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Abstract
We consider finite-range ferromagnetic Ising models on Z

d in the regime β < βc.
We analyze the behavior of the prefactor to the exponential decay of Cov(σA, σB),
for arbitrary finite sets A and B of even cardinality, as the distance between A and B
diverges.

Mathematics Subject Classification Primary 60K35; Secondary 82B20 · 82B41

1 Introduction and results

We consider the Ising model on Z
d with formal Hamiltonian

H = −
∑

{i, j}⊂Z
d

J j−iσiσ j ,

where, as usual, σi denotes the random variable corresponding to the spin at i ∈
Z
d . The coupling constants J = (J (x))

x∈Z
d are assumed to satisfy the following

conditions1:

• ferromagnetism: Jx ≥ 0 for all x ∈ Z
d ;

• reflection symmetry: Jx = Jx̃ if x = (x1, . . . , xd), x̃ = (x̃1, . . . , x̃d) with |xi | =
|x̃i | for all 1 ≤ i ≤ d;

• finite-range: ∃R < ∞ such that Jx = 0 whenever ‖x‖2 ≥ R;
• irreducibility: Jx > 0 for all x ∈ Z

d with ‖x‖ = 1.

1 Let us emphasize that these conditions are actually stronger than needed. In particular, the irreducibil-
ity condition could be substantially weakened at the cost of (minor) additional technicalities. However,
ferromagnetism and short-range interactions (that is, Jx ≤ e−c‖x‖ for some c > 0) are real restrictions.
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Let Gβ be the set of all infinite-volume Gibbs measures at inverse temperature β

and βc = sup{β : |Gβ | = 1}. As is well known, βc ∈ (0,∞) for all d ≥ 2. (We refer
to [14] for an introduction to these topics.)

From now on, we suppose that d ≥ 2 and β < βc and we denote by μβ the unique
infinite-volume Gibbs measure. It was proved in [2] that, in this regime, spin-spin
correlations decay exponentially fast: the inverse correlation length

ξβ(u) = − lim
n→∞

1

n
logCovβ(σ0, σ[nu])

exists and is positive, uniformly in the unit vector u in R
d . Here, the covariance is

computed with respect to μβ , and [y] ∈ Z
d denotes the component-wise integer part

of y ∈ R
d .

Given a function f : {−1, 1}Zd → R, we denote by supp( f ) the support of f , that
is, the smallest set A such that f (ω) = f (ω′) whenever ω and ω′ coincide on A. f is
said to be local if |supp( f )| < ∞.

Let θx denote the translation by x ∈ Z
d . θx acts on a spin configuration ω via

(θxω)y = ωy−x and on a function f via θx f = f ◦ θ−x .
We are interested in the asymptotic behavior of the covariances

Covβ( f , θ[nu]g) (1)

as n → ∞, for pairs of local functions f and g and any unit vector u in R
d . For any

local function f , there exist (explicit) coefficients ( f̂ A)A⊂supp( f ) such that

f =
∑

A⊂supp( f )

f̂ AσA,

where σA = ∏
i∈A σi (see, for example, [14, Lemma 3.19]). Using this, (1) becomes

Covβ( f , θ[nu]g) =
∑

A⊂supp( f )
B⊂supp(g)

f̂ A ĝB Covβ(σA, σB+[nu]). (2)

This motivates the asymptotic analysis of the covariances Covβ(σA, σB+[nu]) for
A, B � Z

d (that is, A and B are finite subsets of Z
d ). Observe that, by symmetry,

Covβ(σA, σB+[nu]) = 0whenever |A| and |B| have different parities.We can therefore
assume, without loss of generality, that |A| and |B| are either both odd, or both even:
one then says that one considers odd–odd, resp. even–even, correlations.

Odd–odd correlations

In this case, the best nonperturbative result to date is the following:
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Asymptotics of even–even correlations in the Ising model 311

Theorem 1.1 [10] Let A, B � Z
d be two sets of odd cardinality. Then, for any d ≥ 2,

anyβ < βc and any unit vectoru inR
d , there exists a constant 0 < C < ∞ (depending

on A, B,u, β, J) such that

Covβ(σA, σB+[nu]) = C

n(d−1)/2
e−ξβ (u)n(1 + o(1)),

as n → ∞.

This result has a long history, starting with the celebrated work by Ornstein and
Zernike in 1914 [20,28], in which the corresponding claim (for fluids) is established
(non-rigorously) in the case of the 2-point function (that is, when A and B are single-
tons). That such a behavior indeed occurs was first shown when d = 2 using exact
computations [27]. In general dimensions, the earliest rigorous derivations, valid for
sufficiently small β, are due to Abraham and Kunz [1] and Paes-Leme [23], using very
different approaches. A non-perturbative derivation, valid for arbitrary β < βc was
given by Campanino, Ioffe and Velenik [9] (see also [11]).

Derivations for general odd–odd correlations were first obtained by Bricmont and
Fröhlich [6,7] andMinlos and Zhizhina [19,29], for sufficiently small values of β, and
then by Campanino, Ioffe and Velenik [10] for all β < βc.

Even–even correlations

The asymptotic behavior of even–even correlations is more subtle and initially led to
some controversy: in the case of energy-energy correlations (that is, when A and B
are each reduced to two nearest-neighbor vertices), heuristic derivations by Polyakov
[24] and Camp and Fisher [8] led to distinct predictions. While both works agreed
that the rate of exponential decay is now given by 2ξβ(u), the predicted behavior for
the prefactor were different: Camp and Fisher predicted a prefactor of order n−d for
all d ≥ 2, while Polyakov predicted a prefactor of order n−2 when d = 2, (n log n)−2

when d = 3 and n−(d−1) when d ≥ 4. When d = 2, these predictions coincided
and matched the result known from exact computations [15,25]. It turned out that
Polyakov’s predictions were correct. For sufficiently small values of β, this was first
proved by Bricmont and Fröhlich [6,7] for dimensions d ≥ 4, and then by Minlos
and Zhizhina [19,29] for dimensions 2 and 3; see also [3,4]. Extensions to general
even–even correlations, at small values of β, were proved in [5,19,29].

Our main result is the following non-perturbative derivation.

Theorem 1.2 Let A, B � Z
d be two nonempty sets of even cardinality. Then, for any

d ≥ 2, any β < βc and any unit vector u in R
d , there exist constants 0 < C− ≤ C+ <

∞ (depending on A, B,u, β, J) such that, for all n large enough,

C−
�(n)

e−2ξβ (u)n ≤ Covβ(σA, σB+[nu]) ≤ C+
�(n)

e−2ξβ (u)n,
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312 S. Ott, Y. Velenik

with

�(n) =

⎧
⎪⎨

⎪⎩

n2 when d = 2,

(n log n)2 when d = 3,

nd−1 when d ≥ 4.

Remark 1.1 In addition to its being non-perturbative, an advantage of our approach
is that it applies to arbitrary directions u and a very general class of finite-range
interactions, while the earlier approaches imposed severe limitations.

Heuristics and scheme of the proof

Let us try to provide some intuition for the behavior stated in Theorem 1.2, considering
the simplest non-trivial case: A = {x, y}, B+nu = {u, v}. The high-temperature rep-
resentation of correlation functions (see Sect. 2.1.2) expresses the correlation function
〈σAσB+nu〉β as a sum over pairs of disjoint paths γ1, γ2 with endpoints in {x, y, u, v},
with a suitableweight associated to each realization of the twopaths. The three possible
pairing are thus:

u
v

x
y

u
v

x
y

u
v

x
y

γ1 γ2

For the product 〈σA〉β〈σB+nu〉β , one obtains a representation similar to the left-
most one above, but with the two paths γ1, γ2 now living in independent copies of the
system (and not necessarily disjoint). Since β < βc, typical paths between x and y and
between u and v do not wander far from their endpoints. Therefore, when n � 1, one
might expect that the contribution from the left-most of the above pictures essentially
factorizes, thus canceling the contribution of 〈σA〉β〈σB+nu〉β and leaving only the
contributions of the two right-most pictures. If the two paths could be considered
independent, one would then recover the square of the usual Ornstein–Zernike decay.
There are however, several problems with this argument (which, in particular, are
responsible for the deviations from this behavior in dimensions 2 and 3). First, it turns
out that the interaction between the two paths in the left-most picture, although small,
decays exponentially in n with a rate 2ξβ(u), that is, the correction is of the same
(exponential) order as the target estimates in Theorem 1.2. Therefore, the behavior of
the truncated 4-point function cannot be read solely from the last two pictures. Second,
there is a non-trivial infinite-range interaction between the two paths (as well as self-
interactions) that make approximating them by independent random walks delicate.
Third, the constraint that the two paths do not intersect, although mostly irrelevant in
dimensions d ≥ 4, is crucial when d = 2 or 3 and is ultimately responsible for the
anomalous behavior observed in these dimensions.

In order to solve these problems, we rely on a combination of several graphical
representations of the Ising model. Namely, it is well known that the random-current
representation offers an extremely efficient way of dealing with truncated correlations,
expressing the difference as the probability of a suitable event in a duplicated sys-
tem. In particular, it suppresses the need of separately estimating the 4-point function
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Asymptotics of even–even correlations in the Ising model 313

Fig. 1 Top: A sketch of the graphical representation corresponding to the upper bound on the truncated
correlation function Covβ(σA, σB ) (here with |A| = 4 and |B| = 2). There are two paths, living in
independent copies of the system, each connecting one vertex of A to one vertex of B and non-intersecting.
The remaining two vertices of A are connected to each other. Bottom: the corresponding non-intersecting
directed random walks

and the product of the 2-point functions. Using this and a coupling of the resulting
double random-current configurations with the paths from the corresponding high-
temperature representation, we obtain an upper bound on the truncated correlation
function in terms two high-temperature paths connecting vertices in A to vertices in
B (that is, roughly speaking, to the two right-most pictures above). The remarkable
feature is that these paths live in two independent copies of the system and are only
coupled through the constraint that they do not intersect (see Fig. 1).

This approach does not apply for the lower bound. In this case, we work directly
in the random-cluster representation, observing that the FKG inequality allows one
to cancel (as a lower bound) the product of the 2-point functions with a suitable part
of the 4-point function. Again the resulting picture is that of two clusters connecting
vertices in A to vertices in B, living in independent copies of the system and coupled
through a non-intersection constraint.

Using the Ornstein–Zernike (OZ) theory developed in [9,11,22], we then approxi-
mate the high-temperature paths, resp. the clusters in the random-cluster representa-
tion, by effective directed random walks on Z

d . This allows one to obtain upper and
lower bounds given by the square of the usual OZ asymptotics multiplied by the prob-
ability that the two effective random walk bridges do not intersect. The latter being
	(n−1) when d = 2, 	((log n)−2) when d = 3 and 	(1) when d ≥ 4, this leads to
the claim of Theorem 1.2.
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Open problems

Sharp asymptotics

In contrast to Theorem 1.1, Theorem 1.2 only provides bounds, not sharp asymptotics.
It would be desirable to remove this limitation (note that such sharp asymptotics were
obtained in the earlier approaches, albeit only for β small enough). There are several
places in which we lose track of the sharp prefactor, but only two steps where this is
essential (the inequalities in (8) and (13)), all others could be dealt with at the cost of
(non-negligible) additional technicalities. Oneway to obtain sharp asymptoticsmay be
to build a version of the OZ theory applicable directly in the (double) random-current
setting, maybe by building on the construction in [21].

Short-range interactions

We only consider finite-range interactions. However, the same results should hold for
infinite-range interactions, as long as those decay at least exponentially fast with the
distance. Again, this would require a suitable extension of the OZ theory. We plan to
come back to this issue in a future work.

Rate of exponential decay

The random-current representation plays an essential role in our proof. Even proving
that the rate of exponential decay is 2ξ(u) does not seem to be immediate using
only the random-cluster representation. This would be necessary to investigate similar
questions in the Potts model.

Other models

The first thing to understand in the context of more general models (in particular, with
a richer symmetry group) is to determine what are the relevant classes of functions
(playing the role of the σA, with |A| even or odd, in the Ising model). Of course,
characters of the symmetry group seem the natural generalization, but in which classes
should they be split?

2 Proof of Theorem 1.2

2.1 The graphical representations

We consider the ferromagnetic Ising model on a finite graph G = (VG, EG) with
free boundary conditions (since β < βc in our application, which boundary condition
is used does not matter). The set of configurations is 
G = {−1,+1}VG , and the
expectation of a function f is given by
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Asymptotics of even–even correlations in the Ising model 315

〈 f 〉β,G = 1

Zβ,G

∑

σ∈
G

f (σ ) exp
(
β

∑

e={i, j}∈EG

Jeσiσ j

)
, (3)

where the coupling constants (Je)e∈EG are nonnegative.
We now describe three graphical representations of the Ising model: the random-

current (RC) representation with its switching property, the random-cluster (FK)
representation and the high-temperature (HT) representation. We will make the con-
vention of systematically identifying a sub-graph F ⊂ G with the induced function on
edges equal to 1 when the edge is present in F and to 0 otherwise. General references
for this section are [12,14].

2.1.1 Random-current representation

The random-currentmeasure onG is the non-negativemeasure on (Z≥0)
EG associating

to n = (ne)e∈EG the weight

wβ(n) =
∏

e∈EG

(β Je)ne

ne! .

Given a random-current configuration n, the incidence of a vertex v ∈ VN is defined
as

Iv(n) =
∑

e∈EG ,e�v

ne.

The sources ∂n of a configuration n are the vertices with odd incidence. Let us now
express the unnormalized correlation functions of the Ising model with free boundary
condition in terms of random currents. Let A ⊂ VG with |A| even. A Taylor expansion
of the Boltzmann weight yields

∑

σ∈
G

σA

∏

e={i, j}∈EG

eβ Jeσiσ j =
⎛

⎝
∏

i∈VG

∑

σi∈{−1,1}

⎞

⎠ σA

∑

n:EG→Z≥0

wβ(n)
∏

i∈VG
(σi )

Ii (n)

= 2|VG | ∑

∂n=A

wβ(n).

We will write

ZRC
G (A) =

∑

∂n=A

wβ(n),

ZRC
G (A)ZRC

G (B) {F(n1 + n2)} =
∑

∂n1=A
∂n2=B

wβ(n1)wβ(n2)F(n1 + n2),
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and abuse notation by replacing the indicator function of an event by the event inside
the braces. The set of currents on G with sources A will be denoted NG(A) (with
NG ≡ NG(∅)). Correlation functions of the Ising model then become

〈σA〉β,G = ZRC
G (A)

ZRC
G (∅)

.

For a current configuration n, denote by n̂ the graph obtained by keeping the edges
from G with ne > 0 and removing those with ne = 0. The feature that makes this
representation extremely useful is the following Switching Lemma (see [12] for a proof
and applications).

Lemma 2.1 (Switching Lemma) For any A, B ⊂ VG and any function F on currents,

ZRC
G (A)ZRC

G (B)
{
F(n1 + n2)

} = ZRC
G (A� B)ZRC

G (∅)
{
1EA

(n̂1 + n2)F(n1 + n2)
}
,

where EA is the event that A is evenly partitioned by n̂1 + n2 (that is, each connected
component of n̂1 + n2 contains an even number of vertices of A) and A� B = (A ∪
B)\(A ∩ B).

This remarkable property makes the random-current representation particularly well
suited to analyze truncated correlation functions. In particular, an application of
Lemma 2.1 yields, for any A, B ⊂ G,

〈σA; σB〉β = ZRC(A� B)ZRC(∅) − ZRC(A)ZRC(B)

ZRC(∅)2
= ZRC(A� B)ZRC(∅){E c

A}
ZRC(∅)2

. (4)

Finally, we introduce a probability measure on NG(A) via

PA
G(n) = wβ(n)

ZRC
G (A)

,

and write, for A, B ⊂ VG ,

PA⊗B
G (n1,n2) = PA

G(n1)PB
G(n2).

2.1.2 High-temperature representation

For any A ⊂ VG with |A| even, using the identity eβ Jeσiσ j = cosh(β Je)
(
1 +

σiσ j tanh(β Je)
)
, we can write

∑

σ∈
G

σA

∏

e={i, j}∈EG

eβ Jeσiσ j

=
⎧
⎨

⎩
∏

e={i, j}∈EG

cosh(β Je)

⎫
⎬

⎭
∑

g⊂EG

∑

σ∈
G

∏

i∈VG
(σi )

1A(i)+|{ j : {i, j}∈g}| ∏

e∈g
tanh(β Je)
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Asymptotics of even–even correlations in the Ising model 317

= 2|VG |
⎧
⎨

⎩
∏

e={i, j}∈EG

cosh(β Je)

⎫
⎬

⎭
∑

g∈EG (A)

∏

e∈g
tanh(β Je),

where EG(A) is the set of subgraphs (VG, E) of G having the property that every
vertex not in A has even degree while every vertex in A has odd degree. Correlation
functions can then be expressed as

〈σA〉β,G = ZHT
G (A)

ZHT
G (∅)

,

where we introduced

ZHT
G (A) =

∑

g∈EG (A)

∏

e∈g
tanh(β Je).

We define an associated probability measure PA
G on EG(A) by

PA
G(g) =

∏
e∈g tanh(β Je)

ZHT
G (A)

.

Remark 2.1 Note that it immediately follows from the definitions that

PA
G(ne is odd if and only if e ∈ g) = PA

G(g)

for all subgraphs g ⊂ G.

Given u ∈ VG , we denote by Eu
G the set of all edges of EG incident at u. At each

vertex u, we fix an arbitrary total ordering on the edges of Eu
G .

Given a vertex x ∈ VG and a configuration g ∈ EG(A), we extract a path γ starting
from x and ending at another vertex of A using the following algorithm (writing
|A| = m):

Algorithm 1: Extracting a path γ starting at x ∈ A from g

let γ = ∅ and v = x
repeat

let e = {v, u} be the smallest edge in g ∩ Ev
G that does not belong to γ

update γ = γ � e // � denotes concatenation
update v = u

until v ∈ A\{x}
If γ = (x0, x1, . . . , xm), we define its edge-boundary by

[γ ] =
m−1⋃

k=0

{e ∈ Exk
G : e ≤ ek},
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318 S. Ott, Y. Velenik

where we have written ek = {xk, xk+1} for the edges of the path (Fig. 2).
Given x, y ∈ A, let us denote by PathA

G(x, y) the set of all paths in G starting at x ,
ending at y that can be obtained using Algorithm 1 above. Given γ ∈ PathA

G(x, y),
we denote by {γ : x → y} the event that Algorithm 1 (started at x) yields the path
γ and by G[γ ] the graph with edges EG\[γ ] (and vertices given by the endpoints of
these edges). Then, one can easily check that

PA
G(γ : x → y) = ZHT

G[γ ](A\{x, y})
ZHT
G (A)

∏

e∈γ

tanh(β Je).

The following upper bound will be useful in our analysis.

Lemma 2.2 Let A ⊂ VG be even. Let x, y be two distinct vertices of A and let γ ∈
PathA

G(x, y). Then,

PA
G(γ : x → y) ≤ P

{x,y}
G (γ : x → y).

Proof Let us write

ZHT
G[γ ](A\{x, y})

ZHT
G (A)

= ZHT
G[γ ](A\{x, y})
ZHT
G[γ ](∅)

ZHT
G[γ ](∅)

ZHT
G (∅)

ZHT
G (∅)

ZHT
G (A)

.

Now, observe first that, by GKS inequalities,

ZHT
G[γ ](A\{x, y})
ZHT
G[γ ](∅)

= 〈σA\{x,y}〉β,G[γ ] ≤ 〈σA\{x,y}〉β,G .

1

2

3

4

y

x

Fig. 2 A high-temperature configuration, with 4 vertices of odd degree. The path from x to y obtained by
applying Algorithm 1 is indicated by bold edges; the edges that need to be added to obtain the corresponding
edge-boundary are shaded. The order used on the edges incident at each vertex is indicated on the right
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Asymptotics of even–even correlations in the Ising model 319

Then, again by GKS,

ZHT
G (A)

ZHT
G (∅)

= 〈σA〉β,G ≥ 〈σA\{x,y}〉β,G 〈σxσy〉β,G .

Putting this together, we obtain

ZHT
G[γ ](A\{x, y})

ZHT
G (A)

≤ 1

〈σxσy〉β,G

ZHT
G[γ ](∅)

ZHT
G (∅)

= ZHT
G[γ ](∅)

ZHT
G ({x, y}) .

The claim follows, since PathA
G(x, y) ⊂ Path{x,y}

G (x, y). ��

Wewill denote byP
x,y
G the distribution of the path extracted fromHTconfigurations

with sources {x, y} (that is, the pushforwardmeasure ofP{x,y}
G by themapping induced

by Algorithm 1) and by P
{x,y}⊗{u,v}
G the distribution of two independent such paths

extracted from independent configurations with sources {x, y} and {u, v}.

2.1.3 Random-cluster representation

The random-cluster (or FK) measure associated to the Ising model is obtained by the
following expansion (remember that EA is the event that each connected component
of ω contains an even number of vertices of A (possibly 0)):

∑

σ∈{±1}G
σAe

β
∑

e={i, j} Jeσiσ j = e−β
∑

e Je
∑

σ∈{±1}G
σA

∏

e={i, j}

(
(e2β Je − 1)δσi ,σ j + 1

)

= Cβ,J

∑

ω⊂EG

2κ(ω)1EA
(ω)

∏

e∈ω

(e2β Je − 1),

where κG(ω) is the number of connected components of (VG , ω) (each isolated vertex
thus counting as a connected component).

Defining a probability measure Pβ,G on subsets ω ⊂ EG by

Pβ,G (ω) = 2κG (ω)
∏

e∈ω(e2β Je − 1)

ZFK
G

,

one obtains

〈σA〉β,G = Pβ,G (EA) . (5)

An event A is said to be increasing if ω ∈ A implies that ω′ ∈ A for any ω′ ⊃ ω.
An important feature of this representation is that the FKG inequality holds [12,14]:
if A,B are two increasing events, then Pβ,G (A ∩ B) ≥ Pβ,G (A) Pβ,G (B).

123



320 S. Ott, Y. Velenik

2.2 Notations, conventions

In the sequel, we make the following conventions:

• c1, c2, . . . will denote generic (positive, finite) constants, whose value can change
from place to place (even in consecutive lines);

• ‖ · ‖ will denote the Euclidean norm;
• to lighten notations, when a quantity should be an integer but the corresponding
expression yields a non-integer, we will implicitly assume that the integer part has
been taken;

• we write occasionally P(A, B) instead of P(A ∩ B);
• if E is a set of edges and i a vertex, the notation i ∈ E will mean that at least one
edge in E has i as an endpoint.

Moreover, we will always work in finite volume. More precisely, the expectations in
Theorem1.2will be computed under the finite-volumeGibbsmeasurewith free bound-
ary condition on the graph G = (VG , EG) with VG = VG(N ) = {x = (x1, . . . , xd) ∈
Z
d : maxi |xi | ≤ N } and EG = EG(N ) = {{i, j} ⊂ VN : J j−i �= 0}. We will

assume that N � n (say, N = n2); exponential decay of correlations then implies
that all our estimates below are uniform in N and the thermodynamic limit N ↑ ∞
can be taken in the end.

Also, by symmetry, we can (and will) suppose, without loss of generality, that the
unit vector u = (u1, . . . , ud) ∈ R

d appearing in the statement of Theorem 1.2 satisfies
u1 ≥ |uk | for all k = 2, . . . , d.

Finally, to lighten notation, we will write B = B + nu. The unit vector u and the
value of n will be kept fixed and are thus not indicated explicitly. n will be assumed
to be large.

2.3 Coupling with directed randomwalks

In this section, we briefly summarize results from [9,11,22] that provide random-walk
representations for both paths extracted from theHT expansion and for long subcritical
clusters in the FK representation.

2.3.1 The basic Ornstein–Zernike coupling

Fix x, x ′ ∈ Z
d and a unit-vector u ∈ R

d , and set y = x ′ + [nu].
Fix some δ ∈ (0, 1/

√
2) and letY� = {t ∈ R

d : 〈t, e1〉 ≥ δ‖t‖} andY� = −Y�

be “forward” and “backward” cones with apex at 0, an aperture strictly larger than
π/2 (specified by δ) and axis given by the first coordinate axis. Given v ∈ R

d , denote
by Y�

v = v + Y�, Y�
v = v + Y� and set D(v,w) = Y�

v ∩ Y�
w for any w ∈ Y�

v .
Denote

A =
⋃

v∈Y�∩Z
d

{(C, v) : C � 0, v, C connected, C ⊂ D(0, v)}
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B� =
⋃

v∈Y�∩Z
d

{(C, v) : C � 0, v, C connected, C ⊂ Y�
v }

B� =
⋃

v∈Y�∩Z
d

{(C, v) : C � 0, v, C connected, C ⊂ Y�},

the C component is the “cluster” part while v is the displacement of C . Denote X =
((BL , vL), (BR, vR), (C1, v1), (C2, v2), . . . ) an element ofB�×B�×AZ≥1 . For such
an X ,m ≥ 0 and x ∈ Z

d , one can create a cluster connecting x to x+vL+vR+∑m
k=1 vi

by looking at:

Cx (m, X) = (x + BL) ∪ (x + vL + C1) ∪ (x + vL + v1 + C2) ∪ . . .

∪(x + vL +
m∑

k=1

vi + BR).

Then define the following event and function on B� × B� × AZ≥1 :

Rx (y) = {X : ∃m ≥ 1 : x + vL + vR +
m∑

k=1

vk = y}

My(X) = max{m ≥ 0 :
m∑

k=1

(vi )1 ≤ y1 − (vL)1 − (vR)1}.

Notice that My−x (X) ≥ 1 when X ∈ Rx (y). Following [9,11] and [22, Sect. 4 and
Appendix C], one can construct a probability measure p onA depending on u and two
finitemeasuresρL onB� andρR onB� (depending on x, x ′ andu, recall y = un+x ′2),
for which the following holds:

P1 there exists c1 > 0 such that:

ρL(‖v‖ ≥ k) ∨ ρR(‖v‖ ≥ k) ∨ p(‖v‖ ≥ k) ≤ e−c1k,

for k large enough; c1 can be chosen to be uniform over x, y.
P2 Denoting �

y
x the product measure ρL × ρR × pZ≥1 conditioned on Rx (y), there

exists c2 > 0 such that:

dTV
(
�

y
x ( · ), Pβ ( · | x ↔ y)

) ≤ e−c2n,

provided that n be large enough, where �
y
x ( · ) is understood as a measure on the

cluster Cx (My−x (X), X).
P3 p(v = e1) > 0 and p(v = (2, z)) > 0 for all z ∈ Z

d−1 with ‖z‖1 = 1.

2 We emphasize that the constructions in [9,11,22] are actually explicit (in particular the measures and the
coupling discussed here), but we only formulate the results in the form we need for the present work.
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y

x

Fig. 3 Typical realizations of the cluster Cxy of x and y under Pβ(· | x ↔ y) (or of the HT random path
connecting x and y) can be decomposed into a concatenation of smaller pieces contained in “diamonds”
(plus two boundary pieces contained, respectively, inY�

x0 and in Y�
xM )

P4 Let (CL , vL) ∈ B�. If there exists c = c(β, d) > 0 such that

Pβ

(
Cxy ∩ Y�

x+vL
= x + CL | x ↔ y

) ≥ c,

then there exists c′ = c′(β, d) > 0 such that

ρL

(
(C, v) = (CL , vL)

) ≥ c′.

The same holds for (CR, vR) ∈ B� under ρR.

Relevant statements in [22] for those properties are: Theorem C.4 for Item P1,
Lemma C.1 and Theorem C.4 for Item P2, Lemma C.3 and Theorem C.4 for Item P3
and Remark C.1 for Item P4.

We will denote Cx,y ≡ Cx (My−x (X), X).

Remark 2.2 It follows from the above properties that:

• Given vL , vR , �
y
x ( · | vL , vR) is the law of a directed random walk with steps

sampled according to p, conditioned to go from x + vL to y − vR .
• Given the displacements (vL , v1, . . . , vMy−x , vR), the cluster Cx (My−x (X), X)

obtained from �
y
x is contained in the diamond cover Y�

x+vL
∪ D(x + vL , x + vL +

v1) ∪ · · · ∪ Y�
y−vR

(see Fig. 3).

The same holds replacing the clusters by diamond-contained paths extracted from
the HT representation, albeit with different measures ρL, ρR and p. For simplicity, we
will use the same notation in both cases, as the actual form of these measures plays
no role in our analysis.

We will denote by Pu the distribution of the (directed) random walk (Sk)k≥0 on Z
d

with S0 = u and transition probabilities given by p(·) (understood as a measure on
the displacement). We will also write P

v
u the law of this walk conditioned on hitting v.

As the walk (Sk)k≥0 is directed, we will interpret the first coordinate axis as the
“time coordinate”. In this way, the walk becomes a space-time walk, and we will write
Sk = (S‖

k,S
⊥
k ) ∈ Z × Z

d−1.
The properties of the measure p guarantee that the increments of the random walk

have exponential tails and that both the randomwalk (S⊥
k )k≥0 and the renewal process

123



Asymptotics of even–even correlations in the Ising model 323

(S‖
k)k≥0 are aperiodic. Moreover, Property P3 implies the irreducibility of (S⊥

k )k≥0

and the fact that (S‖
k)k≥0 can reach any time value with positive probability.

2.3.2 Synchronized randomwalks

For our purposes in this paper, we will need to consider two independent walks. Let
x, z ∈ Z

d , with x �= z and denote by Px⊗z the joint distribution of two independent
randomwalks S and S′ as above, starting respectively at x and z. Denote also P

y⊗w
x⊗z the

lawofS,S′ started at x , resp. z, and conditioned to hit y, resp.w. It will be convenient to
“synchronize” the two walks. Namely, let I = {i ∈ Z≥0 : ∃ j ∈ Z≥0 s.t. S

‖
i = (S′

j )
‖}

and I ′ = { j ∈ Z≥0 : ∃i ∈ Z≥0 s.t. S
‖
i = (S′

j )
‖}. We order the elements of I and

I ′ into two increasing sequences (ik)k≥0 and ( jk)k≥0. We can then define two new
random walks by (see Fig. 4)

S̃k = Sik , and S̃′
k = S′

jk .

Under P
y⊗w
x⊗z , we will use the notation # to denote the (random) number of steps of

the finite trajectories of the synchronized walks. Notice that, by exponential decay of
steps, there exists δ > 0 such that this number is at least δmin(|z1 − x1|, |y1 − w1|)
with probability at least 1 − e−cmin(|z1−x1|,|y1−w1|) for some c > 0.

Moreover, we will write

D(S̃) =
#⋃

k=1

D(S̃k−1, S̃k) and D(S̃′) =
#⋃

k=1

D(S̃′
k−1, S̃

′
k).

Note that, by construction, the confinement property (Remark 2.2) still holds for
the synchronized random walks, that is, if C,C ′ denote the clusters marginal under
�

y
x × �w

z ,

C ⊂ Y�
S̃0

∪ D(S̃) ∪ Y�
S̃#

and C ′ ⊂ Y�
S̃′
0
∪ D(S̃′) ∪ Y�

S̃′
#
, (6)

where S̃, S̃′ are the synchronization of the trajectories marginal of �
y
x × �w

z .

2.3.3 Difference randomwalk

Let us denote by P̌u the distribution of the random walk (Šk)k≥0 defined by Š⊥
k =

S̃⊥
k − (S̃′

k)
⊥ and Š‖

k = S̃‖
k = (S̃′

k)
‖, starting at S̃0 − S̃′

0 = u ∈ Z
d , and by X̌k its

increments (see Fig. 4). It then follows from the above properties that (see [17] for a
similar construction)

(1) ∃c > 0 such that, ∀x, z ∈ Z
d , Px⊗z(‖Š0 − (x‖ ∨ z‖, x⊥ − z⊥)‖ ≥ t) ≤ e−ct ;

(2) (X̌k)k≥1 are i.i.d. random variables with exponential tail;

(3) (X̌‖
k , X̌

⊥
k )

law= (X̌‖
k ,−X̌⊥

k );
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S̃′

S̃ Š

Fig. 4 Left: The synchronized random walks S̃ and S̃′, drawn with the associated diamonds containing
the relevant microscopic object. Right: the corresponding difference walk Š. Observe that a necessary, but
not sufficient, condition for two of the original diamonds to intersect is that the corresponding enlarged
diamond associated to Š (corresponding to the value 2δ) intersects the first coordinate axis (represented by
the dashed line). (The picture is two-dimensional, but this observation is true in general)

(4) X̌‖
k ≥ δ

2‖X̌⊥
k ‖ almost surely;

(5) (Š⊥
k )k≥0 is irreducible and aperiodic and (Š‖

k)k≥0 is aperiodic and can reach any
times larger that its starting time with positive probability.

To shorten notation, we will write P̌x ≡ P̌(0,x) with x ∈ Z
d−1.

2.3.4 Some notations

Let

τ⊥
0 = inf{k ≥ 1 : Š⊥

k = 0} and τ ‖
n = inf{k ≥ 1 : Š‖

k ≥ n}.

We first introduce a few events that will be important in our analysis. Given n ∈ Z≥0
and y ∈ Z

d−1, we set

Pn(y) = {∃k ≥ 0 : Šk = (n, y)},
Qn(y) = {∃k ≥ 0 : Šk = (n, y) and τ⊥

0 ≥ k},
Rn = {Š‖

τ⊥
0

≥ n}.

The corresponding probabilities will be denoted

pn(x, y) = P̌x
(Pn(y)

)
, qn(x, y) = P̌x

(Qn(y)
)
, rn(x) = P̌x

(Rn
)
.

The asymptotic behavior of these quantities (as n → ∞, with x = y = 0) is discussed
in “Appendix A”.
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Let us stress that, in the above definitions, the index n denotes a distance along the
first coordinate axis and not a number of steps. This creates some (minor) complica-
tions, and we will need to pass from one description to the other. For this reason, given
� ∈ [Š]‖ = {Š‖

k : k ≥ 0}, define t� to be such that Š‖
t� = �.

Finally, let

ψd(n) =

⎧
⎪⎨

⎪⎩

n−1 when d = 2,

log(n + 1)−2 when d = 3,

1 when d ≥ 4,

and set φd(n) = n−(d−1)/2ψd(n).

2.4 Proof of the upper bound

In this section, we prove the upper bound in Theorem 1.2. To this end, we will use
the RC and the HT representations together with the associated coupling to a directed
random walk.

We start by deriving an upper bound in terms of an event involving two independent
realizations of the model.

Lemma 2.3

〈σA; σB〉β
≤

∑

A1⊂A,B1⊂B
|A1|,|B1| odd

〈σA1σB1〉β〈σAc
1
σBc

1
〉β P

A1∪B1⊗Ac
1∪Bc

1
G (A1 � Ac

1, B1 � Bc
1), (7)

where Ac
1 = A\A1, Bc

1 = B\B1 and the notation C � D means that the two sets
C, D ⊂ VG are not connected in n̂1 + n2.

Proof Let us write D = {A1 � Ac
1, B1 � Bc

1}. First recall that, since A ∩ B = ∅

once n is large enough, it follows from (4) that

〈σA; σB〉β = ZRC(A ∪ B)ZRC(∅){E c
A}

ZRC(∅)2
.

To get an upper bound, simply notice that the eventE c
A and the constraint ∂n1 = A∪B

imply that one can find two sets A1 ⊂ A, B1 ⊂ B of odd cardinality such that EA1∪B1 ,
EAc

1∪Bc
1
, A1 � Ac

1 and B1 � Bc
1 are all realized in n̂1 + n2. Thus,

1

ZRC(∅)2
ZRC(A ∪ B)ZRC(∅){E c

A}

≤ 1

ZRC(∅)2

∑

A1⊂A
|A1| odd

∑

B1⊂B
|B1| odd

ZRC(A ∪ B)ZRC(∅){EA1∪B1 ∩ EAc
1∪Bc

1
∩ D}
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= 1

ZRC(∅)2

∑

A1⊂A
|A1| odd

∑

B1⊂B
|B1| odd

ZRC(A1 ∪ B1)ZRC(Ac
1 ∪ Bc

1){D}

=
∑

A1⊂A
|A1| odd

∑

B1⊂B
|B1| odd

〈σA1σB1〉β,G 〈σAc
1
σBc

1
〉β,G P

A1∪B1⊗Ac
1∪Bc

1
G (D),

where the first equality is again obtained via the Switching Lemma. ��
In view of Remark 2.1, we can couple the double random-current measure with a

double HT measure to obtain

P
A1∪B1⊗Ac

1∪Bc
1

G (A1 � Ac
1, B1 � Bc

1) ≤ P
A1∪B1⊗Ac

1∪Bc
1

G (A1 � Ac
1, B1 � Bc

1), (8)

where the absence of connexions in the last expression is with respect to the union of
the two HT configurations.

Now, observe that the realization of {A1 � Ac
1, B1 � Bc

1} under P
A1∪B1⊗Ac

1∪Bc
1

G
entails the existence of at least one path from A1 to B1 in thefirst copyof the process and
at least one path from Ac

1 to Bc
1 in the second copy. We thus obtain, using Lemma 2.2,

P
A1∪B1⊗Ac

1∪Bc
1

G (A1 � Ac
1, B1 � Bc

1) ≤
∑

x∈A1
y∈Ac

1

∑

u∈B1
v∈Bc

1

P
{x,u}⊗{y,v}
G (γ ∩ γ ′ = ∅),

where γ denotes the path connecting x to u in the first copy, γ ′ the path connecting y
to v in the second copy, and the event {γ ∩ γ ′ = ∅} means that these two paths have
no vertex in common.

The expectations 〈σA1σB1〉β,G and 〈σAc
1
σBc

1
〉β,G can be estimated using Theo-

rem 1.1. The proof will therefore be complete once we show that there exists c3,
depending on A, B, β, d but not on n, such that

P
{x,u}⊗{y,v}
G (γ ∩ γ ′ = ∅) ≤ c3ψd(n), (9)

for all n large enough, uniformly in x ∈ A1, y ∈ Ac
1, u ∈ B1, v ∈ Bc

1. Note thatψd(n)

corresponds to the behavior of the non-intersection probability for two independent
directed random walks on Z

d conditioned to start at (0, 0) and end at (n, 0) (see
“Appendix A”).

The bound (9) is clearly trivial when d ≥ 4. For d = 2, 3, consider the directed
d-dimensional walk Š introduced in Sect. 2.3. We start with a lemma which is a
straightforward consequence of the discussion in “Appendix A”.

Lemma 2.4 There exists c4 such that, for any z, w ∈ Z
d−1 and any m ≥ 1,

qm(z, w) ≤ c4(1 + ‖z‖2)
d+1(1 + ‖w‖2)

d+1φd(m). (10)
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In particular, there exists c5 such that, whenever ‖z‖2, ‖w‖2 ≤ √
m,

P̌z
(Rm |Pm(w)

) ≤ c5(1 + ‖z‖2)
d+1(1 + ‖w‖2)

d+1ψd(m). (11)

Proof First, notice that (19) entails the existence of c > 0 such that, for any r ∈ Z
d−1,

p‖r‖22(0, r) ≥ c(1 + ‖r‖2)
−(d−1).

Therefore, uniformly in w, z ∈ Z
d−1,

qm(z, w) ≤ c (1 + ‖z‖2)
d−1(1 + ‖w‖2)

d−1 p‖z‖22(0, z) p‖w‖22(0, w) qm(z, w).

Now, using the decomposition

pm(0, z) =
m∑

t=0

pm−t (0, 0)qt (0, z),

one obtains from Proposition A.1 and (18) that

p‖z‖22(0, z) p‖w‖22(0, w) qm(z, w)

≤
‖z‖22∑

l=0

‖w‖22∑

r=0

p‖z‖22−l(0, 0) p‖w‖22−r (0, 0) P̌0(τ
⊥
0 = m + r + l)

≤ c

‖z‖22∑

l=0

‖w‖22∑

r=0

{
(m + r + l)−3/2 when d = 2

(m + r + l)−1 log(m + r + l)−2 when d = 3

≤ c (1 + ‖z‖2)
2(1 + ‖w‖2)

2

{
m−3/2 when d = 2

m−1 log(m)−2 when d = 3.

This gives equation (10). Since, by (19), pm(z, w) ≥ c6m−(d−1)/2 when ‖z‖2, ‖w‖2 ≤√
m, the second claim also immediately follows:

P̌z(Rm |Pm(w)) = qm(z, w)

pm(z, w)

≤ c5(1 + ‖z‖2)
d+1(1 + ‖w‖2)

d+1

{
m−1 when d = 2,

log(m)−2 when d = 3.

��
Wewill now use the coupling of HT-paths with directed randomwalks. Let us write

ζ(�, L, z, z′, w,w′) = �u
x × �v

y

(
S̃0 = (�, z + z′), S̃′

0 = (�, z′), S̃# = (� + L, w +
w′), S̃′

# = (� + L, w′)
)
. Then,

123



328 S. Ott, Y. Velenik

P
{x,u}⊗{y,v}
G (γ ∩ γ ′ = ∅) ≤

∑

�,L∈Z≥0

z,z′,w,w′∈Z
d−1

ζ(�, L, z, z′, w, w′) P̃z
(RL

∣∣ PL (w)
) + e−c2n,

since γ ∩ γ ′ = ∅ implies that S̃k �= S̃′
k for all 0 ≤ k ≤ #, whenever (the HT path

version of) (6) applies. The properties of the measure � guarantee that �(S̃‖
# − S̃‖

0 <

n/2) ≤ e−cn for some c > 0, once n is large enough. We can therefore assume that
L ≥ n/2. In that case, Lemma 2.4 implies that

P̌z
(RL

∣∣ PL(w)
) ≤ c (1 + ‖z‖2)

d+1(1 + ‖w‖2)
d+1ψd(n).

The conclusion now follows from Property 1 in Sect. 2.3.3 and the exponential tails
of ρL and ρR.

2.5 Proof of the lower bound

In this section, we prove the lower bound of Theorem 1.2. As for the upper bound, the
first stepwill be to reduce the analysis to two independentwalk-like objects conditioned
on not intersecting. This time, the random-cluster representation provides the adequate
setting.

Lemma 2.5 Assume that n is sufficiently large to ensure that A ∩ B = ∅. For any
x, y ∈ A and u, v ∈ B with x �= y and u �= v, the following bound holds:

〈σA; σB〉β,G

〈σxσu〉β,G〈σyσv〉β,G
≥

∑

C1�x,u
C2�y,v

C1∩C2=∅

PG
(
EA∪B ∩ E c

A |Cx,u = C1,Cy,v = C2
)

×PG
(
Cx,u =C1 | x ↔ u

)
PG

(
Cy,v =C2 | y ↔ v

)
.

(12)

Proof Given a set E ⊂ EG of edges, we will consider below the two FK events
O(E) = {E open} = {ωe = 1 ∀e ∈ E} and C(E) = {E closed} = {ωe = 0 ∀e ∈ E}.

We start with the FK representation of 〈σA; σB〉β,G . Let x, y ∈ A, x �= y, and
u, v ∈ B, u �= v. Using (5), we can write

〈σA; σB〉β,G = PG (EA∪B) − PG (EA) PG (EB)

= PG
(
EA∪B ∩ E c

A

) + PG (EA∪B ∩ EA) − PG (EA) PG (EB)

= PG
(
EA∪B ∩ E c

A

) + PG (EA ∩ EB) − PG (EA) PG (EB)

≥ PG
(
EA∪B ∩ E c

A

)

≥ PG
(
EA∪B ∩ E c

A, x ↔ u, y ↔ v, x � y
)
, (13)

where the first inequality follows from the FKG inequality, observing that EA and EB
are increasing events.
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Next, we partition the event in the last expression according to the realizations of
the two induced clusters, that is, we sum over all pairs of clusters C1,C2 such that
x, u ∈ C1, y, v ∈ C2 and C1 ∩ C2 = ∅.

PG
(
EA∪B ∩ E c

A, x ↔ u, y ↔ v, x � y
)

=
∑

C1,C2
C1∩C2=∅

PG
(
EA∪B ∩ E c

A |Cx,u = C1,Cy,v = C2
)

×PG
(
Cx,u = C1,Cy,v = C2

)
.

Writing, for E ⊂ EG , ∂E = {e = {i, j} ∈ EG : i ∈ E, j /∈ E}, we obtain, using
again the FKG inequality,

PG
(
Cx,u = C1,Cy,v = C2

)

= PG (O(C1), C(∂C1),O(C2), C(∂C2))

= PG (O(C1), C(∂C1) | C(∂C2)) PG
(
Cy,v = C2

)

= PG (O(C1) | C(∂C1)) PG (C(∂C1) | C(∂C2)) PG
(
Cy,v = C2

)

≥ PG
(
Cx,u = C1

)
PG

(
Cy,v = C2

)

= PG (x ↔ u) PG (y ↔ v) PG
(
Cx,u = C1 | x ↔ u

)

× PG
(
Cy,v = C2 | y ↔ v

)
.

��
Again, the expectations 〈σxσu〉β,G and 〈σyσv〉β,G can be estimated by Theorem 1.1,
so that we only have to control the right-hand side of (12).

In what follows, we suppose n large enough for the definitions to make sense.
Define K = maxx∈A∪B ‖x‖1. One has A ⊂ Z≤K × Z

d−1 and B ⊂ Z≥(nu)1−K ×
Z
d−1. Let a1 = (10K , 2K , 0, . . . , 0), a2 = (10K ,−2K , 0, . . . , 0) and b1 = nu −

(10K ,−2K , 0, . . . , 0), b2 = nu − (10K , 2K , 0, . . . , 0).
We then use finite energy to prove the following:

Lemma 2.6 One can construct H ⊂ {C � x, u} × {C � y, v} satisfying:
• there exists c > 0 not depending on n such that

min
(C1,C2)∈H

PG
(
EA∪B ∩ E c

A |Cx,u = C1,Cy,v = C2
) ≥ c.

• There exist c,C > 0 not depending on n, such that

∑

(C1,C2)∈H
C1∩C2=∅

PG
(
Cx,u = C1 | x ↔ u

)
PG

(
Cy,v = C2 | y ↔ v

)

≥ −e−cn + CP̌a1−a2

(‖Š⊥
k ‖ > 2δ X̌‖

k+1, ∀k < τ
‖
L

∣∣ PL(b1 − b2)
)
,

where L = (nu)1 − 20K.
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...

a1

a2

b2

b1

Fig. 5 An example of admissible boundary conditions

Proof We start by constructing H .
There exist x, y ∈ A (see Fig. 5) such that one can find

• a self-avoiding path γxa1 connecting x to a1 included in Y�
a1 ,• a self-avoiding path γya2 connecting y to a2 included in Y�
a2 ,

• a cluster CA\{x,y} connecting all sites of A\{x, y} together included in [−K , K ]d ,
with γxa1, γya2 ,CA\{x,y} all disjoints, in particular, the edge boundary of any of
those three items does not intersect the other items. Fix a compatible 5-tuple
x, y, γxa1 , γya2 ,CA\{x,y}. In the same fashion, there exist u, v ∈ B (see Fig. 5) such
that one can find

• a self-avoiding path γub1 connecting u to b1 included in Y�
b1
,

• a self-avoiding path γvb2 connecting v to b2 included in Y�
b2
,

• a cluster CB\{u,v} connecting all sites of B\{u, v} together, included in nu +
[−K , K ]d ,

with γub1 , γvb2 ,CB\{u,v} all disjoints. Fix a compatible 5-tuple u, v, γub1 , γvb2 ,

CB\{u,v}.
We then define H ⊂ {C � x, u} × {C � y, v} the set of pairs of cluster (C1,C2)

such that

• C1 ∩ Y�
a1 = γxa1 , C1 ∩ Y�

b1
= γub1 , C1\(γxa1 ∪ γub1) ⊂ D(a1, b1),

• C2 ∩ Y�
a2 = γya2 , C2 ∩ Y�

b2
= γvb2 , C2\(γya2 ∪ γvb2) ⊂ D(a2, b2).

Notice that, for any (C1,C2) ∈ H , opening all edges of CB\{u,v} ∪ CA\{x,y} and
closing the edge-boundary of this set has probability bounded from below under
PG

(· |Cx,u = C1,Cy,v = C2
)
uniformly in n asCB\{u,v} ∪CA\{x,y} does not intersect

C1 ∪ ∂C1 ∪C2 ∪ ∂C2 and the size of the support of this event is bounded uniformly in
n. The first part of the lemma thus follows from the fact that this event is a sub-event
of EA∪B ∩ E c

A under Cx,u = C1,Cy,v = C2.
The second part uses the replacement ofPG (· | x ↔ u) by�u

x explained in Sect. 2.3
(the same replacement is done for PG (· | y ↔ v) by �v

y). By P4 and finite energy
(opening the edges of γxa1 and closing the edges of ∂γxa1 has a probability bounded
from below under PG (· | x ↔ u)), one has: there exists c > 0 such that

�u
x (BL = γxa1, BR = γub1) ≥ c.
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So,

∑

(C1,C2)∈H
C1∩C2=∅

PG
(
Cx,u = C1 | x ↔ u

)
PG

(
Cy,v = C2 | y ↔ v

)

≥ −e−cn + �u
x (BL = γxa1, BR = γub1)�v

y(BL = γya2 , BR = γvb2)

× P
b1⊗b2
a1⊗a2

(
D(S) ∩ D(S′) = ∅

)

≥ −e−cn + CP̌a1−a2

(‖Š⊥
k ‖ > 2δ X̌‖

k+1, ∀k < τ
‖
L

∣∣ PL(b1 − b2)
)
,

where L = (nu)1−20K . Thefirst inequality is the total variation estimateP2, inclusion
of events and Remark 2.2, the second is inclusion of events (recall that P̌a1−a2 is the
law of the difference walk induced by the two synchronized walks obtained from �u

x
and �v

y ; by construction, the two walks have synchronized starting time). ��
The lower bound in Theorem 1.2 will follow by plugging the results of Lemma 2.6

in (12) and direct use of the following lemma.

Lemma 2.7 For any C > 0, there exists c7 > 0 such that, for any z, w ∈ Z
d−1 with

‖z‖2, ‖w‖2 ≤ C and all m large enough, one has

P̌z
(‖Š⊥

i ‖ ≥ 2δ X̌‖
i+1 ∀i < τ ‖

m

∣∣ Pm(w)
) ≥ c7ψd(m). (14)

Proof The proof is done in two steps. In the first one, we prove that ��
Claim 1 For any z, w ∈ Z

d−1, there exists c > 0 such that, for all m large enough,

P̌z(Qm(w) |Pm(w)) ≥ cψd(m). (15)

This is slight extension of the estimates of Proposition A.1 to different starting and
ending points than 0.

The second step will consist in showing that the walk conditioned not to hit zero
will typically stay away from zero, so that Lemma 2.7 actually follows from Claim 1.

We first show Claim 1. Let us fix, �z, �w such that q�z (z, 0) > 0 and q�w (0, w) > 0.
Now, observe that

qm(z, w) ≥ q�z (z, 0)qm−�z−�w (0, 0)q�w (0, w).

Indeed, under P̌z , any trajectory contributing toPm(w), visiting (�z, 0) and (m−�w, 0),
but otherwise avoiding 0, can be transformed into a trajectory contributing toQm(w)

by interchanging the two increments incident to (�z, 0) and doing the same to those
incident to (m − �w, 0), without changing the probability of the trajectory. It thus
follows from the lower bounds on fm in “Appendix A” (see (24), (26) and (27)) that
there exists c(z, w) > 0 such that

qm(z, w) ≥ c(z, w) φ(m), for all m large enough. (16)
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(15) then follows from (18).
Let us now turn to the second step and show how Claim 1 implies Lemma 2.7. We

introduce

Di =
{

{‖Š⊥
ti ‖ < 2δ X̌‖

ti+1} if i ∈ [Š]‖,
∅ otherwise.

Note that, for D(S̃ti , S̃ti+1)∩D(S̃′
ti , S̃

′
ti+1

) �= ∅ to occur, it is necessary thatDi occurs.
To conclude, one thus has to show that there exists c > 0, depending on z and w, such
that, for all m large enough,

P̌z
(Dc

i ∀i ∈ [Š]‖ ∩ [0,m] ∣∣ Qm(w)
) ≥ c. (17)

To this end, we separate the treatment of the trajectory close to the starting and ending
points from the treatment away from them. Let T > 0 be a large integer (which will
be chosen later as a function of z, w) and write IT = [T ,m − T ]. Then,

P̌z
(Dc

i ∀i ∈[Š]‖ ∩ [0,m] ∣∣ Qm(w)
)

= P̌z

( ⋂

i∈[Š]‖∩IT

Dc
i

∣∣∣ Qm(w)
)
P̌z

( ⋂

i∈[Š]‖∩[0,m]
Dc

i

∣∣∣ Qm(w),
⋂

i∈[Š]‖∩IT

Dc
i

)

≥ e−c8T P̌z

( ⋂

i∈[Š]‖∩IT

Dc
i

∣∣∣ Qm(w)
)
,

where the inequality is obtained byfixing a trajectory on [0,m]\IT for every realization
of

⋂
i∈[Š]‖∩IT

Dc
i . That c8 ≥ 0 can be chosen uniformly over those realizations follows

from the fact that the walk’s displacement is constrained by the cone property (see
Property 4 in Sect. 2.3.3). We control the remaining probability via a union bound:

P̌z

( ⋃

i∈[Š]‖∩IT

Di

∣∣∣ Qm(w)
)

≤ Ěz

[ m−T∑

i=T+1

1Di

∣∣∣ Qm(w)
]

=
m−T∑

i=T+1

m−i∑

�=1

P̌z
(
i ∈ [Š]‖, ‖Š⊥

ti ‖ < 2δ�, X̌‖
ti+1 = �

∣∣ Qm(w)
)

=
m−T∑

i=T+1

m−i∑

�=1

∑

‖u‖≤2δ�

∑

‖v‖≤4δ�

P̌z
(Qi (u), X̌ti+1 = (�, v − u)

∣∣ Qm(w)
)
.

We now will bound the sum over i ≤ m/2, the other half is done in the same fashion.
Let us write

�d(T ) =

⎧
⎪⎨

⎪⎩

T−1/2 if d = 2,

(log T )−1 if d = 3,

T−(d−3)/2 if d ≥ 4.
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Using the fact that the increments X̌k have exponential tails, Lemma 2.4 and (16), we
obtain (with the convention that φd(0) = 1):

m/2∑

i=T+1

m−i∑

�=1

∑

‖u‖≤2δ�

∑

‖v‖≤4δ�

P̌z(Qi (u), X̌ti+1 = (�, v − u) |Qm(w))

=
m/2∑

i=T+1

m−i∑

�=1

∑

‖u‖≤2δ�

∑

‖v‖≤4δ�

qi (z, u) P̌(X̌ti+1 = (�, v − u)) qm−i−�(v,w)

qm(z, w)

≤ c
m/2∑

i=T

m−i∑

�=1

∑

‖u‖≤2δ�

∑

‖v‖≤4δ�

(1 + ‖u‖)d+1(1 + ‖v‖)d+1φd(i)e−c�φd(m − i − �)

φd(m)

≤ c
m/2∑

i=T

φd(i)
m−i∑

�=1

�4de−c� φd(m − i − �)

φd(m)

≤ c
∞∑

i=T

φd(i) ≤ c�d(T ) ≤ 1

4
,

provided T be chosen large enough as a function of z, w (since c = c(z, w)).
Repeating this argument for the other half of the sum yields the same bound; we

thus have (with the choice of T as mentioned before)

P̌z

⎛

⎝
⋂

i∈[Š]‖∩[0,m]
Dc

i

∣∣∣ Qm(w)

⎞

⎠ ≥ 1
2e

−c8T ,

which concludes the proof. ��
Acknowledgements The authors gratefully acknowledge the support of the Swiss National Science Foun-
dation through the NCCR SwissMAP.

Appendix A: Randomwalk estimates

In this section, we provide some random walk estimates that are needed in the paper.
Since we are already losing multiplicative constants when reducing the analysis to
non-intersecting random walks, we do not try to get sharp asymptotics, but prefer to
provide instead a short self-contained analysis. It should however be noted that the
approach in [18] and [26] can be adapted to our present setting and would yield sharp
asymptotics (and even information on higher-order corrections). Set

ψd(n) =
{
n−1 when d = 2,

log(1 + n)−2 when d = 3.

We use the notations introduced in Sect. 2.3.4.
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Proposition A.1 Let (Šn)n≥0 denote the random walk introduced in Sect. 2.3. Then,
when d ∈ {2, 3}, there exist 0 < c− ≤ c+ < ∞ such that, for all n ≥ 1,

c−ψd(n) ≤ P̌0
(Qn(0)

∣∣ Pn(0)
) ≤ c+ψd(n).

Moreover, for any d ≥ 4, there exists c−(d) > 0 such that, for all n ≥ 1,

P̌0
(Qn(0)

∣∣ Pn(0)
) ≥ c−(d).

The remainder of this appendix is devoted to a proof of Proposition A.1. The
arguments used below are heavily inspired by those in [13,18]. To shorten notations,
we set, for n ∈ Z≥0,

un = pn(0, 0), fn = qn(0, 0).

Note that the quantity we want to control can then be expressed as fn/un .

Upper bound on pn(x, y)

It follows from the local limit theorem (see [16]) that there exists C+
p such that, for all

x, y ∈ Z
d−1, all n ≥ 1 and all d ≥ 2,

pn(x, y) ≤ C+
p n

−(d−1)/2. (18)

Lower bound on pn(x, y)

It follows from the local theorem (see [16]) that, for any c > 0, there exist C−
p > 0

such that, for all x, y ∈ Z
d−1 satisfying ‖x − y‖ ≤ c

√
n, all n ≥ 1 and all d ≥ 2,

pn(x, y) ≥ C−
p n

−(d−1)/2. (19)

Upper bound on rn

Since
∑n

m=0 umrn−m = 1 and the sequence (rm)m≥1 is decreasing, we have

1 ≥ rn

n∑

m=0

um .

It then follows from (19) (and u0 = 1) that there exists C+
r such that, for all n ≥ 1,

rn ≤ C+
r

{
n−1/2 when d = 2,

(1 + log n)−1 when d = 3.
(20)
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Lower bound on rn

We start with the case d = 3. Let C > 1 be a large constant (to be chosen later). Since∑Cn
m=0 umrCn−m = 1 and the sequence (rm)m≥1 is decreasing (and bounded by 1), we

have, using (18),

rn

Cn−n∑

m=0

um ≥ 1 −
Cn∑

m=Cn−n+1

um ≥ 1 − C+
p

Cn∑

m=Cn−n+1

m−1 ≥ 1

2
,

once C is chosen large enough. Since, again by (18),
∑Cn−n

m=0 um ≤ C+
p log(Cn), we

conclude that there exists C−
r > 0 such that, for all n ≥ 1,

rn ≥ C−
r (1 + log n)−1. (21)

Let us now turn to the case d = 2. Proceeding similarly as above, we write

rn

Cn−n∑

m=0

um ≥ 1 −
Cn∑

m=Cn−n+1

umrCn−m ≥ 1 − C+
p ((C − 1)n)−1/2

n−1∑

m=0

rm .

Using (20) (and r0 = 1), we see that the last term can again be made smaller than 1/2
by choosing C large enough. Of course,

∑Cn−n
m=0 um ≤ C+

p (Cn)1/2 by (18). It thus
follows that one can find C−

r > 0 such that, for all n ≥ 1,

rn ≥ C−
r n

−1/2. (22)

Upper bound on fn

Set I = { n4 , . . . , n
3 }. Let →

τ = inf{k ≥ 0 : S‖
k ≥ n/4} and ←

τ = sup{k ≥ 0 : S‖
k ≤

3n/4} (Fig. 6). Now, observe that, since the increments of Š have exponential tails,
there exists c > 0 such that

fn ≤ e−cn +
∑

m,m′∈I

∑

u,u′ �=0

P̌0
(
S⊥→

τ
= u, S‖

→
τ

= m, S⊥←
τ

= u′, S‖
←
τ

= n − m′, S‖
τ⊥
0

= n
)
.

Applying twice the strong Markov property (once for the walk itself, once for the
time-reversed walk), we can write

P̌0
(
S⊥→

τ
= u, S‖

→
τ

= m, S⊥←
τ

= u′, S‖
←
τ

= n − m′, S‖
τ⊥
0

= n
)

= P̌0
(
S⊥→

τ
= u, S‖

→
τ

= m, τ⊥
0 >

→
τ
)
P̌0

(
S⊥→

τ
= u′, S‖

→
τ

= m′, τ⊥
0 >

→
τ
)

×qn−m′−m(u, u′).
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Fig. 6 The type of decomposition used in the derivations of the upper and lower bounds on fn . Various
choices are made for the intervals I and I ′

Now, on the one hand, (18) implies that

qn−m′−m(u, u′) ≤ pn−m′−m(u, u′) ≤ C+
p (n/3)−(d−1)/2.

On the other hand, by (20),

∑

m∈I

∑

u �=0

P̌0
(
S⊥→

τ
= u, S‖

→
τ

= m, τ⊥
0 >

→
τ
) ≤ rn/4

≤ C+
r

{
(n/4)−1/2 if d = 2,(
log(1 + n/4)

)−1 if d = 3.

Of course, the same applies to the sum over m′, u′. Overall, we conclude that there
exists C+

f such that, for all n ≥ 1,

fn ≤ C+
f

{
n−3/2 when d = 2,

n−1
(
log(1 + n)

)−2 when d = 3.
(23)

Lower bound on fn

We start with the case d = 3. Our goal is to prove that there exists C−
f > 0 such that,

for all n ≥ 1,

fn ≥ C−
f n

−1(log(1 + n)
)−2

. (24)

First, let us set M = [n(log n)−3] and I = {M, . . . , 2M}. Similarly as we did for the
upper bound, let us introduce →

τ = inf{k ≥ 0 : S‖
k ≥ M} and ←

τ = sup{k ≥ 0 : S‖
k ≤

n − M}. We can then write
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fn ≥
∑

m,m′∈I

∑

u,u′ �=0

P̌0
(
S⊥→

τ
= u, S‖

→
τ

= m, S⊥←
τ

= u′, S‖
←
τ

= n − m′, S‖
τ⊥
0

= n
)

=
∑

m,m′∈I

∑

u,u′ �=0

→
qm(u) qn−m′−m(u, u′) ←

qm′(u′).

where we have introduced
→
qm(u) = P̌0

(
S⊥→

τ
= u, S‖

→
τ

= m, τ⊥
0 >

→
τ
)
and

←
qm′(u′) =

P̌0
(
S⊥→

τ
= u′, S‖

→
τ

= m′, τ⊥
0 >

→
τ
)
. The next observation is that

0 ≤ p�(u, u′) − q�(u, u′) = P̌u(τ
⊥
0 ≤ �,P�(u

′))

≤
�/2∑

r=1

qr (u, 0)p�−r (0, u
′) +

�−1∑

r=�/2

pr (u, 0)q�−r (0, u
′).

Consequently, writing N = N (n,m,m′) = n − m − m′,

∣∣∣
∑

m,m′∈I

∑

u,u′ �=0

→
qm(u)

(
qN (u, u′) − pN (u, u′)

) ←
qm′(u′)

∣∣∣

≤
∑

m,m′∈I

∑

u,u′ �=0

N/2∑

r=1

→
qm(0, u)qr (u, 0)pN−r (0, v)

←
qm′(u′, 0)

+
∑

m,m′∈I

∑

u,u′ �=0

N−1∑

r=N/2

→
qm(0, u)pr (u, 0)qN−r (0, v)

←
qm′(u′, 0).

By symmetry, it suffices to bound the first sum. First, by (18) and the fact that
r ≤ N/2,

pN−r (0, v) ≤ 2C+
p N

−1 ≤ 2C+
p (n − 4M)−1 ≤ Cn−1.

Second, by (23),

∑

m∈I

∑

u �=0

N/2∑

r=1

→
qm(0, u)qr (u, 0) ≤

n∑

r=1

fM+r ≤ C+
f

(logM)2

n∑

r=1

(M + r)−1 ≤ C
log log n

(log n)2
.

Finally, by (20)

∑

m′∈I

∑

u′ �=0

←
qm′(u′, 0) ≤ rM ≤ C+

r (logM)−1 ≤ C(log n)−1. (25)
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We conclude that

∣∣∣
∑

m,m′∈I

∑

u,u′ �=0

→
qm(u)

(
qN (u, u′) − pN (u, u′)

) ←
qm′(u′)

∣∣∣ ≤ C
log log n

n(log n)3
,

which is negligible in view of our target estimate.
Now, by the local CLT [16], there exists c such that

∣∣p�(u, u′) − c

�

∣∣ ≤ ε

�
+ O(�−2‖u′ − u‖2),

uniformly in u, u′ for all � large enough. Using ‖u′ − u‖2 ≤ 2‖u‖2 + 2‖u′‖2, (25)
and

∑

m∈I

∑

u �=0

→
qm(u, 0)‖u‖2 ≤ Ě0(‖Š⊥

τ
‖
M

‖2) ≤ CM,

we deduce that

n−2
∑

m,m′∈I

∑

u,u′ �=0

→
qm(0, u)‖u′ − u‖2←

qm′(u′, 0) ≤ Cn−1(log n)−3,

which is also negligible. (24) thus follows from

∑

m,m′∈I

∑

u,v �=0

→
qm(0, u)N−1←

qm′(u′, 0) ≥ n−1(1 − e−cM )2(rM )2 ≥ 1
2 (C

−
r )2n−1(log n)−2,

where we used (21) and the exponential tails of the random walk increments.
The same argument applies when d ≥ 4. Indeed, proceeding as before, but with M

being now a large constant independent of n, we get

∣∣∣
∑

m,m′∈I

∑

u,u′ �=0

→
qm(u)

(
qN (u, u′) − pN (u, u′)

) ←
qm′(u′)

∣∣∣

≤ Cn−(d−1)/2
∞∑

r=M+1

fr .

Fix ε > 0. Since
∑

r≥1 fr < 1, the above abound is smaller than εn−(d−1)/2, provided
M > M0(ε). Then, again by the local CLT,

∣∣p�(u, u′) − c�−(d−1)/2
∣∣ ≤ ε

�(d−1)/2
+ O(�−(d+1)/2‖u′ − u‖2),

uniformly in u, u′ for all � large enough. Proceeding as above, the contribution of the
second term is seen to be of order n−(d+1)/2 and thus negligible. Therefore, since
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∑

m,m′∈I

∑

u,u′ �=0

→
qm(0, u)N−(d−1)/2←

qm′(u′, 0) ≥ Cn−(d−1)/2

for some constant C > 0, we conclude that there exists C−
f > 0 such that

fn ≥ C−
f n

−(d−1)/2. (26)

Let us finally turn to the case d = 2, for which we need to proceed differently. Fix
x, y > 0 such that P̌0(Š1 = (x, y)) = c > 0. Clearly,

fn ≥
n∑

k=2

P̌0(Šk = (n, 0), Š1 = (x, y), Šk−1 = (n − x, y), Š⊥
j ≥ y ∀2 ≤ j ≤ k − 2)

≥ c2
∑

k≥1

P̌0(Šk = (n − 2x, 0), Š⊥
j ≥ 0 ∀1 ≤ j ≤ k − 1).

Consider a trajectory (Š j (ω))kj=0 be such that Š0(ω) = 0 and Šk(ω) = (n − 2x, 0).

Denote by X̌ j (ω) = Š j+1(ω) − Š j (ω) the corresponding increments. Let j0 =
min{i ≥ 0 : Š⊥

i (ω) = min0≤ j≤k Š⊥
k (ω)}. Define a new trajectory by setting

Ŝ0(ω) = 0 and, for 1 ≤ j ≤ k,

Ŝ j (ω) =
j−1∑

i=0

X̌( j0+i) mod k(ω).

Observe that Ŝ0 = 0, Ŝk = (n, 0) and Ŝi ≥ 0 for all 1 ≤ i ≤ k − 1, and that the
transformation is measure-preserving. Therefore,

P̌0(Šk = (n − 2x, 0), Š⊥
j ≥ 0 ∀1 ≤ j ≤ k − 1) ≥ k−1

P̌0(Šk = (n − 2x, 0))

and, therefore, using (19),

fn ≥ c2n−1un−2x ≥ C−
f n

−3/2, (27)

for some C−
f > 0.
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