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Abstract
We consider the superposition of a symmetric simple exclusion dynamics, speeded-up
in time,with a spin-flip dynamics in a one-dimensional intervalwith periodic boundary
conditions. We prove the large deviations principle for the empirical measure under
the stationary state. We deduce from this result that the stationary state is concentrated
on the stationary solutions of the hydrodynamic equation which are stable.
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1 Introduction

Nonequilibrium thermodynamics has aroused a lot of interest in the last decades. Since
the beginning of the 2000’s, much attention has been devoted to the investigation of
nonequilibrium stationary states which describe a steady flow through a system, [6,18]
and references therein.

Over the last years, a general approach to examine nonequilibrium stationary states,
called the Macroscopic Fluctuation Theory, has been developed based on a dynamical
large deviations principle for the empirical current [2,4,8]. Among the major achieve-
ments of the MFTwas the deduction of a time-independent variational formula for the
quasi-potential, the functional obtained by minimizing the dynamical large deviations
rate functional over all trajectories which start from the stationary density profile and
produces a fixed fluctuation [3,20], and the proof that the quasi-potential is Gâteaux
differentiable at some density profile if and only if the time-dependent variational
formula which defines the quasi-potential has a unique minimizer [5].

At the same time, adapting to the infinite-dimensional setting the strategy pro-
posed by Freidlin and Wentzell [24] for stochastic perturbations of finite-dimensional
dynamical systems, Bodineau and Giacomin [10] and Farfán [21] proved a large devi-
ations principle for the empirical measure under the nonequilibrium stationary state
for conservative dynamics in contact with reservoirs in which the large deviations rate
functional is given by the quasi-potential.

We consider in this article the stochastic evolution obtained by superposing a
speeded-up symmetric simple exclusion process with a spin-flip dynamics on a one-
dimensional interval with periodic boundary conditions. The hydrodynamic equation
induced by themicroscopic dynamics, the partial differential equationwhich describes
the macroscopic evolution of the density, is given by a reaction–diffusion equation of
type

∂tρ = (1/2)Δρ + B(ρ) − D(ρ), (1.1)

where Δ represents the Laplacian and where B and D are non-negative polynomials.
We investigate the static large deviations of the empirical measure under the station-

ary state. In contrast with the previous dynamics [10,21], in which the hydrodynamic
equation has a unique stationary solution which is a global attractor of the dynamical
system generated by the PDE, in reaction–diffusion models, for appropriate choices
of the functions B, D, the hydrodynamic equation possesses more than one stationary
solution.

The existence of multiple stationary solutions to the PDE (1.1) raises new problems
and new questions. For instance, the conjecture that the stationary state does not put
mass on the unstable solutions of the hydrodynamic equation (1.1). For reaction–
diffusionmodels it has only been proved in [31] that the stationary state is concentrated
on the set of classical solutions to the semilinear elliptic equation

(1/2)Δρ + B(ρ) − D(ρ) = 0. (1.2)

The main result of this article, Theorem 4, establishes a large deviations principle
for the empirical measure under the stationary state. The quasi-potential, the rate
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Static large deviations for a reaction–diffusion model 51

functional of this large deviations principle, is represented through a time-dependent
variational problem involving the dynamical large deviations rate functional. The
value of the quasi-potential at a measure � is given in terms of the infimum of the
dynamical large deviations rate functional over all trajectories which start from a
stationary solution of the hydrodynamic equation and end at �.

A consequence of this result is that the stationarymeasure is concentrated at the sta-
ble, stationary solutions of the hydrodynamic equation. This is the content of Theorem
5, the second main result of the article.

The proof of Theorem 5 is based on two properties of the reaction–diffusion equa-
tion (1.1). First, it is known from [14] that all solutions of (1.1) converge to solutions
of the semilinear elliptic equation (1.2). In particular, there are no time-periodic solu-
tions. Second, we assume that Eq. (1.2) has only a finite number of solutions, modulo
translations. This property holds when the polynomial F(ρ) = B(ρ) − D(ρ) satis-
fies the hypotheses of Lemma 2. Theorem 5 further requires a characterization of the
unstable stationary solutions of (1.1). Under the conditions of Lemma 3 on F , this
set consists of all non-constant solutions and all constant solutions associated to local
maxima of the potential V , where V ′(ρ) = −F(ρ).

We conclude this introduction with some comments. This stochastic dynamics
has been introduced by De Masi, Ferrari and Lebowitz in [16]. The authors proved
the hydrodynamic limit of the system by duality arguments and the fluctuations of
the density field. The dynamical large deviations principle for the empirical density
starting from a productmeasure appeared in [27], following the ideas presented in [29].
Bodineau and Lagouge in [11,12] proved the dynamical large deviations principle for
the empirical current, while two of the authors of this article extended in [31] the
dynamical large deviations principle to the case in which the process starts from a
deterministic configuration.

The stationary states of the symmetric simple exclusion process are the Bernoulli
product measures. The introduction of the spin-flip dynamics creates long range cor-
relations. Although the local distribution of particles remains very close to a Bernoulli
product measure due to the speeding-up of the exclusion dynamics, the long range
correlations affect substantially the macroscopic behavior of the system. The purpose
of this article is to study this effect at the level of the large deviations.

There is a huge literature on large deviations for reaction–diffusion equations per-
turbed by Gaussian or Lévy noise in finite and infinite dimensions after the seminal
paper by Faris and Jona-Lasinio [22]. We refer to the recent books [15,19] for ref-
erences on the subject. The noise created by the microscopic spin-flip dynamics
considered in this article is of a different nature. This is reflected in the dynamical
large deviations rate functions in which singular exponential terms appear. This is one
of the sources of technical problems faced in order to prove the regularity conditions
of the dynamical rate functional needed to derive the static large deviations principle.

We leave to the endof the next section technical comments and remarks on the proofs
and on the assumptions, and wemention here some open problems for future research.
It would be interesting to extend to this model the results described at the beginning of
this introductionwhichwere obtained from theMFT for one-dimensional conservative
interacting particle systems in contact with reservoirs: an alternative time-independent
variational formula for the quasi-potential, and a description of the optimal trajectory
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52 J. Farfán et al.

which solves the time-dependent variational formula defining the quasi-potential. This
has been done in [26] in the case where the reaction–diffusion model is reversible, but
it remains an open problem in the non-reversible setting. In this general situation the
only available information is an expansion of the quasi-potential around a constant
stable stationary point obtained by Basile and Jona-Lasinio [1]. A description of the
metastable behavior of the reaction–diffusionmodel when the difference B(ρ)−D(ρ)

forms a double-well potential is also a challenging open problem.

2 Notation and results

Throughout this article, we use the following notation.N0 stands for the set {0, 1, . . .}.
For a function f : X → R, defined on some set X , let ‖ f ‖∞ = supx∈X | f (x)|. We
sometimes denote the interval [0,∞) by R+.

2.1 Reaction–diffusionmodel

Let TN = Z/NZ, N ≥ 1, be the one-dimensional discrete torus with N points.
Denote by XN the set {0, 1}TN and by η the elements of XN , called configurations.
For each x ∈ TN , η(x) represents the occupation variable at site x so that η(x) = 1
if the site x is occupied for the configuration η, and η(x) = 0 if the site is vacant. For
each x �= y ∈ TN , denote by ηx,y , resp. by ηx , the configuration obtained from η by
exchanging the occupation variables η(x) and η(y), resp. by flipping the occupation
variable η(x):

ηx,y(z) =

⎧
⎪⎨

⎪⎩

η(y) if z = x,

η(x) if z = y,

η(z) otherwise,

ηx (z) =
{

η(z) if z �= x,

1 − η(z) if z = x .

Consider the superposition of the speeded-up symmetric simple exclusion process
with a spin-flip dynamics. The generator of this XN -valued, continuous-time Markov
chain acts on functions f : XN → R as

LN f = N 2LK f + LG f ,

whereLK is the generator of a symmetric simple exclusion process (Kawasaki dynam-
ics),

(LK f )(η) = (1/2)
∑

x∈TN

[ f (ηx,x+1) − f (η)],

and LG is the generator of a spin-flip dynamics (Glauber dynamics),

(LG f )(η) =
∑

x∈TN

c(τxη)[ f (ηx ) − f (η)].
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In the last formula, c(η) represents a strictly positive, cylinder function, that is, a
function c : {0, 1}Z → R+ which depends only on a finite number of coordinates
η(y). For a sufficiently large N , c can be regarded as a function on XN . {τx : x ∈ Z}
represents the group of translations defined by (τxη)(y) = η(x + y), y ∈ TN , where
the sum is carried modulo N .

Note that the Kawasaki dynamics has been speeded-up by a factor N 2, which
corresponds to the diffusive scaling. Setting the jump rates of the Glauber part to be 0,
we retrieve the symmetric simple exclusion dynamics speeded up by N 2, whose static
large deviation principle has been derived with several different boundary conditions
in [3,10–12,21].

Fix a topological space X . Let D(I , X), I = [0, T ], T > 0, or I = R+, be the
space of right-continuous trajectories from I to X with left-limits, endowed with the
Skorohod topology. Let {ηN

t : N ≥ 1} be the continuous-time Markov process on XN

whose generator is given by LN . For a probability measure ν on XN , denote by Pν

the probability measure on D(R+, XN ) induced by the process ηN
t starting from ν.

The expectation with respect to Pν is represented by Eν . Denote by Pη the measure Pν

when the probability measure ν is the Diracmeasure concentrated on the configuration
η. Analogously, Eη stands for the expectation with respect to Pη.

2.2 Hydrodynamics

Let T be the one-dimensional continuous torus T = R/Z = [0, 1). Denote by L p(T),
p ≥ 1, the space of all real p-th integrable functions G : T → R with respect to the
Lebesgue measure dθ :

∫

T
|G(θ)|pdθ < ∞. The corresponding norm is denoted by

‖ · ‖p:
‖G‖p

p :=
∫

T

|G(θ)|pdθ.

In particular, L2(T) is a Hilbert space equipped with the inner product

〈G, H〉 =
∫

T

G(θ)H(θ)dθ.

For a function G in L2(T), we also denote by 〈G〉 the integral of G with respect to
the Lebesgue measure: 〈G〉 := ∫

T
G(θ)dθ .

Let M+ = M+(T) be the space of all nonnegative measures on T with total
mass bounded by 1, endowed with the weak topology. For a measure � inM+ and a
continuous function G : T → R, denote by 〈�,G〉 the integral of G with respect to
�:

〈�,G〉 =
∫

T

G(θ)�(dθ).

The space M+ is metrizable. Indeed, if e0(θ) = 1, ek(θ) = √
2 cos(2πkθ) and

e−k(θ) = √
2 sin(2πkθ), k ∈ N, one can define a distance d on M+ by

d(�1, �2) :=
∑

k∈Z

1

2|k| |〈�1, ek〉 − 〈�2, ek〉|, (2.1)
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and one can check that the topology induced by this distance corresponds to the weak
topology.

Note thatM+ is compact under theweak topology, and that, by Schwarz inequality,
for all density profiles γ , γ ′ : T → [0, 1],

d(γ, γ ′) ≤ 3‖γ − γ ′‖2. (2.2)

In the previous formula we abuse of notation by writing d(γ, γ ′) for d(γ (θ)dθ,

γ ′(θ)dθ).
Denote by Cm(T), m in N0 ∪ {∞}, the set of all real functions on T which are

m times differentiable and whose m-th derivative is continuous. Given a function G
in C2(T), we shall denote by ∇G and ΔG the first and second derivatives of G,
respectively.

Let νρ = νN
ρ , 0 ≤ ρ ≤ 1, be the Bernoulli product measure on XN with the density

ρ. Define the continuous functions B, D : [0, 1] → R by

B(ρ) =
∫

[1 − η(0)] c(η) dνρ, D(ρ) =
∫

η(0) c(η) dνρ.

Let πN : XN → M+ be the function which associates to a configuration η the
positive measure obtained by assigning mass N−1 to each particle of η,

πN (η) = 1

N

∑

x∈TN

η(x)δx/N ,

where δθ stands for the Dirac measure which has a point mass at θ ∈ T. Let πN
t =

πN (ηN
t ), t ≥ 0. The next result was proved by De Masi, Ferrari and Lebowitz in [16]

for the first time. We refer to [16,27,28] for its proof.

Theorem 1 Fix a measurable function γ : T → [0, 1]. Let νN be a sequence of
probability measures on XN associated to γ , in the sense that

lim
N→∞ νN

(

|〈πN ,G〉 −
∫

T

G(θ)γ (θ)dθ | > δ

)

= 0, (2.3)

for every δ > 0 and every continuous function G : T → R. Then, for every t ≥ 0,
every δ > 0 and every continuous function G : T → R,

lim
N→∞ PνN

(

|〈πN
t ,G〉 −

∫

T

G(θ)ρ(t, θ)dθ | > δ

)

= 0,

where ρ : [0,∞) × T → [0, 1] is the unique weak solution of the Cauchy problem
{

∂tρ = (1/2)Δρ + F(ρ) on T,

ρ(0, ·) = γ (·), (2.4)

where F(ρ) = B(ρ) − D(ρ).
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The definition, the existence and the uniqueness of weak solutions of the Cauchy
problem (2.4) are discussed in Sect. 3.

2.3 The reaction–diffusion equation

We present in this subsection the results on the reaction–diffusion equation (2.4)
needed in this section. Let S be the set of all classical solutions of the semilinear
elliptic equation:

(1/2)Δρ + F(ρ) = 0 on T. (2.5)

Classical solution means a [0, 1]-valued function ρ in C2(T) which satisfies the
Eq. (2.5) for any θ ∈ T. We also denote by Msol the set of all absolutely contin-
uous measures whose density is a classical solution of (2.5):

Msol := {�̄ ∈ M+ : �̄(dθ) = ρ̄(θ)dθ, ρ̄ ∈ S}.

Next lemma is Theorem D of [14].

Lemma 1 Let ρ : [0,∞) × T → [0, 1] be the unique weak solution of the Cauchy
problem (2.4). Then, there exists a density profile ρ∞ in S such that ρt converges to
ρ∞ as t → ∞ in C2(T).

This result excludes the existence of time-periodic solutions of Eq. (2.4), a phe-
nomenon which occurs if the function F is allowed to depend on ∇ρ as well (cf. [23]
and references therein).

We turn to the description of the set S. Denote byR the set of roots of F in [0, 1].
It is clear that for all r ∈ R, the constant function ρ : T → R given by ρ(θ) = r ,
θ ∈ T, is an element of S. There might be also non-constant periodic solutions.

Let V : [0, 1] → R be a potential such that F(ρ) = −V ′(ρ). If the polynomial F
has degree 1, as V ′(0) < 0 < V ′(1), Eq. (2.5) has a unique solution, which is a global
attractor for the dynamical system induced by the reaction–diffusion equation (2.4),
and given by ρ(θ) = r , where r is the unique root of F .

Assume that the degree of F is larger than or equal to 2. Denote by m1, . . . ,mn

the local minima of V in [0, 1] and by M1, . . . , Mm the local maxima in this interval.
Since V ′(0) < 0 < V ′(1), n = m + 1 ≥ 1 and m1 < M1 < · · · < Mn−1 < mn.

Denote by ∼ the equivalence relation in C2(T) defined by ρ ∼ ρ′ if there exists
θ ′ ∈ T such that ρ′(θ) = ρ(θ + θ ′) for all θ ∈ T. Of course, if ρ is a periodic solution
and ρ′ ∼ ρ, then ρ′ is also a solution.

Lemma 2 Suppose that all zeros of F are real and that all critical points of V are
local minima or local maxima. Then, the elliptic equation (2.5)with periodic boundary
conditions has at most a finite number of solutions, modulo the equivalence relation
introduced above.

Since we could not find the previous result explicitly stated in the literature, we
sketch the proof of this result. The terminology employed can be found in [32].
By Proposition 1.5.2 in [32], F is an A − B function on all intervals (m1, M1),
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. . . , (Mn−1,mn). The diagram of the Hamiltonian system ṗ = q, q̇ = V ′(p) shows
that the periodic solutions of (2.5) are bounded below and above by two consecutive
minima of the potential V .

Solutions of (2.5) with periodic boundary conditions can be mapped to solutions
of (2.5) with Dirichlet boundary conditions. Indeed, fix two consecutive minima m j ,
m j+1 of V , and a solution ρ of (2.5) taking values in [m j ,m j+1]. Let Fj (r) =
F(Mj +r), so that Fj (0) = 0 because Mj is a local maximum of V . Note that Fj is an
A−B function on (m j−Mj , 0)∪(0,m j+1−Mj ). Let θ0 = min{θ ≥ 0 : ρ(θ) = Mj }.
Define φ : [0, 1] → [m j − Mj ,m j+1 − Mj ] by φ(θ) = ρ(θ + θ0) − Mj . It is clear
that φ is a solution of (1/2)Δv + Fj (v) = 0 with Dirichlet boundary conditions.

Since Fj is an A−B function on the intervals (m j −Mj , 0) and (0,m j+1−Mj ), by
Propositions 3.1.3, 3.1.4 and Theorem 3.1.9 in [32], the time-map of the Eq. (2.5) with
Dirichlet boundary conditions is strictly convex and converges to+∞ at the boundary.
In particular, for each branch there exist at most two distinct solutions if V ′′(Mj ) = 0
and at most one solution if V ′′(Mj ) < 0. Since there is a finite number of branches
whose time-map takes value less than or equal to 1, there is a finite number of distinct
solutions of (2.5) with Dirichlet boundary conditions. As all solutions with periodic
boundary conditions can be mapped to solutions with Dirichlet boundary conditions,
the lemma is proved.

We turn to the heteroclinic orbits of (2.4). A complete description has been obtained
in [23]. We state here a partial result which fulfills our needs. It asserts that all non-
constant stationary solutions are unstable, as well as all constant solutions associated
to local maxima of V .

Fix two stationary solutions φ �= ψ of (2.4). A trajectory ρ(t, ·), t ∈ R, is called a
heteroclinic orbit from φ to ψ if limt→−∞ = φ, limt→+∞ = ψ and if ρ solves (2.4)
for every t ∈ R. Convergences are meant in C1(T). A solution φ of (2.5) is said to be
unstable if there exist ψ � φ and a heteroclinic orbit from φ to ψ .

For a solution φ of (2.5), denote by Lφ the linear operator on C2(T) given by

Lφh = (1/2)Δh − V ′′(φ)h. (2.6)

If φ is not constant, ∇φ is an eigenfunction associated to the eigenvalue 0. A non-
constant solution φ of (2.5) is said to be hyperbolic if all eigenvalues of Lφ have
non-zero real parts, except the eigenvalue λ = 0, whose associated eigenspace has
dimension 1.

The eigenvalue 0 of the operator Lφ is associated to the orbit ρ(t, θ) = φ(θ + t).
Actually, we prove in Lemma 16 that the cost of this orbit along a stationary set
vanishes. Moreover, the existence of a positive eigenvalue of Lφ is related to the
existence of a heteroclinic orbit starting from φ and, therefore, to the instability of φ.

Lemma 3 Assume the conditions of Lemma 2 and that all local maxima of V are non-
degenerate: V ′′(Mj ) �= 0, 1 ≤ j < n. Then, for each non-constant solutionφ of (2.5),
there exist heteroclinic orbits from φ to φ j and from φ to φ j+1, where φk(θ) = mk,
θ ∈ T, and j = max{k < n : mk < φ(θ) ∀ θ ∈ T}. There exist also heteroclinic
orbits from ψ j to φ j and from ψ j to φ j+1, 1 ≤ j < n, where ψ j (θ) = Mj , θ ∈ T.
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This result follows from Theorems 1.3 and 1.4 in [23]. We just have to show that
the hypotheses of these theorems are in force. As V ′(0) < 0 < V ′(1), the solutions
are bounded below by 0 and above by 1, so that F is dissipative.

We claim that all non-constant solution φ of (2.5) are hyperbolic. Indeed, fix such a
function.Aswe have seen in the sketch of the proof of Lemma2, there exists 1 ≤ j < n
such that m j ≤ φ(θ) ≤ m j+1 for all θ ∈ T. Denote by Π the orbit map associated to
the polynomial F (cf. [32, page 51]). Since V ′′(Mj ) < 0, by [32, Proposition 1.5.2],
F is an A− B function in (m j ,m j+1). Therefore, by [32, Theorem 2.1.3], Π ′(r) �= 0
for r �= Mj . Hence, by the proof of [23, Lemma 4.4], φ is hyperbolic.

We turn to the proof of the lemma. Fix 1 ≤ j < n and a non-constant solution φ of
(2.5) taking values in the interval [m j ,m j+1]. We show that there exist heteroclinic
orbits from φ to φ j+1 and from ψ j to φ j+1. Similar arguments permit to replace φ j+1
by φ j .

The diagram of the Hamiltonian system ṗ = q, q̇ = V ′(p) shows that the peri-
odic solutions of (2.5) which takes value in the interval [m j ,m j+1] are either (i)
φ j , φ j+1, ψ j or (ii) a non-constant periodic solution whose maximal value belongs
to (Mj ,m j+1) and minimal value to (m j , Mj ). Moreover, if φ, ψ are such non-
constant periodic solutions, either minx ψ(x) < minx φ(x) < Mj < maxx φ(x) <

maxx ψ(x) or the opposite.
We start with a heteroclinic orbit from ψ j to φ j+1. We may use the heteroclinic

orbit from Mj to m j+1 for the ODE ẋ(t) = V ′(x(t)) to obtain a heteroclinic orbit
from ψ j to φ j+1 which remains constant in space.

Consider now a non-constant solution φ of (2.5) such that m j ≤ φ(θ) ≤ m j+1.
We repeat here the arguments of the proof of Theorem 1.3 in [23] presented at the end
of page 111. Let z(h) be the number of strict sign changes of a function h : T → R.
Since z(∇φ) ≥ 2, by [23, Proposition 3.1(b)], the unstable dimension of φ, denoted
by i(φ) in [23], is larger than or equal to 1. By the positivity of the first eigenfunction
of the operator Lφ , one obtains a trajectory ρ(t, θ), t ∈ R, which solves (2.4) and
such that ρ(t, θ) > φ(θ), limt→−∞ ρ(t) = φ. Let ψ = limt→+∞ ρ(t), which exists
in view of Lemma 1. As m j ≤ φ(θ) ≤ m j+1, we have that m j ≤ ψ(θ) ≤ m j+1. By
the Sturm property, z(ρ(t) − φ) decreases in time. Since it is equal to 0 for t close
to −∞, z(ψ − φ) = 0. Hence, ψ can not be ψ j or one of the non-constant solutions
taking values in the interval [m j ,m j+1]. Thus, ψ must be φ j or φ j+1. Since ψ ≥ φ,
ψ = φ j+1, which proves the lemma.

We conclude this subsection with an example which fulfills the assumptions of
Lemma 3. Fix 0 < a < b and consider the reaction–diffusion equation

∂tρ = (1/2)Δρ − V ′(ρ), where V (ρ) = b

4
(2ρ − 1)4 − a

2
(2ρ − 1)2.

(2.7)

This is the so-called Chafee–Infante equation [13]. It is clear that the potential V
satisfies the assumptions of Lemma 3. Actually, in this case all stationary solutions
and all heteroclinic orbits are known. We examine this example in Sect. 8, where we
present microscopic jump rates which fulfill the hypotheses of Theorem 4 below and
whose hydrodynamic equation is given by (2.7) with 0 < a < b.
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2.4 Hydrostatics

Since the jump rate c(η) is strictly positive, the Markov process ηN
t is irreducible in

XN . We denote by μN the unique stationary probability measure under the dynamics.
We review in this subsection the asymptotic behavior of the empirical measure under
the stationary state μN .

Denote by PN the probability measure on M+ defined by PN := μN ◦ (πN )−1.
The following theorem has been established in [31]. It is a consequence of the law of
large numbers for the empirical measure, stated in Theorem 1, and of the asymptotic
behavior of the solutions of the reaction–diffusion equation, stated in Lemma 1.

Theorem 2 The sequence of measures {PN : N ≥ 1} is asymptotically concentrated
on the set Msol. Namely, for any δ > 0, we have

lim
N→∞PN

(

� ∈ M+ : inf
�̄∈Msol

d(�, �̄) ≥ δ

)

= 0.

Note that this result does not exclude the possibility that the stationarymeasure gives
a positive weight to a neighborhood of an unstable stationary solution of Eq. (2.4).

2.5 Dynamical large deviations

LetM+,1 be the closed subset ofM+ consisting of all absolutely continuousmeasures
with density bounded by 1:

M+,1 = {� ∈ M+ : �(dθ) = ρ(θ)dθ, 0 ≤ ρ(θ) ≤ 1 a.e. θ ∈ T}.

Fix T > 0, and denote by Cm,n([0, T ] × T), m, n in N0 ∪ {∞}, the set of all
real functions defined on [0, T ] × T which are m times differentiable in the first
variable and n times in the second one, and whose derivatives are continuous. Let
QT ,η = QN

T ,η, η ∈ XN , be the probability measure on D([0, T ],M+) induced by

the measure-valued process πN
t starting from πN (η).

For each path π(t, dθ) = ρ(t, θ)dθ in D([0, T ],M+,1), define the energy QT as

QT (π) = sup
G∈C0,1([0,T ]×T)

{

2
∫ T

0
dt 〈ρt ,∇Gt 〉 −

∫ T

0
dt

∫

T

dθ G(t, θ)2
}

. (2.8)

It is known (cf. [7, Subsection 4.1]) that the energy QT (π) is finite if and only if ρ

has a generalized derivative, denoted by ∇ρ, and this generalized derivative is square
integrable on [0, T ] × T:

∫ T

0
dt

∫

T

dθ |∇ρ(t, θ)|2 < ∞.

Moreover, it is easy to see that the energy QT is convex and lower semicontinuous.
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For each function G in C1,2([0, T ] × T), define the functional J̄T ,G : D([0, T ],
M+,1) → R by

J̄T ,G(π) = 〈πT ,GT 〉 − 〈π0,G0〉 −
∫ T

0
dt 〈πt , ∂tGt + 1

2
ΔGt 〉

− 1

2

∫ T

0
dt 〈χ(ρt ), (∇Gt )

2〉

−
∫ T

0
dt

{〈B(ρt ), e
Gt − 1〉 + 〈D(ρt ), e

−Gt − 1〉},

where χ(r) = r(1 − r) is the mobility. Let JT ,G : D([0, T ],M+) → [0,∞] be the
functional defined by

JT ,G(π) =
{
J̄T ,G(π) if π ∈ D([0, T ],M+,1),

∞ otherwise,
(2.9)

and let IT : D([0, T ],M+) → [0,∞] be the functional given by

IT (π) =
{
sup JT ,G(π) if QT (π) < ∞,

∞ otherwise,
(2.10)

where the supremum is carried over all functionsG inC1,2([0, T ]×T).We sometimes
abuse of notation bywriting IT (ρ) for IT (π) andwewrite JG for JT ,G to keep notation
simple.

An explicit formula for the functional IT at smooth trajectories was obtained in
Lemma 2.1 of [27]. Let ρ be a function in C2,3([0, T ] × T) with c ≤ ρ ≤ 1 − c, for
some 0 < c < 1/2. Then, there exists a unique solution H ∈ C1,2([0, T ] × T) of the
partial differential equation

∂tρ = (1/2)Δρ − ∇(χ(ρ)∇H) + B(ρ)eH − D(ρ)e−H ,

and the rate functional IT (ρ) can be expressed as

IT (ρ) = 1

2

∫ T

0
dt 〈χ(ρt ), (∇Ht )

2〉

+
∫ T

0
dt 〈B(ρt ), 1 − eHt +Hte

Ht 〉 +
∫ T

0
dt 〈D(ρt ), 1−e−Ht − Hte

−Ht 〉.

For a measurable function γ : T → [0, 1], define the dynamical large deviations
rate function IT (·|γ ) : D([0, T ],M+) → [0,∞] as

IT (π |γ ) =
{
IT (π) if π(0, dθ) = γ (θ)dθ,

∞ otherwise.
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The next result, which establishes a dynamical large deviations principle for the
measure-valued process πN· with rate functional IT (·|γ ) has been presented in [31]
under the assumption that the functions B and D are concave on [0, 1]. We refer to
[11,12,27] for different versions.

Theorem 3 Assume that the functions B and D are concave in [0, 1]. Fix T > 0 and a
measurable function γ : T → [0, 1]. Consider a sequence ηN of initial configurations
in XN associated to γ in the sense that 〈πN (ηN ),G〉 converges to ∫

T
G(θ)γ (θ)dθ ,

as N ↑ ∞, for all continuous function G : T → R. Then, the measure QT ,ηN on
D([0, T ],M+) satisfies a large deviation principle with the rate function IT (·|γ ).
That is, for each closed subset C ⊂ D([0, T ],M+),

lim sup
N→∞

1

N
log QT ,ηN (C) ≤ − inf

π∈C
IT (π |γ ),

and for each open subset O ⊂ D([0, T ],M+),

lim inf
N→∞

1

N
log QT ,ηN (O) ≥ − inf

π∈O
IT (π |γ ).

Moreover, the rate function IT (·|γ ) is lower semicontinuous and it has compact level
sets.

2.6 Static large deviations

We state in Theorem 4 below the main result of this paper, a large deviations principle
for the empirical measure under the stationary measure.

Assume that the semilinear elliptic equation (2.5) admits at most a finite number
of solutions, modulo translations. More precisely, assume that there exists l ≥ 1 and
density profiles ρ̄1, . . . , ρ̄l in C2(T), such that

Msol = {�̄i (dθ − ω) = ρ̄i (θ − ω)dθ : 1 ≤ i ≤ l, ω ∈ T}.

Lemma 2 provides conditions on the potential V which guarantee that this condition
is in force. Let Mi , 1 ≤ i ≤ l, be the subset of Msol given by Mi = {�̄i (dθ − ω) :
ω ∈ T}.

Define the functionals Vi : M+ → [0,∞], 1 ≤ i ≤ l, by

Vi (�)= inf
{
IT (π |γ ) : T >0 , γ (θ)dθ ∈ Mi , π ∈ D([0, T ],M+) and πT =�

}
,

(2.11)

which is the minimal cost to create the measure � from the set Mi . We prove in
Lemma 16 that in the previous variational formula we may replace the condition
γ (θ)dθ ∈ Mi by themore restrictive condition γ (θ)dθ = �̄i for some fixed �̄i ∈ Mi :
for all �̄i ∈ Mi ,
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Vi (�)= inf
{
IT (π |γ ) : T > 0 , γ (θ)dθ = �̄i , π ∈ D([0, T ],M+) and πT = �

}
.

(2.12)

By an abuse of notation, we sometimes write Vi (γ ) instead of Vi (γ (θ)dθ), where
γ : T → [0, 1] is a density profile.

By translation invariance, Vi (γ ) = Vi (γ ′) if γ ′(·) = γ (· − ω) for some ω ∈ T. In
particular, Vi is constant on the setM j , j �= i , and vi j = Vi (�̄ j ) is well defined, where
�̄ j is any element of M j . Moreover, by choosing T = 1 and πt = (1 − t)�̄i + t �̄ j ,
t ∈ [0, 1], in the infimum of (2.12) yields that vi j is finite for any i �= j . Finally, by
Lemmata 12 and 16, Vi (�) = 0 for any � ∈ Mi .

Following [24, Chapter 6], denote by T (i), i ∈ V := {1, . . . , l}, the set of all
oriented, weighted, rooted trees whose vertices are all the elements of V and whose
root is i . The edges are oriented from the child to the parent, and the weight vmn is
assigned to the oriented edge (m, n). Denote by κ(g) the sum of the weights of the
tree g ∈ T (i) and by wi the minimal weight of all trees in T (i):

wi = min
g∈T (i)

κ(g), κ(g) =
∑

(m,n)∈g
vmn .

Since vi j is finite for i �= j , so are wi and w = min1≤i≤l wi . We will see below in
(2.15) that the non-negative parameter wi corresponds to the exponential weight of a
neighborhood of the set Mi under the stationary state.

Note that for all i �= j ,
wi ≤ w j + v j i . (2.13)

Indeed, let g be a graph in T ( j) such that w j = κ(g). Denote by (a, b), a �= b ∈
V , the oriented edge where a is the child and b the parent. Let i ′ be the parent of
i in g. Of course, i ′ might be j . Denote by g′ the tree in T (i) obtained from g
by adding the oriented edge ( j, i) and removing the the edge (i, i ′), and note that
κ(g) + v j i = κ(g′) + vi i ′ . Since wi is the minimal value of κ(g̃), g̃ ∈ T (i), wi ≤
κ(g′) ≤ κ(g′) + vi i ′ = κ(g) + v j i = w j + v j i .

For each 1 ≤ i ≤ l, define the functions Wi ,W : M+ → [0,∞] by

Wi (�) = wi − w + Vi (�), W (�) = min
1≤i≤l

Wi (�). (2.14)

Note that for all � ∈ Mi ,

W (�) = wi := wi − w. (2.15)

Indeed, fix � ∈ Mi . In view of the definition of W , we have to show that
min1≤ j≤l{w j + Vj (�)} = wi . The minimum is less than or equal to wi because
Vi (�) = 0. On the other hand, since Vj (�) = v j i and since, by (2.13),wi ≤ w j +v j i ,
wi ≤ w j + Vj (�) for j �= i .

The following theorem is the main result of this paper.
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Theorem 4 Assume that the jump rates are strictly positive and that the functions
B and D are concave on [0, 1]. Assume, furthermore, that the semilinear elliptic
equation (2.5) admits at most a finite number of solutions, modulo translations. Then,
the sequence of probabilitymeasures {PN ; N ≥ 1} satisfies a large deviation principle
onM+ with speed N and rate function W. Namely, for each closed set C ⊂ M+ and
each open set O ⊂ M+,

lim sup
N→∞

1

N
logPN (C) ≤ − inf

�∈C
W (�),

lim inf
N→∞

1

N
logPN (O) ≥ − inf

�∈O
W (�).

Moreover, the rate functional W is bounded onM+,1, it is lower semicontinuous, and
it has compact level sets.

2.7 The support of the stationary measure�N

The next result improves on Theorem 2 and asserts that the stationary measure μN is
concentrated on neighborhoods of stable equilibria of the reaction–diffusion equation
(2.4). This result has been conjectured in [11,12].

As in the previous subsection, assume that the semilinear elliptic equation (2.5)
admits at most a finite number of solutions, modulo translations. Denote byM the set
of local minima of V , and by S ⊂ Msol the set of associated density profiles:

S = {�(dθ) = m dθ : m ∈ M}.

The elements of S are called stable solutions. Lemma 30 justifies this terminology. It
states that the quasi-potential associated to each � ∈ S is strictly positive outside any
neighborhood of �. More precisely, for every �̄i (dθ) = ρ̄i (θ)dθ ∈ S and ε > 0, there
exists c > 0 such that infγ /∈Bε(�̄i ) Vi (γ ) ≥ c, where Bε(�̄i ) represents a ball in M+
of radius ε centered at �̄i .

Denote by Is , Iu ⊂ {1, . . . , l} the set of indices associated to stable, unstable density
profiles, respectively:

Is = { j : ρ̄ j (θ) dθ ∈ S}, Iu = {1, . . . , l} \ Is .

Theorem 5 Assume that the hypotheses of Theorem 4 are in force, and that for all
i ∈ Iu there exists j ∈ Is such that

vi j = 0. (2.16)

Then, for all ε > 0 there exist c > 0 and N0 ≥ 1 such that for all N ≥ N0,

PN

⎛

⎝M+
∖

⎡

⎣
⋃

j∈Is
Bε(�̄ j )

⎤

⎦

⎞

⎠ ≤ e−cN .
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Of course, one expects the stationary measure μN to be concentrated on neigh-
borhoods of the density profiles associated to the global minima of the potential V .
This problem remains an open question. A finer estimate than the one provided by the
large deviations might be needed to answer this open question. We refer to [25] for a
similar problem in the context of the pinnedWiener measure, and to [9] and references
therein for the study of the concentration of measures in the situation where the rate
functional has more than one minimizer.

Lemma 3 provides a set of sufficient conditions, expressed in terms of the potential
V , for assumption (2.16) to hold. Indeed, by Lemma 29, if there exists a heteroclinic
orbit from Mi to M j , then vi j = 0. Hence, by Lemma 3, if all zeros of F are real,
all critical points of V are local minima or local maxima and all local maxima of V
are non-degenerate, hypothesis (2.16) is in force.

Fix a stationary solution φ = ρ̄i of (2.5). There are at least three different possible
definitions of instability: (i) the operator Lφ , defined in (2.6), has an eigenvalue with
positive real part. (ii) there exists ψ � φ and a heteroclinic orbit from φ to ψ . (iii)
vi j = 0 for some j �= i . We presented in the proof of Lemma 3 a sketch of the proof
that (i) ⇒ (ii) under some additional hypotheses. Lemma 29 asserts that (ii) ⇒ (iii).
We believe that the other implications hold, at least with some extra assumptions, but
we were not able to prove them.

2.8 Comments and remarks

The characterization of the global attractor of the solutions of reaction–diffusion equa-
tions [14,23] has only been achieved in dimension 1, not to mention the description
of the heteroclinic orbits. This is the main obstacle to extend the previous result to
higher dimensions. Although it is true that the dynamical large deviations principle
has been derived only in one dimension [31], it should not be very difficult to extend
it to higher dimensions.

The results presented in this article can be proved for one-dimensional reaction–
diffusion models with Dirichlet or Neumann boundary conditions. The description of
the heteroclinic orbits in these contexts is simpler than the one with periodic boundary
conditions (cf. [13] for the case of Dirichlet boundary conditions).

As mentioned above, it is an open, and very appealing, problem to show that the
stationary measure μN is concentrated on neighborhoods of the density profiles asso-
ciated to global minima of the potential V . To apply the method presented in the article
to solve this question would require a sharp estimate of the cost of the instanton, the
trajectory which drives the system from a stable equilibrium to another. In view of
Theorem 9 below, it is clear that the instanton in the case of a double well potential
with non-constant stationary profiles is the trajectory which crosses the non-constant
stationary solution with one period. To estimate the cost of this trajectory seems to be
out of reach.

The previous questions lead us to the problemof themetastability of the dynamics. It
is challenging to describe the metastable behavior of these reaction–diffusion models.

The hypothesis that the functions B and D are concave is only needed in the proof of
the dynamical large deviations principle [31], and we never use it in this paper. If one
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is able to prove this dynamical result without the concavity assumption, the arguments
presented in this article provide a proof of the static large deviations principle without
the concavity assumption.

As mentioned in the introduction, the strategy of the proof consists in adapting to
our infinite-dimensional setting the Freidlin and Wentzell approach [24] to prove a
large deviation principle for the stationary state of a small perturbation of a dynamical
system. This has been done before in [10,21] for conservative evolutions in contact
with reservoirs. However, in the context of reaction–diffusion models the existence
of several stationary solutions to the hydrodynamic equation introduces additional
difficulties.

The proof relies on a representation of the stationary state of the reaction–diffusion
model in terms of the invariantmeasure of a discrete-timeMarkov chain induced by the
successive visits to the neighborhoods of the stationary solutions of the hydrodynamic
equation.

The proof of the static large deviations principle can be decomposed in essentially
three steps. We first need to derive some regularity properties of the dynamical large
deviations rate functional. For instance, that any trajectory which remains in a long
time interval far apart (in the L2-topology) from the stationary solutions of the hydro-
dynamic equation pays a strictly positive cost. Or that the quasi-potential is lower
semicontinuous in the weak topology.

The second step consists in obtaining sharp large deviations bounds for the invariant
measure of the discrete-time Markov chain. The final step, whose proofs are similar
to the ones presented in [10,21], consists in estimating the minimal cost to create a
measure starting from a stationary solution of the hydrodynamic equation.

The topology is one of the main technical difficulties in the argument. The weak
topology is imposed by the dynamical large deviations principle which has been
derived in this set-up, and one is forced to prove all regularity properties of the rate
functionals in this topology. To overcome this obstacle, we systematically use the
smoothening properties of the hydrodynamic equation. Lemma 19 is a good illustra-
tion of this strategy.

The article is organized as follows. In Sect. 3, we present the main properties of the
weak solutions of the Cauchy problem (2.4), and in Sects. 4 and 5, we examine the
dynamical and the static large deviations rate functionals. These sections are purely
analytical, and no probabilistic argument is used. In Sect. 6, we prove the static large
deviations principle, and, in Sect. 7, the concentration of the stationary measure μN .
In Sect. 8 we present a reaction–diffusion model which fulfills the hypotheses of
Theorem 5.

3 The reaction–diffusion equation

We present in this section several properties of the weak solutions of the Cauchy
problem (2.4). When we did not find a reference, we present a proof of the result.
Throughout this section and in the next ones, C0 represents a finite, positive constant
which depends only on F andwhichmay change from line to line.Asmentioned above,
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this section and the following two ones are purely analytical, and no probabilistic
arguments appear.

We first define two concepts of solutions.

Definition 1 A measurable function ρ : [0, T ] × T → [0, 1] is said to be a weak
solution of the Cauchy problem (2.4) in the layer [0, T ] × T if for every function G
in C1,2([0, T ] × T),

〈ρT ,GT 〉 − 〈γ,G0〉 −
∫ T

0
dt 〈ρt , ∂tGt 〉

= 1

2

∫ T

0
dt 〈ρt ,ΔGt 〉 +

∫ T

0
dt 〈F(ρt ),Gt 〉. (3.1)

Definition 2 A measurable function ρ : [0, T ] × T → [0, 1] is said to be a mild
solution of the Cauchy problem (2.4) in the layer [0, T ] × T if for any t in [0, T ]

ρt = Ptγ +
∫ t

0
Pt−s F(ρs) ds, (3.2)

where {Pt : t ≥ 0} stands for the semigroup on L2(T) generated by (1/2)Δ.

Next proposition asserts that the two notions of solutions are equivalent. We refer
to Proposition 6.3 of [31] for the proof.

Proposition 1 Definitions 1 and 2 are equivalent. Moreover, there exists a unique weak
solution of the Cauchy problem (2.4).

The next result is contained in Proposition 2.1 of [17].

Proposition 2 Let ρ be the unique weak solution of the Cauchy problem (2.4). Then
ρ is infinitely differentiable over (0,∞) × T.

Let Z∗ = Z \ {0}, and let c0 : {0, 1}Z∗ → R+ be the cylinder function defined by
c0(ξ) = c(ξ (0)), where ξ (0) is the configuration of {0, 1}Z defined by ξ (0)(x) = ξ(x),
x �= 0, ξ (0)(0) = 0. The cylinder function c1 : {0, 1}Z∗ → R+ is defined analogously
with ξ (0) replaced by ξ (1), where ξ (1)(0) = 1.

Note that c0 and c1 are strictly positive cylinder functions because so is c(η).
Hence, if ν∗

ρ represents the Bernoulli product measure on {0, 1}Z∗ with density ρ, the
polynomial B̂(ρ) defined by B̂(ρ) = Eν∗

ρ
[c0(η)] is strictly positive. Similarly, the

polynomial D̂(ρ) defined by D̂(ρ) = Eν∗
ρ
[c1(η)] is strictly positive.

Bydefinition, B(ρ) = Eνρ [{1−η(0)}c(η)] = (1−ρ) Eν∗
ρ
[c0(η)] = (1−ρ)B̂(ρ),

and D(ρ) = ρ D̂(ρ). Hence,

B(ρ) = (1 − ρ) B̂(ρ), D(ρ) = ρ D̂(ρ), (3.3)

where B̂(ρ) and D̂(ρ) are strictly positive polynomials. In particular, F(0) = B(0)−
D(0) = B̂(0) > 0 and F(1) = B(1) − D(1) = −D̂(1) < 0.
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Denote by xa(t), 0 ≤ a ≤ 1, the solution of the ODE

ẋ(t) = F(x(t)) (3.4)

with initial condition x(0) = a. Since F(1) < 0 < F(0), x0(t) (resp. x1(t)) is strictly
increasing (resp. decreasing) and x0(t) → x0 (resp. x1(t) → x1), where x0 (resp.
x1) is the smallest (resp. largest) solution of F(x) = 0. The next result is a simple
application of the maximum principle.

Lemma 4 Let γ : T → [0, 1] be a density profile such that a ≤ γ (θ) ≤ b for a.e.
θ ∈ T. Denote by ργ (t, θ) the unique weak solution of (2.4) with initial condition γ .
Then, xa(t) ≤ ρ(t, θ) ≤ xb(t) for all t ≥ 0. In particular, for any t > 0, there exists
ε = ε(t) > 0 such that ε ≤ ργ (t, θ) ≤ 1 − ε for all θ ∈ T and all initial density
profiles γ : T → [0, 1]. Moreover, there exists δ > 0, depending only on F, such that

δ ≤ ρ̄i ≤ 1 − δ (3.5)

for all 1 ≤ i ≤ l, ρ̄i (θ) dθ ∈ Mi .

Lemma 5 There exists a finite constant C0, depending only on F, such that for any
density profile γ : T → [0, 1] and any t > 0,

‖ρt‖22 +
∫ t

0
‖∇ρs‖22 ds ≤ C0(1 + t),

where ρ(t, θ) stands for the unique weak solution of (2.4) with initial condition γ .

Proof Fix a density profile γ : T → [0, 1]. By Proposition 2, and since ρ is the weak
solution of (2.4), for any 0 < s < t , by an integration by parts,

‖ρt‖22 = ‖ρs‖22 −
∫ t

s
‖∇ρr‖22 dr + 2

∫ t

s
dr

∫

T

ρr (θ)F(ρr (θ)) dθ.

Since ρr is absolutely bounded by 1, we complete the proof of the lemma by letting
s ↓ 0. ��

A similar argument provides a bound on the distance between a solution of the
hydrodynamic equation and a constant stationary solution. Recall that α ∈ (0, 1) is an
attractor of the ODE (3.4) if there exists ε > 0 such that the solution x(t) of the ODE
with initial condition x0 converges to α as t ↑ ∞ if |x0 − α| < ε. Note in particular
that F(α) = 0 if α is an attractor.

Lemma 6 Let ε > 0, let α be an attractor of the ODE (3.4), and let ρ̄α be the density
profile given by ρ̄α(θ) = α, θ ∈ T. There exists δ10 = δ10(ε, α) > 0 such that for any
density profile γ : T → [0, 1] such that ‖γ − ρ̄α‖2 ≤ δ10, ρt converges in the sup
norm to ρ̄α as t ↑ ∞, where ρt (θ) = ρ(t, θ) is the unique weak solution of (2.4) with
initial condition γ . Moreover, for all t ≥ 1, ‖ρt − ρ̄α‖∞ ≤ ε.
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Proof Fix ε > 0, α ∈ (0, 1) such that F(α) = 0, a density profile γ : T → [0, 1]
and recall the notation introduced in the statement of the lemma. Let ρ be the weak
solution of (2.4) with initial condition γ . Repeating the computation presented in the
proof of Lemma 5, we obtain that for every 0 < s < t ,

‖ρt−ρ̄α‖22 = ‖ρs−ρ̄α‖22 −
∫ t

s
‖∇ρr‖22 dr+2

∫ t

s
dr

∫

T

[ρr (θ)−ρ̄α(θ)] F(ρr (θ)) dθ.

Since F(α) = 0, we may subtract F(ρ̄α(θ)) from F(ρr (θ)) in the last integral and
bound the product by C0[ρr (θ) − ρ̄α(θ)]2, where C0 is the Lipschitz constant of F .
By letting s ↓ 0 and then applying Gronwall inequality, we obtain that

‖ρt − ρ̄α‖22 +
∫ t

0
‖∇ρr‖22 dr ≤ ‖ρ0 − ρ̄α‖22 e2C0t (3.6)

for all t ≥ 0.
Choose ε0 > 0 so that (α − 3ε0, α + 3ε0) is contained in the basin of attraction of

α for the ODE (3.4) and set ε1 = min{ε/2, ε0}. Choose δ10 = ε1e−C0 and let γ be an
initial profile such that ‖γ − ρ̄α‖2 ≤ δ10. By (3.6), for all 0 ≤ t ≤ 1,

‖ρt − ρ̄α‖2 ≤ ε1 and
∫ 1

0
‖∇ρr‖22 dr ≤ ε21 . (3.7)

In particular, there exists 0 ≤ s ≤ 1 such that ‖∇ρs‖2 ≤ ε1, so that

sup
θ �=ω∈T

∣
∣ρ(s, θ) − ρ(s, ω)

∣
∣ ≤ ‖∇ρs‖1 ≤ ‖∇ρs‖2 ≤ ε1.

Therefore, by (3.7), for all θ ∈ T,

∣
∣ρ(s, θ)−α

∣
∣ ≤ sup

θ �=ω∈T

∣
∣ρ(s, θ)−ρ(s, ω)

∣
∣ + ‖ρs−ρ̄α‖1 ≤ ε1 + ‖ρs−ρ̄α‖2 ≤ ε

because 2ε1 ≤ ε.
Let x±(t), t ≥ 0, be the solution of the ODE (3.4) with initial condition x±(0) =

α ± 2ε1. By the previous estimate, x−(0) ≤ ρ(s, θ) ≤ x+(0) for all θ ∈ T. Hence,
by Lemma 4, x−(t) ≤ ρ(s + t, θ) ≤ x+(t) for all θ ∈ T, t ≥ 0. Since the basin of
attraction of the ODE is contained in (α − 3ε1, α + 3ε1), x±(t) → α, as t → ∞, and
x−(0) ≤ x−(t) ≤ x+(t) ≤ x+(0) for all t ≥ 0. In particular, ρt converges in the sup
norm to ρ̄α , as t → ∞, and ‖ρs+t − ρ̄α‖∞ ≤ ‖ρs − ρ̄α‖∞ ≤ ε for all t ≥ 0. This
completes the proof of the lemma because s ≤ 1. ��

Similar arguments permit to estimate the distance between two solutions of the
reaction–diffusion equation (2.4).
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Lemma 7 There exists a constantC0 > 0 such that for anyweak solutionsρ j , j = 1, 2,
of the Cauchy problem (2.4) with initial profile ρ

j
0 and for any t > 0,

‖ρ1
t − ρ2

t ‖2 ≤ eC0t‖ρ1
0 − ρ2

0‖2.

Proof From (3.2), for any t ≥ 0 and j = 1, 2,

ρ
j
t = Ptρ

j
0 +

∫ t

0
Pt−s F(ρ

j
s )ds.

Therefore

‖ρ1
t − ρ2

t ‖2 ≤ ‖Pt (ρ1
0 − ρ2

0 )‖2 +
∫ t

0
‖Pt−s(F(ρ1

s ) − F(ρ2
s ))‖2 ds

≤ ‖ρ1
0 − ρ2

0‖2 + ‖F ′‖∞
∫ t

0
‖ρ1

s − ρ2
s ‖2 ds.

In the last inequality, we used the fact that the operator norm of Pt is equal to 1. To
conclude the proof of the lemma, it remains to apply Gronwall inequality. ��

For each function ρ in L2(T), let Bδ(ρ), δ > 0, be the δ-open neighborhood of ρ in
L2(T). Recall also that we denote by Bδ(�) be the δ-open neighborhood of � inM+.
We sometimes represent the neighborhood Bδ(�) by Bδ(γ ) when �(dθ) = γ (θ)dθ .

Lemma 8 Let ρ̄ : T → [0, 1] be a classical solution to the Eq. (2.5), and set �̄(dθ) =
ρ̄(θ)dθ . For any ε > 0 and 0 < T < T ′, there exists δ11 = δ11(ε, T , T ′) ∈ (0, ε)
such that for any density profile ρ0 : T → [0, 1], ρ0(θ)dθ in Bδ11(�̄), it holds that
ρ(t, θ)dθ ∈ Bε(�̄) for all 0 ≤ t ≤ T ′ and that ρt ∈ Bε(ρ̄) for all T ≤ t ≤ T ′, where
ρt (θ) = ρ(t, θ) is the unique weak solution of the Cauchy problem (2.4) with initial
condition ρ0.

Proof Fix ε > 0 and 0 < T < T ′. Let ζ1 = (1/3)εe−C0T ′
, where C0 is the constant

appearing in Lemma 7. Fix a density profile ρ0 : T → [0, 1], and let πt (dθ) =
ρ(t, θ)dθ , where ρt is the unique weak solution of the Cauchy problem (2.4) with
initial condition ρ0. Recall the definition of the complete orthogonal normal basis
{ek; k ∈ Z} introduced just before (2.1). By (2.1) and (3.1), for any t ≥ 0,

d(πt , �̄) ≤ d(π0, �̄) +
∑

k∈Z

1

2|k|
∣
∣
∣
1

2

∫ t

0
ds 〈ρs,Δek〉 +

∫ t

0
ds 〈F(ρs), ek〉

∣
∣
∣.

The first term on the right hand side is bounded by ε/2 if ρ0 ∈ Bζ2(�̄), where ζ2 = ε/2,
while the second one is less than or equal to

t
∑

k∈Z

1

2|k|
{
C0 + (2πk)2

} = C0 t,
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because ρs is bounded by 1, F by a constant C0 and ‖ek‖2 = 1. Hence, if T1 = ε/2C0
and π0 ∈ Bζ2(�̄),

πt ∈ Bε(�̄) for all 0 ≤ t ≤ T1. (3.8)

We turn to the L2-estimate. From the Eq. (3.2), we have

‖ρt − ρ̄‖2 ≤ ‖Pt (ρ0 − ρ̄)‖2 +
∫ t

0

∥
∥Pt−s

[
F(ρs) − F(ρ̄)

] ∥
∥
2 ds

≤ ‖Pt (ρ0 − ρ̄)‖2 + t‖F ′‖∞, (3.9)

since the operator norm of Pt is equal to 1. Let ρ̃ = ρ0 − ρ̄ and, for each t > 0,
ρ̃t = Pt ρ̃. It is easy to see that, for any k ∈ Z,

〈ρ̃t , ek〉 = 〈ρ̃, Ptek〉 = e−2π2k2t 〈ρ̃, ek〉.

Therefore, from Parseval’s relation,

‖ρ̃t‖22 =
∑

k∈Z
e−4π2k2t 〈ρ̃, ek〉2. (3.10)

Set T2 := min{(ζ1/2‖F ′‖∞), T1, T } and choose a large enough positive integer k1
so that ∑

|k|>k1

e−4π2k2T2 ≤ ζ 2
1 /8.

To estimate the first terms of the series, observe that

∑

|k|≤k1

e−4π2k2t 〈ρ̃, ek〉2 ≤ 4k1
( ∑

|k|≤k1

2−|k| ∣∣〈ρ̃, ek〉
∣
∣
)2 ≤ 4k1d(ρ0, ρ̄)2.

Hence, if we set ζ3 = ζ1/2k1+2, this last expression is bounded by ζ 2
1 /16 ≤ ζ 2

1 /8
provided ρ0(θ)dθ belongs to Bζ3(�̄). Therefore, by (3.9), (3.10) and the choice of ζ3,

‖ρT2 − ρ̄‖2 ≤ ζ1 (3.11)

if π0 ∈ Bζ3(�̄).
Let δ11 = min{ζ2, ζ3}, and note that δ11 depends only on ε, T , T ′. By (3.8) and

(3.11), and since T2 ≤ T1, for all π0 ∈ Bδ11(�̄),

πt ∈ Bε(�̄) for all 0 ≤ t ≤ T2 and ‖ρT2 − ρ̄‖2 ≤ ζ1.

By Lemma 7, by the previous estimate and by definition of ζ1, for all T2 ≤ t ≤ T ′,
π0 ∈ Bδ11(�̄),

‖ρt − ρ̄‖2 ≤ eC0(t−T2)‖ρT2 − ρ̄‖2 ≤ eC0T ′
ζ1 ≤ ε/3.
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Moreover, by this bound and by (2.2), for all T2 ≤ t ≤ T ′, π0 ∈ Bδ11(�̄),

d(πt , �̄) ≤ 3 ‖ρt − ρ̄‖2 ≤ ε.

This completes the proof of the lemma since T2 ≤ T . ��
The previous results permit to strengthen Lemma 6.

Lemma 9 Let ε > 0, letα be an attractor of theODE (3.4), and let �̄α(dθ) = ρ̄α(θ)dθ ,
ρ̄α(θ) = α, θ ∈ T. There exists δ12 = δ12(ε, α) > 0 such that for any density profile
γ : T → [0, 1] such that γ (θ)dθ ∈ Bδ12(�̄α), ρt converges in the sup norm to ρ̄α ,
as t ↑ ∞, where ρt (θ) = ρ(t, θ) is the unique weak solution of (2.4) with initial
condition γ . Moreover, πt (dθ) = ρ(t, θ)dθ belongs to Bε(�̄α) for all t ≥ 0.

Proof Fix ε > 0. Denote by ζ1 the constant δ10 = δ10(ε, α) provided by Lemma 6.
Let ζ2 = min{ζ1, ε}, and let δ12 be the constant δ11 = δ11(ζ2, 1/2, 2) provided by
Lemma 8 with ρ̄ = ρ̄α .

Fix γ : T → [0, 1] such that γ (θ)dθ ∈ Bδ12(�̄α). Denote by ρt (θ) = ρ(t, θ) the
weak solution of the hydrodynamic equation with initial condition γ . By Lemma 8,
‖ρ1 − ρ̄α‖2 ≤ ζ1 and πt (dθ) = ρ(t, θ)dθ belongs to Bε(�̄α) for all t ≤ 2.

Since ‖ρ1 − ρ̄α‖2 ≤ ζ1, by Lemma 6, ρt converges in the sup norm to ρ̄α as t ↑ ∞,
and ‖ρt −α‖∞ ≤ ε for all t ≥ 2. In particular, πt (dθ) = ρ(t, θ)dθ belongs to Bε(�̄α)

for all t ≥ 2. ��

4 The dynamical rate function

Wepresent in this section some features of the dynamical rate function needed to prove
the properties of the static rate function stated in the next section. The main result of
the section asserts that a trajectory can not remain too long far in the L2-topology from
all stationary solutions of the hydrodynamic equation without paying a fixed positive
cost.

The first four lemmata have been proved in [31, Section 4] for the rate functional
IT (·|γ ). The same arguments apply the functional IT . The first three extract informa-
tion on the trajectoryπ(t, dθ) from the finiteness of the large deviations rate functional.
Lemma 10 states that a trajectory with finite rate function is a continuous path in
D([0, T ],M+). This lemma is repeatedly used in the rest of this paper, and therefore,
is used without any further mention.

Lemma 10 Fix T > 0. Let π be a path in D([0, T ],M+) such that IT (π) is finite.
Then π belongs to C([0, T ],M+,1).

Lemma 11 states that the density ρ(t, θ) of a trajectory π(t, dθ) with finite rate
function belongs to H1 for almost all t , where H1 represents the space of functions
f : T → R which have a general derivative in L2(T).
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Lemma 11 There exists a finite constant C0 > 0 such that for any T > 0 and for any
path π(t, dθ) = ρ(t, θ)dθ in D([0, T ],M+,1) with finite energy,

ET (ρ) :=
∫ T

0
dt

∫

T

dθ
|∇ρ(t, θ)|2
χ(ρ(t, θ))

≤ C0 {IT (π) + T + 1}.

The next result characterizes the weak solutions of the hydrodynamic equation as
the trajectories at which the dynamical large deviations rate functional vanishes.

Lemma 12 Fix T > 0. The density ρ of a path π(t, dθ) = ρ(t, θ)dθ in
D([0, T ],M+,1) is the weak solution of the Cauchy problem (2.4) with initial profile
γ if and only if IT (π |γ ) = 0. Moreover, in that case

ET (ρ) < ∞.

The next result is extremely useful. In the expression of the functionals JT ,G and
IT , terms appearing such as

∫ T
0 〈B(ρt ),Gt 〉 dt , where G is a smooth function, are

not continuous for the weak topology, but only for the L1-topology. The next lemma
establishes that if the cost of a sequence πn of trajectories is uniformly bounded
and if this sequence converges weakly to some trajectory π , then the sequence of
density profiles converges in L2-topology. The proof of this result follows from the
computations presented in the proof of Theorem 4.7 in [31].

Lemma 13 Fix T > 0. Let {πn(t, dθ) = ρn(t, θ)dθ : n ≥ 1} be a sequence of
trajectories in D([0, T ],M+,1). Assume that there exists a finite constant C such that

sup
n≥1

IT (πn) ≤ C .

If ρn converges to ρ weakly in L2(T × [0, T ]), then ρn converges to ρ strongly in
L2(T × [0, T ]).

Recall the definition of the neighborhoods Bδ(ρ) and Bδ(�) introduced just before
the statement of Lemma 8. For each δ > 0 and T > 0, denote by DT ,δ the set of
trajectories π(t, dθ) = ρ(t, θ)dθ in D([0, T ],M+,1) such that ρt /∈ Bδ(ρ̄) for all
0 ≤ t ≤ T and ρ̄ ∈ S.

Next lemma states that a trajectory can not stay a long time interval far, in the L2-
topology, from all stationary solutions of the hydrodynamic equation without paying
an appreciable cost. This result plays a fundamental role in the proof of the lower semi-
continuity of the functional W . To enhance its interest, note that L2-neighborhoods
are much thinner than the neighborhoods of the weak topology.

Lemma 14 For every δ > 0 there exists T = T (δ) > 0 such that

inf
π∈DT ,δ

IT (π) > 0.
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Proof Assume that the assertion of the lemma is false. Then, there exists some δ > 0
such that, for any n ∈ N,

inf
π∈Dn,δ

In(π) = 0.

In this case there exists a sequence of trajectories {πn(t, dθ) = ρn(t, θ)dθ : n ≥ 1},
πn ∈ Dn,δ , such that In(πn) ≤ 1/n. Since IT has compact level sets, by using a
Cantor’s diagonal argument and passing to a subsequence if necessary,we obtain a path
π(t, dθ) = ρ(t, θ)dθ in D(R+,M+,1) such thatπn converges toπ in D([0, T ],M+)

for any T > 0. Moreover, by Lemma 13, ρn converges to ρ strongly in L2([0, T ]×T)

for all T > 0.
Since IT is lower semicontinuous, IT (π) = 0 for all T > 0. By Lemma 12, the

density of π , denoted by ρ so that π(t, dθ) = ρ(t, θ)dθ , is the unique weak solution
of the Eq. (2.4) with initial condition ρ(0, ·). Hence, by Lemma 1, ρt converges in
C2(T) to some density profile ρ∞ ∈ S. Therefore, there exists some T0 > 0 such that

‖ρt − ρ∞‖2 ≤ δ/2,

for any t ≥ T0. Hence, since πn belongs to Dn,δ , for n ≥ T0 + 1

∫ T0+1

0
‖ρn

t − ρt‖2 dt ≥
∫ T0+1

T0
‖ρn

t − ρt‖2 dt

≥
∫ T0+1

T0

(‖ρn
t − ρ∞‖2 − ‖ρt − ρ∞‖2

)
dt

≥ δ − δ/2 = δ/2,

which contradicts the strong convergence of ρn to ρ in L2([0, T0 + 1] × T) and we
are done. ��

Analogously, for each δ > 0 and T > 0, denote by DT ,δ the set of trajectories
π(t, dθ) = ρ(t, θ)dθ in D([0, T ],M+,1) such that πt /∈ Bδ(�̄) for all 0 ≤ t ≤ T
and �̄ ∈ Msol. A similar result also holds for the set DT ,δ .

Corollary 1 For every δ > 0, there exists T > 0 such that

inf
π∈DT ,δ

IT (π) > 0.

Proof The assertion follows from Lemma 14 and the fact that

{�(dθ) = ρ(θ)dθ : ρ ∈ Bδ(ρ̄)} ⊂ B3δ(ρ̄),

for every ρ̄ ∈ S and every δ > 0 in view of (2.2). ��
In the proof of the static large deviations principle, it will be useful to estimate

Vi (�) for some measure �(dθ) = γ (θ)dθ . If γ is a smooth density profile, this can be
achieved by joining �̄i to � through a linear interpolation πt = (1− t/T )�̄i + (t/T )�,
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T > 0, and by estimating the cost of the path π . This is the content of Lemma 17. For
a general measure �(dθ) = γ (θ)dθ , we need first to smooth the density profile γ . We
use the hydrodynamic equation to do that. Fix ε > 0 small, and denote by ρ(t, θ) the
solution of the hydrodynamic equation starting from γ , 0 ≤ t ≤ ε. By Proposition 2,
ρ(ε, ·) is smooth. We may use the first part of this argument to joint �̄i to ρ(ε, θ)dθ .
To connect ρ(ε, θ)dθ to γ (θ)dθ we use the backward path π̂t (dθ) = ρ(ε − t, θ)dθ ,
0 ≤ t ≤ ε. The cost of this path is estimated in the next lemma.

Lemma 15 There exists a constant C0 > 0 such that for any T > 0, any weak solution
ρ of (2.4), and any classical solution ρ̄ to the Eq. (2.5),

IT (π) ≤ C0{T + ‖ρT − ρ̄‖1 + ‖ρ0 − ρ̄‖1},
where π is the trajectory defined by π(t, dθ) = ρ(T − t, θ)dθ .

Proof For any test function G ∈ C1,2([0, T ] × T), JT ,G(π) can be rewritten as

JT ,G(π) =
∫ T

0
dt 〈∇ρt ,∇Ĝt 〉 − 1

2

∫ T

0
dt 〈χ(ρt ), (∇Ĝt )

2〉

−
∫ T

0
dt 〈B(ρt ), e

Ĝt + Ĝt − 1〉 −
∫ T

0
dt 〈D(ρt ), e

−Ĝt − Ĝt − 1〉,

where Ĝ(t, θ) = G(T − t, θ). The first line on the right hand side is bounded above
by

1

2

∫ T

0
dt

∫

T

dθ
|∇ρ(t, θ)|2
χ(ρ(t, θ))

= 1

2
ET (ρ). (4.1)

Since for any 0 < ρ < 1 and any a ∈ R

−B(ρ)ea + D(ρ)a + D(ρ) ≤ D(ρ) log(D(ρ)/B(ρ)),

−D(ρ)e−a − B(ρ)a + B(ρ) ≤ B(ρ) log(B(ρ)/D(ρ)),

and since B(ρ) = (1 − ρ)B̂(ρ), D(ρ) = ρ D̂(ρ), where B̂(ρ), D̂(ρ) are the strictly
positive functions introduced in (3.3), the second line on the right hand side is bounded
above by

∫ T

0
dt 〈D(ρt ) log(D(ρt )/B(ρt )) + B(ρt ) log(B(ρt )/D(ρt ))〉

≤ C0T −
∫ T

0
dt 〈D(ρt ) log(1 − ρt ) + B(ρt ) log(ρt )〉

(4.2)

To estimate this last term, let h(x) = x log x + (1 − x) log(1 − x) and note that

∂t h(ρt ) = [log(ρt ) − log(1 − ρt )] ∂tρt

= [log(ρt ) − log(1 − ρt )] [1
2
Δρt + F(ρt )].
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This equation is justified since, by Proposition 2, any weak solution of the Eq. (2.4)
is smooth for t > 0. Therefore,

−
∫ T

0
dt 〈D(ρt ) log(1 − ρt ) + B(ρt ) log(ρt )〉 = − 〈h(ρT )〉 + 〈h(ρ0)〉

− 1

2
ET (ρ) −

∫ T

0
dt 〈D(ρt ) log(ρt ) + B(ρt ) log(1 − ρt )〉.

Adding and subtracting 〈h(ρ̄)〉, since ρ̄ takes value in a compact interval of (0, 1), the
first two terms on the right hand side can be bounded above by

C0{‖ρT − ρ̄‖1 + ‖ρ0 − ρ̄‖1},

for some C0 > 0. Since the last term in the penultimate displayed formula is bounded
by C0T , we have shown that (4.2) is less than or equal to

−1

2
ET (ρ) + C0

{
T + ‖ρT − ρ̄‖1 + ‖ρ0 − ρ̄‖1

}
.

This estimate together with (4.1) completes the proof of the lemma. ��
The last result of this section states that the cost to move inside a set of static

solutions is zero.

Lemma 16 Fix 1 ≤ i ≤ l. For all �̄1, �̄2 ∈ Mi ,

inf
{
IT (π |�̄1) : T > 0 , π ∈ D([0, T ],M+) , πT = �̄2} = 0.

Proof If Mi is a singleton, then the conclusion is clear. Assume that Mi is not a
singleton and fix �̄1, �̄2 ∈ Mi so that �̄k(dθ) = ρ̄k(θ)dθ , k = 1, 2, and ρ̄2(θ) =
ρ̄1(θ + θ0) for some 0 < θ0 < 1.

Fix a > 0 small, and let ρ(t, θ) = ρ̄1(θ + at) so that ρ(0, ·) = ρ̄1(·), ρ(θ0/a, ·) =
ρ̄2(·). Let T = θ0/a, πt (dθ) = ρ(t, θ)dθ . Since ∂tρ = a∇ρ and (1/2)Δρ + F(ρ) =
0, an integration by parts gives that for any smooth function G : [0, T ] × T → R,

JT ,G(π) = −
∫ T

0
dt 〈aρt ,∇Gt 〉 − 1

2

∫ T

0
dt 〈χ(ρt ), (∇Gt )

2〉

−
∫ T

0
dt 〈B(ρt ), e

Gt − 1 − Gt 〉 −
∫ T

0
dt 〈D(ρt ), e

−Gt − 1 + Gt 〉.

The second line is negative, while the first one, by Young’s inequality and by Lemma
4, is less than or equal to

a2T

2

∫

T

ρ̄1(θ)

1 − ρ̄1(θ)
dθ ≤ C0 a θ0.

To complete the proof it remains to let a → 0. ��
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5 The static rate functionalW

In this section, we present some properties of the quasi-potential W . The main result
asserts that the functional W , introduced in (2.14), is lower semicontinuous for the
weak topology.

The first main result states that W is continuous at each measure �̄i ∈ Mi in
the L2-topology. The second one states that W is lower semicontinuous in the weak
topology.

We start with an estimate of Vi (�) for measures �(dθ) = γ (θ)dθ whose density is
close toMi in the L2-topology. This estimate together with Lemma 15 will allow us
to prove that Vi is continuous for the L2-topology.

Let D be the space of measurable functions on T bounded below by 0 and bounded
above by 1, endowed with the L2-topology:

D = {ρ : T → [0, 1] : 0 ≤ ρ(θ) ≤ 1 a.e. θ ∈ T}.

For each 1 ≤ i ≤ l, let Vi : D → [0,+∞] be the functional given by Vi (ρ) =
Vi (ρ(θ)dθ). Note that the topology ofM+,1 is the weak toplogy, while the one of D

is the L2-toplogy. Recall that we denote byH1 the Sobolev space of functions G with
generalized derivatives ∇G in L2(T). For each h > 0 and each δ > 0, let D

h
δ be the

subset of D consisting of those profiles ρ satisfying the following conditions:

(A) ρ ∈ H1 and
∫

T

(∇ρ(θ))2dθ ≤ h.

(B) δ ≤ ρ(θ) ≤ 1 − δ a.e. in T.

Lemma 17 For each 1 ≤ i ≤ l, h > 0, δ > 0 and an increasing C1-diffeomorphism
α : [0, 1] → [0, 1], there exist constants C1 = C1(δ, h) > 0 and C2 = C2(δ, α) > 0
such that for any ρ in D

h
δ and ρ̄i (θ)dθ inMi

Vi (ρ) ≤ C1

∫ 1

0
α(t)2 dt + C2 ‖ρ − ρ̄i‖1.

Proof Fix 1 ≤ i ≤ l, h > 0, δ > 0 and let α : [0, 1] → [0, 1] be an increasing
C1-diffeomorphism. Let ρ ∈ D

h
δ and ρ̄i (θ)dθ ∈ Mi . Consider the path πα

t (dθ) =
ρα(t, θ)dθ in C([0, 1],M+) with density given by ρα

t = (1 − α(t))ρ̄i + α(t)ρ. It
is clear that πα belongs to D([0, 1],M+,1), and it follows from condition (A) that
Q1(π

α) is finite. From thedefinitionofρα it follows that∇ρα
t = α(t)(∇ρ−∇ρ̄i )+∇ρ̄i

and that ∂tρα
t = α′(t)(ρ − ρ̄i ). Since (1/2)Δρ̄i = −F(ρ̄i ), J1,G(πα) can be rewritten

as

J1,G(πα) = 1

2

∫ 1

0
dt

{
α(t)〈(∇ρ − ∇ρ̄i ),∇Gt 〉 − 〈χ(ρα

t ), (∇Gt )
2〉

}

+
∫ 1

0
dt

〈{
α′(t)(ρ − ρ̄i ) + F(ρ̄i )

}
Gt − B(ρα

t )(eGt − 1) − D(ρα
t )(e−Gt − 1)

〉
.

(5.1)
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By Young’s inequality, the first term on the right hand side of (5.1) is bounded by

1

8

∫ 1

0
α(t)2

〈 (∇ρ − ∇ρ̄i )
2

χ(ρα
t )

〉
dt ≤ C1

∫ 1

0
α(t)2 dt

for some finite constant C1 = C1(δ, h). To derive the last inequality we used the fact
that ρ̄i is bounded away from 0 and 1 and conditions (A) and (B) on ρ.

To conclude the proof it is enough to show that the second term on the right hand
side of (5.1) is bounded by

C2‖ρ − ρ̄i‖1
for some constant C2 = C2(δ, α).

Consider the function Φ : R × (0, 1) × R → R defined by

Φ(H , ρ,G) = HG − B(ρ)(eG − 1) − D(ρ)(e−G − 1).

If we set Ht = α′(t)(ρ − ρ̄i )+ F(ρ̄i ), it is clear that the second term on the right hand
side of (5.1) can be expressed as

∫ 1

0
〈Φ(Ht , ρ

α
t ,Gt )〉 dt .

It follows from a straightforward computation that for any fixed H ∈ R and ρ ∈ (0, 1),
the function Φ(H , ρ, ·) reaches a maximum at

G(H , ρ) = log

(
H + √

H2 + 4B(ρ)D(ρ)

2B(ρ)

)

.

From condition (B) and Lemma 4, there exists a constant cδ > 0 such that
cδ ≤ ρα ≤ 1 − cδ . On the other hand, since Φ(H , ρ, 0) = 0 and since
G(F(ρ), ρ) = 0, Φ(F(ρ), ρ,G(F(ρ), ρ)) = 0 for any ρ ∈ R. Therefore, as
(H , ρ) �→ Φ(H , ρ,G(H , ρ)) is a Lipschitz-continuous function on the interval
[−‖α′‖∞ − ‖F‖∞, ‖α′‖∞ + ‖F‖∞] × [cδ, 1 − cδ],

Φ(Ht , ρ
α
t ,Gt ) ≤ Φ(Ht , ρ

α
t ,G(Ht , ρ

α
t ))

= Φ(Ht , ρ
α
t ,G(Ht , ρ

α
t )) − Φ(F(ρα

t ), ρα
t ,G(F(ρα

t ), ρα
t ))

≤ C2|Ht − F(ρα
t )|

≤ C2
{
α′(t) + ‖F ′‖∞α(t)

}|ρ − ρ̄i |

for some finite constant C2 = C2(δ, α). These bounds give the desired conclusion. ��
We are now in a position to prove that the functional Vi is continuous in the L2-

topology.

Theorem 6 For each 1 ≤ i ≤ l, the function Vi is continuous at ρ̄i in D.
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Proof Fix 1 ≤ i ≤ l, and let {ρn : n ≥ 1} be a sequence in D converging to ρ̄i . Denote
by λn , n ≥ 1, the weak solution to the Eq. (2.4) with initial condition ρn .

By Lemma 5, there exists a constant C0 > 0, independent of n, such that

∫ 1

0
dt

∫

T

|(∇λnt )(θ)|2dθ ≤ C0

for all n ≥ 1. Fix 0 < ζ < 1. For each n ≥ 1, there exists ζ ≤ Tn ≤ 2ζ such that

∫

T

|(∇λnTn )(θ)|2dθ ≤ C0/ζ.

Moreover, by Lemma 4, there exists a constant 0 < cζ < 1/2, independent of n, such
that cζ ≤ λnTn (θ) ≤ 1 − cζ for all n ≥ 1 and θ in T. Therefore, the density profiles

λnTn , n ≥ 1, belong to the set D
C0/ζ
cζ introduced just above Lemma 17.

By definition (2.11) of the functional Vi ,

Vi (ρ
n) ≤ Vi (λ

n
Tn ) + ITn (π

n),

where πn(t, dθ) = λn(Tn − t, θ)dθ , 0 ≤ t ≤ Tn . Therefore, it is enough to prove that

lim sup
n→∞

Vi (λ
n
Tn ) = lim sup

ζ↓0
lim sup
n→∞

ITn (π
n) = 0.

Since λnTn belongs to the set D
C0/ζ
cζ , by Lemma 17, there exist constants C1 =

C1(ζ ) > 0 and C2 = C2(ζ, α) > 0 such that

Vi (λ
n
Tn ) ≤ C1

∫ 1

0
α(t)2 dt + C2 ‖λnTn − ρ̄i‖2,

for any increasing C1-diffeomorphism α : [0, 1] → [0, 1]. By Lemma 7 and since
Tn ≤ 2ζ ≤ 2,

‖λnTn − ρ̄i‖2 ≤ C0 ‖ρn − ρ̄i‖2 (5.2)

for some finite constant C0 > 0, independent of n, and whose value may change from
line to line. Since ρn converges to ρ̄i in L2-topology,

lim sup
n→∞

Vi (λ
n
Tn ) ≤ C1 inf

α

{ ∫ 1

0
α(t)2 dt

}
= 0.

It remains to prove that

lim sup
ζ↓0

lim sup
n→∞

ITn (π
n) = 0. (5.3)
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By Lemma 15, by (5.2), and since Tn ≤ 2ζ ,

ITn (π
n) ≤ C0

{
Tn + ‖λnTn − ρ̄i‖2 + ‖ρn − ρ̄i‖2

}
≤ C0

{
ζ + ‖ρn − ρ̄i‖2

}
.

To complete the proof of (5.3) and the one of the lemma, it remains to recall that
ρn → ρ̄i in L2(T). ��

The proof of the next result is similar to the one of Proposition 4.9 in [21]. The
lemma asserts that the functional Vi is uniformly bounded inM+,1.

Lemma 18 The function W is finite if and only if � belongs to M+,1. Moreover, for
all 1 ≤ i ≤ l,

sup
�∈M+,1

Vi (�) < ∞,

so that sup�∈M+,1
W (�) < ∞.

Proof Fix � ∈ M+, and suppose that W (�) < ∞. By the definition (2.14) of the
functional W , there exists 1 ≤ i ≤ l such that Vi (�) < ∞. Hence, by (2.11), there
exist ρ̄ ∈ Mi , T < ∞ and a trajectory πt (dθ), 0 ≤ t ≤ T , such that πT = �,
IT (π |ρ̄) < ∞. By (2.10) and (2.9), π ∈ D([0, T ],M+,1), proving that � = πT

belongs toM+,1, as claimed.
To prove the reciprocal assertion and the uniform bound, fix 1 ≤ i ≤ l, � ∈ M+,1,

�(dθ) = ρ(θ)dθ , and denote by λ the weak solution of the Eq. (2.4) with initial
condition ρ. By Lemmata 4 and 5, there exist constants 0 < a < 1/2 and C0 > 0
such that a ≤ λt (θ) ≤ 1 − a for all t ≥ 1, θ ∈ T, and

∫ 2

0
dt

∫

T

|(∇λt )(θ)|2dθ ≤ C0.

In particular, there exists 1 ≤ T ≤ 2 such that λT belongs to the set D
C0
a .

By the definition (2.11) of the functional Vi ,

Vi (ρ) ≤ Vi (λT ) + IT (π),

where π(t, dθ) = λ(T − t, θ)dθ , 0 ≤ t ≤ T .
As λT belongs to the set D

C0
a , by Lemma 17, Vi (λT ) ≤ C1 for some finite constant

C1 which depends only on F . On the other hand, by Lemma 15 and since ‖γ ‖1 ≤ 1
for all density profile γ , IT (π) ≤ C2, which completes the proof of the lemma in view
of the definition of the functional W . ��

We now turn to the proof that the functionals Vi are lower semicontinuous for the
weak topology. The idea of the proof is very simple. Let �n be a sequence converging
to �. Since, by Lemma 18, Vi is finite, there exists a trajectory πn

t , 0 ≤ t ≤ Tn , such
that πn

0 ∈ Mi , πn
Tn

= �n , Vi (�n) ≤ ITn (π
n) + 1/n ≤ C . We will now use the lower

semicontinuity of IT and the fact that the level sets are compact to conclude. If the
sequence Tn is uniformly bounded, say by T , we may add a piece of length T − Tn to
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the trajectory πn letting it to stay at πn
0 ∈ Mi in the time interval [0, T − Tn]. In this

way, we obtain a new sequence, denoted by πn
t , of trajectories such that πn

0 ∈ Mi ,
πn
T = �n , Vi (�n) ≤ ITn (π

n) + 1/n = IT (πn) + 1/n ≤ C . Since the level sets
are compact, we may extract a converging subsequence. Denote by π the limit and
observe that π0 ∈ Mi , πT = �. By the lower semicontinuity and by definition of Vi ,
Vi (�) ≤ IT (π) ≤ lim infn Vi (�n), and we are done.

Of course, it might happen that the sequence Tn is not bounded, and this is the
main difficulty. In this case, we will use Lemma 14 to claim that the trajectory πn may
not spend too much time outside an L2-neighborhood of a stationary solution. Hence,
all the proof consists in replacing the long intervals of time at which the trajectory
stays close to a stationary profile ρ̄i by one which remains only a time interval of
length 2. This is done by showing in Lemma 19 below that it is possible to go from a
neighborhood of ρ̄i to ρ̄i in time 1 by paying a small cost and by using Theorem 6 to
obtain a trajectory which goes from ρ̄i to a neighborhood of ρ̄i in time 1 by paying a
small cost.

Lemma 19 Fix 1 ≤ i ≤ l and �̄i (dθ) = ρ̄i (θ)dθ ∈ Mi . For any ε > 0 there exists
δ13 = δ13(ε) > 0 such that for any �(dθ) = γ (θ)dθ in Bδ13(�̄i ) there exists a path
π(t, dθ) = ρ(t, θ)dθ in D([0, 1],M+) such that π0 = �, π1 = �̄i , I1(π) ≤ ε, and
πt ∈ Bε(�̄i ) for all 0 ≤ t ≤ 1.

Proof Fix 1 ≤ i ≤ l, ε > 0, and a density profile γ : T → R. Let ρ(t, θ) be the
unique weak solution of (2.4) with initial condition γ , and let πt (dθ) = ρ(t, θ)dθ .

Fix 0 < ζ1 < ε, to be chosen later, and set T = 1/4, T ′ = 1/2. Let ζ2 > 0
be the constant δ11(ζ1, 1/4, 1/2) given by Lemma 8 for ρ̄ = ρ̄i . Assume that γ ∈
Bζ2(�̄i ). According to Lemma 8, ρs(θ) dθ belongs to Bζ1(�̄i ) for all 0 ≤ s ≤ 1/2 and
‖ρs − ρ̄i‖2 ≤ ζ1 for all 1/4 ≤ s ≤ 1/2.

By Proposition 2, ρt belongs to C∞(T) for all t > 0. By Lemma 4, there exists
a > 0, depending only on F , such that a ≤ ρ(s, θ) ≤ 1 − a for all θ ∈ T and
1/4 ≤ s ≤ 1/2. On the other hand, by Lemma 5, there exists a finite constant C0,
depending only on F , such that

∫ 1/2

0
dt

∫

T

|(∇ρ)(t, θ)|2 dθ ≤ C0.

In particular, there exists T1 ∈ [1/4, 1/2] such that

∫

T

|(∇ρ)(T1, θ)|2 dθ ≤ 4C0, (5.4)

so that ρT1 belongs to D
4C0
a

Recall that T1 ≤ 1/2. Let α : [0, 1/2] → [0, 1] be an increasing C1-
diffeomorphism, and define the trajectory ρα

t , T1 ≤ t ≤ T1 +1/2, by ρα(T1 + s, θ) =
α(s)ρ̄i + [1 − α(s)]ρT1 , 0 ≤ s ≤ 1/2. By a similar computation to the one presented
in the proof of Lemma 17, and since ‖ρT1 − ρ̄i‖1 ≤ ‖ρT1 − ρ̄i‖2 ≤ ζ1
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I[T1,T1+1/2](ρα) ≤ C1

∫ 1/2

0
[1 − α(t)]2 dt ‖∇ρT1 − ∇ρ̄i‖22 + C2(α) ζ1,

where C1 is a finite constant depending only on F , and C2(α) one which also depends
on α. In view of (5.4),

I[T1,T1+1/2](ρα) ≤ C3

∫ 1/2

0
[1 − α(t)]2 dt + C2(α) ζ1,

for some finite constant C3 independent of γ .
Choose an increasing C1-diffeomorphism α : [0, 1/2] → [0, 1] which turns the

first term on the right hand side bounded by ε/2. Note that this diffeomorphism does
not depend on γ . For this fixed α, choose ζ1 small enough for the second term to be
less than or equal to ε/2. To complete the proof of the first assertion of the lemma,
juxtapose the trajectories ρt , 0 ≤ t ≤ T1, ρα

t , T1 ≤ t ≤ T1 + 1/2, and the constant
one ρ̄i , T1 + 1/2 ≤ t ≤ 1.

We turn to the assertion that πt ∈ Bε(�̄i ) for all 0 ≤ t ≤ 1. By the second paragraph
of the proof, and by definition of T1, πt ∈ Bζ1(�̄i ) ⊂ Bε(�̄i ) for all 0 ≤ t ≤ T1. By
definition of the trajectory ρα , d(πt , �̄i ) ≤ d(πT1 , �̄i ) < ε for T1 ≤ t ≤ T1 + 1/2.
This completes the proof of the lemma since πt = �̄i for T1 + 1/2 ≤ t ≤ 1. ��

We have now all the elements to prove the main result of the section.

Theorem 7 For each 1 ≤ i ≤ l, Vi is lower semicontinuous. In particular, the rate
function W is also lower semicontinuous.

Proof To keep notation simple, we prove the theorem in the case where all solutions
of (2.5) are constant in space, or equivalently, assume that

Msol = {�̄i (dθ) = ρ̄i dθ : i = 1, . . . , l}.

It is not difficult to extend the argument to the general case by invoking Lemma 16.
Fix 1 ≤ i ≤ l, q ∈ R+, and let

V(q)
i = {� ∈ M+ : Vi (�) ≤ q}.

By the proof of Lemma 18, V(q)
i ⊂ M+,1. We claim that V(q)

i is a closed subset of

M+. To see this, let {�n(dθ) = ρn(θ)dθ : n ≥ 1} be a sequence in V(q)
i converging

to some �(dθ) = ρ(θ)dθ inM+.
From (2.11), for each n ≥ 1, there exist Tn > 0 and a path πn in C([0, Tn],M+,1)

such that πn
0 = �̄i , πn

Tn
= �n and

ITn (π
n|�̄i ) ≤ Vi (�

n) + 1/n ≤ q + 1. (5.5)

Assume first that the sequence {Tn : n ≥ 1} is bounded above by some T < ∞. In
this case, let π̂n be the trajectory which remains at �̄i in the time interval [0, T − Tn]
and then follows the trajectory πn :
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π̂n
t =

{
�̄i 0 ≤ t ≤ T − Tn,

πn(t − T + Tn) T − Tn ≤ t ≤ T .

Note that π̂n
T = �n for all n ≥ 1, and that IT (π̂n|�̄i ) = ITn (π

n|�̄i ) ≤ q + 1/n for all
n ≥ 1.

By Theorem 3, the functional IT (·|�̄i ) has compact level sets and is lower semi-
continuous. There exists, in particular, a subsequence n j and a trajectory π ∈
D([0, T ],M+) such that π̂n j → π , IT (π |�̄i ) ≤ q. Since πT = lim j π̂

n j
T =

lim j π
n j
Tn j

= lim j �
n j = �, by definition of Vi , Vi (�) ≤ q, which completes the

proof of the theorem in the case where the sequence Tn is bounded.
Suppose now that the sequence {Tn : n ≥ 1} is unbounded. In view of (5.5), by

Lemma 14, the pathπn may not remain too long outside an L2-neighborhood of one of
the stationary profiles.We use this observation, Lemma 19 andTheorem 6, to construct
from πn a new path on a bounded time interval by replacing the long intervals of time
in which πn remained close to a stationary profile by a path defined in a time interval
of length 2 which connects the entrance time in a neighborhood of a stationary profile
ρ̄i to ρ̄i and from this profile to the exit time of the neighborhood. The details are
given below.

Fix ε > 0. By Theorem 6, there exists ζ1, such that Vj (π) ≤ ε if π(dθ) = ρ(θ)dθ

and ‖ρ − ρ̄ j‖2 ≤ ζ1 for any 1 ≤ j ≤ l. Let ζ2 be the constant δ13(ε) given by Lemma
19 and set ζ = min{ζ1, ζ2}.

LetL j , 1 ≤ j ≤ l, be the closed L2-neighborhood of ρ̄ j :L j = {�(dθ) = ρ(θ)dθ :
ρ ∈ Bζ [ρ̄ j ]}, where Bζ [ρ̄ j ] represents the closure of Bζ (ρ̄ j ), and let L = ∪1≤ j≤lL j .
Assume that ζ is sufficiently small so that {L j }lj=1 are mutually disjoint. Note that
L j is a closed subset of M+,1. We define a sequence of entrances and exit times
associated to the sets L j . Recall that πn

0 = �̄i , and set τ n1 = 0. Let σ n
1 be the last exit

time from Li :
σ n
1 = sup

{
t ≤ Tn : πn

t ∈ Li
}
.

Note that the path πn
t may visit several neighborhoods L j , j �= i , in the time interval

[0, σ n
1 ], and that it does not return to Li after σ n

1 . Suppose that τ nk , σ n
k , 1 ≤ k < p,

have already been introduced. Define

τ np := inf
{
σ n
p−1 ≤ t ≤ Tn : πn

t ∈ L
}
, σ n

p := sup
{
t ≤ Tn : πn

t ∈ Lj(p)
}
,

where j(p) is the index of the neighborhood visited at time τ np : j(p) = a if πn
τ np

∈ La .

By convention, if πn
t /∈ L for all σ n

p−1 ≤ t ≤ Tn , we set τ np′ and σ n
p′ to be ∞ for all

p′ ≥ p and we do not define j(p). Note that j(1) = i and that j(p) �= j(q) if q �= p.
Denote by Sn the set of neighborhoods visited by πn , Sn = {j(p) : τp(π

n) <

∞} =: {j(1), . . . , j(b)}. By the choice of ζ and by Lemma 19, there exist paths π1,+,
πm,−, πm,+, 2 ≤ m < b, πb,− such that

π
k,−
0 = πn(τj(k)), π

k,−
1 = �̄j(k), π

k,+
0 = �̄j(k), π

k,+
1 = πn(σj(k)),
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and such that I1(π
1,+
1 ) ≤ 2ε, I1(π

m,−
1 ) + I1(π

m,+
1 ) ≤ 3ε, 2 ≤ m < b, I1(π

b,−
1 ) ≤ ε.

Here and below, to keep notation simple,we denote sometimesπn
t byπn(t). Ifσ n

b ≤ Tn
there exists also a path πb,+, such that

π
b,+
0 = �̄j(b), π

b,+
1 = πn(σj(b)),

and such that I1(π
b,+
1 ) ≤ 2ε.

We construct below a path π̃n from the previous paths and from πn under the
assumption that σ n

b ≤ Tn . The construction can be easily adapted to the cases σ n
b =

+∞. For 1 ≤ c < b, let

Rc = 2c +
c∑

a=1

(τj(a+1) − σj(a)).

This sequence represents the times at which the path π̃n visits the measures �̄j(c+1).
Set

T̃n = Rb−1 + 1 + Tn − σj(b),

and define the path π̃n in C([0, T̃n],M+,1) as follows:

π̃n(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1,+(t) 0 ≤ t ≤ 1,

πn(σj(1) + t − 1) 1 ≤ t ≤ 1 + τj(2) − σj(1),

π2,−(t − 1 − τj(2) + σj(1)) 1 + τj(2) − σj(1) ≤ t ≤ R1,

π2,+(t − R1) R1 ≤ t ≤ R1 + 1,

· · · · · ·
πb,+(t − Rb−1) Rb−1 ≤ t ≤ Rb−1 + 1,

πn(σj(b) + t − Rb−1 − 1) Rb−1 + 1 ≤ t ≤ Rb−1 + 1 + Tn − σj(b).

From the definition of π̃n it is clear that π̃n
0 = �̄i , π̃n(T̃n) = πn(Tn) = � and that

IT̃n (π̃
n) ≤ ITn (π

n) + 3bε ≤ ITn (π
n) + 3lε. (5.6)

In particular, by (5.5) and (5.6), IT̃n (π̃
n) is uniformly bounded. The time spent by π̃n

in Lc is at least T̃n − 2l. Therefore, by Lemma 14 and by the previous uniform bound
on IT̃n (π̃

n), the sequence T̃n is uniformly bounded. At this point, we may repeat the
arguments presented in the first part of the proof, which are solely based on a uniform
bound for the sequence IT̃n (π̃

n), provided by (5.5) and (5.6), and on a uniform bound
of the sequence T̃n , to conclude. ��

We conclude this section with a result needed in the next one. In Lemma 19 we
constructed paths from Bδ(Mi ) to Mi whose costs are small. In the next result, we
prove a partial converse statement by showing that there are measures � at distance δ

fromMi for which there exist paths from Mi to � whose cost is small.
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Lemma 20 For every 1 ≤ i ≤ l and ε > 0, there exists δ14 = δ14(ε) > 0 such that
for all 0 ≤ δ < δ14, there exists a measure � ∈ M+,1 such that d(�,Mi ) = δ and
Vi (�) ≤ ε.

Proof Fix 1 ≤ i ≤ l, �̄i ∈ Mi , and ε > 0. Recall the definition of the constant c1
introduced in (3.5), and let 0 < a ≤ c1/2. Let π(t, dθ), 0 ≤ t ≤ 1, be the trajectory
π(t, dθ) = ρ(t, θ)dθ , ρ(t, θ) = ρ̄i (θ) + at . On the one hand, by definition (2.1)
of the distance, d(Mi , π1) = d(�̄i , π1) = a. On the other hand, for every smooth
function G : [0, 1] × T → R, since (1/2)Δρt = (1/2)Δρ̄i = −F(ρ̄i ),

J1,G(π) ≤
∫ 1

0
dt

{〈{
a + [F(ρ̄i ) − F(ρt )]

}
Gt

〉 − 〈B(ρt ), e
Gt − 1 − Gt 〉

}
.

Note that we omitted in the previous expression the terms χ(ρt )[∇Gt ]2 and
D(ρt )[e−Gt − 1+Gt ] which are positive. By definition of ρt , F(ρ̄i )− F(ρt ) is abso-
lutely bounded by CFa, where CF stands for the Lipschitz constant of the function F .
By definition, a ≤ c1/2 and by (3.5), c1 ≤ ρ̄i ≤ 1− c1. Thus, c1/2 ≤ ρt ≤ 1− c1/2.
Let b = inf{B(x) : c1/2 ≤ x ≤ 1 − c1/2} > 0, so that

J1,G(π) ≤
∫ 1

0
dt

〈
(1 + ht ) a Gt − b [eGt − 1 − Gt ]

〉
,

where ht is absolutely bounded by CF . Assume that 0 ≤ a < a1 where a1 is chosen
so that (CF − 1)a1 < b. The right hand side of the previous expression is bounded
by ψb((1 ± CF )a), uniformly in G, where ψb(x) := (x + b) log[1 + (x/b)] − x .
Therefore, Vi (�) ≤ I1(π) ≤ ψb((1 ± CF )a). Since ψb(0) = 0, there exists a0 such
that ψb((1 ± CF )a) ≤ ε, for any 0 ≤ a < a0. The assertion of the lemma holds
provided we choose δ14 = a0 ∧ a1 and � = �̄i + adθ for 0 ≤ a < δ14. ��
Remark 1 Actually, we proved the existence of trajectory πt , 0 ≤ t ≤ 1, such that
I1(π) ≤ ε, π0 = �̄i ∈ Mi , d(π1,Mi ) = δ.

6 The static large deviations principle

We prove in this section Theorem 4. As we said before, the proof is based on a
representation of the stationary state of the reaction–diffusion model in terms of the
invariant probability measure of a discrete-time Markov chain. In the first part of this
section, we introduce the discrete-time Markov chain and we prove in Proposition 3
sharp upper and lower bounds for its invariant probability measure.

For any 0 < β0 < β1, let Bi be the open neighborhoods, and Γi be the closed
neighborhoods given by

B =
l⋃

i=1

Bi , where Bi := Bβ0(Mi ) := {� ∈ M+ : inf
�̄∈Mi

d(�, �̄) < β0}.

Γ =
l⋃

i=1

Γi , where Γi = {� ∈ M+ : β1 ≤ inf
�̄∈Mi

d(�, �̄) ≤ 2β1}.
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To stress the dependence of B and Γ on β0, β1 we sometimes denote B, Γ by B(β0),
Γ (β1), respectively.

For N ≥ 1 and a subset A of M+, let AN = (πN )−1(A) and let HN
A :

D(R+, XN ) → [0,+∞] be the hitting time of AN :

HN
A = inf

{
t ≥ 0 : ηt ∈ AN}

.

The first result of the section states that the reaction–diffusion model reaches the
set B in finite time with high probability.

Lemma 21 For every δ > 0, there exist T0, C0, N0 > 0, depending on δ, such that

sup
η∈XN

Pη

[
HN
B(δ) ≥ kT0

]
≤ exp {−kC0N }

for all N ≥ N0 and all k ≥ 1.

Proof Fix δ > 0. By Corollary 1, there exist T0 > 0 and C0 > 0, which depend on δ,
such that

inf
π∈DT0,δ

IT0(π) > C0,

where DT0,δ = D([0, T0],M+\B(δ)). For each integer N ≥ 1, denote by ηN a
configuration in XN such that

PηN

[
HN
B ≥ T0

]
= sup

η∈XN

Pη

[
HN
B ≥ T0

]
.

By the compactness of M+, every subsequence of πN (ηN ) contains a sub-
subsequence converging to some � in M+. Moreover, since each configuration in
XN has at most one particle per site, any limit point � belongs to M+,1. From this
observation and since DT0,δ is a closed subset of D([0, T0],M+), by the dynamical
large deviations upper bound, there exists a measure �(dθ) = γ (θ)dθ in M+,1 such
that

lim sup
N→∞

1

N
logPηN

[
HN
B ≥ T0

]
≤ lim sup

N→∞
1

N
log QT0,ηN (DT0,δ)

≤ − inf
π∈DT0,δ

IT0(π |γ ) < −C0.

In particular, there exists N0 ≥ 1 such that for every integer N ≥ N0,

sup
η∈XN

Pη

[
HN
B ≥ T0

]
≤ exp{−C0N }.

To complete the proof, we proceed by induction, applying the strong Markov prop-
erty. Suppose that the statement of the lemma is true for all integers j < k. Let N ≥ N0
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and let η̂ be a configuration in XN . By the strong Markov property,

Pη̂

[
HN
B ≥ kT0

]
= Eη̂

[
1
{
HN
B ≥ T0

}
PηT0

[
HN
B ≥ (k − 1)T0

]]

≤ Pη̂

[
HN
B ≥ T0

]
sup

η∈XN

Pη

[
HN
B ≥ (k − 1)T0

]

≤ exp {−k C0N } ,

which completes the proof. ��
Corollary 2 For every δ > 0,

lim sup
N→∞

1

N
log sup

η∈XN

Eη

(
HN
B(δ)

)
≤ 0.

Proof Fix δ > 0 and denote by T0, C0, N0 ≥ 1 the constants provided by Lemma 21.
For every integer N ≥ N0 and for every configuration η in XN ,

Eη

(
HN
B

)
≤ T0

∞∑

k=0

Pη

(
HN
B ≥ kT0

)
≤ T0

∞∑

k=0

exp {−kC0N } ≤ T0
1 − e−C0N

,

which proves the corollary. ��
We have now all elements to introduce the discrete-time Markov chain. Let ∂BN

(which depends on β0)1 be the set of configurations η in XN for which there exists a
finite sequence of configurations {ηi : 0 ≤ i ≤ k} in XN with η0 in Γ N , ηk = η, and
such that

(a) For every 1 ≤ i ≤ k, the configuration ηi can be obtained from ηi−1 by a jump of
the dynamics (either from the stirring mechanism or from the non-conservative
spin flip dynamics).

(b) The unique configuration of the sequence which can enter into BN after a jump
is ηk .

We similarly define the set ∂BN
i , 1 ≤ i ≤ l. It is clear that for N large enough and β1

small enough,

∂BN =
l⋃

i=1

∂BN
i .

Let τ = τ N : D(R+, XN ) → [0,∞] be the stopping time given by

τ = inf
{
t > 0 : there exist s < t such that ηs ∈ Γ N and ηt ∈ ∂BN

}
. (6.1)

Set τ1 := τ . We recursively define the sequence of stopping times {τk : k ≥ 1} by

τk = inf
{
τk > 0 : there exist s < t such that τk−1 < s, ηs ∈ Γ N and ηt ∈ ∂BN

}
.

1 Note that for N large the set ∂BN does not depend on β1.
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This sequence generates a discrete-timeMarkov chain ξk on ∂BN by setting ξk = ητk .
The arguments presented before Lemma 5.1 in [21] show that this chain is irreducible.
Denote by νN its unique invariant probability measure.

Define ṽi j by

ṽi j = inf{IT (π |ρ̄) : T > 0 , ρ̄(θ)dθ ∈ Mi , π ∈ AT , πT ∈ M j },
where AT = {

π ∈ C([0, T ],M+) : πt /∈ Msol for all 0 < t < T
}
.

The jumps of the Markov chain {ξk : k ≥ 1} correspond to paths from ∂BN
i to

∂BN
j which do not visit other boundaries. They are thus related to the dynamical large

deviations principle. In Lemmata 22 and 24 we estimate the probability of a jump
from ∂BN

i to ∂BN
j for j �= i . These estimates provide sharp bounds for the invariant

probability measure of the chain ξk , alluded to at the beginning of this section.

Lemma 22 For every1 ≤ i �= j ≤ l, ε > 0and0 < β1 < (1/4)mina �=b d(Ma,Mb),
there exists 0 < δ15 < β1 such that for all β0 < δ15

lim inf
N→∞

1

N
log inf

η∈∂BN
i

Pη(ητ ∈ ∂BN
j ) ≥ − ṽi j − ε.

Proof Fix ε > 0, 1 ≤ i �= j ≤ l, and 0 < β1 < (1/4)mina �=b d(Ma,Mb). By
definition of ṽi j , there exist T > 0, �̄i (dθ) = ρ̄i (θ)dθ ∈ Mi , �̄ j ∈ M j , and π ∈ AT

such that π0 = �̄i , πT = �̄ j , IT (π |ρ̄i ) ≤ ṽi j +ε. Note that πt /∈ Mi for all 0 < t ≤ T
because π ∈ AT .

Let t0 be the first time the path πt is at distance β1 from Mi : t0 = min{t ≥
0 : d(πt ,Mi ) ≥ β1}. Since π belongs to AT and πT ∈ M j , ζ2 =
inf t0≤t≤T d(πt ,∪k �= jMk) > 0. Let ζ3 be the constant δ13(min{β1, ε}) given by
Lemma 19. Set δ15 = (1/2)min{β1, ζ2, ζ3} and fix β0 < δ15.

For each integer N > 0, let ηN be a configuration in ∂BN
i such that

PηN (ητ ∈ ∂BN
j ) = inf

η∈∂BN
i

Pη(ητ ∈ ∂BN
j ). (6.2)

Recall that every subsequence of πN (ηN ) contains a sub-subsequence converging
in M+ to some measure � which belongs to M+,1. We may therefore assume that
πN (ηN ) converges to �(dθ) = γ (θ)dθ which belongs to the closure of Bi : � ∈
Bβ0(�̄

′
i ), for some �̄′

i ∈ Mi .
Since β0 < ζ3, we may apply Lemma 19 to connect � to �̄′

i ∈ Mi . Denote by
π ′
t , 0 ≤ t ≤ 1, the path given by Lemma 19 and such that π ′

0 = �, π ′
1 = �̄′

i ∈ Mi ,
I1(π ′|γ ) ≤ ε and π ′

t ∈ Bβ1(�̄
′
i ), 0 ≤ t ≤ 1. We may apply Lemma 16 to connect

�̄′
i to �̄i , the initial point of the path introduced in the first paragraph of the proof.

By Lemma 16, there exists T ′ and a path π ′′ ∈ C([0, T ′],M+) such that π ′′
0 = �̄′

i ,
π ′′
T ′ = �̄i and IT ′(π ′′|�̄′

i ) ≤ ε.
Concatenate the paths π ′, π ′′ and π to obtain a path π̃ in C([0, T + T ′ + 1],M+)

such that π̃0 = �, π̃T+T ′+1 ∈ M j , IT+T ′+1(π
′′|�) ≤ ṽi j + 3ε. Moreover,
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d(πt ,Mi ) < β1 for 0 ≤ t ≤ 1+ T ′. In particular, π̃t reaches a distance β1 fromMi

for the first time at t = 1 + T ′ + t0, and inf t0≤t≤T d(π̃1+T ′+t ,∪k �= jMk) = ζ2 > β0.
Denote by N a β0/2-neighborhood in D([0, T + T ′ + 1],M+) of the path π̃ .

It follows from the last observation of the previous paragraph and from the fact that
π̃T+T ′+1 ∈ M j that N ⊂ {ητ ∈ ∂BN

j }. Since N is an open set, by the lower bound
of the dynamical large deviations principle, and by (6.2)

lim inf
N→∞

1

N
inf

η∈∂BN
i

logPη(ητ ∈ ∂BN
j ) = lim inf

N→∞
1

N
logPηN (ητ ∈ ∂BN

j )

≥ lim inf
N→∞

1

N
logPηN (N ) ≥ − inf

π̄∈N
IT+T ′+1(π̄ |γ ) ≥ − IT+T ′+1(π̃ |γ ).

This completes the proof of the lemma because IT+T ′+1(π̃ |�) ≤ ṽi j + 3ε. ��

The proof of the upper bound for Pη(ητ ∈ ∂BN
j ), η ∈ ∂BN

i , requires a lower
bound for the dynamical large deviations rate functional. For T > 0 and ζ > 0, let
C j = C j (T , ζ ) be the closed subset of D([0, T ],M+) consisting of all paths π for
which there exists some time t ∈ [0, T ] such that π(t) belongs to Γ j (ζ ) or π(t−)

belongs to Γ j (ζ ).

Lemma 23 For every 1 ≤ i �= j ≤ l, ε > 0, there exist δ16 = δ16(ε) > 0 and
T = T (ε) > 0 such that for all δ′ < δ16, T ′ ≥ T , γ (θ)dθ ∈ Γi (δ

′),

inf
π∈C j (T ′,δ′)

IT ′(π |γ ) ≥ vi j − ε.

Proof Fix 1 ≤ i �= j ≤ l and assume that the assertion of the lemma is false. In that
case, there exists ε > 0 such that for for every ζ > 0 and T > 0, there exist ζ ′ < ζ ,
T ′ ≥ T , γ (θ)dθ ∈ Γi (ζ

′) and π ∈ C j (T ′, ζ ′) with

IT ′(π |γ ) < vi j − ε/2.

In particular, taking the sequences ζn = 1/n, Tn = 1, n ≥ 1, there exist ζ ′
n < 1/n,

T ′
n ≥ 1, γn ∈ Γi (ζ

′
n) and πn ∈ C j (T ′

n, ζ
′
n) ∩ C([0, T ′

n],M+,1) with

IT ′
n
(πn|γn) < vi j − ε/2. (6.3)

Since πn belongs to C j (T ′
n, ζ

′
n) ∩ C([0, T ′

n],M+,1), there exists 0 < T̃n ≤ T ′
n such

that πn(T̃n) ∈ {� ∈ M+,1 : ζ ′
n ≤ inf �̄∈M j d(�, �̄) ≤ 2ζ ′

n}.
Assume first that the sequence of times {T̃n : n ≥ 1} is bounded above by

some T > 0. For each integer n > 0, let π̂n be the path in C([0, T − T̃n],M+,1)

given by π̂n
t (dθ) = ρ̂n(t, θ)dθ , where ρ̂n is the solution of the hydrodynamic equa-

tion (2.4) with initial condition ρn(T̃n), where πn(T̃n, dθ) = ρn(T̃n, θ)dθ . Since
d(πn(T̃n),M j ) ≤ 2ζ ′

n , by Lemma 8, π̂n(T − T̃n) converges to some element ofM j .
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Let π̃n be the path in C([0, T ],M+,1) given by

π̃n
t =

{
πn
t if 0 ≤ t ≤ T̃n,

π̂n(t − T̃n) if T̃n ≤ t ≤ T .

By definition of π̃n , IT (π̂n) = IT (π̂n|γn) = IT ′
n
(πn|γn) < vi j − ε/2. Since IT has

compact level sets and sinceπn
0 (dθ) = γn(θ)dθ belongs toΓi (ζ

′
n)∩M+,1, there exists

a subsequence of π̃n converging to some π in C([0, T ],M+,1) such that π0 ∈ Mi ,
πT ∈ M j , and IT (π) ≤ vi j − ε/2, which contradicts the definition of vi j .

If the sequence {T̃n : n ≥ 1} is not bounded, wemay repeat the reasoning presented
in the proof of Theorem 7 to replace the path πn by a path π̄n which satisfies an
inequality analogous to (6.3) (with extra factors of ε) and whose entry time to the set
{� ∈ M+ : ζ ′

n ≤ inf �̄∈M j d(�, �̄) ≤ 2ζ ′
n} is uniformly bounded in n. This completes

the proof of the lemma, since the bounded case has been treated above. ��
We now prove the upper bound.

Lemma 24 For every 1 ≤ i �= j ≤ l, ε > 0, there exists δ17 = δ17(ε) such that for all
0 < β0 < β1 < δ17,

lim sup
N→∞

1

N
log sup

η∈∂BN
i

Pη(ητ ∈ ∂BN
j ) ≤ − vi j + ε.

Proof Fix 1 ≤ i �= j ≤ l, ε > 0. Let ζ1 > 0, T > 0 be chosen according to Lemma
23, and fix 0 < β0 < β1 < ζ1. By the strong Markov property,

sup
η∈∂BN

i

Pη(ητ ∈ ∂BN
j ) ≤ sup

η∈Γ N
i

Pη(η(H∂BN ) ∈ ∂BN
j ),

where HD , D ⊂ XN , represents the hitting time of the set D and η(t) = ηt . For each
integer N > 0, fix a configuration ηN in Γ N

i such that

PηN (η(H∂BN ) ∈ ∂BN
j ) = sup

η∈Γ N
i

Pη(η(H∂BN ) ∈ ∂BN
j ).

By Lemma 18, vi j < ∞. Thus, by Lemma 21, there exists Tβ0 > 0 such that

lim sup
N→∞

1

N
log sup

η∈XN

Pη

[
HN
B ≥ Tβ0

]
≤ − vi j .

We may assume that Tβ0 > T , where T is the time introduced at the beginning of the
proof. On the other hand, since ηN ∈ Γ N

i ,

lim sup
N→∞

1

N
logPηN

(
η(H∂BN )∈∂BN

j , HN
B ≤Tβ0

)
≤ lim sup

N→∞
1

N
logPηN (HN

Γ j
≤ Tβ0).
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By intersecting the set {η(H∂BN ) ∈ ∂BN
j } with the set {HN

B ≤ Tβ0} and its comple-
ment, since

lim sup
N→∞

1

N
log{aN + bN } ≤ max

{

lim sup
N→∞

1

N
log aN , lim sup

N→∞
1

N
log bN

}

, (6.4)

it follows from the two previous estimates that

lim sup
N→∞

1

N
log sup

η∈Γ N
i

Pη

(
η(H∂BN ) ∈ ∂BN

j

)

≤ max
{
lim sup
N→∞

1

N
logPηN (HN

Γ j
≤ Tβ0) , − vi j

}
.

(6.5)

Let C j be the set introduced in Lemma 23 associated to the pair (β1, Tβ0). Since C j

is a closed set, and since {HN
Γ j

≤ Tβ0} ⊂ C j , by the dynamical large deviations upper
bound and by the compactness ofM+, there exists γ (θ)dθ ∈ Γi such that

lim sup
N→∞

1

N
logPηN (HN

Γ j
≤Tβ0) ≤ lim sup

N→∞
1

N
log QTβ0 ,ηN (C j ) ≤ − inf

π∈C j

ITβ0
(π |γ ).

By Lemma 23, the last term is bounded above by −vi j + ε. This completes the proof
of the lemma in view of (6.5). ��

The proof of the next result is similar to the ones of Lemmata 3.1 and 3.2 of chapter 6
in [24]. Recall the notation introduced above Eq. (2.13). Consider a setΩ , which is not
assumed to be countable. Denote by Ωi , 1 ≤ i ≤ l, a partition of Ω: Ω = ∪1≤i≤lΩi ,
Ωi ∩ Ω j = ∅ for i �= j . Let (Zn : n ≥ 0) be a discrete-time Markov chain on Ω and
denote by p(x, dy), x ∈ Ω , the transition probability of the chain Zn . Assume that
any set Ω j can be reached from any point x ∈ Ω:

∑
n≥0 Px [Zn ∈ Ω j ] > 0.

Lemma 25 Suppose that there exist nonnegative numbers pi j , p̃i j , 1 ≤ i �= j ≤ l,
and a number a > 1 such that

1

a
pi j ≤ P(x,Ω j ) ≤ a p̃i j for all x ∈ Ωi , i �= j .

Then,
1

a2(l−1)

Qi
∑

1≤ j≤l Q̃ j
≤ ν(Ωi ) ≤ a2(l−1) Q̃i

∑
1≤ j≤l Q j

for any invariant probability measure ν, where Qi , Q̃i are given by

Qi =
∑

g∈T (i)

∏

(m,n)∈g
pmn and Q̃i =

∑

g∈T (i)

∏

(m,n)∈g
p̃mn .
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Let
w̃i = min

g∈T (i)

∑

(m,n)∈g
ṽmn .

By the argument presented in the proof of [24, Lemma 4.1], we have wi = w̃i for all
1 ≤ i ≤ l. We are now in a position to state the main result of this subsection.

Proposition 3 For every ε > 0, there exists δ18 = δ18(ε) such that for all 1 ≤ i ≤ l,
0 < β0 < β1 < δ18,

lim sup
N→∞

1

N
log νN (∂BN

i ) ≤ −wi + ε,

lim inf
N→∞

1

N
log νN (∂BN

i ) ≥ −wi − ε.

Proof Since wi = w̃i , the assertion of this proposition is a straightforward conse-
quence of Lemmata 22, 24 and 25. ��

6.1 Lower bound

We prove in this subsection the large deviations lower bound, that is, for any open
subset O of M+,

lim inf
N→∞

1

N
logPN (O) ≥ − inf

�∈O
W (�).

Recall the definition of the stopping time τ introduced in (6.1). Following [10,21,
24], we represent the stationary measure μN of a subset A of XN as

μN (A) = 1

CN

∫

∂BN
Eη

(∫ τ

0
1{ηs ∈ A} ds

)

dνN (η), (6.6)

where

CN =
∫

∂BN
Eη(τ ) dνN (η).

The first lemma provides an estimate on the normalizing constant CN .

Lemma 26 For any ε > 0, there exists δ19 = δ19(ε) such that for all 0 < β0 < β1 <

δ19,

lim sup
N→∞

1

N
logCN ≤ ε.

Proof Fix ε > 0 and let ζ1 be a positive number such that 2ζ1 is smaller than the con-
stants δ13(ε) introduced in Lemma 19 and smaller than the constant δ14(ε) introduced
in Lemma 20. Fix 0 < β0 < β1 < ζ1. Since HN

Γi
< τ when the process starts from

∂BN
i , by the Strong Markov property,
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CN =
l∑

i=1

∫

∂BN
i

Eη(τ ) dνN (η) =
l∑

i=1

∫

∂BN
i

Eη

(
τ 1{HN

Γi
< τ }) dνN (η)

≤
l∑

i=1

∫

∂BN
i

Eη(H
N
Γi

) dνN (η) + sup
η∈XN

Eη(H
N
B ).

By Corollary 2 and by (6.4), it remains to show that for every 1 ≤ i ≤ l,

lim sup
N→∞

1

N
log sup

η∈∂BN
i

Eη(H
N
Γi

) ≤ 3ε. (6.7)

Fix 1 ≤ i ≤ l. We claim that there exists N0 such that for all N ≥ N0,

sup
η∈Γ N

i ∪∂BN
i

Pη(H
N
Γi

≥ 3) ≤ 1 − exp {−3Nε}. (6.8)

To prove this assertion, for each integer N > 0, consider a configuration ηN such that
πN (ηN ) belongs to B2β1 [Mi ] := B2β1(Mi ) (which contains the set Γ N

i ∪ ∂BN
i ) and

such that
PηN (HN

Γi
< 3) = inf

η∈BN
2β1

[Mi ]
Pη(HΓ N

i
< 3).

Recall that each subsequence of πN (ηN ) contains a sub-subsequence converging in
M+ to some � which belongs to M+,1. Therefore, we may assume that πN (ηN )

converges to �(dθ) = γ (θ)dθ and that � belongs to the closure of B2β1(�̄i ): � ∈
B2β1 [�̄i ] := B2β1(�̄i ) for some �̄i ∈ Mi .

Let π0 = � ∈ B2β1 [�̄i ] ⊂ B2ζ1(�̄i ), and let π be a path in D([0, 1],M+,1)

provided by Lemma 19. Let π̃ be a path in D([0, 1],M+,1) provided by Remark 1:
π̃0 = �̄i , π̃1 ∈ M+ \B2β1 [Mi ] and I1(π̃) ≤ ε. Define the path π in D([0, 2],M+,1)

by concatenating the paths π and π̃ :

πt = π t for 0 ≤ t ≤ 1, πt = π̃t−1 for 1 ≤ t ≤ 2.

The path πt , 0 ≤ t ≤ 2, starts from �, hits Mi and then B2β1 [Mi ]c. Its cost I2(π) is
bounded by 2ε.

Denote by Λβ1/2(π) the β1/2-open neighborhood of the trajectory π in D([0, 2],
M+,1). SinceΛβ1/2(π) ⊂ {HN

Γi
< 3}, by the dynamical large deviations lower bound,

by definition of the sequence ηN and since I2(π) ≤ 2ε, for N large enough,

Pη(H
N
Γi

< 3) ≥ exp−N
{

inf
π ′∈Λβ1/2(π)

I2(π
′|γ ) + ε

}
≥ exp {−3Nε}

for all η ∈ BN
2β1

[Mi ], which proves (6.8).
The estimate (6.8) together with the arguments presented in Lemma 21 and Corol-

lary 2 gives the bound (6.7), which completes the proof. ��
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Proof of the lower bound of Theorem 4. We first claim that for any open set O of
M+ containing some �̄i ∈ Mi , 1 ≤ i ≤ l,

lim inf
N→∞

1

N
logPN (O) ≥ −wi . (6.9)

Indeed, fix 1 ≤ i ≤ l, ε > 0 and choose first β1 > 0 and then 0 < β0 < β1 satis-
fying two conditions: (a) β0 < ζ1, where ζ1 is the positive constant δ11(β1/2, 1/2, 1)
provided by Lemma 8 for ρ̄ = ρ̄i , and (b) the pair (β0, β1) fulfills the lower bound
of Proposition 3 and Lemma 26. Assume, moreover, that B2β1(�i ) ⊂ O. Note that
condition (a) entails that β0 < β1/2.

By (6.6), and since τ ≥ HN
Γi

if the initial configuration belongs to ∂BN
i ,

PN (O) = 1

CN

∫

∂BN
Eη

(∫ τ

0
1{ηs ∈ ON } ds

)

dνN (η)

≥ 1

CN

∫

∂BN
i

Eη(H
N
Γi

) dνN (η) ≥ 1

CN
νN (∂BN

i ) inf
η∈∂BN

i

Pη(H
N
Γi

≥ 1).

By Lemma 26 and Proposition 3, to conclude the proof of claim (6.9), it remains to
show that

lim inf
N→∞

1

N
log inf

η∈∂BN
i

Pη(H
N
Γi

≥ 1) ≥ 0.

For each integer N > 0, let ηN be a configuration in ∂BN
i such that

PηN (HN
Γi

≥ 1) = inf
η∈∂BN

i

Pη(H
N
Γi

≥ 1).

Denote by ηNk a subsequence of ηN which transforms the lim inf in a limit and let
π0(dθ) = γ (θ)dθ be a limit point of πNk (ηNk ). Observe that π0 ∈ Bβ0(Mi ) and
denote by ρ : [0, 1] × T → [0, 1] the unique weak solution of the Cauchy problem
(2.4) starting from γ . ByLemma8 and by the definition ofβ0,β1,πt (dθ) := ρ(t, θ)dθ

belongs to Bβ1/2(Mi ) for all 0 ≤ t ≤ 1.
LetN be the subset of D([0, 1],M+) given by all trajectories π ′

t , 0 ≤ t ≤ 1, such
that sup0≤t≤1 d(π ′

t , πt ) < β1/2. Note that the setN is open because πt is continuous.
In particular, since πt belongs to Bβ1/2(Mi ) for any 0 ≤ t ≤ 1, {HN

Γi
≥ 1} ⊃

(πN )−1(N ) := {η· ∈ D([0, 1], XN ) : πN (η·) ∈ N }. Therefore,

lim inf
N→∞

1

N
logPηN (HN

Γi
≥ 1) ≥ lim inf

N→∞
1

N
log Q1,ηN (N )

≥ − inf
π ′∈N

I1(π
′|γ ) ≥ −I1(π |γ ) = 0,

which completes the proof of the claim.
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It follows from (6.9) that there exists a sequence εN → 0 such that

lim inf
N→∞

1

N
logPN (BεN (Mi )) ≥ −wi . (6.10)

Fix an open subset O of M+. In order to prove the lower bound, it is enough
to show that for any measure � in O, 1 ≤ i ≤ l, T > 0, and any trajectory π in
D([0, T ],M+) with π0 ∈ Mi , πT = �,

lim inf
N→∞

1

N
logPN (O) ≥ −wi − IT (π). (6.11)

To prove this claim, fix an open subset O of M+, a measure � in O, 1 ≤ i ≤ l,
T > 0, and a trajectory π in D([0, T ],M+) with π0 ∈ Mi , πT = �. Since μN is the
stationary measure,

lim inf
N→∞

1

N
logPN (O) = lim inf

N→∞
1

N
logEμN

[
Pη

(
πN
T ∈ O

) ]

≥ lim inf
N→∞

1

N
log

(
PN (BεN (Mi )) inf

η∈BN

Pη[πN
T ∈ O]

)
,

where BN = {η : πN (η) ∈ BεN (Mi )}. Let ηN be a configuration in BN such that

PηN

[
πN
T ∈ O

]
= inf

η∈BN

Pη

[
πN
T ∈ O

]
.

Since ηN belongs to BN and εN → 0, we may assume, taking a subsequence if
necessary, that πN (ηN ) converges to some �̄i (dθ) = ρ̄i (θ)dθ ∈ Mi . By (6.10), the
expression appearing in the penultimate displayed formula is bounded below by

−wi + lim inf
N→∞

1

N
logPηN

[
πN
T ∈ O

]
= −wi + lim inf

N→∞
1

N
log QT ,ηN (OT ),

where OT = {π ′ ∈ D([0, T ],M+) : πT ∈ O}. Since the set OT is open, by the
lower bound of the dynamical large deviations principle, the previous expression is
bounded below by

−wi − inf
π ′∈OT

IT (π ′) ≥ −wi − IT (π).

In view of (2.12), this completes the proof of (6.11) and the one of the lower bound.

6.2 Upper bound

We prove in this subsection the large deviations upper bound. The proof relies on the
next two lemmata. The proof of the first one is similar to the proof of Lemma 23 and
is left to the reader.
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For a closed subset C of M+ and T > 0, let CT be the subset of D([0, T ],M+)

consisting of all paths π for which there exists t in [0, T ] such that π(t) or π(t−)

belongs to C. Note that CT is a closed subset of D([0, T ],M+).

Lemma 27 Fix a closed subset C ofM+ such that inf�∈C Vi (�) < ∞. For every ε > 0,
there exist δ20 = δ20(C, ε) > 0 and T20 > 0 such that for all 1 ≤ i ≤ l, 0 < β1 < δ20,
T ′ ≥ T20, γ (θ)dθ ∈ Γi ,

inf
π∈CT ′

IT ′(π |γ ) ≥ inf
�∈C

Vi (�) − ε.

Recall the definition of the set B introduced just before Lemma 21 and recall from
Corollary 2 that the set B is attained immediately. In particular, if the reaction–diffusion
model has to reach a set C before it hits B, it has to follow straightforwardly the optimal
trajectory to C. The cost of such trajectory has been estimated in the previous lemma,
providing the next result.

Lemma 28 Fix 1 ≤ i ≤ l and a closed subset C of M+. For every ε > 0, there exist
δ21 = δ21(C, ε) > 0 such that for all 0 < β0 < β1 < δ21,

lim sup
N→∞

1

N
log sup

η∈Γ N
i

Pη

[
HN
C < HN

B

]
≤ − inf

�∈C
Vi (�) + ε.

Proof Fix ε > 0, 1 ≤ i ≤ l, and a closed subset C of M+. We may assume that
the left hand side of the inequality appearing in the statement of the lemma is finite.
This implies that π−1

N (C) ∩ XN �= ∅ for infinitely many N ’s. Let {ηNk : k ≥ 1} be
a sequence of configurations such that πNk (ηNk ) ∈ C. Since M+ is compact, taking
a subsequence, if necessary, we may assume that πNk (ηNk ) converges to a measure,
denoted by �, which belongs toM+,1. Since C is closed, � ∈ C so that C∩M+,1 �= ∅.
In particular, By Lemma 18, inf�∈C Vi (�) < ∞.

Let ζ1, R1 be the constants δ20, T20 given by Lemma 27. Fix 0 < β0 < β1 < ζ1.
Since inf�∈C Vi (�) < ∞, by Lemma 21, there exists R2 > 0 such that

lim sup
N→∞

1

N
log sup

η∈XN

Pη

[
HN
B ≥ R2

]
≤ − inf

�∈C
Vi (�). (6.12)

Let T = max{R1, R2}.
Recall the definition of the set CT introduced just above the statement of Lemma

27 and the fact that CT is a closed subset of D([0, T ],M+). Note also that {HN
C ≤

T } ⊂ CT .
Let ηN be a configuration in Γ N

i such that

PηN

[
HN
C ≤ T

]
= sup

η∈Γ N
i

Pη

[
HN
C ≤ T

]
.

Taking a subsequence if necessary, we may assume that πN (ηN ) converges to some
measure �(dθ) = γ (θ)dθ in Γi ∩ M+,1. Since {HN

C ≤ T } ⊂ CT and since CT is a
closed set, by the dynamical large deviations upper bound and by Lemma 27,
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lim sup
N→∞

1

N
log sup

η∈Γ N
i

PηN

(
HN
C < HN

B ≤ T
) ≤ lim sup

N→∞
1

N
logPηN

(
HN
C ≤ T

)

≤ lim sup
N→∞

1

N
log QT ,ηN (CT ) ≤ − inf

π∈CT
IT (π |γ ) ≤ − inf

�∈C
Vi (�) + ε.

By (6.12), by this estimate and by (6.4),

lim sup
N→∞

1

N
log sup

η∈Γ N
i

Pη

[
HN
C < HN

B

]
≤ − inf

�∈C
Vi (�) + ε,

which completes the proof of the lemma. ��
Proof of the upper bound of Theorem 4. Let C be a closed subset of M+. Assume
first that Mi ∩ C = ∅ for any 1 ≤ i ≤ l. In this case, let β1 > 0 be such that
∪1≤i≤lB2β1(Mi ) ∩ C = ∅.

By the representation (6.6) of the stationary measure μN ,

PN (C) = μN (CN ) = 1

CN

∫

∂BN
Eη

(∫ τ

0
1{ηs ∈ CN } ds

)

dνN (η)

≤ 1

CN

l∑

i=1

νN (∂BN
i ) sup

η∈∂BN
i

Eη

(∫ τ

0
1{ηs ∈ CN } ds

)

.

A configuration in XN can jump to at most 2N different configurations and the
jump rates are bounded by N 2. Since any trajectory in D(R+, XN ) has to jump at
least once before the stopping time τ , the constant CN appearing in the denominator
is bounded below by c0/N 3 for some positive constant c0. Hence, by (6.4) and by
Proposition 3, in order to prove the upper bound it is enough to show that for each
1 ≤ i ≤ l,

lim sup
N→∞

1

N
log sup

η∈∂BN
i

Eη

(∫ τ

0
1{ηs ∈ CN } ds

)

≤ − inf
�∈C

Vi (�) + ε. (6.13)

The time integral appearing in the previous formula vanishes if τ ≤ HN
C . We may

therefore introduce the indicator of the set HN
C ≤ τ . After doing this and applying the

strong Markov property, we obtain that the left hand side of the previous inequality is
less than or equal to

lim sup
N→∞

1

N
log sup

η∈∂BN
i

Pη

[
HN
C < τ

]
sup

η∈CN
Eη (τ ) .

Since the distance between the empirical measure before and after a jump is
bounded by C/N , and since B2β1(Mi ) ∩ C = ∅, for N large enough, any trajec-
tory in D(R+, XN ) starting at some configuration in ∂BN

i , CN , satisfies HN
Γi

≤ HN
C ,
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τ ≤ HN
B , respectively. Hence, by the strongMarkov property, the previous expression

is bounded above by

lim sup
N→∞

1

N
log sup

η∈Γ N
i

Pη

[
HN
C < HN

B

]
sup

η∈CN
Eη

(
HN
B

)
.

By Corollary 2 and Lemma 28, the previous expression is bounded by− inf�∈C Vi (�)

+ ε, which completes the proof of (6.13) and the one of the upper bound in the case
Mi ∩ C = ∅ for 1 ≤ i ≤ l.

We turn to the general case. We first claim that for each 1 ≤ i ≤ l, ε > 0, there
exists ζ1 > 0 such that for all 0 < β0 < ζ1,

lim sup
N→∞

1

N
logPN (Bβ0(Mi )) ≤ −wi + 2ε. (6.14)

Indeed, fix ε > 0 and set ζ1 = min{δ18, δ19}, where δ18 > 0 is the constant provided
by Proposition 3 and δ19 > 0 is the one given by Lemma 26. Fix β0 < ζ1. By the
representation (6.6) of the stationary measure μN ,

PN (Bβ0(Mi )) = μN (BN
β0

(Mi )) = 1

CN

∫

∂BN
Eη

(∫ τ

0
1{ηs ∈ BN

β0
(Mi )} ds

)

dνN (η)

≤ 1

CN

l∑

j=1

νN (∂BN
j ) sup

η∈∂BN
j

Eη

(∫ τ

0
1{ηs ∈ BN

β0
(Mi )} ds

)

.

We have seen in the first part of the proof that lim supN N−1 logC−1
N ≤ 0. On the

other hand, for η ∈ ∂BN
j , j �= i , τ ≤ HN

Bi
, so that

∫ τ

0 1{ηs ∈ BN
β0

(Mi )} ds = 0.

Finally, denote by ϑ(t), t > 0, the time translation of a trajectory by t . For η ∈ ∂BN
i ,

writing τ as HN
Γi

+ HN
B ◦ ϑ(HN

Γi
), by the strong Markov property, since β0 < ζ1, and

by Proposition 3, the left hand side of (6.14) is bounded by

−wi + ε + lim sup
N→∞

1

N
log

{
sup

η∈∂BN
i

Eη(H
N
Γi

) + sup
η∈∂Γ N

i

Eη(H
N
B )

}
.

By (6.4), (6.7) and Corollary 2, the limit superior of the previous equation is bounded
by ε, which completes the proof of (6.14).

Let C be a closed subset of M+ and fix ε > 0. Let A be the set of indices i such
that C ∩ Mi �= ∅. Let ζ1 be the positive constant introduced in (6.14), and choose
β0 < ζ1 such that d(C,M j ) > β0 for all j ∈ Ac. Since C ⊂ ∪i∈ABβ0(Mi ) ∪ [C \
{∪i∈ABβ0(Mi )}], and since C\{∪i∈ABβ0(Mi )} is a closed set which does not intersect
the set Msol, by (6.4), by (6.14) and by the first part of the proof,

lim sup
N→∞

1

N
logPN (C) ≤ −min

{
min
i∈A

wi , inf
π∈C\{∪i∈ABβ0 (Mi )}

W (π)
}

+ 2ε.
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By (2.15), wi = W (�̄i ) for �̄i ∈ Mi . On the other hand, since Mi ∩ C �= ∅,

inf
π∈C

W (π) ≤ min
i∈A

W (�̄i ), inf
π∈C

W (π) ≤ inf
π∈C\{∪i∈ABβ0 (Mi )}

W (π),

which completes the proof of the upper bound.

7 Proof of Theorem 5

We first show that if there exists a heteroclinic orbit from φ ∈ Mi to ψ ∈ M j , then
the cost of going fromMi toM j vanishes.

Lemma 29 Suppose that there exists a heteroclinic orbit from φ ∈ Mi to ψ ∈ M j .
Then, vi j = 0.

Proof Fix i �= j in {1, . . . , l} and assume that there exists a heteroclinic orbit from
φ ∈ Mi to ψ ∈ M j , denoted by ρ(t, θ), t ∈ R. By Proposition 2, φ is smooth, and,
by Lemma 4, there exists 0 < c < 1/2 such that c ≤ φ(θ) ≤ 1 − c. Since ρ(t),
converges in C1(T) to φ, ψ as t → −∞, t → +∞ respectively, by Lemmata 17, 19
and since the dynamical large deviations rate functional vanishes along the solution
of the hydrodynamic equation, vi j = 0. ��

We now prove that ρ(θ) = r is a stable solution of the reaction–diffusion equation
(2.5) if r is a local minimum of V .

Lemma 30 Fix 1 ≤ i ≤ l. Let �̄i (dθ) = ρ̄i (θ)dθ, ρ̄i (θ) = r , where r is a local
minimum of V . Then, for all ε > 0 there exist c > 0 such that

inf
{
Vi (�) : � /∈ Bε(�̄i )

} ≥ c.

Proof Suppose that inf{Vi (�) : � ∈ Bδ(�̄i )
c} = 0 for some δ > 0. In this case there

exists a sequence of density profiles γn and of trajectories πn(t, dθ) = ρn(t, θ)dθ ,
0 ≤ t ≤ Tn , such that ρn(0, θ) = ρ̄i , ρn(Tn, θ) = γn(θ), γn(θ)dθ ∈ Bδ(�̄i )

c and
ITn (π

n) ≤ 1/n.
By Lemma 9, there exists 0 < ε < δ such that πt ∈ Bδ(�̄i ) for all t ≥ 0 if

π0 ∈ B2ε(�̄i ). Let τn be the time the trajectory πn leaves the set Bε(�̄i ) for ever, and
let σn be the hitting time of the set Bδ(�̄i )

c after τn :

τn = sup{t ≤ Tn : πn
t ∈ Bε(�̄i )}, σn = inf{t ≥ τn : πn

t ∈ Bδ(�̄i )
c}.

Since in the interval [τn, σn] the trajectory πn remains in the set Bδ(�̄i ) \ Bε(�̄i ), if δ

is small enough for Bδ(�̄i ) ∩ Bδ(M j ) = ∅ for all sets M j , j �= i , by Corollary 1,
σn − τn is uniformly bounded by a finite constant, denoted by T .

Extend the definition of πn from the interval [0, Tn] to R+ by following the hydro-
dynamic trajectory after Tn : πn(Tn + t, dθ) = ρ̃n(t, θ)dθ , where ρ̃n is the solution
of the hydrodynamic equation with initial condition ρn

Tn
. Let π̄n

t , 0 ≤ t ≤ T , be the
trajectory defined by π̄n

t = πn(τn + t). Since πn belongs to C([0, Tn],M+,1), note
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that π̄n
0 ∈ ∂Bε(�̄i ), that π̄n hits the set Bδ(�̄i )

c in the time interval [0, T ] and that
IT (π̄n) ≤ 1/n.

By the compactness of the level sets of IT , the lower semi-continuity of this func-
tional and the compactness of the space M+, there exists a subsequence π̄nk which
converges to some trajectory π such that π0 ∈ ∂Bε(�̄i ), π hits the set Bδ(�̄i )

c in the
time interval [0, T ] and IT (π) = 0. By Lemma 12, the density of πt , denoted by ρt ,
is a solution of the hydrodynamic equation. This contradicts the property of ε and
concludes the proof of the lemma. ��
Proof of Theorem 5 Recall the definition of the set of indices Is , Iu . We claim that
wa > 0 for all a ∈ Iu . To prove this statement, it is enough to show that for each
a ∈ Iu , there exists b ∈ Is such that wa > wb.

Fix a ∈ Iu . By assumption, there exists b ∈ Is such that vab = 0. We claim that
wa > wb. Indeed, on the one hand, by Lemma 30, vbc > 0 for all c �= b. On the
other hand, let g be a graph in T (a) such that wa = κ(g). Recall that we denote by
(d, e), e �= d ∈ V , the oriented edge where d is the child and e the parent. Let c be
the parent of b in g. Of course, c might be a. Denote by g′ the tree in T (b) obtained
from g by adding the oriented edge (a, b) and removing the the edge (b, c), and note
that κ(g) + vab = κ(g′) + vbc. Since wb is the minimal value of κ(g̃), g̃ ∈ T (b),
wb ≤ κ(g′) so that wb + vbc ≤ κ(g) + vab = wa + vab = wa . The last identity
follows from the fact that vab = 0 and the next to last from the fact that κ(g) = wa .
Since vbc > 0, we conclude that wb < wa , as claimed.

We claim that for every δ > 0,

inf

⎧
⎨

⎩
W (π) : π /∈

⋃

i∈Is
Bδ(�̄i )

⎫
⎬

⎭
> 0. (7.1)

Fix δ > 0. Since wa > 0 for all a ∈ Iu , in view of the definition of W , we only need
to check that

inf

⎧
⎨

⎩
Vj (π) : π /∈

⋃

i∈Is
Bδ(�̄i )

⎫
⎬

⎭
> 0

for each j ∈ Is . This is the content of Lemma 30, proving (7.1)
To complete the proof of the theorem, it remains to observe that the complement of

∪i∈IsBδ(�̄i ) is a closed set and to apply the upper bound of the static large deviations
principle stated in Theorem 4. The theorem is proved. ��

8 The Chafee–Infante equation

We present in this section an example of a reaction–diffusion model which fulfills the
hypotheses of Theorems 4 and 5. Actually, in this model a complete description of the
stationary solutions and of the heteroclinic orbits is available.
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Fix 0 < a < b and recall the definition of the potentialV = Va,b introduced in (2.7).
Denote by T1/2π the one-dimensional torus with length (2π)−1. Let p = (1/2)

√
a/b,

c = 2(2π)2 and define φ : R+ × T1/2π → R as

φ(t, θ) = 1

p

{
ρ
(
c t , 2πθ

) − 1

2

}
.

A simple computation shows that ρ solves the Eq. (2.7) if and only if φ solves

∂tφ = Δφ + λ(1 − φ2)φ, (8.1)

where λ = 4ca = 8(2π)2a. Note that φ takes values in the interval [−√
b/a,

√
b/a].

This is the so-called Chafee–Infante equation [13] with periodic boundary condition.
A complete characterization of the stationary solutions of the Chafee–Infante equa-

tion with periodic boundary conditions is presented in [30, Proposition 1.1]. In our
context it can be stated as follows. Let ρ± be the minima of V : ρ± = (1/2) ± p =
(1/2)[1 ± √

a/b].
Theorem 8 For all 0 < a < b, theEq. (8.1) admits three constant stationary solutions:
ψ± = ρ±, ψ1/2 = 1/2. For all nonnegative integers m such that 1 ≤ m2 < λ =
32π2a, up to translations, there exists a non-constant periodic stationary solution
φm = φm,λ withm periods inT1/2π .Moreover, limλ↓m2 φm,λ = 1/2 inC2(T1/2π ). The
reaction–diffusion equation (2.4)with potential Va,b has no other stationary solutions.

The heteroclinic orbits of the Chafee–Infante equation with periodic boundary
conditions have been characterized in [23]. Next result follows from Theorems 1.3
and 1.4 of [23],

Theorem 9 There are heteroclinic orbits from ψ1/2 to ψ±, and from ψ1/2 to φm for
all integers 1 ≤ m2 < λ. Fix 1 ≤ n2 < λ. There are heteroclinic orbits from φn to
ψ±, and from φn to φm for all integers 1 ≤ m2 < n2. There are no other heteroclinic
orbits.

Next proposition follows from the previous results and from Theorem 5.

Proposition 4 Consider a reaction–diffusion model which satisfies the assumptions of
Theorem 4 and which gives rise to the hydrodynamic equation (2.7) with 0 < a < b.
Let �̄±(dθ) = ρ±dθ . Then, for every δ > 0, there exist c > 0 and N0 ≥ 1 such that
for all N ≥ N0,

PN (
Bδ(�̄−) ∪ Bδ(�̄+)

) ≥ 1 − e−cN .

If the jump rates are invariant under a global flipping of the configuration: c(η) =
c(1 − η), where 1 is the configuration with all sites occupied, there is a symmetry
between occupied and vacant sites so that PN (Bδ(�̄+)) = PN (Bδ(�̄−)) for all δ > 0.
Hence, with this additional assumption, we may refine the previous proposition:

123



100 J. Farfán et al.

Corollary 3 Under the assumptions of Proposition 4, if c(η) = c(1 − η), for every
0 < δ < (1/2)d(�̄−, �̄+), there exist c > 0 and N0 ≥ 1 such that for all N ≥ N0,

∣
∣
∣PN (Bδ(�̄−)) − 1

2

∣
∣
∣ ≤ e−cN ,

∣
∣
∣PN (Bδ(�̄+)) − 1

2

∣
∣
∣ ≤ e−cN .

An example. We conclude this section with an example of a reaction–diffusion
model satisfying the assumptions of Theorem 4 and whose hydrodynamic equation is
given by (2.7).

Consider the reaction–diffusion model whose jump rate c(η) is given by

c(η) = a21{η−1 �= η1} + a11{η−1 = η1 = η0} + a01{η−1 = η1 �= η0}.

Let ξ be the configuration obtained from η by flipping all occupation variables: ξ(x) =
1 − η(x), x ∈ TN . Since [1 − η(0)]c(η) = ξ(0)c(ξ), B(ρ) = D(1 − ρ). Moreover,

F(ρ) = 1

4

{
(a0 − 3a1 − 2a2)(2ρ − 1) − (a0 + a1 − 2a2)(2ρ − 1)3

}
.

Fix 0 < a < b, and set a1 = a > 0. Choose a2 ≥ a + 2b > 0 and set a0 =
2a2 + 4b − a ≥ a + 8b > 0. Since the three parameters are positive, the jump rate is
strictly positive as required.

As a0 − 3a1 − 2a2 = 4(b − a) and a0 + a1 − 2a2 = 4b, in the variables a, b the
function F becomes

F(ρ) = (b − a)(2ρ − 1) − b(2ρ − 1)3,

in conformity with (2.7) for a = (b − a)/2, b = b/2.
Since B(ρ) = D(1 − ρ), D is concave if and only if B is concave. The functions

B is concave if 3a1 + a0 ≤ 4a2 ≤ 4a0. We claim that these inequalities are in force.
On the one hand, as b > a > 0 and a2 > 0, we have that a2 < 2a2 + 4b − a = a0.
On the other hand, 3a1 + a0 − 4a2 = 2a1 + 4b− 2a2 = 2a+ 4b− 2a2 ≤ 0 from the
definition of a2.

This shows that all the assumptions of Theorem 4 are fulfilled.

Acknowledgements The authors wish to express their gratitude to the referee for a very careful reading
which helped to improve the presentation.
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