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Abstract
In this article, we consider the following family of random trigonometric polynomials
pn(t, Y ) = ∑n

k=1 Y 1
k cos(kt) + Y 2

k sin(kt) for a given sequence of i.i.d. random vari-
ables Y i

k , i ∈ {1, 2}, k ≥ 1, which are centered and standardized. We setN ([0, π ], Y )

the number of real roots over [0, π ] andN ([0, π ], G) the corresponding quantitywhen
the coefficients follow a standard Gaussian distribution. We prove under a Doeblin’s
condition on the distribution of the coefficients that

lim
n→∞

Var (Nn([0, π ], Y ))

n
= lim

n→∞
Var (Nn([0, π ], G))

n
+ 1

30

(

E

((
Y 1
1

)4
)

− 3

)

.

The latter establishes that the behavior of the variance is not universal and depends on
the distribution of the underlying coefficients through their kurtosis. Actually, a more
general result is proven in this article, which does not require that the coefficients are
identically distributed. The proof mixes a recent result regarding Edgeworth expan-
sions for distribution norms established in Bally et al. (Electron J Probab 23(45):1–51,
2018) with the celebrated Kac–Rice formula.
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1 Introduction

The study of level sets of random functions is a central topic in probability theory,
furthermore at the crossroad of several other domains of mathematics and physics. In
this framework, universality results refer to asymptotic properties of these random level
sets, holding regardless of the specific nature of the randomness involved. Establishing
such universal properties for generic zero sets allows one to manage what would be
intricate objects. As such, the literature on this topic is very extended and we refer to
the introduction of [18] and the references therein for a more exhaustive overview.
Among the great variety of models that have been investigated, the most emblematic
one is perhaps the so-called Kac polynomials Pn(x) = ∑n

k=1 ak xk . Assume first
that the coefficients (ak)1≤k≤n are chosen independently and according to the same
centered and standardized distribution (E(a1) = 0, E(a2

1) = 1). Then, set Nn(R) its
number of real roots:

Nn(R) = card {x ∈ R | Pn(x) = 0} .

As a synthesis of the following (non exhaustive) list of landmark articles [8,12,14,
15] the following phenomena hold under mild conditions, universally, that is to say
regardless of the choice of the peculiar distribution of the coefficients:

• Universality of the mean: E (Nn(R)) ∼ 2

π
log(n);

• Universality of the variance: Var (Nn(R)) ∼ 4

π

(

1 − 2

π

)

log(n);

• Universality of the fluctuations around the mean:
Nn(R) − E (Nn(R))√

Var (Nn(R))

Law−−−→
n→∞

N (0, 1).

Above, the notation un ∼ vn means un
vn

→ 1 as n → ∞, and N (0, 1) stands
for the standard normal law. Many other models of random polynomials exist in the
literature for which universal properties have been intensively investigated. For most
of them, both local universality (i.e. joint distribution of roots at microscopic scales)
and universality of the expectation at a global scale have been achieved successfully.
Concerning local universality, we refer to [7,13,18] and for expectation to [9,10,16].
Very often, the extension to the global scale of themicroscopic distribution of the roots
is not an easy task, and one needs first to provide suitable estimates for the so-called
phenomenon of repulsion of zeros. Let us also mention that multivariate models have
been recently studied, for which we refer to [1,6]. To the best of our knowledge, it
must be emphasized that the universality of the variance has only been reached for
Kac polynomials.

Here, we investigate this problem for trigonometric models and show that the vari-
ance behavior is actually not universal by computing exactly the correction with
respect to the case of Gaussian coefficients. This result displays a strong difference
with the well-known Kac polynomials models. We stress that our main result only
requires the independence of the coefficients. More concretely, we shall consider for
different sequences of independent random vectors Yk = (Y 1

k , Y 2
k ), k ∈ N, the number

of real roots over the set [0, π ] of
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Non universality for the variance of the number of real… 889

pn(t, Y ) =
n∑

k=1

Y 1
k cos(kt) + Y 2

k sin(kt).

In order to take benefit from the Central Limit Theorem (hereafter, CLT), we first
make a scale change and rather consider

Pn(t, Y ) = 1√
n

n∑

k=1

Y 1
k cos

(
kt

n

)

+ Y 2
k sin

(
kt

n

)

, t ∈ [0, 2nπ ].

Indeed, it can be established that Pn(·, Y ) converge in distribution towards a sta-
tionary Gaussian process whose correlation function is sin(x)

x . On the other hand, doing
so, the number of roots of pn(·, Y ) over [0, π ] is also the number of roots of Pn(·, Y )

over [0, nπ ] and one loses nothing in this procedure. We also highlight that Pn(·, Y )

is much more manageable thanks to the aforementioned limit theorem.

In order to state more precisely our main theorem, we need some preliminary
notations given in the following subsection.

Main result We consider a sequence of centered, independent random vectors
{Yk}k≥1 ∈ R

2 with the normalization E(Y i
k Y j

k ) = δi, j and which satisfy Doeblin’s
condition (2.1) with the moment conditions (2.2). Next, we consider the following
trigonometric polynomials:

Pn(t, Y ) = 1√
n

n∑

k=1

cos

(
kt

n

)

Y 1
k + sin

(
kt

n

)

Y 2
k

and we denote by Nn(Y ) the number of roots of Pn(t, Y ) in the interval (0, nπ). We
shall focus on the variance of Nn(Y ) given by

Var (Nn(Y )) = E

(
N 2

n (Y )
)

− (E(Nn(Y ))2

It is known thanks to the appearance of [11] that if G = (Gk)k∈N is a sequence of
standard Gaussian i.i.d. two dimensional vectors then the following limit exists

lim
n

1

n
Var (Nn(G)) = C(G) ≈ 0.56

(for the explicit expression of C(G) see page 298 of [11], we stress that the previous
approximation of C(G) concerns the number of zeros over [0, 2π ]). Besides a Central
Limit Theorem is also established regarding the fluctuations of the number of roots
around the mean. We also refer to [2,3] for alternative proofs and some refinements
obtained by following the so-called Nourdin–Peccati method for establishing central
limit theorems for functionals of Gaussian processes. Our aim is to prove a similar
result for the variance of Nn(Y ) and all the more to compute explicitly the constant
C(Y ). At this point, it must be emphasized that outside the scope of functionals of
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890 V. Bally et al.

Gaussian processes, one cannot anymore deploy the powerful combination of Malli-
avin calculus and Wiener chaos theory as explained in the book [17]. In order to
bypass this restriction, as explained below, our approach heavily relies on combina-
tion of Edgeworth expansion and Kac–Rice formulae. Let us also mention that the
universality of the expected number of roots has been recently fully established in [9]
under a second moment condition.

An important aspect of our contribution is that we can formulate explicitly C(Y ).
Our main result is the following (see Theorem 2.1). Suppose that the sequence Yk, k ∈
N satisfies the Doeblin’s condition (the precise definition is given in Sect. 2). Suppose
also that for every α ∈ {1, 2}m , with m = 3, 4, the following limits exist and are finite:

lim
n

E

(
3∏

i=1

Y αi
n

)

= y∞(α) if m = 3 and lim
n

E

(
4∏

i=1

Y αi
n

)

= y∞(α) if m = 4.

Then

lim
n

1

n
Vn(Y ) = C(G) + 1

60
× y∗

with

y∗ = ((y∞(1, 1, 2, 2) − 1) + (y∞(2, 2, 1, 1) − 1)

+(y∞(1, 1, 1, 1) − 3) + (y∞(2, 2, 2, 2) − 3)).

Notice that the random vectors (Yk)k≥1 are not supposed here to be identically
distributed (however, the hypotheses (2.1) and (2.2) from the Doeblin’s condition
display some uniformity because η, r and Mp(Y ) are uniform parameters). For sim-
plicity, suppose for a moment that they are uniformly distributed and moreover that
the components Y 1

k and Y 2
k of Yk = (Y 1

k , Y 2
k ) are also i.i.d. Then y∞(1, 1, 2, 2) =

y∞(2, 2, 1, 1) = 1 and y∞(1, 1, 1, 1) = y∞(2, 2, 2, 2) = E((Y 1
1 )4). In such a case,

the non-universality of the variance becomes more transparent since

lim
n→∞

Var (Nn(Y ))

n
= lim

n→∞
Var (Nn(G))

n
+ 1

30

(

E

((
Y 1
1

)4
)

− 3

)

. (1.1)

In particular, the deviation from the Gaussian behavior is exactly proportional to the
kurtosis of the random variables under consideration.

Strategy of the proof Let us summarize briefly the main steps of our proofs.
Basically, up to some technical details, it illustrates rather well the main ideas of our
approach.

Step 1: An approximated Kac–Rice formula
Let us recall the celebrated and very useful Kac–Rice formula. Consider a smooth

deterministic function f defined on [a, b] such that | f (t)| + | f ′(t)| > 0 for all
t ∈ [a, b]. Then, one has

Card {t ∈]a, b[ | f (t) = 0} = lim
δ→0

1

2δ

∫ b

a
| f ′(t)|1{| f (t)|<δ}dt .
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Non universality for the variance of the number of real… 891

When one applies the latter to the random functions Pn(t, Y ) one needs to handle the
level of non degeneracy which determines the speed of convergence in the Kac–Rice
formula. More concretely, in our proof, we will use that for δn = 1/n5:

lim
n→∞

1

n
Var (Nn(Y )) − lim

n→∞
1

n
Var

(
1

2δn

∫ nπ

0
|P ′

n(t, Y )|1{|Pn(t,Y )|<δn}dt

)

= 0.

We refer to Lemma 4.2 for this step.

Step 2: Removing the diagonal
When computing the variance, expressions of the following kind appear:

1

n

∫ nπ

0

∫ nπ

0
�n(t, s, Y )dsdt, where

�n(t, s, Y ) = |P ′
n(t, Y )| 1

2δn
1{|Pn(t,Y )|<δn}|P ′

n(s, Y )| 1

2δn
1{|Pn(s,Y )|<δn}.

(1.2)

Notice that

P ′
n(t, Y ) = 1√

n

n∑

k=1

k

n
cos

(
kt

n

)

Y 2
k − k

n
sin

(
kt

n

)

Y 1
k ,

so it becomes clear that in order to study the asymptotic behaviour of E(�n(t, s, Y ))

one has to use the central limit theorem (CLT) for the random vector Sn(t, s, Y ) =
(Pn(t, Y ), P ′

n(t, Y ), Pn(s, Y ), P ′
n(s, Y )). A first difficulty in doing this is that

1
2δn

1{|Pn(t,Y )|<δn} → δ0(Pn(t, Y )) so we are out from the framework of continuous and
bounded test functions considered in the classical CLT.We have to use a variant of this
theorem concerning convergence in distribution norms—this result is established in
[5]. A second difficulty concerns the non degeneracy of the vector Sn(t, s, Y ): when
|t − s| ≈ 0, the random vector Sn(t, s, Y ) becomes degenerate and employing the
CLT or its Edgeworth expansions turn out to be hard. In order to avoid that, we give
us a fixed parameter ε > 0 and we prove that

lim
ε→0

lim sup
n→∞

1

n

(
1

4δ2n

∫

[0,nπ ]2,|t−s|<ε

Cov
(|P ′

n(t, Y )|1{|Pn(t,Y )|<δn},

|P ′
n(s, Y )|1{|Pn(s,Y )|<δn}

)
dtds

)

= 0.

The latter enables us to impose the condition |t −s| ≥ ε in all our Kac–Rice estimates.
This is particularly convenient since the underlying processes become uniformly non-
degenerate.

A third difficulty comes for the fact that, roughly speaking,

1

n

∫ nπ

0

∫ nπ

0

∣
∣E(�n(t, s, Y )) − E(�n(t, s, G))

∣
∣dsdt ∼ 1

n
× (πn)2

× ∣
∣E(�n(·, ·, Y )) − E(�n(·, ·, G))

∣
∣
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892 V. Bally et al.

so it is sufficient that

|E(�n(t, s, Y )) − E(�n(t, s, G))| ≤ C

n3/2

and in order to achieve this, it is not sufficient to use the CLT, but we have to use an
Edgeworth expansion of order three.

Step 3: Performing Edgeworth expansions
In this step, we make use of Edgeworth expansion in distribution norm developed

in [5]. We first set

Fn(x1, x2, x3, x4) = 1

4δ2n
× |x1|1{|x2|<δn}|x3|1{|x4|<δn},

and ρn,t,s the density of (Pn(t, G), P ′
n(t, G), Pn(s, G), P ′

n(s, G)). By using the
Edgeworth expansion, we will prove that

E
(
Fn

(
Pn(t, Y ), P ′

n(t, Y ), Pn(s, Y ), P ′
n(s, Y )

))

=
∫

R4
Fn(x)ρn,t,s(x)

(

1 + 1√
n

Qn,t,s(x) + 1

n
Rn,t,s(x)

)

dx1dx2dx3dx4

+Rn(t, s).

where Qn and Rn are totally explicit polynomials of degree less than 6 whose coeffi-
cients involve the moments of the sequence of the random variables {Y 1

k , Y 2
k }k≥1 and

where the remaining term satisfies

lim
ε→0

lim
n→∞

1

n

∫

[0,nπ ]2,|t−s|≥ε

Rn(t, s)dtds = 0.

Doing so, some computations are involved but they are totally transparent in terms
of the moments of the coefficients of our polynomial. This step allows one to handle
explicitly the various cancellations occurring in the variance. This step is the heart of
the proof and is done in Sect. 5.We strongly emphasize that getting a polynomial speed
of convergence in the Kac–Rice formula is crucial in order to manage the remainder
of the Edgeworth expansions.

2 The problem

We consider a sequence of centered, independent random variables Yk ∈ R
2, k ∈ N

withE(Y i
k Y j

k ) = δi, j .We assume that they satisfy the following “Doeblin’s condition”:
there exist some points yk ∈ R

2 and r , η ∈ (0, 1) such that for every k ∈ N and every
measurable set A ⊂ Br (yk)

P(Yk ∈ A) ≥ ηLeb2(A), (2.1)
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Non universality for the variance of the number of real… 893

Lebd denoting the Lebesgue measure inRd . Moreover we assume that Yk, k ∈ N have
finite moments of any order which are uniformly bounded with respect to k :

sup
k

(E(|Yk |p))1/p = Mp(Y ) < ∞. (2.2)

We denote by D(r , η) the sequences of random variables Y = (Yk)k∈N which are
independent and verify (2.1) and (2.2) for every p ≥ 1. Moreover we put

Pn(t, Y ) = 1√
n

n∑

k=1

cos

(
kt

n

)

Y 1
k + sin

(
kt

n

)

Y 2
k (2.3)

and we denote by Nn(Y ) the number of roots of Pn(t, Y ) in the interval (0, nπ) and
by Vn(Y ) the variance of Nn(Y ) :

Vn(Y ) = E

(
N 2

n (Y )
)

− (E(Nn(Y ))2 (2.4)

It is known (see e.g. [11]) that if G = (Gk)k∈N is a sequence of two dimensional
standard random variables then the following limit exists

lim
n

1

n
Vn(G) = C(G).

Our main result is the following.

Theorem 2.1 Suppose that Y ∈ D(η, r) and suppose also that for every α ∈ {1, 2}m,
with m = 3, 4, the following limits exist and are finite:

lim
n

E

(
3∏

i=1

Y αi
n

)

= y∞(α), for m = 3,

lim
n

E

(
4∏

i=1

Y αi
n

)

= y∞(α), for m = 4.

Then

lim
n

1

n
Vn(Y ) = C(G) + 1

60
× y∗

with

y∗ = ((y∞(1, 1, 2, 2) − 1) + (y∞(2, 2, 1, 1) − 1)

+ (y∞(1, 1, 1, 1) − 3) + (y∞(2, 2, 2, 2) − 3)).

Proof The proof is an immediate consequence of Lemma 4.2 point C (see (4.11)) and
of Lemma 5.1 (see (5.2)). 
�
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894 V. Bally et al.

Remark 2.2 Notice that the random variables Yk ∈ R
2, k ∈ N are not supposed to

be identically distributed. However, the hypothesis (2.1) and (2.2) contain some uni-
formity assumptions because ε, r and Mp(Y ) are common for all of them. Suppose
for a moment that they are identically distributed and moreover, that the components
Y 1 = Y 1

k and Y 2 = Y 2
k are independent. Then y∞(1, 1, 2, 2) = y∞(2, 2, 1, 1) = 1

and y∞(1, 1, 1, 1) = E(|Y 1|4) and y∞(2, 2, 2, 2) = E(|Y 2|4), so y∗ is the sum of the
kurtosis of Y 1 and of Y 2. Put it otherwise: take Y = ((Y 1)2, (Y 2)2). Then y∗ = 0 iff
the covariance matrix of Y coincides with the covariance matrix of the corresponding
G.

3 CLT and Edgeworth expansion

The main tool in the this paper is the CLT and the Edgeworth development of order
two that we proved in [5] Proposition 2.5. We recall them here, firstly in the general
case and then in our specific framework.

3.1 The general case

For a positive definite matrix 
 ∈ Md×d and ε > 0, we say that A ≥ ε if 〈Aξ, ξ 〉 ≥
ε|ξ |2 for every ξ ∈ R

d , 〈·, ·〉 denoting the standard scalar product. And for a matrix
C = (ci j )i, j ∈ Md×l we use the norm ‖C‖ = maxi, j |ci, j |.

We consider a sequence of matrices Cn(k) ∈ Md×2, n, k ∈ N which verify


n := 1

n

n∑

k=1

Cn(k)C∗
n (k) ≥ ε∗ and sup

n,k∈N
‖Cn(k)‖ < ∞. (3.1)

We denote
Xn,k = Cn(k)Yk, Gn,k = Cn(k)Gk

where Y = (Yk)k∈N is the sequence introduced in the previous section and G =
(Gk)k∈N is a sequence of independent standard normal random variables in R2. For a
multi-index α = (α1, . . . , αm) ∈ {1, . . . , d}m , we denote |α| = m and

�α(Xn,k) = E(Xα
n,k) − E

(
Gα

n,k

) = E

(
m∏

i=1

Xαi
n,k

)

− E

(
m∏

i=1

Gαi
n,k

)

, (3.2)

cn(α, X) = 1

n

n∑

k=1

�α(Xn,k) (3.3)

By hypothesis, for |α| = 1, 2 we have �α(Xn,k) = 0.
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Non universality for the variance of the number of real… 895

For a function f ∈ Cq
pol(R

d) (Cq functions with polynomial growth), we define
Lq( f ) and lq( f ) to be two numbers such that

∑

|γ |≤q

∣
∣∂γ f (x)

∣
∣ ≤ Lq( f )(1 + |x |)lq ( f ). (3.4)

Moreover we denote

Sn(Y ) = 1√
n

n∑

k=1

Xn,k = 1√
n

n∑

k=1

Cn(k)Yk,

Sn(G) = 1√
n

n∑

k=1

Gn,k = 1√
n

n∑

k=1

Cn(k)Gk . (3.5)

The CLT in [5] (see Theorem 2.3 with N = 0 therein) says that if Y ∈ D(η, r) then,
for every multi-index γ with |γ | ≤ q

E(∂γ f (Sn(Y ))) = E(∂γ f (Sn(G))) + 1

n1/2 R(0)
n ( f ) with (3.6)

|R(0)
n ( f )| ≤ C(L0( f ) + n1/2Lq( f )e−cn) (3.7)

where C ≥ 1 ≥ c > 0 are constants which depend on η, r in (2.1 ), on ε∗ in (3.1) and
on Mp(Y ) for a sufficiently large p.

We go further and we recall the Edgeworth development. We consider the Hermite
polynomials Hα which are characterized by the equality

E(∂α f (W )) = E( f (W )Hα(W )) ∀ f ∈ C∞
pol(R

d) (3.8)

where W ∈ R
d is a standard normal random variable. Let us mention that Hα may be

represented as follows. Let hk be the Hermite polynomial of order k on R, i.e.,

hk(x) = (−1)ke
x2
2

dn

dxn
e− x2

2 .

Now, for the multi-index α and for j ∈ {1, . . . , d}we denote i j (α) = card{i : αi =
j}. Then Hα(x1, . . . , xd) = hi1(α)(x1) × · · · × hid (α)(xd). It is known that hk is even
(respectively odd) if k is even (respectively odd) so Hα itself has the corresponding
properties on each variable (we will use this in the sequel).

We introduce now the following functions which represent the correctors of order
one and two in the Edgeworth development:

�n,1(X , x) = 1

6

∑

|β|=3

cn(β, X)Hβ(x), (3.9)

�n,2(X , x) = �′
n,2(X , x) + �′′

n,2(X , x), (3.10)
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896 V. Bally et al.

with

�′
n,2(X , x) = 1

24

∑

|β|=4

cn(β, X)Hβ(x), (3.11)

�′′
n,2(X , x) = 1

72

∑

|ρ|=3

∑

|β|=3

cn(β, X)cn(ρ, X)H(β,ρ)(x) (3.12)

We set

Qn(X , x) = 1 + 1√
n
�n,1

(



−1/2
n X , x

)
+ 1

n
�n,2

(



−1/2
n X , x

)
, (3.13)

where 

−1/2
n X = (


−1/2
n Xn,k)k∈N .

In Proposition 2.6 from [5] we prove the following. Let n ∈ N. For every f ∈
Cq

pol(R
d) and for every multi-index γ with |γ | ≤ q

E(∂γ f (Sn(Y ))) = E

(
∂γ f

(



1/2
n W

)
Qn(X , W )

)
+ 1

n3/2 R(2)
n ( f ), (3.14)

where W ∈ R
d is a standard normal random variable and the remainder R(2)

n ( f )

verifies ∣
∣
∣R(2)

n ( f )

∣
∣
∣ ≤ C(L0( f ) + n3/2Lq( f )e−cn) (3.15)

where C ≥ 1 ≥ c > 0 are constants which depend on η, r in (2.1), on ε∗ in (3.1) and
on Mp(Y ) for a sufficiently large p.

The drawback of the above formulas (3.6) and (3.14) is that they apply to smooth
functions. In order to bypass this difficulty and to take into account more general
functions (as we need in this paper), we give a new statement in terms of primitives
which we prove by using a regularization argument. Given a function f : Rd → R

and m ∈ N we define by recurrence f (−0) = f and

f (−m)(x) =
∫ x1

0
dξ1

∫ x2

0
dξ2 · · ·

∫ xd−1

0
f (−(m−1))(ξ1, . . . , ξd)dξd . (3.16)

So f (−m) represents a primitive of order d × m of f . We also consider the multi-

index γ (m) such that ∂γ (m)

x = ∂m
x1 . . . ∂m

xd
, so |γ (m)| = d × m. We notice that for every

ϕ ∈ C∞
c (Rd) we have

∫

f (−m)(x)∂γ (m)

ϕ(x)dx = (−1)d×m
∫

f (x)ϕ(x)dx . (3.17)

Then we can state the following more general result.
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Lemma 3.1 Let Y ∈ D(η, r). Let D ⊂ R
d be an open set such that Dc has zero

Lebesgue measure and assume that there exist A, a > 0 such that

P(Sn(Y ) /∈ D) ≤ Ae−an (3.18)

for every n. Let f : Rd → R be a function with polynomial growth which is continuous
on D. Let m ∈ N and f (−m) be as in (3.16). There exist C > 0, c > 0, depending
on A, a, m, η, r in (2.1), ε∗ in (3.1) and on Mp(Y ) for p large enough, such that the
following properties hold.

(i) CLT: for every n,

E( f (Sn(Y ))) = E( f (Sn(G))) + 1

n1/2 R(0)
n,m( f ) with (3.19)

|R(0)
n,m( f )| ≤ C(L0( f (−m)) + n1/2e−cn L0( f )); (3.20)

(ii) Edgeworth expansion up to order 2: for every n,

E( f (Sn(Y ))) = E

(
f
(



1/2
n W

)
Qn(X , W )

)
+ 1

n3/2 R(2)
n,m( f ) with (3.21)

∣
∣
∣R(2)

n,m( f )

∣
∣
∣ ≤ C(L0( f (−m)) + n3/2e−cn L0( f )), (3.22)

Qn(X , x) being defined in (3.13) and W ∈ R
d denoting a standard Gaussian random

variable.

Proof We prove (3.21)–(3.22), the proof of (3.19)–(3.20) being similar.
Let pn(x) denote the density function of 


−1/2
n W . Then, with ϕε some regulariza-

tion kernel in C∞
c (Rd),

E

(
f
(



−1/2
n W

)
Qn(W )

)
=

∫

f (y)Qn

(



1/2
n y

)
pn(y)dy

=
∫

lim
ε→0

f ∗ ϕε(y)Qn

(



1/2
n y

)
pn(y)dy

= lim
ε→0

∫

f ∗ ϕε(y)Qn

(



1/2
n y

)
pn(y)dy.

Here we have used the fact that f is continuous on D and Dc has zero Lebesgue
measure, and also the fact that | f ∗ ϕε(y)Qn(X , 


1/2
n y)| ≤ C L0( f )(1 + |y|)l0( f )+r

(with r the order of the polynomial Qn(X , y)), which is integrable with respect to
pn(y)dy. Now, using (3.17),

f ∗ ϕε(y) = (−1)|γ (m)|∂γ (m)

( f (−m) ∗ ϕε)(y).

It follows that, using (3.12) for smooth functions,

∫

f ∗ ϕε(y)Qn

(



1/2
n y

)
pn(y)dy
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= (−1)|γ (m)|
E

(
∂γ (m)

( f (−m) ∗ ϕε)
(



−1/2
n W

)
Qn(W )

)

= (−1)|γ (m)|
[

E

(
∂γ (m)

( f (−m) ∗ ϕε)(Sn(Y ))
)

+ 1

n3/2 R(2)
n ( f (−m) ∗ ϕε)

]

= E(( f ∗ ϕε)(Sn(Y ))) + 1

n3/2 (−1)|γ (m)| R(2)
n ( f (−m) ∗ ϕε),

with
∣
∣
∣Rn( f (−m) ∗ ϕε)

∣
∣
∣ ≤ L0( f (−m) ∗ ϕε) + n

3
2 e−cn L |γ (m)|( f (−m) ∗ ϕε).

Since, for every ε > 0,

L0( f (−m) ∗ ϕε) ≤ C L0( f (−m)) and Ld×m( f (−m) ∗ ϕε) ≤ L0( f ),

we obtain
∣
∣
∣Rn( f (−m) ∗ ϕε)

∣
∣
∣ ≤ C L0( f (−m)) + n

3
2 e−cn L0( f ).

Moreover, E(( f ∗ ϕε)(Sn(Y ))) = E(( f ∗ ϕε)(Sn(Y ))1Sn(Y )∈D) +E(( f ∗ ϕε)(Sn(Y ))

1Sn(y)/∈D). Now, for every ε > 0,

|E(( f ∗ ϕε)(Sn(Y ))1Sn(y)/∈D)| ≤ C L0( f )e−an .

And since f is continuous in D and with polynomial growth,

lim
ε→0

E(( f ∗ ϕε)(Sn(Y ))1Sn(Y )∈D) = E( f (Sn(Y ))1Sn(Y )∈D)

= E( f (Sn(Y ))) − E( f (Sn(Y ))1Sn(Y )/∈D)

with |E( f (Sn(Y ))1Sn(Y )/∈D)| ≤ C L0( f )e−an . So, we pass to the limit as ε → 0 e we
reach (3.21) with the estimate (3.22) for the reminder. 
�

Let us mention some more facts which will be useful in our framework. We will
work with an even function f (so f (x) = f (−x)) which satisfies the requests in
Lemma 3.1. Since W and −W have the same law, and the Hermite polynomials of
order three are odd we have

E

(
f
(



1/2
n W

)
�n,1

(



−1/2
n X , W

))
= 0,

so this term does no more appear in our development. Moreover consider a diagonal
matrix Id(λ) such that I i

d(λ) = λi and such that λi ≥ ε∗. Then a straightforward com-
putation (using the non degeneracy of 
n and of Id(λ) and some standard integration
by parts techniques) gives

E

(
f
(



1/2
n W

)
�n,2

(



−1/2
n X , W )

))
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= E

(
f
(

I 1/2d (λ)W
)

�n,2

(
I −1/2
d (λ)X , W )

))
+ rn( f )

with
|rn( f )| ≤ C L0( f ) × ‖
n − Id(λ)‖ (3.23)

with C depending on ε∗. Recalling that Sn(G)
Law= 


1/2
n W , we write (3.21) as

E( f (Sn(Y ))) = E( f (Sn(G))) + 1

n
E

(
f
(

I 1/2d (λ)W
)

�n,2

(
I −1/2
d (λ)X , W )

))

+ 1

n
rn( f ) + 1

n3/2 R(2)
n,m( f ),

(3.24)
R(2)

n,m( f ) being given in (3.22). This is the equality that we will use in the sequel.

3.2 The case of trigonometric polynomials

We fix here the objects which will be taken into account and the results from Sect. 3.1
we are going to use.

Let Y = (Yk)k∈N denote the sequence introduced in Sect. 2. For each t ≥ 0 we
consider the matrices Cn(k, t),
n(t) ∈ M2×2, n ∈ N, 1 ≤ k ≤ n defined by

Cn(k, t) =
(

cos( kt
n ) sin( kt

n )

− k
n sin( kt

n ) k
n cos( kt

n )

)

and 
n(t) = 1

n

n∑

k=1

Cn(k, t)C∗
n (k, t).

(3.25)

Note that 
n(t) is non degenerate: for ξ ∈ R
2 one has |Cn(k, t)ξ |2 = ξ21 + k2

n2
ξ22 ≥

k2

n2
|ξ |2 so that

〈
n(t)ξ, ξ 〉 = 1

n

n∑

k=1

k2

n2
|ξ |2 ≥

∫ 1

0
x2dx × |ξ |2 = 1

3
|ξ |2 . (3.26)

We denote
Zn,k(t, Y ) = Cn(k, t)Yk . (3.27)

We are concerned with

Sn(t, Y ) = 1√
n

n∑

k=1

Zn,k(t, Y ) = 1√
n

n∑

k=1

Cn(k, t)Yk . (3.28)

Moreover, with the notation from (2.3), S1
n(t, Y ) = Pn(t, Y ) and S2

n (t, Y ) = P ′
n(t, Y ).

We finally denote

Sn(t, s, Y ) =
(

Sn(t, Y )

Sn(s, Y )

)

, Zn,k(t, s, Y ) =
(

Zn,k(t, Y )

Zn,k(s, Y )

)

. (3.29)
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We notice that, setting

Cn(k, t, s) =
(

Cn(k, t)
Cn(k, s)

)

and 
n(t, s) = 1

n

n∑

k=1

Cn(k, t, s)C∗
n (k, t, s), (3.30)

then Cn(k, t, s),
n(t, s) ∈ M4×4, n ∈ N, 1 ≤ k ≤ n and we have

Zn,k(t, s, Y ) = Cn(k, t, s)Yk, (3.31)

Sn(t, s, Y ) = 1√
n

n∑

k=1

Zn,k(t, s, Y ) = 1√
n

n∑

k=1

Cn(k, t, s)Yk . (3.32)

For δ > 0, we define the following even functions:

Fδ(x) = 1
2δ 1|x |<δ, x ∈ R,

�δ(x) = |x2| Fδ(x1), x = (x1, x2) ∈ R
2

�δ(x) = �δ(x1, x2)�δ(x3, x4), x = (x1, x2, x3, x4) ∈ R
4.

(3.33)

Notice that, taking m = 1 in (3.16), we have

L0

(
F (−1)

δ

)
= L0

(
�

(−1)
δ

)
= L0

(
�

(−1)
δ

)
= 1, for every δ > 0. (3.34)

We are ready to state the results which will be used later on.

Proposition 3.2 Suppose that Y ∈ D(η, r). Let Pn(t, Y ), Sn(t, Y ), Sn(t, s, Y ) be
defined in (2.3), (3.28), (3.29) respectively and let Fδ , �δ , �δ be defined in (3.33).
There exist C, c > 0 such that for every δ > 0 and n ∈ N the following statements
hold.

(i) For the function Fδ , it holds

|E(Fδ(Pn(t, Y ))) − E(Fδ(W ))| ≤ C
( 1√

n
+ 1

δ
e−cn

)
, (3.35)

where W is standard Gaussian in R.
(ii) For the function �δ , it holds

|E(�δ(Sn(t, Y ))) − E(�δ(Sn(t, G)))| ≤ C
( 1√

n
+ 1

δ
e−cn

)
, (3.36)

and for any invertible diagonal matrix I2(λ) ∈ M2×2,

E(�δ(Sn(t, Y ))) = E(�δ(Sn(t, G))) + 1

n
E

(
�δ

(
I 1/22 (λ)W

)

�n,2

(
I −1/2
2 (λ)Z(t, Y ), W )

))
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+1

n
rn(t,�δ) + 1

n3/2 Rn(t,�δ), where

|rn(t,�δ)| ≤ C‖
n(t) − I2(λ)‖ and |Rn(t,�δ)|
≤ C(1 + n3/2 e−cn), (3.37)

W denoting a standard normal vector in R
2 and 
n(t) being defined in (3.25).

(iii) Let t , s be such that det
n(t, s) ≥ λ∗ > 0 and let I4(λ) ∈ M4×4 denote any
invertible diagonal matrix. For the function �δ , it holds

E(�δ(Sn(t, s, Y ))) = E(�δ(Sn(t, s, G))) + 1

n
E

(
�δ

(
I 1/24 (λ)W

)

�n,2

(
I −1/2
4 (λ)Z(t, Y ), W )

))

+1

n
rn(t, s, �δ) + 1

n3/2 Rn(t, s, �δ), where

|rn(t, s, �δ)| ≤ C‖
n(t, s) − I4(λ)‖ and |Rn(t, s, �δ)|
≤ C(1 + n3/2 e−cn), (3.38)

W denoting a standard normal vector in R
4 and 
n(t, s) being defined in (3.30).

We stress that here C depends on λ∗ as well.

Proof We first prove that there exists a > 0 such that for every δ and n,

P(Pn(t, Y ) = ±δ) ≤ e−an .

In fact, theDoeblin’s conditionY ∈ D(η, r) implies the following splitting (seeSection

2.1 in [5]): Yk
Law= χk Vk +(1−χk)Uk,where χk, Vk, Uk are three independent random

variables, χk has a Bernoulli law of parameter pχ ∈ (0, 1) (the same for every k),
Vk, Uk take values in R2 and the law of Vk is absolutely continuous. We denote An =
∩n

k=1{χk = 0} andwe notice that, conditionally to Ac
n, the law of Pn(t, Y ) is absolutely

continuous (because there is at least one Vk acting). So P({Pn(t, Y ) = ±δ}∩ Ac
n) = 0

and then P(Pn(t, Y ) = ±δ) ≤ P(An) = (1 − pχ )n = e−an .

We give the proof of (3.38), the other statements following by using similar argu-
ments.

By (3.32), Sn(t, s, Y ) is of the from Sn(Y ) in (3.5) (just take Cn(k) = Cn,k(t, s)
in (3.30)). For f = �δ , the set in (3.18) is D = R

2\({x1 = ±δ} ∪ {x3 = ±δ}) and
P(Sn(t, s, Y ) /∈ D) = P(Pn(t, Y ) = ±δ) + P(Pn(s, Y ) = ±δ) ≤ 2e−an . So, taking
into account that 
n(t, s) ≥ λ∗ and (3.34), the statement follows by applying (3.24)
with m = 1. We finally notice that the constant C in (3.23) depends on λ∗ as well.

Let us finally recall the “small balls property” from Section 3.2 in [5]. First, we
consider Pn(t, Y ) and we note that hypotheses (3.8) and (3.9) in [5] hold. So, we can
apply A of Theorem 3.2 in [5] (take η = 1/nθ therein): there exist C, c > 0 such that
for every θ > 0 and n,

sup
t≥0

P
( |Pn(t, Y )| ≤ n−θ

) ≤ C
( 1

n2θ + e−cn
)
. (3.39)
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Then, we consider Sn(t, Y ). We have already seen in (3.26) that 〈
n(t)ξ, ξ 〉 ≥ 1
3 |ξ |2,

so again (3.8) and (3.9) in [5] hold, and we are able to apply B of Theorem 3.2 in [5]
(take l = a = 1 and d = 2 therein): there exists C > 0 such that for every θ > 1,
ε > 0 and n,

P

(

inf|t |≤n
|Sn(t, Y )| ≤ n−θ

)

≤ C

nθ−1−ε
. (3.40)

4 Estimates based on Kac–Rice formula

In this section we will use Kac–Rice lemma that we recall now. Let f : [a, b] → R

be a differentiable function and let

ωa,b( f ) = inf
x∈[a,b](| f (x)|+ ∣

∣ f ′(x)
∣
∣) and δa,b( f ) = min{| f (a)| , | f (b)| , ωa,b( f )}.

(4.1)
We denote by Na,b( f ) the number of solutions of f (t) = 0 for t ∈ [a, b]. The
Kac–Rice lemma says that if δa,b( f ) > 0 then

Na,b( f ) = Ia,b(δ, f ) :=
∫ b

a

∣
∣ f ′(t)

∣
∣ 1{| f (t)|≤δ}

dt

2δ
f or 0 < δ ≤ δa,b( f ). (4.2)

Notice that we also have, for every δ > 0

Ia,b(δ, f ) ≤ 1 + Na,b( f ′) (4.3)

Indeed, we may assume that Na,b( f ′) = p < ∞ and then we take a = a0 ≤ a1 <

· · · < ap ≤ ap+1 = b to be the roots of f ′. Since f is monotonic on each (ai , ai+1)

one has Iai ,ai+1(δ, f ) ≤ 1 so (4.3) holds. In the following we will refer this result as
the Kac–Rice lemma.

We will use this formula for f (t) = Pn(t, Y ). We denote

φδ(t, Y ) = ∣
∣P ′

n(t, Y )
∣
∣ × 1

2δ
1{|y|≤δ}(Pn(t, Y )). (4.4)

Then, essentially, the Kac–Rice lemma says that for sufficiently small δn we have

E(Nn(Y )) ∼ E

(∫ nπ

0
φδn (t, Y )dt

)

and

E(N 2
n (Y )) ∼ 2E

(∫ nπ

0
dt

∫ t

0
φδn (t, Y )φδn (s, Y )ds

)

.

We make this precise in Lemma 4.2 below. Note that we will use the above
representations in connection with the CLT—in particular we will use the CLT for
(φδn (t, Y ), φδn (s, Y )) in order to estimate E(φδn (t, Y )φδn (s, Y )). But we will have to
handle the following difficulty: if t = s then the random vector (φδn (t, Y ), φδn (s, Y ))
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is degenerated, so, in order to avoid this difficulty, we have to cancel a band around
the diagonal. The main ingredient in order to do it is the following lemma:

Lemma 4.1 Let I = (a, a + ε) and let Nn(I , Y ) = Na,a+ε(Pn(., Y )) be the number
of zeros of Pn(t, Y ) in I . There exist universal constants C ≥ 1 ≥ c > 0 (independent
of n, a, ε) such that

E

(
N 2

n (I , Y )1{Nn(I ,Y )≥2}
)

≤ C(ε4/3 + ne−cn). (4.5)

Proof Since the polynomial Pn(t, Y ) has at most 2n roots we have

E

(
N 2

n (I , Y )1{Nn(I ,Y )≥2}
)

= P(Nn(Y ) ≥ 2) +
2n∑

p=1

(2p + 1)P(Nn(I , Y ) > p) (4.6)

sowe have to upper boundP(Nn(I , Y ) > p). In order to do it wewill use the following
fact: if f : [a, a + ε] → R is p + 1 times differentiable and has at list p + 1 zeros in
this interval, then

sup
x∈[a,a+ε]

| f (x)| ≤ ε p+1

(p + 1)! sup
x∈[a,a+ε]

| f (p+1)(x)|.

An argument which proves this is the following: Lagrange’s interpolation theorem
says that given any p + 1 points xi , i = 1, . . . , p + 1 in [a, a + ε] one may find a
polynomial P of order p such that P(xi ) = f (xi ) and supx∈[a,a+ε] | f (x) − P(x)| is
upper bounded as in the previous inequality. Then we take xi , i = 1, . . . , p + 1 to be
the zeros of f and, since P is of order p and has p + 1 roots, we have P = 0 and we
are done.

We denote Mn,p = supt∈[a,a+ε] |P(p+1)
n (t, Y )| and we use the above inequality for

f (t) = Pn(t, Y ) in order to obtain

P(Nn(I , Y ) > p) ≤ P

(

|Pn(a, Y )| ≤ M × (2ε)p+1

(p + 1)!
)

+ P(Mn,p ≥ M)

A reasoning based on Sobolev’s inequality and on Burkholder’s inequality (see the
proof of Lemma 3.3 in the section “small balls” of [5]) proves that

P(Mn,p ≥ M) ≤ 1

M2E

(
M2

n,p

)
≤ C

M2

with C a constant which depends on p and on M3(Y ) (defined in (2.2)).

We denote now δ = M × (2ε)p+1

(p+1)! and we estimate

P(|Pn(a, Y )| ≤ δ) = δE(Fδ(Pn(a, Y ))) with Fδ(x) = 1{|x |≤δ}
1

2δ
.
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Wewill use (3.35): there existC, c > 0 such that for every δ and n, we get the existence
of C, c > 0 such that for every δ > 0 and n ∈ N,

|E(Fδ(Pn(t, Y ))) − E(Fδ(W ))| ≤ C
( 1√

n
+ 1

δ
e−cn

)
,

with W a standard normal random variable. Since |E(Fδ(W ))| ≤ 1
2π we get

|E(Fδ(Pn(a, Y ))| ≤ C

(

1 + 1

δ
e−cn

)

.

This gives
P(|Pn(a, Y )| ≤ δ) ≤ Cδ + Ce−cn

and coming back

P(Nn(I , Y ) > p) ≤ C M × (2ε)p+1

(p + 1)! + Ce−cn + C

M2 .

We optimize on M in order to obtain (for p ≥ 1)

P(Nn(I , Y ) > p) ≤ C
ε4/3

(p + 1)!2/3 + Ce−cn .

We insert this in (4.6) and, since
∑∞

p=1 p/(p + 1)!2/3 < ∞, we obtain (4.5). 
�
We fix now ε > 0, we denote

I ε
k = [kε, (k + 1)ε) and Dn,ε = ∪0≤k≤nπ/ε ∪p=0,k−2 I ε

k × I ε
p.

We also denote

Vn(Y ) = E

(
N 2

n (Y )
)

− (E (Nn(Y )))2 and

vn(t, s, Y ) = E(φδn (t, Y )φδn (s, Y )) − E(φδn (t, Y ))E(φδn (s, Y ))
(4.7)

with Nn(Y ) defined in (2.4) and φδn (t, Y ) defined in (4.4).

Lemma 4.2 A. Let δn = n−θ with θ = 5. Then

E(N 2
n (Y )) = E(Nn(Y )) + 2

∫

Dn,ε

E(φδn (t, Y )φδn (s, Y ))dsdt + Rn,ε (4.8)

with

limn
1

n

∣
∣Rn,ε

∣
∣ ≤ Cε1/3. (4.9)
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B. And

(E(Nn(Y )))2 = 2
∫

Dn,ε

E(φδn (t, Y ))E(φδn (s, Y ))dsdt + Rn,ε (4.10)

with Rn,ε which verifies (4.9).
C.

Vn(Y ) = Vn(G) + 2
∫

Dn,ε

(vn(t, s, Y ) − vn(t, s, G))dsdt + Rn,ε (4.11)

with Rn,ε which verifies (4.9).

Proof of A. Step 1. We write

E

(
N 2

n (Y )
)

= J1(n) + 2J2(n) + 2J3(n)

with

J1(n) =
∑

0≤k≤nπ/ε

E

(
N 2

n

(
I ε
k , Y

))
, J2(n) =

∑

0≤k≤nπ/ε

E
(
Nn

(
I ε
k , Y

)
Nn

(
I ε
k+1, Y

))

J3(n) =
∑

0≤k≤nπ/ε

k−2∑

p=0

E

(
Nn

(
I ε
k , Y

)
Nn

(
I ε

p, Y
))

.

Note that

E
(
Nn

(
I ε
k , Y

)
Nn

(
I ε
k+1, Y

)) ≤ E

(
N 2

n

(
I ε
k ∪ I ε

k+1, Y
)
1{Nn

(
I ε
k ∪I ε

k+1,Y
)≥2}

)

Using (4.5)

|J2(n)| ≤ C × n

ε
× (ε4/3 + ne−n)

so we get

lim
n

1

n
|J2(n)| ≤ Cε1/3.

We also have

E

(
N 2

n

(
I ε
k , Y

)) = E

((
N 2

n

(
I ε
k , Y

) − Nn
(
I ε
k , Y

))
1{Nn(I ε

k ,Y)≥2})
)

+ E
(
Nn

(
I ε
k , Y

))

so using (4.5) again

lim
n

1

n
|J1(n) − E(Nn(Y ))| ≤ Cε1/3.

Step 2. We want to estimate

1

n
J3(n) = 1

n
E

⎛

⎝
∑

0≤k≤nπ/ε

k−2∑

p=0

Nn
(
I ε
k , Y

)
Nn

(
I ε

p, Y
)
⎞

⎠ .
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We will use the Kac–Rice lemma for f (t) = Pn(t, Y ) so we have Nn(Y ) =
N0,nπ (Pn(t, Y )). We denote δn(Y ) = δ0,nπ (Pn(., Y ))) (see (4.1)), we take δn =
n−θ = n−5 and we write

E

(
Nn

(
I ε
k , Y

)
Nn

(
I ε

p, Y
))

= An,k,p,ε + Bn,k,p,ε

with

An,k,p,ε = E

(
Nn

(
I ε
k , Y

)
Nn

(
I ε

p, Y
)
1{δn≤δn(Y )}

)

Bn,k,p,ε = E

(
Nn

(
I ε
k , Y

)
Nn

(
I ε

p, Y
)
1{δn>δn(Y )}

)
.

Since Pn(t, Y ) has at most 2n roots we get

Bn,k,p,ε ≤ 4n2
P(δn ≥ δn(Y )).

Weusenow the small balls property.Recall that δn(Y ) = min{|Pn(0, Y )| , |Pn(nπ, Y )| ,
ω0,π (Pn)} with ω0,π (Pn) = inf0≤t≤nπ (|Pn(t, Y )| + ∣

∣P ′
n(t, Y )

∣
∣). By using (3.39) and

(3.40) with θ = 5, we get

P(δn ≥ δn(Y )) ≤ sup
t≥0

P(|Pn(t, Y ) ≤ δn) + P

(

inf|t |≤nπ
|Sn(t, Y ) ≤ δn

)

≤ C

n4−ε
.

(4.12)
So we get

1

n

∑

0≤k≤nπ/ε

k−2∑

p=0

Bn,k,p,ε ≤ C

n1−ε
→ 0.

Moreover using Kac–Rice formula (4.2) (notice that δn(Y ) ≤ δkε,(k+1)ε(Pn(·, Y )) for
every k) we have

An,k,p,ε = E

(
1{δn≤δn(Y )}

∫

I ε
k ×I ε

p

φδn (t, Y )φδn (s, Y )dtds
)

and consequently

∑

0≤k≤nπ/ε

k−2∑

p=0

An,k,p,ε = E

(
1{δn≤δn(Y )}

∫

Dn,ε

φδn (t, Y )φδn (s, Y )dtds
)

= an,ε + bn,ε

with

an,ε = E

( ∫

Dn,ε

φδn (t, Y )φδn (s, Y )dtds
)

bn,ε = E

(
1{δn≥δn(Y )}

∫

Dn,ε

φδn (t, Y )φδn (s, Y )dtds
)
.

123



Non universality for the variance of the number of real… 907

Since Dn,ε ⊂ [0, 2π)2,
∫

Dn,ε

φδn (t, Y )φδn (s, Y )dtds ≤
( ∫ nπ

0
φδn (t, Y )dt

)2

≤ (1 + Nn([0, nπ ], P ′
n(·, Y )))2,

Nn([0, nπ ], P ′
n(·, Y )) denoting the number of roots of P ′

n(·, Y ) in [0, nπ ]. Since P ′
n

is still a trigonometric polynomial of order n, it has at most 2n roots. Then the above
quantity is upper bounded by (1+ 2n)2 and finally, using the small balls result (4.12)

1

n
bn,ε ≤ Cn3

P(δn ≥ δn(Y )) ≤ C

n1−ε
→ 0

so (4.8) is proved. 
�
Proof of B. The proof is analogous (but simpler) so we just sketch it. We denote by
Rn a quantity such that limn

1
n |Rn| = 0. Using again Kac–Rice formula (4.2) and the

small balls property

(E(Nn(Y )))2 =
(
E

( ∫ nπ

0
1{δn≤δn(Y )}φδn (t, Y )dt

))2 + Rn

= 2
∫ nπ

0
dt

∫ t

0
E(1{δn≤δn(Y )}φδn (t, Y ))E(1{δn≤δn(Y )}φδn (s, Y ))ds + Rn

= 2
∫ nπ

0
dt

∫ t

0
E(φδn (t, Y ))E(φδn (s, Y ))ds + R′

n

= 2
∫

Dn,ε

E(φδn (t, Y ))E(φδn (s, Y ))dsdt + Rn,ε + R′
n

with
Rn,ε =

∫

Dc
n,ε

E(φδn (t, Y ))E(φδn (s, Y ))dsdt .

In the notation of Sect. 3.2, we have φδn (t, Y ) = �δn (Sn(t, Y )) and φδn (t, G) =
�δn (Sn(t, G)). So, by using (3.36), we get

∣
∣E(φδn (t, Y )) − E(φδn (t, G))

∣
∣ ≤ C

( 1√
n

+ δ−1
n e−cn

)
.

Recall that Sn(t, G) = (Pn(t, G), P ′
n(t, G)) is a Gaussian random variable of covari-

ancematrix
n(t) and, for sufficiently large n one has 〈
n(t)x, x〉 ≥ 1
3 |x |2 (see (3.25)

and (3.26). It follows that

E(φδn (t, G)) =
∫

R2
|x2| 1

2δn
1{|x1|≤δn}

1

2π
e−〈
n(t)x,x〉dx

≤
∫

R

|x2| 1√
2π

e− 1
6 |x2|2dx2 ×

∫

R

1

2δn
1{|x1|≤δn}

1√
2π

e− 1
6 |x1|2dx1

≤ C .
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908 V. Bally et al.

So E(φδn (t, Y )) ≤ C and consequently, for sufficiently large n

1

n

∣
∣Rn,ε

∣
∣ ≤ C

n

∣
∣Dc

n,ε

∣
∣ ≤ Cε.


�Proof of C We have proved in [5] that

lim
n

1

n
(E(Nn(Y )) − E(Nn(G))) = 0

so (4.11) is an immediate consequence of (4.8) and (4.10). 
�

5 Cancellations

Having inmind (4.11)wewill nowestimate vn(t, s, Y )−vn(t, s, G). A careful analysis
of this term involve a certain number of cancellations.

Here we strongly use the objects and formulas in Sect. 3.2. We recall the functions
�δ and�δ in (3.33), so that�δ(Sn(t, Y )) = φδ(t, Y ) (see (4.4)) and�δ(Sn(t, s, Y )) =
φδ(t, Y )φδ(s, Y ). Then (see (4.7) and recall that δn = 1/n5)

vn(t, s, Y ) = E(�δn (Sn(t, s, Y ))) − E(�δn (Sn(t, Y )))E(�δn (Sn(s, Y ))). (5.1)

Lemma 5.1 Suppose that for every multi-index α with |α| = 3, 4 the following limits
exist and are finite:

lim
n

E

⎛

⎝
|α|∏

i=1

Y αi
n

⎞

⎠ = y∞(α).

Then, for every ε > 0,

lim
n

1

n

∫

Dn,ε

(vn(t, s, Y ) − vn(t, s, G))dsdt = 1

120
× y∗ + rε (5.2)

with |rε| ≤ Cε and

y∗ = (y∞(1, 1, 2, 2) − 1) + (y∞(2, 2, 1, 1) − 1) + (y∞(1, 1, 1, 1) − 3)

+(y∞(2, 2, 2, 2) − 3).

Proof. Step 1 We use here Proposition (3.2). Recall that
n(t) is the covariance matrix
of Sn(t, Y ) and by
n(t, s) the covariance matrix of Sn(t, s, Y ) (see (3.25) and (3.30).
We apply (3.37)We stress that the constants will depend on det
n(t, s)which is larger
than 1

2λ
2(ε) > 0 for (t, s) ∈ Dn,ε (see (C.3)). We will also use the diagonal matrices

I2 = I2(λ) with λ1 = 1, λ2 = 1
3 and I4 = I4(λ) with λ1 = λ3 = 1, λ2 = λ4 = 1

3 . By
(3.37)

123



Non universality for the variance of the number of real… 909

E(�δn (Sn(t, Y ))) = E(�δn (Sn(t, G)))

+1

n
E

(
�δn

(
I 1/22 W

)
�n,2

(
I −1/2
2 Zn(t, Y ), W )

))

+1

n
rn(t,�δn ) + 1

n3/2 Rn(t,�δn )

(5.3)

and a similar expression holds forE(�δn (Sn(s, Y ))). The remainder rn(t,�δn ) verifies

(3.23) with 
n(t)− I2. We also recall that Sn(t, G) has the same law as 

1/2
n (t)W so,

(with rn(t,�δn ) which verifies (3.23)),

E(�δn (Sn(t, G))) = E

(
�δn

(



1/2
n (t)W

))
= E

(
�δn

(
I 1/22 W

))
+ 1

n
rn(t,�δn ).

Moreover, by (3.38),

E(�δn (Sn(t, s, Y ))) = E(�δn (Sn(t, s, G))) + 1

n
E

(
�δn

(
I 1/24 W

)

�n,2

(
I −1/2
4 Zn(t, s, Y ), W

)))

+1

n
rn(t, s, �δn ) + 1

n3/2 Rn(t, s, �δn ). (5.4)

Here rn(t, s, �δn ) verifies (3.23) with 
n(t, s) − I4. And, as above,

E(�δn (Sn(t, s, G))) = E

(
�δn

(



1/2
n (t, s)W

))

= E

(
�δn

(
I 1/24 W

))
+ 1

n
rn(t, s, �δn ).

Our aim now is to estimate vn(t, s, Y ) − vn(t, s, G) (recall that vn(t, s, Y ) is defined
in (5.1)). In order to simplify notation we put

An(t, Y ) = E(�δn (Sn(t, Y ))), An(t, s, Y ) = E(�δn (Sn(t, s, Y ))),

Cn(t) = E(�δn (I 1/22 W )�n,2(I −1/2
2 Zn(t, Y ), W ))),

Cn(t, s) = E(�δn (I 1/24 W )�n,2(I −1/2
4 Zn(t, s, Y ), W ))),

R̂n(t) = 1

n
rn(t,�δn ) + 1

n3/2 Rn(t,�δn ),

R̂n(t, s) = 1

n
rn(t, s, �δn ) + 1

n3/2 Rn(t, s, �δn ).

With this notation (5.3) and (5.4) read

An(t, Y ) = An(t, G) + 1

n
Cn(t) + R̂n(t),

An(t, s, Y ) = An(t, s, G) + 1

n
Cn(t, s) + R̂n(t, s)
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910 V. Bally et al.

and consequently

vn(t, s, Y ) − vn(t, s, G) = 1

n
γn(t, s) + Rn(t, s)

with

Rn(t, s) =
(1

n
Cn(t) + R̂n(t)

)(1

n
Cn(s) + R̂n(s)

)
− R̂n(t)An(s, Y ) − R̂n(s)An(t, Y )

and

γn(t, s) = Cn(t, s) − Cn(t)An(s, Y ) − Cn(s)An(t, Y )

= E(�δn (I 1/24 W )�n,2(I −1/2
4 Zn(t, s, Y ), W )))

−E(�δn (I 1/22 W )) × E(�δn (I 1/22 W )�n,2(I −1/2
2 Zn(s, Y ), W )))

−E(�δn (I 1/22 W )�n,2(I −1/2
2 Zn(t, Y ), W ))) × E(�δn (I 1/22 W )).

Notice that in the above expression of γn(t, s), W stands for a standard normal
random variable which is in dimension 4 in the first expectation and in dimension two
in the following two ones. In order to put everything together we take two independent
two-dimensional standard normal random variables W ′ and W ′′ and we put W =
(W ′, W ′′) ∈ R

4 which is itself a standard normal random variable. Then

�δn

(
I 1/22 W ′) �δn

(
I 1/22 W ′′) = �δn

(
I 1/24 W

)

so we obtain

γn(t, s) = E

(
�δn

(
I 1/24 W

) [
�n,2

(
I−1/2
4 Zn(t, s, Y ), W

)
− �n,2

(
I−1/2
2 Zn(t, Y ), W ′)

−�n,2

(
I−1/2
2 Zn(s, Y ), W ′′)])

.

Werecall the definitions of�′
n,2, �

′′
n,2 given in (3.11) andwewrite γn(t, s) = γ ′

n(t, s)+
γ ′′

n (t, s) with γ ′ which involves �′ and γ ′′ which involves �′′ instead of �. We will
analyze them separately.

Step 2 Estimate of γ ′′. Our aim is to prove that

1

n2

∫

Dn,ε

γ ′′
n (t, s)dsdt =

∫ π

0

∫ π

0
1Dn,ε (nt, ns)γ ′′

n (nt, ns)dsdt → 0. (5.5)

The analysis is based on (3.12). There are two kinds of cancellation which are at work.
First cancellation (mixed multi-indexes) Denote mk(I ) the set of the multi-indexes
α = (α1, . . . , αk) with αi ∈ I . Recall that W = (W ′, W ′′) and notice that if α ∈
m3(1, 2) then Hα(W ) = Hα(W ′). But, if α ∈ m3(3, 4), then one has Hα(W ) =
Hα(W 3, W 4) = Hα((W ′′)1, (W ′′)2). This means that, in the second case, a “change
of variable” is needed: α = (α1, α2, α3) �→ α̂ = (α1−2, α2−2, α3−2): for example
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Non universality for the variance of the number of real… 911

(3, 3, 4) �→ (1, 1, 2) or (4, 4, 3) �→ (2, 2, 1). Having this in mind we go on and
analyze �′′

n,2 defined in (3.12):

�′′
n,2(I −1/2

4 Zn(t, s, Y ), W ))

= 1

72

∑

|ρ|=3

∑

|β|=3

cn(β, I −1/2
4 Zn(t, s, Y ))cn(ρ, I −1/2

4 Zn(t, s, Y ))H(β,ρ)(W ),

�′′
n,2(I −1/2

4 Zn(t, Y ), W ))

= 1

72

∑

|ρ|=3

∑

|β|=3

cn(β, I −1/2
4 Zn(t, Y ))cn(ρ, I −1/2

4 Zn(t, Y ))H(β,ρ)(W ′),

�′′
n,2(I −1/2

4 Zn(s, Y ), W ))

= 1

72

∑

|ρ|=3

∑

|β|=3

cn(β, I −1/2
4 Zn(s, Y ))cn(ρ, I −1/2

4 Zn(s, Y ))H(β,ρ)(W ′′),

where (β, ρ) denotes the concatenation. Notice that the multi-indexes in the first
line belong to m3(1, 2, 3, 4) while the multi-indexes in the second and in the third line
belong tom3(1, 2).We look now to the sums in the first line. If all the elements of (β, ρ)

belong to {1, 2} then H(β,ρ)(W ) = H(β,ρ)(W ′) and cn(β, I −1/2
4 Zn(nt, ns, Y )) =

cn(β, I −1/2
2 Zn(nt, Y )) so the corresponding term cancels. In the same way, if

all the elements of (β, ρ) belong to {3, 4} then H(β,ρ)(W ) = H(β̂,ρ̂)(W ′′) and

cn(β, I −1/2
4 Zn(nt, ns, Y )) = cn(β̂, I −1/2

2 Zn(ns, Y )) and the corresponding term can-
cels as well. We remain with “mixed multi-indexes”, such that (β, ρ) contain at least
one element from each of {1, 2} and of {3, 4}.
Second cancellation (even multi-indexes) For each i = 1, . . . , 4 the function Wi �→
�δn (I 1/24 W ) is even, so, because the symmetry argument

E(�δn (I 1/24 W ))H(ρ,β)(W )) = 0

except the case when all the elements in (ρ, β) appear an even number of times (this
means that i j ((ρ, β)) is even for every j = 1, . . . , 4).

There are three types of multi-indexes which verify both conditions: take i ∈ {1, 2}
and j, p ∈ {3, 4} (or the converse).

Case 1: ρ = (i, j, j), β = (i, p, p) (5.6)

Case 2: ρ = (i, i, j), β = ( j, p, p) (5.7)

Case 3: ρ = (i, j, p), β = (i, j, p) (5.8)

We treat the Case 1 (the other cases are similar). In order to fix the ideas we
take i = 1 and j = 4, so that ρ = (1, 4, 4) (all the other cases are similar). We
compute
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912 V. Bally et al.

E

(
(Cn(k, nt)Yk)

1((Cn(k, ns)Yk)
2)2

)

=
2∑

l1,l2,l3=1

C1,l1
n (k, nt)C2,l2

n (k, ns)C2,l3
n (k, ns)E

(
3∏

i=1

Y li
k

)

Since in the Gaussian case we have E(
∏3

i=1 Gli
k ) = 0, we conclude that

�ρ(Zn,k(nt, ns, Y )) =
2∑

l1,l2,l3=1

C1,l1
n (k, nt)C2,l2

n (k, ns)C2,l3
n (k, ns)E

(
3∏

i=1

Y li
k

)

and then

cn

(
ρ, I −1/2

4 Zn(nt, ns, Y )
)

= c′
n

(
ρ, I −1/2

4 Zn(nt, ns, Y )
)

+c′′
n

(
ρ, I −1/2

4 Zn(nt, ns, Y )
)

with

c′
n

(
ρ, I −1/2

4 Zn(nt, ns, Y )
)

=
2∑

l1,l2,l3=1

y∞(l1, l2, l3)

× 1

n

n∑

k=1

C1,l1
n (k, nt)C2,l2

n (k, ns)C2,l3
n (k, ns)

c′′
n(ρ, I −1/2

4 Zn(nt, ns, Y )) =
2∑

l1,l2,l3=1

1

n

n∑

k=1

C1,l1
n (k, nt)C2,l2

n (k, ns)C2,l3
n (k, ns)

×
(

E

(
3∏

i=1

Y li
k

)

− y∞ (l1, l2, l3)

)

.

Since
∣
∣
∣C

i, j
n (k, u)

∣
∣
∣ ≤ 1 for every i, j ∈ {1, 2} and u > 0, we have

∣
∣
∣c′′

n(ρ, I −1/2
4 Zn(nt, ns, Y ))

∣
∣
∣ ≤

2∑

l1,l2,l3=1

1

n

n∑

k=1

∣
∣
∣
∣
∣
E

(
3∏

i=1

Y li
k

)

− y∞(l1, l2, l3)

∣
∣
∣
∣
∣
→ 0.

And using (A.5) we get c′
n(ρ, I −1/2

4 Zn(nt, ns, Y )) → 0. This is true for t and s such
that t

π
, s

π
, t+s

π
and t−s

π
are irrational. But thismeans that this is true dtds almost surely.

Then, using Lebesgue’s dominated convergence theorem (notice that the coefficients
cn, n ∈ N are uniformly bounded) we get

∫ π

0

∫ π

0
1Dn,ε

(nt, ns)cn

(
ρ, I−1/2

4 Zn(nt, ns, Y )
)

cn

(
β, I−1/2

4 Zn(nt, ns, Y )
)

dtds → 0.
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So we have finished to prove (5.5).

Step 3 We compute now

lim
n

1

n2

∫

Dn,ε

γ ′
n(t, s)dsdt = 1

2
lim

n

1

n2

∫ nπ

0

∫ nπ

0
γ ′

n(t, s)dsdt + O(ε)

= 1

2
lim

n

∫ π

0

∫ π

0
γ ′

n(nt, ns)dsdt + O(ε),

where O(ε) is uniform in n. We recall (3.9). As in the previous discussion we
notice that we have two kind of cancellations: if all the components of α belong
to {1, 2} or to {3, 4} then the corresponding term cancels. And for symmetry rea-
sons one also needs to have each component of α an even number of times. So
the only multi-indexes which have a non null contribution are (up to permutations)
α = (i, i, j, j) with i ∈ {1, 2} and j ∈ {3, 4}. More precisely, for every fixed
(i, j) ∈ {1, 2} × {3, 4} the following multi-indexes bring a non zero contribution:
(i, i, j, j), (i, j, i, j), (i, j, j, i), ( j, j, i, i), ( j, i, j, i), ( j, i, i, j). Besides all the
forthcoming computations are independent of the chosen permutations and we will
simply assume that the multi-index is (i, i, j, j) and multiply the final result by a
factor 6. Indeed, we observe that

γ ′
n(nt, ns) = 1

24

∑

α

E

(
�δn

(
I 1/24 W

)
Hα(W )

)
cn

(
α, I −1/2

4 Zn(nt, ns, Y )
)

with the sum over the multi-indexes of the form (up to permutations) α = (i, i, j, j)
with i ∈ {1, 2} and j ∈ {3, 4}. We fix such a multi index α = (i, i, j, j) and we
denote (with j ′ = j − 2)

p(α) = 3i+ j−4 = 3i+ j ′−2,

U (α) = p(α)y∗
4(1 + 2(i + j − 4))

= p(α)y∗
4(1 + 2(i + j ′ − 2))

.

Our first aim is to prove that, if t
π
, s

π
, t+s

π
, t−s

π
are irrational, then

lim
n

cn

(
α, I −1/2

4 Zn(nt, ns, Y )
)

= U (α). (5.9)

We compute

E((Cn(k, nt)Yk)
i )2(Cn(k, ns)Yk)

j−2)2)

=
2∑

l1,l2,l3,l4=1

Ci,l1
n (k, nt)Ci,l2

n (k, nt)C j−2,l3
n (k, ns)C j−2,l4

n (k, ns)E

(
4∏

i=1

Y li
k

)

.
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Then

�α

(
I −1/2
4 Zn,k(nt, ns, Y )

)
= p(α)

2∑

l1,l2,l3,l4=1

Ci,l1
n (k, nt)Ci,l2

n (k, nt)C j−2,l3
n (k, ns)

×C j−2,l4
n (k, ns)

(

E

(
4∏

i=1

Y li
k

)

− E

(
4∏

i=1

Gli
k

))

and finally

cn(α, I −1/2
4 Zn(nt, ns, Y )) = 1

n

n∑

k=1

�α(I −1/2
4 Zn,k(nt, ns, Y ))

= p(α)

2∑

l1,l2,l3,l4=1

c′
n(α, l1, l2, l3, l4) + c′′

n(α, l1, l2, l3, l4)

with

c′
n(α, l1, l2, l3, l4) =1

n

n∑

k=1

Ci,l1
n (k, nt)Ci,l2

n (k, nt)C j−2,l3
n (k, ns)C j−2,l4

n (k, ns)

×
(

y∞(l1, l2, l3, l4) − E

(
4∏

i=1

Bli

))

c′′
n(α, l1, l2, l3, l4) =1

n

n∑

k=1

Ci,l1
n (k, nt)Ci,l2

n (k, nt)C j−2,l3
n (k, ns)C j−2,l4

n (k, ns)

×
(

E

(
4∏

i=1

Y li
k

)

− y∞(l1, l2, l3, l4)

)

.

Here B = (B1, B2) is a standard Gaussian random variable. Since E(
∏4

i=1 Y li
k ) →

y∞(l1, l2, l3, l4) we get c′′
n(α, l1, l2, l3, l4) → 0. We analyze now c′

n(α, l1, l2, l3, l4).
By (A.4), if l1 �= l2 or if l3 �= l4 this term converges to zero. So we have to consider
only

c′
n(α, l, l, l ′, l ′) = 1

n

n∑

k=1

Ci,l
n (k, nt)2C j−2,l ′

n (k, ns)2(y∞(l, l, l ′, l ′)−E

(
(Bl)2(Bl ′)2

)

Take first l = 1 and l ′ = 2. Then, using (A.3), we have

c′
n(α, 1, 1, 2, 2) = 1

n

n∑

k=1

Ci,l
n (k, nt)2C j−2,l ′

n (k, ns)2(y∞(1, 1, 2, 2) − 1)
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→ 1

4(1 + 2(i + j − 4))
(y∞(1, 1, 2, 2) − 1).

And if l = l ′ = 1 (or if l = l ′ = 2) we have

c′
n(α, 1, 1, 1, 1) = 1

n

n∑

k=1

Ci,l
n (k, nt)2C j−2,l ′

n (k, ns)2(y∞(1, 1, 1, 1) − 3)

→ 1

4(1 + 2(i + j − 4))
(y∞(1, 1, 1, 1) − 3).

So (5.9) is proved and, as an immediate consequence we obtain

lim
n

∫ π

0

∫ π

0
cn

(
α, I −1/2

4 Zn(nt, ns, Y )
)

dsdt = π2U (α). (5.10)

We compute now

lim
n

E

(
�δn

(
I 1/24 W

)
Hα(W )

)
.

Notice that if i ∈ {1, 2} and j ∈ {3, 4} then (recall that h2(x) = x2 − 1 is the Hermite
polynomial of order 2 on R)

H(i,i, j, j)(W ) = h2(W ′
i )h2(W ′′

j−2))

so that

E

(
�δn

(
I 1/24 W

)
Hα(W )

)
= E

(
�δn

(
I 1/22 W ′) h2

(
W ′

i
)) × E

(
�δn

(
I 1/22 W ′′) h2

(
W ′′

j−2

))

→ 1

3
E(|B2| δ0(B1)h2(Bi ))

×E(|B2| δ0(B1)h2(B j−2))

where B = (B1, B2) is standard normal. If i = 1 then

E(|B2| δ0(B1)h2(B1)) = E(|B2|)E(δ0(B1)(B2
1 − 1)) = − 2√

2π
× 1√

2π
= − 1

π

and if i = 2 then

E(|B2| δ0(B1)h2(B2)) = E(|B2| (B2
2 − 1))E(δ0(B1)) = 1

π
.

So, discussing according to the possible values of i, j , we may define

ρi, j = 1

π2 (−1)i+ j
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916 V. Bally et al.

and we finally obtain, for α = (i, i, j, j)

lim
n

E

(
�δn

(
I 1/24 W

)
Hα(W )

)
= 1

3
ρi, j

and

lim
n

1

n2

∫

Dn,ε

γ ′
n(t, s)dsdt = 6 × 1

2
× 1

24

2∑

i, j=1

1

3
ρi, j × π2U ((i, i, j, j)) + O(ε)

= 1

216

2∑

i, j=1

(−3)i+ j

4(1 + 2(i + j − 2))
× y∗ + O(ε)

= 1

120
× y∗ + O(ε).

Step 4 We estimate rn(t, s) and rn(t) (see (3.38) and (3.37) respectively). Since
L0(�δn ) = 1we have |rn(nt, ns)| ≤ ‖
n(nt, ns) − I4‖. Let us compute


i, j
n (nt, ns).

By direct computations on has 

1,1
n (nt, ns) = 


3,3
n (nt, ns) = 1 and 


1,2
n (nt, ns) =



3,4
n (nt, ns) = 0. Moreover


2,2
n (nt, ns) = 1

n

n∑

k=1

E

(
Z2

n,k(nt, Y )
)

= 1

n

n∑

k=1

k2

n2 →
∫ 1

0
x2dx = 1

3
= I 2,24 .

The same is true for 

4,4
n (nt, ns). We look now to 


i, j
n (nt, ns) with i ∈ {1, 2} and

j ∈ {3, 4}. Say for example that i = 1 and j = 4. Then we compute

E(Z1
n,k(nt, Y )Z2

n,k(ns, Y )) = k

n
E

((
cos(kt)Y 1

k + sin(kt)Y 2
k

) (
− sin(ks)Y 1

k + cos(ks)Y 2
k

))

= k

n
(cos(ks) sin(kt) − cos(kt) sin(ks)) = k

n
sin(k(t − s)).

Then, by using the ergodic lemma, if t−s
π

is irrational we get


1,4
n (nt, ns) = 1

n

n∑

k=1

k

n
sin(k(t − s)) → 1

4π

∫ 2π

0
sin(u)du = 0.

The same result is obtained in the other cases. We conclude that limn rn(nt, ns) = 0
dtds almost surely. Since |rn(nt, ns)| ≤ 1, we may use Lebesgue’s convergence
theorem and we obtain

1

n2

∫

Dν,ε

|rn(t, s)| dsdt =
∫

[0,π ]2
1Dn,ε (nt, ns) |rn(nt, ns)| dsdt → 0.

For rn(t) the same conclusion is (trivially) true.
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Step 5. Estimate of Rn(t, s, �δn ). By (3.38) we have

∣
∣Rn(t, s, �δn )

∣
∣ ≤ C(1 + n3/2 × e−cn)

with C a constant which depends on r , η from (2.1) on Mp(Y ) from (2.2) and on
the lower eigenvalue ε∗ defined in (C.2) for the covariance matrix 
n(t, s). We have
proved in (C.3) that this lower eigenvalue is lower bounded uniformly with respect to
n so we conclude that the constant C in the above inequality does not depend on n.
Consequently

sup
n

sup
(t,s)∈Dn,ε

∣
∣Rn(t, s, �δn )

∣
∣ ≤ C < ∞

and then
1

n2

∫

Dn,ε

1√
n

∣
∣Rn(t, s, �δn )

∣
∣ dsdt → 0.

Similar estimates hold for Rn(t,�δn ). SinceW is standard normal, direct computations
show that ∣

∣
∣E(�δn (I 1/22 W )�n,2(I −1/2

2 Zn(t, Y ), W )))

∣
∣
∣ ≤ C

and so

1

n3

∫

Dn,ε

∣
∣
∣E(�δn (I 1/22 W )�n,2(I −1/2

2 Zn(t, Y ), W )))

E(�δn (I 1/22 W )�n,2(I −1/2
2 Zn(s, Y ), W )))

∣
∣
∣ dsdt → 0

So we have proved that
1

n2

∫

Dn,ε

∣
∣Rn(t, s)

∣
∣ dsdt → 0

and the whole proof is completed. 
�

A Ergodic lemma

The following lemmas are based on the ergodic action of irrational rotations on the
Torus.

Lemma A.1 Set α a positive number such that α
π

∈ R/Q, f a 2π–periodic function
and q ≥ 1 a positive integer. One gets

lim
n→∞

1

n

n∑

k=1

f (kα) = 1

2π

∫ 2π

0
f (t)dt, (A.1)

lim
n→∞

1

n

n∑

k=1

kq

nq
f (kα) = 1

(q + 1)2π

∫ 2π

0
f (t)dt (A.2)
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918 V. Bally et al.

Proof We denote by C02π (R) the space of continuous 2π periodic functions. We set

H0 =
{

φ ∈ C02π (R)

∣
∣
∣

∫ 2π

0
φ(t)dt = 0

}

,

and
E =

{
f (x) = φ(x + α) − φ(x)

∣
∣
∣ φ ∈ C02π (R)

}
.

Let us first prove that E is dense inH0. We take T a continuous linear form onH0 and
we extend it to C02π (R) by taking T (φ) = T (φ − m(φ)) with m(φ) = ∫ 2π

0 φ(t)dt .
We have to prove that if T vanishes on E then T = 0 (in virtue of the Hahn-Banach
Theorem, this implies that E is dense inH0). The Riesz Theorem ensures us that there
exists a finite measure μ on R/2πZ such that

∀φ ∈ C02π (R), T (φ) =
∫ 2π

0
φ(x)dμ(x).

Since T f = 0 for every f ∈ E , for any integer n ≥ 1 one has

∫ 2π

0
φ(x + nα)dμ(x) =

∫ 2π

0
φ(x)dμ(x),

and since the sequence nα is dense modulo 2π one deduces that for any y ∈ R\Q:

∫ 2π

0
φ(x + y)dμ(x) =

∫ 2π

0
φ(x)dμ(x).

By the continuity of φ, this is true for each y ∈ R. As a result, μ is invariant under
translations and necessarily it is the Lebesgue measure up to a multiplicative constant.
Hence, we get that T = 0 overH0 and that E is dense for the uniform topology. Finally,
this preliminary consideration enables us to consider that f (x) = φ(x + α) − φ(x)

in the statements (A.1) and (A.2). Then, the conclusion is immediate since an Abel
transforms gives us

∣
∣
∣
1

n

∑

k=1

kq

nq (ϕ((k + 1)α) − ϕ(kα))

∣
∣
∣ ≤ 2‖φ‖∞

1

n

n∑

k=1

(
(k + 1)q − kq

nq

)

−−−→
n→∞ 0.


�
In the following Cn(k, t) is the matrix introduced in (3.25).

Lemma A.2 For every i, j, l, l ′ ∈ {1, 2} and every t, s such that t, s, t + s, t − s are
irrational one has

lim
n

1

n

n∑

k=1

Ci,l
n (k, nt)2C j,l ′

n (k, ns)2 = 1

4(1 + 2(i + j − 2))
(A.3)
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Proof We treat just two examples: take i = 1, j = 2, l = 1, l ′ = 2. Then

Ci,l
n (k, nt)2C j,l ′

n (k, ns)2 =
(

cos kt × k

n
cos ks

)2

= 1

4
× k2

n2 (cos(k(t + s)) + cos(k(t − s)))2

= 1

4
× k2

n2 (cos2(k(t + s)) + cos2(k(t − s)) + 2 cos(k(t + s)) cos(k(t − s)))

= 1

4
× k2

n2 (cos2(k(t + s)) + cos2(k(t − s)) + cos(2kt) − cos(2ks))).

Then, the ergodic lemma (with q = 2) gives

lim
n

1

n

n∑

k=1

Ci,l
n (k, nt)2C j,l ′

n (k, ns)2 = 2 × 1

4
× 1

2π × 3

∫ 2π

0
(cos2(u) + cos(u))du = 1

12
.

Take now i = 2, j = 2, l = 1, l ′ = 2. Then

Ci,l
n (k, nt)2C j,l ′

n (k, ns)2 =
( k

n
sin kt × k

n
cos ks

)2

= 1

4
× k4

n4 (sin(k(t + s)) + sin(k(t − s))2

= 1

4
× k4

n4 (sin2(k(t + s)) + sin2(k(t − s)) + cos(2kt)

+ cos(2ks))

Then, the ergodic lemma (with q = 4) gives

lim
n

1

n

n∑

k=1

Ci,l
n (k, nt)2C j,l ′

n (k, ns)2 = 1

4
× 1

2π × 5
× 2

∫ 2π

0
(sin2(u) + cos(u))du = 1

20
.


�

Lemma A.3 For every j, i, l ∈ {1, 2} and every t, s such that t, s, t + s, t − s are
irrational one has

lim
n

1

n

n∑

k=1

Ci,1
n (k, nt)Ci,2

n (k, nt)C j,l
n (k, ns)2

= lim
n

1

n

n∑

k=1

Ci,1
n (k, nt)Ci,2

n (k, nt)C j,1
n (k, ns)C j,2

n (k, ns) = 0. (A.4)
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Proof All the computations are analogous so we treat just an example: l = i = j = 1.
So we have

C1,1
n (k, nt)C1,2

n (k, nt)C1,1
n (k, ns)2 = cos(kt) sin(kt) cos2(ks)

= 1

2
sin(2kt) cos2(ks)

= 1

4
(sin(k(2t + s)) + sin(k(2t − s))) cos(ks)

= 1

8
(sin(k(2t + 2s)) + 2 sin(2kt) + sin(k(2t − 2s)))

and using the ergodic lemma with q = 0 we get

lim
n

1

n

n∑

k=1

C1,1
n (k, nt)C1,2

n (k, nt)C1,1
n (k, ns)2 = 1

8
× 1

2π
× 4

∫ 2π

0
sin(u)du = 0.


�
Lemma A.4 For every i1, i2, i3, l1, l2, l3 ∈ {1, 2} and every t, s such that t, s, t+s, t−s
are irrational one has

lim
n

1

n

n∑

k=1

Ci1,l1
n (k, nt)Ci2,l2

n (k, nt)Ci3,l3
n (k, ns) = 0. (A.5)

Proof The poof is similar in all cases so we treat just an example: i1 = 1, i2 = 2, i3 =
2, l1 = l2 = l3 = 1. Then we deal with

cos(kt) × k

n
sin(kt) × k

n
sin(ks) = k2

n2 × 1

2
sin(2kt) sin(ks)

= k2

n2 × 1

4
(cos(k(2t + s)) − cos(k(2t − s)))

And using the ergodic lemma with q = 2 we get

lim
n

1

n

n∑

k=1

k2

n2 × 1

4
(cos(k(2t + s)) − cos(k(2t − s)))

= 1

24π

(∫ 2π

0
cos(u)du −

∫ 2π

0
cos(u)du

)

= 0.


�

B Estimates of some trigonometric sums

For n ∈ N, i = 0, 1, 2 and b ∈ R+�{2π p; p ∈ N} we put
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Sb,i (c) = 1

n

n∑

k=1

ki

ni
cos(bk).

We also denote
b = inf

p∈N
|2π p − b|

p ∨ 1
. (B.1)

The aim of this section is to prove the following lemma:

Lemma B.1 There exists a universal constant C ≥ 1 such that for every n ∈ N

i = 0, 1, 2 and ∈ R+�{2π p; p ∈ N}
∣
∣Sb,i (c)

∣
∣ ≤ C

nb
. (B.2)

The first step is the following abstract estimate:

Lemma B.2 A. Let f ∈ L2(0, 1) and let φ(x) = ∑∞
k=0 f (x − k)1[k,k+1)(x). There

exists a universal constant such that for every k < n
∣
∣
∣
∣

∫ n

k
φ(x) cos(bx)

∣
∣
∣
∣ ≤ C

b
‖ f ‖2 . (B.3)

B. Moreover there exists a universal constant C such that, for i = 0, 1, 2

∣
∣
∣
∣

∫ n

0

xi

ni
φ(x) cos(bx)dx

∣
∣
∣
∣ ≤ C

b
‖ f ‖2 (B.4)

and in particular, taking f = 1,

∫ n

0

xi

ni
cos(bx)dx ≤ C

b
(B.5)

The same estimates hold if we replace cos by sin.

Proof of A. We denote α0 = ∫ 1
0 f (x)dx and

αp =
∫ 1

0
f (x) cos(2π px)dx, βp =

∫ 1

0
f (x) sin(2π px)dx .

Then using the development in Fourier series of φ we obtain

∫ n

k
φ(x) cos(bx)dx = α0

∫ n

k
cos(bx)dx +

∞∑

p=1

αp

∫ n

k
cos(2π px) cos(bx)dx

+βp

∫ n

k
sin(2π px) cos(bx)dx .
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922 V. Bally et al.

We write

cos(2π px) cos(bx) = 1

2
(cos((2π p + b)x) + cos((2π p − b)x).

and we use a similar decomposition for sin(2π px) cos(bx).
Notice that for every θ > 0 one has

∣
∣
∣
∣

∫ n

k
cos(θx)dx

∣
∣
∣
∣ ≤ 2π

θ
and

∣
∣
∣
∣

∫ n

k
sin(θx)dx

∣
∣
∣
∣ ≤ 2π

θ
.

Using these inequalities we obtain

∣
∣
∣
∣

∫ n

k
φ(x) cos(bx)

∣
∣
∣
∣ = 2π

b
|α0| +

∞∑

p=1

(
∣
∣αp

∣
∣ + ∣

∣βp
∣
∣
(

2π

2π p + b
+ 2π

|2π p − b|
))

≤ 2π

b
|α0| + 4π

b

∞∑

p=1

(∣
∣αp

∣
∣ + ∣

∣βp
∣
∣
) 1

p

≤ 2π

b
|α0| + C

b

⎛

⎝
∞∑

p=1

(∣
∣αp

∣
∣ + ∣

∣βp
∣
∣
)2

⎞

⎠

1/2

≤ C

b
‖ f ‖2 .

B. We just treat the case i = 1 (the other ones are similar). We write

1

n

∫ n

0
xφ(x) cos(bx)dx = 1

n

∫ n

0
ψ(x) cos(bx)dx + 1

n

n∑

k=1

k
∫ k+1

k
φ(x) cos(bx)dx

with ψ associated to g( x) = x f (x). Using (B.3) (notice that ‖g‖2 ≤ ‖ f ‖2)

1

n

∣
∣
∣
∣

∫ n

0
ψ(x) cos(bx)dx

∣
∣
∣
∣ ≤ C

n
× 1

b
‖ f ‖2 .

Moreover

1

n

n∑

k=1

k
∫ k+1

k
φ(x) cos(bx)dx = 1

n

n∑

k=1

∫ n

k
φ(x) cos(bx)dx

so that, by (B.3) we upper bound the above term by

1

n

n∑

k=1

∣
∣
∣
∣

∫ n

k
φ(x) cos(bx)dx

∣
∣
∣
∣ ≤ C

n
× n × 1

b
‖ f ‖2 = C

b
‖ f ‖2 .

And (B.5) is a particular case of (B.4) with f = 1 (so that φ = 1). 
�
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We recall that

Sb,i (c) = 1

n

n∑

k=1

ki

ni
cos

(
ak

n

)

, with a = nb.

We also denote

φ(x) =
∞∑

k=0

(k + 1 − x)21{k≤x<k+1} and Jb,i (c)

= 1

n1+i

∫ n

0
xiφ(x) cos(bx)dx (B.6)

Ib,i (c) = 1

n1+i

∫ n

0
xi cos(bx)dx =

∫ 1

0
xi cos(ax)dx . (B.7)

We also define Sb,i (s) and Jb,i (s) by replacing the cos by sin.
We will prove the following estimates:

Lemma B.3 Let a = bn with 0 < b. There exists a universal constant C such that, for
i = 0, 1, 2

∣
∣Sb,i (c)

∣
∣ = 1

1 + b2/4

(b3

4
Jb,i (s) + b2

2
Jb,i (c) + Ib,i (c) − b

2
Ib,i (s)

)
+ εn (B.8)

with |εn| ≤ C/n.

Proof Let us prove (B.8) for i = 1 (the proof is analogous for i = 0 and i = 2). We
write

Sb,1(c) = Ib,1(c) −
n∑

k=1

∫ (k+1)/n

k/n

(
x cos(ax) − k

n
cos

(ak

n

))
dx .

Moreover

∫ (k+1)/n

k/n

(
x cos(ax) − k

n
cos

(
ak

n

))
dx = k

n

∫ (k+1)/n

k/n

(
cos(ax) − cos

(ak

n

))
dx + δn,k

with
∣
∣δn,k

∣
∣ ≤ 1/n2 so that

∑n
k=1 δn,k = εn, with |εn| ≤ C/n. We write now (recall

that a = nb)

k

n

∫ (k+1)/n

k/n

(
cos(ax) − cos

(ak

n

))
dx

= −ak

n

∫ (k+1)/n

k/n
dx

∫ x

k/n
dy sin ay

− ak

2n3 sin
ak

n
− ak

n

∫ (k+1)/n

k/n
dx

∫ x

k/n
dy

(
sin ay − sin

ak

n

)
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= − bk

2n2 sin
ak

n
− a2k

n

∫ (k+1)/n

k/n
dx

∫ x

k/n
dy

∫ y

k/n
dz cos az

= − bk

2n2 sin
ak

n
− a2k

2n

∫ (k+1)/n

k/n
(k + 1 − z)2 cos(az)dz

Summing over k this gives (with εn of order 1
n and which changes from a line to

another)

Sb,1(c) = Ib,1(c) + εn + b

2
Sb,1(s) + a2

2

n∑

k=1

k

n

∫ (k+1)/n

k/n
cos(ax)

(k + 1

n
− x

)2

= Ib,1(c) + εn + b

2
Sb,1(s) + a2

2

n∑

k=1

∫ (k+1)/n

k/n
x cos(ax)

(k + 1

n
− x

)2

= Ib,1(c) + εn + b

2
Sb,1(s) + b2

2
× 1

n2

∫ n

0
xφ(x) cos(bx)dx

= Ib,1(c) + εn + b

2
Sb,1(s) + b2

2
Jb,1(c).

The same computations give

Sn,1(s) = Ib,1(s) + εn − b

2
Sn,1(c) + b2

2
Jb,1(s).

We insert this in the previous estimate and we get

Sb,1(c) = εn + I1(c) − b

2
Ib,1(s) − b2

4
Sb,1(c) + b3

4
Jb,1(s) + b2

2
Jb,1(c)

and we are done. 
�
Proof of (B.2). By (B.4) and (B.5)

∣
∣Jb,i (s)

∣
∣ + ∣

∣Jb,i (c)
∣
∣ + ∣

∣Ib,i (s)
∣
∣ + ∣

∣Ib,i (c)
∣
∣ ≤ C

nb

so (B.2) follows. 
�

C Non degeneracy

In this section we discuss the non degeneracy of the matrix 
n(t, s) which is the
covariance matrix of Sn(t, s, Y ). Direct computations show that:


1,1
n (t, s) = 
3,,3

n (t, s) = 1, 
2,2
n (t, s) = 
4,4

n (t, s) = 1

n

n∑

k=1

k2

n2 ,
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1,3
n (t, s) = 
3,1

n (t, s) = 1

n

n∑

k=1

cos
k(t − s)

n


2,4
n (t, s) = 
4,2

n (t, s) = 1

n

n∑

k=1

k2

n2 cos
k(t − s)

n


1,4
n (t, s) = 
4,1

n (t, s) = −
2,3
n (t, s) = −
3,2

n (t, s) = 1

n

n∑

k=1

k

n
cos

k(t − s)

n


1,2
n (t, s) = 
2,1

n (t, s) = 
3,4
n (t, s) = 
4,3

n (t, s) = 0.

We define 
(t, s) just by passing to the limit (for fixed t and s):


1,1(t, s) = 
3,3(t, s) = 1, 
2,2(t, s) = 
4,4(t, s) = 1

3


1,3(t, s) = 
3,1(t, s) = sin τ

τ

∣
∣
∣
τ=t−s

,


2,4(t, s) = 
4,2(t, s) = 2τ cos τ − 2 sin τ + τ 2 sin τ

τ 3

∣
∣
∣
τ=t−s

,


1,4(t, s) = 
4,1(t, s) = −
2,3(t, s) = −
3,2(t, s) = sin τ − τ cos τ

τ 2

∣
∣
∣
τ=t−s

,


1,2(t, s) = 
2,1(t, s) = 
3,4(t, s) = 
4,3(t, s) = 0.

Then it is easy to check that there exists a universal constant C ≥ 1 such that for every
i, j = 1, . . . , 4 and every 0 < s < t

sup
|t−s|≤nρ

∣
∣
∣


i, j
n (t, s) − 
i, j (t, s)

∣
∣
∣ ≤ C(t − s)

n
. (C.1)

Notice however that, if t − s ≈ n the above inequality says nothing. So our strategy
will be the following: we consider a first case, when t − s ≤ √

n and then we use
the non degeneracy of 
(t, s) (which we prove in the following lemma) in order to
obtain the non degeneracy of 
n(t, s). And in the case

√
n ≤ t − s ≤ nπ we use the

estimates from the previous section in order to obtain directly the non degeneracy of

n(t, s).

Lemma C.1 For every ε > 0 there exists λ(ε) > 0 such that for every t and s such
that |t − s| > ε one has

det
(t, s) ≥ λ(ε). (C.2)

Proof We first prove that det
(t, s) > 0 for every t �= s. Let (Xt )t≥0 denote a
centred stationary Gaussian process whose covariance function is r(t, s) = �(t − s),
with �(τ) = sin τ/τ . Recall that X has smooth paths (see e.g. [4], Ch. 1, Sect. 4.3).
It is known (see Ex. 3.5 in [4]) that if the spectral measure of X has at least an
accumulation point (in our case the spectral measure is 1|x |<1dx) then, for t �= s, the
law of ξ = (Xt , X ′

t , Xs, X ′
s) is non degenerated—consequently the covariance matrix

123
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is non degenerated. Straightforward computations give that 
(t, s) is the covariance
matrix of ξ , so det
(t, s) > 0 when t �= s.

Now, if i �= j one has limt−s→∞ 
i, j (t, s) = 0, so that limt−s→∞ det
(t, s) =
1/9.As a consequence, for some M > 0onegets det
i, j (t, s) ≥ 1/18 for |t−s| > M .
If |t − s| ∈ [ε, M] the function (t, s) �→ det
(t, s) is continuous, so it achieves a
strictly positive minimum. The statement now follows. 
�
Corollary C.2 Let b∗ < 2π . For ε > 0 let λ(ε) be given as in Lemma C.1. Then there
exists n(ε) such that for n ≥ n(ε) one has

inf
ε<|t−s|≤b∗n

det
n(t, s) ≥ 1

2
λ(ε). (C.3)

Proof Suppose first that ε < t − s ≤ n1/2. Then

det
n(t, s) ≥ det
(t, s) − |det
n(t, s) − det
(t, s)| ≥ λ(ε) − C

n1/2 ≥ 1

2
λ(ε)

for sufficiently large n.
We consider now the case t − s > n1/2. We will use (B.2) with b = t−s

n in order
to prove that all the terms out of the diagonal are very small, so the determinant will
be close to the product of the terms of the diagonal which is (almost) 1

9 . We look to


4,2
n (t, s) = 1

n

n∑

k=1

k2

n2 cos
k(t − s)

n
= Sb,2(c)

Since t − s ≤ b∗n it follows that b = t−s
n ≤ b∗ < 2π and this guarantees that

b = min{b, 2π − b∗}. Since nb = t − s ≥ √
n, for sufficiently large n we have

bn ≥ √
n and so, by (B.2)

∣
∣
∣
4,2

n (t, s)
∣
∣
∣ ≤ C√

n
→ 0.

The same is true for the other terms out of the diagonal. 
�
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