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Abstract
This article is concerned with self-avoiding walks (SAW) on Z

d that are subject to
a self-attraction. The attraction, which rewards instances of adjacent parallel edges,
introduces difficulties that are not present in ordinary SAW. Ueltschi has shown how
to overcome these difficulties for sufficiently regular infinite-range step distributions
and weak self-attractions (Ueltschi in Probab Theory Relat Fields 124(2):189–203,
2002). This article considers the case of bounded step distributions. For weak self-
attractions we show that the connective constant exists, and, in d ≥ 5, carry out a
lace expansion analysis to prove the mean-field behaviour of the critical two-point
function, hereby addressing a problem posed by den Hollander (Random Polymers,
vol. 1974. Springer-Verlag, Berlin, 2009).

Keywords Self-interacting random walk · Self-attracting walk · Self-avoiding walk ·
Linear polymers · Lace expansion · Critical phenomena · Hammersley-Welsh
argument

Mathematics Subject Classification Primary 60K35; Secondary 60D05 · 82B27

1 Introduction

1.1 Model definition

Let Zd denote the d-dimensional integer lattice with nearest-neighbour edges, and
assume d ≥ 2. Let P be the law of a random walk on the vertices of Zd with i.i.d.
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Fig. 1 A self-avoiding walk ω.
Shaded plaquettes indicate the
seven pairs of adjacent edges of
ω

increments distributed according to a step distribution D. Letting {±ei }di=1 denote
the standard generators of Zd , a plaquette is a collection of vertices of the form
{x, x + u, x + v, x + u + v} where u /∈ {±v} and u and v are in {±ei }di=1. Two edges
{x1, y1} and {x2, y2} of Zd are adjacent if {x1, y1, x2, y2} is a plaquette.

A walk is a sequence of vertices in Z
d , and the edges of a walk ω are the pairs

{ωi , ωi+1} of consecutive vertices. Note that, for general increment distributions D,
the edges of a walk in the support of P are not necessarily edges of Zd . Define adj(ω)

to be the collection of pairs of edges ofω that are adjacent edges ofZd , and let |adj(ω)|
be the cardinality of this set. See Fig. 1.

Let Pn denote the law induced by P on n-step walks that begin at the origin o ∈ Z
d ,

and recall that a walk is self-avoiding if it does not visit any vertex more than once
(see Sect. 3.1 for a more precise definition). The models we are interested in are
perturbations Pn,κ of Pn defined by

Pn,κ (ω) ∝ 1{ω∈�n}Wκ(ω), κ ≥ 0, (1.1)

where �n is the set of n-step self-avoiding walks with initial vertex ω0 = o and

Wκ(ω) := e−Hκ (ω)
Pn(ω), e−Hκ (ω) := (1 + κ)|adj(ω)|. (1.2)

The symbol := indicates equality by definition. The law Pn,κ on n-step walks is called
(n-step) attracting self-avoiding walk with attraction strength κ , or (n-step) κ-ASAW.
When the length of the walk is irrelevant the adjective n-step will be dropped. We
think of the right-hand side of (1.1) as defining the κ-ASAW weight of a walk ω. The
probability of a walk is proportional to its weight.

The law Pn,0 defined by (1.1) is the law of n-step self-avoiding walk (SAW) [3].
Physically, self-avoiding walk is a model of a linear polymer in a good solvent. The
self-avoidance constraint represents the inability of two molecules in the polymer
to occupy the same space. If κ > 0, walks under the κ-ASAW law are attracted to
themselves. Physically, this is a model of a linear polymer in a poor solvent, see [4,
Section 6.3] and [2, Chapter 6]. The molecules huddle together to escape exposure to
the surrounding solvent.

1.2 Lack of submultiplicativity

Before stating our results, we briefly discuss the central difficulty of the model. Let
cn(κ) denote the normalization constant that makes Pn,κ a probability measure, i.e.,
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Self-attracting self-avoiding walk 679

cn(κ) :=
∑

ω∈�n

Wκ(ω). (1.3)

Note that cn(κ) is implicitly also a function of the step distribution D.
The first mathematical fact one learns about self-avoiding walk is that when κ = 0

the sequence (cn(κ))n≥1 is submultiplicative, i.e.,

cn+m(0) ≤ cn(0)cm(0).

This bound arises because any (n + m)-step self-avoiding walk can be split into
an n-step self-avoiding walk and an m-step self-avoiding walk. Simple estimates and
Fekete’s lemma [5,Lemma1.2.1] on submultiplicative sequences imply that (cn(0))1/n

converges as n → ∞; see [6, Section 1.2].1

The basic difficulty in the study of κ-ASAW is that the sequence (cn(κ))n≥1 is
generally not submultiplicative for κ > 0. To see that submultiplicativity cannot hold
in general, consider the nearest-neighbour step distribution D(x) = (2d)−11{‖x‖1=1}.
Submultiplicativity of the sequence cn(κ) would imply

cn(κ) ≤ c1(κ)n = 1,

which cannot hold for fixed n ≥ 3 when κ is sufficiently large, as the left-hand side is
a polynomial in κ of degree at least 1.

2 Results

Henceforth it will be assumed that D(x) is invariant under the symmetries of Zd

(namely, reflections in hyperplanes and rotations by π/2 about coordinate axes), and
that D(e1) := p1 > 0. Thus, D(±ei ) = p1 for both choices of sign and all choices
of i = 1, 2, . . . , d.

The next two subsections present our main results, Theorem 2.1 and Theorem 2.3,
and in Sects. 2.3 and 2.4 we discuss the main ideas of the proofs and briefly describe
how our results fit into the literature.

2.1 Connective constants

The limiting value μ(κ) of (cn(κ))1/n , if the limit exists, is called the connective
constant with self-attraction κ . Wewill prove that the connective constant of κ-ASAW
exists for κ sufficiently small despite not knowing if submultiplicativity holds.

Theorem 2.1 Let d ≥ 2. There exists a κ0 = κ0(D) > 0 such that for 0 < κ < κ0 the
limit μ(κ) = limn→∞(cn(κ))1/n exists.

Note that the dependence of κ0 on D implicitly means that κ0 may depend on the
dimension d. The remainder of this section briefly describes the proof of Theorem 2.1,

1 Note that our definition of cn involves D, i.e., we are enumerating weighted self-avoiding walks.
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680 A. Hammond, T. Helmuth

although we delay a discussion of how the lack of submultiplicativity is overcome to
Sect. 2.3. The proof appears in Sect. 4.

An n-step self-avoiding walk ω is a bridge if π1(ω0) < π1(ω j ) ≤ π1(ωn) for all
j = 1, . . . , n, where π1 denotes projection onto the first coordinate. A key observation
for the proof of Theorem 2.1 is thatWκ is supermultiplicative on bridges when κ ≥ 0.
This implies the connective constant for bridges, μB(κ), exists.

A classical argument due toHammersley andWelsh shows that the number of n-step
self-avoiding bridges is the same, up to sub-exponential corrections, as the number of
n-step self-avoiding walks [7]; see also [6, Section 3.1]. An immediate consequence is
that μB(0) = μ(0). To prove the existence of μ(κ), we adapt the Hammersley-Welsh
argument to κ > 0; i.e., we prove that the difference in the κ-ASAW weight of n-step
bridges and n-step walks is sub-exponential in n.

The Hammersley-Welsh argument involves “unfolding” self-avoiding walks by
reflecting segments of thewalk throughwell-chosenhyperplanes. It is during unfolding
that the lack of submultiplicativity must be overcome.

2.2 Mean-field behaviour

To formulate Theorem 2.3, our main lace expansion result, we require further assump-
tions on the step distribution D.

Definition 1 Let L > 0. A step distribution D is spread-out with parameter L if it has
the form

D(x) =
{ h(x/L)∑

x∈Zd \{o} h(x/L)
x 	= o

0 x = o,
(2.1)

where h : [−1, 1]d → [0,∞) is a piecewise continuous function such that h(0) > 0,
0 is a point of continuity, and

(i) h is invariant under the symmetries of Zd , and
(ii)

∫
h(x) dx = 1.

Inwhat followswhenwe consider a “spread-out step distribution”wemean the one-
parameter family of step distributions obtained by choosing a single function h. Note
that h(0) > 0 and 0 being a point of continuity for h implies that the denominator in
(2.1) is positive and D(e1) = p1 > 0 if L is taken sufficiently large.Wewill implicitly
assume L is at least this large in what follows. The variance of D will be denoted by
σ 2 := ∑

x∈Zd ‖x‖22D(x).

Example 2.2 Consider h(x) = 2−d on [−1, 1]d . This leads to D(x) being uniformly
distributed on vertices x 	= o with ‖x‖∞ ≤ L .

The proof of Theorem 2.1 relies in part on establishing that κ-ASAW is repulsive in
an averaged sense; roughly speaking, this means that a walk under the κ-ASAW law
is not typically attracted to its earlier trajectory. This idea, which is explained more
precisely in Sect. 2.3, also turns out to enable a lace expansion analysis of κ-ASAW
at criticality, a notion which we introduce in the next two definitions.
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Self-attracting self-avoiding walk 681

Definition 2 The susceptibility of κ-ASAW is the power series

χκ(z) :=
∞∑

n=0

cn(κ)zn . (2.2)

Definition 3 The critical point zc = zc(D, κ) of κ-ASAW is defined to be

zc := sup{z ≥ 0 | χκ(z) < ∞}.

For SAW, submultiplicativity implies that zc(0) = μ(0)−1. For κ small enough that
Theorem 2.1 applies, it remains true that zc(κ) = μ(κ)−1 by the Cauchy–Hadamard
characterization of the radius of convergence.

Before stating our main result on the behaviour of κ-ASAW at the critical point
zc(κ), we require a few more definitions. Precise formulations of the classes of walks
involved in these definitions can be found in Sect. 3.1.

The two-point function of κ-ASAW is defined, for z ≥ 0 and x ∈ Z
d , by

Gz,κ (x) :=
∑

n≥0

∑

ω∈�n(x)

znWκ(ω). (2.3)

Note that the inner sum is restricted to self-avoiding walks that end at x ; only n-step
walks with positive probability under Pn,κ contribute.

The κ-ASAW two-point function should be compared with the simple randomwalk
two-point function

Sz(x) :=
∑

n≥0

∑

ω∈Wn(x)

znPn [ω] , (2.4)

in which the inner sum is over Wn(x), the set of all n-step walks with initial vertex
o ∈ Z

d and terminal vertex x ∈ Z
d . The term “simple” is used to indicate that the

associated law on n-step walks is Pn , although this may not be a nearest-neighbour
walk. Let ~x~ denote max{‖x‖2, 1}, where ‖ · ‖2 is the Euclidean norm. Despite the
notation, ~ · ~ is not a norm.

Theorem 2.3 Let d ≥ 5. For sufficiently spread-out step distributions, with parameter
L ≥ L0(D), there is a κ0 > 0 such that if 0 ≤ κ ≤ κ0 and α > 0 then

Gzc,κ (x) = ad
σ 2~x~d−2

(
1 + O(Lα−2) + O

(
L2

~x~2−α

))
, (2.5)

where σ 2 is the variance of the step distribution D, the constants implicit in the O(·)
notation may depend on κ and α, and ad = 2−1π−d/2d�( d2 − 1). Here �( d2 − 1) is
the evaluation of Euler’s Gamma function at d

2 − 1.

Theorem 2.3 shows that the critical two-point function of κ-ASAW has the same
asymptotics as the critical (z = 1) two-point function of simple random walk in
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682 A. Hammond, T. Helmuth

d ≥ 5. In the language of critical exponents, see [4, p.12], this says that η = 0, i.e.,
this is a verification that κ-ASAW has mean-field behaviour. We have not attempted
to optimize the relation between κ0 and L in our proof, as our primary interest is in
the existence of κ0 > 0 for finite L .

It is typically difficult to apply the lace expansion to models containing attracting
interactions, as these attractions make it difficult to obtain what are known as diagram-
matic bounds. We are able to overcome this difficulty as the on average repulsion that
κ-ASAW satisfies is compatible with calculating such bounds. This is discussed in
more detail in Sect. 2.3. Once the diagrammatic bounds are obtained the remain-
ing part of the lace expansion analysis is well understood and can be adapted from
existing arguments [8]. We recall how this can be done in Appendix A. The proof of
Theorem 2.3 is carried out in Sect. 6.

2.3 Main idea

The proofs of Theorems 2.1 and 2.3 are essentially independent, but they share a
common idea which we explain here.

Let � denote the set of all self-avoiding walks, not necessarily starting at the origin
o. Writing a walk ω as a concatenation ω = ω1 ◦ ω2 of two subwalks determines an
interaction conditional on ω1, i.e.,

1{ω∈�}e−Hκ (ω) =
(
1{ω1∈�}e−Hκ (ω1)

) (
1{ω∈�}e−Hκ (ω2;ω1)

)
, (2.6)

where this formula defines Hκ(· ;ω1). Explicitly,

exp(−Hκ(ω2;ω1)) := (1 + κ)
∣∣adj(ω2)

∣∣
(1 + κ)

∣∣adj(ω1, ω2)
∣∣
, (2.7)

where adj(ω1, ω2) is the set of pairs of adjacent edges { f1, f2}with fi ∈ ωi , i = 1, 2.
For SAW, i.e., κ = 0, the interaction is trivial: e−H0(ω) = e−H0(ω

2;ω1) = 1.
Submultiplicativity therefore follows from (2.6) and the observation that

1{ω∈�} = 1{ω1◦ω2∈�} ≤ 1{ω2∈�}.

For κ > 0 it is not generally true that e−Hκ (η;ω1) ≤ e−Hκ (η). See Fig. 1 and consider
splitting the walk into the indicated subwalks.

Equation (2.6) highlights a tensionbetween self-avoidance and self-attraction.Ener-
getic rewards of (1 + κ) due to the conditional interaction only occur if the walk ω2

has edges adjacent to edges in ω1. Such an edge in ω2 carries an entropic penalty, as
the potential configurations of ω2 are reduced. Thus there is both an entropic benefit
and an energetic penalty to dropping the conditional interaction due to ω1 when (2.6)
is summed over a suitable class of walks.

More explicitly, if ω2 contains an edge {x1, y1} adjacent to an edge {x2, y2} of
ω1, then typically there is a self-avoiding modification of ω2 that traverses {x2, y2}
instead of {x1, y1}. The modified walk will be longer than the original, and will be
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Self-attracting self-avoiding walk 683

assigned zero weight by the conditional interaction. However, it has positive κ-ASAW
weight. The entropic gain of ignoring ω1 can therefore be estimated by considering
the possible modifications toω2 and estimating the energetic cost of the modifications.
The energetic cost decreases as κ decreases, and for κ sufficiently small we will show
that the entropic benefit outweighs the energetic penalty. This idea, which involves a
weighted version of the multivalued map principle [9, Section 2.0.1], has been fruitful
in obtaining upper bounds on the number of self-avoiding polygons of given length [9].

2.4 Discussion

Ueltschi [1] considered amodel of SAWswith an attracting reward for pairs of nearest-
neighbour vertices under the assumption that the step distribution D(x) and attraction
strength κ satisfy

inf|x−y|=1,y 	=0

D(y)

D(x)
= 
 > 0, (1 + κ)2d ≤ 1 + 
2

2d(1 + κ)2d−1 . (2.8)

Note that the condition on D(x) in (2.8) implies the step distribution has infinite
range. Given (2.8) it can be shown that the entropic reward of ignoring ω1 outweighs
the energetic cost. The fact that D(x) has infinite range and is “smooth” allows the
use of a length preserving transformation to prove the model is submultiplicative.
Using this idea Ueltschi also carries out a lace expansion analysis via the inductive
approach of [10]; the length-preserving nature of the transformation is important for
the application of the inductive method. Ueltschi’s result was significant for being the
first application of the lace expansion to a self-attracting random walk. Self-attracting
interactions, which are also called non-repulsive, are typically difficult to handle with
lace expansion methods [4, Section 6.3].

The problem of analysing models of self-attracting self-avoiding walks under
weaker hypotheses on the step distributions was raised by den Hollander [2, Chapter
4.8(5)], and our work addresses this question when d ≥ 5. As described in Sect. 2.3
the main idea is to combine energy-entropy methods with classical techniques for
self-avoiding walk.

Beyond our main theorems, an important aspect of this work is that it suggests
that energy-entropy methods may be more generally useful in the context of the lace
expansion. In particular there is no need to restrict to length-preserving transformations
as in [1] (although length-preserving transformations do simplify technical aspects due
to [10]). This is significant as energy-entropy methods should be a fairly robust way
to overcome a lack of repulsion caused by weak attractions. Roughly speaking, the
key step in such an argument is to first subdivide an object, and then to prove the
gain in conformational freedom that arises when forgetting one part outweighs the
loss of energetic attractions. Our proof implements this strategy for κ-ASAW, and it is
plausible it could be implemented for other models, e.g., weakly self-attracting lattice
trees in high dimensions via an adaptation of [8,11].

It is worth noting that energy-entropy arguments are carried out by find-
ing a transformation that estimates the number of new configurations that are
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684 A. Hammond, T. Helmuth

available. Finding a transformation is a combinatorial and analytic problem, in
contrast to other approaches to overcoming a lack of repulsion via correla-
tion inequalities [4,12], resummation identities [13], or asymmetry assumptions
[14].

We end this section by mentioning two recent related works on self-avoiding ran-
dom walks subject to self-attraction. Firstly, there has been interesting progress [15]
on den Hollander’s problem for weakly self-avoiding walk (WSAW) with a contact
self-attraction when d = 4. The authors prove Gaussian decay of the critical two-point
function when the self-attraction and self-repulsion strengths are sufficiently small by
making use of a rigorous renormalization group analysis. The techniques of [15] are
wholly different than those of the present paper, and an analysis of self-attracting
WSAW when d ≥ 5 via lace expansion techniques would be a very interesting com-
plement to the results of [15]. Secondly, in [16] it has been shown that a related model
known as prudent self-avoiding walk undergoes a collapse transition in d = 2 when
the self-attraction is strong enough.

3 Initial definitions, path transformations

3.1 Conventions

By a common abuse of notation Zd will denote the d-dimensional hypercubic lattice,
i.e., the graph with vertex set Zd and edge set E(Zd) := {{x, y} | ‖x − y‖1 = 1}.
Recall that the standard generators of Zd will be denoted e1, . . . , ed . |A| will denote
the cardinality of a finite set A, and A � B will denote the union of disjoint sets A and
B.

For n ∈ N := {0, 1, 2, . . .}, an n-step walk is a sequence (ωi )
n
i=0, where ωi ∈ Z

d

for 0 ≤ i ≤ n and ωi 	= ωi−1, 1 ≤ i ≤ n. For such a walk let |ω| := n, and for
0 ≤ i < j ≤ |ω| we write ω[i, j] to denote the walk (ωi , ωi+1, . . . , ω j ). LetWn(x, y)
be the set of n-step walks with ω0 = x and ωn = y. We omit the first argument if
x = o, the origin of Zd , and let W(x, y) := ⊔

n≥0 Wn(x, y). We also let Wn denote
the set of all n-step walks, with no constraints on the initial or final vertices.

A walk is self-avoiding if ωi 	= ω j for i 	= j , and is a self-avoiding polygon if
|ω| > 2, ωi 	= ω j for 0 ≤ i < j < |ω|, and ω0 = ω|ω|. Note that polygons are rooted
and oriented, which is a somewhat non-standard definition. Let �n(x, y) denote the
set of n-step self-avoiding walks from x to y and �̃n(x) denote the set of n-step self-
avoiding polygonswith initial vertex x . For self-avoidingwalks let�n(x) := �n(o, x),
and again we will omit the subscript n to indicate a union over n. � and �̃ denote the
sets of all self-avoiding walks and polygons, respectively, with no restrictions on the
initial vertex.

Let adj(A, B) denote the set of plaquettes spanned by pairs of adjacent edges
e ∈ A, f ∈ B for subsets A, B ⊂ E(Zd), and let adj(A) := adj(A, A). Let E(ω) :=
{{ωi , ωi+1}}|ω|−1

i=0 be the set of edges traversed by awalkω. By a slight abuse of notation
we will write adj(ω, η) in place of adj(E(ω), E(η)), and adj(ω) := adj(ω, ω).
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Self-attracting self-avoiding walk 685

Fig. 2 Illustration of a flip
applied to a self-avoiding walk
ω at the shaded plaquette P ,
which is flippable

3.2 Transformations by symmetries ofZd; basic path operations

For x ∈ Z
d , let Tx denote the operator of translation by x , i.e., Tx f (y) = f (y − x)

for f a function on Z
d . Translations will also act on subsets or collections of subsets

of Zd by identifying sets with indicator functions. For example, if ω ∈ Wn , Tx ω is
the n-step walk (ω0 + x, ω1 + x, . . . , ωn + x).

The projection operator πi : Zd → Z maps x = (x1, . . . , xd) to xi . To lighten
notation, let π−1

i (x) = π−1
i (πi (x)) denote the hyperplane passing through x with

normal ei . The reflection operatorRi : Zd → Z
d reflects any vertex in the coordinate

hyperplane π−1
i (o).

If ω1 ∈ Wm and ω2 ∈ Wn their concatenation η = ω1 ◦ω2 is the (n+m)-step walk
with ηi = ω1

i for 0 ≤ i ≤ m, and ηm+i = T(ω1
m−ω2

0)
ω2
i for 0 ≤ i ≤ n. This translation

moves the initial vertex of ω2 to the terminal vertex of ω1, so the concatenated walk
continues from where ω1 ends.

3.3 Flips

Let ω be a walk and P be a plaquette such that there is a unique i such that ω j ∈ P iff
j ∈ {i, i + 1}. We will call such a plaquette P flippable. This condition implies that
ω has exactly one edge in the plaquette P , and no other vertices in P . Otherwise P
is not flippable. Since flippability is defined in terms of ω we will write, for example,
flippable for ω to indicate this dependence.

Suppose P is a flippable plaquette for ω, and that (ωi , ωi+1) is the unique edge of
ω in P . The flip of ω at P , denoted FP (ω), is the walk ω′ that replaces (ωi , ωi+1)

with the traversal of P along the three edges distinct from {ωi , ωi+1}. See Fig. 2. If P
is not flippable, define FP (ω) = ω. Two plaquettes P1 and P2 are said to be disjoint
if they have no vertices in common. Sets of disjoint flippable plaquettes are what will
be entropically important in what follows. The next three lemmas establish useful
properties of FP .

Lemma 3.1 For any plaquette P and vertices x, y ∈ Z
d , FP : W(x, y) → W(x, y),

FP : �(x, y) → �(x, y), andFP is invertible. If P ′ is disjoint from P, thenFP◦FP ′ =
FP ′ ◦ FP .

Proof To prove FP : W(x, y) → W(x, y) it suffices to prove that FP does not change
the endpoints of a walk. This is immediate as the first and last vertices of FP (ω) in P
are the same as the first and last vertices of ω in P .
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686 A. Hammond, T. Helmuth

If ω ∈ �(x, y) and P is not flippable for ω, then FP (ω) = ω, so the image is in
�(x, y). If P is flippable, then ω contains one edge of P and no other vertices; since
FP only modifies ω on P the result is self-avoiding.

Invertibility of FP is clear, as if P is not flippable for ω then FP is the identity,
while if P is flippable then ω can be recovered from FP (ω) by replacing the traversal
of three consecutive edges of P in FP (ω) by the traversal of the single unoccupied
edge of P . Lastly, commutativity holds as flips at disjoint plaquettes modify the walk
on disjoint sets of edges. ��

Given a disjoint set of plaquettes B = {P1, . . . , Pk}, define FB(ω) := FP1 ◦ . . . ◦
FPk (ω); the commutativity of flips at disjoint plaquettes implies the definition of FB

is unambiguous.

Lemma 3.2 Let η ◦ ω ∈ � and let B ⊂ adj(η, ω) be a disjoint set of plaquettes that
are flippable for ω. Then ω is uniquely determined by FB(ω) and η.

Proof Since the plaquettes in B are disjoint, we can consider them separately. For
each P ∈ B, there is at least one edge of P in ω̃ = FP (ω) that is also in η. Suppose
there is one edge (ω̃i , ω̃i+1). Then P is the plaquette {ω̃i−1, ω̃i , ω̃i+1, ω̃i+2}. If there
are two edges of ω̃ in η then P is the plaquette spanned by the two edges, and three
or four edges being in η contradicts η ◦ ω ∈ �.

Thus, given η and ω̃, we can determine B. By Lemma 3.1 FB is invertible, so ω is
uniquely determined. ��

Suppose a self-avoiding walk η is composed of two subwalks ω1 and ω2, i.e.,
η = ω1 ◦ ω2. It will be convenient to abuse notation and write adj(ω1, ω2) in place
of adj(ω1, Txω2), where Tx is the translation that takes the initial vertex of ω2 to the
final vertex of ω1. As it will be contextually clear we are discussing pairs of adjacent
edges between ω1 and ω2, this should not cause any confusion.

The next lemma saysmost plaquettes in adj(ω1, ω2) are flippable forω2; to quantify
this we define

k0 := 2d(d − 1). (3.1)

Lemma 3.3 If ω1 ◦ω2 ∈ �, there are at most k0 plaquettes in adj(ω1, ω2) that are not
flippable for ω2. If ω1 ◦ ω2 ∈ �̃, there are at most 2k0 plaquettes in adj(ω1, ω2) that
are not flippable for ω2.

Proof Without loss of generality, assume that ω2
0 is the endpoint of ω1, and call the

vertices in common to ω2 and ω1 points of concatenation. The proof characterises
when P ∈ adj(ω1, ω2) is not flippable for ω2 case by case, depending on how many
edges of P are contained in ω1 ◦ ω2. By the definition of P ∈ adj(ω1, ω2) there are
at least two such edges.

First, note that a self-avoiding walk or polygon containing four edges in a single
plaquette is a four step self-avoiding polygon. The claim is true in this case, as there are
exactly two adjacent pairs of edges. Henceforth wemay assume there are no plaquettes
containing four edges.
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(a) P contains 2 edges of ω1 ◦ω2. (b) P contains 3 edges of ω1 ◦ω2.

Fig. 3 Illustration of the cases arising in the proof of Lemma 3.3. Solid black lines represent edges of ω1,
while dashed black lines represent edges of ω2

Suppose that ω1 and ω2 each contain exactly one edge of P . If P does not contain
a point of concatenation, then P is flippable for ω2 since the two vertices of P in ω1

are not in ω2. See Fig. 3a. If P contains a point of concatenation it may or may not be
flippable for ω2.

Suppose thatω1◦ω2 contains three edges of P . Note that the three edgesmust occur
sequentially in ω1 ◦ ω2 since this walk is self-avoiding or a self-avoiding polygon,
and hence P must contain a point of concatenation if it is to be in adj(ω1, ω2). If two
edges belong to ω1, then P is flippable for ω2. Otherwise, P is not flippable for ω2.
See Fig. 3b.

Thus P ∈ adj(ω1, ω2) and P not being flippable implies there is a point of concate-
nation in P . As there are at most two points of concatenation, this verifies the claim,
as each vertex of Zd is contained in k0 plaquettes. ��

The cost p21 = Pn+2(ω
′)

Pn(ω)
is the additional cost of the modified walk ω′ according to

the a priori measure P. Recall the definition of Wκ in (1.2). The next lemma is our
basic estimate for the energetic penalty of a flip. For future reference, define

flipκ := p−2
1 (1 + κ)2d−4. (3.2)

Lemma 3.4 Let ω be a self-avoiding walk and P a flippable plaquette. Let ω′ =
FP (ω). Then

Wκ(ω′)
Wκ(ω)

≥ flip−1
κ . (3.3)

Proof The factor of p21 comes from comparing the a priori measures in the definition
of Wκ . What remains is to bound the difference |adj(ω)| − ∣∣adj(ω′)

∣∣.
The flip creates at least one pair of adjacent edges in ω′ that was not present in ω,

namely the pair of adjacent edges ofω′ in P . There are 2d−2 edges that are potentially
adjacent to the unique edge of ω in P , and the hypothesis of P being flippable for ω

implies at least one of these edges is not in ω. Thus at most 2d − 3 adjacent pairs of
edges in ω are not present in ω′. This proves (3.3). ��

In what follows it will be necessary to flip many plaquettes. Lemma 3.1 guarantees
the result will be self-avoiding if the flipped plaquettes are disjoint. The next lemma
guarantees that every collection of plaquettes has a positive density subset of disjoint
plaquettes. Define α = α(d) by
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α(d) := 1

1 + 8(d − 1)2
. (3.4)

Lemma 3.5 Given a finite set A of plaquettes in Z
d , there exists a subset of pairwise

disjoint plaquettes of A of size �α |A|�.
Proof The constant α is (1 + R)−1, where R is the number of plaquettes P ′ 	= P
sharing a vertex with P . The remainder of the proof verifies the value of R claimed
in (3.4) by performing inclusion-exclusion on the number of vertices P ′ 	= P shares
with P; note that this number is at most two.

Any vertex x is contained in exactly 4
(d
2

)
plaquettes. To see this, note these

plaquettes are in bijection with sets {(ui , σi )}i=1,2, where u1 	= u2 are distinct gen-
erators of Zd and σi ∈ {±1}: these sets identify the unique plaquette containing
x, x + σ1u1, x + σ2u2. Since every edge belongs to exactly 2(d − 1) plaquettes, the
total number of plaquettes sharing a vertex with a plaquette P is therefore

R = 4

(
(4

(
d

2

)
− 1) − (2(d − 1) − 1)

)
= 8(d − 1)2,

where the factors of −1 correct for the presence of P in our counts. ��

4 Existence of the connective constant: proof of Theorem 2.1

4.1 Half-space walks and bridges

We begin by recalling the basic definitions used in the Hammersley-Welsh argument.

Definition 4 The set Bn of n-step bridges is the subset of ω ∈ �n such that

0 = π1(ω0) < π1(ωi ) ≤ π1(ωn), 1 ≤ i ≤ n. (4.1)

The set Hn of n-step half-space walks is the set of ω ∈ �n such that

0 = π1(ω0) < π1(ωi ), 1 ≤ i ≤ n. (4.2)

Let H := �n≥0Hn and B := �n≥0Bn . Themasses hn(κ) of n-step half-space walks and
bn(κ) of half-space bridges are defined by

hn(κ) :=
∑

ω∈Hn

Wκ(ω), bn(κ) :=
∑

ω∈Bn
Wκ(ω). (4.3)

Note that the inclusions Bn ⊂ Hn ⊂ �n imply that bn(κ) ≤ hn(κ) ≤ cn(κ).
While self-attraction on adjacent edges ruins the submultiplicativity of self-avoiding

walks, it enhances the supermultiplicativity of bridges.

Proposition 4.1 Let κ ≥ 0. The limit μB(κ) = limn→∞(bn(κ))1/n exists and is equal
to supn≥1

(
bn(κ)

)1/n
.
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Proof The definition of a bridge implies that the concatenation ω1 ◦ω2 of two bridges
ω1 and ω2 is a bridge. Each pair of adjacent edges in ωi remains adjacent in ω1 ◦ ω2.
Any other pair of adjacent edges in the concatenation receives weight 1 + κ ≥ 1, so

∑

ω1∈Bn1

∑

ω2∈Bn2
W(ω1)W(ω2) ≤

∑

η∈Bn1+n2

W(η)1{η=ω1◦ω2,ωi∈Bni
}

for all choices of n1, n2 ∈ N. The left-hand side is bn1(κ)bn2(κ). Ignoring the indicator
on the right-hand side gives an upper bound bn1+n2(κ). Thus bn(κ) is supermultiplica-
tive, and the proposition follows by Fekete’s lemma. ��

4.2 Unfolding I. Classical unfolding

This section recalls how half-space walks can be unfolded into a concatenation of
bridges. We do this because a multivalued extension of this procedure will be intro-
duced in the next section. We omit the proofs of the various facts that we recall; for
details see [6, Section 3.1].

Definition 5 Let ω ∈ H. The (first) bridge point τ(ω) of ω is the maximal index i
satisfying π1(ωi ) = max j π1(ω j ).

Definition 6 The span of a self-avoiding walk is

span(ω) := max
j

π1(ω j ) − min
j

π1(ω j ). (4.4)

Note that if ω is an n-step bridge then span(ω) = π1(ωn).
Given a half-space walk ω ∈ Hn , let x := −ωτ(ω) and define the initial bridge

ωb := ω[0,τ (ω)] and the remainder ωh := Tx ω[τ(ω),n]. We will write ω = (ωb, ωh)

in what follows to indicate this decomposition into an initial bridge and a remainder.
The following properties of the decomposition are important.

(i) ω = ωb ◦ ωh ,
(ii) R1(ω

h) is a half-space walk,
(iii) span(ωb) = span(ω), and
(iv) span(R1(ω

h)) < span(ωb), asω never revisits the coordinate hyperplaneπ−1
1 (o)

after ω0.

Definition 7 The classical unfoldingmap� : H → B is recursively defined as follows.
� is the identity map on B. Otherwise, if ω ∈ H\B, let ω = (ωb, ωh) and define
�(ω) = ωb ◦ �(R1(ω

h)).

In words,� reflects the remainder ωh of the walk ω through π−1
1 (ωτ(ω)), the affine

hyperplane with normal e1 that contains the endpoint ωτ(ω) of ωb. Since the reflection
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690 A. Hammond, T. Helmuth

Fig. 4 The figure depicts a
half-space walk, along with its
decomposition into ωb and ωh .
Shaded plaquettes are in
adj(ωb, ωh); crosshatched
plaquettes indicate a choice of
subset of adj(ωb, ωh)

ωτ(ω)

of ωh is itself a half-space walk, this procedure can be iterated until the first bridge
point of the newest half-space walk is also the endpoint of the walk. The recursion
terminates at some depth r = r(ω) as the spans of the half-space walks produced are
strictly decreasing. See Figs. 4 and 5 for one step of this procedure (the meaning of
the shaded plaquettes will be explained in the next section).

Thus, � produces a sequence of bridges ωbi , i = 1, . . . , r , and �(ω) = ωb1 ◦ · · · ◦
ωbr . This sequence of bridges is called the classical bridge decomposition of ω. In
what follows, the bridges in the classical bridge decomposition will always be denoted
by {ωbi }ri=1. Let us record some properties of this decomposition.

Proposition 4.2 (i) span(�(ω)) = ∑r
i=1 span(ω

bi ),
(ii) the sequence (span(ωbi ))ri=1 of spans is strictly decreasing in i , and
(iii) given �(ω) and {span(ωbi )}ri=1, ω is uniquely determined.

Again we will not prove these claims, but let us remark that the third property holds
as knowing the lengths of the spans indicates the locations at which to fold the bridge
�(ω) in order to undo the unfolding procedure.

ωτ(ω)

Fig. 5 The figure depicts the image in �(ω) of the half-space walk ω depicted in Fig. 5, when the subset
B of plaquettes at which flips occur is the set of crosshatched plaquettes
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Self-attracting self-avoiding walk 691

4.3 Unfolding II. Multivalued unfolding

This section describes amultivalued extension of the classical unfoldingmap. Roughly
speaking, this multivalued extension quantifies an entropic gain in unfolding a half-
space walk ω into bridges. The gain arises because the unfolded walk may have fewer
adjacent edges than the original walk ω.

Definition 8 The marked unfolding map �̄ is recursively defined on H by

�̄(ω) :=
(
(ωb, adj1(ω

b, ωh)), �̄(R1(ω
h))
)

, (4.5)

adj1(ω
b, ωh) := {P ∈ adj(ωb, ωh) | P flippable for ωb}. (4.6)

Let r := r(ω) denote the number of bridges generated by this recursion. The image
of �̄(ω) will be denoted ((ωbi , adji ))

r
i=1, where adjr := ∅ and for 1 ≤ i < r we have

used adji as shorthand for the set of plaquettes defined by (4.6) in the i th step of the
recursion.

The marked unfolding map is an extension of �. It records the plaquettes at which
ωbi is flippable with respect to the remainder of the half-space walk with initial bridge
ωbi . Denote the set of discovered flippable plaquettes by adj�̄(ω), i.e.,

adj�̄(ω) :=
⊔

i

Ti adji ,

where Ti is the translation that translates the bridge ωbi to its location in the bridge
�(ω).

For k ∈ N, let Hk
n ⊂ Hn be the set of n-step half-space walks with

∣∣adj�̄(ω)
∣∣ = k.

To define the multivalued extension of � on Hk
n , we will make use of the following

facts. First, Lemma 3.5 implies there exists a subset adj
�̄
(ω) ⊂ adj�̄(ω) of size �αk�

such that the plaquettes in adj
�̄
are pairwise disjoint. In what follows we will assume

the set adj
�̄
has been chosen according to some arbitrary (but definite) procedure.

Second, Lemma 3.1 implies that if B is a finite collection of pairwise vertex-disjoint
plaquettes and x ∈ Z

d , then FB = ∏
P∈B FP is an unambiguously defined map from

�(x) to �(x).

Definition 9 Let 0 < δ < 1
2 , n ∈ N, and 0 ≤ k ≤ n. The multivalued unfolding map

� : Hk
n → 2Bn+2�αδk� is defined by

�(ω) :=
{
ω′
∣∣∣ω′ = FB(�(ω)), B ∈

(
adj

�̄
(ω)

�δαk�
)}

, (4.7)

where
(A
k

)
denotes the k-element subsets of a set A.

The next lemma gives the basic properties of �; in particular it verifies the stated
codomain in the previous definition. To lighten the notation, define

αk := �αk�, δk := �δαk�. (4.8)
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692 A. Hammond, T. Helmuth

Lemma 4.3 Let ω ∈ Hk
n. Then

(i) Every P ∈ adj�̄(ω) is flippable for �(ω).
(ii) Each walk ω′ ∈ �(ω) is a bridge in Bn+2δk .
(iii) The half-space walkω can be reconstructed from anyω′ ∈ �(ω) given the spans

span(ωbi ).

Proof Recall ω = ωb1 ◦ ωh . We begin by noting some properties of the plaquettes
in adj(ωb1, ωh). Since ω is a half-space walk, no plaquette in adj(ωb1 , ωh) contains
vertices in the half-space π−1

1 ((−∞, 0]). Similarly, no plaquette contains vertices in
the half-space π−1

1 (
[
span(ωb1) + 1,∞)

), as ωh is contained in π−1
1 (

[
1, span(ωb1)

]
).

We first prove (i). A moment of thought shows that each plaquette in B ⊂
adj1(ω

b1, ωh) ⊂ adj
�̄
(ω) is flippable for ωb1 ◦ R1(ω

h). Iterating this argument for
each bridge in the bridge decomposition of ω implies each plaquette in adj�̄(ω) is
flippable for �(ω).

We next prove (ii). The preceding shows eachω′ ∈ �(ω) is given byω′ = FB(ω) =
FB(ωb1) ◦ · · · ◦ FB(ωbr ) for B ⊂ adj

�̄
(ω). This is because each plaquette in B

contains exactly one edge of �(ω), and this edge is located in exactly one subwalk.
By Lemma 3.1 and the first paragraph of the proof, each ω j = FB(ωb j ) is a bridge
with span span(ωb j ) for j = 1, . . . , r . As a concatenation of bridges is a bridge and
each flip adds exactly two edges, this completes the proof, as each ω′ results from
applying FB with |B| = δk .

Lastly we prove (iii). By construction, the last bridge ωbr in the classical bridge
decomposition has no flips applied to it in the formation of ωr . Given span(ω j ) =
span(ωb j ) for each j , ωr = ωbr is determined. Hence, by Lemma 3.2, ωbr−1 can be
reconstructed. Iterating this procedure reconstructs ω from ω′, establishing (iii). ��

Having established the basic properties of the multivalued unfolding map, we turn
to estimating the weight of n-step half-space walks in terms of the weights of bridges.
The next lemma gives the basic relation between these objects.

For n ∈ N, let P(n) denote the number of partitions of n into distinct natural
numbers. Let Bn(�) denote the set of n-step bridges ω with span(ω) ≤ �, and recall
the definition of flipκ from (3.2).

Proposition 4.4 Consider SAW on Z
d . For n, k ∈ N and 0 ≤ k ≤ n,

∑

ω∈Hk
n

Wκ(ω) ≤ P(n)

(
αk

δk

)−1

flipδk
κ

∑

ω′∈Bn+2δk (n)

(1 + κ)k+3d(d−1)
√
nWκ(ω′). (4.9)

Proof We begin by comparing the weight of ω ∈ Hk
n to the weight of a generic

ω′ ∈ �(ω). Recall that k0 = 2d(d − 1), and that r = r(ω) is the number of bridges
created by the unfolding map.

(i) At each unfolding, there are at most k0 plaquettes that are not flippable for ωb in
adj(ωb, ωh) by Lemma 3.3. Hence,

Wκ(ω) ≤ (1 + κ)k+rk0Wκ(ωb1 ◦ · · · ◦ ωbr ),

as there are r unfolding steps.
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(ii) As ω′ = FB(ωb1 ◦ · · · ◦ωbr ) and |B| = δk , applying Lemma 3.4 δk times implies

Wκ(ωb1 ◦ · · · ◦ ωbr ) ≤ flipδk
κ Wκ(ω′).

This implies

Wκ(ω) ≤ (1 + κ)k+r(ω)k0flipδk
κ Wκ(ω′). (4.10)

Next we apply the multivalued map principle. Let �(Hk
n ) = ∪ω∈Hk

n
�(ω).

∑

ω∈Hk
n

Wκ(ω) |�(ω)| =
∑

ω∈Hk
n

∑

ω′∈�(ω)

Wκ(ω) (4.11)

=
∑

ω′∈�(Hk
n)

∑

ω∈�−1(ω′)
Wκ(ω) (4.12)

≤
∑

ω′∈�(Hk
n)

∑

ω∈�−1(ω′)
(1 + κ)k+r(ω)k0flipδk

κ Wκ(ω′). (4.13)

where the inequality is by (4.10). Tomake the inner sum uniform inω, we use Proposi-
tion 4.2. The spans of the bridges in the bridge decomposition ofω are distinct positive
integers summing to span(�(ω)) ≤ n. This implies that r(ω) is at most 3

2

√
n, as the

sum of the first 3
2

√
n positive integers exceeds n. Hence

∑

ω∈Hk
n

|�(ω)|Wκ(ω) ≤
∑

ω′∈�(Hk
n)

∣∣∣�−1(ω′)
∣∣∣ (1 + κ)k+

3
2
√
nk0flipδk

κ Wκ(ω′). (4.14)

Next we estimate |�(ω)| and ∣∣�−1(ω′)
∣∣.

(i) Lemma 4.3 implies that

|�(ω)| =
(

αk

δk

)
. (4.15)

Note that this is the number of subsets B of adj
�̄
(ω) of size δk . The claim is true

as (i) all plaquettes in B are flippable for �(ω), and (ii) every distinct choice of a
subset B in the definition of � results in a distinct image.

(ii) By Lemma 4.3 (iii) we can reconstruct ω from an image ω′ ∈ �(ω) given the
sequenceof spans in the classical bridgedecompositionofω. Themaximal possible
span of �(ω), the bridge produced by the classical bridge decomposition, is n,
and by Proposition 4.2 the spans form a partition of span(�(ω)). Thus the number
of preimages

∣∣�−1(ω′)
∣∣ is at most P(n), the number of partitions of n.

This establishes (4.9) if the index set Bn+2δk (n) of the sum on the right-hand side
is replaced with �(Hk

n). By Lemma 4.3 (ii), �(Hk
n) ⊂ Bn+2δk (n), as span(ω′) =

span(�(ω)) ≤ n. The proposition thus follows as each summand is non-negative. ��
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Lemma 4.5 For κ sufficiently small, there are δ > 0, K > 0, and a > 0 such that

(
αk

δk

)−1

(flipκμ2
B)

δk (1 + κ)k ≤ Ke−ak (4.16)

for all k ∈ N.

Proof We will show that for 0 < δ < 1
2 small enough there is a κ ′ such that for

κ ∈ [0, κ ′], there are a, K > 0 such that (4.16) holds. This implies the statement of
the lemma. Since it suffices to prove the validity of (4.16) for k > k′ := (δα)−1, we
will restrict attention to such k.

We begin by estimating the combinatorial prefactor in (4.16). Recall the definition
of αk and δk in (4.8). By using (i)

(n
k

) ≥ (n/k)k for 1 ≤ k ≤ n, (ii) max{1, x} ≤ �x� ≤
x + 1 for x > 0, and (iii) k > k′ and δ < 1

2 , we obtain

(
αk

δk

)−1

≤
(

δk

�αk�
)δk

≤ (δ + (αk)−1)δk ≤ (2δ)δαk . (4.17)

Thus, when k > k′, the left-hand side of (4.16) is bounded above by

[
2δ(flipκμ2

B)
�δαk�
δαk (1 + κ)(δα)−1

]δαk
, (4.18)

and the claim will follow by showing that the quantity in square brackets is strictly
less than one.

By Proposition 4.1, μB(κ) = supn
(
bn(κ)

)1/n , and this latter quantity is at most

supn
(
cn(κ)

)1/n . This, in turn, is bounded above by (1 + κ)2d−2, as each edge in a
self-avoiding walk can be adjacent to at most 2d − 2 others. Since δαk > 1 when
k > k′, we can bound above the bracketed quantity of (4.18) by

2δ(flipκ(1 + κ)4(d−1))2(1 + κ)(δα)−1
. (4.19)

Recalling the definition (3.2) of flipκ , it follows that when κ = 0 the quantity in (4.19)
is strictly less than one, for δ = δ(p1) sufficiently small. Since the expression in (4.19)
is continuous in κ for δ fixed, it is strictly less than one for small positive κ . This proves
the claim. ��

The next theorem is a consequence of a stronger result due toHardy andRamanujan;
it will be needed to estimate the mass of n-step half-space walks.

Theorem 4.6 (Hardy–Ramanujan [17]) Let P(n) denote the number of partitions of
n into distinct parts. Then

log P(n) ∼ π

√
n

3
, n → ∞, (4.20)

meaning that the ratio of the two sides tends to 1 as n → ∞.
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Proposition 4.7 Consider SAW on Z
d . For κ sufficiently small, there are a1, K1 > 0

such that

hn(κ) =
∑

ω∈Hn

Wκ(ω) ≤ K1e
a1

√
nμn

B. (4.21)

Proof By Lemma 4.4 and Lemma 4.5,

∑

ω∈Hk
n

Wκ(ω) ≤ Ke−akμ
−2δk
B (1 + κ)3d(d−1)

√
n P(n)

∑

ω′∈Bn+2δk (n)

Wκ(ω′).

By Proposition 4.1, b�(κ) ≤ μB(κ)�. Hence, dropping the constraint that the spans of
bridges on the right-hand side of (4.3) are at most n yields

∑

ω∈Hk
n

Wκ(ω) ≤ Ke−ak(1 + κ)3d(d−1)
√
n P(n)μn

B. (4.22)

The right-hand side of (4.22) is summable in k, and the left-hand side sums to hn(κ).
By Theorem 4.6, (1+ κ)3d(d−1)

√
n P(n) is at most K1ea1

√
n for constants K1, a1 > 0;

this completes the proof. ��
Proof of Theorem 2.1 To prove μ(κ) = μB(κ), it suffices to prove that there exist K ′
and a′ such that

bn(κ) ≤ cn(κ) ≤ K ′ea′√nμB(κ)n . (4.23)

For ω ∈ �n , letm be the maximal i such that π1(ωi ) is minimized. Let ω1 = ω[0,m]
and ω2 = T(−ωm ) ω[m,n]. The first part of the proof is to define a multivalued map �

that assigns to (ω1, ω2) a set of pairs of half-space walks {(η1, η2)} in an injective
way. Note that ω2 is a half-space walk.

The reversal of a walk η = (ηi )
m
i=1 is the walk (ηm−i )

m−1
i=0 ; this walk begins at the

endpoint of η and goes back to the initial vertex. Translate the reversal of ω1 so that
the walk begins at the origin, i.e., consider the reversal of T(−ωm )ω

1. This is almost
a half-space walk; the only problem is that it may visit the coordinate hyperplane
π−1
1 (o) more than just at the initial vertex.
We now define �. Set η2 := ω2. Define ω̃1 to be the concatenation of the one-step

self-avoiding walk from o to e1 with the reversal of ω1. Let x := e1 − ωm denote the
vector along which ω1 is translated when forming this concatenation. Note that ω̃1 is
a half-space walk.

Let adj = adj(ω1, ω2), and suppose this set contains k flippable plaquettes for ω1.
Let adj ⊂ adj be a subset of disjoint flippable plaquettes of size αk ; such a subset
exists by Lemma 3.5. Then

�(ω) :=
{
(η1, η2) | η1 = FTx B(ω̃1), B ∈

(
adj

δk

)}
.
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By an argument as in the proof of Lemma 4.3, η1 is a half-space walk, as any flips do
not change the minimal value of the first coordinate of ω̃1. Note that if η2 ∈ Bm , then
η1 ∈ Bn−m+2δk+1.

We now verify that it is possible to reconstruct (ω1, ω2), and hence ω itself, from
any image (η1, η2). Given η1, the translation applied toω1 is determined, as flips do not
change the endpoints of walks. The translation applied toω1 determines the translation
applied to η2, and hence determinesω2. Hence, by Lemma 3.2,ω1 is determined since
we know ω2 and η1.

Recall that � indicates a union of disjoint sets, and note �n = �n
k=0�

k
n , where �k

n is
the set of self-avoiding walks such that

∣∣adj(ω1, ω2)
∣∣ = k. Proceeding as in the proof

of Lemma 4.4 yields

cn(κ) ≤
n∑

m=0

∑

k≤m

(
αk

δk

)−1

(flipκ)δk (1 + κ)k+k0hm(κ)hn−m+2δk+1(κ).

The exponent of (1 + κ) is k + k0 as we have used Lemma 3.3 in the unfolding step
that created the pair of half-space walks. Using Proposition 4.7 to estimate the factors
h�(κ) and Lemma 4.5 to estimate the remaining terms yields

cn(κ) ≤ K ′
n∑

m=0

∑

k≤m

e−akea1
√
mea1

√
n−m+2δk+1μn

B,

where K ′ is the product of the constant prefactors. The inequality
√
x + √

y ≤√
2x + 2y combined with the fact that k is at most n implies a further upper bound of

the form

cn(κ) ≤ K ′′(n + 1)ea
′√nμn

B

for some K ′′, a′ > 0. As this establishes (4.23), the proof is complete. ��

5 Averaged submultiplicativity and initial consequences

The transformation used to estimate entropic gains in Sect. 4 flipped a fixed fraction
δα of flippable plaquettes, and this led to p1-dependent constants in estimates, where
we recall p1 depends on the step distribution D. This was convenient as it gave us
precise control over the length added to awalk. For a lace expansion analysis the lack of
uniformity in p1 complicatesmatters, and this section defines a greedier transformation
that enables estimates uniform in p1 when κ = κ(p1) is chosen correctly. The price
to pay is less control over the increase in length of a walk.

5.1 �-ASAWwith amemory

We first define memories, which will play the role of boundary conditions for self-
avoiding walks. Recall that �̃(o) is the set of self-avoiding polygons that begin at the
origin.
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Self-attracting self-avoiding walk 697

Definition 10 A memory is a walk η ∈ ⋃x �(x, o) ∪ �̃(o).

By a slight abuse of notation, let ω ∩ η denote the set of vertices in common to two
walksω and η. We will now define the law of κ-ASAW conditional on having memory
η. Let �o

n := ∪x�n(x) denote the set of n-step SAW with initial vertex o. For n ∈ N,
κ ≥ 0, and a memory η, define n-step κ-ASAW with memory η to be the law Pη

n,κ on
�o
n given by

Pη
n,κ (ω) ∝ Wκ(ω; η)1{ω∈�o

n , ω[1,n]∩η=∅}, (5.1)

where

Wκ(ω; η) := e−Hκ (ω;η)
Pn(ω), e−Hκ (ω;η) = (1 + κ)|adj(ω)|(1 + κ)|adj(η,ω)|,

(5.2)

where we have recalled the definition of Hκ(ω; η) from (2.7) for the convenience of
the reader. Thus Pη

n,κ is supported on self-avoiding walks that intersect η only at their
initial vertex ω0 = o, and Pη

n,κ gives a reward of (1 + κ) for each pair of adjacent
edges in ω and for each time an edge of ω is adjacent to an edge of η.

5.2 Averaged submultiplicativity

Let η be a memory. Define

�
η
n,k(x) := {

ω ∈ �n(x) | Pη
n,κ (ω) > 0,

∣∣adj1(ω, η)
∣∣ = k

}
,

where (by a slight abuse of the notation in (4.6)) adj1(ω, η) is the set of plaquettes
that are flippable for ω in adj(ω, η). The (n, k) two-point function with memory η is

cη
n,k(x) :=

∑

ω∈�
η
n,k (x)

Wκ(ω; η). (5.3)

The dependence of cη
n,k(x) on κ is left implicit. Let cη

n(x) := ∑
k≥0 c

η
n,k(x).

Definition 11 Let z ≥ 0, κ ≥ 0, and x ∈ Z
d . The two-point function Gη

z,κ (x) with
memory η is defined to be

Gη
z,κ (x) :=

∑

n≥0

zncη
n(x) (5.4)

If η = ∅ this is identically the 2-point function of κ-ASAW as defined in (2.3).

Recall that the critical point zc(κ)was specified inDefinition 3. The next proposition
will imply that Gη

z,κ is well-defined when z < zc(κ).

Definition 12 Define z0(κ) := (1 + κ)−2(d−1).
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This choice of z0 will be useful in Sect. 6.5 for making comparisons with simple
random walk. Recall that k0 was defined in (3.1).

Proposition 5.1 Suppose that κ0(d, p1) is sufficiently small and that z ≥ z0(κ). Then,
for all κ < κ0,

Gη
z,κ (x) ≤ (1 + κ)k0Gz,κ (x). (5.5)

In particular, Gη
z,κ (x) is an absolutely convergent power series when |z| < zc(κ).

Proof Webegin by defining amultivaluedmap� that will quantify the entropic gain of
forgetting a memory. Letω ∈ �

η
m,k . By Lemma 3.5, there exists a set adj ⊂ adj(η, ω)

of αk = �αk� disjoint flippable plaquettes for ω. Define � by

�(ω) = {ω′ | ω′ = FB(ω), B ⊂ adj}. (5.6)

The definition of � implicitly depends on η through adj, but we suppress this depen-
dence from the notation as η is fixed.

To begin, we compare the weight of ω ∈ �
η
m,k(x) under Wκ(·; η) to the weight

Wκ(·) of its image �(ω). We claim that

zmWκ(ω; η) ≤ (1 + κ)k0

⎛

⎝ (1 + κ)
k
αk

1 + z2 p21(1 + κ)−(2d−4)

⎞

⎠
αk ∑

ω′∈�(ω)

z|ω′|Wκ(ω′)

(5.7)

To see this, note that at each P ∈ adj a flipmay or may not occur. Hence the definition
of � implies

∑

ω′∈�(ω)

z|ω′|Wκ(ω′) ≥
�αk�∏

j=1

(1 + z2 p21(1 + κ)−(2d−4))zmWκ(ω). (5.8)

Formally, this bound arises by applying Lemma 3.4 |B| times to ω′ = FB(ω), and
then summing over all B ⊂ adj. As ω ∈ �

η
m,k(x), there is a σ ∈ {0, 1, . . . , k0} such

that Wκ(ω) = (1 + κ)−k−σWκ(ω; η). The possible values for σ follows from the
proof of Lemma 3.3, which shows there are at most k0 plaquettes that are not flippable
in adj(ω, η), because such plaquettes only occur at points of concatenation. Inserting
this formula for Wκ(ω) into (5.8) and rearranging gives (5.7).

Since κ ≥ 0,

(1 + κ)
k
αk

1 + z2 p21(1 + κ)−(2d−4)
≤ (1 + κ)

1
α

1 + z2 p21(1 + κ)−(2d−4)
. (5.9)

The right-hand side of (5.9) is at most (1 + κ)
1
α (1 + z20 p

2
1(1 + κ)−(2d−4))−1, which

is strictly less than one when κ = 0. The right-hand side of (5.9) is continuous in κ
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Self-attracting self-avoiding walk 699

and hence is strictly less than one for small positive κ . Thus, for κ sufficiently small
and z ≥ z0, (5.7) implies

zmWκ(ω; η) ≤ (1 + κ)k0
∑

ω′∈�(ω)

z|ω′|Wκ(ω′). (5.10)

Sum (5.10) over ω ∈ �
η
m(x) = �k≥0�

η
m,k(x). To conclude the proof what must be

shown is that �(ω) ⊂ �(x), and that if ωi ∈ �
η
m(x), i = 1, 2, then

ω1 	= ω2 �⇒ �(ω1) ∩ �(ω2) = ∅. (5.11)

The first claim follows from Lemma 3.1. To prove the second claim, suppose γ i ∈
�(ωi ), i = 1, 2. Then as γ i is the result of flipping ωi at a disjoint set B of flippable
plaquettes, Lemma 3.2 implies ωi is determined by γ i and η. Hence if γ 1 = γ 2, then
ω1 = ω2. ��

For our lace expansion analysis it will be necessary to have a slight generalization
of Proposition 5.1. Let η be a memory and define

P̄
η

n,κ (ω) ∝ Wκ(ω; η)1{ω∈�o
n ,ω[1,n−1]∩η=∅}. (5.12)

Thus P̄
η

n,κ is a law on n-step self-avoiding walks that do not intersect η except for (i)
at ω0 = o and (ii) possibly at ωn . Let Ḡ

η
z,κ (x) denote the two-point function for walks

with law P̄
η

n,κ .

Corollary 5.2 Proposition 5.1 holds for Ḡη
z,κ in place of Gη

z,κ after changing (1+κ)k0

to (1 + κ)2k0 .

Proof The proof for Ḡη
z,κ is, mutatis mutandis, the proof of Proposition 5.1. The extra

factor of (1 + κ)k0 arises as the proof of Lemma 3.3 allows for the existence of 2k0
plaquettes in adj(η, ω) that are not flippable. This is because there may be k0 such
plaquettes for each point of concatenation, of which there are at most 2. ��
Corollary 5.3 Both Proposition 5.1 and Corollary 5.2 hold when the two-point func-
tions are restricted to sums over walks of length at least m for m ∈ N.

Proof The map � used in the proof of Proposition 5.1 only increases the length of a
walk. ��

5.3 First applications of averaged submultiplicativity

It will be necessary to temporarily consider κ-ASAW in a finite volume. Precisely, let
� = (Z/LZ)d be a torus of side length L . Define

Pn,κ,�(ω) ∝
(

n∏

i=0

1{ωi∈�}

)
Pn,κ (ω).
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Let χ�(z) be the susceptibility associated to κ-ASAW on �, i.e.,

χ�,κ(z) :=
∑

n≥0

zn
∑

ω∈�o
n

Wκ(ω)

n∏

i=0

1{ωi∈�}. (5.13)

Note thatχ�,κ(z) is a polynomial in zwhenever� is finite.Wewill attach the subscript
� to other finite volume quantities in an analogous way.

Lemma 5.4 Let κ0(d, p1) be as in Proposition 5.1. Fix κ < κ0(d, p1) and z ≥ z0. On
a finite torus �,

− d

dz

(
χ�,κ(z)

)−1 ≤ (1 + κ)k0 z−1
0 . (5.14)

Proof The proof we will give is the standard one for self-avoiding walk, with averaged
submultiplicativity (Proposition 5.1) replacing submultiplicativity. While Proposi-
tion 5.1 is for κ-ASAW on Z

d , the proof applies immediately to � as well: the only
property of the graph that was used in the proof is that flips of flippable plaquettes are
well-defined.

As χ�,κ(z) is a polynomial in z, we can compute

d

dz

[
zχ�,κ(z)

] =
∑

y∈�

∑

ω∈�(y)

(|ω| + 1)z|ω|Wκ(ω) (5.15)

=
∑

x,y∈�

∑

η∈�(x)

∑

ω′∈�(x,y)

z|η|z|ω′|Wκ(η ◦ ω′)1{η◦ω′∈�} (5.16)

=
∑

x,y∈�

∑

η∈�(x)

z|η|Wκ(η)Gη
z,κ,�(y − x). (5.17)

Equation (5.16) follows by using the fact that for ω ∈ �,

|ω| + 1 =
∑

x

1{ωi = x for some i},

and then splitting ω into η = ω[0,i] and ω′. The third equality follows from the
definition of the conditional weightWκ(· ; η) and the translation invariance of Gη

z,κ,�

on a torus.
By (the finite-volume version of) Proposition 5.1, the memory η can be ignored to

obtain an upper bound. Summing over y results in a factor χ�,κ(z), as does the sum
over x . The result is

d

dz

[
zχ�,κ(z)

] ≤ (1 + κ)k0(χ�,κ(z))2. (5.18)

Computing the derivative on the left-hand side, rearranging, and using χ�,κ(z) ≥ 0
proves the lemma. ��
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The validity of Lemma 5.4 for all z ≥ z0 and all finite � implies the continuity
of the phase transition for κ-ASAW and a mean-field lower bound on the critical
exponent γ . Proposition 5.6 below is a formal statement of these facts. We include
a proof for completeness, although the implication given Lemma 5.4 is well-known
[18]. We need one preparatory lemma.

Lemma 5.5 For any z < zc there are constants c1(z), c2(z) such that Gz,κ (x) ≤
c1(z) exp(−c2(z)‖x‖∞).

Proof This follows from the fact that the summation defining Gz,κ (x) contains only
walks of length at least C‖x‖∞ for some C > 0, and hence is contained in the tail of
the convergent sum χκ(z). For more details, see [4, p.11–12]. ��
Proposition 5.6 Let κ0(d, p1) be as in Proposition 5.1. For 0 < κ < κ0(d, p1) and
z0 ≤ z < zc,

χκ(z) ≥ (1 + κ)−k0 z0
zc − z

, (5.19)

where χκ(z) is defined by (2.2).

Proof Note that χ�,κ(z) ≥ 1 due to the contribution of the zero-step walk. Fixing
ε > 0 and integrating (5.14) from z ≥ z0 to zc + ε implies

(
χ�,κ(z)

)−1 − (χ�,κ(zc + ε)
)−1 ≤(1 + κ)k0 z−1

0 (zc − z) + ε(1 + κ)k0 z−1
0 . (5.20)

Let χ̄�,κ (z) be the contribution to the infinite volume susceptibility χκ(z) due to
walks restricted to the finite box � without periodic boundary conditions. χ̄�,κ (z) is
monotone in � and converges to χκ(z). Moreover, χ�,κ(z) dominates χ̄�,κ (z), and

hence
(
χ�,κ(zc + ε)

)−1 tends to zero as � ↑ Z
d by the definition of zc.

To conclude it is enough to prove that
(
χ�,κ(z)

)−1 converges to (χκ(z))−1 as
� ↑ Z

d , as we can then take � ↑ Z
d in (5.20), followed by ε → 0. To see this we

note that Proposition 5.1 implies

∣∣χ̄�,κ (z) − χ�,κ(z)
∣∣ ≤

∑

x∈∂�

Gz,κ (x)χ�,κ(z)

by reasoning as from (5.15) to (5.17); here ∂� denotes the boundary vertices of �.
Dividing through by χ�,κ(z) and using that Gz,κ (x) decays exponentially in ‖x‖∞ by
Lemma 5.5 proves that χ̄�,κ (z) has the same limit as χ�,κ(z). This proves the claim
as we have already noted that χ̄�,κ (z) converges to χκ(z). ��

6 A lace expansion for �-ASAW

This section derives and analyzes a lace expansion for κ-ASAW to prove Theorem 2.3.
As self-avoiding walk is the special case κ = 0 of κ-ASAW, many aspects of our
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analysis mirror the SAW case. In what follows we therefore focus on the details
specific to κ 	= 0, and give precise statements and references for the details that we
omit.

For the reader unfamiliar with the lace expansion, the following pointers to the
literature may be helpful. Our derivation of a lace expansion for κ-ASAW in Sect. 6.2
is an adaptation of the Brydges-Spencer expansion [19]; [4, Ch. 3.2–3.3] and [6, Ch.
5.2] contain pedagogical accounts of this method. For the derivation of diagrammatic
bounds our approach in Sect. 6.4 is similar to [8], but the unfamiliar reader may wish
to consult [4, Ch. 4] or [6, Ch. 5.4] as a first introduction to the notion of diagrammatic
bounds. It is at this step that we make use of averaged submultiplicativity. Lastly, for
the convergence of the expansion and proof of Theorem 2.3wemake use of themethod
of [8]. We recall the method of [8] in Appendix A, and our proof of Theorem 2.3 is
by a verification of the hypotheses of this method.

6.1 Explicit �-ASAW interaction

In this section we give an algebraic formulation of the κ-ASAW weight. Let

Ui j (ω) := 1{ωi=ω j} − κ1{{ωi ,ωi+1,ω j−1,ω j } is a plaquette}. (6.1)

Lemma 6.1 If ω ∈ Wn is an n-step walk with ω0 = o, then Pn,κ (ω) is proportional to

Wκ(ω)1{ω∈�} = Pn(ω)
∏

0≤i< j≤n
j>i+1

(1 −Ui j (ω)). (6.2)

Proof Recall that ωi+1 	= ωi by the definition of a walk. As ωi = ω j precludes
{ωi , ωi+1, ω j−1, ω j } being a plaquette, the first indicator in (6.1) encodes the self-
avoidance constraint between ωi and ω j for j > i + 1. The second indicator encodes
the self-attraction between edges; each attraction is counted with weight 1 + κ when
ωi is the first visit to a plaquette and ω j is the last visit to the plaquette, which requires
j ≥ i + 3. ��

6.2 Derivation of the lace expansion

In this section we derive a lace expansion for κ-ASAW using the so-called algebraic
method [4]. A similar expansion for a vertex attraction was derived in [1].

For a ≤ b integers let [a, b] := {a, a+1, . . . , b}, and [a, a − 1] = ∅. An edge {i, j}
is an element of

([a,b]
2

)
with |i − j | > 1; {i, j} will be abbreviated i j . A graph G on

[a, b] is a (possibly empty) set of edges, andG is connected if for all j ∈ [a + 1, b − 1]
there are i < j < k such that ik is an edge in G. Let G[a,b] denote the set of graphs
on [a, b], and Gc

[a,b] the set of connected graphs. Let ω be a walk and define

K[a,b](ω) :=
∑

G∈G[a,b]

∏

i j∈G
−Ui j (ω), and (6.3)
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J[a,b](ω) :=
∑

G∈Gc
[a,b]

∏

i j∈G
−Ui j (ω). (6.4)

These definitions imply K[a,a] = K[a,a+1] = J[a,a] = J[a,a+1] = 1 due to the
contribution of the empty graph.

Expanding the product of (1 − Ui j ) over i j in (6.2) and using (2.3) implies the
two-point function can be written in terms of graphs:

Gz,κ (x) =
∞∑

n=0

∑

ω∈Wn(x)

znPn(ω)K[0,n](ω). (6.5)

In what follows, we manipulate (6.5) by rewriting the term K[0,n](ω) to obtain a
convolution equation for Gz,κ . The first step is a well-known lemma. For notational
convenience we will use the convention that

∑b
j=b+k f ( j) = 0 if k ≥ 1.

Lemma 6.2 (Lemma 5.2.2 of [6]) For any walk ω and a < b,

K[a,b](ω) = K[a+1,b](ω) +
b∑

j=a+2

J[a, j](ω)K[ j,b](ω). (6.6)

For x ∈ Z
d , define �z,κ (x) by

�z,κ (x) :=
∞∑

n=2

∑

ω∈Wn(x)

znPn(ω)J[0,n](ω). (6.7)

It is not a priori clear that the series defining�z,κ is convergent. When convergence is
unknown we will interpret the series and the formulas in which it occurs as formulas
relating formal power series in z. We recall that for f , g : Zd → R the convolution
of f and g is ( f ∗ g)(x) := ∑

y∈Zd f (y)g(x − y), and we also recall that the step
distribution D was introduced in (2.1).

Proposition 6.3 (Theorem 5.2.3 of [6]) As formal power series in z,

Gz,κ (x) = 1{x=o} + (zD ∗ Gz,κ )(x) + (�z,κ ∗ Gz,κ )(x). (6.8)

This is an equality between functions when all terms of (6.8) are absolutely convergent
in z.

Proof Consider the contribution of n-step walks to Gz,κ (ω), i.e.,

∑

ω∈�n(x)

znWκ(ω) =
∑

ω∈Wn(x)

znPn(ω)K[0,n](ω). (6.9)

SinceUi j (ω) only depends on those ω� with i ≤ � ≤ j , K[0, j](ω)J[ j,n](ω) is equal to
K[0, j](ω[0, j])J[ j,n](ω[ j,n]). Hence, by using (6.6) to rewrite the factor K[0,n] in (6.9),
the right-hand side of (6.9) can be rewritten as
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Fig. 6 An illustration of the graphG with edge set {{0, 3}, {0, 5}, {2, 7}, {4, 8}, {5, 10}, {6, 8}}. The vertices
are labelled 0, 1, . . . , 10 from left to right

∑

ω∈Wn(x)

zD(ω1 − ω0)z
n−1

Pn−1(ω[1,n])K[1,n](ω)

+
∑

ω∈Wn(x)

n∑

j=2

z jP j
(
ω[0, j]

)
J[0, j](ω[0, j])z

n− j
Pn− j

(
ω[ j,n]

)
K[ j,n](ω[ j,n]). (6.10)

To conclude, sum (6.9) over all n. The left-hand side is Gz,κ (x). For n = 0, the
right-hand side is 1{x=o}, the contribution of the zero-step walk. For n ≥ 1 we use
(6.10). The factors of Gz,κ arise by (6.5) and the translation invariance of Wκ . The
term �z,κ arises from the sum over j by (6.7). This proves (6.8) in the sense of formal
power series, as the coefficient of zn consists of only finitely many terms for all n. ��

6.3 Representation of�(m)

z,� (x)

To make use of Proposition 6.3 requires control on �z,κ . Obtaining this control is at
the heart of the lace expansion, and requires some further definitions.

Definition 13 A connected graph G is a lace if for any edge i j ∈ G the graph G\i j is
not connected. Let L(m)

[a,b] denote the set of laces on [a, b] with m edges, and L[a,b] =
⊔

m≥1 L
(m)
[a,b].

Lemma 6.4 (pp.126–128 of [6]) For G ∈ Gc
[a,b], let L(G) be the graph with edges

{si ti } defined by s1 = a, t1 = max{t | s1t ∈ G}, and

ti+1 = max{t | ∃s < ti such that st ∈ G}, si+1 = min{s | sti+1 ∈ G}.

Then (i) L(G) is a lace and (ii) if L(G) = L(H) then L(G ∪ H) = L(G).

Figures 6 and 7 depict a graph G and its associated lace L(G).
G[a,b] is partially ordered by inclusion, and Lemma 6.4 implies that for every lace

L there is a maximal graph G such that L(G) = L . The edges of the maximal graph
G can be partitioned into L � C(L), where C(L) are called the compatible edges.
Explicitly, i j ∈ C(L) if and only if i j /∈ L and L(L ∪ {i j}) = L . It follows that

J[a,b](ω) =
∑

L∈L[a,b]

∏

i j∈L
−Ui j (ω)

∏

i ′ j ′∈C(L)

(1 −Ui ′ j ′(ω)). (6.11)
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n1 n2 n4 n5

Fig. 7 The lace L(G) associated to the graph G from Fig. 6 has the edge set {{0, 5}, {4, 8}, {5, 10}}. L(G)

subdivides the vertex set into intervals of length n1 = 4, n2 = 1, n3 = 0, n4 = 3, and n5 = 2

Define J (m)
[a,b] to be the contribution to (6.11) given by L ∈ L(m)

[a,b], and let

π(m)
z,κ (x) :=

∞∑

n=2

∑

ω∈Wn(x)

znPn(ω)J (m)
[0,n](ω). (6.12)

These definitions imply that as formal power series

�z,κ (x) =
∑

m≥1

π(m)
z,κ (x), (6.13)

and our approach to controlling �z,κ will be to estimate the terms π
(m)
z,κ . This will

be done by re-expressing π
(m)
z,κ in terms of sums of collections of walks subject to

conditional interactions Wκ(· ; η) and estimating these sums. The remainder of this
section introduces the definitions needed to make the reformulation of π

(m)
z,κ precise.

As noted previously, the arguments are similar to standard ones [4,6]; see also [1].
A lace L ∈ L(m)

[0,n] partitions [0, n] into 2m − 1 intervals with disjoint interiors, and
this induces a composition of n into 2m − 1 parts. See Fig. 7. This composition yields
a vector n := (n1, n2, . . . , n2m−1) of interval lengths with the properties

n j ≥ 0, j ∈ {3, 5, 7, . . . , 2m − 3}
n j ≥ 1, j ∈ [0, 2m − 1] \{3, 5, 7, . . . , 2m − 3}, (6.14)

and n = ∑2m−1
j=1 n j . Conversely, to each such n there is associated a unique lace graph

[4, Exercise 3.6].
Let Mi := ∑i

j=1 n j . By our convention for sums, Mk := 0 for k ≤ 0. Define
I j := (

Mj−1, Mj
]
for j = 1, 2, 3, . . . , 2m − 1 and Ik := ∅ for k ≤ 0. Let Ci (L) :=

{i ′ j ′ | j ′ ∈ Ii } be the set of compatible edges i ′ j ′ whose right endpoint j ′ is in Ii .
Observing that C(L) = ⊔2m−1

i=1 Ci (L) since the intervals Ii are a partition of (0, n],

these definitions imply that, for any lace L ∈ L(m)
[0,n] and walk ω ∈ Wn ,

∏

i j∈C(L)

(1 −Ui j (ω)) =
2m−1∏

i=1

∏

i ′ j ′∈Ci (L)

(1 −Ui ′ j ′(ω)). (6.15)

Because Ci (L) consists of edges whose right endpoint is in Ii , the second product
on the right-hand side of (6.15) describes an interaction between the vertices {ω j } j∈Ii
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I1 I2 I3 I4 I5M0 M1 M2 M3 M4 M5

Fig. 8 A lace {s1t1, s2t2, s3t3} with s1 = M0, s2 = M1, and s3 = M3. Its corresponding intervals Ii ,
i = 1, . . . , 5 are also illustrated

and the vertices {ω j ′ } j ′≤Mi . Proposition 6.5 below controls this interaction; achieving
this control requires characterising the edges i j ∈ C(L).

Recalling that Mk = 0 and Ik = ∅ for k ≤ 0, the compatible edges can be
characterized as follows. Let Mk

2k−2 = M2k−2 if k 	= 1, and M1
0 = ∅. For k ≥ 0,

i < j , and m ≥ 1:

(i) if j ∈ I2k+1, then i ∈ ⋃2k+1
�=2k−1 I� ∪ {M2k−2}, and j = M2m−1 = n implies

i > M2m−3.
(ii) if j ∈ I2k+2, then i ∈ ⋃2k+2

�=2k−1 I� ∪{M2k−2}, and j = M2k+2 implies i > M2k−1.

This classification follows by considering the procedure defined in Lemma 6.4. For
m = 1 the only incompatible edge is 0n. For m ≥ 2 the constraints fall into three
types: for I2k+2, k ≥ 1; for I2k+1, k ≤ m − 2; and for I2, I3, I4 and I2m−1. The case
I2 is distinguished because the only endpoint of a lace between s1 and t1 is s2, while
for i ≥ 2 we have si < ti−1 ≤ si+1 < ti . This distinction is manifested above by the
triviality of the intervals Ik for k ≤ 0. I3 and I4 are distinguished as the initial vertex
of a compatible edge cannot be 0, and I2m−1 is distinguished for a similar reason. See
Fig. 8.

Definition 14 For n a composition of n into 2m − 1 parts and ω ∈ Wn , let ω :=
(ω(i))2m−1

i=1 denote the vector of walks determined by ω(i) := ω[Mi−1,Mi ]. Note ω(i)

has length ni .

Using the characterisation of compatible edges above we will now rewrite the right-
hand side of (6.15) in terms of the subwalksω(i); this requires some further definitions.
To keep the notation to a minimum we will in fact give an upper bound.

When m = 1 define

A(1)
1 := {ω(1) ∈ � ∪ �̃}, η(1) := ∅.

For m ≥ 2 we introduce: η(1) := ∅; η(2) := ω(1); for k = 1, . . . ,m − 1, η(2k+1) :=
ω(2k−1) ◦ ω(2k); and for k = 2, . . . ,m − 1, η(2k) := ω(2k−3) ◦ ω(2k−2) ◦ ω(2k−1). For
m ≥ 2, 1 ≤ k ≤ 2m − 1, and L ∈ L(m) define A(m)

k = A(m)
k (L) by

A(m)
k := {ω(k) ∈ �,ω

(k)
i 	= η

(k)
j if i ′ j ′ ∈ Ck(L)},

where i ′ is the index such that ω(k)
i is the i ′th vertex in ω = ω(1) ◦ · · · ◦ ω(2m−1), and

similarly for j ′.
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Proposition 6.5 Let m ≥ 1 and 1 ≤ k ≤ 2m − 1 be integers, let L ∈ L(m) have an
associated length vector n, letω ∈ Wn, and letω(k) be the kth subwalk ofω determined
by L as in Definition 14. Then

Pnk (ω
(k))

∏

i ′ j ′∈Ck (L)

(1 −Ui ′ j ′(ω)) ≤ 1
A(m)
k

Wκ(ω(k); η(k)). (6.16)

Proof The proposition is largely a translation of the definition of a compatible edge
i ′ j ′ ∈ Ck(L) and the definitions of the walks η(k).

Let us first considerm = 1, so k = 1. In this case η(1) = ∅. Each factor 1−Ui ′ j ′(ω)

for i ′ j ′ ∈ C1(L) enforcesω
(1)
i ′ 	= ω

(1)
j ′ (in the case k = 1 there is no distinction between

primed and unprimed indices). Since the only edge that is not compatible is 0n, we
see that ω[0,n−1] is self-avoiding, but ωn = ω0 is not forbidden. Hence ω(1) ∈ � ∪ �̃,
which is precisely the constraint that A(1)

1 occurs.
Similarly, the factors of 1−Ui ′ j ′(ω) encode the reward (1+κ) if {i ′, i ′+1, j ′−1, j ′}

is a plaquette. Since 0n is not compatible, if the first and last edges of ω(1) are parallel
this reward is not present. Since including this reward gives an upper bound we do so,
as it allows the right-hand side to be written as Wκ(ω(1); ∅).

For m ≥ 2 and 1 ≤ k ≤ 2m − 1, the considerations are almost exactly the same.
The fact that ω(k) ∈ � follows as i ′ j ′ ∈ Ck(L) if 0 ≤ i < j ≤ nk and j > i + 1
by the classification of compatible edges for a lace, and this implies ω

(k)
i 	= ω

(k)
j .

The definitions of A(m)
k arise from observing that the set of compatible edges have

endpoints i ′ such that ωi ′ falls into one of the walks comprising η(k). We obtain an
upper bound by including additional rewards (1 + κ) corresponding to incompatible
edges, and this recreates the weight Wκ(ω(k); η(k)). ��

6.4 Diagrammatic bounds

Proposition 6.5 leads to an upper bound for π(m)
z,κ (x) in terms of a sum over collections

ω of interacting walks. This will be used to estimate the size of
∣∣∣π(m)

z,κ (x)
∣∣∣ in terms of

convolutions of Gz,κ (x); the resulting bounds are what are known as diagrammatic
bounds. The next definition will be used in upper-bounding the factors −Ui j (ω) in
(6.11).

Definition 15 Define rκ(x) := 1{x=o} + κ1{‖x‖∞=1}.

In what follows κ = κ(p1)will be a function of p1, chosen such that κ ≤ κ0(d, p1);
in particular Proposition 5.1 applies when z ≥ z0 = (1 + κ)−2(d−1). Let Hz,κ (x) :=
Gz,κ (x) − δx,o be the sum of contributions to Gz,κ (x) due to non-trivial walks.

Proposition 6.6 Fix κ ≤ κ0, z0 ≤ z < zc, and x ∈ Z
d . The following bounds hold.

For m = 1,

∣∣∣π(1)
z,κ (x)

∣∣∣ ≤ (1 + κ)2k0 zrκ(x)(D ∗ Hz,κ )(x). (6.17)
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o

x

o y2

y3 x

y2

y3 y4

y5 y6

y7 y8

y9 xo

Fig. 9 Diagrammatic representations of Proposition 6.6 in the cases m = 1,m = 2 and m = 5. Wavy
lines represent factors r(y2 j+1 − y2 j−2). For m ≥ 2 the vertical and first and last horizontal straight lines
represent factors of Hz,κ . The remaining horizontal straight lines represent factors of Gz,κ . For m = 1 the
vertical straight line represents D ∗ Hz,κ

For m ≥ 2, let y := (y2, y3, . . . , y2m−1) ∈ Z
d(2m−2) denote a (2m − 2)-tuple of

vertices in Zd . Then
∣∣∣π(m)

z,κ (x)
∣∣∣ ≤ (1 + κ)(4m−2)k0Hz,κ (y2)rκ(y3)

×
∑

y

[ m−2∏

j=1

(
Hz,κ (y2 j+1 − y2 j )Gz,κ (y2 j+2 − y2 j+1)rκ(y2 j+3 − y2 j )

)

Hz,κ (y2m−1 − y2m−2)Hz,κ (x − y2m−1)rκ(x − y2m−2)
]

(6.18)

where the sum runs over all y ∈ Z
d(2m−2). If m = 2 the product is empty, and hence

identically one by definition.

A diagrammatic formulation of these upper bounds can be found in Fig. 9.

Proof of Proposition 6.6 We first outline the strategy of the proof. Recall the definition
(6.12) ofπ(m)

z,κ (x) as a sumoverwalksω ∈ W(x) and laces L ∈ L(m). The proofwill use
the decomposition of a walk ω into 2m − 1 subwalks ω(i) as given by Definition 14.
Proposition 6.5 gives a formula for the weight of the i th subwalk in terms of the
preceding subwalks, and by using averaged submultiplicativity (Corollary 5.3) we
will upper bound the sums over subwalks ω(i) by factors of Gz,κ and Hz,κ . The factors
of rκ will arise when we bound the product of −Ui j (ω) over i j ∈ L in (6.12).

Recall the definition (6.1) of Ui j (ω), and observe that for all walks ω

∣∣Ui j (ω)
∣∣ ≤ rκ(ω j − ωi ), (6.19)

which follows by considering separately ‖ω j − ωi‖∞ being 0, 1, or at least 2.
We first consider the case m = 1. By (6.12), (6.11), Proposition 6.5 and the defini-

tion (6.1) of U0n(ω) we have the upper bound

∣∣∣π(1)
z,κ (x)

∣∣∣ ≤
∑

n≥2

∑

ω∈Wn(x)

znWκ(ω) |U0n(ω)|1{
ω∈�∪�̃

}

≤
∑

y 	=o

zD(y)
∑

n≥1

∑

ω∈Wn(y,x)

zn−1Wκ(ω; (o, y))rκ (x)1{
(o,y)◦ω∈�∪�̃

},
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where the second inequality follows from (6.19) and explicitly separating out and
summing over the location y of the first step of the walk.

Recall |ω| = n ifω ∈ Wn . LetWz,κ (ω; η) = z|ω|Wκ(ω; η), and recall the definition
of Ḡη

z,κ (x) from below (5.12). The sum of Wz,κ (ω; (o, y))1{
(o,y)◦ω∈�∪�̃

} over ω ∈
W(y, x) of length at least one is at most Ḡ(o,y)

z,κ (y − x) − δy−x,o. The proposition for
m = 1 now follows from Corollary 5.3 and the translation invariance of Hz,κ .

Next we consider m ≥ 2; the argument is very similar to m = 1. As described
in Sect. 6.3, if L ∈ L(m) then ω is the concatenation of 2m − 1 walks ω(i), ω(i) has
length ni , and the vector n of lengths satisfies (6.14). If |ω| = n, distribute the factor
zn so that there are ni factors associated to the walk ω(i). Then by Proposition 6.5 and
(6.19),

∣∣∣π(m)
z,κ (x)

∣∣∣ ≤
∑

y

∑

ω

rκ(y3)rκ(x − y2m−2)

m−1∏

j=2

rκ(y2 j+1 − y2 j−2)

2m−1∏

i=1

1
A(m)
i

Wz,κ (ω(i); η(i)), (6.20)

where the outer sum is over y = (y2, . . . , y2m−1) ∈ Z
d(2m−2), the inner sum is over

ω = (ω(1), . . . , ω(2m−1)) whose lengths ni satisfy (6.14) and such that ω(1) ∈ W(y2),
ω(i) ∈ W(yi , yi+1) for i = 2, . . . , 2m−2, and ω(2m−1) ∈ W(y2m−1, x). The sum over
laces has been replaced with a sum over the possible lengths of the subwalks: see the
discussion following (6.14).

We now iteratively sum over the subwalksω(i), starting with i = 2m−1. Sinceω( j)

is fixed for j = 1 . . . , 2m −2, the walk η(2m−1) is determined, and it plays the role of
a memory for ω(2m−1). Temporarily let ñ = n2m−1, ω̃ = ω(2m−1), and η̃ = η(2m−1),
and let W̃ñ = Wñ(y2m−1, x). With these definitions we can upper bound the sum over
ω(2m−1) on the right-hand side of (6.20) by

∑

ω̃∈W̃
ñ≥1

1
A(m)
2m−1

Wz,κ (ω̃; η̃) ≤ (1 + κ)2k0
∑

ω̃∈W̃ñ

ñ≥1

1{ω̃∈�}Wz,κ (ω̃). (6.21)

This bound follows from Corollary 5.3, as the event A(m)
2m−1 occurs only if ω(2m−1)

does not intersect η(2m−1) except for the initial, and possibly terminal, vertices of
ω(2m−1); we have also used the fact that in the sum on the right-hand side of (6.20)
the subwalks ω(i) are all self-avoiding due to the events A(m)

i , and that these events
imply η(2m−1) is self-avoiding or a self-avoiding polygon. The sum on the right-hand
side of (6.21) is Hz,κ (x − y2m−1), as there is no contribution from zero-step walks
due to the constraint ñ ≥ 1.

Repeating this procedure for 2m − 2, 2m − 3, . . . , 1 gives the two-point functions
in the upper bounds of the proposition. Factors of Hz,κ arise for edges on which
ni ≥ 1, and factors of Gz,κ for those with ni ≥ 0; see (6.14). The overall factor of
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(1 + κ)(4m−2)k0 arises as we obtain a factor of (1 + κ)2k0 for each factor of Hz,κ and
Gz,κ , and there are 2m − 1 of these. ��

6.5 Proof of Gaussian decay

We will now prove Theorem 2.3 by making use of Theorem A.6. Recall that ~x~ :=
max{‖x‖2, 1}.

Proposition 6.7 ([8, Prop. 1.7]) If f , g : Zd → R satisfy | f (x)| ≤ ~x~−a and
|g(x)| ≤ ~x~−b with a ≥ b > 0, there exists C = C(a, b, d) such that

|( f ∗ g)(x)| ≤
{
C~x~−b a > d,

C~x~d−(a+b) a < danda + b > d.
(6.22)

Proposition 6.8 Let d > 4. Suppose β > 0, κ ≤ min{κ0, β}, z0 ≤ z ≤ 2, and that

Gz,κ (x) ≤ β~x~−(d−2), x 	= o. (6.23)

If β ≤ β0(d), then there is a c = c(d) > 0 such that

∣∣�z,κ (x)
∣∣ ≤ cβ1{x=o} + cβ2

~x~3(d−2)
. (6.24)

Proof Gz,κ (o) = 1 as only the trivial self-avoiding walk ends at the origin, so (6.23)
implies Gz,κ (x) ≤ ~x~−(d−2) and Hz,κ (x) ≤ β~x~−(d−2) for all x ∈ Z

d . In partic-
ular, ‖Hz,κ‖∞ ≤ β.

First consider π
(1)
z,κ (x). If x = o then rκ = 1, so (6.17), z ≤ 2, and the inequality

‖ f ∗ g‖1 ≤ ‖ f ‖∞‖g‖1 imply

∣∣∣π(1)
z,κ (o)

∣∣∣ ≤ (1 + κ)2k0 z
∑

y∈Zd

D(y)Hz,κ (−y) ≤ 2(1 + κ)2k0β (6.25)

since
∑

y D(y) = 1. If x 	= o then |rκ(x)| ≤ κ1{‖x‖∞=1}, and an argument as above
shows that

∣∣∣π(1)
z,κ (x)

∣∣∣ ≤ (1 + κ)2k0κz1{‖x‖∞=1}
∑

y∈Zd

D(y)Hz,κ (x − y)

≤ 2(1 + κ)2k0β21{‖x‖∞=1} (6.26)

where we have used κ ≤ β and z ≤ 2.
Next we consider π

(m)
z,κ (x) form ≥ 2. The factors rκ in (6.18) imply the collections

y of vertices that give a non-zero contribution satisfy
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‖y3‖∞ ≤ 1, ‖x − y2m−2‖∞ ≤ 1, and

‖y2 j+3 − y2 j‖∞ ≤ 1 for j = 1, . . . ,m − 2. (6.27)

Given y satisfying (6.27), define ρ to be the collection of vectors

ρ1 := y3, ρ2m+1 := x − y2m−2, and

ρ2 j+1 := y2 j+1 − y2 j−2, for j = 1, . . . ,m − 2. (6.28)

Each ρ j satisfies ‖ρ j‖∞ ≤ 1. The sum over y in (6.18) can be replaced by a sum
over yi for i = 2, 4, . . . , 2m − 2 and a sum over the possible ρ. Formally, letting
π(m) = π

(m)
z,κ , we re-express (6.18) as

π(m)(x) := (1 + κ)(4m−2)k0
∑

y′

∑

ρ

π
(m)

y′,ρ(x), (6.29)

where the sum over y′ is over tuples (y2, y4, . . . , y2m−2) and this defines the terms
π

(m)

y′,ρ(x) as the contributions to (6.18) with the vertices yi determined by y′ and ρ; we

will shortly give an explicit formula for the π
(m)

y′,ρ . We have abused notation in (6.29),

but the bold subscriptswill ensure thatπ(m)

y′,ρ is distinguished fromπ
(m)
z,κ inwhat follows.

We will now show the proposition follows from the estimate

∑

y′
π

(m)

y′,ρ(x) ≤ βmCm~x~−3(d−2), m ≥ 2, (6.30)

for a constant C > 0 independent of β. Equation (6.30) is uniform in ρ, so with (6.29)
it implies

∣∣∣π(m)
z,κ (x)

∣∣∣ ≤ (C ′β)m~x~−3(d−2), m ≥ 2, (6.31)

where C ′ can be taken to be C(1 + (3d − 1)κ)(1 + κ)2k0 . The factor of (1 + κ)2k0 is
from the prefactor in (6.29). The factor of (1 + (3d − 1)κ) arises as (i) each ρi has
3d − 1 non-zero possibilities, (ii) each i with ‖ρi‖∞ = 1 carries a factor of κ from
rκ(ρi ), and (iii) rκ(o) = 1. Summing (6.31) over m ≥ 2 and combining it with the
bounds (6.25) and (6.26) for m = 1 implies the proposition. The dependence of β in
the proposition is on d alone because κ ≤ min{κ0, β} by hypothesis, so C ′ depends
only on the dimension d.

The remainder of the proof establishes (6.30), and for this we need an explicit
formula for π

(m)

y′,ρ(x). Fix ρ, let H = Hz,κ , G = Gz,κ , r = rκ , and y0 = o. Recall that

Ta f (x) = f (x − a) for f : Zd → R and x, a ∈ Z
d . This yields

π
(m)

y′,ρ(x) :=
∑

y′
H(y2)

m−2∏

j=1

(
T−ρ2 j+1H(y2 j−2 − y2 j )Tρ2 j+1G(y2 j+2 − y2 j−2)

)

Tρ2m−1H(y2m−4 − y2m−2)T−ρ2m−1H(x − y2m−4) (6.32)
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Fig. 10 Diagrammatic representation of Eq. (6.32) when m = 1, 2, 5. This is precisely the form of the
upper bounds for self-avoiding walk, i.e., κ = 0. Horizontal lines represent factors of Gz,κ or its translates,
and the remaining lines represent factors of Hz,κ

where the sum is over y2, . . . , y2m−2.
Diagrammatically, see Fig. 10, Equation (6.32) has exactly the form of a self-

avoiding walk diagrammatic bound [4], but where the two-point functions G, H have
been replaced with their translates. Our estimates for G and H imply there is an
a = a(d) such that

∣∣TρGz,κ (x)
∣∣ ≤ a(d)~x~−(d−2) (6.33)

∣∣TρHz,κ (x)
∣∣ ≤ a(d)β~x~−(d−2) (6.34)

since ~x + ρ~/~x~ is uniformly bounded above when ‖ρ‖∞ ≤ 1. Thus, the two-
point functions TρG and TρH satisfy, up to a constant depending only on d, the same
estimates as do G and H .

The remainder of the proof is standard in lace expansion analyses, and hence we
will be somewhat brief. See, e.g., [8, proof of Prop. 1.8(a)] for more details.

Define G̃ and H̃ to be the upper bounds on G and H given by the right-hand sides
of Equations (6.33) and (6.34). Let

A(u, v, x, y) := H̃(v − u)G̃(y − u)1{v=x},
M (2)(x, y) := H̃(x)2G̃(y),

M (m)(x, y) :=
∑

u,v∈Zd

M (m−1)(u, v)A(u, v, x, y), m ≥ 3.

With these definitions, we obtain

∑

y′
π

(m)

y′,ρ(x) ≤ M (m)(x, x), m ≥ 2, (6.35)

where in the case m = 2 we have degraded the bound slightly by using the estimate
H ≤ G. By (6.33) and (6.34) there is a constant c′ = c′(d) > 0 such that

A(u, v, x, y) ≤ c′β
~v − u~d−2~y − u~d−21{v=x}. (6.36)
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Define

S̄ := sup
x∈Zd

∑

y∈Zd

1

~y~d−2~x − y~d−2 .

When d > 4, S̄ is finite by an elementary convolution estimate [8, Proposition 1.7].
By an induction on m using (6.36) it can be shown [8, p. 381-382] that this implies
there is a C = C(d) such that

M (m)(x, y) ≤ (c′β)m(CS̄)m−2 1

~x~2(d−2)~y~d−2
, m ≥ 2, (6.37)

which proves Equation (6.30). ��

Proof of Theorem 2.3 To prove Theorem 2.3, it suffices to verify that there is a κ0 such
that, if κ ≤ κ0, the hypotheses of Sect. A.2 on D, Gz,κ , and �z,κ are satisfied.

Hypothesis A.1 is trivially satisfied. Hypothesis A.3 is satisfied for κ ≤ κ0(L) for
some κ0(L) byTheorem2.1which ensures the critical point exists, andProposition 5.6,
which ensures the divergence of the susceptibility.

We now verify the monotonicity hypothesis, (ii), and (iii) of Hypothesis A.4. Since
Gz,κ (x) is an absolutely convergent power series with positive coefficients when z <

zc, it is monotone and continuous for z < zc. The exponential decay hypothesis is
provided by Lemma 5.5.

To verify (i) of Hypothesis A.4, let z0 = (1 + κ)−2(d−1). When z ≤ z0,

Gz,κ (x) =
∑

n

∑

ω∈�n(x)

znWκ(ω) ≤
∑

n

∑

ω∈�n(x)

(1 + κ)−2(d−1)nWκ(ω)

≤
∑

n

∑

ω∈�n(x)

Pn(ω) = G1,0(x). (6.38)

This implies Gz0,κ (x) ≤ S1(x), as S1(x) is clearly an upper bound for the SAW
two-point function.

For any D, Hypothesis A.5 follows for Gz,κ by Proposition 6.8 when κ is small
enough, with β0 uniform in κ . Thus, for κ ≤ κ0(L0), with L0 the constant of Theo-
rem A.6, we can apply Theorem A.6 by the discussion of Sect. A.4. This proves the
theorem. ��
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Appendix A: Gaussian asymptotics

This appendix reviews [8, Theorem 1.2], which derives Gaussian asymptotics for crit-
ical two-point functions. Our motivation is that the presentation in [8] is, at places,
dependent on the particular models being studied. The proofs, however, apply essen-
tially verbatim to other models. Our review axiomatizes sufficient assumptions for
models similar to self-avoiding walk. We indicate where these assumptions are used
in proofs, but omit the portions of the proofs that purely replicate [8]. We emphasise
that the result and techniques are those of [8], and our presentation is primarily for the
benefit of the reader who is not familiar with [8].

A.1 Setup

Let R≥0 denote the non-negative reals. For z ∈ R≥0, Gz : Zd → R≥0, �̃z : Zd → R,
and D a probability distribution on Z

d , we consider the convolution equation

Gz(x) = δo,x + �̃z(x) + (zD ∗ (δ + �̃z) ∗ Gz)(x). (A.1)

We will further assume that Gz , �̃z , and D are all Zd -symmetric, and that Gz(x) is a
power series in z with non-negative coefficients. We will see in Section A.4 that the
analysis of (A.1) also applies to the convolution equation derived for κ-ASAW in the
main body of the text.

The critical point zc is zc = sup{z ∈ R≥0 | χ(z) < ∞}, where the susceptibility
χ(z) is defined by

χ(z) :=
∑

x∈Zd

Gz(x). (A.2)

A.2 Hypotheses and Theorem

Hypothesis A.1 Assume that D is a spread-out step distribution as defined in Defini-
tion 1.

Let Xn be a discrete time simple random walk with step distribution D. Let σ 2 =∑
x∈Zd D(x)‖x‖22. Note that σ 2 is comparable to the spread-out parameter L2. The

non-interacting two-point function Sμ is defined by

Sμ(x) :=
∞∑

n=0

μnP0 [Xn = x] . (A.3)

An important consequence of the form of D is the following proposition. Let ad :=
d�(d/2−1)

2πd/2 , where � is Euler’s gamma function.

Proposition A.2 ([8, Prop. 1.6]) Suppose d > 2 and Hypothesis A.1 holds. For L
sufficiently large, α > 0, μ ≤ 1, and x ∈ Z

d ,
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Sμ(x) ≤ δo,x + O

(
1

L2−α~x~d−2

)
(A.4)

S1(x) = ad
σ 2

1

~x~d−2 + O

(
1

~x~d−α

)
. (A.5)

The implicit constants may depend on α, but not on L.

Note that, for fixed d, the leading coefficient in (A.5) is proportional to L−2. The next
two hypotheses deal with the critical point and behaviour of Gz for z0 ≤ z < zc,
where z0 > 0 is a chosen value of the parameter z.

Hypothesis A.3 The critical point zc satisfies z0 < zc < ∞. The susceptibility speci-
fied by (A.2) diverges as the critical point is approached from below: limz↑zc χ(z) =
∞.

Hypothesis A.4 Gz is well-defined, not identically zero, and monotone increasing in
z. For z0 ≤ z < zc and for each x ∈ Z

d ,

(i) Gz0(x) ≤ S1(x),
(ii) Gz(x) is continuous for z ∈ [z0, zc), and
(iii) for t > 0 and z ∈ [z0, zc − t) there are constants c(t),C(t) > 0 such that

Gz(x) ≤ C(t)e−c(t)~x~. (A.6)

The most substantial hypothesis is the next one.

Hypothesis A.5 Assume

Gz(x) ≤ β~x~−d+2, x 	= o. (A.7)

Suppose also that z0 ≤ z ≤ 2. If β < β0, there is a constant c = c(d) > 0 such that

∣∣∣�̃z(x)
∣∣∣ ≤ cβδo,x + cβ2

~x~3(d−2)
. (A.8)

Theorem A.6 ([8, Theorem 1.2]) Assume D, Gz, and �̃z satisfy the hypotheses of
Section A.2. Choose 0 < α < 2. Let β0 be the constant of Hypothesis A.5.

There is an L0(d, α, β0) such that, for L ≥ L0, the function Gzc : Zd → R is
well-defined, and there is an A > 0 such that

Gzc (x) ∼ ad A

σ 2~x~2−d

(
1 + O

(
L2

~x~2−α

))
. (A.9)

The implicit constants are uniform in x and L. The values of zc and A are 1+O(Lα−2).
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A.3 Proof

The next proposition is the heart of the analysis. In what follows we assume the
hypotheses of Theorem A.6; in particular, β0 is given.

Proposition A.7 Fix α > 0. There is an L0 = L0(β0, d, α, z0) such that, for L ≥ L0,

Gzc (x) ≤ const

L2−α~x~d−2 , x 	= o, (A.10)

and zc ≤ 1 + O(L−2+α).

Lemma A.8 (Lemma 2.1 [8]) Let f : [z1, zc) → R, and a ∈ (0, 1). Suppose

(i) f is continuous on [z1, zc),
(ii) f (z1) ≤ a, and
(iii) for z ∈ [z1, zc) the inequality f (z) ≤ 1 implies the inequality f (z) ≤ a.

Then f (z) ≤ a for all z ∈ [z1, zc).
Proof of Proposition A.7 The proof is essentially that in [8]. We present the steps in
which our hypotheses, as opposed to model-specific facts, are used.

Note that it suffices to prove that (A.10) holds for α < 1
2 , as the right-hand side

is increasing in α. By Hypothesis A.4 and the monotone convergence theorem, it is
enough to prove this for all z0 < z < zc.

Let K be the optimal constant for the error bound in Proposition A.2:

K = sup
L≥1,x 	=o

L2−α~x~d−2S1(x),

and note K is finite by (A.4). Define

gx (z) = (2K )−1L2−α~x~d−2Gz(x),

and let g(z) = supx 	=o gx (z). To prove (A.10), we will use Lemma A.8 with f (z) =
max{g(z), z

2z0
}, z1 = z0, and a ∈ ( 12 , 1

)
arbitrary. The claim that zc = 1+O(L−2+α)

will be established in the course of the argument.

Claim Hypothesis (i) of Lemma A.8 holds.

Proof For x ∈ Z
d , gx (z) is continuous on [z0, zc) by Hypothesis A.4. It suffices to

show supx 	=o gx (z) is continuous on [z0, zc − t) for arbitrarily small t > 0.
Fix t > 0, and let z ∈ [z0, zc − t). By Hypothesis A.4, gx (z) decays exponentially

in ‖x‖2 with decay rate independent of z. Therefore,
∑

x∈Zd gx (z) converges expo-
nentially fast with rate independent of z. It follows that the supremum of gx (z) occurs
on BR(o), the ball of radius R about the origin, for some R = R(L) > 0. This proves
supx 	=o gx (z) is a continuous function of z ∈ [z0, zc − t) since the supremum of a
finite set of continuous functions is continuous. ��
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Claim Hypothesis (ii) of Lemma A.8 holds.

Proof By Hypothesis A.4 and the definition of K , gx (z0) ≤ 1
2 for all x . Since a > 1

2 ,
this proves the claim. ��
Claim Hypothesis (iii) of Lemma A.8 holds.

Proof Fix z0 < z < zc and suppose f (z) ≤ 1. Then z is at most 2z0, and

Gz(x) ≤ 2z0K L−2+α~x~2−d , x 	= o. (A.11)

Let β = 2z0K L−2+α . By Hypothesis A.5, when L−2+α is sufficiently small there is
a c > 0 such that

∣∣∣�̃z(x)
∣∣∣ ≤ cβδo,x + cβ2~x~−3(d−2) ≤ cβ

~x~3(d−2)
. (A.12)

By Hypothesis A.4, Gz is not identically zero. Thus χ(z) > 0, and the sum of (A.1)
over all x ∈ Z

d can be rearranged to give

χ(z) = 1 +∑
x �̃z(x)

1 − z − z
∑

x �̃z(x)
> 0. (A.13)

By (A.12), ‖�̃z(x)‖1 < 1 for L large enough. This implies the numerator, and hence
the denominator, of (A.13) is strictly positive. Since f (z) ≤ 1, this implies that

z < 1 − z
∑

x∈Zd

�̃z(x) ≤ 1 + O(z0L
−2+α). (A.14)

Thus z
2 is bounded above by a for a ∈ ( 12 , 1

)
, provided that L is large enough.

What remains is to prove g(z) ≤ a for a ∈ ( 1
2 , 1

)
when L is large enough. This

exactly follows the presentation in [8, p. 364], and hence we omit it. ��
ByHypothesis A.4 this proves the desired bounds, as we have proven that f (z) ≤ a

for z0 ≤ z < zc. The bound on zc follows from (A.14), which holds as it was derived
under the hypothesis that f (z) ≤ 1. ��
Proof of TheoremA.6 This follows [8, Theorem 1.2]. The only model specific step in
the cited proof is showing that an auxiliary parameter μz increases to μzc = 1 as
z ↑ zc. We define this parameter below and show that it takes the desired value by
Hypothesis A.3.

By (A.12), �̃z(x) has a finite second moment when L is large enough. It therefore
makes sense to define

λz = 1

1 + zσ−2
∑

x ‖x‖22�̃z(x)
, (A.15)
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μz = 1 − λz

(
1 − z − z

∑

x

�̃z(x)

)
. (A.16)

Equation (A.12) implies λz → 1 as L → ∞ uniformly in z ∈ [z, zc]. By Equa-
tion (A.13) and Hypothesis A.3, as z ↑ zc, the quantity in brackets in (A.16) tends to
zero. Thus, μzc ↑ 1 as z ↑ zc. ��

A.4 Other convolution equations

Consider the equation

Gz = δ + z(D ∗ Gz) + (�z ∗ Gz). (A.17)

If � satisfies Hypothesis A.5, it is possible to manipulate (A.17) into the form (A.1).
To see this, rewrite (A.17) as

G = δ + � + zD ∗ (δ + �) ∗ G − � ∗ (δ + zD ∗ G − G)

= δ + � + zD ∗ (δ + �) ∗ G + � ∗ � ∗ G,

where, in the second equality, we have used (A.17) to rewrite the term in parentheses,
and the subscripts z have been omitted. Rewriting the last factor of G using (A.17)
yields

G = δ + � + �∗2 + zD ∗ (δ + � + �∗2) ∗ G + �∗3 ∗ G,

where A∗k is the k-fold autoconvolution of A. Iterating this yields (A.1) with

�̃z =
∑

k≥1

�∗k, (A.18)

since limn→∞ �∗n = 0 under the assumption that� satisfies Hypothesis A.5. Finally,
[8, Proposition 1.7] implies that, if �z satisfies Hypothesis A.5, then �̃z defined
by (A.18) satisfies Hypothesis A.5, for possibly different constants. The change in
constants depends only on d. See [8, Section 4.1] for a further discussion of this point.
Thus to apply Theorem A.6 to the convolution equation (A.17), it suffices to verify
the hypotheses of Section A.2 for Gz , D, and �.
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