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Abstract
We study a class of Markov chains that model the evolution of a quantum system
subject to repeated measurements. Each Markov chain in this class is defined by a
measure on the space of matrices, and is then given by a random product of correlated
matrices taken from the support of the defining measure. We give natural conditions
on this support that imply that the Markov chain admits a unique invariant probability
measure. We moreover prove the geometric convergence towards this invariant mea-
sure in the Wasserstein metric. Standard techniques from the theory of products of
random matrices cannot be applied under our assumptions, and new techniques are
developed, such as maximum likelihood-type estimations.

Mathematics Subject Classification 60J05 · 81Q99 (Discrete time Markov chains and
Quantum Theory General)
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1 Introduction

We consider a complex vector space Ck and its projective space P(Ck) equipped with
its Borel σ -algebra B. For a nonzero vector x ∈ C

k , we denote x̂ the corresponding
equivalence class of x in P(Ck). For a linearmap v ∈ Mk(C)wedenote v·x̂ the element
of the projective space represented by v x whenever v x �= 0. We equip Mk(C) with
its Borel σ -algebra and let μ be a measure on Mk(C) with a finite second moment,∫
Mk (C)

‖v‖2 dμ(v) < ∞, that satisfies the stochasticity condition

∫

Mk (C)

v∗v dμ(v) = IdCk (1)

(we discuss this condition below).
In this article we are interested in particular Markov chains (x̂n) on P(Ck), defined

by

x̂n+1 = Vn · x̂n,

whereVn is anMk(C)-valued randomvariablewith aprobability density‖vxn‖2/‖xn‖2
dμ(v). Condition (1) ensures this is a probability density for any xn �= 0. More pre-
cisely, such a Markov chain is associated with the transition kernel given for a set
S ∈ B and x̂ ∈ P(Ck) by

�(x̂, S) =
∫

Mk (C)

1S
(
v · x̂) ‖vx‖2dμ(v), (2)

where x is an arbitrary normalized vector representative of x̂ . Moreover, the event
{vx = 0} always has probability 0, hence the Markov chain is well-defined on P(Ck).
We recall that for any probability measure ν, ν� is the probability measure defined
by

ν�(S) =
∫

P(Ck)
�

(
x̂, S

)
dν(x̂)

for any S ∈ B. A measure ν is called invariant if ν� = ν.
We are interested in the large-time distribution of (x̂n). Note that x̂n can be written

as
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Invariant measure for quantum trajectories 309

x̂n = Vn . . . V1 · x̂0,

so that the study of x̂n can be formulated in terms of random products of matrices.
Markov chains associated to random products of matrices have been studied in a more
general setting where the weight appearing in the transition kernel (2) is proportional
to ‖vx‖s for some s ≥ 0, instead of ‖vx‖2. The classical case of products of inde-
pendent, identically distributed random matrices pioneered by Kesten, Furstenberg
and Guivarc’h corresponds to s = 0. In that case, for i.i.d. invertible random matri-
ces Y1,Y2, . . ., denoting Sn = Yn . . . Y1, one is usually interested in the asymptotic
properties of

log ‖Snx‖,

for any x �= 0. In particular, a law of large numbers, a central limit theorem and a large
deviation principle have been obtained for this quantity, under contractivity and strong
irreducibility assumptions [8,11,16]. Such results are closely linked to the uniqueness
of the invariant measure of the Markov chain

x̂n = Sn · x̂ .

These results were generalized to the case s > 0 in [10]. Our framework corresponds
to the case s = 2; in this case, and with the additional assumption (1), we provide a
new method to study this Markov chain, and use it to derive the above results without
assuming invertibility of the matrices, and with an optimal irreducibility assumption.
We compare our approach with respect to that of [10] at the end of this section.

The method that we employ is motivated by an interpretation of this process as
statistics of a quantum system being repeatedly indirectly measured. Let us expand
on this as we introduce more notation and terminology. The set of states of a quantum
system described by a finite dimensional Hilbert spaceCk is the set of density matrices
Dk := {ρ ∈ Mk(C) | ρ ≥ 0, tr ρ = 1}. This set is convex and the set of its extreme
points is called the set of pure states. This latter set is in one to one correspondence
with the projective space P(Ck) by the bijection P(Ck) � x̂ 	→ πx̂ ∈ Dk with πx̂ the
orthogonal projector on the corresponding ray inCk . The time evolution of the system
conditioned on a measurement outcome is encoded in a matrix v that updates the state
of the system. The support of μ is endowed with the meaning of the possible updates,
and the system is updated according to v with a probability density tr(vρv∗) dμ(v).
Given v, a state ρ is mapped to a state vρv∗/tr(vρv∗). Iterating this procedure defines
a random sequence (ρn) inDk called a quantum trajectory: after n measurements with
resulting matrices v1, . . . , vn the state of the system becomes

ρn = vn . . . v1ρ0v
∗
1 . . . v∗

n

tr
(
vn . . . v1ρ0v

∗
1 . . . v∗

n

) (3)

where (v1, . . . , vn) has probability density tr(vn . . . v1ρ0v
∗
1 . . . v∗

n) dμ
⊗n(v1, . . . , vn).

In other words, the process Eq. (3) describes an evolution of a repeatedly measured
quantum system.
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A key result in the theory of quantum trajectories is the purification theorem
obtained by Kümmerer and Maassen [17] showing that quantum trajectories (ρn)

defined on Dk almost surely approach the set of pure states (which are the extreme
points of Dk) if and only if the following purification condition is satisfied:

(Pur): Any orthogonal projector π such that for any n ∈ N, πv∗
1 . . . v∗

nvn . . . v1π ∝ π

for μ⊗n-almost all (v1, . . . , vn), is of rank one

(we write X ∝ Y for X ,Y two operators if there exists λ ∈ C such that X = λY ).
Under this assumption, the long-time behavior of the Markov chain is essentially

dictated by its form on the set of pure states, i.e. for ρ0 = πx̂0 . It is an immediate
observation that

tr
(
vπx̂0v

∗) = ‖vx0‖2, vπx̂0v
∗

tr
(
vπx̂0v

∗) = πv·x̂0 , (4)

for all v ∈ Mk(C). This way our Markov chain (x̂n) corresponds to the quantum
trajectory (ρn) described above when ρ0 is a pure state πx̂0 .

Although ideas underlying our method are based on the connection of (x̂n) with
this physical problem, we will not explicitly use it in the paper. The notion of quan-
tum trajectory originates in quantum optics [6], and Haroche’s Nobel prize winning
experiment [9] is arguably the most prominent example of a system described by the
above formalism. The reader interested in the involved mathematical structures might
consult for example the review book [13] or the pioneering articles [14,15,17].

We will show that under the condition (Pur), the set of all invariant measures of
the Markov chain (3) can be completely classified, depending on the operator φ on
Dk describing the average evolution:

φ(ρ) =
∫

Mk (C)

vρv∗ dμ(v). (5)

The map φ on Dk is completely positive and trace-preserving.1 Such a map is often
called a quantum channel (see e.g. [22]). It has in particular the property of mapping
states to states. Brouwer’s fixed point theorem shows that there exists an invariant
state, i.e. ρ ∈ Dk such that φ(ρ) = ρ. A necessary and sufficient algebraic condition
for uniqueness of this invariant state is (see e.g. [5,7,22])

(φ-Erg): There exists a unique minimal non trivial subspace E of Ck such that ∀v ∈
suppμ, vE ⊂ E .

If (φ-Erg) holds with E = C
k , then φ is said to be irreducible. We chose the name

(φ-Erg) to avoid confusion with the notion of irreducibility for Markov chains. We
moreover emphasize that we call this assumption (φ-Erg) because it relies only on
φ and not on the different operators v in the support of μ: an equivalent statement
of (φ-Erg) is that there exists a unique minimal nonzero orthogonal projector π such
that φ(π) ≤ λπ for some λ ≥ 0 (see e.g. [20]).

We now state the main result of the paper:

1 Complete positivity is stronger than positivity; namely by definition φ is completely positive iff φ ⊗
IdMn (C) is positive for all n ∈ N.
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Theorem 1.1 Assume that μ satisfies assumptions (Pur) and (φ-Erg). Then, the tran-
sition kernel � has a unique invariant probability measure νinv and there exist
m ∈ {1, . . . , k}, C > 0 and 0 < λ < 1 such that for any probability measure ν

over
(
P(Ck),B)

,

W1

(
1

m

m−1∑

r=0

ν�mn+r , νinv

)

≤ Cλn, (6)

where W1 is the Wasserstein metric of order 1.

The Wasserstein metric is constructed with respect to a natural metric on the com-
plex projective space. This metric is defined, for x̂, ŷ in P(Ck), by

d
(
x̂, ŷ

) =
(
1 − |〈x, y〉|2

) 1
2
, (7)

where x, y are unit length representative vectors of x̂ , ŷ, and 〈 · , · 〉 is the canonical
hermitian inner product on Ck .

Let us now compare our results to those of the article [10] of Guivarc’h and Le Page.
They consider a probability distribution μ with support in GLk(C), without requiring
the normalization condition (1), and study the transition kernel on P(Ck) given, for
S ∈ B, by

�s
(
x̂, S

) ∝
∫

Mk (C)

1S
(
v · x̂) ‖vx‖sdμ(v).

In the case s = 2, Theorem A of [10] implies the conclusions of Theorem 1.1 under
two assumptions:

• strong irreducibility, in the sense that there is no non-trivial finite union of proper
subspaces of Ck left invariant by all v ∈ suppμ,

• contractivity, in the sense that there exists a sequence (an) in Tμ, the smallest
closed sub-semigroup of GLk(C) containing suppμ, such that limn→∞ an/‖an‖
exists and is of rank one.

It is, however, immediate that strong irreducibility ofμ implies (φ-Erg)with E = C
k .

In addition, if we assume suppμ ⊂ GLk(C) and suppμ is strongly irreducible, the
equivalence

(Pur) ⇐⇒ Tμ is contracting

holds (see “Appendix A”). Our results therefore offer a strong refinement of [10]
in the restricted framework of s = 2 with

∫
v∗v dμ(v) = IdCk . This assumption,

although mathematically restrictive, is automatically verified in the framework of
repeated (indirect) quantum measurements as described earlier in this section.

The article is structured as follows. Section 2 is devoted to the first part of The-
orem 1.1, that is the uniqueness of the invariant measure. In Sect. 3 we show the
geometric convergence towards the invariantmeasurewith respect to the 1-Wasserstein
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metric. In Sect. 4 we discuss the Lyapunov exponents of the process and relate them
to the convergence between the Markov chain and an estimate of the chain used in our
proofs.

Notation For x ∈ C
k \ {0}, x̂ is its equivalence class in P(Ck) and, for x̂ in P(Ck), x

is an arbitrary norm one vector representative of x̂ . If e.g. Pν (resp. Pρ) is a probability
measure (depending on some a priori object ν (resp. ρ)) then Eν (resp. Eρ) is the
expectation with respect to Pν (resp. Pρ). N represents the set of positive integers
{1, 2, . . .}.

2 Uniqueness of the invariant measure

This section concerns essentially the first part of Theorem 1.1. More precisely, under
(φ-Erg) and (Pur)we show that theMarkov chain has a unique invariantmeasure.Note
that an invariantmeasure always exists since P(Ck) is compact.We start by introducing
a probability space describing both the state x̂ ∈ P(Ck) and the sequence of matrices
(v1, v2, . . .) such that (vn . . . v1 · x̂) has the same distribution as theMarkov chain (x̂n).
Then, in Proposition 2.1, we show that the marginal on thematrix sequence is the same
for any �-invariant probability measure as long as (φ-Erg) holds. In Proposition 2.2
and Lemma 2.3 we show that (x̂n) is asymptotically a function of (v1, v2, . . .). We
conclude on the uniqueness of the invariant measure in Corollary 2.4.

We now proceed to introduce some additional notation. We consider the space
of infinite sequences 	 := Mk(C)N, write ω = (v1, v2, . . . ) for any such infi-
nite sequence, and denote by πn the canonical projection on the first n components,
πn(ω) = (v1, . . . , vn). Let M be the Borel σ -algebra on Mk(C). For n ∈ N, let On

be the σ -algebra on 	 generated by the n-cylinder sets, i.e. On = π−1
n (M⊗n). We

equip the space 	 with the smallest σ -algebra O containing On for all n ∈ N. We let
B be the Borel σ -algebra on P(Ck), and denote

Jn = B ⊗ On, J = B ⊗ O.

This makes
(
P(Ck) × 	,J )

a measurable space. With a small abuse of notation
we denote the sub-σ -algebra {∅,P(Ck)} × O by O, and equivalently identify any O-
measurable function f with theJ -measurable function f satisfying f (x̂, ω) = f (ω).

For i ∈ N, we consider the random variables Vi : 	 → Mk(C),

Vi (ω) = vi for ω = (v1, v2, . . .), (8)

and we introduce On-mesurable random variables (Wn) defined for all n ∈ N as

Wn = Vn . . . V1.

With a small abuse of notation we identify cylinder sets and their bases, and extend
this identification to several associated objects. In particular we identify On ∈ M⊗n

with π−1
n (On), a function f onM⊗n with f ◦πn and a measureμ⊗n with the measure
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μ⊗n ◦ πn . Since μ is not necessarily finite, we can not extend (μ⊗n) into a measure
on 	.

Let ν be a probability measure over (P(Ck),B). We extend it to a probability
measure Pν over (P(Ck) × 	,J ) by letting, for any S ∈ B and any cylinder set
On ∈ On ,

Pν(S × On) :=
∫

S×On

‖Wn(ω)x‖2dν(x̂)dμ⊗n(ω). (9)

From relation (1), it is easy to check that the expression (9) defines a consistent
family of probability measures and, by Kolmogorov’s theorem, this defines a unique
probability measure Pν on P(Ck) × 	. In addition, the restriction of Pν to B ⊗ {∅,	}
is by construction ν.

We now define the random process (x̂n). For (x̂, ω) ∈ P(Ck) × 	 we define
x̂0(x̂, ω) = x̂ . Note that for any n, the definition (9) of Pν imposes

Pν (Wnx0 = 0) = 0.

This allows us to define a sequence (x̂n) of (Jn)-adapted random variables on the
probability space (P(Ck) × 	,J ,Pν) by letting

x̂n := Wn · x̂ (10)

whenever the expression makes sense, i.e. for any ω such that Wn(ω)x �= 0, and
extending it arbitrarily to the whole of 	. The process (x̂n) on (	 × P(Ck),J ,Pν)

has the same distribution as the Markov chain defined by � and initial probability
measure ν.

Let us highlight the relation between Pν and density matrices. To that end, let

ρν := Eν (πx̂ ) . (11)

By linearity and positivity of the expectation, ρν ∈ Dk . Note that, conversely, for a
given ρ ∈ Dk there exists ν (in general non-unique) such that ρν = ρ. For example, if
a spectral decomposition of ρ is ρ = ∑

j p jπx j then necessarily
∑

j p j = 1, so that

ν = ∑
j p jδx̂ j is a probability measure on P(Ck), and it satisfies the desired relation

(11).
This relation motivates the following definition of probability measures over

(	,O). For ρ ∈ Dk and any cylinder set On ∈ On , let

P
ρ(On) :=

∫

On

tr
(
Wn(ω)ρW ∗

n (ω)
)
dμ⊗n(ω). (12)

In particular, for any S ∈ B and A ∈ O,

Pν(S × A) =
∫

S
P

πx̂ (A) dν(x̂). (13)

The following proposition elucidates further the connection between Pν and P
ρν .
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Proposition 2.1 The marginal of Pν onO is the probability measure Pρν . Moreover, if
(φ-Erg) holds, Pρνa = P

ρνb for any two �-invariant probability measures νa and νb.

Proof By construction it is sufficient to check the equality of the measures on cylinder
sets. Let On ∈ On ; from the definition of Pν , and the linearity of the trace and the
integral, we have

Pν

(
P(Ck) × On

)
=

∫

P(Ck )×On

tr
(
W ∗

n (ω)Wn(ω)πx̂
)
dν(x̂)dμ⊗n(ω)

=
∫

On

tr

(

W ∗
n (ω)Wn(ω)

∫

P(Ck )

πx̂ dν(x̂)

)

dμ⊗n(ω)

=
∫

On

tr
(
W ∗

n (ω)Wn(ω)ρν

)
dμ⊗n(ω).

The equality between the marginal of Pν on O and P
ρν follows.

If ν is an invariant measure, on the one hand

Eν

(
πx̂1

) = Eν

(
πx̂0

) = ρν.

On the other hand,

Eν

(
πx̂1

) =
∫

P(Ck )×Mk(C)

vπx̂0v
∗

‖vx0‖2 ‖vx0‖2dν (
x̂0

)
dμ(v)

=
∫

Mk (C)

v Eν

(
πx̂0

)
v∗dμ(v)

=φ(ρν),

so that ρν is a fixed point of φ. Hence if (φ-Erg) holds, ρν is the unique fixed point of
φ in Dk . Hence ρνa = ρνb and P

ρνa = P
ρνb holds. ��

In the following we use the measure P
ch = P

1
k IdCk associated to the operator

IdCk/k ∈ Dk as a reference measure. Since for any ρ ∈ Dk there exists a constant

c such that ρ ≤ c
Id

Ck

k , the measure P
ρ is absolutely continuous w.r.t. Pch. We will

denote absolute continuity between measures with the symbol �, so that we have
here

P
ρ � P

ch,

for all ρ ∈ Dk . The Radon–Nykodim derivative will be made explicit in Proposi-
tion 2.2. To that end, we use a particular (On)-adapted process. We define a sequence
of matrix-valued random variables:

Mn := W ∗
n Wn

tr
(
W ∗

n Wn
) if tr

(
W ∗

n Wn
) �= 0
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and extend the definition arbitrarily whenever tr(W ∗
n Wn) = 0. The latter alternative

appears with probability 0: indeed, Pch
(
tr(W ∗

n Wn) = 0
) = 0 and then by the absolute

continuity of Pρ with respect to Pch we have Pν

(
tr(W ∗

n Wn) = 0
) = P

ρν
(
tr(W ∗

n Wn) =
0
) = 0 for any measure ν. The key property of Mn , that we establish in the proof of

Proposition 2.2, is that it is an (On)-martingale with respect to Pch.
From the existence of a polar decomposition for Wn , for each n, there exists a

unitary matrix-valued random variable Un such that

Wn = Un

√
tr

(
W ∗

n Wn
)
M

1
2
n . (14)

This process (Un) can be chosen to be (On)-adapted.
The key technical results about Mn needed for our proofs are summarized in the

following proposition. Recall that any O-measurable function f is extended to a J -
measurable function by setting f (x̂, ω) = f (ω) for any (x̂, ω) ∈ P(Ck) × 	.

Proposition 2.2 For any probability measure ν over (P(Ck),B), (Mn) converges
Pν - a.s. and in L1-norm to an O-measurable random variable M∞. The change of
measure formula

dPρ

dPch = k tr(ρM∞) (15)

holds true for all ρ ∈ Dk .
Moreover, the measure μ verifies (Pur) if and only if M∞ is Pν - a.s. a rank one

projection for any probability measure ν over (P(Ck),B).

Proof We start the proof by showing that Mn is a Pch-martingale. Recall that for all
n ∈ N and all On ∈ On ,

P
ch(On) = 1

k

∫

On

tr
(
W ∗

n (ω)Wn(ω)
)
dμ⊗n(ω).

From the definition of Wn , Eq. (8),

Mn+1 = W ∗
n V

∗
n+1Vn+1Wn

tr
(
W ∗

n Wn
)

tr
(
W ∗

n Wn
)

tr
(
W ∗

n+1Wn+1
) . (16)

This implies that for an arbitrary On-measurable random variable Y

E
ch (YMn+1) = 1

k

∫

Mk (C)n+1

W ∗
n V

∗
n+1Vn+1Wn

tr
(
W ∗

n Wn
) Y tr

(
W ∗

n Wn
)
dμ⊗n+1

= 1

k

∫

Mk (C)n

W ∗
n Wn

tr
(
W ∗

n Wn
) Y tr

(
W ∗

n Wn
)
dμ⊗n

= E
ch(YMn),
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where the second equality follows from the stochasticity condition (1),
∫

v∗vdμ(v) =
IdCk . This shows that (Mn) is an (On)-martingale w.r.t. Pch. Since the sequence (Mn)

is composed of positive semidefinite matrices of trace one, its coordinates are a.s.
uniformly bounded by 1. Therefore, the martingale property implies the L1 and a.s.
convergence of (Mn) to an O-measurable random variable M∞. Now note that for
any ρ ∈ Dk ,

tr
(
W ∗

n Wnρ
) = tr(Mnρ) k tr

(

W ∗
n Wn

IdCk

k

)

.

This way, the convergence of (Mn) implies the change of measure formula.
We now prove the last part of the proposition. Using the martingale property one

can see that for all n ∈ N, and any fixed p ∈ N,

V p
n :=

p−1∑

k=0

E
ch

(
M2

k+n+1 − M2
k

)
=

n∑

k=0

E
ch

(
M2

k+p

)
−

n∑

k=0

E
ch

(
M2

k

)

=
n∑

k=0

E
ch

((
Mk+p − Mk

)2)

= E
ch

(
n∑

k=0

E
ch

((
Mk+p − Mk

)2 |Ok

)
)

.

(17)

Since (Mn) is bounded and almost surely convergent, applying Lebesgue’s dominated
convergence theorem to each E

ch(M2
k+n+1), k = 0, . . . , p − 1 as n → ∞ implies

that the term V p
n is convergent when n goes to infinity. Then, using the monotone

convergence theorem in the last line of (17), we get that

lim
n→∞ V p

n = E
ch

( ∞∑

k=0

E
ch

((
Mk+p − Mk

)2 |Ok

)
)

.

It implies that the series
∑∞

k=0 E
ch

(
(Mk+p − Mk)

2|Ok
)
is almost surely finite. This

yields that

lim
n→∞E

ch
((

Mn+p − Mn
)2 |On

)
= 0, P

ch - a.s.

Since all the norms are equivalent in finite dimension, Jensen’s inequality implies

lim
n→∞E

ch (∥∥Mn+p − Mn
∥
∥ |On

) = 0, P
ch - a.s. (18)

At this stage we use the polar decomposition of (Wn), Eq. (14), to write

Mn+p = M
1
2
n U∗

n V
∗
n+1 . . . V ∗

n+pVn+p . . . Vn+1UnM
1
2
n

tr

(

M
1
2
n U∗

n V
∗
n+1 . . . V ∗

n+pVn+p . . . Vn+1UnM
1
2
n

) .
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Then we get an expression for the conditional expectation, see the first part of the
proof,

E
ch( ∥

∥Mn+p − Mn
∥
∥ |On

) =
∫

∥
∥
∥
∥
∥
∥
∥
∥

M
1
2
n U∗

n v∗
1 . . . v∗

pvp . . . v1UnM
1
2
n

tr

(

M
1
2
n U∗

n v∗
1 . . . v∗

pvp . . . v1UnM
1
2
n

) − Mn

∥
∥
∥
∥
∥
∥
∥
∥

tr
(
v∗
1 . . . v∗

pvp . . . v1UnMnU
∗
n

)
dμ⊗p(v1, . . . , vp)

=
∫ ∥

∥
∥
∥M

1
2
n U

∗
n v∗

1 . . . v∗
pvp . . . v1UnM

1
2
n

−Mn tr
(
v∗
1 . . . v∗

pvp . . . v1UnMnU
∗
n

)∥
∥
∥

dμ⊗p(v1, . . . , vp).

We used non-negativity of tr(v∗
1 . . . v∗

pvp . . . v1UnMnU∗
n ) to get the second equality.

The above equation holds for Pch-almost all realizations
(
Un(ω)

)
of (Un). Since the

group of unitary matrices is compact, for any fixed ω there exists a subsequence along
which

(
Un(ω)

)
converges to a unitary matrix U∞(ω). Taking the limit along this

subsequence in the above expression yields (we drop ω for notational simplicity):

∫

Mk (C)p

∥
∥
∥
∥M

1
2∞U∗∞v∗

1 . . . v∗
pvp . . . v1U∞M

1
2∞ − M∞tr

(
v∗
1 . . . v∗

pvp . . . v1U∞M∞U∗∞
)∥
∥
∥
∥

dμ⊗p(v1, . . . , vp) = 0.

This implies that

M
1
2∞U∗∞v∗

1 . . . v∗
pvp . . . v1U∞M

1
2∞ = tr

(
v∗
1 . . . v∗

pvp . . . v1U∞M∞U∗∞
)
M∞,

for μ⊗p-almost all (v1, . . . , vp).
Denoting by π∞ the orthogonal projector onto the range of M∞, the above

condition is equivalent to π∞U∗∞v∗
1 . . . v∗

pvp . . . v1U∞π∞ = λπ∞ with λ =
tr(v∗

1 . . . v∗
pvp . . . v1U∞M∞U∗∞). Finally, it follows that

U∞π∞U∗∞v∗
1 . . . v∗

pvp . . . v1U∞π∞U∗∞ ∝ U∞π∞U∗∞,

for μ⊗p-almost all (v1, . . . , vp). Since U∞π∞U∗∞ is an orthogonal projector,
the condition (Pur) implies (reintroducing ω) that rank(M∞(ω)) = rank(U∞
(ω)π∞(ω)U∗∞(ω)) = 1. Since M∞(ω) is a trace one, positive semidefinite matrix
this means that M∞(ω) is a rank one projector. Since this conclusion holds true for
P
ch-almost allω this establishes that the condition (Pur) implies thatM∞ isPch-almost

surely a rank 1 projection.
For the converse implication, assume that M∞ is P

ch-almost surely a rank one
projection but that (Pur) does not hold. Then there exists π , a rank two orthogonal
projector, such that for all n ∈ N,
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πW ∗
n Wnπ ∝ π,

μ⊗n-almost everywhere. Since μ⊗n-almost everywhere Mn ∝ W ∗
n Wn , we get that

πMnπ ∝ π,

μ⊗n-almost everywhere. Thus, πM∞π ∝ π and, under our assumption that
rank M∞ = 1 P

ch - a.s. and rank π = 2, this implies that πM∞π = 0, Pch-almost
surely. On the other hand for all n ∈ N we have Ech(Mn) = IdCk , and the L1 con-
vergence implies that Ech(M∞) = IdCk . Then, Ech(πM∞π) = π which contradicts
πM∞π = 0 P

ch - a.s. ��
By the polar decomposition, the rank of Wn is equal to the rank of Mn and the

proposition thus implies thatWnρ0W ∗
n /tr(Wnρ0W ∗

n ) approaches the set of pure states
for any ρ0 ∈ Dk if and only if (Pur) holds. This is the result ofMaassen andKümmerer
[17] mentioned in the introduction. Though Mn is not used in [17], the proof relies on
similar ideas.

We are now in the position to show that the Markov chain (x̂n) is asymptotically
anO-measurable process. This is expressed in the following lemma. Whenever (Pur)
holds, we denote by ẑ ∈ P(Ck) the O-measurable random variable defined by

M∞ = πẑ .

Recall that d(·, ·), defined by Eq. (7), is our metric on P(Ck).

Lemma 2.3 Assume (Pur) holds. Then for any probability measure ν on (P(Ck),B),

lim
n→∞ d

(
x̂n,Un · ẑ) = 0 Pν - a.s.

Proof We start the proof by showing that for any ν

lim
n→∞ M

1
2
n · x̂ = ẑ Pν - a.s. (19)

Let x̂ be fixed and recall from Proposition 2.2 that (Pur) implies M∞ = πẑ . Since
M∞x = 〈z, x〉z, in order to show (19), it is enough to show that x̂ is Pν-almost
surely not orthogonal to ẑ. From Eq. (13) and the change of measure formula in
Proposition 2.2,

dPν

(
x̂, ω

) = k tr
(
πx̂πẑ(ω)

)
d
(
ν(x̂) ⊗ P

ch(ω)
)
.

Hence the event {tr(πx̂πẑ) = |〈z, x〉|2 = 0} hasPν-measure 0. This proves the required
claim, and (19) follows from the almost sure convergence of Mn to πẑ .

Now using the polar decomposition, Eq. (14), and the fact that proportionality of
vectors amounts to equality of their equivalence classes in P(Ck), we have

x̂n = UnM
1
2
n · x̂0.
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The first part of the proof then yields

lim
n→∞ d

(
x̂n,Un · ẑ) = 0, Pν - a.s.

��
The uniqueness of the invariant measure which is the first part of Theorem 1.1

follows as a corollary.

Corollary 2.4 Assume (Pur) and (φ-Erg). Then the Markov kernel � admits a unique
invariant probability measure.

Proof For an invariant measure ν, the random variable x̂n is ν-distributed for all n ∈ N.
In particular, Eν

(
f (x̂n)

)
is constant for any continuous function f . On the other hand

Lemma 2.3 and Lebesgue’s dominated convergence theorem imply that

lim
n→∞Eν

(
f
(
x̂n

) − f
(
Un · ẑ) ) = 0.

Hence
lim
n→∞Eν

(
f
(
Un · ẑ) ) = Eν

(
f
(
x̂0

) )
. (20)

Assume now that there exist two invariant measures νa and νb. Since Un · ẑ is
O-measurable, Proposition 2.1 implies

Eνa

(
f
(
Un · ẑ) ) = Eνb

(
f
(
Un · ẑ) )

.

Then Eq. (20) applied with ν = νa , resp. ν = νb gives

Eνa

(
f
(
x̂0

) ) = Eνb

(
f
(
x̂0

) )

which means that νa = νb and the uniqueness is proved. ��
Assuming only (Pur) we can actually completely characterize the set of invariant

measures.

Proposition 2.5 Assuming (Pur) there exists a set {Fj }dj=1 of mutually orthogonal

subspaces of Ck such that for each j ∈ {1, . . . , d} there exists a unique �-invariant
probability measure ν j supported on P(Fj ), and the set of �-invariant probability
measures is the convex hull of {ν j }dj=1.

The subspaces Fj are the ranges of the extremal fixed points of φ inDk . This is shown
in the proof of Proposition 2.5, which we give in “Appendix B”.

Remark 2.6 Assuming (φ-Erg) only, the chainmight ormight not have a unique invari-
ant probability measure. Indeed, if suppμ ⊂ SU(k), Assumption (Pur) is trivially not
verified and, as proved in “Appendix C”, the uniqueness of the invariant measure
depends on the smallest closed subgroup of SU(k) containing suppμ. To illustrate
this point, in the same appendix, we study two examples with μ supported on and
giving equiprobability to two elements of SU(2) such that (φ-Erg) holds. In the first
example � has a unique invariant probability measure whereas in the second example
� has uncountably many mutually singular invariant probability measures.
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3 Convergence

We now turn to the proof of the second part of Theorem 1.1, namely the geometric
convergence inWasserstein distance of the process (x̂n) towards the invariant measure.
We first recall a definition of this distance for compact metric spaces: for X a compact
metric space equipped with its Borel σ -algebra, the Wasserstein distance of order 1
between two probabilitymeasures σ and τ on X can be defined using theKantorovich–
Rubinstein duality theorem as

W1(σ, τ ) = sup
f ∈Lip1(X)

∣
∣
∣
∣

∫

X
f dσ −

∫

X
f dτ

∣
∣
∣
∣ ,

where Lip1(X) = { f : X → R s.t. | f (x) − f (y)| ≤ d(x, y)} is the set of Lipschitz
continuous functions with constant one, and d is the metric on X .

The proof of Eq. (6) consists of three parts. In the first part we show a geometric con-
vergence in total variation of Pρ to Pρinv under the shift θ(v1, v2, . . .) = (v2, v3, . . .).
In the second one we show a geometric convergence of the chain (x̂n) towards an
O-measurable process (ŷn). Finally, we combine these results to prove Eq. (6).

3.1 Convergence forO-measurable random variables

Let us first discuss the origin of the integer m in Eq. (6). Let E be a subspace of Ck

s.t. vE ⊂ E for any v ∈ suppμ. Let (E1, . . . , E�) be an orthogonal partition of E ,
i.e. E = E1 ⊕ · · · ⊕ E�. We say that (E1, . . . , E�) is a �-cycle of φ if vE j ⊂ E j+1 for
μ-a.e. v (with the convention E�+1 = E1).2 The set of � ∈ N for which there exists
an �-cycle is non-empty (as it contains 1) and bounded (as necessarily � ≤ k).

Definition 3.1 The largest � ∈ N such that there exists a �-cycle of φ is called the
period of φ. We denote this period by m.

Remark 3.2 • The above definition for the period of φ is similar to that of the period
of a ϕ-irreducible Markov chain. It is obvious that if (E1, . . . , E�) is an �-cycle of
φ then it is also an �-cycle of �. However, the Markov chain defined by � is not
ϕ-irreducible in general. Hence the results of [19] on the period of ϕ-irreducible
Markov chains do not apply and the characterization of the period of � remains
an open problem.

• The above definition shows that the union
⋃m

j=1 E j is invariant byμ-a.e. v. Hence,
the strong irreducibility assumption discussed at the end of the introduction implies
that m = 1.

The following result is a reformulation of the Perron–Frobenius theorem of Evans
and Høegh-Krohn (see [7]). The original formulation in [7] makes the additional
assumption that E = C

k in (φ-Erg). For the present extension see e.g. [22]. In the
following statement, and in the rest of the article, for X an operator on C

k we denote

2 As suggested by its name, the notion of cycle for φ depends only on φ and not on the specific measure
μ leading to φ [20,22].

123



Invariant measure for quantum trajectories 321

‖X‖1 = tr|X | (all statements are identical with a different norm, but this choice will
spare us a few irrelevant constants).

Theorem 3.3 Assume that (φ-Erg) holds. Then there exists a unique φ-invariant ele-
ment ρinv of Dk with range equal to the minimal invariant subspace E. In addition,
there exist two positive constants c and λ < 1 such that, with m defined in Definition
3.1, for any ρ ∈ Dk and for any n ∈ N,

∥
∥
∥
∥
∥
1

m

m−1∑

r=0

φmn+r (ρ) − ρinv

∥
∥
∥
∥
∥
1

≤ cλn . (21)

Proof Theorem 4.2 in [7] implies that ρinv is the unique φ-invariant element of Dk ,
that the eigenvalues of φ of modulus one are exactly the m-th roots of unity, and that
they are all simple. The statement follows, with λ any quantity strictly larger than the
modulus of the largest non-peripheral eigenvalue. ��

Recall that θ is the left shift operator on 	, i.e.

θ(v1, v2, . . .) = (v2, v3, . . .).

The main result of this section is the following proposition. As announced it concerns
the speed of convergence in total variation (expressed in terms of expectation values).

Proposition 3.4 Assume (φ-Erg) holds. Then there exist two positive constants C and
λ < 1 such that for any O-measurable function f with essential bound ‖ f ‖∞, any
ρ ∈ Dk and all n ∈ N,

∣
∣
∣
∣
∣
E

ρ

(
1

m

m−1∑

r=0

f ◦ θmn+r

)

− E
ρinv( f )

∣
∣
∣
∣
∣

≤ C‖ f ‖∞λn . (22)

Proof We claim that for any bounded O-measurable function f ,

E
ρ( f ◦ θ) = E

φ(ρ)( f ). (23)

It suffices to prove this relation for allOl -measurable functions for any integer l. Thus,
let l be an integer and f an Ol -measurable function. Then,

E
ρ( f ◦ θ) =

∫

Mk (C)l+1
f (v2, . . . , vl+1)tr

(
vl+1 . . . v1ρv∗

1 . . . v∗
l+1

)
dμ⊗(l+1)(v1, . . . , vl+1)

=
∫

Mk (C)l
f (v1, . . . , vl )tr

(
vl . . . v1φ(ρ)v∗

1 . . . v∗
l
)
dμ⊗l (v1, . . . , vl ),

which is equal to Eφ(ρ)( f ), as claimed.
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ApplyingEq. (23)multiple times andusing the changeofmeasure of Proposition 2.2
we obtain

E
ρ

(
1

m

m−1∑

r=0

f ◦ θmn+r

)

= 1

m

m−1∑

r=0

E
φnm+r (ρ)( f )

= k
1

m

m−1∑

r=0

E
ch

(
f tr

(
M∞φnm+r (ρ)

))
,

for any O-measurable function f . Using |tr(M∞A)| ≤ ‖A‖1 for A = A∗ (remark
that M∞ ∈ Dk by construction) we then obtain

∣
∣
∣
∣
∣
E

ρ

(
1

m

m−1∑

r=0

f ◦ θmn+r

)

− E
ρinv( f )

∣
∣
∣
∣
∣

≤ ‖ f ‖∞ k

∥
∥
∥
∥
∥
1

m

m−1∑

r=0

φmn+r (ρ) − ρinv

∥
∥
∥
∥
∥
1

and Theorem 3.3 yields the proposition with C = ck. ��

3.2 Convergence to anO-measurable process

Let us introduce two relevant processes: for all n ∈ N, let

ẑn(ω) = argmax
x̂∈P(Ck )

‖Wnx‖2 (24)

and
ŷn = Wn · ẑn . (25)

Both random variables ŷn and ẑn are On-measurable.
The random variable ẑn corresponds to the maximum likelihood estimator of x̂0.

Note that the argmax may not be uniquely defined. We can, however, define it in an
On-measurableway. The following results will not be affected by such a consideration,
and we will not discuss such questions in the sequel. It follows from the definition of
ẑn that

(
W ∗

n Wn
) 1
2 zn = ‖Wn‖zn, P

ch - a.s. (26)

We recall that zn is a vector representative of the class ẑn .
Concerning ŷn , it can be seen as an estimator of x̂n given the maximum likelihood

estimation of x̂0. The following proposition establishes consistency of this estimator,
we show the geometric contraction in the mean of (x̂n) and (ŷn). In fact we prove a
slightly more general statement that the estimator based on the first n outcomes can
be replaced by an estimator based on outcomes between l and l + n. We will prove
the almost-sure contraction in Proposition 4.4.
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Proposition 3.5 Assume (Pur) holds. Then there exist two positive constants C and
λ < 1 such that for any probability measure ν over (P(Ck),B),

Eν

(
d

(
x̂n+l , ŷn ◦ θ l

))
≤ Cλn, (27)

holds for all non-negative integers l and n.

In order to prove Proposition 3.5 we study the largest two singular values of Wn .
As is customary in the study of products of random matrices, we make use of exterior
products.We recall briefly the relevant definitions: for p ∈ N and p vectors x1, . . . , xp
in C

k we denote by x1 ∧ · · · ∧ xp the alternating bilinear form (y1, . . . , yp) 	→
det

(〈xi , y j 〉
)p
i, j=1. Then, the set of all x1 ∧ · · · ∧ xp is a generating family for the set

∧p
C
k of alternating bilinear forms onCk , and we can define a hermitian inner product

by

〈
x1 ∧ · · · ∧ xp, y1 ∧ · · · ∧ yp

〉 = det
(〈xi , y j 〉

)p
i, j=1 ,

and denote by ‖x1 ∧ · · · ∧ xp‖ the associated norm. It is immediate to verify that our
metric d, defined by (7), satisfies

d(x̂, ŷ) = ‖x ∧ y‖
‖x‖‖y‖ . (28)

For an operator A on C
k , we write ∧p A for the operator on ∧p

C
k defined by

∧p A (x1 ∧ · · · ∧ xp) = Ax1 ∧ · · · ∧ Axp. (29)

Obviously ∧p(AB) = ∧p A∧p B, so that ‖ ∧p (AB)‖ ≤ ‖ ∧p A‖‖ ∧p B‖. From e.g.
Chapter XVI of [18] or Lemma III.5.3 of [4], we have in addition for 1 ≤ p ≤ k

∥
∥∧p A

∥
∥ = a1(A) . . . ap(A), (30)

where a1(A) ≥ · · · ≥ ak(A) are the singular values of A, i.e. the square roots of
eigenvalues of A∗A, labelled in decreasing order.

Our strategy to prove Proposition 3.5 is to bound the left hand side of Eq. (27) by a
submultiplicative function f : N → R+ and then use Fekete’s lemma. We will show
that the function

f (n) =
∫

Mk (C)n

∥
∥
∥∧2vn . . . v1

∥
∥
∥ dμ⊗n(v1, . . . , vn) (31)

has the desired properties. The following lemma establishes an exponential decay of
this function.
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Lemma 3.6 Assume (Pur). Then there exist two positive constants C and λ < 1 such
that

f (n) ≤ Cλn .

Proof First, we prove limn→∞ f (n) = 0. To prove it, we express the function f (n)

using the process Wn as

f (n) = E
ch

(

k
‖ ∧2 Wn‖
tr

(
W ∗

n Wn
)

)

. (32)

By definition the eigenvalues of M
1
2
n are the singular values ofWn/

√
tr(W ∗

n Wn). Since
by Proposition 2.2, Mn converges Pch - a.s. to a rank one projection,

lim
n→∞ a1

⎛

⎝ Wn√
tr

(
W ∗

n Wn
)

⎞

⎠ a2

⎛

⎝ Wn√
tr

(
W ∗

n Wn
)

⎞

⎠ = 0 P
ch - a.s.

Using Eq. (30) we then conclude that

lim
n 	→∞

∥
∥∧2Wn

∥
∥

tr
(
W ∗

n Wn
) = 0 P

ch - a.s. (33)

Since‖∧2Wn‖ ≤ ‖Wn‖2 ≤ tr(W ∗
n Wn), the expression (32) andLebesgue’s dominated

convergence theorem imply limn→∞ f (n) = 0.
Second, remark that the function f is submultiplicative. Indeed, for p, q ∈ N we

have
∥
∥
∥∧2 (

vp+q . . . v1
)∥∥
∥ ≤

∥
∥
∥∧2 (

vp+q . . . vp+1
)∥∥
∥

∥
∥
∥∧2 (

vp . . . v1
)∥∥
∥

and the submultiplicativity follows.
By Fekete’s subadditive Lemma, log f (n)

n converges to infn∈N log f (n)
n , which is

(strictly) negative (and possibly equal to −∞) since f (n) → 0. Then there exists
0 < λ < 1 such that f (n) ≤ λn for large enough n, and the conclusion follows. ��

We are now in a position to prove Proposition 3.5.

Proof of Proposition 3.5 The Markov property of (x̂n) implies that

Eν

(
d

(
x̂n+l , ŷn ◦ θ l

))
= Eν�l

(
d

(
x̂n, ŷn

))
.

Provided inequality (27) is established for l = 0, the right hand side of the previous
equality can be bounded byCλn . It is hence sufficient to prove the inequality for l = 0.
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The case l = 0 follows from Lemma 3.6 if for any n ∈ N and any probability
measure ν,

Eν

(
d

(
x̂n, ŷn

)) ≤ f (n). (34)

To obtain this inequality, note that from the definitions of x̂n , ŷn and ẑn , we have that

d
(
x̂n, ŷn

) =
∥
∥∧2Wn (x0 ∧ zn)

∥
∥

‖Wnx0‖‖Wnzn‖
≤

∥
∥∧2Wn

∥
∥

‖Wnx0‖2
‖Wnx0‖
‖Wn‖

≤
∥
∥∧2Wn

∥
∥

‖Wnx0‖2 ,

holds Pν-almost surely. To get the first inequality we used ‖Wnzn‖ = ‖Wn‖, and
‖x0 ∧ zn‖ = d(x̂0, ẑn) ≤ 1. In addition, by definition of Pν ,

Eν

( ∥
∥∧2Wn

∥
∥

‖Wnx0‖2
)

=
∫

P(Ck)×Mk (C)n

∥
∥∧2Wn

∥
∥

‖Wnx0‖2 ‖Wnx0‖2 dμ⊗n dν(x̂0)

=
∫

Mk (C)n

∥
∥
∥∧2Wn

∥
∥
∥ dμ⊗n(v1, . . . , vn),

which is f (n). Therefore (34) holds and Lemma 3.6 yields the proof. ��

3.3 Convergence inWasserstein metric

The remainder of Sect. 3 is devoted to the proof of the second part of Theorem 1.1.

Proof of Eq. (6) We are supposed to prove that

W1

(
1

m

m−1∑

r=0

ν�mn+r , νinv

)

= sup
f ∈Lip1(P(Ck ))

∣
∣
∣
∣
∣
Eν

(
1

m

m−1∑

r=0

f
(
x̂mn+r

)
)

− Eνinv

(
f
(
x̂0

))
∣
∣
∣
∣
∣

is exponentially decaying in n. The expression in the supremum on the right hand side
is unchanged by adding an arbitrary constant to f . This freedom allows us to restrict
the supremum to functions bounded by 1, i.e. ‖ f ‖∞ ≤ 1.

Let f ∈ Lip1(P(Ck)) be such a function. Our strategy is to approximate x̂mn+r

by ŷmp ◦ θmq+r with p = � n
2 � and q = � n

2 � so that in particular p + q = n. Using
telescopic estimates and the invariance of νinv we then have
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∣
∣
∣
∣
∣
Eν

(
1

m

m−1∑

r=0

f
(
x̂mn+r

)
)

− Eνinv

(
f
(
x̂0

))
∣
∣
∣
∣
∣

≤ 1

m

m−1∑

r=0

∣
∣Eν

(
f
(
x̂m(p+q)+r

)) − Eν

(
f
(
ŷmp ◦ θmq+r ))∣∣

+ 1

m

m−1∑

r=0

∣
∣Eνinv

(
f
(
ŷmp ◦ θmq+r )) − Eνinv

(
f
(
x̂m(p+q)+r

))∣∣

+
∣
∣
∣
∣
∣
1

m

m−1∑

r=0

Eν

(
f
(
ŷmp ◦ θmq+r )) − Eνinv

(
f
(
ŷmp

))
∣
∣
∣
∣
∣
.

We bound the terms on the right hand side using Proposition 3.5 for the first two terms
and Proposition 3.4 for the last term. To this end let C and λ < 1 be such that the
bounds in both these propositions hold true. Since f is 1-Lipschitz continuous we
have

∣
∣ f

(
x̂m(p+q)+r

) − f
(
ŷmp ◦ θmq+r )∣∣ ≤ d

(
x̂m(p+q)+r , ŷmp ◦ θmq+r ) .

Proposition 3.5 then implies that

∣
∣Eν

(
f
(
x̂m(p+q)+r

)) − Eν

(
f
(
ŷmp ◦ θmq+r ))∣∣ ≤ Cλmp,

and similarly with ν replaced by νinv. Regarding the last term in the above telescopic
estimate we have by Proposition 3.4,

∣
∣
∣
∣
∣
1

m

m−1∑

r=0

Eν

(
f
(
ŷmp ◦ θmq+r )) − Eνinv

(
f
(
ŷmp

))
∣
∣
∣
∣
∣

≤ Cλq ,

where we used the constraint ‖ f ‖∞ ≤ 1 discussed at the beginning of the proof.
Putting these estimates together we get

∣
∣
∣
∣
∣
Eν

(
1

m

m−1∑

r=0

f
(
x̂mn+r

)
)

− Eνinv

(
f
(
x̂0

))
∣
∣
∣
∣
∣

≤ 3Cλ� n
2 �

and this concludes the proof of Eq. (6) and therefore of Theorem 1.1. ��

4 Lyapunov exponents

In this section, we study the almost sure stability exponents. The main results of this
section will assume (φ-Erg) with the additional assumption that E = C

k .

Remark 4.1 Assuming E = C
k amounts to saying that φ has no transient part. With-

out this assumption, we would have to take into account the almost sure Lyapunov
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exponent corresponding to the escape from the transient part. See [3] for a precise
account of these ideas.

The relevance of this assumption will stem from the following straightforward
inequalities: if ρ is any element of Dk then one has

dPρ

|On

dμ⊗n
≤ ‖Wn‖2,

and if ρ is faithful (i.e. definite positive), then

dPρ

|On

dμ⊗n
≥ ‖ρ−1‖−1‖Wn‖2.

In particular, under the assumption that (φ-Erg) holds with E = C
k , thus ρinv > 0

and for any ρ ∈ Dk , we have
P

ρ � P
ρinv . (35)

Let us start by proving the following lemma, which concerns the ergodicity of θ

with respect to the measure Pρinv .

Lemma 4.2 Assume that (φ-Erg) holds. Then the shift θ on (	,O) is ergodic with
respect to the probability measure Pρinv .

Proof Let A, A′ in Ol . From the definition of Pρinv , for j large enough, Pρinv
(
A ∩

θ− j (A′)
)
equals

∫

A×A′
tr
(
v′
l . . . v

′
1φ

j−l(vl . . . v1ρinvv
∗
1 . . . v∗

l

)
v′
1

∗
. . . v′

l
∗) dμ⊗l(v1, . . . , vl) dμ

⊗l (v′
1, . . . , v

′
l

)
,

and the Perron–Frobenius Theorem 3.3 implies

lim
n→∞

1

n

n−1∑

j=0

φ j (vl . . . v1ρinvv
∗
1 . . . v∗

l

) = tr
(
vl . . . v1ρinvv

∗
1 . . . v∗

l

)
ρinv

for μ⊗l -almost all (v1, . . . , vl) so that

lim
n→∞

1

n

n−1∑

j=0

P
ρinv

(
A ∩ θ− j (A′) ) = P

ρinv(A)Pρinv
(
A′) ,

which proves the ergodicity. ��

Now we can state our result concerning Lyapunov exponents.
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Proposition 4.3 Assume that (φ-Erg) holds with E = C
k , and that (Pur) holds.

Assume
∫ ‖v‖2 log ‖v‖dμ(v) < ∞. Then there exists numbers

∞ > γ1 ≥ γ2 ≥ · · · ≥ γk ≥ −∞

such that for any probability measure ν over (P(Ck),B):

(1) for any p ∈ {1, . . . , k},

lim
n→∞

1

n
log

∥
∥∧pWn

∥
∥ =

p∑

j=1

γ j , Pν - a.s., (36)

(2) γ2 − γ1 < 0 with γ2 − γ1 understood as the limit of 1
n log

‖∧2Wn‖
‖Wn‖2 whenever

γ1 = −∞,
(3) one has the convergence

lim
n→∞

1

n
(log ‖Wnx0‖ − log ‖Wn‖) = 0 Pν - a.s. (37)

Proof Let us start by proving (1). Note that n 	→ log ‖ ∧p Wn‖ is subadditive by
definition. The existence of the Pρinv - a.s. limits limn→∞ 1

n log ‖∧p Wn‖ then follows
from E

ρinv(log ‖V ‖2) ≤ ∫ ‖v‖2 log ‖v‖2dμ(v) < ∞, Pρinv ◦ θ−1 = P
ρinv and a direct

application of Kingman’s subadditive ergodic theorem (see e.g. [21]). The fact that
these limits are P

ρinv - a.s. constant comes from the θ -ergodicity of Pρinv proved in
Lemma 4.2. Since by Eq. (35) any P

ρ is absolutely continuous with respect to P
ρinv ,

Proposition 2.1 and the O-measurability of ‖ ∧p Wn‖ imply the convergence holds
Pν - a.s. The numbers γ j are uniquely defined, by defining

∑p
j=1 γ j as the Pρinv - a.s.

limit limn→∞ 1
n log ‖ ∧p Wn‖ and imposing the rule that γ j+1 = −∞ if γ j = −∞.

This convention and (30) impose that γ j+1 ≤ γ j for j = 1, . . . , k − 1.
Concerning (2), recall the quantity f (n) defined in Eq. (31). Then Eq. (32) and the

inequality trW ∗
n Wn ≤ k‖Wn‖2 give

f (n) ≥ E
ch

(∥
∥∧2Wn

∥
∥

‖Wn‖2
)

.

Jensen’s inequality implies

1

n
log f (n) ≥ E

ch

(
1

n
log

∥
∥∧2Wn

∥
∥

‖Wn‖2
)

so that by Lemma 3.6 and Fatou’s lemma, log λ ≥ γ2 − γ1 with λ ∈ (0, 1).
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Finally for (3), from Proposition 2.2, we have

lim
n→∞

‖Wnx0‖
‖Wn‖ = lim

n→∞

∥
∥
∥
∥M

1
2
n x0

∥
∥
∥
∥

∥
∥
∥
∥M

1
2
n

∥
∥
∥
∥

= |〈x0, z〉| Pν - a.s.

Since Pν - a.s. |〈x0, z〉| > 0, the proposition holds. ��
From this proposition we deduce the following almost sure convergence rate for

the distance between the Markov chain (x̂n) and the (On)-adapted process (ŷn).

Proposition 4.4 Assume (Pur) holds and (φ-Erg) holds with E = C
k . Then, for any

probability measure ν on (P(Ck),B),

lim sup
t→∞

1

n
log

(
d

(
x̂n, ŷn

) ) ≤ −(γ1 − γ2) < 0, Pν - a.s.

Proof Identity (28) and the definition of ẑn imply

d(x̂n, ŷn) =
∥
∥∧2Wn x0 ∧ zn

∥
∥

‖Wnx0‖‖Wnzn‖ ≤
∥
∥∧2Wn

∥
∥

‖Wnx0‖‖Wn‖ .

Proposition 4.3 then yields the result. ��
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Appendix A: Equivalence of (Pur) and contractivity

We assume suppμ ⊂ GLk(C). Recall that Tμ is the smallest closed sub-semigroup
of GLk(C) that contains suppμ. It is said to be contracting if there exists a sequence
(an)n∈N ⊂ Tμ such that limn→∞ an/‖an‖ exists and is a rank one matrix.

Proposition A.1 Assume suppμ ⊂ GLk(C) and Tμ is strongly irreducible. Then μ

verifies (Pur) if and only if Tμ is contracting.

Proof By Proposition 2.2 the implication (Pur) ⇒ contractivity follows by taking for
(an) a convergent subsequence of (Wn(ω)) for ω ∈ suppPch.

We prove the opposite implication by contradiction. Following [12, Lemma 3],
under the assumptions of the proposition, Tμ is contracting if and only if, for any two
x̂, ŷ ∈ P(Ck) there exists a sequence of matrices (an) ⊂ Tμ such that

lim
n→∞ d

(
an · x̂, an · ŷ) = 0.

123



330 T. Benoist et al.

Now, assume that contractivity holds but (Pur) does not. Namely, that Tμ is contracting
but there exists an orthogonal projector π of rank ≥ 2, such that for any a ∈ Tμ,

πa∗aπ ∝ π.

Let x, y in the range of π be orthonormal vectors. Then 〈ax, ay〉 = 〈x, y〉 = 0, and
‖ax‖, ‖ay‖ are nonzero, so that d(a · x̂, a · ŷ) = 1. As this is true for any a in Tμ,
contractivity cannot hold. This contradiction yields the proposition. ��

Appendix B: Set of invariant measures under assumption (Pur)

A quantum channel is a map φ on Mk(C) of a form

φ(ρ) =
∫

Mk (C)

vρv∗dμ(v),

where μ is a measure satisfying the normalization condition (1). The decomposition
of quantum channels to irreducible components was derived in [2,5,22]. The spaceCk

is decomposed into orthogonal subspaces, one subspace is transient and in all other
subspaces the map has a canonical tensor product structure. We recall these results.

There exists a decomposition

C
k " C

n1 ⊕ · · · ⊕ C
nd ⊕ C

D, k = n1 + · · · + nd + D

with the following properties. We denote by v( j) the restriction of v to Cn j .

(e1) All invariant states are supported in the subspace L = C
n1 ⊕ · · · ⊕ C

nd ⊕ 0,
(e2) The restriction of v to this subspace is block diagonal,

v|L = v(1) ⊕ · · · ⊕ v(d) ⊕ 0 μ - a.e. (38)

(e3) For each j = 1, . . . , d there is a decomposition Cn j = C
k j ⊗C

m j , n j = k jm j ,
a unitary matrix Uj on C

n j and a matrix ṽ( j) on Ck j such that

v( j) = Uj

(
ṽ( j) ⊗ Id

C
m j

)
U∗

j μ − a.s. (39)

(e4) There exists a full rank positive matrix ρ j on C
k j such that

0 ⊕ · · · ⊕ Uj
(
ρ j ⊗ Id

C
m j

)
U∗

j ⊕ · · · ⊕ 0 (40)

is a fixed point of φ.

It follows from (e3) and (e4) that the set of fixed points for φ is

U1
(
ρ1 ⊗ Mm1(C)

)
U∗
1 ⊕ · · · ⊕ Ud

(
ρd ⊗ Mmd (C)

)
U∗
d ⊕ 0MD(C).

The decomposition simplifies under the purification assumption.
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Proposition B.1 Assume (Pur)holds. Then there exists a set {ρ j }dj=1 of positive definite
matrices and an integer D such that the set of φ fixed points is

Cρ1 ⊕ · · · ⊕ Cρd ⊕ 0MD(C).

Proof The statement follows from the discussion preceding the proposition if we show
that (Pur) impliesm1 = · · · = md = 1. Assume that one of them j , e.g.m1, is greater
than 1. Let x be a norm one vector in Ck1 . Then π = U1πx̂ ⊗ IdCm1U∗

1 ⊕ 0 ⊕ · · · ⊕ 0
is a projection with rank bigger than 1, and by Eq. (39) we have, in the notation of
(38) and (39),

πv∗
1 . . . v∗

nvn . . . v1π =
∥
∥
∥ṽ(1)

n . . . ṽ
(1)
1 x

∥
∥
∥
2
π

for μ⊗n-almost all v1, . . . , vn . This contradicts (Pur). ��
It is clear from Eq. (38) that to each extremal fixed point 0 ⊕ · · · ⊕ ρ j ⊕ · · · ⊕ 0

corresponds a unique invariant measure ν j supported on its range Fj . The converse is
the subject of the next proposition.

Proposition B.2 Assume (Pur) holds. Then any �-invariant probability measure is a
convex combination of the measures ν j , j = 1, . . . , d.

Proof Let ν be a �-invariant probability measure. Let f be a continuous function.
From Lemma 2.3,

Eν( f ) = lim
n→∞Eν

(
f
(
Un · ẑ) )

.

Proposition 2.1 implies

Eν( f ) = lim
n→∞E

ρν
(
f
(
Un · ẑ) )

with ρν ∈ Dk a fixed point of φ. By Proposition B.1, (Pur) implies that there exist non
negative numbers t1, . . . , td summing up to one such that ρν = t1ρ1 ⊕ · · · ⊕ tdρd ⊕
0MD(C). From the definition of Pρν ,

P
ρν = t1P

ρ1 + · · · + tdP
ρd

wherewe used the abuse of notation ρ j ≡ 0⊕· · ·⊕ρ j ⊕· · ·⊕0. Using Proposition 2.1,
it follows that

Eν( f ) = lim
n→∞ t1Eν1

(
f
(
Un · ẑ) ) + · · · + tdEνd

(
f
(
Un · ẑ) )

.

Then Lemma 2.3 and the �-invariance of each measure ν j yield the proposition. ��
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Appendix C: Products of special unitary matrices

Proposition C.1 Assume suppμ ⊂ SU(k). Let G be the smallest closed subgroup of
SU(k) such that suppμ ⊂ G. For any x̂ ∈ P(Ck), let [x̂]G be the orbit of x̂ with
respect to G and the action G × P(Ck) � (v, x̂) 	→ v · x̂ . Namely, [x̂]G := {ŷ ∈
P(Ck) | ∃v ∈ G s.t. ŷ = v · x̂}. Then, for any x̂ , there exists a unique �-invariant
probability measure supported on [x̂]G, and this unique invariant measure is uniform
in the sense that for any v ∈ G it is invariant by the map x̂ 	→ v · x̂ .
Corollary C.2 With the assumption and definitions of the last proposition, if G =
SU(k),�has aunique invariant probabilitymeasure and this probability is the uniform
one on P(Ck).

Proof The corollary being a trivial consequence of G = SU(k) ⇒ [x̂]G =
P(Ck) ∀x̂ ∈ P(Ck), we are left with proving the proposition.

Let Pμ be the Markov kernel on G defined by the left multiplication: Pμ f (v) =∫
G f (uv)dμ(u). SinceG is compact as a closed subset of SU(k), following [1, Propo-
sition 4.8.1, Theorem 4.8.2], the unique Pμ-invariant probability measure μG on G is
the normalized Haar measure on G. Since G is compact, Prokhorov’s theorem implies
that for any u ∈ G,

lim
n→∞

1

n

n∑

k=1

δu P
k
μ = μG weakly. (41)

Let x̂ ∈ P(Ck). Since suppμ ⊂ G, for any ŷ ∈ [x̂]G , �(ŷ, [x̂]G) = 1. Then, [x̂]G
being compact, there exists a �-invariant measure ν supported on [x̂]G .

Let f be a continuous function on [x̂]G . Then,

ν( f ) = 1

n

n∑

k=1

ν�k f = 1

n

n∑

k=1

∫

Gk×[x̂]G
f
(
vk . . . v1 · ŷ) dμ⊗k(v1, . . . , vk)dν(ŷ).

For each ŷ ∈ [x̂]G let uy ∈ G be such that ŷ = uy · x̂ . The map v 	→ vuy · x̂ being
continuous, setting u = uy , the weak convergence (41) and Lebesgue’s dominated
convergence theorem imply,

ν( f ) =
∫

G
f
(
v · x̂) dμG(v).

It follows that ν is the image measure of μG by the application v 	→ v · x̂ . The left
multiplication invariance of the Haar measure μG yields the invariance of ν by the
map x̂ 	→ v · x̂ for any v ∈ G. ��
Example C.3 Let μ = 1

2 (δv1 + δv2) with,

v1 =
(
ei 0
0 e−i

)

and v2 =
(
cos 1 i sin 1
i sin 1 cos 1

)

.
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Then G = SU(2) and the uniform measure on P(C2) is the unique �-invariant prob-
ability measure.

Proof Following Proposition C.1, it is sufficient to prove that any element of SU(2)
is the limit of a sequence of products of v1 and v2.

Let σ1, σ2, σ3 be the usual Pauli matrices:

σ1 :=
(
0 1
1 0

)

, σ2 :=
(
0 −i
i 0

)

and σ3 =
(
1 0
0 −1

)

.

The Pauli matrices being generators of SU(2) in its fundamental representation, for
any u ∈ SU(2), there exist three reals θ1, θ2, θ3 ∈ R s.t.,

u = exp(i(θ1σ1 + θ2σ2 + θ3σ3)).

Especially, v1 = exp(iσ3) and v2 = exp(iσ1). Since for any j = 1, 2, 3, exp(iθ jσ j ) =
exp(i(θ j + 2π)σ j ), taking limits of sequences of powers of v1 or v2, for any θ ∈ R,
both

eiθσ1 and eiθσ3

are elements of G. It remains to show that any u ∈ SU(2) is a product of elements
equal to exp(iθσ1) or exp(iθσ3) with θ real.

Fix (θ1, θ2, θ3) ∈ R
3. Then using spherical coordinates in R

3, there exist r ∈ R+,
θ ∈ [0, π ] and ϕ ∈ [0, 2π [ such that θ1 = r cos θ , θ2 = r sin θ cosϕ and θ3 =
r sin θ sin ϕ. Then by direct computation,

ei(θ1σ1+θ2σ2+θ3σ3) = e−i ϕ
2 σ1ei

θ
2 σ3eirσ1e−i θ

2 σ3ei
ϕ
2 σ1 .

It follows that as a product of elements ofG, ei(θ1σ1+θ2σ2+θ3σ3) ∈ G, henceG = SU(2)
and the example holds. ��

Example C.4 Let μ = 1
2 (δv1 + δv2) with,

v1 =
(
i 0
0 −i

)

and v2 =
(
0 i
i 0

)

.

Then G = {±IdC2 , ±v1, ±v2, ±v1v2}. For z ∈ C, let ez = (1, z)T and e∞ = (0, 1)T.
With the conventions ∞−1 = 0, 0−1 = ∞ and −∞ = ∞, for any z ∈ C ∪ {∞},
[êz]G = {êz, êz−1 , ê−z, ê−z−1} and the measure 1

4 (δêz + δê−z + δêz−1 + δê−z−1 ) is a
�-invariant probability measure.

The proof of this example is obtained by an explicit computation.
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