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Received: 2 September 2016 / Revised: 4 December 2017 / Published online: 1 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract We prove a sequence of limiting results about weakly dependent stationary
and regularly varying stochastic processes in discrete time. After deducing the lim-
iting distribution for individual clusters of extremes, we present a new type of point
process convergence theorem. It is designed to preserve the entire information about
the temporal ordering of observations which is typically lost in the limit after time
scaling. By going beyond the existing asymptotic theory, we are able to prove a new
functional limit theorem. Its assumptions are satisfied by a wide class of applied time
series models, for which standard limiting theory in the space D of càdlàg functions
does not apply. To describe the limit of partial sums in this more general setting, we
use the space E of so-called decorated càdlàg functions. We also study the running
maximum of partial sums for which a corresponding functional theorem can be still
expressed in the familiar setting of space D. We further apply our method to ana-
lyze record times in a sequence of dependent stationary observations, even when their
marginal distribution is not necessarily regularly varying. Under certain restrictions
on dependence among the observations, we show that the record times after scaling
converge to a relatively simple compound scale invariant Poisson process.
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1 Introduction

Donsker-type functional limit theorems represent one of the key developments in
probability theory. They express invariance principles for rescaled random walks of
the form

S�nt� = X1 + · · · + X�nt�, t ∈ [0, 1] . (1.1)

Many extension of the original invariance principle exist,most notably allowing depen-
dence between the steps Xi , or showing, like Skorohod did, that non-Gaussian limits
are possible if the steps Xi have infinite variance. For a survey of invariance principles
in the case of dependent variables in the domain of attraction of the Gaussian law, we
refer to [24], see also [10] for a thorough survey of mixing conditions. In the case of a
non-Gaussian limit, the limit of the processes (S�nt�)t∈[0,1] is not a continuous process
in general. Hence, the limiting theorems of this type are placed in the space of càdlàg
functions denoted by D([0, 1]) under one of the Skorohod topologies. The topology
denoted by J1 is the most widely used (often implicitely) and suitable for i.i.d. steps,
but over the years many theorems involving dependent steps have been shown using
other Skorohod topologies. Even in the case of a simple m-dependent linear process
from a regularly varying distribution, it is known that the limiting theorem cannot be
shown in the standard J1 topology, see Avram and Taqqu [2]. Moreover, there are
examples of such processes for which none of the Skorohod topologies work, see
Sect. 4.

However, as we found out, for all those processes andmany other stochastic models
relevant in applications, randomwalks do converge, but their limit exists in an entirely
different space. To describe the elements of such a space we use the concept of dec-
orated càdlàg functions and denote the corresponding space by E([0, 1]), following
Whitt [34]. See Sect. 4. Presentation of this new type of limit theorem is the main goal
of our article. For the statement of our main result see Theorem 4.5 in Sect. 4. As a
related goal we also study the running maximum of the random walk S�nt� for which,
due to monotonicity, the limiting theorem can still be expressed in the familiar space
D([0, 1]).

Ourmain analytical tool is the limit theory for point processes in a certain nonlocally
compact space which is designed to preserve the order of the observations as we
rescale time to interval [0, 1] as in (1.1). Observe that due to this scaling, successive
observations collapse in the limit to the same time instance. As the first result in this
context, we prove in Sect. 2 a limit theorem related to large deviations results of
the type shown recently by [28] (cf. also [19]) and offer an alternative probabilistic
interpretation of these results. Using our setup, we can group successive observations
in the sequence {Xi , i = 1, . . . , n}, in nonoverlapping clusters of increasing size
to define a point process which completely preserves the information about the order
among the observations. This allows us to show in a rather straightforwardmanner that
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so constructed empirical point processes converge in distribution towards a Poisson
point process on an appropriate state space. The corresponding theorem could be
arguably considered as the key result of the paper. It motivates all the theorems in the
later sections and extends point process limit theorems in [5,14], see Sect. 3.

Additionally, our method allows for the analysis of records and record times in
the sequence of dependent stationary observations Xi . By a classical result of Rényi,
the number of records among first n iid observations from a continuous distribution
grows logarithmically with n. Moreover it is known (see e.g. [30]) that record times
rescaled by n tend to the so-called scale invariant Poisson process, which plays a
fundamental role in several areas of probability, see [1]. For a stationary sequence
with an arbitrary continuous marginal distribution, we show that the record times
converge to a relatively simple compound Poisson process under certain restrictions
on dependence. This form of the limit reflects the fact that for dependent sequences
records tend to come in clusters, as one typically observes in many natural situations.
This is the content of Sect. 5. Finally, proofs of certain technical auxiliary results are
postponed to Sect. 6. In the rest of the introduction, we formally present the main
ingredients of our model.

We now introduce our main assumptions and notation. Let ‖ · ‖ denote an arbitrary
norm onRd and let Sd−1 be the corresponding unit sphere. Recall that a d-dimensional
random vector X is regularly varying with index α > 0 if there exists a random vector
Θ ∈ S

d−1 such that

1

P(‖X‖ > x)
P(‖X‖ > ux, X/‖X‖ ∈ ·) ⇒ u−α

P(Θ ∈ ·), (1.2)

for every u > 0 as x → ∞, where ⇒ denotes the weak convergence of measures,
here on S

d−1. An R
d -valued time series {Xt , t ∈ Z} is regularly varying if all the

finite-dimensional vectors (Xk, . . . , Xl), k ≤ l ∈ Z are regularly varying, see [14]
for instance. We will consider a stationary regularly varying process {Xt , t ∈ Z}. The
regular variation of the marginal distribution implies that there exists a sequence {an}
which for all x > 0 satisfies

nP(‖X0‖ > anx) → x−α. (1.3)

If d = 1, it is known that
nP(X0/an ∈ ·) v−→ μ, (1.4)

where
v−→ denotes vague convergence on R\{0} with the measure μ on R\{0} given

by

μ(dy) = pαy−α−11(0,∞)(y)dy + (1 − p)α(−y)−α−11(−∞,0)(y)dy (1.5)

for some p ∈ [0, 1].
According to [6], the regular variation of the stationary sequence {Xt , t ∈ Z} is

equivalent to the existence of an R
d -valued time series {Yt , t ∈ Z} called the tail

process which satisfies P(‖Y0‖ > y) = y−α for y ≥ 1 and, as x → ∞,
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(
{x−1Xt , t ∈ Z} ∣∣ ‖X0‖ > x

)
fi.di.−→ {Yt , t ∈ Z}, (1.6)

where
fi.di.−→ denotes convergence of finite-dimensional distributions. Moreover, the so-

called spectral tail process {Θt , t ∈ Z}, defined by Θt = Yt/‖Y0‖, t ∈ Z, turns out to
be independent of ‖Y0‖ and satisfies

(
{|X0|−1Xt , t ∈ Z} ∣∣ ‖X0‖ > x

)
fi.di.−→ {Θt , t ∈ Z}, (1.7)

as x → ∞. If d = 1, it follows that p from (1.5) satisfies p = P(Θ0 = 1) =
1 − P(Θ0 = −1).

We will often assume in addition that the following condition, referred to as the
anticlustering or finite mean cluster length condition, holds.

Assumption 1.1 There exists a sequence of integers (rn)n∈N such that limn→∞ rn =
limn→∞ n/rn = ∞ and for every u > 0,

lim
m→∞ lim sup

n→∞
P

(
max

m≤|i |≤rn
‖Xi‖ > anu

∣∣∣∣ ‖X0‖ > anu

)
= 0. (1.8)

There are many time series satisfying the conditions above including several non-
linear models like stochastic volatility or GARCH (see [26, Section 4.4]).

In the sequel, an important role will be played by the quantity θ defined by

θ = P

(
sup
t≥1

‖Yt‖ ≤ 1

)
. (1.9)

It was shown in [6, Proposition 4.2] that Assumption 1.1 implies that θ > 0.

2 Asymptotics of clusters

Let l0 be the space of double-sided R
d -valued sequences converging to zero at both

ends, i.e. l0 = {x = {xi , i ∈ Z} : lim|i |→∞ ‖xi‖ = 0}. On l0 consider the uniform
norm

‖x‖∞ = sup
i∈Z

‖xi‖,

which makes l0 into a separable Banach space. Indeed, l0 is the closure of all double-
sided rational sequences with finitely many non zero terms in the Banach space of all
bounded double-sided real sequences. Define the shift operator B on l0 by (Bx)i =
xi+1 and introduce an equivalence relation ∼ on l0 by letting x ∼ y if y = Bkx for
some k ∈ Z. In the sequel, we consider the quotient space

l̃0 = l0/ ∼,
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and define a function d̃ : l̃0 × l̃0 −→ [0,∞) by

d̃(x̃, ỹ) = inf{‖x′ − y′‖∞ : x′ ∈ x̃, y′ ∈ ỹ} = inf{‖Bkx − Bl y‖∞ : k, l ∈ Z}.

for all x̃, ỹ ∈ l̃0, and all x ∈ x̃, y ∈ ỹ. The proof of the following result can be found
in Sect. 6.

Lemma 2.1 The function d̃ is a metric which makes l̃0 a separable and complete
metric space.

One can naturally embed the set ∪d≥1(R
d)n ∪ l0 into l̃0 by mapping x ∈ l0 to its

equivalence class and an arbitrary finite sequence x = (x1, . . . , xn) ∈ (Rd)n to the
equivalence class of the sequence

(. . . , 0, 0, x, 0, 0, . . .),

which adds zeros in front and after it.
Let {Zt , t ∈ Z}be a sequence distributed as the tail process {Yt , t ∈ Z} conditionally

on the event {supi≤−1 ‖Yi‖ ≤ 1} which, under Assumption 1.1, has a strictly positive
probability (cf. [6, Proposition 4.2]). More precisely,

L ({Zt , t ∈ Z}) = L
(

{Yt , t ∈ Z}
∣∣∣ sup
i≤−1

‖Yi‖ ≤ 1

)
. (2.1)

Since (1.8) implies that P(lim|t |→∞ ‖Yt‖ = 0) = 1, see [6, Proposition 4.2], the
sequence {Zt } in (2.1) can be viewed as a random element in l0 and l̃0 in a natural
way. In particular, the random variable

LZ = sup
j∈Z

‖Z j‖,

is a.s. finite and not smaller than 1 since P(‖Y0‖ > 1) = 1. Due to regular variation
and (1.8) one can show (see [7]) that for v ≥ 1

P(LZ > v) = v−α.

One can also define a new sequence {Qt , t ∈ Z} in l̃0 as the equivalence class of

Qt = Zt/LZ , t ∈ Z. (2.2)

Consider now a block of observations (X1, . . . , Xrn ) and define Mrn = max1≤i≤rn
‖Xi‖. It turns out that conditionally on the event that Mrn > anu, the law of such a
block has a limiting distribution and that LZ and {Qt } are independent.
Theorem 2.2 Under Assumption 1.1, for every u > 0,
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L
(
X1, . . . , Xrn

anu

∣∣∣Mrn > anu

)
d−→ L ({Zt , t ∈ Z}) ,

as n → ∞ in l̃0. Moreover, {Qt , t ∈ Z} and LZ in (2.2) are independent random
elements with values in l̃0 and [0,∞) respectively.

Proof Step 1. We write Xn(i, j) = (Xi , . . . , X j )/anu, Y(i, j) = (Yi , . . . ,Y j ) and
Mk,l = maxk≤i≤l ‖Xi‖, MY

k,l = maxk≤i≤l ‖Yi‖. By the Portmanteau theorem [8,
Theorem 2.1], it suffices to prove that

lim
n→∞E[g(Xn(1, rn)) | M1,rn > anu] = E[g({Yt , t ∈ Z}) | MY−∞,−1 ≤ 1], (2.3)

for every nonnegative, bounded and uniformly continuous function g on (l̃0, d̃).
Define the truncation x̃ζ at level ζ of x̃ ∈ l̃0 by putting all the coordinates of

x̃ which are no greater in norm than ζ to zero, that is x̃ζ is the equivalence class of
(xi1‖xi‖>ζ )i∈Z, where x is a representative of x̃. Note that by definition, d̃(x̃, x̃ζ ) ≤ ζ .

For a function g on l̃0, define gζ by gζ (x̃) = g(x̃ζ ). If g is uniformly continuous,
then for each η > 0, there exists ζ such that |g(x̃) − g( ỹ)| ≤ η if d̃(x̃, ỹ) ≤ ζ , that
is, ‖g − gζ ‖∞ ≤ η. Thus it is sufficent to prove (2.3) for gζ for ζ ∈ (0, 1).

One can now follow the steps of the proof of [6, Theorem 4.3]. Decompose the
event {M1,rn > anu} according to the smallest j ∈ {1, . . . , rn} such that ‖X j‖ > anu.

We have

E[gζ (Xn(1, rn)); M1,rn > anu]

=
rn∑
j=1

E
[
gζ (Xn(1, rn)); M1, j−1 ≤ anu < ‖X j‖

]
. (2.4)

Fix a positive integerm and let n be large enough so that rn ≥ 2m+1.By the definition
of gζ , for all j ∈ {m + 1, . . . , rn − m} we have that

M1, j−m−1 ∨ Mj+m+1,rn ≤ anuζ ⇒ gζ (Xn(1, rn)) = gζ (Xn( j − m, j + m)).

(2.5)

The proof is now exactly along the same lines as the proof of [6, Theorem 4.3] and
we omit some details. Using stationarity, the decomposition (2.4), the relation (2.5)
and the boundedness of g, we have,

∣∣E [gζ (Xn(1, rn))1
{
M1,rn > anu

}]

−rnE
[
gζ (Xn(−m,m))1

{
M−m,−1 ≤ anu

}
1{‖X0‖ > anu}]∣∣

≤ 2m‖g‖∞P(‖X0‖ > anu) + rn‖g‖∞P(M−rn ,−m−1

∨ Mm+1,rn > anu; ‖X0‖ > anu). (2.6)
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Next define θn = P(M1,rn > anu)/{rnP(‖X0‖ > anu)}. Under Assumption 1.1,

lim
n→∞ θn = P(sup

i≥1
‖Yi‖ ≤ 1) = θ, (2.7)

where θ was defined in (1.9). See [6, Proposition 4.2]. Therefore, by Assumption 1.1,
(2.6) and (2.7) we conclude that

lim
m→∞ lim sup

n→∞

∣∣∣∣E[gζ (Xn(1, rn)) | M1,rn > anu]

− 1

θn
E[gζ (Xn(−m,m)); M−m,−1 ≤ anu | ‖X0‖ > anu]

∣∣∣∣ = 0. (2.8)

We now argue that, for every m ≥ 1,

lim
n→∞E[gζ (Xn(−m,m)); M−m,−1 ≤ anu | ‖X0‖ > anu]

= E[gζ (Y(−m,m)); MY−m,−1 ≤ 1]. (2.9)

First observe that gζ , as a function on (Rd)2m+1, is continuous except maybe on the set
D2m+1

ζ = {(x1, . . . , x2m+1) ∈ (Rd)2m+1; ‖xi‖ = ζ for some i ∈ {1, . . . , 2m + 1}}
and we have that P(Y(−m,m) ∈ D2m+1

ζ ) = 0 since Y = ‖Y0‖Θ , ‖Y0‖ and Θ

are independent and the distribution of ‖Y0‖ is Pareto therefore atomless. Observe
similarly that the distribution of MY

k,l = ‖Y0‖maxk≤ j≤l ‖Θ j‖ does not have atoms
except maybe at zero. Therefore, since gζ is bounded, (2.9) follows by the definition
of the tail process and the continuous mapping theorem.

Finally, since Y(−m,m) −→ Y a.s. in l̃0 and since Y has only finitely many
coordinates greater than ζ , gζ (Y(−m,m)) = gζ (Y) for large enoughm, almost surely.

Thus, applying (2.8) and (2.9), we obtain by bounded convergence

lim
n→∞E[gζ (Xn(1, rn)) | M1,rn > anu]

= lim
m→∞ lim

n→∞
1

θn
E[gζ (Xn(−m,m)); M−m,−1 ≤ anu | ‖X0‖ > anu]

= 1

θ
lim

m→∞E[gζ (Y(−m,m)); MY−m,−1 ≤ 1]

= 1

θ
E[gζ (Y); MY−∞,−1 ≤ 1].

Applying this to g ≡ 1 we obtain θ = P(MY−∞,−1 ≤ 1). Hence (2.3) holds for gζ as
we wanted to show.

Step 2. Observing that the mapping x̃ �→ (x̃, ‖x‖∞) is continuous on l̃0, we obtain
for every u > 0,

L
(
X1, . . . , Xrn

anu
,
Mrn

anu

∣∣∣Mrn > anu

)
d−→ L ({Zt }, LZ ) . (2.10)
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Similarly, the mapping defined on l̃0 × (0,∞) by (x̃, b) �→ x̃/b is again continuous.
Hence, (2.10) implies

L
(
X1, . . . , Xrn

Mrn
,
Mrn

anu

∣∣∣Mrn > anu

)
d−→ L ({Qt }, LZ ) (2.11)

by the continuousmapping theorem. To show the independence between LZ and {Qt },
it suffices to show

E
[
g ({Qt })1{LZ>v}

] = E [g ({Qt })] P(LZ > v), (2.12)

for an arbitrary uniformly continuous function g on l̃0 and v ≥ 1.
By (2.11), the left-hand side of (2.12) is the limit of

E

[
g

(
X1, . . . , Xrn

Mrn

)
1{(an)−1Mrn>v}

∣∣∣∣Mrn > an

]
,

which further equals

E

[
g

(
X1, . . . , Xrn

Mrn

) ∣∣∣∣Mrn > anv

]
P(Mrn > anv)

P(Mrn > an)
.

By (2.11), the first term in the product above tends to E [g ({Qt })] as n → ∞. On
the other hand, by (2.7) and regular variation of ‖X0‖, the second term tends to
v−α = P(LZ > v). ��

3 The point process of clusters

In this section we prove our main result on the point process asymptotics for the
sequence {Xt , t ∈ Z}. Prior to that, we discuss the topology of w#-convergence.

3.1 Preliminaries on w#-convergence

To study convergence in distribution of point processes on the non locally-compact
space l̃0 we use w#-convergence and refer to [11, Section A2.6.] and [12, Section
11.1.] for details. Let X be a complete and separable metric space and let M(X)

denote the space of boundedly finite nonnegative Borel measures μ on X, i.e. such
thatμ(B) < ∞ for all boundedBorel sets B. The subset ofM(X) of all pointmeasures
(that is measures μ such that μ(B) is a nonnegative integer for all bounded Borel sets
B) is denoted by Mp(X). A sequence {μn} in M(X) is said to converge to μ in the
w#-topology, noted by μn →w# μ, if

μn( f ) =
∫

f dμn →
∫

f dμ = μ( f ),
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for every bounded and continuous function f : X → R with bounded support.
Equivalently ([11, Proposition A2.6.II.]), μn →w# μ refers to

μn(B) → μ(B)

for every bounded Borel set B with μ(∂B) = 0. We note that when X is locally
compact, an equivalent metric can be chosen in which a set is relatively compact if
and only if it is bounded, and w#-convergence coincides with vague convergence. We
refer to [20] or [30] for details on vague convergence. The notion of w#-convergence
is metrizable in such a way thatM(X) is Polish ([11, Theorem A2.6.III.(i)]). Denote
by B(M(X)) the corresponding Borel sigma-field.

It is known, see [12, Theorem 11.1.VII], that a sequence {Nn} of random elements

in (M(X),B(M(X))), converges in distribution to N , denoted by Nn
d−→ N , if and

only if

(Nn(A1), . . . , Nn(Ak))
d−→ (N (A1), . . . , N (Ak)) in Rk,

for all k ∈ N and all bounded Borel sets A1, . . . , Ak in X such that N (∂Ai ) = 0 a.s.
for all i = 1, . . . , k.

Remark 3.1 As shown in [12, Proposition 11.1.VIII], this is equivalent to the pointwise
convergence of the Laplace functionals, that is, limn→∞ E[e−Nn( f )] = E[e−N ( f )] for
all bounded and continuous function f on X with bounded support. It turns out that it
is sufficient (and more convenient in our context) to verify the convergence of Laplace
functionals for a smaller convergence determining family.

See the comments before Assumption 3.5.

3.2 Point process convergence

Consider now the space l̃0\{0̃}with the subspace topology. Following [21], wemetrize
the space l̃0\{0̃} with the complete metric

d̃ ′(x̃, ỹ) =
(
d̃(x̃, ỹ) ∧ 1

)
∨ |1/‖x̃‖∞ − 1/‖ ỹ‖∞|

which is topologically equivalent to d̃ , i.e. it generates the same (separable) topology
on l̃0\{0̃}. However, a subset A of l̃0\{0̃} is bounded for d̃ ′ if and only if there exists
an ε > 0 such that x̃ ∈ A implies ‖x̃‖∞ > ε. Therefore, for measures μn, μ ∈
M(l̃0\{0̃}),μn →w# μ ifμn( f ) → μ( f ) for every bounded and continuous function
f on l̃0\{0̃} such that for some ε > 0, ‖x̃‖∞ ≤ ε implies f (x̃) = 0.

Remark 3.2 We note that under the metric d̃ ′, w#-convergence coincides with the
theory of M0-convergence introduced in [18], further developed in [22] and with the
corresponding point process convergence recently studied by [35].
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Take now a sequence {rn} as in Assumption 1.1, set kn = �n/rn� and define

Xn,i = (X(i−1)rn+1, . . . , Xirn )/an

for i = 1, . . . , kn .As the main result of this section we show, under certain conditions,
the point process of clusters N ′′

n defined by

N ′′
n =

kn∑
i=1

δ(i/kn ,Xn,i )

restricted to [0, 1] × l̃0\{0̃} (i.e. we ignore indices i with Xn,i = 0), converges in
distribution inMp([0, 1] × l̃0\{0̃}) to a suitable Poisson point process.

We first prove a technical lemma which is also of independent interest, see
Remark 3.4. Denote by S = {x̃ ∈ l̃0 : ‖x̃‖∞ = 1} the unit sphere in l̃0 and define the
polar decomposition ψ : l̃0\{0̃} �→ (0,+∞) × S with ψ(x̃) = (‖x̃‖∞, x̃/‖x̃‖∞).

Lemma 3.3 Under Assumption 1.1, the sequence νn = knP(Xn,1 ∈ ·) in M(l̃0\{0̃})
converges to ν = θ

(
d(−y−α) × PQ

) ◦ ψ in w#-topology and PQ is the distribution
of {Q j } defined in (2.2).

Proof Let f be a bounded and continuous function on l̃0 \ {0̃} and ε > 0 such that
f (x̃) = 0 if ‖x̃‖∞ ≤ ε. Then E[ f (Xn,1)] = E[ f (Xn,1)1{M1,rn>εan}], so by (1.3),
(2.7) and Theorem 2.2 we get

lim
n→∞ νn( f ) = lim

n→∞ knE[ f (Xn,1)]

= lim
n→∞ nP(‖X0‖ > εan)

P(M1,rn > εan)

rnP(‖X0‖ > εan)
E[ f (Xn,1) | M1,rn > εan]

= ε−αθE[ f (εZ)].

Applying Theorem 2.2, the last expression is equal to

ε−αθ

∫ ∞

1
E[ f (εyQ)]αy−α−1dy = θ

∫ ∞

ε

E[ f (yQ)]αy−α−1dy .

Finally, since ‖Q‖∞ = 1 a.s. and f (x̃) = 0 if ‖x̃‖∞ ≤ ε we have that

lim
n→∞ νn( f ) = θ

∫ ∞

0
E[ f (yQ)]αy−α−1dy = ν( f ),

by definition of ν. ��
Remark 3.4 The previous lemma is closely related to the large deviations result
obtained in Mikosch and Wintenberger [28, Theorem 3.1]. For a class of functions f
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called cluster functionals, which can be directly linked to the functions we used in the
proof of Lemma 3.3, they showed that

lim
n→∞

E[ f (a−1
n X1, . . . , a−1

n Xrn )]
rnP(‖X0‖ > an)

=
∫ ∞

0
E[ f (y{Θt , t ≥ 0}) − f (y{Θt , t ≥ 1})]αy−α−1dy. (3.1)

However, for an arbitrary bounded measurable function f : l̃0 → R which is a.e.
continuous with respect to ν and such that for some ε > 0, ‖x̃‖∞ ≤ ε implies
f (x̃) = 0, Lemma 3.3 together with a continuous mapping argument and the fact that
k−1
n ∼ rnP(‖X0‖ > an) yields

lim
n→∞

E[ f (a−1
n X1, . . . , a−1

n Xrn )]
rnP(‖X0‖ > an)

= lim
n→∞ νn( f ) = θ

∫ ∞

0
E[ f (yQ)]αy−α−1dy,

which gives an alternative and arguably more interpretable expression for the limit in
(3.1).

To show convergence of N ′′
n inMp([0, 1] × l̃0\{0̃}), we will need to assume that,

intuitively speaking, one can break the dependent series {Xn, n ≥ 1} into asymptoti-
cally independent blocks.

Recall the notion of truncation of an element x̃ ∈ l̃0 at level ε > 0 denoted by x̃ε ,
see paragraph following (2.3). We denote by F+ the class of nonnegative functions
f on [0, 1] × l̃0 which satisfy f (t, 0̃) = 0 and f (t, x̃) = f (t, x̃ε) for some ε > 0,
and are continuous except maybe on the set {x̃ ∈ l̃0\{0̃} : ‖x j‖ = ε for some j ∈
Z where (xi )i∈Z ∈ x̃}. Thus, f ∈ F+ depend only on coordinates greater in norm
than ε. Using similar arguments as in the proof of Theorem 2.2, one can show thatF+
is convergence determining (in the sense of Remark 3.1).

Assumption 3.5 There exists a sequence of integers {rn, n ∈ N} such that
limn→∞ rn = limn→∞ n/rn = ∞ and

lim
n→∞

(
E[e−N ′′

n ( f )] −
kn∏
i=1

E

[
exp

{
− f

(
i

kn
, Xn,i

)}])
= 0 ,

for all f ∈ F+.

This assumption is somewhat stronger than the related conditions in [14] or [5],
cf. Condition 2.2 in the latter paper, since we consider functions of the whole cluster.
Still, as we show in Lemma 6.2, β-mixing implies Assumption 3.5. Since sufficient
conditions for β-mixing are well studied and hold for many standard time series
models (linear processes are notable exception, note), one can avoid cumbersome task
of checking the assumption above directly. Linear processes are considered separately
in Sect. 3.3.
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It turns out that the choice of l̃0 as the state space for clusters, together with the
results above, does not only preserve the order of the observations within the cluster,
but also makes the statement and the proof of the following theorem remarkably tidy
and short.

Theorem 3.6 Let {Xt , t ∈ Z} be a stationary Rd-valued regularly varying sequence
with tail index α > 0, satisfying Assumption 1.1 and 3.5 for the same sequence {rn}.
Assumption Then N ′′

n
d−→ N ′′ in Mp([0, 1] × l̃0\{0̃}) where N ′′ is a Poisson point

process with intensity measure Leb × ν which can be expressed as

N ′′ =
∞∑
i=1

δ(Ti ,Pi Qi )
, (3.2)

where

(i)
∑∞

i=1 δ(Ti ,Pi ) is a Poisson point process on [0, 1]×(0,∞]with intensity measure
Leb × d(−θy−α);

(ii) {Qi , i ≥ 1} is a sequence of i.i.d. elements in S, independent of
∑∞

i=1 δ(Ti ,Pi )

and with common distribution equal to the distribution of Q in (2.2).

Proof Let, for every n ∈ N, {X∗
n,i , i = 1, . . . , kn} be independent copies of Xn,1 and

define

N∗
n =

kn∑
i=1

δ(i/kn ,X∗
n,i )

. (3.3)

Since by the previous lemma, knP(Xn,1 ∈ ·) →w# ν in M(l̃0\{0̃}), the convergence
of N∗

n to N ′′ in Mp([0, 1] × l̃0\{0̃}) follows by an straightforward adaptation of
[30, Proposition 3.21] (cf. [15, Lemma 2.2.(1)], see also [16, Theorem 2.4] or [33,
Proposition 2.13]). Assumption 3.5 now yields that N ′′

n converge in distribution to the
same limit since the convergence determining family F+ consists of functions which
are a.e. continuous with respect to the measure Leb× ν. Finally, the representation of
N ′′ follows easily by standard Poisson point process transformation argument (see [30,
Section 3.3.2.]). ��

Under the conditions of Theorem 3.6, as already noticed in [6, Remark 4.7],
θ = P(supi≥1 ‖Yi‖ ≤ 1) is also the extremal index of the time series {‖X j‖}, i.e.
limn→∞ P(a−1

n max1≤i≤n ‖Xi‖ ≤ x) = e−θx−α
for all x > 0.

Remark 3.7 Note that the restriction to the time interval [0, 1] is arbitrary and it could
be substituted by an arbitrary closed interval [0, T ].

3.3 Linear processes

As we observed above, β-mixing offers a way of establishing Assumption 3.5 for a
wide class of time series models. However, for linear processes, the truncation method
offers an alternative and simpler way to obtain the point process convergence stated
in the previous theorem.
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Let {ξt , t ∈ Z} be a sequence of i.i.d. random variables with regularly varying
distribution with index α > 0. Consider the linear process {Xt , t ∈ Z} defined by

Xt =
∑
j∈Z

c jξt− j ,

where {c j , j ∈ Z} is a sequence of real numbers such that |c0| > 0 and

∑
j∈Z

|c j |δ < ∞ with

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ < α if α ∈ (0, 1],
δ < α if α ∈ (1, 2] and E[ξ0] = 0,

δ = 2 if α > 2 and E[ξ0] = 0,

δ = 1 if α > 1 and E[ξ0] �= 0.

(3.4)

These conditions imply that
∑

j∈Z |c j |α < ∞. Furthermore, it has been proved in [25,
Lemma A3] that the sequence {Xt , t ∈ Z} is well defined, stationary and regularly
varying with tail index α and

lim
u→∞

P(|X0| > u)

P(|ξ0| > u)
=
∑
j∈Z

|c j |α. (3.5)

[25, Lemma A.4] proved that for α ∈ (0, 2], it is possible to take δ = α in (3.4) at the
cost of some restrictions on the distribution of ξ0 which are satisfied for Pareto and
stable distributions.

The spectral tail process {Θt } of the linear process was computed in [23]. It can be
described as follows: let Θξ be an {−1, 1}-valued random variable with distribution
equal to the spectral measure of ξ0. Then

L ({Θt , t ∈ Z}) = L
({

ct+K

|cK | Θξ , t ∈ Z

})
, (3.6)

where K is an integer valued random variable, independent of Θξ , such that

P(K = n) = |cn|α∑
j∈Z |c j |α , n ∈ Z. (3.7)

It is also proved in [23] that the coefficient θ from (1.9) is given by

θ = max j∈Z |c j |α∑
j∈Z |c j |α .

Since lim| j |→∞ c j = 0, random element Q = {Q j , j ∈ Z} in the space S introduced
in (2.2) is well defined and given by
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Q =
{

Θξ c j
maxi∈Z |ci | , j ∈ Z

}
. (3.8)

The following proposition can be viewed as an extension of [13, Theorem 2.4] and
also as a version of Theorem 3.6 adapted to linear processes.

Proposition 3.8 Let {rn} be a nonnegative non decreasing integer valued sequence
such that limn→∞ rn = limn→∞ n/rn = ∞ and let {an} be a non decreasing sequence
such that nP(|X0| > an) → 1. Then

N ′′
n =

kn∑
i=1

δ(i/kn ,(X(i−1)rn+1,...,Xirn )/an )
d−→

∞∑
i=1

δ(Ti ,Pi Qi )
(3.9)

inMp([0, 1]×l̃0\{0̃})where∑∞
i=1 δ(Ti ,Pi ) is aPoisson point process on [0, 1]×(0,∞]

with intensity measure Leb× d(−θy−α), independent of the i.i.d. sequence {Qi , i ≥
1} with values in S and common distribution equal to the distribution of Q in (3.8).

Proof The proof of (3.11) is based on a truncation argument which compares Xt with

X (m)
t =

m∑
j=−m

c jξt− j , t ∈ Z.

Let {bn} and {am,n} be non decreasing sequences such that nP(|Z0| > bn) → 1 and

nP(|X (m)
0 | > am,n) → 1. The limit (3.5) implies that am,n ∼

(∑m
j=−m |c j |α

)1/α
bn .

Let N ′′
m,n be the point process of exceedences of the truncated sequence defined by

N ′′
m,n =

kn∑
i=1

δ
(i/kn ,(X

(m)
(i−1)rn+1,...,X

(m)
irn

)/bn)
.

The process {X (m)
t } is (2m)-dependent (hence β-mixing with β j = 0 for j > 2m)

and therefore satisfies the conditions of Theorem 3.6. Thus N ′′
m,n

d−→ N ′′
(m) with

N ′′
(m) =

∞∑
i=1

δ
(Ti ,PiΘ

ξ
i {c(m)

j }),

with
∑∞

i=1 δ(Ti ,Pi ) a Poisson point process on [0, 1] × (0,∞) with mean measure

Leb × d(−y−α), c(m)
j = c j if | j | ≤ m and c j = 0 otherwise, and Θ

ξ
i , i ≥ 1 are i.i.d.

copies of Θξ . Since {c(m)
j } converges to {c j } in l̃0, it follows that
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N ′′
(m) → N ′′∞ =

∞∑
i=1

δ
(Ti ,PiΘ

ξ
i {c j }),

almost surely inMp([0, 1] × l̃0 \ {0}).
Define now

N ′′∞,n =
kn∑
i=1

δ(i/kn ,(X(i−1)rn+1,...,Xirn )/bn).

Then, for every bounded Lipschitz continuous function f defined on [0, 1] × l̃0\{0}
with bounded support,

lim
m→∞ lim sup

n→∞
P(|N ′′

n,m( f ) − N ′′∞,n( f )| > η) = 0.

As in the proof of [13, Theorem 2.4], this follows from

lim
m→∞ lim sup

n→∞
P( max

1≤i≤n
|X (m)

i − Xi | > bnγ ) = 0. (3.10)

for all γ > 0 which is implied by (3.5); see [13, Lemma 2.3].
This proves that

N ′′∞,n
d−→ N ′′∞. (3.11)

and since N ′′
n and N ′′∞,n differ only by a deterministic scaling of the points, this proves

our result. ��

4 Convergence of the partial sum process

In order to study the convergence of the partial sum process in cases where it fails to
hold in the usual space D, we first introduce an enlarged space E . In the rest of the
paper we restrict to the case of R-valued time series.

4.1 The space of decorated càdlàg functions

To establish convergence of the partial sum process of a dependent sequence {Xn} we
will consider the function space E ≡ E([0, 1],R) introduced in Whitt [34, Sections
15.4 and 15.5]. For the benefit of the reader, in what follows, we briefly introduce this
space closely following the exposition in the previously mentioned reference.

The elements of E have the form

(x, J, {I (t) : t ∈ J })

where
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– x ∈ D([0, 1],R);
– J is a countable subset of [0, 1] with Disc(x) ⊆ J , where Disc(x) is the set of
discontinuities of the càdlàg function x ;

– for each t ∈ J , I (t) is a closed bounded interval (called the decoration) in R such
that x(t), x(t−) ∈ I (t) for all t ∈ J .

Moreover, we assume that for each ε > 0, there are at most finitely many times t for
which the length of the interval I (t) is greater than ε. This ensures that the graphs of
elements in E, defined below, are compact subsets of R2 which allows one to impose
a metric on E by using the Hausdorff metric on the space of graphs of elements in E .

Note that every triple (x, J, {I (t) : t ∈ J }) can be equivalently represented by a
set-valued function

x ′(t) :=
{
I (t) if t ∈ J,

{x(t)} if t /∈ J,

or by the graph of x ′ defined by

Γx ′ := {(t, z) ∈ [0, 1] × R : z ∈ x ′(t)}.

In the sequel, we will usually denote the elements of E by x ′.
Letm denote theHausdorffmetric on the space of compact subsets ofRd (regardless

of dimension) i.e. for compact subsets A, B,

m(A, B) = sup
x∈A

‖x − B‖∞ ∨ sup
y∈B

‖y − A‖∞,

where ‖x − B‖∞ = inf y∈B ‖x − y‖∞. We then define a metric on E , denoted bymE ,
by

mE (x ′, y′) = m(Γx ′, Γy′). (4.1)

We call the topology induced bymE on E theM2 topology. This topology is separable,
but the metric space (E,mE ) is not complete. Also, we define the uniform metric on
E by

m∗(x ′, y′) = sup
0≤t≤1

m(x ′(t), y′(t)), (4.2)

Obviously, m∗ is a stronger metric than mE , i.e. for any x ′, y′ ∈ E ,

mE (x ′, y′) ≤ m∗(x ′, y′). (4.3)

We will often use the following elementary fact: for a ≤ b and c ≤ d it holds that

m([a, b], [c, d]) ≤ |c − a| ∨ |d − b|. (4.4)

By a slight abuse of notation,we identify every x ∈ Dwith an element in E represented
by

(x, Disc(x), {[x(t−), x(t)] : t ∈ Disc(x)}),
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where for any two real numbers a, b by [a, b] we denote the closed interval
[min{a, b},max{a, b}]. Consequently, we identify the space D with the subset D′
of E given by

D′ = {x ′ ∈ E : J = Disc(x) and for all t ∈ J, I (t) = [x(t−), x(t)]}. (4.5)

For an element x ′ ∈ D′ we have

Γx ′ = Γx ,

where Γx is the completed graph of x . Since the M2 topology on D corresponds
to the Hausdorff metric on the space of the completed graphs Γx , the map x →
(x, Disc(x), {[x(t−), x(t)] : t ∈ Disc(x)}) is a homeomorphism from D endowed
with theM2 topology onto D′ endowedwith theM2 topology. This yields the following
lemma.

Lemma 4.1 The space D endowed with the M2 topology is homeomorphic to the
subset D′ in E with the M2 topology.

Remark 4.2 Because two elements in E can have intervals at the same time point,
addition in E is in general not well behaved. However, problems disappear if one of
the summands is a continuous function. In such a case, the sum is naturally defined
as follows: consider an element x ′ = (x, J, {I (t) : t ∈ J }) in E and a continuous
function b on [0, 1], we define the element x ′ + b in E by

x ′ + b = (x + b, J, {I (t) + b(t) : t ∈ J }).

We now state a useful characterization of convergence in (E,mE ) in terms of the
local-maximum function defined for any x ′ ∈ E by

Mt1,t2(x
′) := sup{z : z ∈ x ′(t), t1 ≤ t ≤ t2}, (4.6)

for 0 ≤ t1 < t2 ≤ 1.

Theorem 4.3 (Theorem 15.5.1 Whitt [34]) For elements x ′
n, x

′ ∈ E the following are
equivalent:

(i) x ′
n → x ′ in (E,mE ), i.e. mE (x ′

n, x
′) → 0.

(ii) For all t1 < t2 in a countable dense subset of [0, 1], including 0 and 1,

Mt1,t2(x
′
n) → Mt1,t2(x

′) in R

and

Mt1,t2(−x ′
n) → Mt1,t2(−x ′) in R.

123



886 B. Basrak et al.

4.2 Invariance principle in the space E

Consider the partial sum process in D([0, 1]) defined by

Sn(t) =
�nt�∑
i=1

Xi

an
, t ∈ [0, 1],

and define also

Vn(t) =
{
Sn(t) if 0 < α < 1,

Sn(t) − �nt�E
(
X1
an
1{|X1|/an≤1}

)
if 1 ≤ α < 2.

As usual, when 1 ≤ α < 2, an additional condition is needed to deal with the small
jumps.

Assumption 4.4 For all δ > 0,

lim
ε→0

lim sup
n→∞

P

(
max
1≤k≤n

∣∣∣∣
k∑

i=1

{Xi1{|Xi |≤anε} − E[Xi1||Xi |≤anε}]}
∣∣∣∣ > anδ

)
= 0. (4.7)

It is known from [14] that the finite dimensional marginal distributions of Vn converge
to those of an α−stable Lévy process. This result is strengthened in [5] to convergence
in the M1 topology if Q j Q j ′ ≥ 0 for all j �= j ′ ∈ Z, i.e. if all extremes within one
cluster have the same sign. In the next theorem, we remove the latter restriction and
establish the convergence of the process Vn in the space E .

For that purpose, we assume only regular variation of the sequence {Xt , t ∈ Z} and
the conclusion of Theorem 3.6, i.e.

N ′′
n

d−→ N ′′ =
∞∑
i=1

δ(Ti ,Pi Qi )
(4.8)

in Mp([0, 1] × l̃0\{0̃}), where ∑∞
i=1 δ(Ti ,Pi ) is a Poisson point process on [0, 1] ×

(0,∞] with intensity measure Leb × d(−θy−α) with θ > 0 and Qi = {Qi, j , j ∈
Z}, i ≥ 1 are i.i.d. sequences in l̃0, independent of

∑∞
i=1 δ(Ti ,Pi ) and such that

P(sup j∈Z |Q1, j | = 1) = 1. Denote by Q = {Q j , j ∈ Z} a random sequence the
with the distribution equal to the distribution of Q1. We also describe the limit of Vn
in terms of the point process N ′′.

The convergence (4.8) and Fatou’s lemma imply that θ
∑

j∈Z E[|Q j |α] ≤ 1, as
originally noted by [14, Theorem 2.6]. This implies that for α ∈ (0, 1],

E

⎡
⎣
⎛
⎝∑

j∈Z
|Q j |

⎞
⎠

α⎤
⎦ < ∞. (4.9)
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For α > 1, this will have to be assumed. Furthermore, the case α = 1, as usual,
requires additional care. We will assume that

E

⎡
⎣∑

j∈Z
|Q j | log

(
|Q j |−1

∑
i∈Z

|Qi |
)⎤
⎦ < ∞, (4.10)

where we use the convention |Q j | log
(|Q j |−1∑

i∈Z |Qi |
) = 0 if |Q j | = 0. Fortu-

nately, it turns out that conditions (4.9) and (4.10) are satisfied in most examples. See
Remark 4.8 below.

Theorem 4.5 Let {Xt , t ∈ Z} be a stationary R-valued regularly varying sequence
with tail index α ∈ (0, 2) and assume that the convergence in (4.8) holds. If α ≥ 1 let
Assumption 4.4 hold. For α > 1, assume that (4.9) holds, and for α = 1, assume that
(4.10) holds. Then

Vn
d−→ V ′ = (V, {Ti }i∈N, {I (Ti )}i∈N) ,

with respect to M2 topology on E([0, 1],R), where

(i) V is an α-stable Lévy process on [0, 1] given by

V (·) =
∑
Ti≤·

∑
j∈Z

Pi Qi, j , 0 < α < 1, (4.11a)

V (·) = lim
ε→0

⎛
⎝∑

Ti≤·

∑
j∈Z

Pi Qi, j1{|Pi Qi, j |>ε} − (·)
∫

ε<|x |≤1
xμ(dx)

⎞
⎠ , 1 ≤ α < 2,

(4.11b)

where the series in (4.11a) is almost surely absolutely summable and the holds
uniformly on [0, 1] almost surely (along some subsequence) withμ given in (1.5).

(ii) For all i ∈ N,

I (Ti ) = V (Ti−) + Pi

⎡
⎣ inf
k∈Z
∑
j≤k

Qi, j , sup
k∈Z

∑
j≤k

Qi, j

⎤
⎦ .

Before proving the theorem, we make several remarks. We first note that for α < 1,
convergence of the point process is the only assumption of theorem. Further, an exten-
sion of Theorem 4.5 to multivariate regularly varying sequences would be possible
at the cost of various technical issues (similar to those in [34, Section 12.3] for the
extension of M1 and M2 topologies to vector valued processes) and one would more-
over need to alter the definition of the space E substantially and introduce a new and
weaker notion of M2 topology.
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Remark 4.6 If (4.9) holds, the sumsWi =∑ j∈Z |Qi, j | are almost surely well-defined
and {Wi , i ≥ 1} is a sequence of i.i.d. random variables with E[Wα

i ] < ∞. Further-
more, by independence of

∑∞
i=1 δPi and {Wi }, it follows that∑∞

i=1 δPiWi is a Poisson
point process on (0,∞] with intensity measure θE[Wα

1 ]αy−α−1dy. In particular, for
every δ > 0 there a.s. exist at most finitely many indices i such that PiWi > δ. Also,
this implies that

sup
i∈N

∑
j∈Z

Pi |Qi, j |1{Pi |Qi, j |≤ε} → 0 (4.12)

almost surely as ε → 0. These facts will be used several times in the proof.

Remark 4.7 The Lévy process V from Theorem 4.5 is the weak limit in the sense of
finite dimensional distributions of the partial sum process Vn , characterized by

logE[eizV (1)]

=
{
iaz + Γ (1 − α) cos(πα/2)σα|z|α{1 − iφsgn(z) tan(πα/2)} α �= 1,

iaz − π
2 σ |z|{1 − i 2

π
φsgn(z) log(|z|)} α = 1,

(4.13)

with, denoting x 〈α〉 = x |x |α−1 = xα+ − xα−,

σα = θE

⎡
⎣
∣∣∣∣∣∣
∑
j∈Z

Q j

∣∣∣∣∣∣

α⎤
⎦ , φ = E[(∑ j∈Z Q j )

〈α〉]
E[|∑ j∈Z Q j |α]

and

(i) a = 0 if α < 1;

(ii) a = (α − 1)−1αθE
[∑

j∈Z Q〈α〉
j

]
if α > 1;

(iii) if α = 1, then

a = θ

⎛
⎝c0E

⎡
⎣∑

j∈Z
Q j

⎤
⎦− E

⎡
⎣∑

j∈Z
Q j log

⎛
⎝
∣∣∣∣∣∣
∑
j∈Z

Q j

∣∣∣∣∣∣

⎞
⎠
⎤
⎦

−E

⎡
⎣∑

j∈Z
Q j log

(∣∣Q j
∣∣−1
)⎤
⎦
⎞
⎠ ,

with c0 = ∫∞
0 (sin y − y1(0,1](y))y−2dy.

These parameters were computed in [14, Theorem 3.2] but with a complicated expres-
sion for the location parameter a in the case α = 1 (see [14, Remark 3.3]). The explicit
expression given here, which holds under the assumption (4.10), is new; it is obtained
by direct calculation of the characteristic function of V (1) following the steps of the
proof of Lemma 6.4. As often done in the literature, if the sequence is assumed to be
symmetric then assumption (4.10) is not needed and the location parameter is 0.
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Remark 4.8 During the revision process for this paper, [29] showed that the quantity θ

from (1.9) is positive whenever P(lim|t |→∞ |Yt | = 0) = 1, and θ = P(supi≤−1 |Yi | ≤
1). In particular, the sequence Q from (2.2) is well defined in this case and moreover,
by [29, Lemma 3.11], the condition (4.9) turns out to be equivalent to

E

⎡
⎢⎣
⎛
⎝

∞∑
j=0

|Θ j |
⎞
⎠

α−1
⎤
⎥⎦ < ∞ (4.14)

which is automatic if α ∈ (0, 1]. Furthermore, if α = 1, [29, Lemma 3.14] shows that
the condition (4.10) is then equivalent to

E

⎡
⎣log

⎛
⎝

∞∑
j=0

|Θ j |
⎞
⎠
⎤
⎦ < ∞. (4.15)

These conditions are easier to check than conditions (4.9) and (4.10) since it is
easier to determine the distribution of the spectral tail process than the distribution of
the process Q from (2.2). In fact, it suffices to determine only the distribution of the
forward spectral tail process {Θ j , j ≥ 0} which is often easier than determining the
distribution of the whole spectral tail process. For example, it follows from the proof
of [27, Theorem 3.2] that for functions of Markov chains satisfying a suitable drift
condition, (4.14) and (4.15) hold for all α > 0. Also, notice that for the linear process
{Xt } from Sect. 3.3 these conditions are satisfied if

∑
j∈Z |c j | < ∞.

Moreover, [29, Corollary 3.12 and Lemma 3.14] imply that the scale, skewness and
location parameters from Remark 4.7 can also be expressed in terms of the forward
spectral tail process as follows:

σα = E

⎡
⎣
∣∣∣∣∣∣

∞∑
j=0

Θ j

∣∣∣∣∣∣

α

−
∣∣∣∣∣∣

∞∑
j=1

Θ j

∣∣∣∣∣∣

α⎤
⎦ ,

φ = σ−α
E

⎡
⎢⎣
⎛
⎝

∞∑
j=0

Θ j

⎞
⎠

〈α〉
−
⎛
⎝

∞∑
j=1

Θ j

⎞
⎠

〈α〉⎤
⎥⎦ ,

a = 0 if α < 1, a = (α − 1)−1αE[Θ0] if α > 1 (see (6.8)) and

a = c0E[Θ0] − E

⎡
⎣

∞∑
j=0

Θ j log

⎛
⎝
∣∣∣∣∣∣

∞∑
j=0

Θ j

∣∣∣∣∣∣

⎞
⎠−

∞∑
j=1

Θ j log

⎛
⎝
∣∣∣∣∣∣

∞∑
j=1

Θ j

∣∣∣∣∣∣

⎞
⎠
⎤
⎦ ,

if α = 1. It can be shown that these expressions coincide for α �= 1 with those in the
literature, see e.g. [28, Theorem 4.3]. As already noted, the expression of the location
parameter for α = 1 under the assumption (4.10) (or (4.15)) is new.
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Example 4.9 Consider again the linear process {Xt } from Sect. 3.3. For infinite order
moving average processes, [13] proved convergence of the finite dimensional distri-
butions of the partial sum process; [2] proved the functional convergence in the M1
topology (see [34, Section 12.3]) when c j ≥ 0 for all j ; using the S topology (which
is weaker than the M1 topology and makes the supremum functional not continuous),
[3] proved the corresponding result under more general conditions on the sequence
{c j } in the case α ≤ 1.

Our Theorem 4.5 directly applies to the case of a finite order moving aver-
age process. To consider the case of an infinite order moving average process,
we assume for simplicity that α < 1. Applying Theorem 4.5 to the point pro-
cess convergence in (3.9), one obtains the convergence of the partial sum process

Vn
d−→ V ′ = (V, {Ti }i∈N, {I (Ti )}i∈N) in (E, [0, 1]) where

V (·) =
∑

j∈Z c j

max j∈Z |c j |
∑
Ti≤·

PiΘ
ξ
i ,

and

I (Ti ) = V (Ti−) + PiΘ
ξ
i

max j∈Z |c j |

⎡
⎣ inf
k∈Z
∑
j≤k

c j , sup
k∈Z

∑
j≤k

c j

⎤
⎦ .

For an illustration consider the process

Xt = ξt + cξt−1.

In the case c ≥ 0, the convergence of partial sum process in M1 topology follows
from [2]. On the other hand, for negative c’s convergence fails in any of Skorohod’s
topology, but partial sums do have a limit in the sense described by our theorem as
can be also guessed from Fig. 1.

Remark 4.10 We do not exclude the case
∑

j∈Z Q j = 0 with probability one, as
happens for instance inExample 4.9with c = −1. In such a case, the càdlàg component
V is simply the null process.

Example 4.11 Consider a stationary GARCH(1, 1) process

Xt = σt Zt , σ 2
t = α0 + α1X

2
t−1 + β1σ

2
t−1, t ∈ Z,

where α0, α1, β1 > 0, and {Zt , t ∈ Z} is a sequence of i.i.d. random variables with
mean zero and variance one. Under mild conditions the process {Xt } is regularly
varying and satisfies Assumptions 1.1 and 3.5. These hold for instance in the case
of standard normal innovations Zt and sufficiently small parameters α1, β1, see [26,
Section 4.4]. Consider for simplicity such a stationary GARCH(1, 1) process with
tail index α ∈ (0, 1). Since all the conditions of Theorem 4.5 are met, its partial sum
process has a limit in the space E (cf. Fig. 2).
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Fig. 1 A simulated sample path of the process Sn in the case of linear sequence Xt = ξt − 0.7ξt−1 with
index of regular variation α = 0.7 in blue. Observe that due to downward “corrections” after each large
jump, in the limit the paths of the process Sn cannot converge to a càdlàg function
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Fig. 2 A simulated sample path of the process Sn in the case of GARCH(1, 1) process with parameters
α0 = 0.01, α1 = 1.45 and β1 = 0.1, and tail index α between 0.5 and 1
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Proof of Theorem 4.5. The proof is split into the cases α < 1 which is simpler, and
the case α ∈ [1, 2) where centering and truncation introduce additional technical
difficulties.

(a) Assume first that α ∈ (0, 1). We divide the proof into several steps.

Step 1 For every ε > 0, consider the functions sε, uε and vε defined on l̃0 by

sε(x̃) =
∑
j

x j1{|x j |>ε}, uε(x̃) = inf
k

∑
j≤k

x j1{|x j |>ε},

vε(x̃) = sup
k

∑
j≤k

x j1{|x j |>ε},

and define the mapping T ε : Mp([0, 1] × l̃0\{0̃}) → E by setting, for γ =∑∞
i=1 δti ,x̃i

,

T εγ =
⎛
⎝
(∑
ti≤t

sε(x̃i )

)

t∈[0,1]
, {ti : ‖x̃i‖∞ > ε}, {I (ti ) : ‖x̃i‖∞ > ε}

⎞
⎠ ,

where

I (ti ) =
∑
t j<ti

sε(x̃ j ) +
[∑
tk=ti

uε(x̃k),
∑
tk=ti

vε(x̃k)

]
.

Since m belongs Mp([0, 1] × l̃0\{0̃}), there is only a finite number of points (ti , x̃
i )

such that ‖x̃i‖∞ > ε and furthermore, every x̃i has at most finitely many coordinates
greater than ε. Therefore, the mapping T ε is well-defined, that is, T εγ is a proper
element of E .

Next, we define the subsets of Mp([0, 1] × l̃0\{0̃}) by

�1 =
{ ∞∑

i=1

δti ,x̃i
: |xij | �= ε, i ≥ 1, j ∈ Z

}
,

�2 =
{ ∞∑

i=1

δti ,x̃i
: 0 < ti < 1 and ti �= t j for every i > j ≥ 1

}
.

We claim that T ε is continuous on the set �1 ∩ �2. Assume that γn →w# γ =∑∞
i=1 δti ,x̃i

∈ �1 ∩ �2. By an adaptation of [30, Proposition 3.13], this convergence

implies that the finitely many points of γn in every set B bounded for d̃ ′ and such that
γ (∂B) = 0 converge pointwise to the finitely many points of γ in B. In particular,
this holds for B = {(t, x̃) : ‖x̃‖∞ > ε} and it follows that for all t1 < t2 in [0, 1]
such that γ ({t1, t2} × l̃0\{0̃}) = 0,

Mt1,t2(T
ε(γn)) → Mt1,t2(T

ε(γ )) in R
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and

Mt1,t2(−T ε(γn)) → Mt1,t2(−T ε(γ )) in R,

whith the local-maximum function Mt1,t2 defined as in (4.6). Since the set of all such
times is dense in [0, 1] and includes 0 and 1, an application of Theorem 4.3 gives that

T ε(γn) → T ε(γ )

in E endowed with the M2 topology.
Recall the point process N ′′ =∑∞

i=1 δ(Ti ,Pi Qi )
from (4.8). Since the mean measure

of
∑∞

i=1 δ(Ti ,Pi ) does not have atoms, it is clear that N ′′ ∈ �1 ∩ �2 a.s. Therefore, by

the convergence N ′′
n

d−→ N ′′ and the continuous mapping argument

S̃′
n,ε

d−→ S′
ε,

where S̃′
n,ε = T ε(N ′′

n ) and S′
ε = T ε(N ′′).

Step 2 Recall that Wi = ∑
j∈Z |Qi, j | and∑∞

i=1 δPiWi is a Poisson point process on

(0,∞]with intensity measure θE[Wα
i ]αy−α−1dy (see Remark 4.6). Since α < 1, one

can sum up the points {PiWi }, i.e.
∞∑
i=1

PiWi =
∞∑
i=1

∑
j∈Z

Pi |Qi, j | < ∞ a.s. (4.16)

Therefore, defining s(x̃) =∑ j x j , we obtain that the process

V (t) =
∑
Ti≤t

s(Pi Qi ), t ∈ [0, 1],

is almost surely a well-defined element in D and moreover, it is an α-stable Lévy
process. Further, we define an element V ′ in E([0, 1],R) by

V ′ = (V, {Ti }i∈N, {I (Ti )}i∈N) , (4.17)

where

I (Ti ) = V (Ti−) + [u(Pi Qi ), v(Pi Qi )
]
,

u(x̃) = inf
k

∑
j≤k

x j , v(x̃) = sup
k

∑
j≤k

x j .

Since for every δ > 0 there are at most finitely many points PiWi such that PiWi > δ

and diam(I (Ti )) = v(Pi Qi ) − u(Pi Qi ) ≤ PiWi , V ′ is indeed a proper element of
E a.s.
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We now show that, as ε → 0, the limits S′
ε from the previous step converge to V ′ in

(E,m) almost surely. Recall the uniform metric m∗ on E defined in (4.2). By (4.16)
and dominated convergence theorem

m∗(S′
ε, V

′) = sup
0≤t≤1

m(S′
ε(t), V

′(t)) ≤
∞∑
i=1

∑
j∈Z

Pi |Qi j |1{Pi |Qi j |≤ε} → 0, (4.18)

almost surely as ε → 0. Indeed, let Sε be the càdlàg part of S′
ε, i.e.

Sε(t) =
∑
Ti≤t

sε(Pi Qi ) =
∑
Ti≤t

∑
j∈Z

Pi Qi, j1{|Pi Qi, j |>ε}, t ∈ [0, 1].

If t /∈ {Ti } then

m(S′
ε(t), V

′(t)) = |Sε(t) − V (t)| ≤
∑
Ti≤t

∑
j∈Z

Pi |Qi, j |1{Pi |Qi j |≤ε}.

Further, when t = Tk for some k ∈ Z, by using (4.4) we obtain

m(S′
ε(t), V

′(t)) ≤ |(Sε(Tk−) + vε(Pk Qk)) − (V (Tk−) + v(Pk Qk))|
∨|(Sε(Tk−) + uε(Pk Qk)) − (V (Tk−) + u(Pk Qk))|.

(4.19)

The first term on the right-hand side of the equation above is bounded by

∣∣∣∣∣∣
∑
Ti<Tk

∑
j∈Z

Pi Qi, j1{Pi |Qi j |≤ε}

∣∣∣∣∣∣
+
∣∣∣∣∣∣
sup
l∈Z

∑
j≤l

Pk Qk, j1{Pi |Qi, j |>ε} − sup
l∈Z

∑
j≤l

Pk Qk, j

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∑
Ti<Tk

∑
j∈Z

Pi Qi, j1{Pi |Qi j |≤ε}

∣∣∣∣∣∣
+ sup

l∈Z

∣∣∣∣∣∣
∑
j≤l

Pk Qk, j1{Pi |Qk, j |>ε} −
∑
j≤l

Pk Qk, j

∣∣∣∣∣∣
≤
∑
Ti≤Tk

∑
j∈Z

Pi |Qi, j |1{Pi |Qi, j |≤ε}.

Since, by similar arguments, one can obtain the same bound for the second term on
the right-hand side of (4.19), (4.18) holds.

It now follows from (4.3) that

S′
ε → V ′

almost surely in (E,m).

Step 3 Recall that

Xn,i = (X(i−1)rn+1, . . . , Xirn )/an
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for i = 1, . . . , kn and let S̃′
n be an element in E defined by

⎛
⎝
⎛
⎝ ∑

i/kn≤t

s(Xn,i )

⎞
⎠

t∈[0,1]
, {i/kn}kni=1, {I (i/kn)}kni=1

⎞
⎠ ,

where

I (i/kn) =
∑
j<i

s(Xn, j ) + [u(Xn,i ), v(Xn,i )
]
.

By [8, Theorem 4.2] and the previous two steps, to show that

S̃′
n

d−→ V ′

in (E,mE ), it suffices to prove that, for all δ > 0,

lim
ε→0

lim sup
n→∞

P(mE (S̃′
n,ε, S̃

′
n) > δ) = 0. (4.20)

Note first that, by the same arguments as in the previous step, we have

m∗(S̃′
n,ε, S̃

′
n) ≤

knrn∑
j=1

|X j |
an

1{|X j |≤anε}.

By (4.3), Markov’s inequality and Karamata’s theorem ([9, Proposition 1.5.8])

lim sup
n→∞

P(mE (S̃′
n,ε, S̃

′
n) > δ) ≤ lim sup

n→∞
knrn
δan

E
[|X1|1{|X1|≤anε}

]

= lim
n→∞

n

δan
· αanεP(|X1| > anε)

1 − α

= α

(1 − α)δ
ε1−α.

This proves (4.20) since α < 1 and hence

S̃′
n

d−→ V ′

in (E,mE ).

Step 4 Finally, to show that the original partial sum process Sn (and therefore Vn since
α ∈ (0, 1)) also converges in distribution to V ′ in (E,mE ), by Slutsky argument it
suffices to prove that

mE (Sn, S̃
′
n)

P−→ 0. (4.21)
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Fig. 3 Restrictions of graphs ΓSn and ΓS̃′
n
on time intervals (

irn
n ,

(i+1)rn
n ] and ( i

kn
, i+1

kn
], respectively

Recall that kn = �n/rn� so irn
n ≤ i

kn
for all i = 0, 1, . . . , kn and moreover

i

kn
− irn

n
= i

kn

(
1 − knrn

n

)
≤ 1 − �n/rn�

n/rn
= 1 −

(
1 − {n/rn}

n/rn

)
≤ rn

n
. (4.22)

Let dn,i for i = 0, . . . , kn −1 be the Hausdorff distance between restrictions of graphs
ΓSn and ΓS̃′

n
on time intervals ( irnn ,

(i+1)rn
n ] and ( i

kn
, i+1

kn
], respectively (see Fig. 3).

First note that, by (4.22), the time distance between any two points on these graphs
is at most 2rn/n. Further, by construction, Sn and S̃′

n have the same range of values
on these time intervals. More precisely,

⋃

t∈(
irn
n ,

(i+1)rn
n ]

{z ∈ R : (t, z) ∈ ΓSn } =
⋃

t∈( i
kn

, i+1
kn

]
{z ∈ R : (t, z) ∈ ΓS̃′

n
}

= S̃′
n((i + 1)/kn).

Therefore, the distance between the graphs comes only from the time component, i.e.

dn,i ≤ 2rn
n

→ 0, as n → ∞,

for all i = 0, 1, . . . , kn − 1.
Moreover, if we let dn,kn be the Hausdorff distance between the restriction of the

graph ΓSn on ( knrnn , 1] and the interval (1, S̃′
n(1)), it holds that

dn,kn ≤ rn
n

∨
n∑

j=knrn+1

|X j |
an

P−→ 0,

as n → ∞. Hence, (4.21) holds since

mE (Sn, S̃
′
n) ≤

kn∨
i=0

dn,i ,

and this finishes the proof in the case α ∈ (0, 1).

123



An invariance principle for sums and record… 897

(b) Assume now that α ∈ [1, 2). As shown in Step 1. in the proof of (a), it holds that

S̃′
n,ε

d−→ S′
ε (4.23)

in E, where S̃′
n,ε = T ε(N ′′

n ) and S′
ε = T ε(N ′′).

For every ε > 0 define a càdlàg process Sn,ε by setting, for t ∈ [0, 1],

Sn,ε(t) =
�nt�∑
i=1

Xi

an
1{|Xi |/an>ε}.

Using the same arguments as in Step 4. in the proof of (a), it holds that, as n → ∞,

mE (Sn,ε, S̃
′
n,ε)

P−→ 0. (4.24)

Therefore, by Slutsky argument it follows from (4.24) and (4.23) that

Sn,ε
d−→ S′

ε (4.25)

in (E,mE ).
Since α ∈ [1, 2) we need to introduce centering, so we define the càdlàg process

Vn,ε by setting, for t ∈ [0, 1],

Vn,ε(t) = Sn,ε(t) − �nt�E
(
X1

an
1{ε<|X1|/an≤1}

)
.

From (1.4) we have, for any t ∈ [0, 1], as n → ∞,

�nt�E
(
X1

an
1{ε<|X1|/an≤1}

)
→ t

∫

{x : ε<|x |≤1}
xμ(dx). (4.26)

Since the limit function above is continuous and the convergence is uniform on [0, 1],
by Lemma 6.3 and (4.25) it follows that

Vn,ε
d−→ V ′

ε (4.27)

in E , where V ′
ε is given by (see Remark 4.2)

V ′
ε(t) = S′

ε(t) − t
∫

{x : ε<|x |≤1}
xμ(dx).

Let Vε be the càdlàg part of V ′
ε , i.e.,

Vε(t) =
∑
Ti≤t

sε(Pi Qi ) − t
∫

{x : ε<|x |≤1}
xμ(dx). (4.28)
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By Lemma 6.4, there exist an α-stable Lévy process V such that Vε converges uni-
formly almost surely (along some subsequence) to V .

Next, as in Step 2. in the proof of (a) we can define a element V ′ in E by

V ′ = (V, {Ti }i∈N, {I (Ti )}i∈N) , (4.29)

where
I (Ti ) = V (Ti−) + [u(Pi Qi ), v(Pi Qi )

]
, (4.30)

Also, one can argue similarly to the proof of (4.18) to conclude that

m∗(V ′, V ′
ε) ≤ ||V − Vε ||∞ + sup

i∈N

∑
j∈Z

Pi |Qi, j |1{Pi |Qi, j |≤ε}.

Now it follows from (4.3), (4.12) and a.s. uniform convergence of Vε to V that

V ′
ε → V ′ a.s. (4.31)

in (E,mE ).
Finally, by (4.27), (4.31) and [8, Theorem 4.2], to show that

Vn
d−→ V ′, (4.32)

in (E,mE ), it suffices to prove that, for all δ > 0,

lim
ε→0

lim sup
n→∞

P(mE (Vn,ε, Vn) > δ) = 0. (4.33)

But this follows from Assumption 4.4 and (4.3) since

m∗(Vn,ε, Vn) ≤ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

(
Xi

an
1{|Xi |/an≤ε} − E

[
Xi

an
1{|Xi |/an≤ε}

])∣∣∣∣∣ .

Hence (4.32) holds and this finishes the proof. ��

4.3 Supremum of the partial sum process

We next show that the supremum of the partial sum process converges in distribution
in D endowed with the M1 topology, where the limit is the “running supremum” of
the limit process V ′ from Theorem 4.5.

Let V be the Lévy process defined in (4.11) and define the process V+ on [0, 1] by

V+(t) =
{
V (t), t /∈ {Tj } j∈N
V (t−) + supk∈Z

∑
j≤k Pi Qi, j , t = Ti for some i ∈ N.
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Define V− analogously using infimum instead of supremum. Note that V+ and V−
need not be right-continuous at the jump times Tj . However, their partial supremum
or infimum are càdlàg functions.

Theorem 4.12 Under the same conditions as in Theorem 4.5, it holds that

(
sup
s≤t

Vn(s)

)

t∈[0,1]
d−→
(
sup
s≤t

V+(s)

)

t∈[0,1]
,

and

(
inf
s≤t

Vn(s)

)

t∈[0,1]
d−→
(
inf
s≤t

V−(s)

)

t∈[0,1]
,

jointly in D([0, 1],R) endowed with the M1 topology.

Proof We prove the result only for the supremum of the partial sum process since
the infimum case is completely analogous and joint convergence holds since we are
applying the continuous mapping argument to the same process.

Define the mapping sup : E([0, 1],R) → D([0, 1],R) by

sup(x ′)(t) = sup{z : z ∈ x ′(s), 0 ≤ s ≤ t}.

Note that sup(x ′) is non-decreasing and since for every δ > 0 there are at most finitely
many times t for which the diam(x ′(t)) is greater than δ, by [34, Theorem 15.4.1.] it
follows easily that this mapping is well-defined, i.e. that sup(x ′) is indeed an element
in D. Also, by construction,

sup(V ′) =
(
sup
s≤t

V+(s)

)

t∈[0,1]

and

sup(Vn) =
(
sup
s≤t

Vn(s)

)

t∈[0,1]
.

Define the subset of E by

� = {x ′ ∈ E : x ′(0) = {0}}

and assume that x ′
n → x ′ in (E,mE ), where x ′

n, x
′ ∈ �. By Theorem 4.3 it follows

that

sup(x ′
n)(t) = M0,t (x

′
n) → M0,t (x

′) = sup(x ′)(t)
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for all t in a dense subset of (0,1], including 1. Also, the convergence trivially holds
for t = 0 since sup(x ′

n)(0) = sup(x ′)(0) = 0 for all n ∈ N. Since sup(x ′) is non-
decreasing for all x ′ ∈ E, we can apply [34, Corollary 12.5.1] and conclude that

sup(x ′
n) → sup(x ′)

in D endowed with M1 topology. Since Vn, V ′ ∈ � almost surely, by Theorem 4.5
and continuous mapping argument it follows that

(
sup
s≤t

Vn(s)

)

t∈[0,1]
d−→
(
sup
s≤t

V+(s)

)

t∈[0,1]

in D endowed with M1 topology. ��
Remark 4.13 Note that when

∑
j∈Z Q j = 0 a.s., the limit for the supremum of the

partial sum process in Theorem 4.12 is simply a so called Fréchet extremal process.
For an illustration of the general limiting behavior of running maxima in the case of
a linear processes, consider again the moving average of order 1 from Example 4.9.
Figure 1 shows a path (dashed line) of the running maxima of the MA(1) process
Xt = ξt − 0.7ξt−1.

4.4 M2 convergence of the partial sum process

Wecan now characterize the convergence of the partial sumprocess in theM2 topology
in D([0, 1]) by an appropriate condition on the tail process of the sequence {Xt , t ∈ Z}.

Assumption 4.14 The sequence {Q j , j ∈ Z} satisfies

−
⎛
⎝∑

j∈Z
Q j

⎞
⎠

−
= inf

k∈Z
∑
j≤k

Q j ≤ sup
k∈Z

∑
j≤k

Q j =
⎛
⎝∑

j∈Z
Q j

⎞
⎠

+
a.s. (4.34)

i.e. −s(Q)− = u(Q) ≤ v(Q) = s(Q)+ a.s.

Note that this assumption ensures that
∑

j∈Z Q j �= 0 and that the limit process V ′
from Theorem 4.5 has sample paths in the subset D′ of E which was defined in (4.5).
By Lemma 4.1, Theorem 4.5 and the continuous mapping theorem, the next result
follows immediately.

Theorem 4.15 If, in addition to conditions in Theorem 4.5, Assumption 4.14 holds,
then

Vn
d−→ V

in D([0, 1],R) endowed with the M2 topology.
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Since the supremum functional is continuous with respect to the M2 topology, this
result implies that the limit of the running supremum of the partial sum process is the
running supremum of the limiting α-stable Lévy process as in the case of i.i.d. random
variables.

Example 4.16 For the linear process Xt = ∑
j∈Z c jξt− j from Sect. 3.3 and Exam-

ple 4.9, the corresponding sequence {Q j } was given in (3.8). It follows that the
condition (4.34) can be expressed as

−
⎛
⎝∑

j∈Z
c j

⎞
⎠

−
= inf

k∈Z
∑
j≤k

c j ≤ sup
k∈Z

∑
j≤k

c j =
⎛
⎝∑

j∈Z
c j

⎞
⎠

+
. (4.35)

This is exactly [4, Condition 3.2]. Note that (4.35) implies that

∣∣∣∣∣∣
∑
j∈Z

c j

∣∣∣∣∣∣
> 0.

5 Record times

In this section we study record times in a stationary sequence {Xt , t ∈ Z}. Since record
times remain unaltered after a strictly increasing transformation, the main result below
holds for stationary sequences with a general marginal distribution as long as they can
be monotonically transformed into a regularly varying sequence.

We start by introducing the notion of records for sequences in l̃0. For y ≥ 0 and
x = {x j } ∈ l̃0 define

Rx(y) =
∞∑

j=−∞
1{x j>y∨supi< j xi },

representing the number of records in the sequence x larger than y, which is finite for
x ∈ l̃0. For notational simplicity, we suppress notation x̃ in this section.

Let γ = ∑∞
i=1 δti ,xi ∈ Mp([0,∞) × l̃0 \ {0̃}), where xi = {xij } ∈ l̃0. Define, for

t > 0

Mγ (t) = sup
ti≤t

‖xi‖∞, Mγ (t−) = sup
ti<t

‖xi‖∞,

where we set sup ∅ = 0 for convenience. Next, let Rγ be the (counting) point process
on (0,∞) defined by

Rγ =
∑
i

δti R
xi (Mγ (ti−)),

hence for arbitrary 0 < a < b
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902 B. Basrak et al.

Rγ (a, b] =
∑

a<ti≤b

∞∑
j=−∞

1{xij>Mγ (ti−)∨supk< j x
i
k }.

Consider the following subset of Mp([0,∞) × l̃0\{0̃})

A =
{
γ =

∞∑
i=1

δti ,xi : such that Mγ (t) > 0 for all t > 0, while

all ti ’s are mutually different as well as all nonzero xij ’s

}
.

The space Mp((0,∞)) is endowed with the w# topology which is equivalent to
the usual vague topology since (0,∞) is locally compact and separable.

Lemma 5.1 The mapping γ �→ Rγ from Mp([0,∞) × l̃0\{0̃}) to Mp((0,∞)) is
continuous at every γ ∈ A.

Proof Fix an arbitrary γ ∈ A, and assume a sequence {γn} in Mp([0,∞) × l̃0\{0̃})
satisfies γn →w# γ . Wemust prove that Rγn converges vaguely to Rγ inMp((0,∞)).
By the Portmanteau theorem, it is sufficient to show that that for all 0 < a < b ∈ {ti }c

Rγn (a, b] → Rγ (a, b] ,

as n → ∞. For 0 < a < b ∈ {ti }c there are finitely many time instances, say
ti1, . . . , tik ∈ (a, b] such that ‖xil‖∞ > Mγ (a) > 0, hence

Rγ (a, b] =
∑

ti∈(a,b]
Rxi (Mγ (ti−)) =

k∑
l=1

Rxil (Mγ (til−)). (5.1)

For all γn =∑∞
i=1 δtni ,xn,i with n large enough, there also exist exactly k (depending on

a and b) time instances tni1 , . . . , t
n
ik

∈ (a, b] such that ‖xn,il‖∞ > Mγ (a). Moreover,

they satisfy xn,il → xil and tnil → til for l = 1, . . . k as n → ∞. Hence for n large
enough

Rγn (a, b] =
∑

tni ∈(a,b]
Rxn,i

(Mγn (tni −)) =
k∑

l=1

Rxn,il
(Mγn (tnil −)). (5.2)

Assume yn → y > 0 and xn → x = {x j } where the non zero x j are pairwise
distinct and x j �= y for all j ∈ Z. Then, it is straightforward to check that

Rxn (yn) → Rx(y).
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Observe further that for the choice of til , t
n
il
wemade above, it holds that Mγn (tnil −) →

Mγ (til−) since ti ’s are all different. Together with (5.1) and (5.2) this yields

Rγn (a, b] → Rγ (a, b]

as n → ∞. ��

Since we are only interested in records, for convenience we consider a nonnegative
stationary regularly varying sequence {Xt , t ∈ Z}.

Adopting the notation of Sect. 3.2, we denote

N ′′
n =

∞∑
i=1

δ(i/kn ,Xn, j ). (5.3)

We will also need the point process Nn defined by

Nn =
∞∑
i=1

δ(i/n,Xi /an).

The process Nn can be viewed as a point process on [0,∞) ×R\{0}, but since R can
be embedded in l̃0 (by identifying a real number x �= 0 to a sequence with exactly
one nonzero coordinate equal to x), in the sequel we treat it as a process on the space
[0,∞) × l̃0\{0̃}.

As in the previous section, we will assume that

N ′′
n

d−→ N ′′ =
∞∑
i=1

δ(Ti ,Pi Qi )
, (5.4)

as n → ∞, where N ′′ has the same form as in (4.8), but on the space
Mp([0,∞) × l̃0\{0̃}). Forβ-mixing and linear processes, this convergence follows by
direct extension of results in Sect. 3 from the state space [0, 1]×l̃0\{0̃} to [0, T ]×l̃0\{0̃}
for arbitrary T > 0.

Theorem 5.2 Let {Xt , t ∈ Z} be a stationary regularly varying sequence with tail
index α > 0. Assume that the convergence in (5.4) holds and moreover that

P(all nonzero Q1, j ’s are mutually different) = 1.

Then

RNn

d−→ RN ′′ ,
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in Mp((0,∞)). Moreover, the limiting process is a compound Poisson process with
representation

RN ′′ =
∑
i∈Z

δτi κi ,

where
∑

i∈Z δτi is a Poisson point process on (0,∞) with intensity measure x−1dx
and {κi } is a sequence of i.i.d. random variables independent of it with the same
distribution as the integer valued random variable R Q1(1/ζ ) where ζ is a Pareto
random variable with tail index α, independent of Q1.

Proof Since they are constructed from the same sequence X1, X2, . . ., the record
values of the point process N ′′

n in (5.3) correspond to the record values of the point
process Nn . Using (5.4) and the additional assumption on the Q’s, by Lemma 5.1 it
follows that

RN ′′
n

d−→ RN ′′ . (5.5)

Note that record times i/n of the process Nn appear at slightly altered times (�i/rn�+
1)/kn in the process N ′′

n . However, asymptotically the record times are very close.
Indeed, take f ∈ C+

K (0,∞), then f has a support on the set of the form (a, b],
0 < a < b, which can be enlarged slightly to a set (a− ε, b+ ε], where 0 < a− ε for
a sufficiently small ε > 0. Clearly, f is continuous on that set, even uniformly. Note
further that for any such ε there is an integer n0 such that for n ≥ n0, i/n ∈ (a, b]
implies (�i/rn� + 1)/kn ∈ (a − ε, b + ε], and vice versa. Moreover, by uniform
continuity of the function f , n0 can be chosen such that for n ≥ n0,

∣∣∣∣ f
(
i

n

)
− f

(�i/rn� + 1

kn

)∣∣∣∣ ≤ ε.

Consider now the difference between Laplace functionals of the point processes RN ′′
n

and RNn for a function f ∈ C+
K (0,∞) as above. Since ε above can be made arbitrarily

small, it follows that

∣∣∣E[e− f (RN ′′
n
)] − E[e− f (RNn )]

∣∣∣→ 0,

which together with (5.5) yields the convergence statement of the theorem.
Consider now a point measure γ =∑∞

i=1 δti ,xi ∈ Mp([0,∞) × l̃0\{0̃}), but such
that all xi have only nonnegative components and all ti ’s are mutually different. We
say that a point measure γ has a record at time t if (t, x) ∈ {(ti , xi ) : i ≥ 1} and
Mγ (t−) = supti<t ‖xi‖∞ < ‖x‖∞. Taking the order into account, at time t we
will see exactly Rx(Mγ (t−)) records. Similarly, a point measure η = ∑∞

i=1 δti ,xi ∈
Mp([0,∞) × [0,∞)) has a record at time t with corresponding record value x , if
(t, x) ∈ {(ti , xi ) : i ≥ 1} and η([0, t) × [x,∞)) = 0.
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To prove the representation of the limit, observe that N ′′ = ∑∞
i=1 δ(Ti ,Pi Qi )

has
records at exactly the same time instances as the process M0 = ∑∞

i=1 δ(Ti ,Pi ), since
by the assumptions of the theorem and by definition of the sequences Qi , all of their
components are in [0, 1] with one of them being exactly equal to 1. Because M0 is a
Poisson point process on [0,∞) × (0,∞] with intensity measure dx × d(−θy−α),
it has infinitely many points of in any set of the form [a, b] × [0, ε] with a < b and
ε > 0. Hence, one can a.s. write the record times of M0 as a double sided sequence
τn, n ∈ Z, such that τn < τn+1 for each n. Fix an arbitrary s > 0, and assume without
loss of generality that τ1 represents the first record time strictly greater than s, i.e.
τ1 = inf{τi : τi > s}. Denote the corresponding successive record values by Un ; they
clearly satisfy Un < Un+1 and Un = supTi≤τn

Pi and U0 = supTi≤s Pi . According
to [30, Proposition 4.9],

∑
n∈Z δτn is a Poisson point process with intensity x−1dx

on (0,∞). Apply now [30, Proposition 4.7 (iv)] (note that U0 corresponds to Y (s)
in the notation of that proposition) to prove that {Un/Un−1, n ≥ 1} is a sequence of
i.i.d. random variables with a Pareto distribution with tail index α. Because the record
times τn and record valuesUn for n ≥ 1 of the point process M0 match the records of
point process N ′′ =∑∞

i=1 δ(Ti ,Pi Qi )
on the interval (s,∞), we just need to count how

many of them appear at any give time τn which are larger than the previous record
Un−1. If, say, τn = Ti , that number corresponds to the number of Qi j ’s which after
multiplication by the corresponding Un = Pi represent a record larger than Un−1.
Hence, that random number has the same distribution as

κ = R Q(U1/U0).

Recall that s > 0was arbitrary.Nowsince the point process
∑∞

i=1 δ(Ti ,Pi ) and therefore
sequence {Un/Un−1, n ≥ 1} is independent of the i.i.d. random elements {Qi } and
since U1/U0 has a Pareto distribution with tail index α, the claim follows. ��

Example 5.3 For an illustration of the previous theorem, consider the moving average
process of order 1

Xt = ξt + cξt−1,

for a sequence of i.i.d. nonnegative random variables {ξt , t ∈ Z}with regularly varying
distribution and the tail indexα > 0. Assume further that c > 1. By (3.8), the sequence
{Q j }, as a random element in the space l̃0, is in this case equal to the deterministic
sequence {. . . , 0, 1/c, 1, 0, . . .}. Intuitively speaking, in each cluster of extremely large
values, there are exactly two successive extreme values with the second one c times
larger that the first. Therefore, each such cluster can give rise to at most 2 records.
By straightforward calculations, the random variables κi from Theorem 5.2 have the
following distribution

P(κi = 2) = P(1/ζ ≤ 1/c) = P(ζ ≥ c) = 1

cα
= 1 − P(κi = 1).

123



906 B. Basrak et al.

6 Lemmas

6.1 Metric on the space l̃0

Let (X, d) be a metric space, we define the distance between x ∈ X and subset B ⊂ X

by d(x, B) = inf{d(x, y) : y ∈ B}. Let ∼ be an equivalence relation on X and let X̃
be the induced quotient space. Define a function d̃ : X̃ × X̃ → [0,∞) by:

d̃(x̃, ỹ) = inf{d(x ′, y′) : x ′ ∈ x̃, y′ ∈ ỹ},

for all x̃, ỹ ∈ X̃.

Lemma 6.1 Let (X, d) be a complete separable metric space. Assume that for all
x̃, ỹ ∈ X̃ and all x, x ′ ∈ x̃ we have

d(x, ỹ) = d(x ′, ỹ). (6.1)

Then d̃ is a pseudo-metric which makes X̃ a separable and complete pseudo-metric
space.

Proof To prove that d̃ is a pseudo-metric, the only nontrivial step is to show that d̃
satisfies the triangle inequality, but that is implied by Condition (6.1). Separability is
easy to check and it remains to prove that (X̃, d̃) is complete.

Let {x̃n} be a Cauchy sequence in (X̃, d̃). Then we can find a strictly increasing
sequence of nonnegative integers {nk} such that

d̃(x̃m, x̃n) <
1

2k+1 ,

for all integers m, n ≥ nk and for every integer k ≥ 1. We define a sequence of
elements {yn} in X inductively as follows:

– Let y1 be an arbitrary element of x̃n1 .
– For k ≥ 1 let yk+1 be an element of x̃nk+1 such that d(yk, yk+1) < 1

2k+1 . Such an
yk+1 exists by Condition (6.1).

Then the sequence {yn} is a Cauchy sequence in (X, d). Indeed, for every k ≥ 1 and
for all m, n ≥ k we have that

d(ym, yn) ≤
m∨n−1∑
l=m∧n

d(yl , yl+1) <

∞∑
l=k

1

2l+1 = 1

2k
.

Since (X, d) is complete, the sequence {yn} converges to some x ∈ X. Let x̃ be
the equivalence class of x . It follows that the sequence {x̃nk } converges to x̃ because
d̃(x̃nk , x̃) ≤ d(yk, x) by definition od d̃. Finally, since {x̃n} is a Cauchy sequence,
it follows easily that the whole sequence {x̃n} also converges to x̃ , hence (X̃, d̃) is
complete. ��
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Proof of Lemma 2.1. Since we have ‖θkx−θ l y‖∞ = ‖θk−l x− y‖∞ for all x, y ∈ l0
and k, l ∈ Z, it follows that

d̃(x̃, ỹ) = inf{‖θkx − y‖∞ : k ∈ Z} = inf{‖x′ − y‖∞ : x′ ∈ x̃},

for all x̃, ỹ ∈ l̃0, and all x ∈ x̃, y ∈ ỹ. In view of Lemma 6.1 it only remains to show
that d̃ is a metric, rather than just a pseudo-metric.

Assume that d̃(x̃, ỹ) = 0 for some x̃, ỹ ∈ l̃0. Then, for arbitrary x ∈ x̃, y ∈ ỹ,
there exists a sequence of integers {kn} such that ‖θkn x − y‖∞ → 0, as n → ∞. It
suffices to show that the sequence {kn} is bounded. Indeed, by passing to a convergent
subsequence it follows that there exists an integer k such that y = θkx, hence x̃ = ỹ.
Suppose now that the sequence {kn} is unbounded and that y �= 0 (the case when
y = 0 is trivial). Without loss of generality, we can assume that kn → ∞, as n → ∞.
Since y �= 0 and lim|i |→∞ ‖yi‖ = 0, there exists integers i0 and N > 0 such that
‖yi0‖ = ‖ y‖∞ > 0 and ‖yi‖ < ‖ y‖∞/4 for |i | ≥ N . Since ‖θkn x − y‖∞ → 0
there exists an integer n0 > 0 such that ‖θkn x − y‖∞ < ‖ y‖∞/4 for n ≥ n0. By our
assumption, we can find an integer n ≥ n0 such that kn − kn0 + i0 ≥ N , and it follows
that

3

4
‖ y‖∞ < ‖(θkn x)i0‖ = ‖xkn+i0‖ = ‖(θkn0 x)kn−kn0+i0‖ <

1

2
‖ y‖∞,

which is a contradiction. Hence, the sequence {kn} is bounded. ��

6.2 Assumption 3.5 is a consequence of β-mixing

The β-mixing coefficients of the sequence {X j , j ∈ Z} are defined by

βn = 1

2
sup
A,B

∑
i∈I

∑
j∈J

|P(Ai ∩ Bj ) − P(Ai )P(Bj )|,

where the supremum is taken over all finite partitions A = {Ai , i ∈ I } and B =
{Bj , j ∈ J } such that the sets Ai are measurable with respect to σ(Xk, k ≤ 0) and
the sets Bj are measurable with respect to σ(Xk, k ≥ n). See [32, Section 1.6].

Lemma 6.2 Assume that the sequence {X j } is β-mixing with coefficients {β j , j ∈ N}.
Assume that there exists a sequence rn satisfying Assumption 1.1 and a sequence �n
such that

lim
n→∞

�n

rn
= lim

n→∞
n

rn
β�n = 0. (6.2)

Then Assumption 3.5 holds.

Proof Write Xi, j for (Xi , . . . , X j ). Set kn = �n/rn� and let X̃n be the vector of length
kn(rn − �n) which concatenates all the subvectors X( j−1)rn+1, jrn−�n , j = 1, . . . , kn .
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Let X̃∗
n be the vector build with independent blocks X∗

( j−1)rn+1, jrn−�n
which each

have the same distribution has the corresponding original blocks X( j−1)rn+1, jrn−�n .
Applying [17, Lemma 2] and (6.2), we obtain

dT V (L(X̃n),L(X̃∗
n)) ≤ knβ�n = o(1). (6.3)

Set X̃n,i = a−1
n X( j−1)rn+1, jrn−�n and X̃∗

n,i = a−1
n X∗

( j−1)rn+1, jrn−�n
and define the

following point processes

Ñ ′′
n =

kn∑
i=1

δ
(i/kn ,X̃n,i )

, Ñ∗
n =

kn∑
i=1

δ(i/kn ,X∗
n,i )

.

Let f be a nonnegative function defined on [0, 1] × �̃0. Since the exponential of a
negative function is less than 1, by definition of the total variation distance, the bound
(6.3) yields

∣∣∣E
[
e−Ñ ′′

n ( f )
]

− E

[
e−Ñ∗

n ( f )
]∣∣∣ ≤ dT V (L(X̃n),L(X̃∗

n)) = o(1). (6.4)

We must now check that the same limit holds with the full blocks instead of the
truncated blocks. Under Assumption 1.1 (which holds for any sequence smaller than
rn hence for �n), we know by [6, Proposition 4.2] that for every ε > 0 and every
sequence {�n} such that �n → ∞ and �n F̄(an) → 0,

lim
n→∞

P(max1≤i≤�n ‖Xi‖ > εan)

�nP(‖X0‖ > an)
= θε−α. (6.5)

Then, applying (6.5) yields,

P

(
max

1≤ j≤kn
max

1≤i≤�n
‖X jrn−i+1‖ > εan

)
≤ knP

(
max

1≤i≤�n
‖Xi‖ > εan

)

= O(kn�nP(‖X0‖ > an))

= O(�n/rn) = o(1).

Assume now that f depends only on the components greater than some ε > 0 in
norm. Then N ′′

n ( f ) = Ñ ′′
n ( f ) unless at least one component at the end of one block

is greater than ε in norm. This yields

∣∣∣E[e−N ′′
n ( f )] − E[e−Ñ ′′

n ( f )]
∣∣∣ ≤ P

(
max

1≤ j≤kn
max

1≤i≤�n
‖X jrn−i+1‖ > εan

)
= o(1).

The same relation also holds for the independent blocks. Therefore, Assumption 3.5
holds. ��
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6.3 On continuity of addition in E

The next lemma gives sufficient conditions for continuity of addition in the space
E([0, 1],R).

Lemma 6.3 Suppose that {xn, n ∈ N} is a sequence in D([0, 1],R) and x ′ =
(x, S, {I (t) : t ∈ S}) an element in E such that xn → x ′ in E . Suppose also that
{bn, n ∈ N} is a sequence in D([0, 1],R) which converges uniformly to a continuous
function b on [0, 1]. Then the sequence {xn − bn} converges in (E,mE ) to an element
x ′ − b ∈ E defined by

x ′ − b = (x − b, S, {I (t) − b(t) : t ∈ S}).

Proof Recall the definiton of mE given in (4.1). By Whitt [34, Theorem 15.5.1.] to
show that xn − bn → x ′ − b in E, it suffices to prove that

sup
(t,z)∈Γxn−bn

‖(t, z) − Γx ′−b‖∞ → 0. (6.6)

Take an arbitrary ε > 0. Note that b is uniformly continuous so by the conditions of
the lemma there exists 0 < δ ≤ ε and n0 ∈ N such that

(i) |t − s| < δ ⇒ |b(t) − b(s)| < ε,

(ii) mE (xn, x ′) < δ, for all n ≥ n0 and
(iii) |bn(t) − b(t)| < ε, for all t ∈ [0, 1].
Also, since b is continuous, it easily follows that |bn(t)− bn(t−)| ≤ 2ε for all n ≥ n0
and t ∈ [0, 1].

Take n ≥ n0 and a point (t, z) ∈ Γxn−bn , i.e.

z ∈ [(xn(t−) − bn(t−)) ∧ (xn(t) − bn(t)), (xn(t−) − bn(t−)) ∨ (xn(t) − bn(t))].

Since |bn(t) − bn(t−)| ≤ 2ε there exists z′ ∈ [xn(t−) ∧ xn(t), xn(t−) ∨ xn(t)] (i.e.
(t, z′) ∈ Γxn ), such that

|(z′ − bn(t)) − z| ≤ 2ε.

Next, since mE (xn, x ′) < δ, there exists a point (s, y) ∈ Γx ′ such that

|s − t | ∨ |y − z′| < δ.

Note that (s, y − b(s)) ∈ Γx ′−b and by previous arguments

|(y − b(s)) − z| = |(y − b(s)) − z + (z′ − bn(t)) − (z′ − bn(t)) + b(t) − b(t)|
≤ |y − z′| + |b(t) − b(s)| + |bn(t) − b(t)| + |(z′ − bn(t)) − z|
≤ δ + ε + ε + 2ε

≤ 5ε.
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Also, |s − t | < δ ≤ ε. Hence, for all n ≥ n0,

sup
(t,z)∈Γxn−bn

‖(t, z) − Γx ′−b‖∞ ≤ 5ε.

and since ε was arbitrary, (6.6) holds. ��

6.4 A lemma for partial sum convergence in E

Lemma 6.4 Let α ∈ [1, 2) and let the assumptions of Theorem 4.5 hold. Then there
exists an α-stable Lévy process V on [0, 1] such that, as ε → 0, the process Vε defined
in (4.28) converges uniformly a.s. (along some subsequence) to V .

Proof Recall that

Vε(t) =
∑
Ti≤t

sε(Pi Qi ) − t
∫

{x : ε<|x |≤1}
xμ(dx)

where

μ(dx) = pαx−α−11(0,∞)(x)dx + (1 − p)α(−x)−α−11(−∞,0)(x)dx

for p = P(Θ0 = 1). We first show that the centering term can be expressed as an
expectation of a functional of the limiting point process N ′′. More precisely, we show
that for all ε > 0

∫

{x : ε<|x |≤1}
xμ(dx) = θ

∫ ∞

0
E

⎡
⎣y
∑
j∈Z

Q j1{ε<y|Q j |≤1}

⎤
⎦αy−α−1dy. (6.7)

First, as shown in [14, Theorem 3.2, Equation (3.13)] it holds that

θE

⎡
⎣∑

j∈Z
Q j |Q j |α−1

⎤
⎦ = 2p − 1, (6.8)

so by Fubini’s theorem, if α > 1

θ

∫ ∞
0

E

⎡
⎣y
∑

j∈Z
Q j1{ε<y|Q j |≤1}

⎤
⎦αy−α−1dy = αθE

⎡
⎣∑

j∈Z
Q j

∫ |Q j |−1

ε|Q j |−1
y−αdy

⎤
⎦

= α

α − 1
(ε−α+1 − 1)θE

⎡
⎣∑

j∈Z
Q j |Q j |α−1

⎤
⎦

= α

α − 1
(ε−α+1 − 1)(2p − 1),
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and if α = 1 the same term equals log(ε−1)(2p − 1). Note that the use of Fubini’s
theorem is justified since the same calculation as above shows that the above integral
converges absolutely since E[∑ j∈Z |Q j |α] < ∞. The equality in (6.7) now follows
by the definition of the measure μ. Hence, for all t ∈ [0, 1]

Vε(t) =
∑
Ti≤t

sε(Pi Qi ) − tθ
∫ ∞

0
E

⎡
⎣y
∑
j∈Z

Q j1{ε<y|Q j |≤1}

⎤
⎦αy−α−1dy.

Recall from Remark 4.6 that we can define W = ∑
j∈Z |Q j |, Wi = ∑

j∈Z |Qi, j |
so that {Wi , i ≥ 1} is a sequence of i.i.d. random variables with the same distribution
asW and E[Wα

i ] < ∞ and that
∑∞

i=1 δPiWi is a Poisson point process on (0,∞] with
intensity measure θE[Wα

1 ]αy−α−1dy. In particular, for every δ > 0 there are almost
surely at most finitely many points PiWi such that PiWi > δ. For δ, ε > 0, define

mε,δ = θ

∫ ∞

0
E

⎡
⎣y
∑
j∈Z

Q j1{ε<y|Q j |≤1, δ<yW }

⎤
⎦αy−α−1dy.

Note that limε→0 mε,δ = m0,δ for all δ > 0 by the dominated convergence theorem.
Indeed, if α = 1 we have that

θ

∫ ∞

0
E

⎡
⎣y
∑
j∈Z

|Q j |1{y|Q j |≤1, δ<yW }

⎤
⎦αy−α−1dy ≤ θE

⎡
⎣∑

j∈Z
|Q j |

∫ 1
|Q j |

δ∧1
W

y−1dy

⎤
⎦

= θE

⎡
⎣∑

j∈Z
|Q j | log(|Q j |−1) + W logW + log((δ ∧ 1)−1)W

⎤
⎦ ,

which is finite by assumption (4.10), and if α > 1 similar calculation using the
assumption E[Wα] < ∞ justifies the use of the dominated convergence theorem.

Since for every δ > 0 there a.s. exists at most finitely many points PiWi such that
PiWi > δ, for every ε ≥ 0 we can define the process Vε,δ in D[0, 1] by

Vε,δ(t) =
∑
Ti≤t

sε(Pi Qi )1{δ<PiWi } − tmε,δ

=
∑
Ti≤t

∑
j∈Z

Pi Qi, j1{ε<Pi |Qi, j |, δ<PiWi } − tmε,δ.

Furthermore, for every fixed δ > 0, as ε → 0, Vε,δ converges uniformly almost surely
to V0,δ .

Next, we prove that for any positive sequence {δk} with δk ↘ 0 as k → ∞, V0,δk
converges uniformly almost surely to a process V in D([0, 1]). Note first that by
[14, Theorem 3.1] the finite dimensional distributions of V0,δ converge to those of an
α-stable Lévy process.
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Since
∑

i≥1 δTi ,Pi ,Qi
is a Poisson point process on [0, 1]× (0,∞]× l̃0, the process

V0,δ has independent increments with respect to δ, that is for every δ < δ′, V0,δ −V0,δ′
is independent of V0,δ′ . Moreover, since V0,δ −V0,δ′ is a Poisson integral, we have that

var(V0,δ(1) − V0,δ′(1)) = θ

∫ ∞

0
y2E

⎡
⎢⎣
⎛
⎝∑

j∈Z
Q j

⎞
⎠

2

1{δ<yW≤δ′}

⎤
⎥⎦αy−α−1dy

≤ θE

[
W 2
∫ δ′/W

0
αy−α+1dy

]
= θα(δ′)2−α

(2 − α)
E[Wα].

Therefore, limδ′→0 var(V0,δ(1) − V0,δ′(1)) = 0 and now arguing exactly as in the
proof of [31, Proposition 5.7, Property 2] shows that for any positive sequence {δk}
with δk ↘ 0, {V0,δk } is almost surely a Cauchy sequence in D([0, 1]) with respect to
the supremum metric ‖ · ‖∞. Since the space D([0, 1]) is complete under this metric,
we obtain the existence of the process V = {V (t), t ∈ [0, 1]} with paths in D([0, 1])
almost surely and such that limk→∞ ‖V0,δk − V ‖∞ = 0 almost surely.

There only remains to prove that for all u > 0,

lim
δ→0

lim sup
ε→0

P(‖Vε − Vε,δ‖∞ > u) = 0. (6.9)

Indeed, this would imply that ‖Vε − V ‖∞ → 0 in probability and hence that, along
some subsequence, Vε converges to V uniformly almost surely. Since for δ ≤ 1,
yW =∑ j∈Z y|Q j | ≤ δ implies that y|Q j | ≤ δ ≤ 1 for all j ∈ Z, we have that

Vε(t) − Vε,δ(t) =
∑
Ti≤t

∑
j∈Z

Pi Qi, j1{ε<Pi |Qi, j |, PiWi≤δ}

− tθ
∫ ∞

0
E

⎡
⎣y
∑
j∈Z

Q j1{ε<y|Q j |, yW≤δ}

⎤
⎦αy−α−1dy.

The process Vε − Vε,δ is a càdlàg martingale, thus applying Doob-Meyer’s inequality
yields

P
(‖Vε − Vε,δ‖∞ > u

) ≤ u−2 var(Vε(1) − Vε,δ(1))

= u−2θ

∫ ∞

0
y2E

⎡
⎢⎣
⎛
⎝∑

j∈Z
Q j1{ε<y|Q j |, yW≤δ}

⎞
⎠

2
⎤
⎥⎦αy−α−1dy

≤ u−2θE

[
W 2
∫ δ/W

0
αy−α+1dy

]
= θαδ2−α

u2(2 − α)
E[Wα]

and hence (6.9) holds. ��
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