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Abstract
The Z -invariant Isingmodel (Baxter in Philos Trans R Soc Lond AMath Phys Eng Sci
289(1359):315–346, 1978) is defined on an isoradial graph and has coupling constants
depending on an elliptic parameter k. When k = 0 the model is critical, and as k varies
the whole range of temperatures is covered. In this paper we study the corresponding
dimer model on the Fisher graph, thus extending our papers (Boutillier and de Tilière
in Probab Theory Relat Fields 147:379–413, 2010; Commun Math Phys 301(2):473–
516, 2011) to the full Z -invariant case. One of our main results is an explicit, local
formula for the inverse of theKasteleyn operator. Itsmost remarkable feature is that it is
an elliptic generalization of Boutillier and de Tilière (2011): it involves a local function
and the massive discrete exponential function introduced in Boutillier et al. (Invent
Math 208(1):109–189, 2017). This shows in particular that Z -invariance, and not
criticality, is at the heart of obtaining local expressions. We then compute asymptotics
and deduce an explicit, local expression for a natural Gibbs measure. We prove a local
formula for the Isingmodel free energy.We also prove that this free energy is equal, up
to constants, to that of the Z -invariant spanning forests of Boutillier et al. (2017), and
deduce that the two models have the same second order phase transition in k. Next, we
prove a self-duality relation for this model, extending a result of Baxter to all isoradial
graphs. In the last part we prove explicit, local expressions for the dimer model on a
bipartite graph corresponding to the XOR version of this Z -invariant Ising model.
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236 C. Boutillier et al.

1 Introduction

The Z -invariant Ising model, fully developed by Baxter [3–5], takes its roots in the
work of Onsager [51,54], see also [2,16,44,45,52] for further developments in the
physics community. It is defined on a planar, embedded graph G = (V, E) satisfying a
geometric constraint known as isoradiality, imposing that all faces are inscribable in a
circle of radius 1. In this introduction, the graph G is assumed to be infinite and locally
finite. The star-triangle move (see Fig. 5) preserves isoradiality; it transforms a three-
legged star of the graph into a triangle face. The Ising model is said to be Z -invariant
if, when decomposing the partition function according to the possible spins at vertices
bounding the triangle/star, the contributions only change by an overall constant. This
constraint imposes that the coupling constants J = (Je)e∈E satisfy the Ising model
Yang–Baxter equations. The solution to these equations is parametrized by angles
naturally assigned to edges in the isoradial embedding of the graph G, and an elliptic
parameter k, with k2 ∈ (−∞, 1):

∀ e ∈ E, Je = J(θe|k) = 1

2
log

(
1 + sn(θe|k)

cn(θe|k)

)
,

where sn and cn are two of the twelve Jacobi trigonometric elliptic functions. More
details and precise references are to be found in Sect. 2.2. When k = 0, the ellip-
tic functions sn, cn degenerate to the usual trigonometric functions sin, cos and one
recovers the critical Z -invariant Ising model, whose criticality is proved in [13,41,42].
Note that the coupling constants range from 0 to∞ as k varies, thus covering thewhole
range of temperatures, see Lemma 26.

A fruitful approach for studying the planar Ising model is to use Fisher’s corre-
spondence [24] relating it to the dimer model on a decorated version GF of the graph
G, see for example the book [46]. The dimer model on the Fisher graph arising from
the critical Z -invariant Ising model was studied by two of the present authors in [7,8].
One of the main goals of this paper is to prove a generalization to the full Z -invariant
Ising model of the latter results. Furthermore, we answer questions arising when the
parameter k varies. In the same spirit, we also solve the bipartite dimer model on the
graph GQ associated to two independent Z -invariant Ising models [9,19] and related
to the XOR-Ising model [26,55]. In order to explain the main features of our results,
we now describe them in more details.

The Kasteleyn matrix/operator [28,53] is the key object used to obtain explicit
expressions for quantities of interest in the dimer model, as the partition function, the
Boltzmann/Gibbs measures and the free energy. It is a weighted, oriented, adjacency
matrix of the dimer graph. Our first main result proves an explicit, local expression
for an inverse K−1 of the Kasteleyn operator K of the dimer model on the Fisher graph
GF arising from the Z -invariant Ising model; it can loosely be stated as follows, see
Theorem 11 for a more precise statement.

Theorem 1 Define the operator K−1 by its coefficients:

∀ x, y ∈ VF, K−1
x,y = ik′

8π

∫
�x,y

fx(u + 2K )fy(u) e(x,y)(u)du + Cx,y,
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The Z-invariant Ising model via dimers 237

where f and e, see (13) and (9), respectively, are elliptic functions defined on the torus
T(k), whose aspect ratio depends on k. The contour of integration �x,y is a simple
closed curve winding once vertically aroundT(k), which intersects the horizontal axis
away from the poles of the integrand; the constant Cx,y is equal to ±1/4 when x and
y are close, and 0 otherwise, see (19).

Then K−1 is an inverse of the Kasteleyn operator K on GF. When k �= 0, it is the
unique inverse with bounded coefficients.

Remark 2
• The expression for K−1

x,y has the remarkable feature of being local. This property
is inherited from the fact that the integrand, consisting of the function f and the
massive discrete exponential function, is itself local: it is defined through a path
joining two vertices corresponding to x and y in the isoradial graphG. This locality
property is unexpected when computing inverse operators in general.

• As for the other local expressions proved for inverse operators [8,10,31], Theo-
rem 11 has the following interesting features: there is no periodicity assumption
on the isoradial graph G, the integrand has identified poles implying that explicit
computations can be performed using the residue theorem (see “Appendix B”),
asymptotics can be obtained via a saddle-point analysis (see Theorem 13).

• The most notable feature is that Theorem 11 is a generalization to the elliptic case
of Theorem 1 of [8]. Let us explain why it is not evident that such a generalization
should exist. Thinking of Z -invariance from a probabilist’s point of view suggests
that there should exist local expressions for probabilities. The latter are computed
using the Kasteleyn operator K and its inverse, suggesting that there should exist a
local expression for the inverse operatorK−1, but giving no tools for finding it. Until
our recent paper [10], local expressions for inverse operators were only proved for
critical models [8,31], leading to the belief that not only Z -invariance but also
criticality played a role in the existence of the latter. Another difficulty was that
some key tools were missing. We believed that if a local expression existed in the
non-critical case, it should be an elliptic version of the one of the critical case, thus
requiring an elliptic version of the discrete exponential function of [49], which was
unavailable. This was our original motivation for the paper [10] introducing the
massive discrete exponential function and the Z -invariant massive Laplacian. The
question of solving the dimer representation of the full Z -invariant Ising model
turned out to be more intricate than expected, but our original intuition of proving
an elliptic version of the critical results turns out to be correct.

• On the topic of locality of observables for critical Z -invariant models, let us also
mention the paper [25] by Manolescu and Grimmett, recently extended to the ran-
dom cluster model [22]. Amongst other results, the authors prove the universality
of typical critical exponents and Russo-Seymour-Welsh type estimates. The core
of the proof consists in iterating star-triangle moves in order to relate different lat-
tices. This is also the intuition behind locality in Z -invariantmodels: if these critical
exponents were somehow related to inverse operators (which could maybe be true
for the q = 2 case), then one would expect local expressions for these inverses.

In Theorem 19, using the approach of [17], see also [8], we prove an explicit, local
expression for a Gibbs measure on dimer configurations of the Fisher graph, involving
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238 C. Boutillier et al.

the operator K and the inverse K−1 of Theorem 1. This allows to explicitly compute
probability of edges in polygon configurations of the low or high temperature expan-
sion of the Ising model, see Eq. (30).

Suppose now that the isoradial graph G is Z
2-periodic, and let G1 = G/Z2 be

the fundamental domain. Following an idea of [31] and using the explicit expression
of Theorem 1, we prove an explicit formula for the free energy of the Z -invariant
Ising model, see also Corollary 21. This expression is also local in the sense that it
decomposes as a sum over edges of the fundamental domain G1. A similar expression
is obtained by Baxter [3,5], see Remark 24 for a comparison between the two.

Theorem 3 The free energy Fk
Ising of the Z-invariant Ising model is equal to:

Fk
Ising = −|V1| log 2

2
− |V1|

∫ K

0
2H ′(2θ |k) log sc(θ |k) dθ

+
∑
e∈E1

(
−H(2θe|k) log sc(θe|k) +

∫ θe

0
2H ′(2θ |k) log(sc θ |k) dθ

)
,

where sc = sn
cn and the function H is defined in (66) and (67).

It turns out that the free energy of the Ising model is closely related to that of the
Z -invariant spanning forests of [10], see also Corollary 22.

Corollary 4 One has

Fk
Ising = −|V1| log 2

2
+ 1

2
Fk
forest.

This extends to the full Z -invariant Ising model the relation proved in the critical
case [8] between the Ising model free energy and that of critical spanning trees of [31].
Moreover, in [10] we prove a continuous (i.e., second order) phase transition at k = 0
for Z -invariant spanning forests, by performing an expansion of the free energy around
k = 0: at k = 0, the free energy is continuous, but its derivative has a logarithmic
singularity. As a consequence of Corollary 4 we deduce that the Z -invariant Ising
model has a second order phase transition at k = 0 as well. This result in itself is not
surprising and other techniques, such as those of [21] and the fermionic observable [12]
could certainly be used in our setting too to derive this kind of result; but what is
remarkable is that this phase transition is (up to a factor 1

2 ) exactly the same as that of
Z -invariant spanning forests. More details are to be found in Sect. 4.3.

It is interesting to note that the Z -invariant Ising model satisfies a duality relation
in the sense of Kramers and Wannier [36,37]: the high temperature expansion of a
Z -invariant Ising model with elliptic parameter k on an isoradial graph G, and the
low temperature expansion of a Z -invariant Ising model with dual elliptic parameter
k∗ = i k√

1−k2
on the dual isoradial graph G∗ yield the same probability measure

on polygon configurations of the graph G. The elliptic parameters k and k∗ can be
interpreted as parametrizing dual temperatures, see Sect. 4.2 and also [11,47].

The next result proves a self-duality property for the Ising model free energy, see
also Corollary 30. This is a consequence of Corollary 4 and of Lemma 29, proving a
self-duality property for the Z -invariant massive Laplacian.
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The Z-invariant Ising model via dimers 239

Corollary 5 The free energy of the Z-invariant Ising model on the graph G satisfies
the self-duality relation

Fk
Ising + |V1|

2
log k′ = Fk∗

Ising + |V1|
2

log k∗′
,

where k′ = √
1 − k2 is the complementary elliptic modulus, and k∗′ = 1/k′.

The above result extends to all isoradial graphs a self-duality relation proved by
Baxter [5] in the case of the triangular and honeycomb lattices. Note that this relation
and the assumption of uniqueness of the critical point was the argument originally used
to derive the critical temperature of the Ising model on the triangular and honeycomb
lattices, see also Sect. 4.4.

In Sect. 5 we consider the dimer model on the graph GQ associated to two indepen-
dent Z -invariant Ising models. This dimer model is directly related to the XOR-Ising
model [9,19]. Our main result is to prove an explicit, local expression for the inverse
K−1 of the Kasteleyn operator associated to this dimer model. This is a generaliza-
tion, in the specific case of the bipartite graph GQ, of the local expression obtained by
Kenyon [31] for all “critical” bipartite dimer models.

Theorem 6 Define the operator K−1 by its coefficients:

∀ (b, w) ∈ BQ × WQ, K−1
b,w = 1

4iπ

∫
�b,w

f(b,w)(u)du,

where f(b,w) is an elliptic function defined on the torus T(k), defined in Sect. 5.2. The
contour �b,w is a simple closed curve winding once vertically around T(k), which
intersects the horizontal axis away from the poles of the integrand.

ThenK−1 is an inverse operator ofK. For k �= 0, it is the only inverse with bounded
coefficients.

We also derive asymptotics and deduce an explicit, local expression for a Gibbs
measure on dimer configurations of GQ, allowing to do explicit probability computa-
tions.
Outline of the paper

• Section 2 Definition of the Ising model, of the two corresponding dimer models
and of their Z -invariant versions. Definition of the Z -invariant massive Laplacian
of [10].

• Section 3 Study of the Z -invariant Ising model on G via the dimer model on the
Fisher graph GF and the corresponding Kasteleyn operator K: definition of a one-
parameter family of functions in the kernel of K, statement and proof of a local
formula for an inverse K−1, explicit computation of asymptotics, specificities when
the graphG is periodic (connectionwith themassive Laplacian), and consequences
for the dimer model on GF.

• Section 4 Behavior of the model as the parameter k varies: duality in the sense of
Kramers andWannier [36,37], phase transition in k, self-duality property, connec-
tion with the modular group.
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240 C. Boutillier et al.

• Section 5 Study of the double Z -invariant Ising model on G via the dimer model
on the bipartite graph GQ and the Kasteleyn operator K: one-parameter family of
functions in the kernel ofK, statement and proof of a local formula for an inverse
K−1, explicit computation of asymptotics and consequences for the dimer model
on GQ.

2 Themodels in question

2.1 The Isingmodel via dimers

In this section we define the Ising model and two of its dimer representations. The
first is Fisher’s correspondence [24] providing a mapping between the high or low
temperature expansion of the Ising model on a graph G and the dimer model on a non-
bipartite graph GF. The second is a mapping between two independent Ising models
on G and the dimer model on a bipartite graph GQ [9,19].

2.1.1 The Ising model

Consider a finite, planar graph G = (V, E) together with positive edge-weights
J = (Je)e∈E. The Ising model on G with coupling constants J is defined as follows. A
spin configuration σ of G is a function on vertices of G with values in {−1, 1}. The
probability of occurrence of a spin configuration σ is given by the Ising Boltzmann
measure, denoted PIsing:

PIsing(σ ) = 1

ZIsing(G, J)
exp

⎛
⎝ ∑

e=xy∈E
Jeσxσy

⎞
⎠ ,

where ZIsing(G, J) is the normalizing constant known as the Ising partition function.
A polygon configuration of G is a subset of edges such that every vertex has even

degree; let P(G) denote the set of polygon configurations of G. Then, the high tem-
perature expansion [36,37] of the Ising model partition function gives the following
identity:

ZIsing(G, J) = 2|V|∏
e∈E

cosh Je

∑
P∈P(G)

∏
e∈P

tanh Je.

2.1.2 The dimer model

Consider a finite, planar graph G = (V , E) together with positive edge-weights
ν = (νe)e∈E . A dimer configuration M of G, also known as a perfect matching,
is a subset of edges of G such that every vertex is incident to exactly one edge of
M. Let M(G) denote the set of dimer configurations of the graph G. The probability
of occurrence of a dimer configuration M is given by the dimer Boltzmann measure,
denoted Pdimer:

Pdimer(M) =
∏

e∈E νe

Zdimer(G, ν)
,
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The Z-invariant Ising model via dimers 241

GG F

Fig. 1 Left: a piece of a planar graph G and of a polygon configuration. Center and right: the corresponding
Fisher graph GF and the two associated dimer configurations

where Zdimer(G, ν) is the normalizing constant, known as the dimer partition function.

2.1.3 Dimer representation of a single Ising model: Fisher’s correspondence

Fisher’s correspondence [19,24] gives a mapping between polygon configurations of a
graph G and dimer configurations of a decorated version of the graph, denoted GF and
called theFisher graph. For the purpose of this paper it suffices to consider graphs with
no boundary. The decorated graph GF = (VF, EF) is constructed from G as follows.
Every vertex of G of degree d is replaced by a decoration containing 2d vertices: a
triangle is attached to every edge incident to this vertex and these triangles are glued
together in a circular way, see Fig. 1.

The correspondence goes as follows. To a polygon configuration P of G one assigns
2|V| dimer configurations of GF: edges present (resp. absent) in P are present (resp.
absent) in GF; then there are exactly two ways to fill each decoration of GF so as to
have a dimer configuration, see Fig. 1.

Let ν = (νe)e∈EF be the dimer weight function corresponding to the high tempera-
ture expansion of the Ising model. Then ν is equal to

νe =

⎧⎪⎨
⎪⎩
1 if the edge e belongs to a decoration,

tanh Je if the edge e arises from an edge e of G,

0 otherwise.

From the correspondence, we know that:

ZIsing(G, J) =
(∏

e∈E
cosh Je

)
Zdimer(GF, ν). (1)

Note that the above is Dubédat’s version of Fisher’s correspondence [19]. It is more
convenient than the one used in [7,8] because it allows to consider polygon configu-
rations rather than complementary ones, and the Fisher graph has less vertices, thus
reducing the number of cases to handle.
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242 C. Boutillier et al.

Fig. 2 A piece of a graph G
(plain grey lines) and its dual
graph G∗ (dotted grey lines), and
the corresponding bipartite
graph GQ (plain black lines)

2.1.4 Dimer representation of the double Ising model

Basedon results of physicists [23,27,56,57],Dubédat [19] provides amappingbetween
two independent Ising models, one living on the primal graph G, the other on the dual
graph G∗, to the dimer model on a bipartite graph GQ. Based on results of [50,56],
two of the authors of the present paper exhibit an alternative mapping between two
independent Ising models living on the same graphG (embedded on a surface of genus
g) to the bipartite dimer model on GQ [9].

Since the above mentioned mappings cannot be described shortly, we refer to the
original papers and only define the bipartite graph GQ and the corresponding dimer
weights. Note that dimer probabilities on the graph GQ can be interpreted as probabil-
ities of the low temperature expansion of the XOR-Ising model [9], also known as the
polarization of the Ising model [26,55] obtained by taking the product of the spins of
the two independent Ising models.

We only consider the case where the graph G is planar and infinite. The bipartite
graph GQ = (VQ, EQ) is obtained from G as follows. Every edge e of G is replaced by
a “rectangle”, and the “rectangles” are joined in a circular way. The additional edges
of the cycles are referred to as external edges. Note that in each “rectangle”, two edges
are “parallel” to an edge of the graph G and two are “parallel” to the dual edge of G∗,
see Fig. 2.

Let ν = (νe)e∈EQ be the dimer weight function corresponding to two independent
Ising models with coupling constants J. Then ν is equal to [9,19]

νe =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tanh(2Je) if e belongs to a “rectangle” and is parallel to an edge e of G,

cosh(2Je)
−1 if e belongs to a “rectangle” and is parallel to the dual of

an edge e of G,

1 if e is an external edge,

0 otherwise.
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The Z-invariant Ising model via dimers 243

2.2 Z-invariant Isingmodel, dimer models andmassive Laplacian

Although already present in the work of Kenelly [30], Onsager [51] andWannier [54],
the notion of Z -invariance has been fully developed by Baxter in the context of the
integrable 8-vertex model [3], and then applied to the Ising model and self-dual Potts
model [4]; see also [2,32,52]. Z -invariance imposes a strong locality constraint which
leads to the parameters of the model satisfying a set of equations known as the Yang–
Baxter equations. From the point of view of physicists it implies that transfer matrices
commute, and from the point of view of probabilists it suggests that there should exist
local expressions for probabilities, but it provides no tool for finding such expressions
if they exist.

In Sect. 2.2.1 we define isoradial graphs, the associated diamond graph and star-
triangle moves, all being key elements of Z -invariance. Then in Sect. 2.2.2 we
introduce the Z -invariant Ising model [3–5], followed by the corresponding versions
for the dimer models on GF and GQ. Finally in Sect. 2.2.5 we define the Z -invariant
massive Laplacian and the corresponding model of spanning forests [10].

2.2.1 Isoradial graphs, diamond graphs and star-triangle moves

Isoradial graphs, whose name comes from the paper [31], see also [20,48], are defined
as follows. An infinite planar graph G = (V, E) is isoradial, if it can be embedded in
the plane in such a way that all internal faces are inscribable in a circle, with all circles
having the same radius, and such that all circumcenters are in the interior of the faces,
see Fig. 3 (left). This definition is easily adapted when G is finite or embedded in the
torus.

From now on, we fix an embedding of the graph, take the common radius to be
1, and also denote by G the embedded graph. An isoradial embedding of the dual
graph G∗, with radius 1, is obtained by taking as dual vertices the circumcenters of
the corresponding faces.

The diamond graph, denoted G	, is constructed from an isoradial graph G and its
dual G∗. Vertices of G	 are those of G and those of G∗. A dual vertex of G∗ is joined to
all primal vertices on the boundary of the corresponding face, see Fig. 3 (right). Since
edges of the diamond graph G	 are radii of circles, they all have length 1, and can be
assigned a direction ±eiα . Note that faces of G	 are side-length 1 rhombi.

Using the diamond graph, angles can naturally be assigned to edges of the graph G
as follows. Every edge e of G is the diagonal of exactly one rhombus of G	, and we
let θe be the half-angle at the vertex it has in common with e, see Fig. 4. We have
θe ∈ (0, π

2 ), because circumcircles are assumed to be in the interior of the faces. From
now on, we ask more and suppose that there exists ε > 0 such that θe ∈ (ε, π

2 − ε).

We further assign two rhombus vectors to the edge e, denoted by eiαe and eiβe , see
Fig. 4.

A train-track of G is a bi-infinite chain of edge-adjacent rhombi of G	 which does
not turn: on entering a face, it exits along the opposite edge [35]. Each rhombus in a
train-track T has an edge parallel to a fixed unit vector ±eiαT , known as the direction
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244 C. Boutillier et al.

Fig. 3 Left: a piece of an infinite isoradial graph G (bold) with its circumcircles. Right: the diamond graph
G	

Fig. 4 An edge e of G, the
corresponding rhombus
half-angle θe and rhombus

vectors eiαe , eiβe

e

eiαe

eiβe

θe

Fig. 5 Star-triangle move on an isoradial graph G (plain lines) and cubic flip on the underlying diamond
graph G	 (dotted lines)

of the train-track. Train-tracks are also known as rapidity lines or simply lines in the
field of integrable systems, see for example [3].

The star-triangle move, also known as the Y–
 transformation, underlies Z -
invariance [3,4]. It is defined as follows: if G has a vertex of degree 3, that is a
star Y , it can be replaced by a triangle 
 by removing the vertex and connecting its
three neighbors. The graph obtained in this way is still isoradial: its diamond graph is
obtained by performing a cubic flip in G	, that is by flipping the three rhombi of the
corresponding hexagon, see Fig. 5. This operation is involutive.
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The Z-invariant Ising model via dimers 245

2.2.2 Z-invariant Ising model

The Ising model defined on a graph G is said to be Z -invariant, if when decomposing
the partition function according to the possible spin configurations at the three vertices
of a star/triangle, it only changes by a constant when performing the Y–
 move, this
constant being independent of the choice of spins at the three vertices.

This strong constraint yields a set of equations known as the Ising model Yang–
Baxter equations, see (6.4.8) of [5] and also [51,54]. The solution to these equations
can be parametrized by the elliptic modulus k, where k is a complex number such that
k2 ∈ (−∞, 1), and the rapidity parameters, see Equation (7.8.4) and page 478 of [5].
In this context it is thus natural to suppose that the graph G is isoradial. Extending the
form of the coupling constants to the whole of Gwe obtain that they are given1 by, for
every edge e of G,

Je = J(θe|k) = 1

2
log

(
1 + sn(θe|k)

cn(θe|k)

)
, or equivalently sinh(2J(θe|k)) = sc(θe|k),

(2)

where k is the elliptic modulus, θe = θe
2K
π
, K = K (k) = ∫ π

2
0

1√
1−k2 sin2 τ

dτ is the

complete elliptic integral of the first kind, cn(·|k), sn(·|k) and sc(·|k) = sn(·|k)
cn(·|k)

are
three of the twelve Jacobi trigonometric elliptic functions. More on their definition
can be found in the books [1, Chapter 16] and [40]; a short introduction is also given
in the paper [10, Section 2.2]. Identities that are useful for this paper can be found in
“Appendix A”.

For a given isoradial graph G, we thus have a one-parameter family of coupling
constants (J)k , indexed by the ellipticmodulus k, with k2 ∈ (−∞, 1). For every edge e,
the coupling constant J(θe|k) is analytic in k2 and increases from0 to∞ as k2 increases
from −∞ to 1, see Lemma 26; the elliptic modulus k thus parametrizes the whole
range of temperatures. When k = 0, elliptic functions degenerate to trigonometric
functions, and we have:

J(θe|0) = 1

2
log

(
1 + sin θe

cos θe

)
.

The Ising model is critical at k = 0, see [13,41,42]. More on this subject is to be found
in Sect. 4.

2.2.3 Corresponding dimer model on the Fisher graphGF

Let us compute the dimer weight function ν on GF corresponding to the Z -invariant
Ising model on G with coupling constants J given by (2). For every edge e of G, we
have

1 InEquation (7.8.4),Baxter actually uses the complementary parameter k′ =
√
1 − k2 and theparametriza-

tion, sinh(2Je) = −i sn(iθe|k′). The latter is equal to sc(θe|k) by [40, (2.6.12)].
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246 C. Boutillier et al.

tanh(Je) = e2Je − 1

e2Je + 1
=

1+sn θe
cn θe

− 1
1+sn θe
cn θe

+ 1
= 1 + sn θe − cn θe

1 + sn θe + cn θe
= sn θe

1 + cn θe
= sc

θe

2
dn

θe

2
,

see [40, (2.4.4)–(2.4.5)] for the last identity.
As a consequence of Sect. 2.1.3, the dimer weight function ν on the Fisher graph

GF is

νe =

⎧⎪⎨
⎪⎩
1 if e belongs to a decoration,
sn θe

1+cn θe
= sc θe

2 dn θe
2 if e corresponds to an edge e of G,

0 otherwise.

(3)

When k = 0 we have dn = 1 and sc = tan, which corresponds to the critical case.

2.2.4 Corresponding dimer model on the bipartite graphGQ

In a similar way, we compute the dimer weight function ν of the graphGQ correspond-
ing to two independent Z -invariant Ising model. We have

cosh(2Je) = 1

2

(
1 + sn θe

cn θe
+ cn θe

1 + sn θe

)
= nc θe,

tanh(2Je) = sinh(2Je)

cosh(2Je)
= sn θe. (4)

As a consequence of Sect. 2.1.4, the dimer weight function ν on the bipartite graph
GQ is

νe =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sn θe if e is parallel to an edge e of G,

cn θe if e is parallel to the dual edge of an edge e of G,

1 if e is an external edge,

0 otherwise.

(5)

2.2.5 The Z-invariant massive Laplacian

We will be using results on the Z -invariant massive Laplacian introduced in [10]. Let
us recall its definition and the key facts required for this paper.

Following [10, Equation (1)], the massive Laplacian operator 
m : CV → C
V is

defined as follows. Let x be a vertex of G of degree n; denote by e1, . . . , en edges
incident to x and by θ1, . . . , θn the corresponding rhombus half-angles, then

(
m f )(x) =
n∑

j=1

ρ(θ i |k)[ f (x) − f (y)] + m2(x|k) f (x), (6)

where the conductances ρ and (squared) masses (m2) are defined by

ρe = ρ(θe|k) = sc(θe|k), (7)
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(m2)(x) = m2(x|k) =
n∑

j=1

(A(θ j |k) − sc(θ j |k)), (8)

with

A(u|k) = 1

k′
(
Dc(u|k) + E − K

K
u
)
,

where Dc(u|k) = ∫ u
0 dc2(v|k)dv, and E = E(k) is the complete elliptic integral of

the second kind.
We also need the definition of the discrete k-massive exponential function or simply

massive exponential function, denoted e(·,·)(·), of [10, Section 3.3]. It is a function from
V×V×C toC. Consider a pair of vertices x, y ofG and an edge-path x = x1, . . . , xn =
y of the diamond graph G	 from x to y; let eiα j be the vector corresponding to the
edge x jx j+1. Then e(x,y)(·) is defined inductively along the edges of the path:

∀ u ∈ C, e(x j ,x j+1)(u) = i
√

k′ sc
(u − α j

2

)
,

e(x,y)(u) =
n−1∏
j=1

e(x j ,x j+1)(u), (9)

where α j = α j
2K
π
. These functions are in the kernel of the massive Laplacian (6), see

[10, Proposition 11].
The massive Green function, denoted Gm , is the inverse of the massive Laplacian

operator (6). The following local formula is proved in [10, Theorem 12]:

Gm(x, y) = k′

4iπ

∫
�x,y

e(x,y)(u)du, (10)

where k′ = √
1 − k2 is the complementary elliptic modulus, �x,y is a vertical contour

on the torus T(k) := C/(4KZ+ 4i K ′
Z), whose direction is given by the angle of the

ray R−→xy.
The massive Laplacian is the operator underlying the model of spanning forests,

the latter being defined as follows. A spanning forest of G is a subgraph spanning all
vertices of the graph, such that every connected component is a rooted tree. Denote
by F(G) the set of spanning forests of G and for a rooted tree T, denote its root by xT.
The spanning forest Boltzmann measure, denoted Pforest, is defined by:

∀ F ∈ F(G), Pforest(F) =
∏

T∈F
(
m2(xT|k)

∏
e∈T ρ(θe|k)

)
Zforest(G, ρ, m)

,

where Zforest(G, ρ, m) is the spanning forest partition function. In [10, Theorem 41]
we prove that this model is Z -invariant (thus explaining the name Z -invariant massive
Laplacian). By Kirchhoff’s matrix-tree theorem we have Zforest(G, ρ, m) = det(
m).
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3 Z-invariant Isingmodel via dimers on the Fisher graph GF

From now on, we consider a fixed elliptic modulus k2 ∈ (−∞, 1), so that we will
remove the dependence in k from the notation.

In the whole of this section, we let G be an infinite isoradial graph and GF be the
corresponding Fisher graph. We suppose that edges of GF are assigned the weight
function ν of (3) arising from the Z -invariant Ising model.

We give a full description of the dimer model on the Fisher graph GF with explicit
expressions having the remarkable property of being local. This extends to the Z -
invariant non-critical case the results of [7,8] obtained in the Z -invariant critical case,
corresponding to k = 0. One should keep in mind that when k = 0, the “torus” T(0)
is in fact an infinite cylinder with two points at infinity, and that “elliptic” functions
are trigonometric series.

Prior to giving a more detailed outline, we introduce the main object involved in
explicit expressions for the dimer model, namely, the Kasteleyn matrix/operator [28,
53].

3.1 Kasteleyn operator on the Fisher graph

An orientation of the edges of GF is said to be admissible if all cycles bounding faces
of the graph are clockwise odd, meaning that, when following such a cycle clockwise,
there is an odd number of co-oriented edges. By Kasteleyn [29], such an orientation
always exists.

Suppose that edges ofGF are assigned an admissible orientation, then the Kasteleyn
matrix K is the corresponding weighted, oriented, adjacency matrix of GF. It has rows
and columns indexed by vertices of GF and coefficients given by, for every x, y ∈ VF,

Kx,y = sgn(x, y)νxy,

where ν is the dimer weight function (3) and

sgn(x, y) =
{
1 if x ∼ y and x → y,

−1 if x ∼ y and y → x.

Note that K can be seen as an operator acting on C
VF :

∀ f ∈ C
VF , ∀ x ∈ VF, (K f )x =

∑
y∈VF

Kx,y fy.

Outline Section 3 is structured as follows. In Sect. 3.2 we introduce a one-parameter
family of functions in the kernel of the Kasteleyn operator K; this key result allows us
to prove one of the main theorems of this paper: a local formula for an inverse K−1 of
the operator K, see Theorem 11 of Sect. 3.3. Then in Sect. 3.4 we derive asymptotics
of this inverse. In Sect. 3.5 we handle the case where the graph G is periodic. Finally
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GG F G�

x

wj

vj

wj+1

vj+1

x
x

eiαj eiαj+1

Fig. 6 Notation for vertices of decorations, and rhombus vectors assigned to vertices. Since no confusion
occurs, the argument x is omitted

in Sect. 3.6 we derive results for the dimer model on GF: we prove a local expression
for the dimer Gibbs measure, see Theorem 19, and a local formula for the dimer and
Ising free energies, see Theorem 20 and Corollary 21; we then show that up to an
additive constant the Ising model free energy is equal to 1

2 of the spanning forest free
energy, see Corollary 22.

Notation Throughout this section, we use the following notation. A vertex x of GF

belongs to a decoration corresponding to a unique vertex x of G. Vertices of GF

corresponding to a vertex x of G are labeled as follows. Let d(x) be the degree of
the vertex x in G, then the decoration consists of d(x) triangles, labeled from 1 to d(x)
in counterclockwise order. For the j-th triangle, we let v j (x) be the vertex incident to
an edge of G, and w j (x),w j+1(x) be the two adjacent vertices in counterclockwise
order, see Fig. 6.

There is a natural way of assigning rhombus unit-vectors ofG	 to vertices ofGF: for
every vertex x of G and every k ∈ {1, . . . , d(x)}, let us associate the rhombus vector
eiα j (x) to w j (x), and the rhombus vectors eiα j (x), eiα j+1(x) to v j (x), see Fig. 6; we let
θ j (x) be the half-angle at the vertex x of the rhombus defined by eiα j (x) and eiα j+1(x),
with θ j (x) ∈ (0, π

2 ).
Recall the notation θe = θe

2K
π

andα = α 2K
π

for the elliptic versions of θ e (rhombus
half-angle) and α (angle of the rhombus vector eiα of G	).

3.2 Functions in the kernel of the Kasteleyn operator K

The definition of the one-parameter family of functions in the kernel of the Kasteleyn
operator K requires two ingredients: the function f of Definition 3.1 and the massive
discrete exponential function of [10].

The function f uses the angles (α j (x)) assigned to vertices of GF, the latter being a
priori defined in R/2πZ. For the function f to be well defined, we actually need them
to be defined inR/4πZ, which is equivalent to a coherent choice for the determination
of the square root of eiα j (x). This construction is done iteratively, relying on our choice
of Kasteleyn orientation.

Fix a vertex x0 ofG and set the value ofα1(x0) to some value, say 0. In the following,
we use the index j (resp. ) to refer to vertices of GF belonging to a decoration x (resp.
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Fig. 7 Defining angles in
neighboring decorations

vj

wj

v�

w�

x

y

eiαj

eiα�

y) of G; with this convention, we omit the arguments x and y from the notation. For
vertices in a decoration of a vertex x of G, define

α j+1 =
{

α j + 2θ j if w j → w j+1,

α j + 2θ j + 2π if w j+1 → w j .
(11)

Given a directed path γ , let co(γ ) be the number of co-oriented edges. Here is the
rule defining angles in the decoration corresponding to a vertex y of G, neighbor of
the vertex x. Let j and  be such that v j is incident to v, as in Fig. 7. Consider the
length-three directed path w j , v j , v,w from w j to w. Then

α =
{

α j − π if co(w j , v j , v,w) is odd,

α j + π if co(w j , v j , v,w) is even.
(12)

Lemma 7 The angles (α j (x))x∈V, j∈{1,...,d(x)} are well defined in R/4πZ.

The proof is postponed to “Appendix C”. It is reminiscent of the proof of Lemma 4
of [8] but has to be adapted since we are working with a different version of the Fisher
graph.

Definition 3.1 The function f : VF × C → C is defined by

⎧⎪⎨
⎪⎩
f(w j , u) := fw j (u) = nc

( u−α j
2

)
,

f(v j , u) := fv j (u) = Kv j ,w j fw j (u) + Kw j+1,v j fw j+1(u)

= Kv j ,w j nc
( u−α j

2

)+ Kw j+1,v j nc
( u−α j+1

2

)
.

(13)

Definition 3.2 The function g : VF × VF × C → C is defined by

g(x, y, u) := gx,y(u) = fx(u + 2K )fy(u) e(x,y)(u), (14)

where e(·,·)(·) is the massive exponential function of [10], whose definition is recalled
in Sect. 2.2.5.
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Remark 8 The function g is meromorphic and biperiodic:

g(x,y)(u + 4K ) = g(x,y)(u + 4i K ′) = g(x,y)(u),

so that we restrict the domain of definition to T(k) := C/(4KZ + 4i K ′
Z). Note

however that taken separately, fx(·+2K ) and fy(·) are not periodic on T(k): only their
product is.

The function g can also be seen as a one-parameter family of matrices (g(u))u∈T(k),
where for every u ∈ T(k), g(u) has rows and columns indexed by vertices of GF, and
g(u)x,y := g(x,y)(u). We have the following key proposition.

Proposition 9 For every u ∈ T(k), Kg(u) = g(u)K = 0.

Proof Note that since K is skew-symmetric, and that up to a sign, the functions x �→
g(x,z)(u) and x �→ g(z,x)(u + 2K ) are equal:

g(z,x)(u + 2K ) = fz(u + 4K )fx(u + 2K ) e(z,x)(u + 2K )

= − fx(u + 2K )fz(u) e(x,z)(u) = −g(x,z)(u),

it is enough to check the first equality, i.e., Kg(u) = 0.
Let us fix z. We need to check that for every vertex x of GF,

d∑
i=1

Kx,xig(z,xi )
(u) = 0,

where x1, . . . , xd are the d (equal to three or four) neighbors of x inGF.We distinguish
two cases depending on whether the vertex x is of type w or v.

• If x = w j (x) for some j , then x has four neighbors:w j−1(x) = w j−1,w j+1(x) =
w j+1, v j−1(x) = v j−1 and v j (x) = v j , see Fig. 6. Since all these vertices belong to
the same decoration, the part fz(u + 2K ) e(z,x)(u) is common to all the terms gz,xi

(u).
One is left with proving the following identity:

(Kf)w j = Kw j ,w j−1 fw j−1 + Kw j ,w j+1 fw j+1 + Kw j ,v j−1 fv j−1 + Kw j ,v j fv j = 0.

Using the second line in Eq. (13) to express fv j and fv j−1 in terms of fw’s, one gets for
the left-hand side of the previous equation:

(Kw j ,w j−1 + Kw j ,v j−1Kv j−1,w j−1)fw j−1 + (Kw j ,v jKv j ,w j + Kw j ,v j−1Kw j ,v j−1)fw j

+(Kw j ,w j+1 + Kw j ,v jKw j+1,v j )fw j+1 .

The coefficient in front of fw j ,

Kw j ,v jKv j ,w j + Kw j ,v j−1Kw j ,v j−1 = −(Kw j ,v j )
2 + (Kw j ,v j−1)

2 = −1 + 1,
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is trivially equal to zero. Moreover, because of the condition on the orientation of the
triangles in the Kasteleyn orientation, we have:

Kw j ,w j−1 + Kw j ,v j−1Kv j−1,w j−1 = Kw j ,w j+1 + Kw j ,v jKw j+1,v j = 0. (15)

Indeed, to check this, it is enough to look at the case where the edges of a triangle are
all oriented clockwise, and notice that the quantity is invariant if we simultaneously
change the orientation of anypair of edges of the triangle,which is a transitive operation
on all the (six) clockwise odd orientations of a triangle. So (Kf)w j is identically zero.

• If x = v j (x) = v j for some j , then x has three neighbors:w j (x) = w j ,w j+1(x) =
w j+1 and v(y) = v. Factoring out fz(u + 2K ) e(z,x)(u), it is sufficient to prove
that

Kv j ,w j fw j (u) + Kv j ,w j+1 fw j+1(u) + Kv j ,v
fv

(u) e(x,y)(u) = 0.

Note that under inversion of the orientation of all edges around any of the verticesw j ,
w j+1 and v j , all the signs of three terms either stay the same, or change at the same
time. To fix ideas, we can thus suppose that the edges of the triangles w j ,w j+1, v j

and w,w+1, v are all oriented clockwise, and that the edge between v j and v is
oriented from v to v j , as in Fig. 7. Returning to the definition of the angles mod 4π ,
see (11) and (12), and simplifying notation, we obtain

α = α j (x), β = α j+1(x) = α + 2θ,

α′ = α(y) = α − 2K , β ′ = α+1(y) = α′ + 2θ = β − 2K .

We have:

Kv j ,w j fw j (u) + Kv j ,w j+1 fw j+1(u) = fw j (u) − fw j+1(u) = cn( u−β
2 ) − cn( u−α

2 )

cn( u−α
2 ) cn( u−β

2 )
.

On the other hand, (13) entails that

fv
(u) = fw

(u) + fw+1(u) = nc( u−α′
2 ) + nc( u−β ′

2 ) = − 1

k′
sd( u−α

2 ) + sd( u−β
2 )

sd( u−α
2 ) sd( u−β

2 )
.

This has to bemultipliedbyKv j ,v
= − sn θ

1+cn θ
andby the exponential functione(x,y)(u),

so that:

Kv j ,v
e(x,y)(u)fv

(u) = sn θ

1 + cn θ

1

k′
sd( u−α

2 ) + sd( u−β
2 )

sd( u−α
2 ) sd( u−β

2 )
(−k′) sc( u−α

2 ) sc( u−β
2 )

= − sn θ

1 + cn θ

sn( u−α
2 ) dn( u−β

2 ) + sn( u−β
2 ) dn( u−α

2 )

cn( u−α
2 ) cn( u−β

2 )
.

Proving that

Kv j ,w j fw j (u) + Kv j ,w j+1 fw j+1(u) + Kv j ,v
e(x,y)(u)fv

(u) = 0 (16)
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amounts to showing that

(1 + cn θ)
{
cn( u−β

2 ) − cn( u−α
2 )
} = sn θ

{
sn( u−α

2 ) dn( u−β
2 ) + sn( u−β

2 ) dn( u−α
2 )
}
.

However, the addition formula (see Exercice 32 (v) in [40, Chapter 2] and also the
similar relation (55)) reads:

cn(u + v) cn u = cn v − sn(u + v) sn u dn v.

Evaluated at u = u−α
2 , v = − u−β

2 and u + v = θ (and exchanging the role of α and
β for the second equation), we obtain

{
cn( u−β

2 ) cn θ = cn( u−α
2 ) + sn( u−β

2 ) dn( u−α
2 ) sn θ,

cn( u−α
2 ) cn θ = cn( u−β

2 ) − sn( u−α
2 ) dn( u−β

2 ) sn θ.

Taking the difference of these two equations yields the result. �
Remark 10 If μ is a measure on T(k) and if we define hx,y = ∫ gx,y(u)dμ(u), then
by linearity of the integral, one also has Kh = hK = 0. A particular case, which will
be important for what follows (see also [8,31]), is the case when μ is the integration
along a contour on T(k).

3.3 Local expression for the inverse of the Kasteleyn operator K

We now state Theorem 11, proving an explicit, local formula for coefficients of the
inverse K−1 of the Kasteleyn operator K. This formula is constructed from the function
g of Definition 3.2.

Theorem 11 Consider the dimer model on the Fisher graph GF arising from the
Z-invariant Ising model on the isoradial graph G, and let K be the corresponding
Kasteleyn operator. Define the operator K−1 by its coefficients:

∀ x, y ∈ VF, K−1
x,y = ik′

8π

∫
�x,y

gx,y(u)du + Cx,y (17)

= ik′

8π

∫
�x,y

fx(u + 2K )fy(u) e(x,y)(u)du + Cx,y, (18)

where the contour of integration �x,y is a simple closed curve winding once vertically
around the torus T(k) (along which the second coordinate globally increases), which
intersects the horizontal axis in the angular sector (interval) sx,y of length larger than
or equal to 2K (see Sect. 3.3.2), and the constant Cx,y is given by

Cx,y = −1

4
·

⎧⎪⎨
⎪⎩
1 if x = y = w j (x),
(−1)n(x,y) if x = w j (x) and y = w(x) for some j �= ,

0 otherwise,

(19)
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where n(x, y) is the number of edges oriented clockwise in the counterclockwise arc
from x to y in the inner decoration.
Then K−1 is an inverse of the Kasteleyn operator K on GF.
When k �= 0, it is the unique inverse with bounded coefficients.
Alternatively, the coefficients of the inverse of the Kasteleyn operator admit the expres-
sion

K−1
x,y = ik′

8π

∮
Cx,y

fx(u + 2K )fy(u) e(x,y)(u)H(u)du + Cx,y, (20)

where the function H is defined in (66) and (67), Cx,y is a trivial contour oriented
counterclockwise on the torus, not crossing �x,y and containing in its interior all the
poles of g(x,y) and the pole of H, and Cx,y is defined in (19).

Before we go on with the proof of this theorem, let us make a few comments about
the formula of the inverse Kasteleyn matrix:

• As soon as x and y are not in the same decoration, or one of them is of type
v, then the constant Cx,y is zero, and the formula for K−1

x,y as a contour integral
has the same flavour as the Green function of the Z -invariant massive Laplacian
introduced in [10, Theorem 12].

• The constant Cx,x is here to ensure that K−1
x,x is 0 if x is of type w (the integral is 0

when x is of type v as we shall see later).
• As one can expect, the full formula is skew-symmetric in x and y.
• To obtain the alternative expression (20) from (18), one can make use of a mero-
morphic multivalued function with a horizontal period of 1, like the function H
defined in (66) and (67), originally introduced in [10] for k2 ∈ (0, 1). Following
this way, one may rewrite the integral as an integral over a contour bounding a
disk, allowing one to perform explicit computation with Cauchy’s residue theo-
rem. One can add to H any elliptic function on T(k) without changing the result
of the integral, given that Cx,y encloses all the poles of the new integrand.

• Adding to the columns of K−1 functions in the kernel of K yield other inverses,
with different behaviour at infinity. Such a function in the kernel is obtained by
integrating g(x,y)(·) along a horizontal contour in T(k), see Remark 10. As a
consequence, if we replace in (18) the contour �x,y by a contour winding a times
vertically andb times horizontally,witha andb coprimes, and divide the integral by
a, then we get a new inverse for the Kasteleyn operator K, which has an alternative
expression as a trivial contour integral involving integer linear combinations of
functions H and V , as defined in “Appendix A.2”.

• When k = 0, the “torus” T(k) is in fact a cylinder, with two points at infinity. The
contour �x,y has infinite length. The function gx,y(u) decays sufficiently fast at
infinity to ensure convergence of the integral. By performing the change of variable
λ = −eiu in the integrals (18) or (20), one gets the adaptation to this variant of the
Fisher graph of the formula for the inverse Kasteleyn operator in [8], as an integral
along a ray from 0 to ∞, or as an integral over a closed contour with a log.

We now turn to the proof of Theorem 11. We show that the operator K−1 with
those coefficients satisfy KK−1 = Id and K−1K = Id. These identities, understood
as products of infinite matrices, make sense since K has a finite number of non-zero
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coefficients on each row and column. Moreover, by skew-symmetry, it is enough to
check the first one. When k �= 0, it turns out that these coefficients for K−1 go to zero
exponentially fast, see Theorem 13. This property together with K−1K = Id imply
injectivity of K on the space of bounded functions on vertices of GF, which in turn
implies uniquess of an inverse with bounded coefficients.

The general idea for proving KK−1 = Id follows [31], but it is complicated by the
fact that theFisher graphGF itself is not isoradial. In this respect, the proof followsmore
closely that of Theorem 5 of [8] with two main differences: we work with a different
Fisher graph GF and more importantly we handle the elliptic case, making it a non-
trivial extension. Section 3.3.1 corresponds to Sections 6.3.1 and 6.3.2 of [8]. It consists
in the delicate issue of encoding the poles of the integrand fx(u + 2K )fy(u) e(x,y)(u);
for this question there are no additional difficulties so that we have made it as short as
possible and refer to the paper [8] for more details and figures. Section 3.3.2 consists
in obtaining a sector sx,y on the horizontal axis of the torus T(k) from the encoding of
the poles; this is then used to define the contour of integration �x,y. It corresponds to
Section 6.3.3 of [8] but requires adaptations to pass to the elliptic case. Section 3.3.3
is a non-trivial adaptation of Section 6.4 of [8], handling a different Fisher graph GF

and more importantly handling the elliptic case.

3.3.1 Preliminaries: encoding the poles of the integrand

Let G be an infinite isoradial graph and let G	 be the corresponding diamond graph.
In order to encode poles of the integrand of K−1

x,y, we need the notion of minimal path
which relies on the notion of train-tracks, see Sect. 2.2.1 for definition. A train-track
is said to separate two vertices x, y of G	 if every path connecting x and y crosses
this train-track. A path from x to y in G	 is said to be minimal if all its edges cross
train-tracks that separate x from y, and each such train-track is crossed exactly once.
A minimal path from x to y is in fact a geodesic for the graph metric on G	. Since G	
is connected, it always exists. In general, there are several minimal paths between two
vertices, but they all consist of the same steps taken in a different order.

For every pair of vertices x, y ofGF, we now define an edge-path γx,y ofG	 encoding
the poles of the integrand of K−1

x,y. Consider a minimal path from x to y and let eiα be
one of the steps of the path, then the corresponding pole of the exponential function is
α + 2K . Since eiα+2K = eiα+iπ = −eiα , this pole is encoded in the reverse step.
As a consequence, poles of the exponential function are encoded in the steps {−eiα}
of a minimal path from y to x.

We now have to add the poles of the functions fx(u + 2K ) and fy(u). The difficulty
lies in the fact that some of them might be canceled by factors in the numerator of
the exponential function. By definition, the function fx(u + 2K ) has either one or two
poles {α j }, encoded in the edge(s) {eiα j } of the diamond graph G	; let Tx = {T j

x }
be the corresponding train-track(s). Similarly, the pole(s) of fy(u) are at {α′

j + 2K }
and are encoded in the edge(s) {−eiα′

j } of G	, and Ty = {T j
y } are the corresponding

train-track(s).
Let us start from a minimal path γx,y from y to x. For every j , do the following

procedure: if T j
y separates y from x, then the pole α′

j + 2K is canceled by the expo-
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nential and we leave γx,y unchanged. If not, this pole remains, and we extend γx,y by

adding the step −eiα′
j at the beginning of γx,y. The path γx,y obtained is still a path of

G	, denote by ŷ the new starting point, at distance at most 2 from y.
When dealing with a pole of fx(u + 2K ), one needs to be careful since, even when

the corresponding train-track separates y from x, the exponential function might not
cancel the pole, if it has already canceled the same pole of fy(u); this happens when
Tx and Ty have a common train-track. The procedure to extend γx,y runs as follows:

for each j , if T j
x separates y and x and is not a train track of Ty, then the pole α j is

canceled by the exponential function, and we leave γx,y unchanged. If not, this pole
remains, and we extend γx,y by attaching the step eiα j at the end of γx,y. The path
obtained in this way is still a path of G	, starting from ŷ. Denote by x̂ its ending point,
which is at distance at most 2 from x.

3.3.2 Obtaining a sector sx,y from �x,y

Let x, y be two vertices of GF and let γx,y be the path encoding poles of the integrand
of K−1

x,y constructed above. Denote by {eiτ j } the steps of the path, seen as vectors in the
unit disk; the corresponding poles of the integrand are {τ j }. Using these poles, we now
define an interval/sector sx,y in the horizontal axis R/4KZ of the torus T(k). Given
the sector sx,y, the contour of integration �x,y of K−1

x,y is then defined to be a simple
closed curve winding once around the torus vertically, i.e., in the direction i , along
which the second coordinate globally increases, and which intersects the horizontal
axis in sx,y, see Fig. 8.

General case This case contains all but the three mentioned below. We know by
Lemmas 17 and 18 of [8] that there exists a sector in the unit circle, of size greater
than or equal to π , containing none of the steps {eiτ j }. Equivalently, there exists a
sector in the horizontal axis R/4KZ of the torus T(k), of size larger than or equal to
2K , containing none of the poles {τ j }. We let sx,y be this sector, it is represented in
Fig. 8.

Here are the three cases which do not fit in the general situation.
Case 1 The path γx,y consists of two steps that are opposite. Then, the two poles
separate the real axis of T(k) in two sectors of size exactly 2K , leaving an ambiguity.
This can only happen when x = y = w j (x) and the two poles are {α j , α j + 2K }. In
this case, the standard convention is that2 sw j ,w j = (α j , α j + 2K ), (Fig. 9) and by
Lemma 44 we have

ik′

8π

∫
�w j ,w j

fw j (u + 2K )fw j (u)du = 1

4
. (21)

We choose the value of the constant Cw j ,w j to compensate exactly the value of this

integral so as to have K−1
w j ,w j

= 0, that is Cw j ,w j = − 1
4 , and we recover the first line

of the definition of Cx,y of Eq. (19).

2 When indicating sectors on the circle, the convention we adopt is that (α, β) represents the sector where
the horizontal coordinate increases from α to β.
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2iK ′

Γx,y

Cx,y

sx,y

Γx,y

Fig. 8 Left: the torus T(k) with the contours of integration �x,y and Cx,y; the poles of the integrand
fx(u + 2K )fy(u) e(x,y)(u) are represented by black bullets and the pole 2i K ′ of the function H by a black
square. Right: in blue the sector sx,y used to define the contour of integration �x,y

Fig. 9 Standard convention for
the definition of the sector
sw j ,w j

αj

αj + 2K

Remark 12 It will be useful for the proof to consider also the non-standard convention
with the complementary sector, defining a contour �′

w j ,w j
. Returning to the definition

of the function fw j (u), we have that the integral over �′
w j ,w j

is equal to minus the one

on the contour�w j ,w j , so that in order to have K
−1
w j ,w j

= 0, we setC ′
w j ,w j

= −Cw j ,w j .

The two other cases correspond to situations when |Tx⋂ Ty| = 2. The correspond-
ing path γx,y does not enter the framework of Lemmas 17 and 18 of [8]. They occur
when x and y are equal or are neighbors in GF, and both of type ‘v’. In other words,
one has x = y = v j (x), or (x, y) = (v j (x), v(y)), with x ∼ y in G, j and  being
such that v j (x) ∼ v(y) in GF.
Case 2 Suppose first that x = y = v j (x). Then the poles are {α j , α j +
2K , α j+1, α j+1 + 2K } (the exponential function is equal to 1 and cancels no pole). If
we take sv j ,v j = (α j , α j+1), then the integral is zero by symmetry. Indeed, the change
of variable u → α j+1 + α j − u leaves the contour invariant (up to homotopy) and
fv j (u + 2K ) is changed into its opposite, whereas fv j (u) is invariant. Note that taking
sv j ,v j = (α j + 2K , α j+1 + 2K ) also gives a zero integral, because it is related to the
previous one by the change of variable u → u + 2K . These two choices of sectors
will be useful in the proof of Theorem 11, see Fig. 10 (center).
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αj + 2K

αj+1 + 2K

αj+1

αj

αj + 2K

αj+1 + 2K

αj+1

αj

αj + 2K

αj+1 + 2K

αj+1

αj

vj

eiαj+1

eiαj −eiαj+1

−eiαj

v�
yx

svj ,vj

svj ,v�

Fig. 10 Definition of the sectors sv j ,v j (center) and sv j ,v (right)

Fig. 11 Notation for the cases
where the general argument for
proving (KK−1)x,y = δx,y does
not work and which have to be
treated separately y y′

wj

vj

vj−1
wj−1

wj+1
v�

w�

w�+1

Case 3 Suppose now that (x, y) = (v j (x), v(y)). Then fv j (x) and fv(y) induce twice
the same poles {α j , α j+1}. The exponential adds the poles {α j +2K , α j+1 +2K } and
the numerator cancels one pair of {α j , α j+1}, implying that there remains the poles
{α j , α j + 2K , α j+1, α j+1 + 2K }. We set the convention given in Fig. 10 (right).

3.3.3 Proof of the local formula for K−1 of Theorem 11

We need to prove that
∀ x, y ∈ VF, (KK−1)x,y = δx,y.

We use the following notation. The vertex y is y = w j (y) or v j (y), for
some vertex y of G and some j ∈ {1, . . . , d(y)}. If y = w j (y), it has four
neighbors w j−1(y), v j−1(y), v j (y),w j+1(y); if y = v j (y), it has three neighbors
w j (y),w j+1(y), v(y′), see Fig. 11. We denote by xi the neighbors of x, with i rang-
ing from 1 to 3 or 4.
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As long as the computation of (KK−1)x,y =∑i Kx,xiK
−1
xi ,y only involves terms K−1

xi ,y
for which the constant Cxi ,y is 0, and the sector sxi ,y defining the contour �xi ,y does
not use any special convention, that is when

• x is not in the same decoration as y, if y = w j (y),
• x /∈ {w j (y),w j+1(y), v(y′)}⋃{w(y′),w+1(y′), v j (y)}, if y = v j (y),

then by the argument of [8,31], all contours of integration �xi ,y can be deformed into
a common contour �, crossing the horizontal axis in the nonempty intersection of the
sectors

⋂
i sxi ,y, so that by Proposition 9 (see also Remark 10) we have:

∑
i

Kx,xi

∮
�xi ,y

fxi (u + 2K )fy(u) e(x,y)(u)du

=
∮

�

∑
i

Kx,xi fxi (u + 2K )fy(u) e(x,y)(u)du = 0.

Let us check the remaining cases separately.
Suppose that y = w j (y). The degree of the vertex y is d(y) and indices below should
be thought of as being modulo d. We have to handle all cases where the vertex x
belongs to the decoration y, whether it is of type ‘v’ or ‘w’.

• Wefirst compute (KK−1)x,w j when x = vr (y) for some r ∈ {1, . . . , d(y)}. The ver-
tex x has three neighborswr (y),wr+1(y) and a vertex of type ‘v’ in a neighboring
decoration. We now omit the argument y from the notation.

When r ∈ { j − d + 1, . . . , j − 2}, we are in the general case of the definition of �xi ,y;
when r = j − 1, we choose the standard convention of Case 1, that is �w j ,w j and
Cw j ,w j ; when r = j , we choose the equivalent, non-standard convention of Case 1,
that is �′

w j ,w j
and C ′

w j ,w j
.

With these choices, the three sectors appearing in the expressions ofK−1
xi ,w j

have non-
empty intersection, so that the contours �xi ,y in the three integrals can be continuously
deformed into the same contour �, and thus the combination of the integral parts gives
zero.

Since vertices of type ‘v’ have no constant contribution Cxi ,y, we are left with
proving that

∀ r ∈ { j − d + 1, . . . , j − 1}, Kvr ,wr Cwr ,w j + Kvr ,wr+1Cwr+1,w j = 0, (22)

and that
Kv j ,w j C

′
w j ,w j

+ Kv j ,w j−d+1Cw j−d+1,w j = 0. (23)

Multiplying each of the equations of (22) by Kvr ,wr , and using that −Kvr ,wrKvr ,wr+1 =
Kwr ,wr+1 by the clockwise odd condition on triangles, we have that the first set of equa-
tions is equivalent to, for all r ∈ { j − d + 1, . . . , j − 1}, Cwr ,w j = Kwr ,wr+1Cwr+1,w j ,
which in turn holds if and only if

Cwr ,w j =
⎛
⎝ j−1∏

m=r

Kwm ,wm+1

⎞
⎠Cw j ,w j = (−1)n(wr ,w j )Cw j ,w j . (24)
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αj + 2K αj + 2K αj + 2K αj + 2K

αj αj

αj−1 αj−1

αj+1 αj+1

wj

wj+1

wj−1
vj

vj−1

swj−1,wj svj−1,wj svj ,wj swj+1,wj

Fig. 12 Sectors sxi ,y when x = y = w j

Recalling that Cw j ,w j = − 1
4 and returning to the second line of the definition of Cx,y,

we see that this is indeed the case, whence (22) is proved.
We are left with proving that Eq. (23) is satisfied. Doing the same steps as above,

and using that Cw j−d+1,w j = (−1)n(w j−d+1,w j )Cw j ,w j , this is equivalent to proving
that

C ′
w j ,w j

= Cw j ,w j (−1)n(w j−d+1,w j )Kw j ,w j−d+1 .

Observing that (−1)n(w j−d+1,w j )Kw j ,w j−d+1 = −1 because of the clockwise odd
condition on the inner circle of decorations, and recalling that C ′

w j ,w j
= −Cw j ,w j

(see Remark 12), we deduce that this equation is indeed true, thus ending the proof
when x = vr (y).

• We now compute (KK−1)x,w j when x = wr (y) for some r ∈ {1, . . . , d(y)}. The
vertex x = wr (y) has four neighbors: wr−1(y), wr+1(y), vr−1(y) and vr (y), and
we now omit the argument y.

Let us first handle the integral part. When r �= j + 1, we are either in the general case
of the definition of �xi ,y or in Case 1, and we choose the standard definition. When
r = j +1, we choose the non-standard definition of Case 1, that is�′

w j ,w j
and C ′

w j ,w j
.

With these choices, as long as r �= j , the four sectors have non-empty intersection, so
that the combination of the integral parts is equal to zero.

When r = j , then the four sectors enter the framework of the general case and are
not compatible, see Fig. 12.

A vertical contour �′ passing between α j and α j+1 is contained in the three sectors
sw j−1,w j , sv j−1,w j , sw j+1,w j . If the fourth integral was taken along this contour, the
combination of the four would be zero. By adding and subtracting the integral for the
pair (v j ,w j ) along�′, we have that the contribution of the integral part of (KK−1)w j ,w j

is equal to
ik′

8π
Kw j ,v j

(∮
�v j ,w j

−
∮

�′

)
fv j (u + 2K )fw j (u)du. (25)

The contour �v j ,w j − �′ is the (negatively oriented) boundary of a cylinder in
the torus, which contains only one pole of the integrand, at u = α j . The function
fw j (u) has no pole in the cylinder, and only the term involving fw j of the function
fv j (u + 2K ) = Kv j ,w j fw j (u + 2K ) + Kw j+1,v j fw j+1(u + 2K ) has a pole at u = α j . As
a consequence, the contribution of the integral part is equal to
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− ik′

8π

(∮
�v j ,w j

−
∮

�′

)
fw j (u + 2K )fw j (u)du

= − ik′

8π

(∮
�′
w j ,w j

−
∮

�w j ,w j

)
fw j (u + 2K )fw j (u)du = 1

2
,

by continuously deforming the contours to those of Case 1, and using Eq. (21) and
Remark 12.

We now handle the constant part of (KK−1)wr ,w j , keeping in mind that vertices of
type ‘v’ have no constant contribution. As long as r + 1 /∈ { j + 1, j + 2}, we have by
Eq. (24)

Cwr ,w j = Kwr−1,wrKwr ,wr+1Cwr+1, j ,

so that

Kwr ,wr−1Cwr−1,w j + Kwr ,wr+1Cwr+1,w j

= (Kwr ,wr−1Kwr−1,wrKwr ,wr+1 + Kwr ,wr+1)Cwr+1,w j = 0.

When r = j + 1, recalling that we have chosen the non-standard definition from
Case 1, factoring Kw j ,w j+1 , using Eq. (24) to write Cw j+2,w j = Cw j−d+2,w j , and finally
remembering that C ′

w j ,w j
= −Cw j ,w j , we have

Kw j+1,w j C
′
w j ,w j

+ Kw j+1,w j+2Cw j+2,w j

= Kw j ,w j+1

(
1 + Kw j ,w j+1Kw j+1,w j+2(−1)n(w j−d+2,w j )

)
Cw j ,w j ,

which is equal to 0 by the Kasteleyn orientation condition on inner cycles of decora-
tions.

When r = j , using a similar argument, we obtain

Kw j ,w j−1Cw j−1,w j + Kw j ,w j+1Cw j+1,w j = −2Cw j ,w j = 1

2
.

Wrapping up, we have proved that (KK−1)wr ,w j is equal to 0 when r �= j , and to
1
2 + 1

2 = 1 when r = j .
Suppose that y = v j (y). Note that since y is of type ‘v’, we always have Cxi ,y = 0.
We have to handle the cases where x ∈ {w j (y),w j+1(y), v(y′)}⋃{w(y′),w+1(y′),
v j (y)}, and need to checkwhether the sectors defining the contours�xi ,y in the integral
part of Kxi ,y have non-empty intersections.

There are three values of x where one of the neighbors of x is y = v j (y): namely
when x ∈ {w j (y),w j+1(y), v(y′)}. We now omit the arguments y, y′ from the nota-
tion. In these three cases, the sectors sw j ,v j and sw j+1,v j are compatible and intersect,
either in the arc from α j to α j+1 (2 first cases), or from α j + 2K to α j+1 + 2K
(last case). In all these situations, using the two possible definitions of Case 2 to write
K−1
v j ,v j

= 0 as the integral with a contour in that common sector, then by the general

argument, we get that (KK−1)x,v j = 0.
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αj + 2 αK j + 2K

αj αjαj+1 + 2K αj+1 + 2K αj+1 + 2K

αj+1 αj+1

vj

wj

wj+1

vj−1

v�

swj ,vj swj+1,vj sv�,vj

x x′

Fig. 13 Sectors sxi ,y when x = y = v j

We now need to check the remaining three cases where the combination uses K−1
v,v j

,
corresponding to the situation where x ∈ {w(y′),w+1(y′), v j (y)}.

In the two first situations, using the general case and case 3, we see that the sectors
are compatible, and we can conclude with the general argument that (KK−1)x,v j = 0.

Suppose now that x = y = v j . Its three neighbors are w j , w j+1 and v and the
corresponding sectors are not compatible, see Fig. 13.

The two sectors for w j and w j+1 are compatible and intersect in the arc from α j

to α j+1, whereas according to the convention of Case 3, the one for v is the arc
from α j + 2K to α j+1 + 2K . A vertical contour �′ passing between α j and α j+1 is
contained in the three sectors sw j ,v j , sw j+1,v j and sv,v j . If the third integral was taken
along this contour, the combination of the three would be 0. By adding and subtracting
the integral of the pair (v, v j ) along �′, and using Proposition 9 to write

Kv j ,v
fv

(u + 2K ) ey′,y(u) = − (Kv j ,w j fw j (u + 2K ) + Kv j ,w j fw j+1(u + 2K )
)
,

we obtain

(KK−1)v j ,v j = − ik′

8π

(∮
�v,v j

−
∮

�′

) (
Kv j ,w j fw j (u + 2K )

+ Kv j ,w j+1 fw j+1(u + 2K )
)
fv j (u)du.

By a change of variable u → u + 2K , the integral of the first term in the sum is

ik′

8π

(∮
�′

−
∮

�v,v j

)
Kv j ,w j fw j (u + 2K )fv j (u)du

= − ik′

8π
Kv j ,w j

(∮
�′+2K

−
∮

�′
v,v j

+2K

)
fv j (u + 2K )fw j (u)du,

which is exactly the same integral as the one computed in (25). Indeed, �′ +2K (resp.
�v,v j + 2K ) is homologous to �v j ,w j (resp. to �′). Therefore it is equal to 1

2 .
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Using the same argument as for the computation of (25), we obtain that the integral
of the second term in the sum

ik′

8π

(∮
�′

−
∮

�v,v j

)
Kv j ,w j+1 fw j+1(u + 2K )fv j (u)du

= − ik′

8π

(∮
�′

−
∮

�v,v j

)
fw j+1(u + 2K )fw j+1(u)du = 1

2
.

Therefore (KK−1)v j ,v j = 1
2 + 1

2 = 1, which completes the proof. �
Note that the proof uses essentially the fact that the contour �x,y winds once verti-

cally, butmakes no use of the horizontal winding of the contour, which can be arbitrary.
However, “verticality” of the contour plays a crucial role for the exponential decay of
the coefficients of K−1, as stated below in Theorem 13.

3.4 Asymptotics for the inverse Kasteleyn operator K

For any x, y ∈ G, define

χ(u) = 1

|x − y| log{e(x,y)(u + 2i K ′)}, (26)

with the exponential function introduced in Sect. 2.2.5. The main result of this section
(Theorem 13) shows the exponential decay of the inverse Kasteleyn operator, with a
rate that can be directly computed in terms of χ .

Since |x−y|will be typically large in this section concernedwith asymptotic results,
we are in the general case, according to Sect. 3.3.2. The poles of the exponential
function are {τ j }; they belong to a sector of size strictly less than 2K , say τ j ∈
τ + (−K , K ).

Theorem 13 Assume that k �= 0. As |x − y| → ∞, one has

K−1
x,y = −fx(u0 + 2K + 2i K ′)fy(u0 + 2i K ′)

4
√
2π |x − y|χ ′′(u0)

e|x−y|χ(u0) · (1 + o(1)),

where u0 is the unique u ∈ τ + 2K + (−K , K ) such that χ ′(u) = 0, and χ(u0) < 0.

Proof It consists in applying the saddle-point method to the contour integral (18). It
is very similar to the proof of Theorem 14 in [10], which is devoted to the derivation
of the asymptotics of the Green function (10). Indeed, the integrands of (10) and (18)
only differ by the prefactor function fx(·+2K )fy(·) (as well as a constantmultiplicative
term). This prefactor function will affect the asymptotics by multiplying by its value
at the saddle-point u0 ± 2i K ′ the asymptotics of (10). Let us give some brief details.

• It follows from [10, Lemma 15] that the equation χ ′(u) = 0 has a unique solu-
tion u0 in the interval τ + 2K + (−K , K ), and moreover χ(u0) < 0 (cf. [10,
Lemma 16]). The point u0 ± 2i K ′ will be interpreted as the saddle-point.
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• We then move the contour �x,y of (18) into a new one, denoted by �′
x,y, going

through u0 ± 2i K ′ and satisfying some further properties. The validity of this
change of contour is based on the fact that neither the exponential function nor the
prefactor have poles in the sector sx,y, see Fig. 8.

• We adjust the new contour �′
x,y so as to have, classically, a contribution expo-

nentially negligible outside a neighborhood of u0 ± 2i K ′ (this can be done by
introducing suitable steepest descent paths).

• In the neighborhood of u0 ± 2i K ′, we apply (a uniform version of) the saddle-
point method, which eventually yields to the expansion written in Theorem 13.

�
Remark 14 Let us note that the constant −fx(u0 + 2K + 2i K ′)fy(u0 + 2i K ′) in Theo-
rem 13 is positive. Indeed, by (13), f(u) is the sum of one or two terms nc(

u−α j
2 ). Due

to the location of the poles described in Sect. 3.3.1, α j ∈ τ + (−K , K ). Hence

u0 ± 2i K ′ − α j

2
∈ K + i K ′ + (−K , K ),

and by Table 2, nc(
u0±2i K ′−α j

2 ) = nc(K + i K ′ + v0) = ik′−1k cn(v0), with some
v0 ∈ (−K , K ). Consequently, the constant−fx(u0+2K +2i K ′)fy(u0+2i K ′) equals
minus the product of two (sums of) terms ik′−1k cn(v0). The positivity follows from
−i2 = 1.

3.5 The case whereG isZ2-periodic

In this section, we suppose moreover that the graphG isZ2-periodic, implying that the
graph GF is also Z

2-periodic. We consider the dimer model on the graph GF arising
from a Z -invariant Isingmodel onG, and the Z -invariant rooted spanning forest model
on G. Note that the weight function corresponding to each of the models is periodic.
Consider the natural operators associated to the two models, that is the Kasteleyn
operator K acting on C

VF , arising from a periodic admissible orientation of the edges
of GF;3 and the massive Laplacian operator 
m acting on C

V.
Using Fourier techniques, see for example [15], an important tool for understanding

each of the models is the characteristic polynomial of the respective operators. In this
section, we prove that the characteristic polynomials of the two models are equal up
to an explicit constant. We state implications of this fact for the spectral curve of the
dimer model on GF.

In the periodic case, we have two explicit expressions for the inverse operator K−1.
The one given by Theorem 11 and the one obtained using Fourier techniques. In
Corollary 18, we prove that the two are equal.

These two facts are used in Sect. 3.6 for obtaining explicit expressions for the dimer
model on GF and relating its free energy to that of the rooted spanning forest model.

3 Such an orientation always exists by Theorem 3.1 of [14], using that the number of vertices of the
fundamental domain of GF is even.
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3.5.1 Quasi-periodic functions

A natural toroidal exhaustion of G is {Gn = G/nZ2}n�1; in a similar way {GF
n =

GF/nZ2}n�1 is a toroidal exhaustion of GF. The smallest graphs G1 and GF
1 of the

exhaustions are known as the fundamental domains.
We note with an addition sign the action of Z2 on vertices, edges, faces of G and

GF. Let γx , γy be two simple paths in G∗ connecting a given face f0, with f0 + (1, 0)
and f0 + (0, 1) respectively.

To simplify notation, we also write γx , γy for the images of these paths when
quotienting by the action of Z2, which are now non trivial cycles of G∗

1 generating the
first homology group of the torus on which G1 is drawn. For (z, w) ∈ C

2, denote by
C
V
(z,w) the space of (z, w)-quasi-periodic functions on vertices of G:

∀ x ∈ V, ∀ (z, w) ∈ C
2, f (x + (m, n)) = z−mw−n f (x).

For every vertex x of G1, define δx(z, w) to be the (z, w)-quasi-periodic function
equal to 0 on vertices which are not translates of x and to 1 at x. Then the collection
{δx(z, w)}x∈V1 is a natural basis for CV

(z,w).

Note that γx , γy can be deformed into directed cycles of the dual graph (GF
1)

∗ (or

of the diamond graph G	
1). In a way similar to C

V
(z,w) we define C

VF
(z,w), the space of

(z, w)-quasi-periodic functions on vertices of GF, with basis {δx(z, w)}x∈VF1 .

3.5.2 Characteristic polynomials and spectral curves

Let K(z, w) be the matrix of the restriction of K to the space C
VF
(z,w) in the basis

{δx(z, w)}x∈VF1 . The matrix K(z, w) is obtained from the Kasteleyn matrix of the fun-

damental domain GF
1 as follows: multiply coefficients of edges crossing γx by z (resp.

z−1) if the edge goes from the left of γx to the right (resp. from the right of γx to the
left); coefficients of edges crossing γy are multiplied by w or w−1.

In a similar way,
m(z, w) is the matrix of the restriction of
m to the spaceCV
(z,w)

in the basis {δx(z, w)}x∈G1 .
The dimer characteristic polynomial ofGF is the determinant of the matrix K(z, w),

PK(z, w) = det K(z, w).

Themassive Laplacian characteristic polynomial ofG is the determinant of
m(z, w),

P
m (z, w) = det
m(z, w).

Consider a Laurent polynomial P(z, w) in two complex variables z, w. Then, the
spectral curve of the polynomial, denoted by C(P), is defined to be its zero locus:

C(P) = {(z, w) ∈ (C∗)2 : P(z, w) = 0}.
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The following proves that the two characteristic polynomials are equal up to an
explicit multiplicative constant. The constant is determined in Sect. 3.6.3.

Proposition 15 There exists a nonzero constant c such that

PK(z, w) = cP
m (z, w).

Proof Let us first prove that P
m (z, w) divides PK(z, w), using an argument similar
to that of [7, Lemma 11]. By [10, Proposition 21], any point of the spectral curve of
the Laplacian is of the form (z(u), w(u)), with u ∈ T(k), and

z(u) =
∏

eiα∈γx

(
i
√

k′ sc( u−α
2 )
)

, w(u) =
∏

eiα∈γy

(
i
√

k′ sc( u−α
2 )
)

. (27)

The function g(·,y)(u) of Eq. (14) is (z(u), w(u))-quasi-periodic, as it involves the
function f·(u), which is invariant by translations, and the discrete massive exponential
function,which is (z(u), w(u))quasi-periodic. ByProposition 9 it is in the kernel of the
Kasteleyn operator K. Therefore, PK(z(u), w(u)) = 0. As a consequence, P
m (z, w)

divides PK(z, w).
Now by [19] we know that, up to a constant, PK(z, w) is equal to the dimer charac-

teristic polynomial on GQ. The graph GQ being bipartite, the corresponding spectral
curve is a Harnack curve [34]. Hence, the characteristic polynomial on GQ, and thus
PK(z, w), are irreducible.

The fact that P
m (z, w) divides PK(z, w) and that PK(z, w) is irreducible implies
that the two polynomials are equal up to a constant, and concludes the proof. �

By Proposition 15, properties of the spectral curve of P
m obtained in [10], are
automatically transferred to the spectral curve of the dimer characteristic polynomial
PK.

Corollary 16 Let k2 �= 0.

• The spectral curve of the dimer model on GF is a Harnack curve of genus 1, with
(z, w) ↔ (z−1, w−1) symmetry.

• Every Harnack curve of genus 1 with (z, w) ↔ (z−1, w−1) symmetry arises from
such a dimer model.

• The characteristic polynomial PK(z, w) has no zero on the unit torus {(z, w) ∈
C
2 : |z| = 1, |w| = 1}.

Proof For k2 > 0, this follows from our results of the paper [10]. For the last point
we use the fact that (0, 0) does not belong to the amoeba of the spectral curve. For
k2 < 0, we prove later in Sect. 4 that the spectral curve is the same as for an elliptic
parameter (k∗)2 > 0, such that (k∗)′k′ = 1. �
Remark 17 For k = 0, the spectral curve of the dimer model on GF is still the spectral
curve of the Laplacian with conductances tan θ . It is a Harnack curve of genus 0 with
the same symmetry, and a double point at z = w = 1, see [7,10,33].
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3.5.3 Inverse Kasteleyn operator

Because of the periodicity of the graph, it is possible to define an inverse for the
Kasteleyn matrix, by inverting in Fourier space the multiplication operator K (z, w):

define the operator K̃
−1

by its coefficients

K̃−1
x+(m,n),x′+(m′,n′) = 1

(2π i)2

∫∫

{(z,w)∈C2:|z|=1,|w|=1}

[Cof K (z, w)]x′,x
PK(z, w)

zm′−mwn′−n dz

z

dw

w
,

(28)

for all x, x′ ∈ GF
1 , and m, m′, n, n′ ∈ Z.

By Corollary 16, we know that the characteristic polynomial PK(z, w) has no zero
on the unit torus. This means that Proposition 5 of [7] holds, and we have:

Proposition 18 The inverse Kasteleyn operators K̃
−1

and K−1 given by Eqs. (18)
and (28), respectively, are equal.

Proof For k �= 0, there is no root of PK(z, w) on the unit torus, by Corollary 16. As

a consequence, the quantities K̃
−1
x+(m,n),x′ are the Fourier coefficients of an analytic

periodic function, and as such, decay exponentially fast when |m| + |n| goes to ∞. In
particular, these coefficients are bounded. By the uniqueness statement in Theorem 11,

K̃
−1

and K−1 are equal.
For k = 0, adaptating the computation of the asymptotics of the integral formula

for K−1 from [8, Corollary 7] proves that these coefficients go to 0. The result then
follows from [7, Proposition 5], stating uniqueness of the inverse of the Kasteleyn
operator with coefficients tending to 0 at infinity on a periodic Fisher graph. �

Note that similarly to what has been done for the Green function of the Z -invariant
Laplacian [10, Section 5.5.1], it is also possible to directly understand the transforma-
tion from the double integral expression (28) to the contour integral (18), by computing
one integral (e.g., with respect to w) by residues, and then by perfoming the change
of variable from z on the spectral curve to u ∈ T(k).

3.6 Dimermodel on the graphGF

Consequences of the results of Sects. 3.3–3.5 on the dimer model on GF are inves-
tigated: in Sect. 3.6.1, we prove an explicit local expression for a Gibbs measure, in
the case where the graph G is periodic or not. In Sect. 3.6.2, we prove an explicit
local expression for the free energy of the dimer model. Combining this with the high
temperature expansion, we deduce an explicit local formula for the free energy of
the Ising model, as a sum of contributions for each edge of the fundamental domain,
similar to the one given by Baxter, see [5, (7.12.7)] and [3].
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3.6.1 Gibbs measure

When the graph is infinite, the notion of Boltzmann measure is replaced by that
of Gibbs measure. A Gibbs measure on the set of dimer configurations of GF is a
probability measure satisfying the DLR conditions: if one fixes a perfect matching in
an annular region of GF, then perfect matchings inside and outside of this annulus are
independent. Moreover, the probability of an interior perfect matching is proportional
to the product of its edge-weights. Let F be the σ -field generated by cylinders of GF,
a cylinder being the set of dimer configurations containing a fixed, finite subset of
edges of GF. Following the argument of [15,17], we obtain the following.

Theorem 19 There is a unique probability measure Pdimer on (M(GF),F), such that
the probability of occurrence of a subset of edges E = {e1 = x1y1, . . . , en = xnyn} of
GF in a dimer configuration of GF is:

Pdimer(e1, . . . , en) =
⎛
⎝ n∏

j=1

Kx j ,y j

⎞
⎠Pf[t (K−1)E], (29)

where K−1 is the inverse Kasteleyn operator whose coefficients are given by (20), and
(K−1)E is the sub-matrix of K−1 whose rows and columns are indexed by vertices of
E. The measure Pdimer is a Gibbs measure.

Moreover, when the graphGF isZ2-periodic, the measurePdimer is obtained as weak
limit of the dimer Boltzmann measures on the toroidal exhaustion GF

n , and coefficients

of K−1 are also given by K̃
−1

of Eq. (28).

Proof Convergence of the Boltzmann measures in the periodic case follows the argu-
ment of [15]. The delicate issue in the convergence comes from the possible zeros
of the dimer characteristic polynomial on the torus {(z, w) : |z| = 1, |w| = 1}. By
Corollary 16, we know that whenever k �= 0, it has no zero, and the argument goes
trough. When k = 0, it has a double zero at (1, 1), the argument is more delicate and
has been done in [7].

The argument in the non-periodic case follows that of [17]. The key requirements
are the convergence of the Boltzmann measure in the periodic case, uniqueness of
the inverse Kasteleyn operator decreasing at infinity, and the locality property of the
formula given by Theorem 11. �
Example Consider an edge e = v j (x)v(y) = v jv of GF corresponding to an edge
e = xy of Gwith rhombus half-angle θe. Then, the probability Pdimer(e) that this edge
occurs in a dimer configuration of GF, or equivalently the probability that this edge
occurs in a high temperature polygon configuration of G, is equal to

Pdimer(e) = Kv jv
K−1
v,v j

= 1

2
− 1 − 2H(2θe)

2 cn θe
. (30)

This is computed in Lemma 45 of “Appendix B”.
To compute probabilities of edges occurring in low temperature polygon configu-

rations one uses the duality relation of Sect. 4.2.
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3.6.2 Free energy

Suppose that the isoradial graph G is Z2-periodic. The free energy F of a model is
defined to be minus the exponential growth rate of its partition function, that is

Fk
dimer = − lim

n→∞
1

n2 log Zdimer(GF
n , ν),

Fk
Ising = − lim

n→∞
1

n2 log ZIsing(Gn, J),

Fk
forest = − lim

n→∞
1

n2 log Zforest(Gn, ρ, m),

where ν, J, m2 and ρ are given by (2), (5), (7) and (8), respectively.
In Theorem 20 we prove an explicit local formula for the free energy Fk

dimer of the
dimer model on the graph GF arising from a Z -invariant Ising model on G. From this
we deduce an explicit formula for the free energy Fk

Ising of the Z -invariant Ising model,

see Corollary 21. Then in Corollary 22, we compare the latter to the free energy Fk
forest

of Z -invariant spanning forests on G.

Theorem 20 The free energy of the dimer model on the Fisher graph GF arising from
the Z-invariant Ising model on G is equal to

Fk
dimer = − (|E1| + |V1|) log 2

2

+
∑
e∈E1

(
−1

2
log

(
sc

θe

2
dn

θe

2

)
+
(
1 − 2H(2θe)

2

)
log sc θe

+
∫ θe

θflate

2H ′(2θ) log sc θ dθ

)
.

Proof By Corollary 16 the dimer characteristic polynomial PK(z, w) has no zero on
the unit torus. This implies [15] that the free energy Fdimer is equal to

Fdimer = −1

2

∫∫
|z|=|w|=1

log PK(z, w)
dz

2iπ z

dw

2iπw
. (31)

Following an idea of Kenyon [31], the next step consists in studying its variation as
the embedding of the graph is modified by tilting the train-tracks. Note that the idea
of tilting the train-tracks can already be found in the section free energy of [3].

Let us consider a smooth deformation of the isoradial graph G, i.e., a continuous
family of isoradial graphs (G(t))t∈[0,1] obtained by varying the directions (αT (t)) of
the train-tracks smoothly with t , in such a way that G(1) = G and G(0) = Gflat, where

Gflat is an isoradial graph whose edges have half-angles θ
flat

equal to 0 or π
2 . Let G

F(t)
be the Fisher graph corresponding to the isoradial graph G(t), and let Fdimer(t) be the
corresponding free energy. We thus have Fdimer = Fdimer(1).
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As the angles of the train-tracks vary smoothly with t , recalling that PK(z, w) =
det K(z, w), one has:

dFdimer(t)

dt
= −1

2

∫∫
|z|=|w|=1

d

dt
log det K(z, w)

dz

2π i z

dw

2π iw

= −1

2

∫∫
|z|=|w|=1

∑
x,y∈VF1

∂ log det K(z, w)

∂K(z, w)x,y

dK(z, w)x,y

dt

dz

2π i z

dw

2π iw

= −1

2

∑
x,y∈VF1

∫∫
|z|=|w|=1

(K(z, w)−1)y,x
dK(z, w)x,y

dt

dz

2π i z

dw

2π iw

= −
∑

e=xy∈EF1
K̃

−1
y,x

dKx,y
dt

= −
∑

e=xy∈EF1
Pdimer(e)

d log νe

dt
.

In the penultimate line we used that for an invertible matrix M = (Mi, j ), one has

∂ log det M

∂ Mi, j
= (M−1) j,i .

In the last line we used the explicit expression for K̃
−1

given by Eq. (28), Corollary 18

and Theorem 19 implying that Kx,yK̃
−1
y,x = Kx,yK−1

y,x = Pdimer(e), and the fact that
νe = |Kx,y|.

The weight of an edge e of a decoration of GF
1 is equal to 1, i.e., is independent of

the rhombus angle, so that it does not contribute to dFdimer(t)
dt .

If e corresponds to an edge of G1 having rhombus angle θe, we have by Eqs. (30)
and (3):

Pdimer(e) = 1

2
− 1 − 2H(2θe)

2 cn θe
:= P(θe), νe = sn θe

1 + cn θe
:= ν(θe). (32)

Integrating the identity

dFdimer(t)

dt
= −

∑
e∈E1

P(θe)
d log ν(θe)

dθe

dθe

dt

along the deformation, we have

Fdimer(1) = Fdimer(0) +
∫ 1

0

∑
e∈E1

dFdimer(t)

dt
dt

= Fdimer(0) −
∑
e∈E1

∫ θe

θflate

P(θ)
d log ν(θ)

dθ
dθ. (33)
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Wefirst consider the integral part of the above equation, and then the term Fdimer(0).
Replacing P(θ) using (32), we have:

−
∫

P(θ)
d log ν(θ)

dθ
dθ = −

∫ (
1

2
− 1 − 2H(2θ)

2 cn θ

)
d log ν(θ)

dθ
dθ

= −1

2
log ν(θ) +

∫ (
1 − 2H(2θ)

2 cn θ

)
d log ν(θ)

dθ
dθ.

Using the explicit expression of ν(θ) (see again (32)) and the formulas sn′ =
cn dn, cn′ = − sn dn, cn2 + sn2 = 1, gives

dν(θ)

dθ
= (cn θ + cn2 θ + sn2 θ) dn θ

(1 + cn θ)2
= dn θ

1 + cn θ
,

which readily implies that

d log ν(θ)

dθ
= dn θ

sn θ
= ds θ.

As a consequence,

(
1 − 2H(2θ)

2 cn θ

)
d log ν(θ)

dθ
=
(
1 − 2H(2θ)

2 cn θ

)
ds θ = 1 − 2H(2θ)

2

d log sc θ

dθ
,

using that sc′ = dn
cn2

⇒ (log sc)′ = dn
sn cn . Integrating by parts, we obtain

−
∫

P(θ)
d log ν(θ)

dθ
dθ = −1

2
log

sn θ

1 + cn θ
+
(
1 − 2H(2θ)

2

)
log sc θ

+
∫

2H ′(2θ) log sc θ dθ.

We now need to compute − 1
2 log

sn θ
1+cn θ

+ (
1−2H(2θ)

2 ) log sc θ in the limit θ → θflat

for possible values of θflat, i.e., for θflat ∈ {0, K } since θ
flat ∈ {0, π

2 }.
When θ → K . We have sn K = 1, cn K = 0 and H(2K ) = 1

2 , see (71) for k2 > 0
and the duality relation (67) for k2 < 0; so that

−1

2
log

sn K

1 + cn K
+
(
1 − 2H(2K )

2

)
log sn K = 0.

Moreover as θ → K , 1−2H(2K )
2 = O(θ − K ) implying that

lim
θ→K

1 − 2H(2K )

2
log cn θ = 0.

Wrapping up, we have
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lim
θ→K

−1

2
log

sn θ

1 + cn θ
+
(
1 − 2H(2θ)

2

)
log sc θ = 0.

When θ → 0. We have sn 0 = 0, cn 0 = 1, H(0) = K ′
π

Z(0) = 0; implying that

−1

2
log

1

1 + cn 0
−
(
1 − 2H(0)

2

)
log cn 0 = 1

2
log 2.

We are left with handling, (− 1
2 + 1

2 − H(2θ)) log sn θ = −H(2θ) log sn θ.As θ → 0,
H(2θ) = O(θ), thus limθ→0 H(2θ) log sn θ = 0. Wrapping up, we have

lim
θ→0

−1

2
log

sn θ

1 + cn θ
+
(
1 − 2H(2θ)

2

)
log sc θ = 1

2
log 2.

Plugging this into Eq. (33), we obtain

Fdimer(1) = Fdimer(0) − log 2

2
|{e ∈ E1 : θ

flat
e = 0}|

+
∑
e∈E1

(
−1

2
log

sn θ

1 + cn θ
+
(1 − 2H(2θ)

2

)
log sc θ +

∫ θe

θflate

2H ′(2θ) log sc θ dθ

)
.

Let us now compute Fdimer(0), that is the free energy of the dimer model on the
flat graph GF

flat. By Fisher’s correspondence, for every n � 1, the number of dimer

configurations of the toroidal graph GF
n,flat = GF

flat/nZ2 is equal to 2|V1|n2 times the

weighted number of polygon configurations ofGn,flat with edge-weights sn θ
1+cn θ

arising

from the high temperature expansion. Let us describe Gflat, see also [8,31]. Since the
sum of the rhombus-angles around vertices of Gflat is 2π , and since rhombus half-
angles are equal to 0 or π

2 , there is around every vertex exactly two rhombi with
rhombus half-angle π

2 , with corresponding high temperature expansion weight equal
to 1. The other rhombi have rhombus half-angle 0; with corresponding weight equal
to 0. The graph Gn,flat thus consists of p disjoint cycles covering all vertices, for
some p = O(n). A polygon configuration has even degree at every vertex so that
for each such cycle there is exactly two polygon configurations. As a consequence,
Zdimer(Gn,flat) = 2|V1|n22p, implying that Fdimer(0) = −|V1| log 2.

From the geometric description of the graph Gflat, we also know that

|{e ∈ E1 : θ
flat
e = 0}| = |E1| − |{e ∈ E1 : θ

flat
e = π/2}| = |E1| − |V1|.

As a consequence, the dimer free energy Fdimer = Fdimer(1) is equal to

− (|E1| + |V1|) log 2
2

+
∑
e∈E1

(
−1

2
log

sn θe

1 + cn θe
+
(
1 − 2H(2θe)

2

)
log sc θe +

∫ θe

θflate

2H ′(2θ) log sc θ dθ

)
,
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and the proof is concluded by recalling that sn θe
1+cn θe

= sc θe
2 dn θe

2 . �
We obtain the free energy of the Z -invariant Ising model, similar to the one given

by Baxter, see [5, (7.12.7)] and [3].

Corollary 21 The free energy of the Z-invariant Ising model is equal to

Fk
Ising = −|V1| log 2

2
− |V1|

∫ K

0
2H ′(2θ) log sc θ dθ

+
∑
e∈E1

(
−H(2θe) log sc θe +

∫ θe

0
2H ′(2θ) log sc θ dθ

)
.

Proof From the high temperature expansion, see Eq. (1), we have for every n � 1,

ZIsing(Gn, J) =
⎛
⎝∏

e∈En

cosh(Je)

⎞
⎠ Zdimer(GF

n , ν).

Let us compute cosh(Je) for the Z -invariant coupling constants. By Eq. (4), we have
cosh(2Je) = nc θe, so that

cosh(Je) =
√
1 + cosh(2Je)

2
=
√
1 + cn θe

2 cn θe
=
√
1 + cn θe

2 sn θe
sc θe. (34)

As a consequence,

FIsing = Fdimer −
∑
e∈E1

log cosh(Je)

= Fdimer + |E1| log 2
2

+
∑
e∈E1

(1
2
log

sn θe

1 + cn θe
− 1

2
log sc θe

)

= −|V1| log 2
2

+
∑
e∈E1

(
−H(2θe) log sc θe +

∫ θe

θflate

2H ′(2θ) log sc θ dθ

)
. (35)

We can moreover write

∑
e∈E1

∫ θe

θflate

2H ′(2θ) log sc θ dθ =
∑
e∈E1

(∫ θe

0
2H ′(2θ) log sc θ dθ −

∫ θflate

0
2H ′(2θ) log sc θ dθ

)

=
∑
e∈E1

(∫ θe

0
2H ′(2θ) log sc θ dθ

)
− |V1|

∫ K

0
2H ′(2θ) log sc θ dθ,

since there are |V1| edges whose rhombus half-angle is π
2 in Gflat. This concludes the

proof. �
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Corollary 22 The free energy of the Z-invariant Ising model and spanning forests are
related by

Fk
Ising = −|V1| log 2

2
+ Fk

forest

2
. (36)

Proof This is obtained by comparing the expressions for the free energies proved in
Corollary 21 and [10, Theorem 2]. �
Remark 23 In the case k = 0, Corollary 21 is obtained in [8, Theorem 3]; the free
energy becomes (the key point being that as k → 0, H(u) → u

2π , see Lemma 42)

F0
Ising = −|V1| log 2

2
−
∑
e∈E1

[
θe

π
log tan θe + 1

π

(
L(θe) + L

(π

2
− θe

))]
,

where L is the Lobachevsky function: L(θe) = − ∫ θe
0 log(2 sin(t))dt . Moreover, for

k = 0, Corollay 22 is derived in [8], below Theorem 3.

Remark 24 It is possible to recover Baxter’s “local” formula for the free energy when
k �= 0 without deformation argument, but rather by computing more directly the
double integral (31), by first fixing w and evaluating the integral in z with residues:
since PK is reciprocal, and has no root on the unit torus, then up to a multiplicative
constant, one can rewrite PK(z, w) for |z| = 1 as

d∏
j=1

z j (w)+
(
1 − z

z+
j (w)

)(
1 − z−

j (w)

z

)
,

where z±
j (w), j = 1, . . . , d are the roots of PK(·, w), |z+

j (w)| > 1 and z−
j (w) =

(z+
j (w))−1. The log of this product can be expanded in series in z, whose termof degree

0 is the sum of logarithms of the roots z+
j (w): this is the contribution we get when

dividing by 2iπ z and integrating over the unit circle. Ending here the computation for
the square lattice yields the expression of the free energy of the Ising model on Z

2

given in [5, Equation (7.9.16)]. We can go even further, for general periodic isoradial
graphs, if we perform the change of variable from w to u, as in [10, Section 5.5] to
pass from the Fourier expression to the local expression of the massive Green function
on periodic isoradial graphs. The roots (z, w) of PK where |z| > 1 and |w| = 1 form
a closed curve on the spectral curve, which is mapped under log | · | to a horizontal
segment joining the two connected components of the boundary of the amoeba, and
lifts on T(k) as a contour � winding once vertically. We can then write

∫
|w|=1

d∑
j=1

log z+
j (w)

dw

2iπw
=
∮

�

log z(u)
w′(u)

w(u)

du

2iπ
,

where z(u) and w(u) are given by (27). As in [10, Section 5.3.3] when computing the
area of the hole of the amoeba, the product of log z(u) andw′(u)/w(u) can be rewritten
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as a sum over intersections of train-tracks on G1, i.e., over edges of the fundamental
domain, thus yielding a local formula.

3.6.3 Computing the constant in PK(z,w) = cP1m(z,w)

With the computations of free energies, we can now compute the constant in Propo-
sition 15.

Corollary 25 The dimer characteristic polynomial of the graph GF arising from the Z-
invariant Ising model and the Z-invariant spanning forests characteristic polynomial
are related by

PK(z, w) = 2|V1|+|E1| ∏
e∈E1

(
cn θe

1 + cn θe

)
P
m (z, w). (37)

Proof In Proposition 15, we proved that PK(z, w) = cP
m (z, w). Moreover, the
dimer and spanning forests free energies can be computed using the characteristic
polynomials:

Fdimer = −1

2

∫∫
{|z|=|w|=1}

log PK(z, w)
dz

2iπ z

dw

2iπw
,

Fforest = −
∫∫

{|z|=|w|=1}
log P
m (z, w)

dz

2iπ z

dw

2iπw
.

This implies that

log c = Fforest − 2Fdimer

= 2FIsing − 2Fdimer + |V1| log 2, by Corollary 22,

= −2
∑
e∈E1

log cosh Je + |V1| log 2, by Eq. (35),

= |E1| log 2 +
∑
e∈E1

log

(
cn θe

1 + cn θe

)
+ |V1| log 2, by (34). �

This is coherent with [8, Corollary 14], concerning the case k = 0.

4 Duality and phase transition in the Z-invariant Isingmodel

This section is about the behavior of the Z -invariant Isingmodel as the elliptic parame-
ter k varies. Section 4.2 exhibits a duality relation in the sense of Kramers andWannier,
see also [11,47]. In Sect. 4.3 we derive the phase diagram of the model and compare
it to that of the Z -invariant spanning forests of [10]. In Sect. 4.4 we extend to all
isoradial graphs a self duality relation proved by Baxter in the case of the triangular
lattice. Finally in Sect. 4.5 we relate duality transformations to the modular group.
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4.1 Dual elliptic modulus

Let k ∈ [0, 1) be a fixed elliptic modulus, and recall the notation k′ = √
1 − k2 for

the complementary parameter. By definition, the dual parameter of k is:

k∗ = i
k

k′ , or equivalently k∗′ = 1

k′ . (38)

Notice that k2 �→ k∗2 is an involutive bijection between [0, 1) and (−∞, 0]. As we
shall see, the dual parameter k∗ parametrizes the dual temperature.

We need the following duality identities relating elliptic integrals and Jacobi elliptic
functions with parameters k and k∗:

√
k′K (k) =

√
k∗′K (k∗), [1, 17.4.17] (39)

√
k′ sc(u|k) =

√
k∗′ sc(k′u|k∗), [1, 16.10.2 and 16.10.3]. (40)

4.2 Duality in the Z-invariant Isingmodel

Kramers and Wannier’s duality [36,37] says the following. Consider an Ising model
on a planar graph Gwith coupling constants J and an Ising model on G∗ with coupling
constants J∗. Perform the high temperature expansion of the first Ising model, and low
temperature expansion of the second. Both expansions yield polygon configurations
on G. The Ising models are said to be dual if both induce the same measure on
polygon configurations. This is true if the coupling constants satisfy the following
duality relation:

∀ e ∈ E, tanh(Je) = e−2J∗e∗ ⇐⇒ sinh(2Je) sinh(2J∗e∗) = 1, (41)

where e∗ is the dual edge of e. Duality maps a high temperature Ising model on a low
temperature one and vice versa.

In this setting, the Z -invariant Ising model on Gwith parameter k and the one on G∗
with parameter k∗ are dualmodels, see also [11] for the case of the triangular/hexagonal
lattices. Indeed, for the first and second model we respectively have, for every edge e
of G and dual edge e∗ of G∗,

⎧⎪⎨
⎪⎩

sinh(2Je) = sinh(2J(θe | k)) = sc
(
θe

2K (k)

π

∣∣∣k),
sinh(2J∗e∗) = sinh

(
2J
(π

2
− θe

∣∣∣k∗)) = sc
(

K (k∗) − θe
2K (k∗)

π

∣∣∣k∗).
Moreover,

sc
(

K (k∗) − θe
2K (k∗)

π

∣∣∣k∗) = 1

k∗′ cs
(
θe

2K (k∗)
π

∣∣∣k∗), by Table 2,

= cs
(
θe

2K (k)

π

∣∣∣k), by (38), (39) and (40),
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from which we deduce the duality relation (41) for Z -invariant Ising models:

sinh(2J(θe|k)) sinh
(
2J
(π

2
− θe

∣∣∣k∗)) = 1. (42)

The elliptic parameters k and k∗ can be interpreted as parametrizing dual temperatures.
Note that this duality relation together with the computation of Eq. (30) can be used

to obtain the probability of an edge occurring in a polygon configuration arising from
the low temperature expansion of the Ising model.

4.3 Range of the Z-invariant Isingmodel and phase transition

The following lemma shows that the Z -invariant coupling constants are analytic in k2

and that the whole range of temperatures is covered as the parameter k varies.

Lemma 26 LetG be an isoradial graph and consider an edge e ofG. Then the coupling
constant

J(θe|k) = 1

2
log

(
1 + sn(θe|k)

cn(θe|k)

)

defined in (2), seen as a function of k2, is analytic on (−∞, 1) and increases from 0
to ∞ as k2 goes from −∞ to 1.

Proof Jacobi’s amplitude am(·|k), defined by am(u|k) = ∫ u
0 dn(v|k)dv, relates Jacobi

and classical trigonometric functions. For the function sc we have

sc(u|k) = tan(am(u|k)).

The fact that J(θe|k) is an increasing function of k2 on [0, 1) comes from the relation

sinh(2J(θe|k)) = sc
(
θe

2K (k)

π
|k
)

= tan(am(θe
2K (k)

π
|k)) (43)

togetherwith the fact that sinh−1, tan, am and K are all increasing functions.Moreover,
as k → 1, am(u|k) → 2 arctan(eu) − π

2 , see [1, 16.15.4], and thus am(θe
2K (k)

π
|k) →

π
2 . Using (43) then leads to

lim
k→1

J(θe|k) = lim
k→1

sinh(2J(θe|k)) = ∞.

From the duality relation (42) and from the case k2 ∈ [0, 1), we deduce that J(θe|k) is
increasing on k2 ∈ (−∞, 0] and goes to 0 as k2 → −∞.

The analyticity of J(θe|k) is clear on (−∞, 0) and (0, 1). For the neighborhood of
0 we use the series expansion of sc in terms of the Nome q = exp(−π K ′(k)/K (k)),
see [1, 16.23.9]:
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(k′)2

10

critical

sub-critical super-critical

Fig. 14 Phase diagram of the Z -invariant Ising model on an isoradial graph G as a function of the comple-
mentary elliptic modulus (k′)2

sc
(
θe

2K (k)

π
|k
)

= π

2
√
1 − k2K (k)

tan(θe)

+ 2π√
1 − k2K (k)

∞∑
n=1

(−1)n q2n

1 + q2n
sin(2nθe). (44)

�
The following proves a second order phase transition, which together with

Lemma 26 allows to derive the phase diagram of the Z -invariant Ising model (see
Fig. 14). Comments on the result are given in Remark 28.

Corollary 27 (Phase transition) The free energy Fk
Ising of the Z-invariant Ising model

on an isoradial graph G is analytic for k2 ∈ R\{0}. The model has continuous (or
second order) phase transition at k = 0. Namely, one has

Fk
Ising = F0

Ising − |k|2 log |k|−1 |V1|
2

+ O(k2).

Proof We start from Corollary 22 relating the free energy of the Z -invariant spanning
forests and of the Ising model, and from [10, Theorems 36 and 38]. The analyticity
for k2 > 0 and the phase transition when k2 > 0 tends to 0 immediately follow from
these results.

In the case k2 < 0, the key point is the expression of the free energy of rooted
spanning forests, derived in [10, Theorem 38] whenever k2 > 0. It is an integral
expression in terms of the function H . It turns out that a similar expression holds in
the case k2 < 0. Performing an asymptotic expansion (along the same lines as in the
proof of [10, Theorem 38]) of the so-obtained expression of Fk

Ising when k tends to 0
then concludes the proof.

In the case k2 < 0, we could also use the forthcoming Corollary 30 relating Fk
Ising

and Fk∗
Ising. This allows us to express Fk

Ising in terms of the free energy associated with
the elliptic modulus k∗, whose square is positive. In this way we can again use (36)
and [10, Theorem 38]. �

Remark 28

• In the particular case of the square lattice, Corollary 27 is derived in [5, (7.12.7)],
proving criticality at k = 0 of the Z -invariant Ising model on Z

2. Our result is
thus a generalization of the latter to all isoradial graphs.
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• Criticality for the Z -invariant Ising model has been proved in [13,41,42], with
a different parametrization of the temperature and with different techniques: the
authors multiply the Z -invariant weights at k = 0 by an inverse temperature
parameter β, and prove that when β is equal to the particular value βc := 1, the
model is critical. In their setting, the difference β − βc is to be compared to the
first nonzero term in the expansion of J (θ |k) − J (θ |0) as k goes to zero. This
expansion, which takes into account the fact that θ = θ

2K (k)
π

is itself a function
of k, reads:

J (θ |k) = J (θ |0) + k2

8
sin(θ̄) + O(k4),

yielding that k2 � (β −βc), which allows to compare the free energy as a function
of β close to βc (as the one given by Onsager [51]) and Corollary 27.

• What is remarkable and not present in the physics literature is that the phase
transition of the Z -invariant Ising model is (up to a multiplicative factor 1

2 ) the
same as the phase transition of the Z -invariant spanning forestmodel. As explained
in the proof, this follows from fact that the free energies of the two models are
related by a simple formula proved in Corollary 22.

We deduce the following phase diagram for the Z -invariant Ising model:

• k2 = 0: critical Ising model,
• k2 ∈ (0, 1): low-temperature Ising model,
• k2 ∈ (−∞, 0): high temperature Ising model.

Note that the phase diagram is nicer when expressed with the complementary elliptic
modulus (k′)2 = 1 − k2 ∈ (0,∞), see Fig. 14. In the rest of the paper we have
nevertheless chosen to use the elliptic parameter k since it is the one classically used
in the notation of elliptic functions.

The domain (k′)2 < 0 (or equivalently k2 > 1) on Fig. 14 corresponds to the
reciprocal parameter, also named Jacobi’s real transformation. Jacobi elliptic functions
are still defined for k2 > 1, see [1, 16.11]. However, one main difference is that the
period K (k) is not real anymore. Accordingly, the angles θe = θe

2K
π

have a non-zero
imaginary part.

We now examine the effect of this reciprocal transformation on the coupling con-
stant J (θe|k) defined in (2). As it does not seem natural to use complex angles, we
extend the formula (2) in the regime k2 > 1 with only the real parts of the angles.
Using [1, 16.11] in (2), one finds that for k2 > 1

J (θe|k) = 1

2
log

(
1 + 1

k sn(θe
2K (1/k)

π
|1/k)

dn(θe
2K (1/k)

π
|1/k)

)
. (45)

Using similar arguments as in Lemma 26, we see that when k2 goes from 1 to +∞,
the coupling constant (45) goes decreasingly from +∞ to 0. So this is the same as for
the classical regime k2 ∈ (−∞, 1); this range of parameter does not allow to reach a
new regime, as for instance the anti-ferromagnetic regime.
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4.4 Self-duality for the Z-invariant Isingmodel

We now prove a self-duality relation for the Z -invariant massive Laplacian. From this
and Corollary 22, we deduce a self-duality relation for the Z -invariant Ising model,
see Remark 31.

Lemma 29 The Laplacian operators associated to k and k∗ satisfy the following self-
duality relation: √

k∗′
m(k∗) = √
k′
m(k),

and hence the discrete massive harmonic functions are the same.

Proof Due to the particular form of the Laplacian operator (6), Lemma 29 is equivalent
to proving that

√
k′ sc(θe|k) = √

k′ sc( 2K (k)
π

θe|k) and
√

k′∑n
j=1 A(θ j |k) are self-

dual. For the first quantity, this directly follows from (40) and (39). For the second
one, we write θ j = α j+1−α j

2 and use n times the addition theorem (72) and finally the
periodicity relation (73). We obtain

√
k′

n∑
j=1

A(θ j |k) = −
n∑

j=1

{√k′ sc(α j+1|k)}{√k′ sc(α j |k)}{√k′ sc(α j+1 − α j |k)},

which is self-dual, for the same reasons as previously. �
Corollary 30 The free energy of the Z-invariant Ising model on the graph G satisfies
the following self-duality relation.

Fk
Ising + |V1|

2
log k′ = Fk∗

Ising + |V1|
2

log k∗′
.

Remark 31
• In the case of the triangular lattice this is proved in [5, (6.5.1)], our result thus
extends the latter to all isoradial graphs.

• There is no simple self-duality relation between the coupling constants J(θe|k)

and J(θe|k∗) so that this result is not straightforward. Baxter’s argument in the
triangular case reads as follows: he transforms the Z -invariant Ising model with
parameter k on the triangular lattice into the one on the honeycomb lattice with the
same parameter k by using Y–
 moves, from this he deduces that the partition
functions differ by an explicit constant; then he uses Kramers andWannier duality
to map the partition function of the Z -invariant Ising model with parameter k
on the honeycomb lattice into the one of the triangular lattice (dual graph) with
parameter k∗. Making the constants explicit allows to relate the free energies with
parameters k and k∗ on the triangular lattice. It is not obvious that this argument
should extend to general isoradial graphs, even though one can generically go from
a periodic isoradial graph to its dual using Y–
 moves4: when working out the
constants in Baxter’s computation, there seems to be some cancellations that are
specific to the triangular and honeycomb lattices.

4 If on the torus, there is a unique train-track with a given homology class, making it move across the torus
through every pairwise intersection once by Y–
 moves yields the same rhombic graph, but with the role
of primal and dual vertices exchanged. If there are several of them, then moving them all to put the first
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• This self-duality relation and the assumption of uniqueness of the critical point is
used in [5, (6.5.5)–(6.5.7)] to compute the critical temperature of the Ising model
on the triangular and honeycomb lattice. Corollary 30 allows to extend this physics
argument to all isoradial graphs.

4.5 Dualities of the Isingmodel and themodular group

Various changes of the elliptic modulus k are considered throughout this article.
Besides the intrinsic complementary transformation k �→ k′, we have seen the impor-
tance of the dual transformation k �→ k∗, as many quantities are self-dual:

• √
k′K (k), see (39);

• √
k′ sc( 2K (k)

π
u|k), see (40);

• the exponential function (9);
• the modified Laplacian operator, see Lemma 29;
• the modified free energy, see Corollary 30;
• the rescaled function H , as H(K (k)u|k) = H(K (k∗)u|k∗), see (67).

Moreover, in the proof of Theorem 13, we make use of the ascending Landen trans-

formation k �→ 2−k2−2
√
1−k2

k2
(note, this does not appear explicitly in the proof, as we

refer to the companion paper [10] for the details).
Our aim in this paragraph is twofold: first we reformulate the self-duality as a

parity property of expansions in terms of the Nome q, then we relate the various
transformations of k to the modular group. Links between the Ising model and the
modular group already exist in the physics literature, see in particular [38, Chapter 8]
as well as [6,43].

4.5.1 Self-duality and expansions in terms of the Nome

Let us first mention that a function of the elliptic modulus k2 is analytic at 0 if and
only if it is analytic at 0 as a function of the Nome q = e−π K ′/K . Indeed, q is analytic
in terms of k2 and

q = k2

16
+ 8

(
k2

16

)2
+ 84

(
k2

16

)3
+ 992

(
k2

16

)4
+ · · · , ([1, 17.3.21]).

Accordingly, any generic quantity of our article admits an analytic expansion in terms
of the Nome at 0. The following simple criterion translates the self-duality property
as a matter of parity:

Lemma 32 Let f (k) be a function analytic in k2 around 0. Then f is self-dual (i.e.,
f (k) = f (k∗)) if and only if its expansion in terms of the Nome is even.

Footnote 4 continued
one instead of the second one, the second instead of the third, etc., yields the result. Note though that this
is not possible in the case when there are just two different homology classes, like in the case of the square
lattice.
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Table 1 Correspondance between changes of the elliptic modulus and transformations of themodular group

Elliptic modulus Name of the change of modulus Transformations of the modular group

k No change τ

k′ Complementary S(τ ) = −1/τ

k∗ (Self-)duality T (τ ) = τ + 1

2−k2−2
√
1−k2

k2
Landen transformation 2τ

Proof When k is replaced by k∗, the quarter-periods become K (k∗) = k′K (k), see
(39), and

K ′(k∗) = k′(K ′(k) + i K (k)) = K ′(k) + i K (k)√
1 − k∗2

, ([1, 17.4.17]). (46)

It becomes obvious that q(k∗) = −q(k), Lemma 32 follows. �
With Lemma 32 the question of finding expansions in terms of the Nome comes

up. In fact, such expansions typically appear rather indirectly, when writing Fourier
expansions of Jacobi functions or elliptic integrals; cf. (44) for the Fourier expansion
of the sc function, as well as [1, 16.23 and 16.38] and [40, Section 8.7] for a more
systematic treatment.

On the other hand, the Ising weights (2), which are at the heart of our whole
construction, are not self-dual. This default of duality is responsible for the non-
analyticity (and in some sense of the phase transition, see Corollary 27) of the free
energy Fk

Ising at 0.

4.5.2 Dualities andmodular group

The modular group (see [40, Chapter 9] for an introduction) is the group generated by
the transformations S(τ ) = −1/τ and T (τ ) = τ + 1, acting on the upper half-plane.
This group is the set of all transformations

τ �→ c + dτ

a + bτ
, (47)

with a, b, c, d ∈ Z such that ad − bc = 1.
Two pairs of complex vectors (1, τ ) and (1, τ ′) generate exactly the same lattice

Z + τZ = Z + τ ′
Z if and only if τ ′ is obtained from τ by a modular transformation

(47).
The quantity τ should be interpreted as ratios of quarter-periods; for instance τ =

i K ′
K (and then the Nome is q = eiπτ ).
It is interesting to notice that both generators of the modular group correspond to a

duality: S is the complementary duality and T the self-duality, see Table 1.
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The set of all transformations (47) with ad − bc � 1 also forms a group, called the
extended modular group. The quantity ad − bc is then named the order of the trans-
formation (47). In our elliptic treatment of the Ising model we have also encountered
higher order transformations: namely, the Landen ascending transformation (used in
the proof of Theorem 13) has order 2, see again Table 1.

This short discussion suggests that combinatorial links could exist between any two
Isingmodels associatedwith ellipticmoduluswhose τ ’s are related by a transformation
(47).

5 The double Z-invariant Isingmodel via dimers on the graph GQ

In the whole of this section we consider the dimer model on the bipartite graph GQ

arising from two independent Z -invariant Ising models defined on an infinite isoradial
graph G. Edges of GQ are assigned the weight function ν of (5).

In Sect. 5.2 we introduce a one parameter family of functions in the kernel of the
Kasteleyn operator K of this dimer model. This is the key object used in Sect. 5.3
to prove a local expression for an inverse of the operator K. In Sect. 5.4 we derive
asymptotics of this operator, and in Sect. 5.5 we derive consequences for the dimer
model Gibbs measure. We aslo give a few examples of computations.

5.1 Kasteleynmatrix/operator

Let us recall the construction of the bipartite graph GQ. Every edge of the graph G
is replaced by a “rectangle” and the latter are glued together in a circular way using
external edges. Each “rectangle” has two edges “parallel” to an edge of G and two
edges “parallel” to the dual edge, see Fig. 2. For instance, if G is the square lattice, GQ

is the square-octagon lattice.
When the graphG is isoradial, so is the graphGQ with radii of circles being one half

of those of G. The isoradial embedding of GQ is such that external edges have length 0
and “rectangles” are real rectangles; vertices of the rectangles are in the middle of the
edges of the diamond graph G	, and each rectangle is included in a rhombus of G	,
see Fig. 15 or 16. For the sequel it is useful to note that every vertex of GQ belongs to
a unique rhombus of G	.

The graph GQ being bipartite, its vertices can be split into white and black
VQ = WQ ∪ BQ. In this case, the Kasteleyn matrix K has rows indexed by white
vertices and columns by black ones. Following Kuperberg [39], instead of consider-
ing an admissible orientation of GQ as we have done for GF, one can assign phases
(eiφwb )wb∈EQ to edges of GQ, in such a way that, for every face of GQ whose boundary
vertices are w1, b1, . . . , wn, bn in counterclockwise order, we have

(−1)n−1
n∏

j=1

eiφw j b j e−iφw j+1b j = 1. (48)
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Fig. 15 Coefficients of the
Kasteleyn matrix K around a
rectangle face of GQ

b1

b2

b3

w

w′
θ e

i cn θ i cn θ
sn θ

sn θ
−ie−iθ

−ie−iθ

In our case, we define the phasing of the edges to be:

eiφwb =

⎧⎪⎪⎨
⎪⎪⎩

1 if the edge wb is parallel to an edge e of G,

i if the edge wb is parallel to the dual of an edge e of G,

−ie−iθ if wb is an external edge and w

belongs to a rhombus of G	 having half-angle θ .

The fact that Eq. (48) holds is proved in [18, Lemma 4.1], see also [31].
Coefficients of the Kasteleyn matrixK are then given by, for every white vertex w

and every black vertex b of GQ,

Kw,b = eiφwbνwb,

where ν is the dimer weight function (5), see also Fig. 15.
Note that K can also be seen as an operator mapping C

BQ to CWQ
:

∀ f ∈ C
BQ , ∀w ∈ WQ, (K f )w =

∑
b∈BQ

Kw,b fb.

More precisely, since every white vertex w has degree 3, denoting by b1, b2, b3 its
neighbors as in Fig. 15, this relation can be rewritten as,

∀ f ∈ C
BQ , ∀w ∈ WQ, (K f )w = sn θ fb1 + i cn θ fb2 − ie−iθ fb3 . (49)

5.2 Functions in the kernel of the Kasteleyn operatorK

We now define the function f in the kernel of the Kasteleyn operator K. Note that it
generalizes to the elliptic case the function f introduced by Kenyon in [31] when the
bipartite graph is GQ.

Rhombus vectors In order to define the function f , we need to assign rhombus vectors
to edges of the graph GQ. Since the graph GQ is isoradial, it also has a diamond graph
(GQ)	; note that rhombi of (GQ)	 are obtained by cutting those of G	 in four identical
rhombi, see Fig. 16.
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θ

b1

b2

b3
w

w′

eiα

eiβ

b1 w

eiα

eiβ

b2

w

eiαei(β−π)

b3
w

ei(β+π)
eiβ

w′

b1
ei(α+π) eiβ

w′ b2
ei(α+π)

ei(β+π)

Fig. 16 Computation of f(b,w)(u) for b ∈ {b1, b2, b3}, and of f(b,w′)(u) for b ∈ {b1, b2}. To simplify the

picture, the factor 1
2 is omitted in the notation of the rhombus vectors in the bottom part of the picture

Consider an edge bw of GQ. Then we let 1
2eiα and 1

2eiβ be the two rhombus vectors
of (GQ)	 of the edge bw, where 1

2eiα is on the right of the oriented edge (b, w). Some
examples are given in Fig. 16.

Remark 33 The angles α and β above are defined so that β − α ∈ (0, 2K ).

Definition 5.1 For every edge bw of GQ and every u ∈ C, define

f(b,w)(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dc( u−α
2 ) dc( u−β

2 ) if bw is parallel to an edge e of G,

−ik′nc( u−α
2 ) nc( u−β

2 ) if bw is parallel to the dual of an edge e of G,

ieiθdc( u−α
2 ) dc( u−β

2 )
if bw is an external edge and w belongs
to a rhombus of G	 having half-angle θ ,

f(w,b)(u) = ( f(b,w)(u))−1. (50)

The function f : BQ × WQ × C → C is then extended to all pairs (b, w) inductively
as follows. Let b = b1, w1, b2, w2, . . . , bn, wn = w be a path from b to w, then:

∀ u ∈ C, f(b,w)(u) =
n∏

j=1

f(b j ,w j )(u)

n−1∏
j=1

f(w j ,b j+1)(u).

Remark 34 As the function g of Definition 3.2, the function f is meromorphic and
biperiodic:

f(b,w)(u + 4K ) = f(b,w)(u + 4i K ′) = f(b,w)(u).

This comes from (50) and from the addition formulas of cn and cd by 2K , see Table 2.
We therefore also restrict the domain of definition to T(k) = C/(4KZ + 4i K ′

Z).

Before proving that this function is well defined, i.e., independent of the choice
of path from b to w, we give some examples of computation that are useful for the
sequel.

Example 5.1 We compute f(b,w)(u) for b ∈ {b1, b2, b3}, where b1, b2, b3 are the three

black vertices incident to a white vertex w of GQ, see Fig. 15. Let eiα and eiβ be the
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rhombus vectors of the rhombus of GQ containing the rectangle as in Fig. 16, then the
two rhombus vectors of (GQ)	 of the edge:

• b1w are 1
2eiα and 1

2eiβ , implying that f(b1,w)(u) = dc( u−α
2 ) dc( u−β

2 ),

• b2w are 1
2ei(β−π) and 1

2eiα , implying that f(b2,w)(u) = −ik′nc( u−β+2K
2 ) nc( u−α

2 ),

• b3w are 1
2eiβ and 1

2ei(β+π), implying that f(b3,w)(u) = ieiθdc( u−β
2 ) dc( u−β−2K

2 ).

We also compute f(b,w′)(u) for b ∈ {b1, b2}, where w′ is the white vertex facing
w along the diagonal of the rectangle, see Fig. 16. Then, the two rhombus vectors of
(GQ)	 of the edge:

• b1w′ are 1
2eiβ and 1

2ei(α+π), implying that f(b1,w′)(u) = −ik′nc( u−β
2 ) nc( u−α−2K

2 ),

• b2w′ are 1
2ei(α+π) and 1

2ei(β+π), implying that f(b2,w′)(u) = dc( u−α−2K
2 )

dc( u−β−2K
2 ).

Lemma 35 The function f is well defined, that is independent of the choice of path
from b to w.

Proof It suffices to check thatwhen traveling around each face of the graph, the product
of the contributions of the edges is 1. There are three types of faces to consider:
rectangles which correspond to edges of the graph G (or G∗), faces corresponding to
those of the graph G, and faces corresponding to those of the dual graph G∗.

Let us first check that this is true for rectangles, using the notation and computations
of Example 5.1. Recalling that f(w,b)(u) = f(b,w)(u)−1, we have for a rectangle
b1, w, b2, w′,

f(b1,w)(u) f(w,b2)(u) f(b2,w′)(u) f(w′,b1)(u)

= dc
(u − α

2

)
dc
(u − β

2

)cn ( u−β+2K
2

)
cn
(

u−α
2

)
−ik′ dc

(u − α − 2K

2

)

dc
(u − β − 2K

2

)cn ( u−β
2

)
cn
(

u−α−2K
2

)
−ik′

= − cn
(u − β + 2K

2

)
nc
(u − β − 2K

2

)

dn
(

u−α
2

)
dn
(

u−β
2

)
dn
(

u−α−2K
2

)
dn
(

u−β−2K
2

)
(k′)2

=
dn
(

u−α
2

)
dn
(

u−β
2

)
dn
(

u−α−2K
2

)
dn
(

u−β−2K
2

)
(k′)2

= 1,

since cn(u + K ) = − cn(u − K ), and

dn(u − K ) dn u = k′ by Table 2, “Appendix A”.

We deduce that the function f is well defined around rectangles. We now turn to
faces which are not rectangles, and do some preliminary computations. Thanks to
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Example 5.1 again, we have [see Table 2 for the various simplifications involving
Jacobi elliptic functions in (51) and (52)]

f(b3,w)(u) f(w,b1)(u) = ieiθ dc
(u − β

2

)
dc
(u − β − 2K

2

)
cd
(u − α

2

)
cd
(u − β

2

)

= ieiθ cd
(u − α

2

)
dc
(u − β − 2K

2

)

= − ieiθ sn
(u − (α + 2K )

2

)
ns
(u − β

2

)
. (51)

We also have

f(b2,w)(u) f(w,b3)(u) = −ik′ nc
(u − β + 2K

2

)
nc
(u − α

2

) cd ( u−β
2

)
cd
(

u−β−2K
2

)

ieiθ

=
cn
(

u−β
2

)
nc
(

u−α
2

)

eiθ
= e−iθ sd

(u − β − 2K

2

)
ds
(u − α − 2K

2

)
.

(52)

We have expressed the product f(b3,w) f(w,b1) (resp. f(b2,w) f(w,b3)) using the rhombus
vectors rooted at the vertex of the dual graphG∗ (resp. at the vertex of the primal graph
G), because this is what is needed to handle the product of local factors around faces
of GQ corresponding to those of the graph G or G∗.

Indeed, consider a face of GQ corresponding to a face of degree n of the dual graph
G∗. Denote by b1, w1, b2, . . . , wn, bn, wn its vertices in counterclockwise order. For
every pair of black vertices b j , b j+1 denote by 1

2eiα j , 1
2eiα j+1 the rhombus vectors

rooted at the dual vertex corresponding to the face, and by θ j the rhombus half-angle,
see Fig. 17 (left).

Then, by (51) we have f(b j ,w j )(u) f(w j ,b j+1)(u) = (−i)eiθ j sn(
u−α j+1

2 ) ns(
u−α j
2 ).

Moreover,
(−i)eiθ j = e−i(π/2−θ j ) = e− i

2 (α j+1−α j ),

see Fig. 17 (left), implying that

f(b j ,w j )(u) f(w j ,b j+1)(u) = e− i
2 (α j+1−α j ) sn

(
u − α j+1

2

)
ns

(
u − α j

2

)
.

As a consequence, for every k <  (with cyclic notation for indices), we have

−1∏
j=k

f(b j ,w j )(u) f(w j ,b j+1)(u) = e− i
2 (α−α j ) sn(

u − α

2
) ns(

u − α j

2
). (53)

It is important to notice that the right-hand side of (53) is independent of the determi-
nation of the angles α and α j .
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b1
w1

w1
b1b2w2

w2b2

bj
wj

wj
bj

bj+1

wj+1

wj+1

bj+1

wn

bn

wn

bn

eiαj

eiαj+1

eiαj

eiαj+1

θj 2θj

Fig. 17 Faces around dual (left) and primal (right) vertices

In particular, the product around the face is (with αn+1 = α1 + 4K )

e−iπ sn
(u − αn+1

2

)
ns
(u − α1

2

)
= − sn

(u − α1

2
− 2K

)
ns
(u − α1

2

)
= 1.

Consider now a face of degree n of the graph GQ corresponding to a face of the
graph G. Using similar notation, the picture differs in that the vertex at the center of
the face belongs to G, that black and white vertices are exchanged and that the angle
2θ j is at the center of the face, see Fig. 17 (right). By (52), we have

f(b j ,w j )(u) f(w j ,b j+1)(u) = e−iθ j sd
(u − α j+1

2

)
ds
(u − α j

2

)

= e− i
2 (α j+1−α j ) sd

(u − α j+1

2

)
ds
(u − α j

2

)
,

since we have θ j = 1
2 (α j+1 − α j ), see Fig. 17 (right). As a consequence, for every

k <  (with cyclic notation for indices), we have

−1∏
j=k

f(b j ,w j )(u) f(w j ,b j+1)(u) = e− i
2 (α−α j ) sd

(u − α

2

)
ds
(u − α j

2

)
. (54)

In particular, the product around the face is (with αn+1 = α1 + 4K )

e−iπ sd
(u − αn+1

2

)
ds
(u − α1

2

)
= − sd

(u − α1

2
− 2K

)
ds(

u − α1

2
) = 1.

�
Note that Eqs. (53) and (54) are used again in the proof of Lemma 40, which proves

an alternative expression for the function f .
Next is the key proposition used in proving the local expression for an inverse of

the Kasteleyn operator K.

Proposition 36 Fixing a white base vertex w0 of WQ, for every u ∈ T(k), the function
f(·,w0)(u), seen as a function on BQ, is in the kernel of the Kasteleyn operator K of
the bipartite graph GQ.
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Proof As we shall see, Proposition 36 follows from the identity

sn(u + v) cn u − cn(u + v) dn v sn u − dn u sn v = 0, (55)

which can be found in (iii) of Exercise 32 in [40, Chapter 2].
ByEq. (49),weneed to prove that, for everywhite vertexwwithneighborsb1, b2, b3

as in Fig. 15, and every white base vertex w0, we have:

sn θ f(b1,w0)(u) + i cn θ f(b2,w0)(u) − ie−iθ f(b3,w0)(u) = 0.

Since the function f is defined inductively on the edges of GQ, it suffices to prove:

sn θ f(b1,w)(u) + i cn θ f(b2,w)(u) − ie−iθ f(b3,w)(u) = 0. (56)

Using the computations of Example 5.1, this reduces to showing:

sn θ dc
(u − α

2

)
dc
(u − β

2

)
+ i cn θ(−ik′) nc

(u − β + 2K

2

)
nc
(u − α

2

)

− ie−iθ ieiθdc
(u − β

2

)
dc
(u − β − 2K

2

)
= 0. (57)

Using some identities from Table 2, this is equivalent to proving

sn θ ns
(

u−α−2K
2

)
ns
(

u−β−2K
2

)
+ cn θ nc

(
u−β−2K

2

)
ds
(

u−α−2K
2

)

− ns
(u − β − 2K

2

)
dc
(u − β − 2K

2

)
= 0.

Multiplying by sn( u−α−2K
2 ) sn( u−β−2K

2 ) cn( u−β−2K
2 ) and using that cn and dn are

even functions and that sn is an odd function, this amounts to proving:

sn θ cn
(

− u − β − 2K

2

)
− cn θ dn

(u − α − 2K

2

)
sn
(

− u − β − 2K

2

)

− dn
(

− u − β − 2K

2

)
sn
(u − α − 2K

2

)
= 0.

As announced, this is exactly (55) with u = − u−β−2K
2 , v = u−α−2K

2 and u + v = θ .
�

5.3 Local expression for the inverse of the Kasteleyn operatorK

We now state Theorem 37, proving an explicit, local formula for an inverse K−1 of
the Kasteleyn matrix K, constructed from the function f defined in (50).
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Theorem 37 Define the infinite matrix K−1 whose coefficients are given, for any
(b, w) ∈ BQ × WQ, by

K−1
b,w = 1

4iπ

∫
�b,w

f(b,w)(u)du, (58)

where �b,w is a vertical contour directed upwards on T(k), crossing the real axis
outside of the sector of size 2K containing all the poles of f(b,w).

ThenK−1 is an inverse operator ofK. For k �= 0, it is the only inverse with bounded
coefficients.

The quantity K−1
b,w in (58) can alternatively be expressed as

K−1
b,w = 1

4iπ

∮
Cb,w

f(b,w)(u)H(u)du, (59)

where H is related to Jacobi’s zeta function and is defined in (66) and (67), Cb,w is
a trivial contour on the torus, not crossing �b,w and containing in its interior all the
poles of f(b,w) and the pole of H.

Proof To show that the two expressions (58) and (59) indeed coincide, we use the
same argument as in the proof of Theorem 11.

The structure of the proof of Theorem 37 is analogous to that of [10, Theorem 1].
Instead of using the form (58) as in the proof of Theorem 11, we use the alternative
expression (59) of K−1

b,w. Indeed, from the computations done below to prove that

(KK−1)w,w = 1, one can extract as a by-product the explicit probability of a given
edge to be present in the random dimer configuration in the corresponding dimer
model.

Let w be a white vertex of GQ and b1, b2, b3 be its three black neighbors, as in
Fig. 15. Let w′ be another white vertex, different from w. The contours Cb1,w′ , Cb2,w′
and Cb3,w′ entering into the definition of K−1

b1,w′ , K
−1
b2,w′ and K−1

b3,w′ can be deformed

into a common contour Cwithout crossing any pole. Therefore, the entry (KK−1)w,w′
can be written as:

(KK−1)w,w′ =
3∑

i=1

Kw,biK
−1
bi ,w

′ = 1

4iπ

∮
C

H(u)

(
3∑

i=1

Kw,bi f(bi ,w
′)(u)

)
du = 0,

by Proposition 36.
We now need to compute the entry (KK−1)w,w. This is done explicitly, via the

residue theorem. In addition to the simple pole at u = 2i K ′ coming from the func-
tion H (with residue 2K ′/π , see Lemma 42), there are other (simple) poles located
at the zeros of the functions in the denominator of f , i.e., when the argument of the
functions cd and cn is equal to K .

We shall successively computeK−1
b1,w

,K−1
b2,w

andK−1
b3,w

, using the different values

of f listed in Example 5.1. First, K−1
b1,w

is obtained from (the minus signs in the
numerators in the right-hand side below come from the expansion of cd around K ,
see [1, Table 16.7])
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2iπ{Resu=2K+α +Resu=2K+β +Resu=2i K ′ }
(

1

4iπ
H(u) f(b1,w)(u)

)

= −H(2K + α)

cd(K − θ)
+ −H(2K + β)

cd(K + θ)
+ K ′

π

1

cd(i K ′ − α/2) cd(i K ′ − β/2)
.

Similarly, for the computation of K−1
b2,w

we have:

2iπ{Resu=2K+α +Resu=β +Resu=2i K ′ }
(

1

4iπ
H(u) f(b2,w)(u)

)

= H(2K + α)(−ik′)
−k′ cn(2K − θ)

+ H(β)(−ik′)
−k′ cn θ

+ K ′
π

(−ik′)
cn(i K ′ − α/2) cn(K + i K ′ − β/2)

.

Finally, we obtain for K−1
b3,w

:

2iπ{Resu=2K+β +Resu=4K+β +Resu=2i K ′ }
(

1

4iπ
H(u) f(b3,w)(u)

)

= −ieiθ H(2K + β)

cd 0
+ −ieiθ H(4K + β)

cd(2K )

+ K ′

π

ieiθ

cd(i K ′ − β/2) cd(−K + i K ′ − β/2)
.

Multiplying these equations by the corresponding entries of the Kasteleyn matrix
(namely, sn θ , i cn θ and−ie−iθ , see (49)) and summing them, one can group together
terms having similar values of H .

Terms with a H(2K + α) give:

H(2K + α)

(
sn θ

− cd(K − θ)
+ cn θ

cn(2K − θ)

)
= H(2K + α)

(
sn θ

− sn θ
+ cn θ

cn θ

)
= 0.

Similarly, those with a H(2K + β) give:

H(2K + β)

(
sn θ

− cd(K + θ)
+ −ie−iθ (−ieiθ )

cd(0)

)
= H(2K + β)

(− sn θ

− sn θ
− 1

)
= 0.

We group the terms in H(β) and H(4K + β), and use the fact that H(4K + β) =
H(β) + 1, stated in Lemma 42:

H(β)

(−ik′i cn θ

−k′ cn θ

)
+ H(4K + β)

(
−ie−iθ (−ieiθ )

cd(2K )

)
= H(β) (−1 + 1) + 1 = 1.
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We are left with computing the sum of residues at 2i K ′. It turns out that this boils
down to (57) for u = 2i K ′. Thus this sum equals 0. Therefore

3∑
i=1

Kw,biK
−1
bi ,w

= 1,

thereby completing the proof of Theorem 37. �

5.4 Asymptotics of the inverse Kasteleyn operator

We first need to introduce some notation. For any b and w, there exists a path on the
diamond graph G	 joining b and w, see Fig. 18. The first and the last edges of the path
are half-edges of G	, the other ones are plain edges. We call b = b1, and bn the black
vertex adjacent to w. We further define b2, . . . , bn−1 as the successive black vertices
in the middle of the edges of G	 joining b to w, see again Fig. 18. The n edges are
equal to

1
2eiα1 , eiα2 , . . . , eiαn−1 , 1

2eiαn .

The αi are not well defined (in the sense that any multiple of 2π could be added to
αi ), but the eαi are. The edges are orientated in such a way that

b1 + 1

2
eiα1 +

n−1∑
j=2

eiα j + 1

2
eiαn = bn . (60)

We also define the points a j ( j = 1, . . . , n − 1) as the vertices of the diamond graph
lying between b j and b j+1. The notation of this paragraph is illustrated on Fig. 18.

Finally, let h as in (65) and define

χ(u) = 1

|a1 − an−1| log{e(a1,an−1)(u + 2i K ′)}. (61)

Theorem 38 LetG be a quasicrystalline isoradial graph. When the distance |b−w| →
∞, we have

K−1
b,w = eiθ e− i

2 (αn−α1)(h(u0 ± 2i K ′) + o(1))

2
√
2π |a1 − an−1|χ ′′(u0)

e|a1−an−1|χ(u0),

where θ is the rhombus-angle of the rhombus to which w belongs, u0 is the unique
u ∈ (−K , K ) such that χ ′(u) = 0, and χ(u) < 0.)

Theorem 38 should be compared to its genus 0 counterpart, i.e., Theorem 4.3 of
[31] where polynomial decrease of coefficients of the inverse Kasteleyn operator is
proved.
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b = b1

b2

b3

b4

bn−1

bn

w

a1

a2

a3
an−1

eiθ1
2 eiθn

2

eiθ2

eiθ3
eiθn−1

Fig. 18 Notation for a path on the quad-graph G	 joining b and w, see (60)

Remark 39 Contrary to Theorem 13, where we have shown that the constant in front
of the exponential function is always positive (see Remark 14), we have less control
on the constant in Theorem 38. First, it can have a phase, due to the terms eiθ and

e− i
2 (αn−α1). The main point is that the quantity h(u0 ± 2i K ′), which is real, can be

positive, negative and even 0. This follows from (65).

Note that the proof of Theorem 38 is similar to that of Theorem 13; therefore, we
omit the details. We only need to give an expression for the function h appearing in
the statement of Theorem 38. First of all, we prove that the function f(b1,bn) looks very
much like the exponential function e(a1,an−1) (we use the previous notation).

Lemma 40 The following formula holds:

f(b1,bn)(u) = ie− i
2 (αn−α1)g(u) e(a1,an−1)(u), (62)

where

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sn
(

u−αn
2

)
dc
(

u−α1
2

)
if a1 and an−1 are dual,

sd
(

u−αn
2

)
dc
(

u−α1
2

)
· (−√

k′) if a1 is dual and an−1 primal,

sd
(

u−αn
2

)
nc
(

u−α1
2

)
· (k′) if a1 and an−1 are primal,

sn
(

u−αn
2

)
nc
(

u−α1
2

)
· (−√

k′) if a1 is primal and an−1 dual.

It is important to note that taken independently, the factors e− i
2 (αn−α1) and g(u) are

not well defined: if αn (or α1) is replaced by αn + 4K , these terms should be replaced
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by their opposite. However, the product e− i
2 (αn−α1)g(u) is well defined, which suffices

for our purpose.

Proof With the previous notation we write f(b,bn)(u) =∏n−1
j=1 f(b j ,b j+1)(u). There are

two cases for the computation of f(b j ,b j+1), according to whether a j is a primal or a
dual vertex: the identities (53) and (54) yield

f(b j ,b j+1)(u) = e−i(α j+1−(α j ±2K )) ·
⎧⎨
⎩
sd
(

u−α j+1
2

)
ds
(

u−α j ∓2K
2

)
if a j is primal,

sn
(

u−α j+1
2

)
ns
(

u−α j ∓2K
2

)
if a j is dual.

(63)
The term ±2K in (63) comes from the fact that the orientation of the rhombus vectors
in (53)–(54) and in (60) are reversed. The quantity (63) does not depend on the value
of this sign (this is a consequence of the addition formulas by ±K for the sn and sd
functions, see Table 2 in the Appendix).

Due to the fact that the value of f(b j ,b j+1) depends on the type (primal or dual) of
the vertex a j , there are four cases for the computation of f(b,bn), according to the types
of a1 and an−1. We write down the computations in the particular case where both a1
and an−1 are dual, the other cases would follow in a very similar manner. We have
(with all signs ± = +):

f(b,bn )(u) = e− i
2 (α2−(α1+2K )) × · · · × e− i

2 (αn−(αn−1+2K ))
sn
(

u−α2
2

)

sn
(

u−α1−2K
2

) × · · · ×
sn
(

u−αn
2

)

sn
(

u−αn−1−2K
2

)

= e
i
2 (n−1)π e− i

2 (αn−α1)
sn
(

u−αn
2

)

sn
(

u−α1
2 − K

) sn
(

u−α2
2

)

sd
(

u−α2
2 − K

) sd
(

u−α3
2

)

sn
(

u−α3
2 − K

) × · · · ×
sd
(

u−αn−1
2

)

sn
(

u−αn−1
2 − K

)

= e
i
2 (n−1)π e− i

2 (αn−α1)
sn
(

u−αn
2

)

− cd
(

u−α1
2

) sn
(

u−α2
2

)

−k′−1 cn
(

u−α2
2

) sd
(

u−α3
2

)

− cd
(

u−α3
2

) × · · · ×
sd
(

u−αn−1
2

)

− cd
(

u−αn−1
2

)

= e
i
2 (n−1)π e− i

2 (αn−α1)
sn
(

u−αn
2

)

− cd
(

u−α1
2

) (−1)
n−2
2

n−1∏
j=2

i
√

k′ sc(
u − α j

2
)

= ie− i
2 (αn−α1)sn

( u − αn

2

)
dc
( u − α1

2

)
e(a1,an−1) .

The third equality above uses addition formulas of Table 2. In the last line, we have
applied the definition (9) of the exponential function. We also implicitly used the fact
that n is even (because both a1 and an−1 are dual vertices). The first case of Eq. (62),
and thus of Lemma 40, is proved. �

We now give a formula for f(b,w) for general vertices b and w.

Lemma 41 The following formula holds:

f(b,w)(u) = eiθ e− i
2 (αn−α1)h(u) e(a1,an−1)(u), (64)
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where θ is the rhombus-angle of the rhombus to which w belongs, and

h(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dc
(

u−α1
2

)
dc
(

u−αn
2

)
if a1 and an−1 are dual,

dc
(

u−α1
2

)
nc
(

u−αn
2

)
· (

√
k′) if a1 is dual and an−1 primal,

nc
(

u−α1
2

)
nc
(

u−αn
2

)
· (−k′) if a1 and an−1 are primal,

nc
(

u−α1
2

)
dc
(

u−αn
2

)
· (−√

k′) if a1 is primal and an−1 dual.

(65)

Proof We have f(b,w) = f(b1,bn) f(bn ,w). The definition (50) of the function f provides

f(bn ,w)(u) = ieiθ ·
⎧⎨
⎩
dc
(

u−αn
2

)
dc
(

u−αn−2K
2

)
if an−1 is primal,

dc
(

u−αn
2

)
dc
(

u−αn+2K
2

)
if an−1 is dual.

(The choice of the sign ± above comes from Remark 33.) Using that cd( u−αn∓2K
2 ) =

∓ sn( u−αn
2 ) together with Lemma 40 ends the proof of Lemma 41. �

5.5 Application to the dimer model on the graphGQ

In the same way as in Sect. 3.6, the inverse Kasteleyn operator K−1 can be used to
obtain an explicit local expression for a Gibbs measure PQ

dimer on dimer configurations
of the infinite graph GQ arising from two independent Z -invariant Ising models. It can
also be used to obtain an explicit local formula for the free energy of the model. By
Dubédat [19]we know that this free energy is equal, up to an additive constant, to that of
the dimer model on GF (since the characteristic polynomials differ by a multiplicative
constant), so that we feel it presents no real interest to derive the formula, although it
can be done using the approach of Theorem 20.

For the Gibbs measure, everything works out in exactly the same way so that we
do not write out the details. We obtain that the probability of occurrence of a subset
of edges E = {w1b1, . . . , wkbk} in a dimer configuration of GQ is:

P
Q
dimer(w1b1, . . . , wkbk) =

⎛
⎝ k∏

j=1

Kw j ,b j

⎞
⎠ det[(K−1)E],

where K−1 is the inverse Kasteleyn operator whose coefficients are given by (58)
or (59) and (K−1)E is the sub-matrix of K−1 whose rows are indexed by b1, . . . , bk

and columns by w1, . . . , wk .
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ANR-10-BLAN-0123) and from the Région Centre-Val de Loire (Projet MADACA). We are grateful to the
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Appendix A: Useful identities involving elliptic functions

In this section we list required identities satisfied by elliptic functions.

A.1 Identities for Jacobi’s elliptic functions

Change of argument Jacobi’s elliptic functions satisfy various addition formulas by
quarter-periods and half-periods, among which (cf. [1, Table 16.8]):

A.2 Jacobi’s epsilon, zeta and related functions

The explicit expressions of the inverse operators of Theorems 11 and 37 involve the
function H defined as follows. In the remarks following Theorem 11, we also use the
function V mentioned below.

For 0 < k2 < 1, let

⎧⎪⎪⎨
⎪⎪⎩

H(u|k) = K ′

π

{
E
(u

2

∣∣∣k)+ E ′ − K ′

K ′
u

2

}
,

V (u|k) = i K

π

{
E
(u

2

∣∣∣k)− E

K

u

2

}
,

(66)

where E is Jacobi’s epsilon function: E(u) = ∫ u
0 dn2(v|k)dv, see [1, 16.26.3]. For

k2 < 0, let {
H(u|k) = H(k′u|k∗),
V (u|k) = V (k′u|k∗). (67)

Properties of these functions are presented below.

Lemma 42 The functions H and V admit jumps in the horizontal and vertical direc-
tions, respectively:

{
H(u + 4K |k) − H(u|k) = 1,
H(u + 4i�K ′|k) − H(u|k) = 0,

{
V (u + 4K |k) − V (u|k) = 0,
V (u + 4i�K ′|k) − V (u|k) = 1.

(68)

Table 2 Addition formulas by quarter-periods and half-periods, taken from [1, 16.8]

−u u ± K u + 2K u + i K ′ u + 2i K ′ u + K + i K ′

sn − sn ± cd − sn 1
k ns sn 1

k dc

cn sn ∓k′ sd − cn − i
k ds − cn − ik′

k nc

dn dn k′ nd dn −i cs − dn ik′ sc
cd cd ∓ sn − cd 1

k dc cd − 1
k ns

sc − sc − 1
k′ cs sc i nd − sc i

k′ dn
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In the fundamental rectangle [0, 4K ] + [0, 4i�K ′], the function H (resp. V ) has a
simple pole, at 2i�K ′, with residue 2�K ′

π
(resp. 2i K

π
). Moreover,

lim
k→0

H(u|k) = u

2π
, lim

k→0
V (u|k) = 0.

The following addition formulas hold:

H(v − u|k) = H(v|k) − H(u|k)

+k2�K ′

π

⎧⎪⎨
⎪⎩
sn
(u

2

∣∣∣k) sn(v

2

∣∣∣k) sn(v − u

2

∣∣∣k) if 0 < k2<1,

(−k′2) sd
(u

2

∣∣∣k) sd(v

2

∣∣∣k) sd(v − u

2

∣∣∣k) if k2 < 0,

(69)

V (v − u|k) = V (v|k) − V (u|k)

+ ik2K

π

⎧⎪⎨
⎪⎩
sn
(u

2

∣∣∣k) sn(v

2

∣∣∣k) sn(v − u

2

∣∣∣k) if 0 < k2 < 1,

(−k′2) sd
(u

2

∣∣∣k) sd(v

2

∣∣∣k) sd(v − u

2

∣∣∣k) if k2 < 0.

(70)

Proof We first prove the lemma in the case 0 < k2 < 1. All properties concerning H
are proved in [10, Lemmas 44 and 45]. The statements for V follow similarly.

A slightly different proof would consist in using a reformulation of H and V in
terms of Jacobi’s zeta function Z :

H(u|k) = K ′

π
Z
(u

2

∣∣∣k)+ u

4K
, V (u|k) = i K

π
Z
(u

2

∣∣∣k). (71)

(Eq. (71) is a consequence of (66) and [1, 17.4.28 and 17.3.13].) Thenwe could use the
numerous properties satisfied by Z (see in particular the addition formula [1, 17.4.35])
to derive Lemma 42.

In the case k2 < 0, we use the definition (67) of H and V , allowing to transfer
all properties from the case k2 > 0. In doing so we have to: consider �K ′ in (68)
because in the case k2 < 0 the quarter-period K ′ is non-real, see (46), and use the
transformation of the sn function into the sd one under the dual transformation, see
[1, 16.10]. �

The Laplacian operator (6) uses the function A, which satisfies the following prop-
erties.

Lemma 43 (Lemma 44 in [10]) The function A(·|k) is odd and satisfies the following
identities:

• A(v − u|k) = A(v|k) − A(u|k) − k′ sc(u|k) sc(v|k) sc(v − u|k), (72)

• A(u + 2K |k) = A(u|k). (73)
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Appendix B: Some explicit integral computations

We gather here computations of some contour integrals appearing in the expression
of the Kasteleyn operator, in the Fisher case of Sect. 3.

B.1 An important contour integral

The following result has been used when proving Theorem 11.

Lemma 44 One has
1

2iπ

∫
�

f(u + 2K )f(u)du = − 1

k′ ,

where � is a vertical contour onT(k) winding once vertically on the torus and crossing
the horizontal axis in the interval [α, α + 2K ] = {x : α � x � α + 2K } and
f(u) = nc( u−α

2 ).

On the rectangle, the contour � is supposed to cross the horizontal axis inside
of the interval [α, α + 2K ]. If the vertical contour crosses the horizontal axis in the
other interval [α + 2K , α(+4K )], the integral is equal to + 1

k′ , as it corresponds to

changing α into α+2K and nc( u−(α+4K )
2 ) = − nc( u−α

2 ). Note further that Lemma 44
is independent of the choice of the angle α mod 4K , and the integrand f(u + 2K )f(u)

is.

Proof First, it follows from the change of variable u → u + 2K and the above-
mentioned property of nc that

1

2iπ

∫
�

f(u+2K )f(u)du =− 1

2iπ

∫
�−2K

f(u+2K )f(u)du = 1

2iπ

∫
�̃

f(u+2K )f(u)du,

where �̃ is the contour � − 2K crossed in the opposite direction of �. Further, using
the 4i K ′-periodicity of the integrand, we deduce that

1

2iπ

∫
�

f(u + 2K )f(u)du = 1

2

1

2iπ

∫
C
f(u + 2K )f(u)du, (74)

where C is the closed contour (� − 2i K ′)
⋃

(�̃ − 2i K ′)
⋃

S1
⋃

S2, S1 and S2 being
the horizontal segments joining (� − 2i K ′) and (�̃ − 2i K ′), see Fig. 19.

The main point is that the contour integral in the right-hand side of (74) can be
computed with the residue theorem: the only pole (of order 1) is at α and has residue
−2
k′ , see Table 2. Lemma 44 follows. �

B.2 Inverse Kasteleyn operator at an edge

Here we compute the probability that a given edge e = xy of the isoradial graphGwith
rhombus half-angle θe appears in the high temperature contour expansion of the Ising
model. In terms of dimers, it corresponds to the probability that the corresponding
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Fig. 19 The contour C in (74)
used in the proof of Lemma 44

ΓC

• ••

•

•
40 K

4iK ′

S1

S2

α α + 2K
�

� � �

�

�
��

�

�

edge e = v j (x)v(y) = v jv belongs to a dimer configuration of GF. By Theorem 19
this probability is given by Pdimer(e) = Kv j ,v

K−1
v,v j

.

Lemma 45 One has

Kv j ,v
K−1
v,v j

= 1

2
− 1 − 2H(2θe)

2 cn θe
.

Proof Instead of Kv j ,v
K−1
v,v j

we compute Kv,v jK
−1
v j ,v

. Both quantities are obviously
equal, but the second one happens to be more convenient when applying the results
of Sect. 3.

We start from the expression of K−1 given in (20) of Theorem 11 (note that by (19),
Cv j ,v

= 0):

K−1
v j ,v

= ik′

8π

∮
Cv j ,v

g(v j ,v)
(u)H(u)du

= ik′

8π

∮
Cv j ,v

fv j (u + 2K )fv
(u) e(x,y)(u)H(u)du.

Using the harmonicity property (16) of g(z,·)(u) enables us to rewrite

Kv j ,v
fv

(u) e(x,y)(u) = −[Kv j ,w j fw j (u) + Kv j ,w j+1 fw j+1(u)].

By definition of the function fv j , see (13), we thus have

Kv j ,v
fv j (u + 2K )fv

(u) e(x,y)(u)

= −[Kv j ,w j fw j (u + 2K ) + Kw j+1,v j fw j+1(u + 2K )]
×[Kv j ,w j fw j (u) + Kv j ,w j+1 fw j+1(u)].

Recalling that the orientation of the triangle (w j , v j ,w j+1) is admissible,wemoreover
have Kv j ,w jKv j ,w j+1 = −Kw j ,w j+1 , and since Kv j ,v

= −Kv,v j , we have

Kv,v j fv j (u + 2K )fv
(u) e(x,y)(u)

= fw j (u + 2K )fw j (u) − fw j+1(u + 2K )fw j+1(u)

+ Kw j ,w j+1(fw j+1(u + 2K )fw j (u) − fw j (u + 2K )fw j+1(u)). (75)
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With (75) the quantity Kv,v jK
−1
v j ,v

is a sum of four terms. The first two ones are
computed thanks to Lemma 44: with the choice of contour Cv j ,v

, we have

ik′

8π

∮
Cv j ,v

[fw j (u+2K )fw j (u)−fw j+1(u+2K )fw j+1(u)]H(u)du = 2
ik′

8π

−2π i

k′ = 1

2
.

To compute the last two terms in (75), namely

ik′

8π

∮
Cv j ,v

Kw j ,w j+1[fw j+1(u + 2K )fw j (u) − fw j (u + 2K )fw j+1(u)]H(u)du, (76)

recall that by (11)

fw j+1(u) = nc
(

u−α j+1
2

)
= Kw j ,w j+1 nc

(
u−α j −2θe

2

)
,

so that

Kw j ,w j+1 fw j+1(u + 2K )fw j (u) = nc
(u + 2K − α j − 2θe

2

)
nc
(u − α j

2

)
.

We therefore focus on the term

∫
Cv j ,v

nc
(u + 2K − α j − 2θe

2

)
nc
(u − α j

2

)
H(u)

du

2π i
,

in which we set, without loss of generality, α j = 0. This is equivalent to replace the
function H(u) by H(u − α j ), which is possible because both functions satisfy the
same jump conditions stated in Lemma 42. There are three residues, at 2θe, 2K and
2i�K ′. We thus have

∫
Cv j ,v

nc
(u + 2K − 2θe

2

)
nc
(u

2

)
H(u)

du

2π i

= −2

k′
H(2θe)

cn θe
+ −2

k′
H(2K )

cn(2K −θe)
+ 2�K ′

π
nc(i�K ′ + K − θe) nc(i�K ′)

= 2

k′
H(2K ) − H(2θe)

cn θe
, (77)

since nc(i�K ′) = 0. The same reasoning as above gives

∫
Cv j ,v

nc
(u − 2θe

2

)
nc
(u + 2K

2

)
H(u)

du

2π i

= 2

k′
H(2θe − 2K ) − H(0)

cn θe
+ 2�K ′

π
nc(i�K ′ + K ) nc(i�K ′ − θe), (78)
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Fig. 20 Compatibility around a
rhombus

vj

wj

v�

w�

x

y

eiαj

eiα�

eiαj+1

eiα�+1

which may be slightly simplified, using that H(0) = 0. Thanks to (77), (78) and
Table 2, we obtain that (76) equals

Kv,v jK
−1
v j ,v

= 1

2
+ H(2θe) − H(2K ) + H(2θe − 2K )

2 cn θe
+ �K ′k2

2π
sd θe.

The addition formula (69) results in

H(2θe − 2K )−H(2K )

= H(2θe − 4K ) − �K ′k2

π

{
sn K sn(θe − K ) sn(θe − 2K ) if k2 > 0
(−k′2) sd K sd(θe − K ) sd(θe − 2K ) if k2 < 0

= H(2θe) − 1 − �K ′k2

π
cn θe sd θe.

The proof is complete. �
Using that limk→0 H(u) = u

2π , see Lemma 42, we find that

lim
k→0

Kv j ,v
K−1
v,v j

= 1

2
− π − 2θe

2π cos θe
.

This is in accordance with the computation of [8, Appendix A] for the case k = 0.
Indeed, the dimer model considered in the latter paper corresponds to complementary
polygon configurations meaning that the probability (30) is 1 minus the probability of
the paper [8].

Appendix C: Proof of Lemma 7

This section consists in the proof of Lemma 7 stating that the angles (α j (x)) defined
in Eqs. (11) and (12) are indeed well defined mod 4π .
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Fig. 21 Notation for a cycle C
arising from the boundary of a
face of G

w2(x1)v2(x1)
v1(x2)

w2(x2)

x1

x2

x3

eiα2(x1)

eiα2(x2)

C

Proof We first need to check that angles around a rhombus corresponding to two
neighboring decorations are well defined, see Fig. 20.

We want to prove that the following is equal to 0 mod 4π :

(α+1 − α) − (α j+1 − α j ) + (α − α j ) − (α+1 − α j+1).

By definition of the angles within a decoration we have, mod 4π ,

(α+1 − α) − (α j+1 − α j ) =
{
0 if co(w,w+1) + co(w j ,w j+1) is even,

2π if co(w,w+1) + co(w j ,w j+1) is odd.

By definition of the angles in neighboring decorations we have, mod 4π ,

(α−α j )−(α+1−α j+1) =
{
0 if co(w j+1, v j ,w j ) + co(w+1, v,w) is even,

2π if co(w j+1, v j ,w j ) + co(w+1, v,w) is odd.

This implies that, mod 4π , we have:

(α+1 − α) − (α j+1 − α j ) + (α − α j ) − (α+1 − α j+1)

=
{
0 if co(w j+1, v j ,w j ,w j+1) + co(w+1, v,w,w+1) is even,

2π if co(w j+1, v j ,w j ,w j+1) + co(w+1, v,w,w+1) is odd.

But since the orientation of the graph is admissible, we have that co(w j+1, v j ,w j ,

w j+1) and co(w+1, v,w,w+1) are odd, implying that the sum is even, thus con-
cluding the proof for angles around a rhombus.
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We now need to prove that when doing the inductive procedure around a cycle of
GF, we recover the same angle mod 4π . There are two types of cycles to consider:
inner cycles of decorations and cycles arising from boundary of faces of G.

Consider a cycle of a decoration corresponding to a vertex x of G of degree d, and
let n be the number of edges of the inner cycle oriented clockwise. By definition of
the angles, we have:

αd+1 − α1 =
d∑

j=1

(α j+1 − α j ) =
d∑

j=1

2θ j + 2πn = 2π(n + 1).

Since the orientation of the edges is admissible, n is odd, thus proving thatαd+1−α1 =
0 [4π ].

Now consider a cycle C arising from the boundary x1, . . . , xm of a face of G, with
vertices labeled in clockwise order, see also Fig. 21. Up to a relabeling of vertices of
the decorations, this cycle can be written as

C = (w2(x1), v2(x1), v1(x2),w2(x2), . . . , v1(x1)).

Using the definition of the angles within a decoration and in neighboring ones we
deduce that, mod 4π , we have:

α2(x j )−α2(x j+1) =
{

−π − 2θ1(x j ) if co(w2(x j ), v2(x j ), v1(x j+1),w2(x j+1)) is odd,

π − 2θ1(x j ) if co(w2(x j ), v2(x j ), v1(x j+1),w2(x j+1)) is even.

Let n(C) denote the number of portions of the cycle C where

co(w2(x j ), v2(x j ), v1(x j+1),w2(x j+1))

is odd. Then, writing xm+1 = x1, we have:

α2(x1) − α2(xm+1) =
m∑

j=1

α2(x j ) − α2(x j+1) =
m∑

j=1

(π − 2θ1(x j )) − 2πn(C).

Since
∑m

j=1(π − 2θ1(x j )) is the sum of angles at the center of the cycle, it is equal to
2π . The orientation of the cycle being admissible, n(C) is odd, thus concluding the
proof. �
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