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Abstract
We study Dyson Brownian motion with general potential V and for general β ≥ 1.
For short times t = o(1) and under suitable conditions on V we obtain a local law and
corresponding rigidity estimates on the particle locations; that is, with overwhelming
probability, the particles are close to their classical locations with an almost-optimal
error estimate. Under the condition that the density of states of the initial data is
bounded below and above down to the scale η∗ � t � 1, we prove a mesoscopic
central limit theorem for linear statistics at all scales η with N−1 � η � t .

Mathematics Subject Classification 82B44 · 15B52 · 60F05

1 Introduction

In 1962,Dyson interpreted the N×N Gaussian ensemble (real, complex or quaternion)
as the dynamical limit of matrix-valued Brownian motion H(t), and observed that the
eigenvalues of H(t) forman interacting N -particle systemwith a logarithmicCoulomb
interaction and quadratic potential. That is, the eigenvalue process {λi (t)}1≤i≤N satis-
fies the following system of stochastic differential equations with quadratic V = x2/2
and classicalβ =1, 2 or 4 (depending on the symmetry class of theGaussian ensemble)

dλi (t)=
√

2

βN
dBi (t)+ 1

N

∑
j : j �=i

dt

λi (t)−λ j (t)
− 1

2
V ′(λi (t))dt, i=1, 2, . . . , N , (1.1)
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210 J. Huang, B. Landon

where (B1, . . . , BN ) is an N -dimensional Brownian motion defined on a prob-
ability space with a filtration F = {Ft , t ≥ 0}. The initial data λ(0) =
(λ1(0), λ2(0) . . . , λN (0)) ∈ �N is given by the eigenvalues of H(0). Here, �N

denotes the Weyl chamber

�N = {{xi }1≤i≤N ∈ R
N : x1 < x2 < · · · < xN }. (1.2)

The process λ(t) = (λ1(t), λ2(t), . . . , λN (t)) defined by the stochastic differential
equation system (1.1) is called the β-Dyson Brownianmotion (β-DBM)with potential
V , which is an interacting particle system with Hamiltonian of the form

E(x1, . . . , xN ) := − 1

2N

∑
1≤i �= j≤N

log |xi − x j | + 1

2

N∑
i=1

V (xi ). (1.3)

For the special case β = 2 and V = x2/2, at each fixed time t , the particles λ(t) have
the same distribution as the eigenvalues of

H(t)
d= e−t/2H(0) +

√
1 − e−tG, (1.4)

where G is a matrix drawn from the Gaussian Unitary Ensemble (GUE). The global
eigenvalue density of the GUE follows Wigner’s semi-circle distribution [54], and the
local eigenvalue statistics are given by the Sine kernel [18–20]. Clearly, H(t) → G
as t → ∞ for any choice of the initial data H(0), and so the system reaches a
global equilibrium for t � 1. One can also investigate the time to local equilibrium
- that is, how long it takes for the local statistics to coincide with the GUE. Dyson
conjectured [17] that the time to local equilibrium should bemuch faster than the order
1 global scale. It is expected that in the bulk, an eigenvalue statistic on the scale η

should coincide with the GUE as long as t � η. To be more precise, one expects the
convergence of the following three types of statistics on three types of scales.

1. On the macroscopic scale, the global eigenvalue density should converge to
Wigner’s semi-circle distribution provided t � 1.

2. The linear eigenvalue statistics of test functions on the mesoscopic scale N−1 �
η � 1 should coincide with the GUE as long as t � η.

3. On the microscopic scale O(N−1), the local eigenvalue statistics should be given
by the sine kernel as long as t � N−1.

For the macroscopic scale, with quadratic potential V , it was proven by Rogers and
Shi [48], that the global density converges to the semicircle distribution. For general
potential V , it was proven by Li, Li and Xie [43,44], the global eigenvalue density
converges to a V -dependent equilibrium measure (which may not be the semicir-
cle distribution for non-quadratic V ). We refer to [4] for a nice presentation on the
dynamical approach to Wigner’s semi-circle law.

The time to equilibrium at the microscopic scale was studied in a series of works
[21–27,29,31,32], by Erdős, Yau and their collaborators. For classical β = 1, 2, 4,
quadratic V and initial data a Wigner matrix, it was proven that after a short time t �
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N−1 the local statistics coincide with the GβE. Later, the works [28,39] established
single gap universality for classical DBM for a broad class of initial data, relying on the
discrete di-Giorgi–Nash–Moser theorem developed in [29]. Fixed energy universality
was established in [12,38] by developing a sophisticated homogenization theory for
discrete parabolic systems. These results are a crucial component in proving bulk
universality for various classes of random matrix ensembles. Another approach to
universality, applicable in special cases was developed independently and in parallel
by Tao and Vu [50].

A central and basic tool in the study of the local statistics of random matrices is the
local law and the associated rigidity estimates. The local law is usually formulated in
terms of concentration of the Stieltjes transform of the empirical eigenvalue density at
short scales η � N−1. Rigidity estimates give high probability concentration estimates
for the eigenvalue locations. These results were first established for Wigner matrices
in a series of papers [25,26,31,32,51], then extended to other matrix models, i.e.
general Wigner-type matrices [1,35], sparse random matrices [21], deformed Wigner
ensembles [39,42], correlated random matrices [2,3]. Beyond matrix models, rigidity
estimates have been established for one-cut and multi-cut β-ensembles [9–11,45], and
two-dimensional Couloub gas [5,40].

For the special case of classical β = 1, 2, 4 and quadratic potential V , the solution
of (1.1) is given by amatrix model and so the methods developed for deformedWigner
matrices [39,41,42] yield a local law for the Stieltjes transform of empirical eigenvalue
density,

m̃t (z) := 1

N

N∑
i=1

1

λi (t) − z
=
∫

dμ̃t (x)

x − z
, μ̃t = 1

N

N∑
i=1

δλi (t). (1.5)

However for nonclassical β or non-quadratic V , the process (1.1) is not given by a
matrix model and so a corresponding local law is not known.

Our first main result is to establish a local law for the Stieltjes transform m̃t (z) for
short scales and all short times t � 1. This result is stated as Theorem 3.1 below.
This implies a rigidity estimate for the particle locations λi (t), i.e., that they are close
to deterministic classical locations with high probability. Our methods are purely
dynamical and do not rely on any matrix representation. Instead, our method is based
on analyzing the stochastic differential equation of the Stieltjes transform m̃t along
the characteristics of the limiting continuum equation. We remark that since the β-
ensemble is the equilibrium measure of β-DBM, our results may be used to provide
another proof for the rigidity of β-ensemble in the case β ≥ 1, provided that one takes
some large deviation estimates (such as [47]) as input. The method of characteristics
was used in [36] to prove that on the global scale the empirical measure process of
β-DBM with quadratic potential V converges to a Gaussian process. The explicit
formulas of the means and the covariances of the limit Gaussian process was derived
in [7]. Very recently, Unterberger proved that the Global fluctuations of β-DBM with
general potential V are asymptotically Gaussian [52,53]. We also comment that the
method of characteristics has recently been used, independently and in parallel, for
the analysis of a different equation in [8].
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212 J. Huang, B. Landon

Relying on our local lawwe then prove amesoscopic central limit theorem for linear
statistics of the particle process on scales η � t . This is stated as Theorem 4.2 below.
In particular we see that equilibrium holds for the process (1.1) on mesoscopic scales
η � t . Central limit theorems for mesoscopic linear statistics of Wigner matrices
at all scales were established in a series of papers [13,14,34,46]. Analogous results
for invariant ensembles were proved in [6,33,37]. Mesoscopic statistics for DBMwith
β = 2 and quadratic potential was established in [16]. It was proven that at mesoscopic
scale η, the mesoscopic central limit theorem holds if and only if t � η. Recently,
related results were proven for classical β and the quadratic potential in [38]. The
analysis in [16] relied on the Brézin–Hikami formula special to the β = 2 case, and
the analysis in [38] relied on the matrix model which exists only for classical β, i.e.
β = 1, 2, 4, neither of which are applicable here. Our approach is based on a direct
analysis of the stochastic differential equation of m̃t , where the leading fluctuation
term is an integral with respect to Brownianmotions. The central limit theorem follows
naturally for all β ≥ 1 and general potential V .

We now outline the organization of the rest of the paper. In Sect. 2, we collect some
properties of β-DBM (1.1), i.e., the existence and uniqueness of strong solutions and
the existence and uniqueness of the hydrodynamic limit of the empirical density μ̃t ,
which is a measure valued process μt . For quadratic V , these statements were proved
by Chan [15] and Rogers and Shi [48]. For general potentials (under Assumption 2.1
below), the β-DBMwas studied by Li, Li andXie [43,44]. In the second part of Sect. 2,
we study the Stieltjes transform of the limit measure valued process μt by the method
of characteristics, which are used throughout the rest of the paper.

Section 3 contains the main novelty of this paper, in which we prove the local law
and rigidity estimate of the particles Theorem 3.1. We directly analyze the stochastic
differential equation satisfied by m̃t using the method of characteristics. In Sect. 4, we
prove that the linear statistics satisfy a central limit theorem at mesoscopic scales.

Finallywe remark that by combining the rigidity results provenhere and themethod-
ology of [38] one can prove gap universality for the process (1.1), thus yielding
equilibrium on the local scale η = 1/N . We state the gap universality theorem in
Appendix A, and sketch the proof.

In the rest of this paper, we use C to represent large universal constant, and c a
small universal constant, which may depend on other universal constants, i.e., the
constants a, b,K in Assumptions 2.1 and 4.1, and may be different from line by line.
We write that X = O(Y ) if there exists some universal constant such that |X | ≤ CY .
We write X = o(Y ), or X � Y if the ratio |X |/Y → 0 as N goes to infinity. We write
X � Y if there exist universal constants such that cY ≤ |X | ≤ CY . We denote the set
{1, 2, . . . , N } by [[1, N ]]. We say an event � holds with overwhelming probability, if
for any D > 0, and N ≥ N0(D) large enough, P(�) ≥ 1 − N−D .

2 Background onˇ-Dyson Brownianmotion

In this section we collect several properties of β-DBM, required in the remainder of
the paper. More precisely, we state the existence and uniqueness of the strong solution
to (1.1) and a weak convergence result for the empirical particle density.
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In the rest of the paper, we make the following assumption on the potential V .

Assumption 2.1 We assume that the potential V is a C4 function, and that there exists
a constant K ≥ 0 such that infx∈R V ′′(x) ≥ −2K.

We denote M1(R) the set of probability measures on R and equip this set with
the weak topology. For T > 0 we denote by C([0, T ], M1(R)) the set of continuous
processes on [0, T ] taking values in M1(R). We have the following existence result
from [43].

Theorem 2.2 Suppose that V satisfies Assumption 2.1. For all β ≥ 1 and initial data
λ(0) ∈ �N , there exists a strong solution (λ(t))t≥0 ∈ C(R+,�N ) to the stochastic
differential equation (1.1). For any t > 0, λ(t) ∈ �N and λ(t) is a continuous function
of λ(0).

Proof The existence of strong solution with initial data λ(0) ∈ �N follows from [43,
Theorem 1.2]. Following the same argument in [4, Proposition 4.3.5], we can extend
the statement to λ(0) ∈ �N by the following comparison lemma (the special case
with potential V ≡ 0 is proved in [4, Lemma 4.3.6] and the proof below is based on
the proof given there) between strong solutions of (1.1) with initial data in �N . ��
Lemma 2.3 Suppose that V satisfies theAssumption2.1. Let (λ(t))t≥0 and (η(t))t≥0 be
two strong solutions of (1.1)with initial data λ(0) ∈ �N and η(0) ∈ �N . Assume that
λi (0) > ηi (0) for all i ∈ [[1, N ]]. Then, almost surely, for all t ≥ 0 and i ∈ [[1, N ]],

0 ≤ λi (t) − ηi (t) ≤ eKt max
j∈[[1,N ]]{λ j (0) − η j (0)}. (2.1)

Proof By taking difference of the stochastic differential equations satisfied by
(λ(t))t≥0 and (η(t))t≥0, we have

∂t (λi (t) − ηi (t)) = 1

N

∑
j : j �=i

(λ j (t) − η j (t)) − (λi (t) − ηi (t))

(λi (t) − λ j (t))(ηi (t) − η j (t))

−1

2

(
V ′(λi (t)) − V ′(ηi (t))

)
. (2.2)

Let i0 = argmaxi∈[[N ]]{λi (t) − ηi (t)}. For i = i0, the first term of (2.2) is non-
positive, and

∂t (λi0(t) − ηi0(t)) ≤ −1

2

(
V ′(λi0(t)) − V ′(ηi0(t))

)
. (2.3)

Either λi0(t) − ηi0(t) < 0, or using Assumption 2.1 the above equation implies
∂t (λi0(t) − ηi0(t)) ≤ K(λi0(t) − ηi0(t)). Hence,

∂t (λi0(t) − ηi0(t))+ ≤ K(λi0(t) − ηi0(t))+. (2.4)
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214 J. Huang, B. Landon

Therefore, it follows from Gronwall’s inequality,

max
i∈[[N ]]{λi (t) − ηi (t)} ≤ eKt max

i∈[[N ]]{λi (0) − ηi (0)}. (2.5)

Similarly, let i0 = argmini∈[[N ]]{λi (t) − ηi (t)}. Either λi0(t) − ηi0(t) > 0, or
∂t (λi0(t) − ηi0(t)) ≥ K(λi0(t) − ηi0(t)). Again by Gronwall’s inequality we obtain
that mini∈[[N ]]{λi (t) − ηi (t)} ≥ 0. ��

The following theorem is a consequence of [43, Theorem 1.1 and 1.3]. It establishes
the existence of a solution to the limiting hydrodynamic equation of the empirical
particle process. In its statement we distinguish the parameter L from N . This is
due to the fact that we will compare the empirical measure μ̃t to a solution of the
equation (2.8) with initial data coming from the initial value of λ(0) which is a finite
N object. The existence of this solution is easily established using the theorem below
by introducing an auxilliary process λ(L) which converges to μ̃0 (a fixed finite N
object) as L → ∞.

Theorem 2.4 Suppose V satisfies the Assumption 2.1. Let β ≥ 1. Let λ(L)(0) =
(λ

(L)
1 (0), λ(L)

2 (0) . . . , λ
(L)
L (0)) ∈ �N be a sequence of initial data satisfying

sup
L>0

1

L

L∑
i=1

log(λ(L)
i (0)2 + 1) < ∞. (2.6)

Assume that the empirical measure μ̃
(L)
0 = 1

L

∑L
i=1 δ

λ
(L)
i (0)

converges weakly as L

goes to infinity to μ0 ∈ M1(R).
Let λ(L)(t) = (λ

(L)
1 (t), . . . , λ(L)

L (t))t≥0 be the solution of (1.1) with initial data
λ(L)(0), and set

μ̃
(L)
t = 1

L

L∑
i=1

δ
λ

(L)
i (t)

. (2.7)

Then for any fixed time T , (μ̃(L)
t )t∈[0,T ] converges almost surely in C([0, T ], M1(R)).

Its limit is the unique measure-valued process (μt )t∈[0,T ] characterized by the
McKean–Vlasov equation, i.e., for all f ∈ C2

b (R), t ∈ [0, T ],

∂t

∫
R

f (x)dμt (x) = 1

2

∫ ∫
R2

∂x f (x) − ∂y f (y)

x − y
dμt (x)dμt (y)

−1

2

∫
R

V ′(x) f ′(x)dμt (x). (2.8)

Taking f (x) = (x − z)−1 for z ∈ C \R in (2.8), we see that the Stieltjes transform
of the limiting measure-valued process, which is defined by

mt (z) =
∫
R

(x − z)−1dμt (x), (2.9)
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satisfies the equation

∂tmt (z) = mt (z)∂zmt (z) + 1

2

∫
R

V ′(x)
(x − z)2

dμt (x). (2.10)

In a moment we will introduce a spatial cut-off of V . In order to do this we require
the following exponential bound for ||λi (t)||∞.

Proposition 2.5 Suppose V satisfies Assumption 2.1. Let β ≥ 1, and λ(0) ∈ �N . Let
a be a constant such that the initial data ‖λ(0)‖∞ ≤ a. Then for any fixed time T ,
there exists a finite constant b = b(a, T ), such that for any 0 ≤ t ≤ T , the unique
strong solution of (1.1) satisfies:

P(max{|λ1(t)|, |λN (t)|} ≥ b) ≤ e−N . (2.11)

Proof Let (η(t))t≥0 be the strong solution of β-DBM with potential V = 0,

dηi (t) =
√

2

βN
dBi (t) + 1

N

∑
j : j �=i

dt

ηi (t) − η j (t)
, i = 1, 2, . . . , N . (2.12)

We take the initial data as η(0) = λ(0) ∈ �N . Thanks to [4, Lemma 4.3.17], there
exists a finite constant b1 = b1(a, T ), such that

� := {max{|η1(t)|, |ηN (t)|} ≤ b1}, P(�) ≥ 1 − e−N . (2.13)

By taking difference of the stochastic differential equations satisfied by (λ(t))t≥0
and (η(t))t≥0, we get

∂t (λi (t) − ηi (t)) = 1

N

∑
j : j �=i

(λ j (t) − η j (t)) − (λi (t) − ηi (t))

(λi (t) − λ j (t))(ηi (t) − η j (t))
dt − 1

2
V ′(λi (t))dt .

(2.14)

Let i0 = argmaxi∈[[N ]]{λi (t)−ηi (t)}. For i = i0, the first term of (2.14) is non-positive,
and thus on the event �,

∂t (λi0(t) − ηi0(t)) ≤ − 1

2

(
V ′(λi0(t)) − V ′(ηi0(t))

)− 1

2
V ′(ηi0(t))

≤ − 1

2

(
V ′(λi0(t)) − V ′(ηi0(t))

)+ C,

(2.15)

whereC = maxx∈[−b1,b1] |V ′(x)|/2. Then thanks to Assumption (2.1), either λi0(t)−
ηi0(t) < 0, or ∂t (λi0(t)− ηi0(t)) ≤ K(λi0(t)− ηi0(t))+C . Therefore, it follows from
Gronwall’s inequality,

max
i∈[[N ]]{λi (t) − ηi (t)} ≤ C(eKt − 1)

K
. (2.16)
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216 J. Huang, B. Landon

And thus

max
i∈[[N ]]{λi (t)} ≤ b1 + C(eKt − 1)

K
. (2.17)

Similarly, let i0 = argmini∈[[N ]]{λi (t) − ηi (t)}, then either λi0(t) − ηi0(t) > 0, or
∂t (λi0(t) − ηi0(t)) ≥ K(λi0(t) − ηi0(t)) − C . It follows from Gronwall’s inequality
that mini∈[[N ]]{λi (t)} ≥ −b1 − C(eKt − 1)/K. Proposition 2.5 follows by taking
b = b1 + C(eKt − 1)/K. ��

Note that the constant b in the previous proposition depends only on V through its
C1 norm on the interval [−b1, b1] and K. Hence, if we replace V ′(x) by V ′(x)χ(x)
whereχ is a smooth cut-off function on [−2b, 2b] (we assume b > 1), then byProposi-
tion 2.5 the solutions of (1.1) with the original potential V ′(x) and the cut-off potential
V ′(x)χ(x) agree with exponentially high probability. Hence for the remainder of the
paper it will suffice for our purposes to work with the cut-off potential V ′(x)χ(x).

We introduce the following quasi-analytic extension of V ′ of order three,

V ′(x + iy) :=
(
V ′(x)χ(x) + iy∂x (V

′(x)χ(x)) − y2

2
∂2x (V

′(x)χ(x))

)
χ(y).

(2.18)

We denote,

∂z = 1

2
(∂x − i∂y), ∂z̄ = 1

2
(∂x + i∂y). (2.19)

We rewrite (2.10) in the following

∂tmt (z) = ∂zmt (z)

(
mt (z) + V ′(z)

2

)
+ mt (z)∂zV ′(z)

2
+
∫
R

g(z, x)dμt (x),

(2.20)

where

g(z, x) := V ′(x) − V ′(z) − (x − z)∂zV ′(z)
2(x − z)2

, g(x, x) := V ′′′(x)
4

. (2.21)

By our definition (2.18), V ′ is quasi-analytic along the real axis. One can directly
check the following properties of g(z, x) and V .

Proposition 2.6 Suppose V satisfies Assumption 2.1. Let V ′(z) and g(z, x) be as
defined in (2.18) and (2.21). There exists a universal constant C depending on V ,
such that

1. ‖V ′(z)‖C1 ≤ C, | Im[V ′(z)]| ≤ C | Im[z]| and | Im[∂zV ′(z)]| ≤ C | Im[z]|.
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2. The following bounds hold uniformly over z ∈ C and x ∈ R. We have |g(z, x)| +
|∂x g(z, x)| ≤ C. Furthermore, |∂2x g(z, x)| ≤ C |z − x |−1 and | Im[g(z, x)]| ≤
C | Im[z]|.

3. If we further assume V is C5, then ‖V ′(z)‖C2 ≤ C, and uniformly over z ∈ C and
x ∈ R, |∂zg(z, x)| + |∂z̄ g(z, x)| ≤ C.

We define the following quasi-analytic extension of g(z, ·) of order two,

g̃(z, x + iy) := (g(z, x) + iy∂x g(z, x))χ(y), (2.22)

By the Helffer-Sjöstrand formula, see [30, Chapter 11.2],

∫
R

g(z, x)dμt (x) = 1

π

∫
C

∂w̄ g̃(z, w)mt (w)d2w, (2.23)

and so we can rewrite (2.20) as an autonomous differential equation of mt (z):

∂tmt (z) = ∂zmt (z)

(
mt (z) + V ′(z)

2

)
+ mt (z)∂zV ′(z)

2

+ 1

π

∫
C

∂w̄ g̃(z, w)mt (w)d2w. (2.24)

2.1 Stieltjes transform of the limit measure-valued process

In this subsection we analyze the differential equation of the Stieltjes transform of the
limiting measure-valued process (2.24) with initial data μ0 which we assume to have
suppμ0 ∈ [−a, a].Wefixa constant timeT . ByTheorem2.4 andProposition2.5, there
exists a finite constant b = b(a, T ) such that suppμt ∈ [−b, b] for any 0 ≤ t ≤ T .

We analyze (2.24) by the method of characteristics. Let

∂t zt (u) = −mt (zt (u)) − V ′(zt (u))

2
, z0 = u ∈ C+. (2.25)

If the context is clear, we omit the parameter u, i.e., we simply write zt instead of
zt (u).

For any ε > 0, let Cε+ = {z : Im[z] > ε}. Since mt is analytic, bounded and
Lipschitz on the closed domain Cε+, we have that for any u with u ∈ C

ε+, the solution
zt (u) exists, is unique, and is well defined before exiting the domain. Thanks to the
local uniqueness of the solution curve, it follows, by taking ε → 0, that for any u with
Im[u] > 0, the solution curve zt (u) is well defined before it exits the upper half plane.
For any u ∈ C+, either the flow zt (u) stays in the upper half plane forever, or there
exists some finite time t such that lims→t Im[zs(u)] = 0.

Plugging (2.25) into (2.24), and applying the chain rule we obtain

∂tmt (zt ) = mt (zt )∂zV ′(zt )
2

+ 1

π

∫
C

∂w̄ g̃(zt , w)mt (w)d2w. (2.26)
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The behaviors of zs and ms(zs) are governed by the system of equations (2.25)
and (2.26). The following properties of the flows Im[zs] and Im[ms(zs)] will be used
throughout the paper.

Proposition 2.7 Suppose V satisfies the Assumption 2.1. Fix a time T > 0. There
exists a constant C = C(V , b) such that the following holds. For any 0 ≤ s ≤ t ≤ T
with Im[zt ] > 0, the following estimates hold uniformly for initial u = z0 in compact
subsets of C+.

Im[mt (z)] Im[z] ≤ 1, |∂zmt (z)| ≤ Im[mt (z)]
Im[z] , (2.27)

e−C(t−s) Im[zt ] ≤ Im[zs], (2.28)

e−tC Im[m0(z0)] ≤ Im[mt (zt )] ≤ etC Im[m0(z0)], (2.29)

e−Ct
(
Im[z0] − eCt − 1

C
Im[m0(z0)]

)

≤ Im[zt ] ≤ eCt
(
Im[z0] − 1 − e−Ct

C
Im[m0(z0)]

)
, (2.30)

and ∫ t

s

Im[mτ (zτ )]dτ
Im[zτ ] ≤ C(t − s) + log

Im[zs]
Im[zt ] ,∫ t

s

Im[mτ (zτ )]dτ
Im[zτ ]p ≤ C

Im[zt ]p−1 , p > 1. (2.31)

Proof The estimates (2.27) are general and hold for any Stieltjes transform. First, we
have

Im[mt (z)] Im[z] =
∫
R

Im[z]2dμt (x)

|x − z|2 ≤
∫
R

dμt (x) = 1,

and secondly we have,

|∂zmt (z)| =
∣∣∣∣
∫
R

dμt (x)

(x − z)2

∣∣∣∣ ≤ 1

Im[z]
∫
R

Im[z]dμt (x)

|x − z|2 = Im[mt (z)]
Im[z] .

Since Im[ms(zs)] ≥ 0, it follows from (2.25) and the estimate | Im[V ′(zs)]| =
O(Im[zs]) of Proposition 2.6 that there exists a constant C s.t.

∂s Im[zs] ≤ C Im[zs]. (2.32)

The estimate (2.28) follows.
By Proposition 2.6, Im[V ′(z)] = O(Im[z]). It follows from taking imaginary part

of (2.25) that there exists some constant C depending on V , such that

|∂s Im[zs] + Im[ms(zs)]| ≤ C Im[zs]. (2.33)
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By rearranging, (2.33) leads to the inequalities

− eCs Im[ms(zs)] ≤ ∂s

(
eCs Im[zs]

)
, ∂s

(
e−Cs Im[zs]

)
≤ −e−Cs Im[ms(zs)].

(2.34)

Similarly, by taking the imaginary part of (2.26), i.e.

∂sms(zs) = ms(zs)∂zV ′(zs)
2

+
∫
R

g(z, x)dμs(x), (2.35)

and using the estimates | Im[∂zV ′(z)]|+| Im[g(z, x)]| = O(Im[z]) and |∂zV ′(z)| ≤ C
in Proposition 2.6 we obtain,

|∂s Im[ms(zs)]| ≤
∣∣∣∣Im

[
∂zV ′(zs)ms(zs)

2

]∣∣∣∣+ C ′ Im[zs] ≤ C Im[ms(zs)]. (2.36)

In the last inequality we used suppμs ∈ [−b, b], and so

| Im[∂zV ′(zs)]Re[ms(zs)]| = 1{|Re[zs ]|≤2b} O(Im[zs]|Re[ms(zs)]|)
= 1{|Re[zs ]|≤2b} O

(∫
R

Im[zs]Re[x − zs]dμs(x)

|x − zs |2
)

= O

(∫
R

3b Im[zs]dμs(x)

|x − zs |2
)

= O(Im[ms(zs)]).

We also used suppμs ∈ [−b, b], thus for x ∈ suppμs and |Re[zs]| ≤ 2b, it holds
|Re[x − zs]| ≤ 3b.

The estimate (2.29) then follows from (2.36) and Gronwall’s inequality, and the
estimate (2.30) follows from combining (2.34) and (2.29). For (2.31) we have by
(2.34),

∫ t

s

Im[mτ (zτ )]dτ
Im[zτ ]p ≤

∫ t

s

−∂τ

(
e−Cτ Im[zτ ]

)
dτ(

e−Cτ Im[zτ ]
)p . (2.37)

The case p = 1 follows. For p > 1, we have

∫ t

s

Im[mτ (zτ )]dτ
Im[zτ ]p ≤ 1

p − 1

(
1(

e−Ct Im[zt ]
)p−1 − 1(

e−Cs Im[zs]
)p−1

)

≤ C ′

Im[zt ]p−1 . (2.38)

��
We have the following result for the flow map u → zt (u).
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Proposition 2.8 Suppose that V satisfies Assumption 2.1. Fix a time T . For any 0 ≤
t ≤ T , there exists an open domain�t ⊂ C+, such that the vector flowmap u �→ zt (u)

is a C1 homeomorphism from �t to C+.
Proof We define

�t := {u ∈ C+ : zs(u) ∈ C+, 0 ≤ s ≤ t}. (2.39)

By Assumption 2.1, V is a C4 function. From our construction of V ′(z) as in (2.18),
V ′(z) is a C1 function. Thus the vector flow map u �→ zt (u) is a C1 map from �t to
C+. We need to show that it is invertible. Define the following flow map by

∂s ys(v) = mt−s(ys(v)) + V ′(ys(v))

2
, y0 = v ∈ C+. (2.40)

for 0 ≤ s ≤ t . Since Im[mt−s(ys(v))] ≥ 0, there exists some constant C depending
on V ,

∂s

(
eCs Im[ys]

)
≥ 0. (2.41)

Therefore ys(v) is well defined for 0 ≤ s ≤ t , and it will stay in C+. Furthermore,
v �→ yt (v) is a C1 map, and is the inverse of u �→ zt (u). ��

3 Rigidity ofˇ-DBM

In this section we prove the local law and optimal rigidity for β-DBM with general
initial data. Let μt be the unique solution of (2.8) with initial data

μ0(x) := 1

N

N∑
i=1

δλi (0)(x). (3.1)

Denote bymt its Stieltjes transform.We introduce some notation used in the statement
and proof of the local law. We fix a small parameter δ, a large constant c ≥ 1, a large
constant K , and control parameter M = (log N )2+2δ . For any time s � 1, we define
the spectral domain,

Ds =
{
w ∈ C+ : Im[w] ≥ eKsM log N

N Im[ms(w)] ∨ eKs

N c
, Im[w] ≤ 3b − s,

|Re[w]| ≤ 3b − s

}
. (3.2)

We take the spectral domain Ds depending on time s, such that for any characteristic
flow zs(u) with initial value u ∈ D0, then it will remain in the spectral domain,
zs(u) ∈ Ds .

The following is the local law for β-DBM.
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Theorem 3.1 Suppose V satisfies the Assumption 2.1. Fix T = (log N )−2. Let β ≥ 1
and assume that the initial data satisfies −a ≤ λ1(0) ≤ λ2(0) · · · ≤ λN (0) ≤ a for a
fixed a > 0. Uniformly for any 0 ≤ t � T , and w ∈ Dt the following estimate holds
with overwhelming probability,

|m̃t (w) − mt (w)| ≤ M

N Im[w] . (3.3)

The following rigidity estimates are a consequence of the local law.

Corollary 3.2 Under the assumptions of Theorem 3.1. Fix time T = (log N )−2. With
overwhelming probability, uniformly for any 0 ≤ t ≤ T and i ∈ [[1, N ]], we have

γi−CM log N (t) − N−c+1 ≤ λi (t) ≤ γi+CM log N (t) + N−c+1, (3.4)

where c is any large constant, γi (t) is the classical particle location at time t,

γi (t) = inf
x

{∫ x

−∞
dμt (x) ≥ i

N

}
, i ∈ [[1, N ]]. (3.5)

We make the convention that γi (t) = −∞ if i < 0, and γi (t) = +∞ if i > N.

We will prove Theorem 3.1 at the end of Sect. 3.2. The proof of Corollary 3.2 is
standard and is given in Sect. 3.3.

Remark 3.3 Notice that

η �→ η Im[mt (E + iη)] =
∫
R

η2dμt (x)

(E − x)2 + η2
,

is amonotonically increasing function. Similarly,η �→ η Im[m̃t (E+iη)] ismonotonic.
We now prove the following deterministic fact. Suppose that the estimate (3.3) holds
on Dt . We claim that under this assumption the estimate

| Im[m̃t (w)] − Im[mt (w)]| ≤ 3eK t M log N

N Im[w] , (3.6)

holds on the larger domain w = E + iη with |E | ≤ 3b− t and eK t N−c ≤ η ≤ 3b− t .
Let

η(E) = inf
η≥0

{η Im[mt (E + iη)] ≥ eK t M log N/N }. (3.7)

By the assumption (3.3) and the definition of Dt we only need to check the case that
η(E) > eK t N−c and η < η(E). In this case we have η(E) Im[mt (E + iη(E))] =
eK t M log N/N , and Im[mt (w)] ≤ eK t M log N/Nη, and so
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| Im[m̃t (w)] − Im[mt (w)]|

≤ Im[m̃t (w)] + eK t M log N

Nη

≤ η(E)

η
Im[m̃t (E + iη(E))] + eK t M log N

Nη

≤ η(E)

η
|Im[m̃t (E + iη(E))] − Im[mt (E + iη(E)]| + 2eK t M log N

Nη

≤ 3eK t M log N

Nη
.

In the second inequality we used monotonicity of η Im[m̃t (E + iη)].

3.1 Properties of the spectral domain

In this section, we prove some properties of the spectral domainDs as defined in (3.2),
which will be used throughout the proof of Theorem 3.1.

Lemma 3.4 Suppose V satisfies Assumption 2.1. Fix a time T . For any 0 ≤ t ≤ T
such that zt ∈ Dt , we have

Im[u] ≤ CN Im[zt (u)]. (3.8)

Proof Notice that from (2.27), Im[u] ≤ Im[m0(u)]−1, and by our assumption zt ∈ Dt

and (2.29),

Im[zt (u)] ≥ (N Im[mt (zt )])−1 ≥ (CN Im[m0(z0)])−1 ≥ (CN )−1 Im[u], (3.9)

which yields (3.8). ��
Proposition 3.5 Suppose V satisfies the Assumption 2.1. Fix time T . If for some t ∈
[0, T ], zt ∈ Dt , then for any s ∈ [0, t], zs ∈ Ds .

Proof By (2.28), we have Im[zs] ≥ e−C(t−s) Im[zt ]. Therefore if we have Im[zt ] ≥
eK t N−c then Im[zs] ≥ eKs N−c as long as we take K ≥ C .

Combining ∂s Im[zs] ≤ C Im[zs] from (2.32), with (2.36), yields that there is a
constant C ′ so that

∂s (Im[zs] Im[ms(zs)]) ≤ C ′ Im[zs] Im[ms(zs)]. (3.10)

Therefore, Im[zs] Im[ms(zs)] ≥ e−C ′(t−s) Im[zt ] Im[mt (zt )] and so if Im[zt ]
Im[mt (zt )] ≥ eK t M log N/N , then Im[zs] Im[ms(zs)] ≥ eKsM log N/N , provided
K ≥ C ′.

Finally, we must prove that if Im[zt ] ≤ 3b − t and |Re[zt ]| ≤ 3b − t , then for
any s ∈ [0, t], we have Im[zs] ≤ 3b − s and |Re[zs]| ≤ 3b − s. First, suppose for a
contradiction that there exists s such that, say, |Re[zs]| > 3b − s. By symmetry, say
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Re[zs] > 3b − s. Let τ = infσ≥s{Re[zσ ] ≤ 3b − σ }; then τ ≤ t . For any σ ∈ [s, τ ],
Re[zσ ] ≥ 3b − T ≥ 2b, we have V ′(zσ ) = 0, and therefore |∂σ zσ | ≤ |mσ (zσ )| ≤
dist(zσ , suppμσ )−1. Recall that we have chosen b large so that, suppμt ∈ [−b, b].
Therefore |∂σ zσ | ≤ b−1 and Re[zτ ] ≥ Re[zs] − (τ − s)/b > 3b − τ , as long as we
take b > 1. Therefore we derive a contradiction. A similar argument applies to the
case that Im[zs] > 3b − s. This finishes the proof of Proposition 3.5. ��

We have the following weak control on the C1 norm of the flow map u �→ zt (u).
A much stronger version will be proved in Proposition 4.9.

Proposition 3.6 Suppose V satisfies the Assumption 2.1. Fix time T . For any 0 ≤ t ≤
T with zt ∈ Dt , we have with u = x + iy,

|∂x zt (u)| + |∂yzt (u)| = O(N ), (3.11)

where the implicit constant depends on T and V .

Proof From Proposition 2.8, we know that u �→ zt (u) is a C1 map. By differentiating
both sides of (2.25), we get

∂s∂x zs(u) = −∂zms(zs(u))∂x zs(u) − ∂zV ′(zs(u))∂x zs(u) + ∂z̄ V ′(zs(u))∂x z̄s(u)

2
.

(3.12)

It follows that

∂s |∂x zs(u)|2 = 2Re[∂s∂x zs(u)∂x z̄s(u)]
= −2Re[∂zms(zs(u))]|∂x zs(u)|2

− Re[∂zV ′(zs(u))|∂x zs(u)|2 + ∂z̄ V
′(zs(u))(∂x z̄s(u))2]. (3.13)

By Proposition 2.7 we have |∂zms(zs(u))| ≤ Im[ms(zs(u))]/ Im[zs(u)], and by
Proposition 2.6 we have |∂zV ′(zs(u))|, |∂z̄ V ′(zs(u))| = O(1). Therefore,

∂s |∂x zs(u)|2 ≤ 2

(
Im[ms(zs(u))]
Im[zs(u)] + C

)
|∂x zs(u)|2. (3.14)

Since z0(u) = u, by Gronwall’s inequality and (2.31) of Proposition 2.7, we have

|∂x zt (u)|2 ≤ exp

(
2
∫ t

0

(
Im[ms(zs(u))]
Im[zs(u)] + C

)
ds

)
≤
(
eCt Im[u]
Im[zt (u)]

)2

≤ CN 2,

(3.15)

where we used (3.8). It follows that |∂x zt (u)| = O(N ). The estimate for |∂yzt (u)|
follows from the same argument. ��
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We define the following lattice on the upper half plane C+,

L =
{
E + iη ∈ D0 : E ∈ Z/N (3c+1), η ∈ Z/N (3c+1)

}
. (3.16)

Thanks to Propositions 2.8 and 3.6, we have the following.

Proposition 3.7 Suppose V satisfies Assumption 2.1. Fix a time T . For any 0 ≤ t ≤ T
and w ∈ Dt , there exists some lattice point u ∈ L ∩ z−1

t (Dt ), such that

|zt (u) − w| = O(N−3c), (3.17)

where the implicit constant depends on T and V .

3.2 Proof of Theorem 3.1

In this section we prove (3.3). By Proposition 2.8, the flow map u �→ zt (u) is a
surjection from�t (as defined in Proposition 2.8) to the upper half planeC+. We want
to prove the estimate

|m̃t (zt ) − mt (zt )| ≤ M

N Im[zt ] , (3.18)

for zt ∈ Dt .
By Ito’s formula, m̃s(z) satisfies the stochastic differential equation

dm̃s(z) = −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − z)2
+ m̃s(z)∂zm̃s(z)ds

+ 1

2N

N∑
i=1

V ′(λi (s))
(λi (s) − z)2

ds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − z)3
.

(3.19)

We can rewrite (3.19) as

dm̃s(z) = −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − z)2
+ ∂zm̃s(z)

(
m̃s(z) + V ′(z)

2

)
ds

+ m̃s(z)∂zV ′(z)
2

ds

+ 1

π

∫
C

∂w̄ g̃(z, w)m̃s(w)d2wds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − z)3
,

(3.20)
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where V ′(z) and g̃(z, w) are defined in (2.18) and (2.22) respectively. Plugging (2.25)
into (3.20), and by the chain rule, we have

dm̃s(zs) = −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − zs)2
+ ∂zm̃s(zs) (m̃s(zs)

−ms(zs)) ds + m̃s(zs)∂zV ′(zs)
2

ds

+ 1

π

∫
C

∂w̄ g̃(zs, w)m̃s(w)d2wds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − zs)3
.

(3.21)

It follows by taking the difference of (2.26) and (3.21) that,

d(m̃s(zs) − ms(zs)) = −
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − zs)2

+ (m̃s(zs) − ms(zs)) ∂z

(
m̃s(zs) + V ′(zs)

2

)
ds

+ 1

π

∫
C

∂w̄ g̃(zs, w)(m̃s(w) − ms(w))d2wds + 2 − β

βN 2

N∑
i=1

ds

(λi (s) − zs)3
.

(3.22)

Using the fact that m0(z) = m̃0(z), we can integrate both sides of (3.22) from 0 to t
and obtain

m̃t (zt ) − mt (zt ) =
∫ t

0
(E1(s)ds + dE2(s)) , (3.23)

where the error terms are

E1(s) = (m̃s(zs) − ms(zs)) ∂z

(
m̃s(zs) + V ′(zs)

2

)

+ 1

π

∫
C

∂w̄ g̃(zs, w)(m̃s(w) − ms(w))d2w, (3.24)

dE2(t) = 2 − β

βN 2

ds

(λi (s) − zs)3
−
√

2

βN 3

N∑
i=1

dBi (s)

(λi (s) − zs)2
. (3.25)

We remark that E1 and E2 implicitly depend on u, the initial value of the flow zs(u).
The local law will eventually follow from an application of Gronwall’s inequality to
(3.23).

We define the stopping time

σ := inf
s≥0

{
∃w ∈ Ds : |m̃s(w) − ms(w)| ≥ M

N Im[w]
}

∧ t . (3.26)
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In the rest of this section we prove that with overwhelming probability we have σ = t .
Theorem 3.1 follows.

For any lattice point u ∈ L as in (3.16), we denote

t(u) = sup
s≥0

{zs(u) ∈ Ds} ∧ t . (3.27)

By Proposition 3.5 we have that zs(u) ∈ Ds for any 0 ≤ s ≤ t(u). We decompose the
time interval [0, t(u)] in the following way. First set t0 = 0, and define

ti+1(u) := sup
s≥ti (u)

{
Im[zs(u)] ≥ Im[zti (u)]

2

}
∧ t(u), i = 0, 1, 2, . . . . (3.28)

By (3.8), there exists some constant C depending on V , such that Im[z0(u)] ≤
CN Im[zt(u)(u)], and thus the above sequence will terminate at some tk(u) = t(u)

for k = O(log N ) depending on u, the initial value of zs . Moreover, by (2.28), for any
ti (u) ≤ s1 ≤ s2 ≤ ti+1(u),

e−CT ≤ e−C(s2−s1) ≤ Im[zs1(u)]
Im[zs2(u)] ≤ eC(s1−ti ) Im[zti (u)]

eC(s2−ti+1) Im[zti+1(u)] ≤ 2eCT . (3.29)

We first derive an estimate of
∫
dE2(s) in terms of {ms(zs(u)), 0 ≤ s ≤ t(u)}.

Proposition 3.8 Under the assumptions of Theorem 3.1. There exists an event � that
holds with overwhelming probability on which we have for every 0 ≤ τ ≤ t(u) and
u ∈ L,

∣∣∣∣
∫ τ∧σ

0
dE2(s)

∣∣∣∣ ≤ C(log N )1+δ

N Im[zτ∧σ (u)] . (3.30)

Proof For simplicity of notation, we write ti = ti (u) and zs = zs(u). For any s ≤ ti ,
by our choice of the stopping time σ (as in (3.26)), and the definition of domain Ds

(as in (3.2)), we have

Im[m̃s∧σ (zs∧σ )] ≤ 2 Im[ms∧σ (zs∧σ )]. (3.31)

For the first term in (3.25) we have

sup
0≤τ≤ti

∣∣∣∣∣2 − β

βN 2

∫ τ∧σ

0

N∑
i=1

ds

(λi (s) − zs)3

∣∣∣∣∣
≤ 2 − β

βN 2

∫ ti∧σ

0

N∑
i=1

ds

|λi (s) − zs |3
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≤ C

N 2

∫ ti∧σ

0

N∑
i=1

ds

Im[zs]|λi (s) − zs |2 = C
∫ ti∧σ

0

Im[m̃s(zs)]ds
N Im[zs]2

≤ C
∫ ti∧σ

0

2 Im[ms(zs)]ds
N Im[zs]2 ≤ C ′

N Im[zti∧σ ] , (3.32)

where we used (3.31) and (2.31).
For the second term in (3.25) we have

〈√
2

βN 3

∫ ·∧σ

0

N∑
i=1

dBi (s)

(λi (s) − zs)2

〉
ti

= 2

βN 3/2

∫ ti∧σ

0

N∑
i=1

ds

|λi (s) − zs |4

≤ 2

βN 3/2

∫ ti∧σ

0

N∑
i=1

ds

Im[zs]2|λi (s) − zs |2 = 2

β

∫ ti∧σ

0

Im[m̃s(zs)]ds
N 2 Im[zs]3

≤ 2

β

∫ ti∧σ

0

2 Im[ms(zs)]ds
N 2 Im[zs]3 ≤ C

N 2 Im[zti∧σ ]2 ,

(3.33)

again we used (3.31) and (2.31). Therefore, by Burkholder–Davis–Gundy inequality,
for any u ∈ L and ti , the following holds with overwhelming probability, i.e., 1 −
C exp{−c(log N )1+δ},

sup
0≤τ≤ti

∣∣∣∣∣
√

2

βN 3

∫ τ∧σ

0

N∑
i=1

dBi (s)

(λi (s) − zs)2

∣∣∣∣∣ ≤ C(log N )1+δ

N Im[zti∧σ ] . (3.34)

We define � to be the set of Brownian paths {B1(s), . . . , BN (s)}0≤s≤t on which the
following two estimates hold.

1. First we have, −b ≤ λ1(s) ≤ λ2(s) ≤ · · · ≤ λN (s) ≤ b uniformly for all
s ∈ [0, T ].

2. Second for any u ∈ L and i = 0, 1, 2, . . . , k, (3.34) holds. We recall that
t0, t1, . . . , tk are recursively defined in (3.28), and k = O(log N ).

It follows from Proposition 2.5 and the discussion above,� holds with overwhelm-
ing probability, i.e., P(�) ≥ 1 − C |L|(log N ) exp{−c(log N )1+δ}.

Therefore, for any τ ∈ [ti−1, ti ], the bounds (3.32) and (3.34) yield∣∣∣∣
∫ τ∧σ

0
dE2(s)

∣∣∣∣ ≤C ′(log N )1+δ

N Im[zti∧σ ] ≤ C(log N )1+δ

N Im[zτ∧σ ] , (3.35)

where we used our choice of ti ’s, i.e. (3.29). ��

We now bound the second term of (3.24).

Proposition 3.9 Under the assumptions of Theorem 3.1, for any u ∈ L and s ∈
[0, t(u)] (as in (3.27)), with probability 1 − e−N , we have
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∣∣∣∣ 1π
∫
C

∂w̄ g̃(zs∧σ (u), w)(m̃s∧σ (w) − ms∧σ (w))d2w

∣∣∣∣ ≤ CM(log N )2

N
, (3.36)

where the constant C depends on V .

Proof First, we note that by Proposition 2.5, we can restrict to the case such that
μ̃t , μt are supported on [−b, b], and replace g by g1(z, x) := g(z, x)χ(x) and the
quasi-analytic extension by g̃1(z, x + iy) := (g1(z, x) + iy∂x g1(z, x))χ(y).

The proof follows the same argument as [24, Lemma B.1]. Let S(x + iy) =
m̃s∧σ (x + iy) − ms∧σ (x + iy). we have

∣∣∣∣ 1π
∫
C

∂w̄ g̃1(zs∧σ (u), w)(m̃s∧σ (w) − ms∧σ (w))d2w

∣∣∣∣
=
∣∣∣∣
∫
R

g1(zs∧σ (u), x)(dμ̃s∧σ (x) − dμs∧σ (x))

∣∣∣∣
≤ C

∫
C+

(|g1(zs∧σ , x)| + y|∂x g1(zs∧σ (u), x)|)|χ ′(y)||S(x + iy)|dxdy

+ C
∫
C+

yχ(y)|∂2x g1(zs∧σ (u), x)|| Im[S(x + iy)]|dxdy.

(3.37)

We start by handling the first term on the RHS of (3.37). The integrand is supported
in {x + iy : |x | ≤ 2b, b ≤ |y| ≤ 2b} ⊆ Dt for every t . In this region we have from
Proposition 2.6 that g1 and ∂x g1 are bounded, and by the definition of σ we have that
|S(x + iy)| ≤ M/N in this region and so

∫
C+

(|g1(zs∧σ , x)| + y|∂x g1(zs∧σ (u), x)|)|χ ′(y)|S(x + iy)|dxdy ≤ CM

N
. (3.38)

We now handle the second term on the RHS of (3.37). By the definition of t(u),
zs∧σ (u) ∈ D0, and so Im[zs∧σ (u)] ≥ N−c. From Proposition 2.6 we have
|∂2x g(z, x)| ≤ C |z − x |−1, and |∂2x g1(z, x)| ≤ Cχ(x)|z − x |−1.

We split the second integral on the righthand side of (3.37) into the two regions
� := {E + iη : 0 ≤ η ≤ eK (s∧σ)N−c} and C+ \ �. On �, we use the trivial bound
Im[S(x + iy)] ≤ |m̃s∧σ (x + iy)| + |ms∧σ (x + iy)| ≤ 2/y, and obtain

∫
�

yχ(y)|∂2x g1(zs∧σ (u), x)|| Im[S(x + iy)]|dxdy

≤ C
∫
0≤y≤eK (s∧σ)N−c

χ(x)

|zs∧σ (u) − x |dxdy ≤ C log N

N c
.

(3.39)

On C+ \ �, by Remark 3.3, and the definition of σ that (3.6) holds for time 0 ≤ t ≤
s ∧ σ , we have | Im[S(x + iy)]| ≤ 3eK (s∧σ)M log N/(Ny), and therefore,
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∫
C+\�

yχ(y)|∂2x g1(zs∧σ (u), x)|| Im[S(x + iy)]|dxdy

≤ CM log N

N

∫
C+

χ(x)χ(y)

|zs∧σ (u) − x |dxdy ≤ CM(log N )2

N
.

(3.40)

This completes the proof of (3.36). ��
Proof of Theorem 3.1 We can now start analyzing (3.23). For any lattice point u ∈ L
and τ ∈ [0, t(u)] (as in (3.27)), by Proposition 3.8 and 3.9, we have

|m̃τ∧σ (zτ∧σ (u)) − mτ∧σ (zτ∧σ (u))| ≤
∫ τ∧σ

0

|m̃s(zs(u)) − ms(zs(u))|
∣∣∣∣∂z
(
m̃s(zs(u)) + V ′(zs(u))

2

)∣∣∣∣ ds
+ C(τ ∧ σ)M(log N )2

N
+ C(log N )1+δ

N Im[zτ∧σ (u)] .

Notice that for s ≤ τ ∧ σ ,

∣∣∣∣∂z
(
m̃s(zs(u)) + V ′(zs(u))

2

)∣∣∣∣ ≤ Im[m̃s(zs(u))]
Im[zs(u)] + C, (3.41)

where we used (2.27), for the Stieltjes transform m̃s , and ∂zV ′(zs(u)) = O(1) from
Proposition 2.6. Since zs(u) ∈ Ds , by the definition of Ds , we have Im[ms(zs(u))] ≥
M log N/(N Im[zs(u)]). Moreover, since s ≤ σ , we have |m̃s(zs(u))−ms(zs(u))| ≤
M/(N Im[zs(u)]) ≤ Im[ms(zs(u))]/ log N . Therefore,

∣∣∣∣∂z
(
m̃s(zs(u)) + V ′(zs(u))

2

)∣∣∣∣ ≤ Im[m̃s(zs(u))]
Im[zs(u)] + C

≤
(
1 + 1

log N

)
Im[ms(zs(u))]
Im[zs(u)] + C . (3.42)

We denote

βs(u) :=
(
1 + 1

log N

)
Im[ms(zs(u))]
Im[zs(u)] + C = O

(
Im[ms(zs(u))]
Im[zs(u)]

)
. (3.43)

We have derived the inequality,

|m̃τ∧σ (zτ∧σ (u)) − mτ∧σ (zτ∧σ (u))| ≤
∫ τ∧σ

0
βs(u) |m̃s(zs(u)) − ms(zs(u))| ds

+ C(τ ∧ σ)M(log N )2

N
+ C(log N )1+δ

N Im[zτ∧σ (u)] .
(3.44)
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By Gronwall’s inequality, this implies the estimate

|m̃t∧σ (zt∧σ (u)) − mt∧σ (zt∧σ (u))| ≤ C(t ∧ σ)M(log N )2

N
+ C(log N )1+δ

N Im[zt∧σ (u)]
+
∫ t∧σ

0
βs(u)

(
sM(log N )2

N
+ C(log N )1+δ

N Im[zs(u)]
)
e
∫ t∧σ
s βτ (u)dτds.

(3.45)

By (2.31) of Proposition 2.7, and (3.43), we have

e
∫ t∧σ
s βτ (u)dτ ≤ eC(t−s)e

(
1+ 1

log N

)
log
(

Im[zs (u)]
Im[zt∧σ (u)]

)

= eC(t−s)
(

Im[zs(u)]
Im[zt∧σ (u)]

)1+ 1
log N ≤ C

Im[zs(u)]
Im[zt∧σ (u)] .

In the last equality,weused the estimate (3.8)which shows that Im[zs(u)]/ Im[zt∧σ (u)]
≤ CN . Combining the above inequality with (3.43) we can bound the last term in
(3.45) by

C
∫ t∧σ

0

Im[ms(zs(u))]
Im[zt∧σ (u)]

(
sM(log N )2

N
+ C(log N )1+δ

N Im[zs(u)]
)
ds

≤ CM(log N )2

N Im[zt∧σ (u)]
∫ t∧σ

0
s Im[ms(zs(u))]ds + C(log N )2+δ

N Im[zt∧σ(u)] ,
(3.46)

where we used (2.34) and that log(Im[z0(u)/zt∧σ (u)]) = O(log N ) from (3.8). Since
|V ′(z)| ≤ C , it follows from (2.25) that Im[ms(zs(u))] = −∂s Im[zs(u)] + O(1).
Therefore we can bound the integral term in (3.46) by,

∫ t∧σ

0
s Im[ms(zs(u))]ds =

∫ t∧σ

0
(−∂s Im[zs(u)])sds + O((t ∧ σ)2) = O(t ∧ σ).

(3.47)

It follows by combining (3.45), (3.46) and (3.47) that

|m̃t∧σ (zt∧σ (u)) − mt∧σ (zt∧σ (u))| ≤ C

(
(t ∧ σ)M(log N )2 + (log N )2+δ

N Im[zt∧σ (u)]
)

.

(3.48)

Therefore on the event � as defined in Proposition 3.8,

|m̃t∧σ (zt∧σ (u)) − mt∧σ (zt∧σ (u))| = o

(
M

N Im[zt∧σ (u)]
)

, (3.49)
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provided t � T = (log N )−2, and M = (log N )2+2δ . By Proposition 3.7, for any
w ∈ Dt∧σ , there exists some u ∈ L such that zt∧σ (u) ∈ Dt∧σ , and

|zt∧σ (u) − w| = O(N−3c). (3.50)

Moreover, on the domainDt∧σ , both m̃t∧σ andmt∧σ are Lipschitz with constant N 2c.
Therefore

|m̃t∧σ (w) − mt∧σ (w)| ≤ |m̃t∧σ (zt∧σ (u)) − mt∧σ (zt∧σ (u))|
+ |m̃t∧σ (w) − m̃t∧σ (zt∧σ (u))| + |mt∧σ (w) − mt∧σ (zt∧σ (u))|

= o

(
M

N Im[zt∧σ (u)]
)

+ O

( |zt∧σ (u) − w|
N−2c

)
= o

(
M

N Im[zt∧σ (u)]
)

.

(3.51)

If σ < t somewhere on the event � then by continuity there must be a point z ∈ Dσ

s.t.

|m̃σ (z) − mσ (z)| = M

N Im[z] . (3.52)

This contradicts (3.51), and so we see that on �, σ = t . This completes the proof of
(3.3). ��

3.3 Proof of Corollary 3.2

Proof of Corollary 3.2 The proof follows a similar argument to [24, LemmaB.1]. Recall
the function η(x) from Remark 3.3. Let S(x + iy) = m̃t (x + iy) − mt (x + iy). Fix
some E0 ∈ [−b, b]. Define

η̃ := inf
η≥eK t N1−c

{
η : max

E0≤x≤E0+η
η(x) ≤ η

}
. (3.53)

For later use we define

Ẽ := argmaxE0≤x≤E0+η̃ η(x), (3.54)

so that

η(Ẽ) = η̃. (3.55)

We define a test function f : R → R, such that f (x) = 1 on x ∈ [−2b, E0], and so
that f (x) vanishes outside [−2b − 1, E0 + η̃]. We take f so that f ′(x) = O(1) and
f ′′(x) = O(1) on [−2b − 1,−2b] and f ′(x) = O(1/η̃) and f ′′(x) = O(1/η̃2) on
[E0, E0 + η̃]. By the Helffer-Sjöstrand formula, see [30, Chapter 11.2], we have,
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∣∣∣∣
∫ ∞

−∞
f (x)(dμ̃t (x) − dμt (x))

∣∣∣∣ ≤ C
∫
C+

(| f (x)| + |y|| f ′(x)|)|χ ′(y)||S(x + iy)|dxdy

+ C

∣∣∣∣
∫
C+

yχ(y) f ′′(x) Im[S(x + iy)]dxdy
∣∣∣∣ .

(3.56)

On the event such that (3.3) holds, the first term is easily bounded by

∫
C+

(| f (x)| + |y|| f ′(x)|)|χ ′(y)||S(x + iy)|dxdy ≤ CM

N
. (3.57)

For the second term, recall that f ′′(x) = 0 unless x ∈ [E0, E0 + η̃]∪ [−2b−1,−2b].
By Remark 3.3 we have the estimate

| Im[S(x + iy)]| ≤ CM log(N )

Ny
, y ≥ eK t

N c
=: ηc. (3.58)

Hence,

∣∣∣∣
∫

−2b−1≤x≤−2b
yχ(y) f ′′(x) Im[S(x + iy)]dxdy

∣∣∣∣
≤
∣∣∣∣
∫

−2b−1≤x≤−2b,|y|≥ηc

yχ(y) f ′′(x) Im[S(x + iy)]dxdy
∣∣∣∣

+
∣∣∣∣
∫

−2b−1≤x≤−2b,|y|≤ηc

| f ′′(x)|dxdy
∣∣∣∣

≤ CM log N

N
+ C

N c
≤ CM log N

N
. (3.59)

In the first integral we used the estimate (3.58) and in the second we used |y Im[S(x +
iy)]| ≤ 2. For the region x ∈ [E0, E0 + η̃] we do a similar decomposition. First we
bound the region |y| ≤ η̃. We have,

∣∣∣∣
∫
E0≤x≤E0+η̃

∫
y≤η̃

yχ(y) f ′′(x) Im[S(x + iy)]dxdy
∣∣∣∣

≤
∣∣∣∣
∫
E0≤x≤E0+η̃

∫
y≤ηc

yχ(y) f ′′(x) Im[S(x + iy)]dxdy
∣∣∣∣

+
∣∣∣∣
∫
E0≤x≤E0+η̃

∫
ηc≤y≤η̃

yχ(y) f ′′(x) Im[S(x + iy)]dxdy
∣∣∣∣

≤ Cηc

η̃
+ C log(N )M

N
≤ C log(N )M

N
. (3.60)
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For the first integral we used y| Im[S(x + iy)]| ≤ 2 and in the second region we used
(3.58). For the other region we integrate by parts,∫

E0≤x≤E0+η̃

∫
y≥η̃

yχ(y) f ′′(x) Im[S(x + iy)]dxdy

= −
∫
E0≤x≤E0+η̃

f ′(x)η̃Re[S(x + iη̃)]dx

−
∫
E0≤x≤E0+η̃

∫
y≥η̃

f ′(x)∂y(yχ(y))Re[S(x + iy)]dxdy.

(3.61)

By the definition of η̃, the estimate (3.3) holds in the region x+iy for x ∈ [E0, E0+iη̃]
and y ≥ η̃. Hence, both terms are easily estimated by C log(N )M/N .

The above estimates imply∣∣∣∣
∫ ∞

−∞
f (x)(dμ̃t (x) − dμt (x))

∣∣∣∣ ≤ CM log N

N
. (3.62)

We can now prove the lower bound of (3.4). We have,

|{i : λi (t) ≤ E0}| ≤ N
∫ ∞

−∞
f (x)dμ̃t (x) ≤ N

∫ E0+η̃

−∞
dμt (x) + CM log N .

(3.63)

If η̃ = eK t/N c then the lower bound of (3.4) follows by taking E0 = γi−CM log N (t)−
N−c+1. If η̃ = η(Ẽ) > eK t/N c, then by the defining relation of the function η(E) as
in (3.7), we have η̃ Im[mt (Ẽ + iη̃)] = eK t M log N/N . We calculate

∫ E+η̃

E
dμt (x) ≤

∫ E+η̃

E

2η̃2

(x − Ẽ)2 + η̃2
dμt (x)

≤ 2η̃ Im[mt (Ẽ + iη̃)] = 2eK t M log N

N
. (3.64)

Hence,

|{i : λi (t) ≤ E0}| ≤ N
∫ E0

−∞
dμt (x) + CM log(N ). (3.65)

The lower bound then follows by taking E0 = γi−CM log N (t). The upper bound of
(3.4) is proven similarly. ��

4 Mesoscopic central limit theorem

In this section we prove a mesoscopic central limit theorem for β-DBM (1.1). We
recall the parameters δ and M defined at the beginning of Sect. 3. In this section, we
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fix scale parameters, η∗ and r such that N−1 ≤ η∗ � r ≤ 1. If we assume that the
initial data λ(0) is regular down to the scale η∗, on the interval [E0 − r , E0 + r ], we
can prove that after time t � η∗, the linear statistics satisfy a central limit theorem on
the scale η � t . The precise definition of regularity is the following assumption.

Assumption 4.1 We assume that the initial data satisfies the following two conditions.

1. There exists some finite constant a, such that−a ≤ λ1(0) ≤ λ2(0) · · · ≤ λN (0) ≤
a;

2. There exists some finite constant d, such that

d−1 ≤ Im[m0(z)] ≤ d, (4.1)

uniformly for any z ∈ {E + iη : E ∈ [E0 − r , E0 + r ], η∗ ≤ η ≤ 1}.

Under the above assumption we can prove the following mesoscopic central limit
theorem for the Stieltjes transform.

Theorem 4.2 Suppose V satisfies Assumption 2.1, and moreover that V is C5.
Fix small constant δ > 0, M = (log N )2+2δ , and N−1 ≤ η∗ � r ≤ 1,
and assume that the initial data λ(0) satisfies Assumption 4.1. For any time t
with η∗ � t � (log N )−1r ∧ (log N )−2, the normalized Stieltjes transform
�t (z) := N Im[z] (m̃t (z) − mt (z)) is asymptotically a Gaussian field on {E + iη :
E ∈ [E0 − r/2, E0 + r/2], M2/N � η � t/(M log N )}. We have for any
z1, z2, . . . , zk ∈ {E + iη : E ∈ [E0 − r/2, E0 + r/2], M2/N � η � t/(M log N )},
the joint characteristic function of �t (z1), �t (z2), . . . , �t (zk) is given by

E

⎡
⎣exp

⎧⎨
⎩i

k∑
j=1

a j Re[�t (z j )] + b j Im[�t (z j )]
⎫⎬
⎭
⎤
⎦

= exp

⎧⎨
⎩
∑

1≤ j,�≤k

Re

[
(a j − ib j )(a� + ib�) Im[z j ] Im[z�]

2β(z j − z̄�)2

]⎫⎬
⎭

+ O

(
M2

N min j {Im[z j ]} + M log N max j {Im[z j ]}
t

)
.

(4.2)

Remark 4.3 The above covariance structure is universal, independent of the potential
V . By a slightly more elaborate analysis, we can compute the joint characteristic
function of �t1(z1), �t2(z2), . . . , �tk (zk), where the times η∗ � t1, t2, . . . , tk �
(log N )−1r ∧ (log N )−2 and z j ∈ {E + iη : E ∈ [E0 − r/2, E0 + r/2], M2/N �
η � ti/(M log N )} for j = 1, 2, . . . , k,
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E

⎡
⎣exp

⎧⎨
⎩i

k∑
j=1

a j Re[�t j (z j )] + b j Im[�t j (z j )]
⎫⎬
⎭
⎤
⎦

= exp

⎧⎨
⎩
∑

1≤ j,�≤k

Re

⎡
⎣ (a j − ib j )(a� + ib�) Im[z j ] Im[z�]
2β(zt j∧t� ◦ z−1

t j (z j ) − zt j∧t� ◦ z−1
t� (z�))2

⎤
⎦
⎫⎬
⎭

+ O

(
M2

N min j {Im[z j ]} + M log N max
j

{
Im[z j ]
t j

})
.

(4.3)

By theLittlewood–Paley type decomposition argument developed in [49], the above
theorem implies the following central limit theorem for mesoscopic linear statistics.

Corollary 4.4 Under the assumptions of Theorem 4.2, the following holds for any
compactly supported test functionψ in the Sobolev space Hs with s > 1. Let M2/N �
η � t , E ∈ [E0 − r , E0 + r ], and define

ψη,E (x) = ψ

(
x − E

η

)
. (4.4)

The normalized linear statistics converges to a Gaussian

L(ψη,E ) :=
N∑
i=1

ψη,E (λi (t)) − N
∫
R

ψη,E (x)dμt (x) → N (0, σ 2
ψ), (4.5)

in distribution as N → ∞, where

σ 2
ψ := 1

2βπ2

∫
R2

(
ψ(x) − ψ(y)

x − y

)2

dxdy. (4.6)

4.1 Regularity of the Stieltjes transform of the limit measure-valued process

In this subsection we analyze the differential equation of the Stieltjes transform of the
limit measure-valued process (2.26) under the assumptions of Theorem 4.2. We will
need some regularity results for mt . First we prove some preliminary estimates. The
following two estimates are standard.

Lemma 4.5 Under the assumptions of Theorem 4.2, we have, for any interval I =
[E − η, E + η] with E ∈ [E0 − r , E0 + r ] and η ∈ [4d2η∗, 1], the estimate

|I |N
16d3

≤ |{i : λi (0) ∈ I }| ≤ d|I |N . (4.7)

Proof For the upper bound, by taking z = E + iη, we have

d ≥ Im[m0(E + iη)] ≥ 1

N

∑
i :λi∈I

η

(λi − E)2 + η2
≥ |{i : λi ∈ I }|

2Nη
. (4.8)
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For the lower bound, let η1 = η/(4d2) ≥ η∗, we have

d−1 ≤ Im[m0(E + iη1)] = 1

N

∑
i :λi∈I

η1

(λi − E)2 + η21
+ 1

N

∑
i :λi /∈I

η1

(λi − E)2 + η21

≤|{i : λi ∈ I }|
Nη1

+ η1

η

1

N

N∑
i=1

2η

(λi − E)2 + η2

≤|{i : λi ∈ I }|
Nη1

+ 2η1
η

Im[m0(E + iη)]

≤4d2|{i : λi ∈ I }|
Nη

+ 1

2d
, (4.9)

and the lower bound follows by rearranging. ��

Corollary 4.6 Assume the conditions of Theorem 4.2. Let u = E + iη with E ∈
[E0−r , E0+r ] andη ∈ [η∗, 1]. There exists a constantC > 0 so that if Im[zt (u)] > 0,
then

|mt (zt (u))| ≤ C log N , (4.10)

and

|∂tmt (zt (u))| ≤ C log N . (4.11)

Proof For t = 0, let η1 = 4d2η. By a dyadic decomposition we have

|m0(u)| ≤ 1

N

⎛
⎝ ∑

|λi−E |≤η1

1

η
+

�− log2(η1)�∑
k=1

∑
2kη1≥|λi−E |≥2k−1η1

1

|λi − E | +
∑

|λi−E |≥1/2

1

|λi − E |

⎞
⎠

≤2dη1/η − 4d log2 η1 + 2 ≤ C log N .

(4.12)

By Proposition 2.6 we have that |∂zV ′(z)| ≤ C and |g(z, x)| ≤ C and so

|∂sms(zs(u)| ≤ C(|ms(zs)| + 1), (4.13)

and therefore,

|mt (zt (u))| ≤ eCt (|m0(z0(u))| + 1) = O(log N ). (4.14)

The claim follows. ��

We now derive estimates on quantities appearing in our analysis of mt .
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Lemma 4.7 Assume that Assumption 4.1 holds. Let t � (log N )−1r ∧ (log N )−2,
and u ∈ {E + iη : E ∈ [E0 − r , E0 + r ], η ∈ [η∗, 1]}. If zt (u) ∈ {E + iη : E ∈
[E0 − r/2, E0 + r/2], M2/N � η � t}, then for 0 ≤ s ≤ t , we have that zs ∈ Ds

as defined in (3.2), and moreover,

∫ t

0

ds

Im[zs]p ≤ 2d
∫ t

0

Im[ms(zs)]
Im[zs]p ds ≤

{
C log N , p = 1,

C
Im[zt ]p−1 , p > 1.

(4.15)

Proof Let u be as in the statement of the lemma and denote zs = zs(u). By (4.10), we
have |Re[zs]| ≤ r + Ct log N ≤ 3b − s and Im[zs] ≤ 1 + Ct log N ≤ 3b − s, since
t ≤ (log N )−2. By the assumption d−1 ≤ Im[m0(u)] ≤ d and the estimate (2.29), we
have uniformly for any 0 ≤ s ≤ t ,

(2d)−1 ≤ Im[ms(zs(u))] ≤ 2d, (4.16)

since t � 1. Moreover, by (2.28), we have Im[zs] ≥ c Im[zt ] � M2/N . Therefore,

eKsM log N

N Im[ms(zs)] ∨ eKs

N c
� M2

N
� Im[zs].

It follows that zs(u) ∈ Ds . Since Im[ms(zs)] ≥ (2d)−1, we have

∫ t

0

ds

Im[zs]p ≤ 2d
∫ t

0

Im[ms(zs)]
Im[zs]p ds. (4.17)

The case p = 1 estimate of (4.15) follows from (2.31) by using the estimate
Im[u]/ Im[zt (u)] ≤ CN of (3.8). The case p > 1 follows from (2.31). ��
Lemma 4.8 The following holds under the assumptions of Theorem 4.2. Let u = E+iη
with E ∈ [E0 − r , E0 + r ] and η ∈ [η∗, 1]. There exists a uniform constant c > 0 so
that If Im[zt (u)] > 0, then

1 − t Re[∂zm0(u)] ≥ c. (4.18)

Proof By the upper bound in (2.30), since Im[zt (u)] ≥ 0, we have

η = Im[u] ≥ 1 − e−Ct

C
Im[m0(u)] ≥

(
t − Ct2

2

)
Im[m0(u)]. (4.19)

We write the LHS of (4.18) as

1 − t Re[∂zm0(u)] = 1 − t

η
Im[m0(u)] + t

N

N∑
i=1

2η2

|λi (0) − u|4 . (4.20)

We consider the following two cases:
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1. If η ≥ 2dt , then by (4.20) and assumption (4.1), 1 − t Re[∂zm0(u)] ≥ 1/2.
2. If η < 2dt , let η1 = η ∨ 4d2η∗ ≤ 4d2η. By combining (4.19), (4.20) and (4.7),

we have

1 − t Re[∂zm0(u)] ≥ − Ct2

2η
Im[m0(u)] + t

N

∑
i :|λi (0)−E |≤η1

2η2

(2η21)
2

≥ − Cdt2

2η
+ t

210d9η
= t

210d9η

(
1 − 29Cd10t

)
≥ 1

212d10
,

(4.21)

where we used t � 1.

��
In the following we derive the regularity of the Stieltjes transform of the limiting

measure-valued process (2.26). As a preliminary we study the flow map u → zs(u),
and prove that it is Lipschitz.

Proposition 4.9 Under the assumptions of Theorem 4.2 we have the following. Let
u = E + iη, such that E ∈ [E0 − r , E0 + r ] and η ∈ [η∗, 1]. If Im[zt (u)] > 0, then
for 0 ≤ s ≤ t ,

c ≤ |∂x zs(u)|, |∂yzs(u)| ≤ C, (4.22)

|∂zms(zs(u))| = O
(
t−1
)

. (4.23)

where the constants depend on V ′ and d.

Proof For s = 0, by (4.19) we have

|∂zm0(u)| ≤ 1

N

N∑
i=1

1

|λi (0) − u|2 = Im[m0(u)]
Im[u] = O

(
t−1
)

. (4.24)

By taking derivative with respect to x on both sides of (2.25), we get

∂s∂x zs(u) = −∂zms(zs(u))∂x zs(u) + ∂x V ′(zs(u))

2
, ∂x z0(u) = 1, (4.25)

where ∂x V ′(zs(u)) = ∂zV ′(zs(u))∂x zs(u)+∂z̄ V ′(zs(u))∂x z̄s(u). By taking derivative
with respect to x on both sides of (2.26), we have

∂s (∂zms(zs(u))) ∂x zs(u) + ∂zms(zs(u))∂s∂x zs(u)

= ∂zms(zs(u))∂zV ′(zs(u))∂x zs(u) + ms(zs(u))∂x∂zV ′(zs(u))

2

+
∫
R

∂x g(zs(u), w)dμs(w),

(4.26)
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where ∂x g(zs(u), w) = ∂zg(zs(u), w)∂x zs(u) + ∂z̄ g(zs(u), w)∂x z̄s(u). Note that
∂x z0(u) = ∂x (x + iy) = 1. We define

σ = t ∧ inf
s≥0

{∂x zs(u) = 0}. (4.27)

Then 0 < σ ≤ t � (log N )−2, and for any 0 ≤ s < σ we have |∂x z̄s(u)| = |∂x zs(u)|.
By combining (4.25) and (4.26), and rearranging we have

∂s
[
∂zms(zs(u))

] = (∂zms(zs(u)))2 + 2∂zms(zs(u))bs + cs, (4.28)

where

bs = ∂x V ′(zs(u))

4∂x zs(u)
+ ∂zV ′(zs(u))

4
, cs = ms(zs(u))∂x∂zV ′(zs(u))

2∂x zs(u)

+
∫
R

∂x g(zs(u), w)dμs(w)

∂x zs(u)
.

(4.29)

Under the assumptions of Theorem 4.2 we have ‖V ′(z)‖C2 ≤ C and |∂zg(z, w)| +
|∂z̄ g(z, w)| ≤ C by Proposition 2.6. Combining this with Corollary 4.6 we have
|bs | + |cs | ≤ C for 0 ≤ s ≤ σ .

First we derive an upper bound for the real part of ∂zms(zs(u)). It follows from
taking real part on both sides of (4.28) that

∂s Re[∂zms(zs(u))]
= (Re[∂zms(zs(u)])2 − (Im[∂zms(zs(u))])2 + 2Re[∂zms(zs(u))]Re[bs]

− 2 Im[∂zms(zs(u))] Im[bs] + Re[cs]
≤ (Re[∂zms(zs(u))])2 + 2Re[∂zms(zs(u))]Re[bs] + Im[bs]2 + Re[cs]
= (Re[∂zms(zs(u)) + bs])2 + Re[cs − b2s ].

Therefore, we derive

∂s(Re[∂zms(zs(u))])+ ≤ ((Re[∂zms(zs(u))])+ + C])2 + C log N , (4.30)

with initial data (Re[∂zm0(z0(u))])+ ≤ (1 − c)/t from (4.18). The above ODE is
separable and by solving it explicitly and using the fact that

√
log Nt � 1, we get

Re[∂zms(zs(u))] ≤√C log N tan

(
arctan

(
(1 − c)/t + C√

C log N

)
+√C log Ns

)

�√C log N tan

(
π

2
− (c − Ct)

√
C log Nt

1 − c + Ct

)
� 1 − c

ct
,

(4.31)

uniformly for 0 ≤ s ≤ σ . Therefore, there exists some constant C , so that
Re[∂zms(zs(u))] ≤ C/t , uniformly for any 0 ≤ s ≤ σ .
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Using this we derive from (4.28) that,

∂s |∂zms(zs(u))|2 = 2Re[∂s∂zms(zs(u))∂zm̄s(zs(u))]
= 2Re[∂zms(zs(u))]|∂zms(zs(u))|2 + 4Re[bs]|∂zms(zs(u))|2

+ 2Re[cs∂zm̄s(zs(u))]
≤ C

t
|∂zms(zs(u))|2 + C(t log N )2.

(4.32)

It follows by Gronwall’s inequality that |∂zms(zs(u))| = O(1/t) uniformly for 0 ≤
s ≤ σ . Notice that ∂x z0(u) = 1, and that (4.25) implies

∂x zs(u) = exp

{∫ s

0
−∂zms(zs(u)) + ∂zV ′(zs(u))

2
+ ∂z̄ V ′(zs(u))∂x z̄s

2∂x zs(u)
dτ

}
� 1.

(4.33)

uniformly for 0 ≤ s ≤ σ . Therefore, σ = t and the estimates (4.23) and |∂x zt (u)| � 1
are immediate consequences. The estimate |∂yzt (u)| � 1 follows from the same
argument. ��

Finally, we have the following results for the regularity of mt (w).

Corollary 4.10 Suppose that the assumptions of Theorem 4.2 hold, and let η∗ � t �
(log N )−1r ∧ (log N )−2. We have,

i) For any w ∈ {E + iη : E ∈ [E0 − 3r/4, E0 + 3r/4], 0 < η ≤ 3/4}, we have that
z−1
t (w) ⊂ {E + iη : E ∈ [E0 − r , E0 + r ], η∗ ≤ η ≤ 1}, and ∂zmt (w) = O(1/t).

ii) Fix u ∈ {E + iη : E ∈ [E0 − r , E0 + r ], η ∈ [η∗, 1]}. If zt (u) ∈ {E + iη : E ∈
[E0 − r/2, E0 + r/2], 0 < η � t}, then for 0 ≤ s ≤ t , and any w ∈ C+ such
that |w − zs(u)| ≤ Im[zs(u)]/2, we have |∂zms(w)| = O(1/t).

In both statements, the implicit constants depend on V and d.

Proof We first consider the first statement in i). Uniformly for any u ∈ {E + iη : E ∈
[E0−r , E0+r ], η∗ < η ≤ 1}∩�t (with�t as in Proposition 2.8), we have by (2.30),
(4.10) and (2.25), that there exists a constant C depending on V and d, such that

max {0, Im[u] − 2tC Im[m0(u)]} ≤ Im[zt (u)] ≤ eCt
(
Im[u] − 1 − e−Ct

C
Im[m0(u)]

)
,

Re[u] − Ct log N ≤ Re[zt (u)] ≤ Re[u] + Ct log N .

(4.34)

By Proposition 2.8, zt is surjective from �t onto C+. The first statement in i) follows
from the assumptions t � η∗ and r � t log N . The second statement in i), is then a
consequence of (4.23) and the equality ∂zmt (w) = ∂zmt (zt (z

−1
t (w))).

For ii), since Im[m0(u)] = O(1), it follows from (2.30) that Im[u] = t Im[m0(u)]+
o(t). If s ≤ t/2, thenwe see that by (2.30) that t/C ≤ Im[zs(u)] ≤ Ct for someC > 0.
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Furthermore, by (4.10) and (2.25) we see that Re[u] − Ct log(N ) ≤ Re[zs(u)] ≤
Re[u] + Ct log(N ). We also observe that Im[w] ≥ t/2C . It follows from the same
argument as in i) that {w ∈ C+ : |w − zs(u)| ≤ Im[zs(u)]/2} ⊆ zs({E + iη :
E ∈ [E0 − r , E0 + r ], η ∈ [η∗, 1]} ∩ �s). Therefore, by (2.29), uniformly for {w ∈
C+ : |w − zs(u)| ≤ Im[zs(u)]/2}, Im[ms(w)] = O(Im[m0(z−1

s (w))]) = O(1), and
therefore

|∂zms(w)| ≤ Im[ms(w)]
Im[w] = O

(
1

t

)
. (4.35)

If s ≥ t/2, from i), uniformly for any w ∈ {E + iη : E ∈ [E0 − 3r/4, E0 +
3r/4], 0 < η ≤ 3/4}, ∂zms(w) = O(1/s) = O(1/t). Moreover, we have {w ∈ C+ :
|w− zs(u)| ≤ Im[zs(u)]/2} ⊆ {E + iη : E ∈ [E0−3r/4, E0+3r/4], 0 < η ≤ 3/4}.
The statement follows. ��

4.2 Proof of Theorem 4.2

Using regularity of mt and the local law we infer the following regularity for the
empirical Stieltjes transform m̃t .

Lemma 4.11 Suppose that the assumptions of Theorem 4.2 hold. Let η∗ � t �
(log N )−1r ∧ (log N )−2. Fix u ∈ {E + iη : E ∈ [E0 − r , E0 + r ], η ∈ [η∗, 1]}. If
zt (u) ∈ {E + iη : E ∈ [E0 − r/2, E0 + r/2], 0 < η � t}, then on the event � (as
defined in the proof of Proposition 3.8), we have the following estimate uniformly for
0 ≤ s ≤ t ,

∂
p
z m̃s(zs(u)) = O

(
M

N Im[zs(u)]p+1 + 1

t Im[zs(u)]p−1

)
. (4.36)

Proof The estimate (4.36) is a consequence of the following two statements.

∂
p
z (m̃s(zs(u)) − ms(zs(u))) = O

(
M

N Im[zs(u)]p+1

)
, (4.37)

∂
p
z ms(zs(u)) = O

(
1

t Im[zs(u)]p−1

)
. (4.38)

For (4.37), since both m̃s and ms are analytic on the upper half plane, by Cauchy’s
integral formula

∂
p
z (m̃s(zs(u)) − ms(zs(u))) = p!

2π i

∮
C
m̃s(w) − ms(w)

(w − zs(u))p+1 dw, (4.39)

where C is a small contour in the upper half plane centering at zs(u) with radius
Im[zs(u)]/2. On the event �, we use (3.3) in Theorem 3.1 to bound the integral by
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∣∣∣∣ p!
2π i

∮
C
m̃s(w) − ms(w)

(w − zs(u))p+1 dw

∣∣∣∣ ≤ p!
2π

∮
C

|m̃s(w) − ms(w)|
|w − zs(u)|p+1 dw

= O

(
M

N Im[zs(u)]p+1

)
. (4.40)

For (4.38), Cauchy’s integral formula leads to

∣∣∂ p
z ms(zs(u))ds

∣∣ ≤ (p − 1)!
2π

∮
C

|∂zms(w)|
|w − zs(u)|p dw = O

(
1

t Im[zs(u)]p−1

)
. (4.41)

where we used ii) in Corollary 4.10 which states that |∂zms(w)| = O(1/t). ��
By i) in Corollary 4.10, {E + iη : E ∈ [E0 − r/2, E0 + r/2], M2/N � η � t} ⊆

zt ({E + iη : E ∈ [E0 − r , E0 + r ], η ∈ [η∗, 1]} ∩ �t ). In the following, we fix some
u ∈ {E + iη : E ∈ [E0 − r , E0 + r ], η ∈ [η∗, 1]}, such that zt (u) ∈ {E + iη : E ∈
[E0 − r/2, E0 + r/2], M2/N � η � t}. By Lemma 4.7, zt ∈ Dt , and the local law
of Theorem 3.1 holds.

We integrate both sides of (3.22), and get the following integral expression for
m̃t (zt ),

m̃t (zt ) − mt (zt ) =
∫ t

0
(m̃s(zs) − ms(zs)) ∂z

(
m̃s(zs) + V ′(zs)

2

)
ds

+ 1

π

∫ t

0

∫
C

∂w̄ g̃(zs, w)(m̃s(w) − ms(w))d2wds + 2 − β

βN 2

∫ t

0

N∑
i=1

ds

(λi (s) − zs)3

−
√

2

βN 3

∫ t

0

N∑
i=1

dBi (s)

(λi (s) − zs)2
. (4.42)

For the proof of the mesoscopic central limit theorem, we will show that the first three
terms on the righthand side of (4.42) are negligible, and the Gaussian fluctuation is
from the last term, i.e. the integral with respect to Brownian motion. In the following
Proposition, we calculate the quadratic variance of the Brownian integrals.

Proposition 4.12 Suppose that the assumptions of Theorem 4.1 hold. Fix u, u′ ∈ {E+
iη : E0 − r ≤ E ≤ E0 + r , η∗ ≤ η ≤ 1}. Let zt := zt (u) and z′t := zt (u′). If

zt , z
′
t ∈ {E + iη : E ∈ [E0 − r/2, E0 + r/2], M2/N � η � t}, (4.43)

and Im[zt ] ≥ Im[z′t ], then

1

N 3

∫ t

0

N∑
i=1

ds

(λi (s) − zs)4
= O

(
M

N 3 Im[zt ]3 + 1

N 2t Im[zt ]
)

, (4.44)

1

N 3

∫ t

0

N∑
i=1

ds

(λi (s) − zs)2(λi (s) − z′s)2
= O

(
M

N 3 Im[zt ]2 Im[z′t ]
+ 1

N 2t Im[zt ]
)

,

(4.45)
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1

N 3

∫ t

0

N∑
i=1

ds

(λi (s) − z̄s)2(λi (s) − z′s)2

= − 1

N 2(z̄t − z′t )2
+ O

(
M

N 3 Im[zt ]2 Im[z′t ]
+ 1

N 2t Im[zt ]
)

. (4.46)

Proof Since Im[m0(z0)] = Im[m0(u)] � 1, by (2.30) and (2.29), we have Im[zs] �
Im[zt ] + (t − s) and Im[z′s] � Im[z′t ] + (t − s). Since Im[zt ] ≥ Im[z′t ], there exists a
constant c dependingonV andd, such that uniformly for 0 ≤ s ≤ t , Im[zs] ≥ c Im[z′s].

For (4.44), the lefthand side can bewritten as the derivative of the Stieltjes transform
m̃s at zs , and so

∣∣∣∣ 1

6N 2

∫ t

0
∂3z m̃s(zs)ds

∣∣∣∣ ≤ C

6N 2

∫ t

0

(
M

N Im[zs]4 + 1

t Im[zs]2
)
ds

=O

(
M

N 3 Im[zt ]3 + 1

N 2t Im[zt ]
)

,

(4.47)

where we used Lemma 4.11 and (4.15).
We write the LHS of (4.45), as a contour integral of m̃s :

1

N 3

N∑
i=1

1

(λi (s) − zs)2(λi (s) − z′s)2
= 1

2π iN 2

∮
C

m̃s(w)

(w − zs)2(w − z′s)2
dw,

(4.48)

where if Im[zs]/3 ≥ |zs − z′s |, then C is a contour centered at zs with radius Im[zs]/2.
In this case we have dist(C, {zs, z′s}) ≥ Im[zs]/6. In the case that |zs−z′s | ≥ Im[zs]/3,
we let C = C1 ∪ C2 consist of two contours, where C1 is centered at zs with radius
min{Im[z′s], Im[zs]}/6, and C2 is centered at z′s with radius min{Im[z′s], Im[zs]}/6.
Then in this case we have dist(C1, z′s) ≥ Im[zs]/6 and dist(C2, zs) ≥ Im[zs]/6. In the
first case, thanks to Lemma 4.11 and ii) in Corollary 4.10, for w ∈ C we have

m̃s(w) = m̃s(zs) + (w − zs)∂zm̃s(zs) + (w − zs)
2 O

(
M

N Im[zs]3 + 1

t Im[zs]
)

.

(4.49)

Plugging (4.49) into (4.48), we see that t he first two terms vanish and

|(4.48)| ≤ C

N 2

∫
C

(
M

N Im[zs]5 + 1

t Im[zs]3
)
dw

= O

(
M

N 3 Im[zs]4 + 1

N 2t Im[zs]2
)

, (4.50)
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where we used that |C| � Im[zs]. In the second case, (4.49) holds on C1. Similarly,
for w ∈ C2 we have

m̃s(w) = m̃s(z
′
s) + (w − z′s)∂zm̃s(z

′
s) + (w − z′s)2 O

(
M

N Im[z′s]3
+ 1

t Im[z′s]
)

.

(4.51)

It follows by plugging (4.49) and (4.51) into (4.48), that we can bound (4.48) by

C

N 2

(∫
C1

(
M

N Im[zs]5 + 1

t Im[zs]3
)
dw

+
∫
C2

(
M

N Im[zs]2 Im[z′s]3
+ 1

t Im[zs]2 Im[z′s]
)
dw

)

= O

(
M

N 3 Im[zs]2 Im[z′s]2
+ 1

N 2t Im[zs]2
)

,

(4.52)

where we used Im[zs] ≥ c Im[z′s] and |C1|, |C2| = O(Im[z′s]). The estimate of the
LHS of (4.45) follows by combining (4.50) and (4.52),

|(4.45)| ≤ C

N 2

∫ t

0

M

N 3 Im[zs]2 Im[z′s]2
+ 1

N 2t Im[zs]2 ds

=O

(
M

N 3 Im[zt ]2
∫ t

0

ds

Im[z′s]2
+ 1

N 2t Im[zt ]
)

=O

(
M

N 3 Im[zt ]2 Im[z′t ]
+ 1

N 2t Im[zt ]
)

,

(4.53)

where we used that Im[zs] ≥ c Im[zt ] in the second line, and (4.15) for the last line.
Finally, for (4.46),

1

N

N∑
i=1

1

(λi (s) − z̄s)2(λi (s) − z′s)2
= 2(−m̃s (zs )+m̃s (z′s ))

(z̄s−z′s )3

+ ∂z m̃s (zs )+∂z m̃s (z′s )
(z̄s−z′s )2

. (4.54)

Note that |z̄s − z′s | ≥ Im[zs] + Im[z′s] � Im[zs]. For the second term in (4.54), we
have by (4.36),

∣∣∣∣∣ 1

N 2

∫ t

0

∂zm̃s(zs) + ∂zm̃s(z′s)
(z̄s − z′s)2

∣∣∣∣∣ ≤ C

N 2

∫ t

0

1

Im[zs]2
(

M

N Im[z′s]2
+ 1

t

)
ds

=O

(
M

N 3 Im[zt ]2 Im[z′t ]
+ 1

N 2t Im[zt ]
)

.

(4.55)
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For the first term in (4.54), we recall the definition of the vector flow zs(u) as in (2.25).
Since ‖V ′(z)‖C1 = O(1), we have

−m̃s(zs) + m̃s(z
′
s) = ∂s(z̄s − z′s) + O(|z̄s − z′s |). (4.56)

Therefore,

2

N 2

∫ t

0

(−m̃s(zs) + m̃s(z′s))
(z̄s − z′s)3

ds

= 2

N 2

∫ t

0

∂s(z̄s − z′s)
(z̄s − z′s)3

ds + O

(
1

N 2

∫ t

0

ds

Im[zs]2
)

= − 1

N 2(z̄t − z′t )2
+ 1

N 2(ū − u′)2
+ O

(
1

N 2 Im[zt ]
)

= − 1

N 2(z̄t − z′t )2
+ O

(
1

N 2t2
+ 1

N 2 Im[zt ]
)

,

(4.57)

where we used |ū − u′| ≥ Im[u]+ Im[u′] ≥ ct . This finishes the proof of Proposition
4.12. ��

Proof of Theorem 4.2 Let the event � be as above. Thanks to the estimates Theorem
3.1 and Lemma 4.11 which hold on �, we can bound the first term on the RHS of
(4.42) by

∣∣∣∣
∫ t

0
(m̃s(zs) − ms(zs)) ∂z

(
m̃s(zs) + V ′(zs)

2

)
ds

∣∣∣∣
≤ C

∫ t

0

M

N Im[zs]
(

M

N Im[zs]2 + 1

t

)
ds

= O

(
M2

(N Im[zt ])2 + M log N

Nt

)
,

(4.58)

where we used (4.15).
For the second term on the righthand side of (4.42), by Proposition 3.9 we have on

the event �

∣∣∣∣ 1π
∫ t

0

∫
C

∂w̄ g̃(zs, w)(m̃s(w) − ms(w))d2wdt

∣∣∣∣ ≤ CtM(log N )2

N
. (4.59)

We can rewrite the third term on the righthand side of (4.42) as

2 − β

βN 2

∫ t

0

N∑
i=1

ds

(λi (s) − zs)3
= 2 − β

2βN

∫ t

0
∂2z m̃s(zs)ds. (4.60)
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Thanks to Lemma 4.11, and (4.15) we have

∣∣∣∣
∫ t

0
∂2z m̃s(zs)ds

∣∣∣∣ ≤ C
∫ t

0

(
1

N Im[zs]3 + 1

t Im[zs]
)
ds = O

(
1

N (Im[zt ])2 + log N

t

)
.

(4.61)

It follows that

∣∣∣∣∣2 − β

βN 2

∫ t

0

N∑
i=1

ds

(λi (s) − zs)3

∣∣∣∣∣ = O

(
1

(N Im[zt ])2 + log N

Nt

)
. (4.62)

By combining the above estimates we see that on the event �, we have

m̃t (zt ) − mt (zt ) = O

(
M2

(N Im[zt ])2 + M log N

Nt

)
+
√

2

βN 3

∫ t

0

N∑
i=1

dBi (s)

(λi (s) − zs)2
.

(4.63)

In the following we show that the Brownian integrals are asymptotically jointly
Gaussian. We fix some u j ∈ {E + iη : E0 − r ≤ E ≤ E0 + r , η∗ ≤ η ≤ 1},
j = 1, 2, . . . , k such that

zt (u j ) ∈ {E + iη : E ∈ [E0 − r/2, E0 + r/2], M2/N � η � t}, j = 1, 2, . . . , k.

(4.64)

For 1 ≤ j ≤ k. Let

X j (t)= Im[zt (u j )]
√

2

βN

∫ t

0

N∑
i=1

dBi (s)

(λi (s) − zs(u j ))2
, j =1, 2, . . . , k. (4.65)

We compute their joint characteristic function,

E

⎡
⎣exp

⎧⎨
⎩i

k∑
j=1

a j Re[X j (t)] + b j Im[X j (t)]
⎫⎬
⎭
⎤
⎦ . (4.66)

Since
∑k

j=1 a j Re[X j (t)] + b j Im[X j (t)] is a martingale, the following is also a
martingale

exp

⎧⎨
⎩i

k∑
j=1

a j Re[X j (t)] + b j Im[X j (t)]} + 1

2

〈
k∑
j=1

a j Re[X j (t)] + b j Im[X j (t)]
〉⎫⎬
⎭ .

(4.67)
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In particular, its expectation is one. By Proposition 4.12, on the event � (as defined in
the proof of Proposition 3.8), the quadratic variation is given by

1

2

〈
k∑
j=1

a j Re[X j (t)] + b j Im[X j (t)]
〉

= −
∑

1≤ j,�≤k

Re

[
(a j − ib j )(a� + ib�) Im[zt (u j )] Im[zt (u�)]

2β(zt (u j ) − zt (u�))2

]

+ O

(
M

N min j {zt (u j )} + max j {Im[zt (u j )]}
t

)
.

(4.68)

Therefore,

(4.66) = exp

⎧⎨
⎩
∑

1≤ j,�≤k

Re

[
(a j − ib j )(a� + ib�) Im[zt (u j )] Im[zt (u�)]

2β(zt (u j ) − zt (u�))2

]⎫⎬
⎭

+ O

(
M

N min j {Im[zt (u j )]} + max j {Im[zt (u j )]}
t

)
.

(4.69)

Since by (4.63),

�t (zt (u j )) = X j (t) + O

(
M2

N Im[zt ] + M log N Im[zt (u j )]
t

)
, (4.70)

and so (4.2) follows. This finishes the proof of Theorem 4.2. ��
Proof of Corollary 4.4 The corollary follows fromTheorem4.2 and the rigidity estimate
in Theorem 3.1 by the same argument as in [49].

We can approximate the test function ψη,E (x) by its convolution with a Cauchy
distribution on the scale η, as ε goes to 0,

ψ
(ε)
η,E := ψη,E ∗ 1

π

(εη)

x2 + (εη)2
→ ψη,E , in Hs . (4.71)

We let

L(ψ
(ε)
η,E ) :=

N∑
i=1

ψ
(ε)
η,E (λi (t)) − N

∫
R

ψε
η,E (x)dμt (x). (4.72)

Then thanks to Theorem 4.2, L(ψ
(ε)
η,E ) is asymptotically Gaussian,

E

[
eiξL(ψ

(ε)
η,E )

]
= exp

{
− ξ2

4βπ2 Re
∫
R

∫
R

(
ψ(x) − ψ(y)

x − y + 2iε

)2

dxdy

}
+ o(1).

(4.73)
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We can approximate the characteristic function of L(ψη,E ) by that of L(ψ
(ε)
η,E ),

∣∣∣∣E [eiξL(ψη,E )
]

− E

[
eiξL(ψ

(ε)
η,E )

]∣∣∣∣ ≤ |ξ |E
[(

L(ψη,E ) − L(ψ
(ε)
η,E )

)2]1/2
. (4.74)

By the Littlewood–Paley type decomposition argument developed in [49, Section 3],
the righthand side of (4.74) can be bounded by the variance of the Stieljtes transform.
It follows from the rigidity estimate in Theorem 3.1 by the same argument as in [49,
Proposition 4.1], we have the following bound on the variance of the Stieltjes transform

E

[
|m̃t (z) − mt (z)|2

]
≤ C

N 2η2+δ
, (4.75)

uniformly for any z ∈ {E + iη : E ∈ [E0 − r/2, E0 + r/2], 0 ≤ η ≤ 1, where δ > 0
can be arbitrarily small. Therefore, [49, Theorem 5] implies that

E

[(
L(ψη,E ) − L(ψ

(ε)
η,E )

)2]1/2 ≤ C(η)‖ψη,E − ψ
(ε)
η,E‖Hs , (4.76)

provided that 2 + δ ≤ 2s.
It follows from combining (4.73), (4.74) and (4.76) that

E

[
eiξL(ψη,E )

]
= exp

{
− ξ2

4βπ2

∫
R

∫
R

(
ψ(x) − ψ(y)

x − y

)2

dxdy

}
+ o(1), (4.77)

and the claim (4.5) follows. ��
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A Universality

In this appendix we roughly sketch the following universality theorem.

Theorem A.1 Suppose V satisfies Assumption 2.1. Fix N−1 ≤ η∗ � r ≤ 1, and
assume that the initial data λ(0) satisfies Assumption 4.1. For any time t with η∗ �
t � (log N )−1r ∧ (log N )−2, and index k such that E − r/2 ≤ λk(0) ≤ E + r/2,
there is a constant c > 0 so that the following estimate holds for any smooth test
function O : R → R and N large enough,

∣∣E [O(ρN (λk+1(t) − λk(t)))
]− Eβ

[
O(N (λ�+1 − λ�))

]∣∣ ≤ N−c, (A.1)
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where the second expectation is with respect to the Gaussian β-ensemble, the index �

satisfies εN ≤ � ≤ (1 − ε)N for any ε > 0 and the scaling factor ρ is defined by

ρ := μt (γk(t))

ρsc(γ
sc
� )

(A.2)

where μt is the limiting measure-valued process appearing earlier, γi (t) are its clas-
sical eigenvalue locations, ρsc is the semicircle density and γ sc

i are its classical
eigenvalue locations.

The proof of this theorem is amodification of the proof of universality in [38]. In this
work, the above theorem was proven in the case that β = 1, 2 or 4 and V is quadratic.
These assumptions ensured that the process λi (t) was equal in distribution to the
eigenvalues of a random matrix ensemble evolving according to a matrix Brownian
motion. The matrix structure was used to prove the rigidity estimates (3.4) in this
special case. Therefore the proof given there carries over without change to the case
that β ≥ 1 is general and V is quadratic. In order to prove the above theorem we need
only show how to deal with general V . The case of general V was carried out also in
thework [38], but in the case of equilibrium initial data. This is the casewhen theDBM
with general potential has initial data the equilibrium measure of the β-ensemble with
the potential V . Short-time universality was proved, which then implied universality
for the initial data as it is stationary. The approach to β-ensembles of [38] is somewhat
different than the approach to matrix Brownian motion given in the same work. This
is due to the fact that the matrix Brownian motion is handled using a certain family of
interpolating ensembles for which the rigidity was not known in the case of general
β (the matrix case being handled via matrix estimates). Therefore, the proof of the
above theorem comes down to a modification of the methods in [38]. In the interest
of brevity, we mention the important changes.

k be as above, and fix a time η∗ � s � (log N )−1r ∧ (log N )−2. Thanks to
Theorem 3.1, the eigenvalue rigidity holds at time s. After appropriate re-scalings and
translations of the initial data and the potential, let us assume that

γk(s) = γ sc
k , μt (γk(s)) = ρsc(γ

sc
k ). (A.3)

Note that due to gap universality of theGaussian β-ensemble [29], it suffices to assume
k = �. We use a coupling idea from [12] which was used again in [38]. For t ≥ 0,
denote now

dxi (t) =
√

2

βN
dBi (t) + 1

N

∑
j �=i

1

x j (t) − xi (t)
dt − 1

2
V (xi (t))dt, xi (0) = λi (s)

(A.4)
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and

dyi (t) =
√

2

βN
dBi (t) + 1

N

∑
j �=i

1

y j (t) − yi (t)
dt − yi

2
dt (A.5)

where the initial data yi (0) is an independent Gaussian β-ensemble. Above, the Brow-
nian motion terms are identical. We define the following interpolating processes for
0 ≤ α ≤ 1.

dzi (t, α) =
√

2

βN
dBi (t) + 1

N

∑
j : j �=i

dt

zi (t, α) − z j (t, α)

−1

2
V ′

α(zi (t, α))dt, i = 1, 2, . . . , N , (A.6)

with the potential

Vα = αV + (1 − α)W , (A.7)

and the initial data

zi (0, α) := αxi (0) + (1 − α)yi (0), (A.8)

for i = 1, 2, . . . , N . We can write the difference of the xi (t) and yi (t) as an integral
in terms of the interpolating process zi (t, α),

xi (t) − yi (t) =
∫ 1

0
(∂αzi (t, α))dα. (A.9)

Thanks to the rigidity and the smoothness of the potential V , the contribution of the
potential is to leading order deterministic in the vicinity of xk(t) and contributes only a
drift which is summarized by the movement of the classical eigenvalue location γk(t).
The following “homogenization result” follows from a careful analysis of the differ-
ential equation of ∂αzi (t, α) essentially the same as in [38]. And the Gap universality
Theorem A.1 is a direct consequence.

Lemma A.2 Let time s, index k, xi (t) and yi (t) be as above. There are small constants
c, e > 0, For any time 1/N � t , such that t = (sN )e/N the following estimate holds
with overwhelming probability: for any indices |i − k| ≤ (sN )e

(xi (t) − γk(t)) − (yi (t) − γ sc
k )) = ζ(i)x − ζ(i)y + O

(
1

N 1+c

)
. (A.10)

The functions ζ(i)x and ζ(i)y are mesoscopic linear statistics of the initial data and
satisfy the estimate |ζ(i)x − ζ(i + 1)x | + |ζ(i)y − ζ(i + 1)y | ≤ C/(N 2t) � 1/N ,
which proves gap universality.
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The above lemma is the analogue of Theorem 3.1 of [38] in our setting which is
proven using the modifications described above. The function ζ(i)x is the same as
the one appearing in that theorem, and the required estimate follows from Proposition
3.2 of [38]. We remark that in the setting of the current work, we are unable to prove
universality of the correlation functions at fixed energy and so the above theorem is
stated in terms of the eigenvalue gaps. This is precisely due to the fact that the quantities
ζ appearing in the above lemma are mesoscopic linear statistics that are not compactly
supported. The result proved in the present work does not apply to these statistics and
so we cannot conclude fixed energy universality from the above homogenization result
as in [38].
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law. Ann. Probab. 41(3B), 2279–2375 (2013)
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26. Erdős, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors
for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)
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