U ) =
∑

D∈D j\C∗
N (D ∩U ) + M,

and the two terms in the last expression are independent givenF j , the inequality (2.24)
implies that

P(N (U ) ∈ I |F j ) ≤ C(|I | + 1)√|C∗| .

Therefore by (2.23),

P(N (U ) ∈ I ) ≤ C(β)(|I | + 1)n−1/3 + 13

14

if n is sufficiently large. This completes the proof. 
�
Finally, let us prove Theorem 1.5. The ingredients are almost all drawn from the

proof of Theorem 1.2.
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Proof of Theorem 1.5 In this proof, C(β) denotes any positive constant that depends
only on β, C( f ) denotes any positive constant that depends only on f and C( f , β)

denotes any positive constant that depends only on f and β. Let j and k be defined
as in (2.10). Let f : [0, 1]3 → R be a non-constant linear function.

Let C := Dk , and let a1, a2, p1, p2 and q be defined as in the proof of Theorem 1.2,
with this C. Then |C| = 8k , and a1 = 8−kn ≥ 1. The inequality (2.16) is still valid,
and hence we get

P

(
p1 ≥ 1

8K2(β)

)
≥ 1

2
.

Proceeding then as in the proof of Theorem 1.2, this gives

P

(
q ≥ 32

m

)
≥ 1

4
.

Let C0 be the set of all D ∈ C for which 0 < N (D) ≤ m. Construct a set C′
0 ⊆ D j by

choosing exactly one descendant of each element of C0 by some arbitrary deterministic
rule. Let r be defined as in (2.18). Then (2.12), (2.19) and (2.20) continue to hold, and
therefore so does (2.21) when n is sufficiently large. Since |C| ≥ n in this proof, this
shows that for sufficiently large n,

P(|C∗| ≥ K5(β)n) ≥ 1

14
, (2.25)

where C∗ is defined as in (2.22) and K5(β) is a positive constant that depends only on
β.

For each D ∈ D j , let

X( f , D) :=
∑

i :Xi∈D
f (Xi ).

By Lemma 2.6, the random variables {X( f , D) : D ∈ D j } are conditionally indepen-
dent given F j . Let

M := n1/3
∑
D∈C∗

X( f , D).

Now take any D ∈ C∗. Recall that D contains exactly one point of our point process,
and by Lemma 2.6, the conditional distribution of this point given F j is uniform over
the cube D. Since f is a linear function, it is easy to see from this observation that for
any D ∈ C∗, the conditional distribution of the random variable

n1/3(X( f , D) − E(X( f , D)))
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givenF j is actually non-random, and depends only on f . In particular, since f is also
non-constant, this shows that

Var(n1/3X( f , D)|F j ) = K6( f )

and

E
(|n1/3X( f , D) − E(n1/3X( f , D))|3∣∣F j

) = K7( f ),

where K6( f ) and K7( f ) are strictly positive constants that depend only on f . There-
fore by the Berry–Esseen theorem, for any interval I ,

P(M ∈ I |F j ) ≤ C( f )(|I | + 1)√|C∗| , (2.26)

where |I | denotes the length of I . Since

n1/3X( f ) = n1/3
∑
D∈D j

X( f , D) = n1/3
∑

D∈D j\C∗
X( f , D) + M,

and the two terms in the last expression are independent givenF j , the inequality (2.26)
implies that

P(n1/3X( f ) ∈ I |F j ) ≤ C( f )(|I | + 1)√|C∗| .

Therefore by (2.25),

P(n1/3X( f ) ∈ I ) ≤ C( f , β)(|I | + 1)√
n

+ 13

14

if n is sufficiently large. This completes the proof. 
�

3 Proofs in 2D and 1D

In this section, we will prove the results of Sect. 1.5. The proofs are similar to the
proofs in the 3D case, but there are substantial differences, which is why we need a
separate section.

3.1 Notation

All notation will remain the same as in the 3D case. For example, Dk will denote
dyadic sub-squares of side-length 2−k in 2D, and dyadic sub-intervals of length 2−k

in 1D. The main change is that w is now different, namely, w(x, y) = k(x, y), where
k(x, y) is the smallest k such that x and y belong to distinct elements of Dk . The

123



Rigidity of the three-dimensional hierarchical Coulomb gas 1159

partition function Z(n, β) and the measure μn,β are defined as before, with this new
w instead of the old one. We will denote the dimension by d, which may be 1 or 2.

3.2 Preliminary calculations

First, let us carry out the calculations analogous to those done in Sect. 2.2.

Lemma 3.1 For each x ∈ [0, 1)d ,
∫

w(x, y) dy = 2d

2d − 1
.

Consequently,

∫∫
w(x, y) dx dy = 2d

2d − 1
.

Proof Take any x . For each k, let Dk be the element of Dk that contains x . It is easy
to see that the set of all y with w(x, y) = k is exactly the union of all members of Dk

that are contained in Dk−1, except the one that contains x . The Lebesgue measure of
this set is 2−dk(2d − 1). Thus,

∫
w(x, y) dy = (2d − 1)

∞∑
k=1

k2−dk = 2d

2d − 1
.

The second assertion is obvious from the first. 
�

Let us now investigate energy-minimizing configurations of finite size. As before,
Ln will denote the minimum possible energy of a configuration of n points. The
following result gives upper and lower bounds for Ln in dimensions one and two.

Theorem 3.2 There is a positive constant C1 such that for each n ≥ 2,

(
n

2

)
2d

2d − 1
− C1n log n ≤ Ln ≤

(
n

2

)
2d

2d − 1
.

Proof The proof of the upper bound is exactly the same as in Theorem 2.2. For the
lower bound, let k be an integer such that

n−1/d ≤ 2−k ≤ 2n−1/d .

Take any configuration of n points. For each D ∈ D, let nD be the number of points
in D. Summing up the contributions to the energy from each cube, we get
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Hn(x1, . . . , xn) =
∞∑
j=1

∑
D∈D j

(
nD

2

)
+

(
n

2

)

≥
k∑
j=1

∑
D∈D j

(
nD

2

)
+

(
n

2

)
= 1

2

k∑
j=1

∑
D∈D j

n2D − nk

2
+

(
n

2

)
.

By the Cauchy–Schwarz inequality, for each j ,

∑
D∈D j

n2D ≥ 1

|D j |

⎛
⎝ ∑

D∈D j

nD

⎞
⎠

2

= n2

2d j
.

Thus,

Hn(x1, . . . , xn) ≥ n2

2

k∑
j=1

2−d j − nk

2
+

(
n

2

)
= n2

2

1 − 2−dk

2d − 1
− nk

2
+

(
n

2

)
.

By our choice of k, this completes the proof. 
�

3.3 Estimates for the partition function

Recall that for a measurable function f : �n → R, its expected value under μn,β is
denoted by μn,β( f ).

Lemma 3.3 There is a constant C2 such that for any n ≥ 0 and β > 0,

exp

(
− 2dβn

2d − 1

)
≤ Z(n + 1, β)

Z(n, β)
≤ exp

(
− 2dβn

2d − 1
+ C2 log(n + 1)

)
.

Proof The proof of Lemma 2.3 goes through verbatim, the only change being that we
need to use Theorem 3.2 instead of Theorem 2.2. 
�

Corollary 3.4 For any n ≥ 0, β > 0, and any k ≥ −n,

Z(n + k, β)

Z(n, β)
≤ exp

(
−2dβnk

2d − 1
− 2dβk(k − 1)

2(2d − 1)
+ C2β|k| log(n + |k| + 1)

)
,

where C5 is the constant from Lemma 3.3.

Proof Again, the proof of Corollary 2.4 goes through verbatim, except that we need
to use Lemma 3.3 instead of Lemma 2.3. 
�
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3.4 Proofs of the upper bounds

Let us now fix some n ≥ 0 and β > 0. In the following, (X1, . . . , Xn) will denote a
randomconfigurationdrawn from themeasureμn,β .Wewill assume that (X1, . . . , Xn)

is defined on some abstract probability space (�,F ,P). Expectation, variance and
covariance with respect to P will be denoted by E, Var and Cov respectively.

Lemma 3.5 Let D1, . . . , D2d denote the 2
d elements of D1, and for each 1 ≤ i ≤ 2d ,

let Ni := |{ j : X j ∈ Di }|. Then for each i , E(Ni ) = n/2d and

Var(Ni ) ≤ K (β)(log(n + 1))2,

where K (β) is a non-increasing function of β.

Proof We have already defined universal constants C1 and C2 in the previous subsec-
tions. In this proof, we will denote further universal constants by C3,C4, . . . without
explicitly mentioning that they denote universal constants on each occasion.

The identity E(Ni ) = n/2d follows by symmetry. We will now prove the claimed
bound on the variance. The cases n = 0 and n = 1 are trivial, so assume that n ≥ 2.
As in the proof of Lemma 2.5, we have a recursion for the partition function, although
the recursion is slightly different due to the different nature of the potential:

Z(n, β)

=
∑

0≤n1,...,n2d ≤n
n1+···+n2d =n

n!
n1!n2! · · · n2d !

e−β
∑

1≤i< j≤2d ni n j

2d∏
i=1

(2−dni Z(ni , β)e−β(
ni
2 ))

=
∑

0≤n1,...,n2d ≤n
n1+···+n2d =n

2−dne−β(n2)n!
n1!n2! · · · n2d !

2d∏
i=1

Z(ni , β).

Moreover, for any (n1, . . . , n2d ) occurring in the above sum,

P(N1 = n1, . . . , N2d = n2d ) = 2−dne−β(n2)n!
n1!n2! · · · n2d !

∏2d
i=1 Z(ni , β)

Z(n, β)
.

Choose nonnegative integers m1, . . . ,m2d such that m1 + · · · + m2d = n and |mi −
n/2d | ≤ 1 for each i . For convenience, let

f (n1, . . . , n2d ) := n!
n1!n2! · · · n2d !

, h(n1, . . . , n2d ) :=
2d∏
i=1

Z(ni , β).
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Take any k1, . . . , k2d ∈ Z such that k1 + · · · + k2d = 0 and 0 ≤ mi + ki ≤ n for
each i . Then by Corollary 3.4,

h(m1 + k1, . . . ,m2d + k2d )

h(m1, . . . ,m2d )

≤
2d∏
i=1

exp

(
−2dβmiki

2d − 1
− 2dβki (ki − 1)

2(2d − 1)
+ C2β|ki | log(n + |ki | + 1)

)

≤
2d∏
i=1

exp

(
−2dβ(nki/2d − |ki |)

2d − 1
− 2dβki (ki − 1)

2(2d − 1)
+ 2C2β|ki | log n

)

≤ exp

⎛
⎝− 2dβ

2(2d − 1)

2d∑
i=1

k2i + C3β log n
2d∑
i=1

|ki |
⎞
⎠ .

Therefore,

P(N1 = m1 + k1, . . . , N2d = m2d + k2d )

P(N1 = m1, . . . , N2d = m2d )

≤ f (m1 + k1, . . . ,m2d + k2d )

f (m1, . . . ,m2d )
exp

⎛
⎝−2β

3

2d∑
i=1

k2i + C3β log n
2d∑
i=1

|ki |
⎞
⎠ .

This shows that there are positive constants C4 and C5 such that if

max
1≤i≤2d

|ki | ≥ C4 log n,

then

P(N1 = m1 + k1, . . . , N2d = m2d + k2d )

P(N1 = m1, . . . , N2d = m2d )

≤ f (m1 + k1, . . . ,m2d + k2d )

f (m1, . . . ,m2d )
e−C5β(log n)2 .

It is now easy to complete the proof by imitating the last part of the proof of Lemma
2.5. 
�

For a Borel set A ⊆ [0, 1)d , let X(A) and N (A) be defined as before. Also, define
{Fk}k≥0 as before.

Lemma 3.6 Conditional on Fk , the random sets {X(D) : D ∈ Dk} are mutually
independent. Moreover, for any D ∈ Dk , conditional on Fk , X(D) has the same
distribution as a scaled version of a point process from the measure μN (D),β .

Proof The proof is the same as the proof of Lemma 2.6, except that β need not be
replaced by 2kβ due to the different nature of the potential. 
�

123



Rigidity of the three-dimensional hierarchical Coulomb gas 1163

Lemma 3.7 If D ∈ Dk and D′ is a child of D, then

E(N (D′)|Fk) = N (D)

2d

and

Var(N (D′)|Fk) ≤ K (β)(log(N (D) + 1))2,

where K is the function from Lemma 3.5.

Proof The formula for the conditional expectation follows from Lemma 2.6 and sym-
metry, and the bound on the conditional variance follows from Lemmas 3.5 and 3.6.


�
Lemma 3.8 For any D ∈ D, E(N (D)) = Leb(D)n and

Var(N (D)) ≤ C(β)(log(2dLeb(D)n + 3))2,

where C(β) depends only on β.

Proof Suppose that D ∈ Dk . The formula for the expectation follows easily by iterat-
ing the formula for the conditional expectation from Lemma 3.7, and observing that
Leb(D) = 2−dk . Next, let D′ be the parent of D. Then by Lemma 3.7, the formula for
expected value, and the concavity of the map x �→ (log(x + 3))2 on the nonnegative
axis,

E(N (D)2) = E(N (D)2 − (E(N (D)|Fk−1))
2) + E((E(ND|Fk−1))

2)

= E(Var(N (D)|Fk−1)) + 2−2d
E(N (D′)2)

≤ K (β)E((log(N (D′) + 1))2) + 2−2d
E(N (D′)2)

≤ K (β)E((log(N (D′) + 3))2) + 2−2d
E(N (D′)2)

≤ K (β)(logE(N (D′) + 3))2 + 2−2d
E(N (D′)2)

= K (β)(log(2−d(k−1)n + 3))2 + 2−2d
E(N (D′)2).

Iterating this, we get

E(N (D)2) ≤ K (β)

k−1∑
r=0

(log(2d+rdLeb(D)n + 3))22−2rd + 2−2dkn2.

Now note that for any r ≥ 0,

log(2d+rdLeb(D)n + 3)

log(2dLeb(D)n + 3)
≤ log(2dLeb(D)n + 3) + log 2rd

log(2dLeb(D)n + 3)

= 1 + rd log 2

log(2dLeb(D)n + 3)
≤ 1 + rd log 2

log 3
.
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Thus,

E(N (D)2) ≤ K (β)(log(2dLeb(D)n + 3))2
∞∑
r=0

(
1 + rd log 2

log 3

)2

2−2rd

+ 2−2dkn2

≤ C(β)(log(2dLeb(D)n + 3))2 + 2−2dkn2,

where C(β) depends only on β. This completes the proof, since E(N (D)) =
Leb(D)n = 2−dkn. 
�

Now take any nonempty open setU ⊆ [0, 1)d with regular boundary, and let A(U )

be defined as in (2.2). Define U , U j , V j and Mj as in the 3D case. It is easy to see that
Lemmas 2.9, 2.11 and Corollary 2.10 remain valid in the 2D and 1D cases.

Lemma 3.9 For any j ≥ 1 such that
√
d · 2− j+1 ≤ diam(U ),

Var(Mj ) ≤ C(β)A(U )(log(2−d( j−1)n + 3))22(d−1) j + Var(Mj−1),

where C(β) is a constant that depends only on β.

Proof In this proof, C(β) will denote any constant that depends only on β. Equations
(2.3) and (2.4) are still valid. If D, D′ ∈ U j ∪ V j have different parents, then N (D)

and N (D′) are conditionally independent by Lemma 3.6, and hence the conditional
covariance is zero. Otherwise, Lemma 3.7 and the Cauchy–Schwarz inequality imply
that

|Cov(N (D), N (D′)|F j−1)| ≤ C(β)(log(N (D′′) + 1))2,

where D′′ is the parent of D and D′. Thus, by Lemma 3.8 and the concavity of the
map x �→ (log(x + 3))2 on the nonnegative real axis,

|E(Cov(N (D), N (D′)|F j−1))| ≤ C(β)(log(Leb(D′′)n + 3))2

= C(β)(log(2−d( j−1)n + 3))2.

On the other hand, each D ∈ U j ∪V j has at most 2d −1 siblings that belong toU j ∪V j .
Since p(D)2−d j = p(D)Leb(D) = Leb(D ∩U ), this shows that

E(Var(Mj |F j−1)) ≤ C(β)(log(2−d( j−1)n + 3))2
∑

D∈U j∪V j

2d p(D)

= C(β)(log(2−d( j−1)n + 3))22d( j+1)
∑

D∈U j∪V j

Leb(D ∩U ).

Note that each element of ⋃
D∈U j∪V j

(D ∩U )
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is within distance
√
d · 2− j+1 of ∂U . Since

√
d · 2− j+1 ≤ diam(U ), inequality (2.2)

gives

∑
D∈U j∪V j

Leb(D ∩U ) ≤ A(U )
√
d · 2− j+1.

Consequently,

E(Var(Mj |F j−1)) ≤ C(β)A(U )(log(2−d( j−1)n + 3))22(d−1) j ,

where C(β) depends only on β. The proof is completed by plugging this bound into
(2.3). 
�

We now have all the ingredients for proving the following analog of Theorem 2.13.

Theorem 3.10 (Hyperuniformity at all scales in 2D and 1D) Let U and N (U ) be as
in Theorem 1.1. Suppose that diam(U ) ≥ n−1/d . Let A(U ) be the constant defined in
(2.2). Then

E(N (U )) = Leb(U )n

and

Var(N (U )) ≤ C(β)(A(U )n(d−1)/d + 1)(log(7diam(U )dn))2,

where C(β) is a constant that depends only on β.

Proof Throughout this proof, C(β) will denote any constant that depends only on β.
The value of C(β) may change from line to line or even within a line.

The formula for the expectation follows from the d-dimensional version of Corol-
lary 2.10. It remains to prove the variance bound. Choose k such that

1

2
n−1/d ≤ √

d · 2−k ≤ n−1/d .

Equation (2.5) remains valid, as does the inequality

Var(N (U )|Fk) ≤
∑
D∈Vk

p(D)N (D)2.

By Lemma 3.8 and our choice of k,

E(N (D)2) ≤ C(β)(log(2dLeb(D)n + 3))2 + Leb(D)2n2 ≤ C(β)

for all D ∈ Vk . Note that each element of

⋃
D∈Vk

(D ∩U )
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is within distance
√
d · 2−k of ∂U , and p(D)2−dk = Leb(D ∩U ). Since

√
d · 2−k ≤

n−1/d ≤ diam(U ) by our choice of k, this gives

E(Var(N (U )|Fk)) ≤ C(β)2dk
∑
D∈Vk

Leb(D ∩U )

≤ C(β)2dk A(U )2−k ≤ C(β)A(U )n(d−1)/d .

Let l be the smallest integer such that
√
d · 2−l ≤ diam(U ). Note that l ≤ k. Together

with (2.5) and Lemma 3.9, the above inequality shows that

Var(N (U )) ≤ C(β)A(U )

k∑
j=l+1

(log(2−d( j−1)n + 3))22(d−1) j + Var(Ml)

≤ C(β)A(U )(log(2ddiam(U )dn + 3))2
k∑

j=l+1

2(d−1) j + Var(Ml)

≤ C(β)A(U )n(d−1)/d(log(2ddiam(U )dn + 3))2 + Var(Ml).

By the definition of l, Ui if empty for all i < l. Therefore

Ml =
∑

D∈Ul∪Vl

p(D)N (D).

Note that for any D ∈ Ul ∪ Vl , Lemma 3.8 gives

Var(p(D)N (D)) = p(D)2Var(N (D)) ≤ C(β)(log(2dLeb(D)n + 3))2

= C(β)(log(2d2−dln + 3))2

≤ C(β)(log(2ddiam(U )dn + 3))2.

Moreover, it is easy to see that U intersects at most 2d members of Dl , and therefore
|Ul ∪ Vl | ≤ 2d . From these observations, we get

Var(Ml) ≤ C(β)(log(2ddiam(U )dn + 3))2.

This completes the proof of the theorem. 
�
Proofs of Theorems 1.6 and 1.8 These are consequences of Theorem 3.10 in the same
way as Theorems 1.1 and 1.3 followed from Theorem 2.13. 
�

Finally, let us prove Theorem 1.9.

Proof of Theorem 1.9 The proof is very similar to the proof of Theorem 1.4, withminor
modifications. As usual, C(β) denotes any constant that depends only on β. Define
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f (D) and Wk as in the proof of Theorem 1.4. Then Wk is again a martingale, and Eq.
(2.6) is still valid. Now choose k such that

n−1/d ≤ 2−k ≤ 2n−1/d .

Then (2.7) continues to hold. Take any j . For each D ∈ D j−1, let c(D) denote the set
of 2d children of D. Proceeding as in the proof of Theorem 1.4, we get

Var(X( f j )|F j−1)

=
∑

D∈D j−1

E

⎛
⎜⎝

⎛
⎝ ∑

D′∈c(D)

f (D′)N (D′) − f (D)N (D)

⎞
⎠

2 ∣∣∣∣F j−1

⎞
⎟⎠ .

Now notice that for any D ∈ D j−1,

∑
D′∈c(D)

f (D′)N (D′) − f (D)N (D)

=
∑

D′∈c(D)

( f (D′) − f (D))

(
N (D′) − N (D)

2d

)
.

Recall that L is the Lipschitz constant of f . For any D′ ∈ c(D),

| f (D′) − f (D)| ≤ √
dL2− j+1.

As in the proof of Theorem 1.4,

⎛
⎝ ∑

D′∈c(D)

( f (D′) − f (D))

(
N (D′) − N (D)

2d

)⎞
⎠

2

≤ 4− j+3L2
∑

D′∈c(D)

(
N (D′) − N (D)

2d

)2

.

Therefore, by Lemma 3.7,

E

⎛
⎜⎝

⎛
⎝ ∑

D′∈c(D)

f (D′)N (D′) − f (D)N (D)

⎞
⎠

2 ∣∣∣∣F j−1

⎞
⎟⎠

≤ 4− j+3L2
∑

D′∈c(D)

Var(N (D′)|F j−1)

≤ 4− j+4L2K (β)(log(N (D) + 1))2 ≤ 4− j+4L2K (β)(log(n + 1))2.
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Consequently,

E(Var(X( f j )|F j−1)) ≤ C(β)L2(log n)24− j |D j−1| ≤ C(β)L22(d−2) j (log n)2.

For D ∈ Dk , let s(D) be defined as in the proof of Theorem 1.4. Then as before, we
have

Var(X( f )|Fk) ≤
∑
D∈Dk

E((s(D) − f (D)N (D))2|Fk).

By the Lipschitz condition,

|s(D) − f (D)N (D)| ≤ √
dL2−k N (D)

for each D ∈ Dk . Thus, by Lemma 3.8 and our choice of k,

E((s(D) − f (D)N (D))2) ≤ 4−k+1L2
E(N (D)2) ≤ C(β)L24−k .

Consequently,

E(Var(X( f )|Fk)) ≤ C(β)L24−k |Dk | ≤ C(β)L22(d−2)k ≤ C(β)L2n(d−2)/d .

The proof is now easily completed by combining the steps. 
�

3.5 Proofs of the lower bounds

Let us now prove Theorem 1.7. The proof is similar to the proof of Theorem 1.2, but
with some significant changes due to the different nature of the potential. Let

T := {z + [0, 1)2 : z ∈ Z
2}.

Lemma 3.11 Let T be as above. Take any D ∈ T and any x ∈ D. Let δ be the distance
of x from the boundary of D. Then any line through x bifurcates D into two parts,
each of which has volume at least πδ2/2.

Proof Same as the proof of Lemma 2.14. 
�
Lemma 3.12 Take any x ∈ R

2 and a unit vector u = (u1, u2) ∈ S1. Let L be the line
that contains x and is perpendicular to u. Suppose that

min{|u1|, |u2|} ≥ 0.1. (3.1)

Then there is an element D ∈ T , within Euclidean distance
√
101 from x, which is

bifurcated by the line P in such a way that each part has volume at least 6 × 10−5.
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Proof Take any x = (x1, x2) ∈ R
2 and u = (u1, u2) ∈ S1 as in the statement of the

lemma. Let L0 be the line with normal vector u that contains the origin. Define

y1 = sign(u1), y2 = −|u1|
u2

.

Then y = (y1, y2) ∈ L0. Also, we have |y1| = 1, and by condition (3.1) and the fact
that |u2| ≤ 1,

|y2| = |u1|
|u2| ≥ |u1| ≥ 0.1.

Now consider the set

I1 = {x1 + αy1 : 0 ≤ α ≤ 1}.

Since |y1| = 1, I1 is an interval of length 1. By Lemma 2.15, I1 has a subinterval of
I2 of length 0.25 such that any integer is at least at a distance 0.25 from I2. Moreover,
since |y1| = 1, I2 is of the form

{x1 + αy1 : a ≤ α ≤ b},

where b − a = 0.25. Let

I3 := {x2 + αy2 : a ≤ α ≤ b}.

Since |y2| ≥ 0.1, I3 has length at least 0.025. Thus by Lemma 2.15, I3 contains a
subinterval I4 of length 0.00625 such that any integer is at a distance at least 0.00625
from I4.

In particular, there is some α ∈ [0, 1] such that x1 + αy1 ∈ I2 and x2 + αy2 ∈ I4.
The distance of xi + αyi from the nearest integer is at least 0.00625 for each i . Thus,
the distance of the point x + αy from the boundary of the square D ∈ T that contains
x + αy is at least 0.00625. By Lemma 3.11 and the fact that x + αy ∈ L , this proves
L bifurcates D into two parts, each of which has volume at least 6 × 10−5. Lastly,
note that

|(x + αy) − x | ≤ |y| =
√
y21 + y22 ≤

√
1 + 1

0.12
≤ √

101,

since |u1| ≤ 1 and |u2| ≥ 0.1. This completes the proof of the lemma. 
�
Now recall that the boundary of the set U in the statement of Theorem 1.7 is a

simple smooth closed curve. In particular, we can choose a unit normal vector u(x) at
each x ∈ ∂U such that the map x �→ u(x) is smooth.
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Lemma 3.13 Take any x ∈ ∂U such that the normal vector u(x) satisfies (3.1). Then
there is some j0 depending only on U (but not on x), such that for all j ≥ j0, there is
some D ∈ D j at distance at most

√
101 · 2− j from x, such that

10−5 ≤ Leb(D ∩U )

Leb(D)
≤ 1 − 10−5. (3.2)

Proof Same as the proof of Lemma 2.17, using Lemma 3.12 instead of Lemma 2.16.

�

Lemma 3.14 There is some K1 > 0 and some j1 ≥ 1 depending only on U such that
for any j ≥ j1, there is a set of at least K12 j squares D ∈ D j that satisfy (3.2) and
the union of these squares has diameter at most diam(U )/3.

Proof Same as the proof of Lemma 2.18, with a small adjustment for dimension that
replaces K14 j by K12 j . 
�
Lemma 3.15 Take any n ≥ 1 and β > 0, and a Borel set A ⊆ [0, 1)2 with 0 <

Leb(A) < 1. Let δ > 0 be a number such that δ ≤ Leb(A) ≤ 1 − δ. Then

c(β, n, δ) ≤ Var(N (A)) ≤ n2,

where c(β, n, δ) is a positive real number that depends only on β, n and δ.

Proof The upper bound is trivial since N (A) ≤ n. For the lower bound, the case n = 1
is easy, since in that case N (A) is a Bernoulli(Leb(A)) random variable. So let us take
n ≥ 2. Trivially, Z(n, β) ≤ 1. Therefore, by Jensen’s inequality and Lemma 3.1,

P(N (A) = n) = μn,β(An) ≥
∫
An

e−βHn(x1,...,xn) dx1 · · · dxn

≥ Leb(An) exp

(
− β

Leb(An)

∫
An

Hn(x1, . . . , xn) dx1 · · · dxn
)

≥ Leb(An) exp

(
− 4β

3Leb(An)

(
n

2

))

≥ δn exp

(
− 4β

3δn

(
n

2

))
.

Similarly, if B = [0, 1)2\A, then

P(N (A) = 0) = μn,β(Bn) ≥ δn exp

(
− 4β

3δn

(
n

2

))
.

With the two lower bounds derived above, it is now easy to complete the proof, for
example using Chebychev’s inequality. 
�
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Proof of Theorem 1.7 In this proof, as in the proof of Theorem 1.2, the phrase ‘n suf-
ficiently large’ will mean ‘n ≥ n0, where n0 depends only on U and β’. Also, C will
denote any positive universal constant, C(β) will denote any positive constant that
depends only on β, and C(U , β) will denote any positive constant that depends only
on U and β.

Choose k such that

n−1/2 ≤ 2−k ≤ 2n−1/2.

Then for any D ∈ Dk , Lemma 3.8 gives

E(N (D)2) ≤ L1(β), (3.3)

where L1(β) is a positive integer that depends only on β. Let

m := 1000L1(β).

If n is sufficiently large, then there is a set C ⊆ Dk that satisfies the conclusions of
Lemma 3.14. In particular, arguing as in the proof of Theorem 1.2, we get

C1(U , β)2k ≤ |C| ≤ C2(U , β)2k, (3.4)

where C1(U , β) and C2(U , β) are positive constants that depend only on U and β.
Let Q be the union of the elements of C. Proceeding as in the proof of Theorem 1.2,
and using Theorem 3.10 instead of Theorem 2.13, we get

Var(N (Q)) ≤ C(U , β)n1/2(log n)2, (3.5)

provided that n is sufficiently large. Also, by Lemma 3.8 and our choice of k,

E(N (Q)) = Leb(Q)n = |C|4−kn ≥ |C|.

Thus, by (3.4), (3.5) and Chebychev’s inequality,

P

(
N (Q)

|C| ≥ 1

2

)
≥ 1 − 4Var(N (Q))

|C|2 ≥ 1 − C(U , β)n−1/2(log n)2. (3.6)

Let a1, a2, p1, p2 and q be defined as in the proof of Theorem 1.2. By the inequality
(3.3), E(a2) ≤ L1(β). Thus,

P(a2 ≥ 2L1(β)) ≤ 1

2
. (3.7)

By the Paley–Zygmund second moment inequality,

p1 ≥ a21
a2

,
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and so by (3.6) and (3.7),

P

(
p1 ≥ 1

8L1(β)

)
≥ P

(
a1 ≥ 1

2
, a2 ≤ 2L1(β)

)
≥ 1

2
− C(U , β)n−1/2(log n)2.

Choose n so large that the above lower bound at least 1/3. Next, note that by Lemma
3.8 and Markov’s inequality,

E(p2) ≤ 1

m|C|
∑
D∈C

E(N (D)) ≤ 4

m
,

and hence

P

(
p2 ≥ 16

m

)
≤ 1

4
.

Since q = p1 − p2 and

1

8L1(β)
≥ 32

m
,

we get

P

(
q ≥ 16

m

)
≥ P

(
p1 ≥ 32

m
, p2 ≤ 16

m

)
≥ 1

3
− 1

4
= 1

12
.

Let C0 be the set of all D ∈ C such that 0 < N (D) ≤ m. The above inequality and
(3.4) show that if n is sufficiently large, then

P(|C0| ≥ L2(β)n1/2) ≥ 1

13
, (3.8)

where L2(β) is a positive constant that depends only on β. By Lemma 3.6, the random
variables {N (D∩U ) : D ∈ Dk} are independent givenFk .Moreover, for each D ∈ C0,
N (D ∩U ) ≤ m ≤ C(β), and by Lemma 3.6 and Lemma 3.15,

Var(N (D ∩U )|Fk) ≥ L3(U , β),

where L3(U , β) is a positive constant that depends only on U and β. (This is the
crucial difference with the proof of Theorem 1.2. The scale invariance of the model
in dimension two is not valid in dimension three.) Thus, if we let

M :=
∑
D∈C0

N (D ∩U ),
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then the Berry–Esseen theorem shows that for any interval I ,

P(M ∈ I |Fk) ≤ C(U , β)(|I | + 1)√|C0| , (3.9)

where |I | denotes the length of I . Since

N (U ) =
∑
D∈Dk

N (D ∩U ) =
∑

D∈Dk\C0
N (D ∩U ) + M,

and the two terms in the last expression are independent givenFk , the inequality (3.9)
implies that

P(N (U ) ∈ I |Fk) ≤ C(U , β)(|I | + 1)√|C0| .

Therefore by (3.8),

P(N (U ) ∈ I ) ≤ C(U , β)(|I | + 1)n−1/4 + 12

13

if n is sufficiently large. This completes the proof. 
�
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