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Abstract We provide a decomposition of the trace of the Brownian motion into a
simple path and an independent Brownian soup of loops that intersect the simple
path. More precisely, we prove that any subsequential scaling limit of the loop erased
random walk is a simple path (a new result in three dimensions), which can be taken
as the simple path of the decomposition. In three dimensions, we also prove that
the Hausdorff dimension of any such subsequential scaling limit lies in (1, 5

3 ]. We
conjecture that our decomposition characterizes uniquely the law of the simple path.
If so, our results would give a new strategy to the existence of the scaling limit of the
loop erased random walk and its rotational invariance.

Mathematics Subject Classification 60K40 · 60D05 · 60G50 · 60K35

1 Introduction

How does the Brownian motion in R
d look like? This question has fascinated proba-

bilists and mathematical physicists for a long time, and it continues to be an unending
source of challenging problems. Not too long after the existence of the Brownian
motion was rigorously shown by Wiener in 1923, Lévy [23] proved that a two dimen-
sional Brownian motion intersects itself almost surely, Kakutani [8] showed that a
d-dimensional Brownian motion is almost surely a simple path when d ≥ 5, Dvoret-
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616 A. Sapozhnikov, D. Shiraishi

zky et al. [5] verified that a Brownian motion intersects itself in three but not in four
dimensions almost surely. Much later, Taylor and Fristedt [6,32] found that the Haus-
dorff dimension of the set of double points of the Brownian motion is two in two
dimensions and one in three dimensions.

In this paper, we are interested in the nature of self-intersections, more specifically,
how loops formed by the Brownian motion are distributed in space. Consequently,
from our point of view, we may focus on the case of two and three dimensions. We
give an explicit representation of such loops by establishing a decomposition of the
Brownian path into independent simple path and a set of loops. In order to explain it,
let us begin with a similar problem for a simple random walk.

Consider a simple random walk (SRW) on the rescaled lattice 1
nZ

d started at the
origin and stopped upon exiting from the unit ball. Its loop erasure, the loop erased
random walk (LERW), is a simple path connecting the origin with the complement of
the ball obtained from the random walk path by chronologically erasing all its loops.
Remarkably, the law of these loops is very explicit. They come from a Poisson point
process of discrete loops (a random walk loop soup) on 1

nZ
d independent from the

loop erasure [17, Sect. 9]. More precisely, if we denote the loop erased random walk
by LEWn and an independent randomwalk loop soup in the unit ball by LSn , the exact
definitions will come later (see Sects. 2.1 and 2.2), then

the union of LEWn and the loops fromLSn intersecting LEWn has the same law as
the trace of SRW on 1

nZ
dstarted at 0 and stopped upon exiting from the unit ball.

(1.1)
As the Brownian motion is the scaling limit of a simple random walk, it is natural

to start by looking for an analogue of the random walk path decomposition in the
continuous setting. However, unlike the random walk, the Brownian motion has a
dense set of loops and it is not clear how to remove them in chronological order.
Zhan proved in [35] the existence of a loop erasure of planar Brownian motion, but
the uniqueness is missing, and three dimensions is for the time being out of reach.
Nevertheless, we are able to get an analogue of (1.1) for the Brownian motion by
passing suitably to the large-n limit on the both sides of the decomposition (1.1).
First of all, after interpolating linearly, we may view all the lattice paths and loops
as continuous curves and loops of R

d , more usefully, as elements in the metric space
of all compact subsets of the closed unit ball with the Hausdorff metric, denote it by
(KD, dH ). Let K be any weak subsequential limit of LEWn in (KD, dH ), and BS the
limit of LSn , which turns out to be the Brownian loop soup of Lawler andWerner [21].

Theorem 1.1 In 2 and 3 dimensions, the union of K and all the loops from an inde-
pendentBS that intersectK has the same law in (KD, dH ) as the trace of the Brownian
motion stopped on exiting from the unit ball.

A related result has been proved in [19] for the “filling” of the planar Brownian path,
where the filling of a closed set A inR

2 is the union of Awith all the bounded connected
components of R

2\A. It is shown there that the filling of the union of K and the loops
from BS intersecting K has the same law as the filling of the Brownian path. However,
the filling of a random set does not characterize its law. For instance, the filling of the
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SLE6 started at 0 up to the first exit time from the unit disc has the same law as the
filling of the Brownian path [19, Theorem 9.4], while the law of SLE6 as a random
compact subset of the disc is different from that of the Brownian trace.

In two dimensions, the sequence LEWn converges to the Schramm–Loewner evo-
lution with parameter 2 (SLE2) [18], a simple path [26] with Hausdorff dimension 5

4
[2]. In particular, Theorem 1.1 immediately gives a decomposition of the planar Brow-
nian path into a simple path and loops. Unfortunately, no explicit expression for the
scaling limit of the LERW is known or conjectured in three dimensions. Kozma [11]
proved that the sequence LEW2n is Cauchy in (KD, dH ), which gives the existence of
the scaling limit as a random compact subset of the ball, and, topologically, this is all
that has been known up to now. Our next main result shows that in three dimensions
K is a simple path.

Theorem 1.2 Let γ s and γ e be the end points of a simple path γ , and define

� = {γ : γ is a simple path with γ s = 0 and γ ∩ ∂D = {γ e}} .

Then, almost surely, K ∈ �.

Theorems 1.1 and 1.2 give a decomposition in (KD, dH ) of the Brownian path into
a simple path and loops also in three dimensions. For completeness, let us comment
briefly on the higher dimensions. Our twomain results also hold in higher dimensions,
but the conclusions are rather trivial. In dimensions higher than 3, the scaling limit
of the LERW is a d-dimensional Brownian motion [12, Theorem 7.7.6], it is itself a
simple path, and the Brownian loop soup does not intersect it.

We believe that the decomposition of the Brownian path into a simple path and
loops as in Theorem 1.1 is important not only because it sheds light on the nature
of self-intersections in the Brownian path, but more substatially, a uniqueness of the
decomposition is expected, inwhich case, the lawofKwouldbeuniquely characterized
by the decomposition.

Conjecture 1.3 LetK1 andK2 be randomelements in (KD, dH ) such thatK1,K2 ∈ �

almost surely, and BS a Brownian loop soup in the unit ball independent from K1 and
K2. If for each i ∈ {1, 2}, the union of Ki and all the loops from BS that intersect Ki

has the same law as the trace of the Brownian motion stopped on exiting from the unit
ball, then K1 and K2 have the same law in (KD, dH ).

As immediate consequences of the uniqueness and Theorem 1.1, one would get
a new strategy to the existence of the scaling limit of the loop erased random walk
and its rotational invariance. Needless to say, it would provide a description of the
LERW scaling limit in three dimensions, which is still missing. As far as we know,
the conjecture has not been proved or disproved even in two dimensions.

Any subsequential limit K of LEWn is a simple path, and it is immediate that in
three dimensions, K has a different law than the Brownian path. In two dimensions, the
law of K is explicit, namely that of the trace of SLE2. Our final main result provides
rigorous bounds on the Hausdorff dimension of K in three dimensions. Let ξ be the
non-intersection exponent for 3 dimensional Brownian motion [14], and β the growth
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exponent for the 3 dimensional loop erased random walk [15]. Both exponents exist
by [14,27] and satisfy the bounds ξ ∈ ( 12 , 1) and β ∈ (1, 5

3 ], see [14,15].
Theorem 1.4 In 3 dimensions, 2 − ξ ≤ dimH(K) ≤ β almost surely. In particular,

1 < dimH(K) ≤ 5

3
.

The lower bound on dimH(K) is an immediate application of Theorem 1.1 and a
result on the Hausdorff dimension of the set of cut-points of the Brownian path. Here,
a cut-point of a connected set F that contains 0 and intersects the boundary of the
unit ball is any point x ∈ F such that 0 and the boundary of the ball are disconnected
in F\{x}. The Hausdorff dimension of the set of cut-points of the three-dimensional
Brownian path from 0 until exiting from the unit ball is precisely 2−ξ , cf. [14]. To see
that it is a lower bound on dimH(K), it remains to notice that in every decomposition
of a Brownian path into a simple path and loops, all its cut-points are on the simple
path.

We expect that dimH(K) = β almost surely. Some steps towards this equality will
be made in [28]. A same identity holds in two dimensions, where both the growth
exponent and the Hausdorff dimension of SLE2 are known to be 5

4 , see [2,9] and also
[16,24]. In three dimensions, the value of β is not known or conjectured. Numerical
experiments suggest that β = 1.62 ± 0.01 [7,34], but the best rigorous bounds are
1 < β ≤ 5

3 [15].

1.1 Some words about proofs

Theorem 1.1 is an analogue of (1.1) in continuum. To prove it, we start with the
decomposition of the random walk path (1.1) and suitably take scaling limits in both
sides of the decomposition. By (1.1), the union of the loop erased randomwalk LEWn

and the loops from an independent random walk loop soup LSn that intersect LEWn

is the trace of simple random walk on the lattice 1
nZ

d killed on exiting from the unit
ball. In particular, it converges to the trace of the Brownian motion. On the other
hand, LEWn converges weakly (along subsequences) to K, and, as was shown in two
dimensions by Lawler and Trujillo [20], the loop soups LSn and BS can be coupled
so that with high probability there is a one-to-one correspondence between all large
loops from LSn and those from BS, and each large loop from LSn is very close, in the
Hausdorff distance, to the corresponding loop in BS. Such a strong coupling of loop
soups can be extended to all dimensions with little effort, see Theorem 2.2. So where
is the challenge?

First, we may assume that LEWn and K are defined on the same probability space
and dH (LEWn,K) → 0 almost surely. Let ε < δ, and consider the event that
dH (LEWn,K) < ε and to each loop 	n from LSn of diameter at least δ corresponds a
unique loop 	 from the Brownian soup so that dH (	n, 	) < ε. By the strong coupling
of loop soups (see Theorem 2.2), this event has high probability for all large n. The
challenge is to show that the correspondence of loops in the strong coupling makes the
right selection of Brownian loops. What may go wrong? If a loop 	n ∈ LSn intersects
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LEWn , then the corresponding Brownian loop 	 does not have to intersect K, and vice
versa. The meat of the proof is then to show that this does not happen.

To demonstrate a difficulty, notice that very little is known about K in three dimen-
sions. In particular, it is not a priori clear if the Brownian soup really intersects K
almost surely (or even with positive probability). As we know, it is not the case in
dimensions 4 and higher, and the three dimensional Brownian soup does not intersect
a line. As a result, not all paths in R

3 are hittable by Brownian loops, so we have to
show that K is hittable. Moreover, we want that every Brownian loop of large diameter
(bigger than δ) that gets close enough (within ε distance) to K intersects it locally, and
we want the same to be true for large random walk loops and LEWn .

In two dimensions, analogous questions are classically resolved with a help of the
Beurling projection principle, see [10], which states that a random walk starting near
any simple path will intersect it with high probability. As we have just seen, such a
principle cannot work in three dimensions for all paths. The main novelty of our proof
is a Beurling-type estimate for the loop erased random walk stating that most of the
samples of the LERW are hittable with probability close to one by an independent
simple random walk started anywhere near the LERW, see Theorem 3.1. This result is
then easily converted into an analogous statement for randomwalk loops, namely, with
high probability, the only large loops that are close to LEWn are those that intersect
it, see Proposition 5.2.

Similar complications arise when we try to show that K is a simple path, although
now without loop soups. We need to rule out a possibility that LEWn backtracks
from far away. In his proof that K is a simple path in two dimensions [26], Schramm
introduced (ε, δ)-quasi-loops as subpaths of LEWn ending within ε distance from the
start but stretching to distance δ. Of course, if a quasi-loop exists for all large n, it
collapses, in the large-n limit, into a proper loop in K. Thus, to show that K is a simple
path, we need to rule out the existence of quasi-loops uniformly in n, namely, to show
that for all δ > 0,

lim
ε→0

P
[
LEWn does not have a (ε, δ) − quasi-loop

] = 0, uniformly in n.

Schrammproved this in two dimensions using theBeurling projection principle [26,
Lemma 3.4]. As remarked before, the principle does not longer work in three dimen-
sions, but our Beurling-type esitmate is strong enough to get the desired conclusion,
see Theorem 6.1.

We should mention that Kozma [11] proved that with high probability (as n → ∞),
LEWn does not contain (n−γ , δ)-quasi-loops, see [11, Theorem 4]. This was enough
to establish the convergence of LEWn’s, but more is needed to show that K is a simple
path. Unfortunately, Kozma’s proof strongly relies on the fact that the choice of ε is
n-dependent, and we need to establish a new method to get the uniform estimate.

1.2 Structure of the paper

The main definitions are given in Sect. 2, the loop erased random walk and its scaling
limit in Sect. 2.1, the random walk loop soup in Sect. 2.2, and the Brownian loop soup
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in Sect. 2.3. In each subsection, we also discuss some properties and a few historical
facts about the models. Section 2.3 also contains the statement about the coupling of
the randomwalk and the Brownian loop soups that we use in the proof of Theorem 1.1
(see Theorem 2.2). Some notation that we only use in the proofs are summarized in
Sect. 2.4.

The Beurling-type estimate for the loop erased random walk is given in Sect. 3
(see Theorem 3.1). Some related lemmas about hittability of the LERW are also stated
there and may be of independent interest (see Lemmas 3.2 and 3.3). The proof of the
Beurling-type estimate is given in Sect. 3.1. The rest of the section is devoted to the
proof of an auxiliary lemma, and may be omitted in the first reading.

In Sect. 4 we construct the coupling of the loop soups satisfying conditions of
Theorem 2.2. This section may be skipped in the first reading.

The proof of our first main result, Theorem 1.1, is contained in Sect. 5. It is based
on Theorems 2.2 and 3.1.

In Sect. 6, we prove that the scaling limit of the LERW is a simple path. In Sect. 6.1,
we define quasi-loops and prove that the LERW is unlikely to contain them. The proof
of our second main result, Theorem 1.2, is given in Sect. 6.2. It is based on the quasi-
loops-estimates from Sect. 6.1, namely on Propositions 5.2 and 5.1.

Finally, in Sect. 7 we prove bounds on the Hausdorff dimension of the scaling
limit of the LERW stated in Theorem 1.4. This proof is largely based on some earlier
results on non-intersection probabilities for independent LERW and SRW obtained in
[27]. We recall these results in Sect. 7.1 [see (7.1)] and also prove there some of their
consequences. The upper and lower bounds on the Hausdorff dimension are proved
in the remaining subsections.

2 Definitions, notation, and some history

2.1 Loop erased random walk and its scaling limit

We consider the graphZ
d with edges between nearest neighbors. If x and y are nearest

neighbors in Z
3, we write x ∼ y. A path is a function γ from {1, . . . , n} to Z

d for
some n ≥ 1 such that γ (i) ∼ γ (i + 1) for all 1 ≤ i ≤ n − 1. The integer n is the
length of γ , we denote it by len γ . The loop erasure of a path γ,LE(γ ), is the (simple)
path obtained by removing loops from γ in order of their appearance, namely,

LE(γ )(1) = γ (1)

LE(γ )(i + 1) = γ ( ji + 1) if ji = max{ j : γ ( j) = LE(γ )(i)} < len γ.

We are interested in the loop erasure of a simple random walk path started at 0 and
stopped at the first time when it exits from a large Euclidean ball, the loop erased
random walk (LERW). The simple random walk started at x ∈ Z

d is a Markov chain
{R(t)}t∈Z+ with R(0) = x and transition probabilities

P [R(t + 1) = z | R(t) = y] =
{ 1

2d if z ∼ y
0 otherwise.

We denote its law and the expectation by P
x and E

x , respectively.

123



On Brownian motion, simple paths, and loops 621

LERW was originally introduced [13] and studied extensively by Lawler (see [15]
and the references therein), who considered LERWas a substitute for the self-avoiding
walk (see [29]), which is harder to analyze. Since its appearance, the LERW has
played an important role both in statistical physics andmathematics through its relation
to the uniform spanning tree (UST). Pemantle [25] proved that paths in the UST
are distributed as LERWs, furthermore, the UST can be generated using LERWs by
Wilson’s algorithm [33].

We are interested in the scaling limit of the LERW and its connections to the
Brownian motion. Let | · | be the Euclidean norm in R

d . The open ball of radius
r is defined as Dr = {x ∈ R

d : |x | < r}, and we denote its closure by Dr .
When r = 1, we just write D and D. We consider the loop erasure of the simple
random walk path on Z

d from 0 until the first exit time from Dn , rescale it by 1
n , and

denote the corresponding simple path on the lattice 1
nZ

d and its linear interpolation
by LEWn . Consider the metric space (KD, dH ) of all compact subsets of D with the
Hausdorff metric. We can think of LEWn as random elements of KD . Let Pn be the
probability measure on (KD, dH ) induced by LEWn . Since (KD, dH ) is compact and
the space of Borel probability measures on a compact space is compact in the weak
topology, for any subsequence nk , we can find a further subsequence nki such that
Pnki converges weakly to a probability measure supported on compact subsets of D.
In fact, more is known. In two dimensions, LEWn converges weakly to SLE2 [18]
(actually, even in a stronger sense). In 3 dimensions, LEW2n converges weakly as
n → ∞ to a random compact subset of D, invariant under rotations and dilations
[11].

The existence of the LERW scaling limit will not be used in this paper. In fact, as
discussed in the introduction, we are hoping that our approach can give an alternative
proof of the existence. All our results are valid for any subsequential limit of LEWn ,
whichwedenote byK throughout the paper, andwewillwrite for simplicity of notation
that LEWn converges to K without specifying a subsequence.

2.2 Random walk loop soup

To have a useful description of the loops generated by the loop erasure of a random
walk path, we define a Poisson point process of discrete loops.

A rooted loop of length 2n in Z
d is a (2n + 1)-tuple γ = (γ0, . . . , γ2n) with

|γi −γi−1| = 1 and γ0 = γ2n . LetL be the space of all rooted loops. We are interested
in a Poisson point process of rooted loops in which each individual loop “looks like”
a random walk bridge. We define the random walk loop measure μrwl as a sigma

finite measure on L giving the value 1
2n · ( 1

2d

)2n
to each loop of length 2n. The factor

1
2n should be understood as choosing the root of the loop of length 2n uniformly.
The random walk loop soup R is the Poisson point process on the space L × (0,∞)

with the intensity measure μrwl ⊗ Leb1. For each λ > 0, the random walk loop soup
induces the Poisson point process on the space L with the intensity measure λμrwl,
as a pushforward by the function

∑
i 1(γi ,λi ) 
→ ∑

i :λi≤λ 1γi . We call the resulting
process the random walk loop soup of intensity λ and denote it by Rλ.
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Poisson ensembles of Markovian loops (loop soups) were introduced informally
by Symanzik [30] as a representation of the φ4 Euclidean field, and subsequently
extensively researched in the physics community. The first rigorous definition of a
loop soup was given by Lawler and Werner [21] in the context of planar Brownian
motion. Our definition of the random walk loop soup is taken from [17, Chapter 9].
Random walk and Brownian loop soups have lately been an object of large attention
from probabilists and mathematical physicists due to their intimate relations to the
Gaussian free field, see, e.g., [22,31]. Of particular importance for us, is the following
decomposition of a random walk path into its loop erasure and a collection of loops
coming from an independent random walk loop soup of intensity 1.

Proposition 2.1 [17, Propositions 9.4.1 and 9.5.1] Let Ln be the loop erasure of a
simple random walk on Z

d started at 0 and stopped upon exiting from Dn. LetR1 be
an independent random walk loop soup, and denote by Rn be the set of all loops (with
multiplicities) from R1 that are contained in Dn and intersect Ln. Then the union of
Ln and Rn has the same law as the trace of a simple random walk on Z

d started at 0
and stopped upon exiting from Dn.

Our goal is to pass to the scaling limit in the above decomposition to get a similar
representation for the Brownian path. The scaling limit of Ln is a random compact
subset of a unit ball, as discussed in the previous section. We will soon see that the
scaling limit of a random walk loop soup is the Brownian loop soup of Lawler and
Werner, which we introduce in the next section.

We finish this section with a hands-on definition of the random walk loop soup.
Let μrwl(z, n) be the restriction of μrwl to the loops of length 2n rooted at z. It is
a finite measure with the total mass μrwl(z, n)[L] = 1

2n p2n(z, z), where p2n(x, y)
is the probability that the simple random walk started at x will be at y at step 2n,

and μrwl(z,n)

μrwl(z,n)[L] is the probability distribution of the random walk bridge of length 2n

starting and ending at z. The measure μrwl can be expressed as a linear combination
of probability measures on L,

μrwl =
∑

z∈Zd

∑

n≥1

μrwl(z, n) =
∑

z∈Zd

∑

n≥1

p2n(0, 0)

2n
· μrwl(z, n)

μrwl(z, n)[L] , (2.1)

which leads to the following simple recipe for sampling the random walk loop soups.
Let

Ñ (z, n; ·), n ∈ {1, 2, . . .}, z ∈ Z
d ,

be independent Poisson point processes on (0,∞) with parameter p2n(0,0)
2n . Let

L̃(z, n;m), n ∈ {1, 2, . . .}, z ∈ Z
d ,m ∈ {1, 2, . . .},
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be independent randomwalk bridges of length 2n starting and ending at 0, independent
of all the Ñ (z, n; ·). Then the multiset

{
z + L̃(z, n;m) : z ∈ Z

d , n ≥ 1, 1 ≤ m ≤ Ñ (z, n; λ)
}

(2.2)

is the random walk loop soup of intensity λ. In other words, we first generate the
number of (labeled) random walk bridges of length 2n, rooted at z, and with label at
most λ, Ñ (z, n; λ), and then sample their shapes according to the random walk bridge

measure μrwl(z,n)

μrwl(z,n)[L] .

2.3 Brownian loop soup and a strong coupling of loop soups

Recall our strategy—we want to get a decomposition of a Brownian path by taking a
scaling limit of both sides in the corresponding random walk path decomposition. For
this, we still need to discuss the existence of a scaling limit of the random walk loop
soup. Actually, the scaling limit is explicit, it is the Brownian loop soup of Lawler and
Werner [21], and we now give its description.

A rooted loop in R
d is a continuous function γ : [0, tγ ] → R

d with γ (0) = γ (tγ ),
where tγ ∈ (0,∞) is the time duration of γ . We denote by C the set of all rooted loops.
For z ∈ R

d and t > 0, let μbb(z, t) be the measure on C induced by the Brownian
bridge from z to z of time duration t . The Brownian loop measure μbl is the measure
on C given by

μbl =
∫

Rd

∫ ∞

0

1

t · (2π t)
d
2

μbb(z, t) dt dz.

Notice the analogywith a similar representation (2.1) of the randomwalk loopmeasure
as a linear combination of random walk bridge measures. The measure μbl of course
inherits the invariance under the Brownian scaling, (r · space, r2 · time duration), from
the bridge measures.

TheBrownian loop soupB inR
d is the Poisson point process on the spaceC×(0,∞)

with the intensity measure μbl ⊗ Leb1. For each λ > 0, the Brownian loop soup
induces the Poisson point process on the space C with the intensity measure λμbl, as a
pushforward by the function

∑
i 1(γi ,λi ) 
→∑

i :λi≤λ 1γi . We call the resulting process
the Brownian loop soup of intensity λ and denote it by Bλ.

The Brownian loop soups exhibit strong connections with the Schramm–Loewner
evolution and the Gaussian free field, see, e.g., [4] for an overview, and they have
been quite extensively studied. The connection between the random walk loop soups
and the Brownian ones has been shown by Lawler and Trujillo [20] in two dimen-
sions, who constructed a strong coupling between the two loop soups—much more
than needed to see that the scaling limit of a random walk loop soup is a Brownian
soup. For our purposes, we need to extend the result of [20] to higher dimensions.
Actually, only to dimension 3, but we give an extension to arbitrary dimensions,
as, on the one hand, the proof does not get more complicated, and, on the other, it
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may be instructive to see the dependence of various parameters on the dimension.
Let

α = 3d + 4

2d(d + 2)
. (2.3)

Theorem 2.2 There exist C < ∞ and a coupling of the Brownian loop soup B =
{Bλ}λ>0 and the random walk loop soup R = {Rλ}λ>0 such that for any λ > 0, r ≥
1, N ≥ 1, and θ ∈

(
2d
d+4 , 2

)
, on the event of probability

≥ 1 − C (λ + 1) rd N
−min

(
d
2 , θ
(
d
2 +2

)
−d
)

there is a one-to-one correspondence of random walk loops from Rλ of length ≥ N θ

rooted in [−r N , r N ]d and Brownian loops from Bλ of time duration ≥ N θ−2
d + α

rooted in [−r N − 1
2 , r N + 1

2 ]d , such that the length of the random walk loop divided
by d differs from the time duration of the corresponding Brownian loop by at most α,

and the supremum distance between the corresponding loops is ≤ C N
3
4 log N. Here,

each discrete loop is viewed as a rooted loop in R
d after linear interpolation.

2.4 Further notation

In this section, we summarize all the remaining notation that will be used at least in
two different proofs. Those that are used only once are deferred until more appropriate
spots.

For v ∈ R
d and r > 0, the (discrete) ball of radius r centered at v is the set

B(v, r) =
{
x ∈ Z

d : |x − v| ≤ r
}

.

For A ⊂ Z
d , we denote by ∂A the exterior vertex boundary of A, namely,

∂A = {x /∈ A : x ∼ y for some y ∈ A} .

We also define A = A ∪ ∂A. The boundary of a subset V of R
d is denoted by ∂Rd V .

For a random walk R, we denote the hitting time of a set A ⊂ Z
d by R by

T (A) = inf{t ≥ 1 : R(t) ∈ A}.

For v ∈ R
d and r > 0, we write

Tv,r = T (∂B(v, r)).

Quite often, we will consider two independent random walks on the same space. If
so, we will denote these random walks by R1 and R2, their laws by P

1,x1 and P
2,x2

(where xi = Ri (0)), and the corresponding hitting times by T i and T i
v,r .
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On Brownian motion, simple paths, and loops 625

If γ is a path, we denote by γ [a, b] the path (or the set, depending on a situation) in
Z
d consisting of the vertices γ (a), γ (a + 1), . . . , γ (b). If γ1 and γ2 are two paths in

Z
d and γ1(len γ1) ∼ γ2(1), then we denote by γ1∪γ2 the path of length len γ1+ len γ2

obtained by concatenating γ1 and γ2.
For a set S ⊂ R

d and ε > 0, we denote by S+ε the ε-neighborhood of S and by
S−ε the subset of points of S at distance > ε from the complement of S.

Finally, let us make a convention about constants. Large constants whose values are
not important are denoted by C and C ′ and small ones by c and c′. Their dependence
on parameters varies from proof to proof. Constants marked with a subindex, e.g., C1,
CH , c2, c∗, keep their values within the proof where they appear, but will change from
proof to proof.

3 Beurling-type estimate

Throughout this section we assume that the dimension of the lattice is 3. We prove
that the loop erasure of a simple random walk is hittable with high probability by an
independent random walk started anywhere near the loop erasure.

Theorem 3.1 There exist η > 0 and C < ∞ such that for any ε > 0 and n ≥ 1,

P
1,0

⎡

⎣
For any x ∈ B(0, n)with dist

(
x,LE

(
R1
[
0, T 1

0,n

]))
≤ ε2n,

P
2,x
[
R2
[
0, T 2

x,
√

εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
= ∅
]

≤ εη

⎤

⎦ ≥ 1 − Cε,

(3.1)
see Sect. 2.1 for the definition of LE and Sect. 2.4 for the other notation.

A result analogous to Theorem 3.1 in 2 dimensions is known as the Beurling
projection principle, see [10]. It states that for any η < 3

4 , the probability on the left
hand side of (3.1) equals to 1. In dimensions d ≥ 4, the result of Theorem 3.1 is not
true.

Before moving on to the proof of Theorem 3.1, we discuss its main ingredients.
They are of independent interest and alsowill be used in other proofs in this paper. First
of all, from the point of view of this work, it would be enough to prove the estimate
(3.1) only for all those x ∈ B(0, n) that are at least εn distance away from 0 and
the complement of B(0, n). However, Theorem 3.1 is a valuable tool in the study of
loop erased random walks in three dimensions and its applications will surely spread
beyond the topics covered in this paper.

The proof of Theorem 3.1 is done by considering separately the cases when x ∈
B(0, εn) and x /∈ B(0, εn). In the first case we use [11, Lemma 4.6], which states that
the LERW is hittable by an independent random walk in any wide enough annulus
centered at the origin.

Lemma 3.2 [11, Lemma 4.6] For any K ≥ 1, there exist η > 0 and C < ∞ such
that for all r > s > 1,

P
1,0

[
There exists T ≥ 0 such that LE

(
R1[0, T ]) � B(0, r), and

P
2,0
[
R2
[
0, T 2

0,r

]
∩ LE

(
R1[0, T ]) ∩

(
B(0, r)\B(0, s)

)
= ∅
]

>
( s
r

)η

]

≤ C
( s
r

)K
.
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626 A. Sapozhnikov, D. Shiraishi

In the second case, we use an analogue of [11, Lemma 4.6] about hittability of the
LERW in annuli that do not surround the origin. We give its proof in Sect. 3.2. We
will use this lemma also in Sect. 6 to show that the LERW scaling limit is a simple
path. This is why we state here a slightly stronger result than we need for the proof of
Theorem 3.1. We will comment more on this after stating the lemma.

Lemma 3.3 For any K ≥ 1, there exist η > 0 and C < ∞ such that for all r > s > 1
and v /∈ B(0, r),

P
1,0

[
There exists T ≥ 0 such thatLE

(
R1[0, T ]) � B(v, s)c, and

P
2,v
[
R2
[
0, T 2

v,r

] ∩ LE
(
R1[0, T ]) [0, σ ] ∩

(
B(v, r)\B(v, s)

)
= ∅
]

>
( s
r

)η

]

≤ C
( s
r

)K
,

(3.2)
where σ = inf{t ≥ 0 : LE (R1[0, T ]) [0, t] ∩ B(v, s) �= ∅}.

As remarked above, the full strength of Lemma 3.3 will not be needed until Sect. 6,
where we reuse the lemma to prove that the LERW scaling limit is a simple path,
see the proof of Claim 6.5. In the proof of Theorem 3.1 we will only apply a weaker
version of (3.2), where LE

(
R1[0, T ]) [0, σ ] is replaced by LE

(
R1[0, T ]).

3.1 Proof of Theorem 3.1

Without loss of generality, we may assume that ε is small. The proof of Theorem 3.1
is a simple consequence of Lemmas 3.2 and 3.3. We estimate the probability in (3.1)
separately for x’s in and outside B(0, εn). In the first case, we apply Lemma 3.2 to
T = T 1

0,n , s = 2εn, r = 1
2

√
εn, and K = 2, so that for some η > 0 and C < ∞,

P
1,0
[
P
2,0
[
R2
[
0, T 2

0, 12
√

εn

]
∩ LE

(
R1 [0, T 1

0,n

]) ∩
(
B

(
0,

1

2

√
εn

)
\B(0, 2εn)

)
= ∅
]

> εη

]
≤Cε.

By varying the starting point of R2, we get the harmonic function in B (0, 2εn),

h(x) := P
2,x
[
R2
[
0, T 2

0, 12
√

εn

]
∩ LE

(
R1 [0, T 1

0,n

]) ∩
(
B

(
0,

1

2

√
εn

)
\B(0, 2εn)

)
= ∅
]

.

By the Harnack inequality [12, Theorem 1.7.2], there exists a constant CH < ∞ such
that h(x) ≤ CH h(0), for all x ∈ B(0, εn). In particular,

P
2,x
[
R2
[
0, T 2

0, 12
√

εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
= ∅
]

≤ CH h(0).

Since B(x,
√

εn) ⊇ B(0, 1
2

√
εn) for all x ∈ B(0, εn), we also have

P
2,x
[
R2
[
0, T 2

x,
√

εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
= ∅
]

≤ CH h(0).
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Plugging this into the very first inequality gives

P
1,0

[
For some x ∈ B(0, εn),

P
2,x
[
R2
[
0, T 2

x,
√

εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
= ∅
]

> CH εη

]

≤ Cε.

This gives (3.1) after slightly decreasing η.
It remains to consider the case x /∈ B(0, εn). We prove that for some η > 0 and

C < ∞,

P
1,0

⎡

⎣
For some x ∈ B(0, n)\B(0, εn) with dist

(
x,LE

(
R1
[
0, T 1

0,n

]))
≤ ε2n,

P
2,x
[
R2
[
0, T 2

x,εn

] ∩ LE
(
R1
[
0, T 1

0,n

])
= ∅
]

> εη

⎤

⎦ ≤ Cε,

(3.3)
which is slightly stronger than (3.1), since T 2

x,
√

εn
of (3.1) is replaced here by the

smaller T 2
x,εn . We start by covering B(0, n)\B(0, εn) by s = 10 �ε−6� balls of radius

ε2n with centers at v1, . . . , vs ∈ B(0, n)\B(0, εn). By the union bound, the right hand
side of (3.3) is bounded from above by

s∑

i=1

P
1,0

⎡

⎣
There exists x ∈ B

(
vi , ε

2n
)
with dist

(
x,LE

(
R1
[
0, T 1

0,n

]))
≤ ε2n,

P
2,x
[
R2
[
0, T 2

x,εn

] ∩ LE
(
R1
[
0, T 1

0,n

])
= ∅
]

> εη

⎤

⎦

For each x ∈ B
(
vi , ε

2n
)
, B(x, ε2n) ⊂ B(vi , 2ε2n) and B(x, εn) ⊃ B(vi ,

1
2εn).

Thus, the i th probability in the sum is at most

P
1,0

⎡

⎢
⎣

LE
(
R1
[
0, T 1

0,n

])
� B

(
vi , 2ε2n

)c
, and for some x ∈ B

(
vi , ε

2n
)

P
2,x
[
R2
[
0, T 2

vi ,
1
2 εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
∩
(
B
(
vi ,

1
2 εn
) \B (vi , 2ε2n

)) = ∅
]

> εη

⎤

⎥
⎦

By the Harnack inequality applied to the harmonic function

P
2,x
[
R2
[
0, T 2

vi ,
1
2 εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
∩
(
B

(
vi ,

1

2
εn

)
\B (vi , 2ε2n

)) = ∅
]

,

x ∈ B
(
vi , 2ε

2n
)

,

there exists a universal constant cH > 0 such that the i th probability is bounded from
above by

P
1,0

⎡

⎢
⎣

LE
(
R1
[
0, T 1

0,n

])
� B

(
vi , 2ε2n

)c
, and

P
2,vi

[
R2
[
0, T 2

vi ,
1
2 εn

]
∩ LE

(
R1
[
0, T 1

0,n

])
∩
(
B
(
vi ,

1
2 εn
) \B (vi , 2ε2n

)) = ∅
]

> cH εη

⎤

⎥
⎦

Now, we apply Lemma 3.3 with v = vi , r = 1
2εn, s = 2ε2n, and K = 7 to find η > 0

and C < ∞ for which the above probability is ≤ Cε7. Thus, the probability from
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628 A. Sapozhnikov, D. Shiraishi

(3.3) is bounded from above by (Cε7) · s ≤ 10C ε. This proves (3.3) and completes
the proof of Theorem 3.1. ��

3.2 Proof of Lemma 3.3

The scheme of the proof is conceptually the same as that of [11, Lemma 4.6], except
for the main improvement stated in Claim 3.4 below. For the reader’s convenience and
because of the importace of the result, we give a complete proof, which we organize in
a sequence of claims. The first claim is a stronger version of [11, Lemma 4.3], which
is the first step in the proof of [11, Lemma 4.6]. This improvement is essentially the
main reason why the remaining steps in the proof of [11, Lemma 4.6] can be adapted
to our situation.

Claim 3.4 There exists c1 > 0 such that for all n > 0, v ∈ ∂B(0, n), and � ⊂
B(v, n)c,

P
0
[
dist
(
R(T0,n), B(v, n)c

) ≥ n

2

∣∣∣ R[1, T0,n] ∩ � = ∅
]

≥ c1.

Proof of Claim 3.4 An analogous claim for the random walk on Z
2 is proved in [24,

Proposition 3.5]. The same schemeworks forZ
3 with a slightlymore involved analysis

of the corresponding harmonic function.
We begin with some auxiliary observations in R

3. For z ∈ R
3, let D(z) be the

unit ball in R
3 centered at z, and write D for D(0). Let u ∈ ∂R3D, δ > 0, and

M = {z ∈ ∂R3D : |z − u| ≤ δ}. For z ∈ D, let h(z) = Pz[W (τD) ∈ M], where W
is the standard Brownian motion in R

3 and τD is the first hitting time of ∂R3D by W .
Then h is a harmonic function in D with the boundary condition 1M . In particular, it
can be written as

h(z) = 1

4π

∫

M

1 − |z|2
|z − σ |3 dσ.

We will need the following properties of h.

• If δ is small enough, then for all z ∈ D\D(u), h(z) ≤ h(0).

Proof By the maximum principle, it suffices to consider z ∈ ∂D(u) ∩ D. By the
symmetry, it suffices to prove the claim for u = (1, 0, 0) and z = (z1, z2, 0). Using
geometric constraints, one can express h(z) as a function of z2 only,

h(z) = f (z2) = 1

4π

∫

M

2
√
1 − z22 − 1

(
3 − 2σ1 + 2(σ1 − 1)

√
1 − z22 − 2σ2z2

) 3
2

dσ,

z ∈ ∂D(u) ∩ D.

One can show by a direct computation that z2 f ′(z2) ≤ 0 if |σ2| is sufficiently small,
which proves the claim. ��
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On Brownian motion, simple paths, and loops 629

• Another direct computation gives ∂h
∂u (0) = ν > 0 (derivative in the direction u)

and ∂h
∂u′ = 0 for any u′ orthogonal to u.

• There exists r ∈ (0, 1) such that for all δ ∈ (0, 1
4 ) and r ≤ |z| < 1with |z−u| ≥ 1

2 ,

h(z) ≤ 1
4h(0). This follows from the bound 1−|z|2

|z−σ |3 ≤ 43(1 − r2).

Assume that n is large enough so that B(0, rn) ⊂ nD. The function hn(z) = h( zn )

is harmonic in nD. For z ∈ B(0, rn), let h̃n(z) = E
z[hn(R(T0,rn))] be the discrete

harmonic function in B(0, rn) which agrees with hn(z) on ∂B(0, rn). By [12, (1.23)
and (1.34)], there exists C < ∞ such that for all z ∈ B(0, rn), |hn(z) − h̃n(z)| ≤ C

n .
We proceed with the proof of the claim. Let n ≥ 1 and v ∈ ∂B(0, n). We choose

u = v
|v| ∈ ∂R3D. Let A = 4C

ν
(with ν and C as above) and x ∈ B(0, rn) be such that

xi = �Aui�. By Taylor’s theorem, hn(x) − hn(0) ≥ Aν
2n for large n. Thus, for any

z ∈ B(0, rn)\B(v, n),

h̃n(x) − h̃n(z) = [̃hn(x) − hn(x)
]+ [hn(x) − hn(0)]

+ [hn(0) − hn(z)] + [hn(z) − h̃n(z)
]

≥ −C

n
+ Aν

2n
+ 0 − C

n
≥ 0.

Since � ⊂ B(v, n)c, the same calculation as on [24, page 1032] gives

E
x [hn(R(T0,rn)) | R [0, T0,rn

] ∩ � = ∅] ≥ E
x [hn(R(T0,rn))

]

= h̃n(x) ≥ h̃n(0) ≥ h(0) − C

n
≥ 1

2
h(0).

By splitting the above probability into the terms where |R(T0,rn) − v| is ≥ n
2 and

< n
2 , and estimating hn(R(T0,rn)) from above by 1

4h(0) in the first case and by 1 in
the second, one gets exactly as on [24, page 1033] that

P
x
[∣∣R(T0,rn) − v

∣∣ ≤ n

2

∣∣ R
[
1, T0,rn

] ∩ � = ∅
]

≥ c > 0,

which implies that P
0
[|R(T0,n) − v| ≤ n

2

∣∣ R[1, T0,n] ∩ � = ∅] ≥ c′ > 0. The proof
of the claim is complete. ��

Before we state the next claim, we introduce some notation. For a path γ and t ≥ 1,
we define the set of cut points of γ up to time t ,

cut(γ ; t) = {γ (i) : i < t, γ [1, i] ∩ γ [i + 1, len γ ] = ∅} .

Note that cut(γ ; t) is non-decreasing in t , and non-increasing as γ is extended. Also
note that LE(γ )[1, len LE(γ )] ⊃ cut(γ ; len γ ).

The following claim is an analogue of [11, Lemma 4.4].
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630 A. Sapozhnikov, D. Shiraishi

Claim 3.5 There exists q > 0 such that the following holds. For any ε > 0 there
exist δ = δ(ε) > 0 and C = C(ε) < ∞ such that for all r > C, s ∈ [r(1 + ε), 2r ],
� ⊂ B(0, s)c with

P
0 [R[0, T0,4r ] ∩ � �= ∅] < δ,

and v ∈ ∂B(0, s),

P
1,v

[
For all y ∈ B(v, εr),

P
2,y
[
cut
(
R1[0, +∞); T 1

v,εr

) ∩ R2
[
0, T 2

0,4r

]
�= ∅
]
≥q

∣∣∣ R1 [1, T0,4r
] ∩ � = ∅

]

≥ q.

Proof of Claim 3.5 Let v ∈ ∂B(0, s), and define C = cut
(
R1[0,+∞); T 1

v,εr

)
and

A = B(v, 1
2εr)\B(v, 1

4εr). Let λ > 2 to be fixed later, and take μ = ε
4λ and ρ = μr .

By [11, Lemma 4.2], there exists c > 0 such that for all x ∈ ∂B(v, ρ),

P
1,x
[
For all y ∈ B

(
v,

1

8
εr

)
, P

2,y
[
C ∩ R2

[
0, T 2

0,4r

]
∩ A �= ∅

]
≥ c

]
≥ c.

Since the random walk started from any y ∈ B(v, εr) will hit B(v, 1
8εr) before

exiting from B(0, 4r) with probability > c′, the previous inequality also holds for all
y ∈ B(v, εr). Namely, there exists c2 > 0 such that for all x ∈ ∂B(v, ρ),

P
1,x
[
For all y ∈ B (v, εr) , P

2,y
[
C ∩ R2

[
0, T 2

0,4r

]
∩ A �= ∅

]
≥ c2

]
≥ c2. (3.4)

By [12, Proposition 1.5.10], for any z ∈ ∂B(v, 1
4εr),

P
1,z
[
T 1

v,ρ < ∞
]

≤ C ′ ρ

εr
= C3

λ
.

Thus,

P
1,v
[
R1
[
T 1

v, 14 εr
,+∞

)
∩ B(v, ρ) �= ∅

]
≤ C3

λ
. (3.5)

Note that if the random walk R1 started from v does not return to B(v, ρ) after T 1
v, 14 εr

,

then

cut
(
R1[0,+∞); T 1

v,εr

)
∩ A = cut

(
R1
[
T 1

v,ρ,+∞
)

; T 1
v,εr

)
∩ A. (3.6)

Denote by M the set of points on ∂B(v, ρ) which are at distance ≥ ρ
2 from B(0, s)c.

By Claim 3.4,

P
1,v
[
R1
(
T 1

v,ρ

)
∈ M

∣∣∣ R1
[
1, T 1

v,ρ

]
∩ � = ∅

]
≥ c1. (3.7)
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By the Harnack inequality applied to the harmonic function

P
1,x
[
R1
[
0, T 1

0,4r

]
∩ � �= ∅

]
, x ∈ B

(
0, s − ρ

2

)
,

and the assumption on �, there exists C4 = C4(ε, λ) < ∞ such that for any x ∈ M ,

P
1,x
[
R1
[
0, T 1

0,4r

]
∩ � �= ∅

]
≤ C4δ. (3.8)

All the ingredients are ready to conclude. We have

P
1,v
[
For all y ∈ B(v, εr), P

2,y [C ∩ R2 [0, T 2
0,4r

] �= ∅] ≥ c2
∣∣∣ R1 [1, T 1

0,4r

] ∩ � = ∅
]

≥
P
1,v

⎡

⎢
⎣

For all y ∈ B(v, εr), P
2,y
[
C ∩ R2

[
0, T 2

0,4r

]
∩ A �= ∅

]
≥ c2,

R1
[
1, T 1

0,4r

]
∩ � = ∅, R1

(
T 1

v,ρ

) ∈ M, R1
[
T 1

v, 14 εr
, +∞

)
∩ B(v, ρ) = ∅

⎤

⎥
⎦

P1,v
[
R1
[
1, T 1

v,ρ

] ∩ � = ∅] .

By the strongMarkov property for R1 at time T 1
v,ρ and the identity (3.6), the nominator

of the above expression is bounded from below by

P
1,v
[
R1
[
1, T 1

v,ρ

]
∩ � = ∅, R1

(
T 1

v,ρ

)
∈ M

]

·min
x∈M P

1,x

⎡

⎢
⎣
For all y ∈ B(v, εr), P

2,y
[
C ∩ R2

[
0, T 2

0,4r

]
�= ∅
]

≥ c2,

R1
[
1, T 1

0,4r

]
∩ � = ∅, R1

[
T 1

v, 14 εr
,+∞

)
∩ B(v, ρ) = ∅

⎤

⎥
⎦

By (3.4), (3.5), and (3.8), the above display is

≥
(
c2 − C3

λ
− C4δ

)
· P

1,v
[
R1
[
1, T 1

v,ρ

]
∩ � = ∅, R1

(
T 1

v,ρ

)
∈ M

]
,

which implies that

P
1,v
[
For all y ∈ B(v, εr), P

2,y
[
C ∩ R2

[
0, T 2

0,4r

]
�= ∅
]

≥ c2
∣∣∣ R1

[
1, T 1

0,4r

]
∩ � = ∅

]

≥
(
c2 − C3

λ
− C4δ

)
· P

1,v
[
R1
(
T 1

v,ρ

)
∈ M

∣∣∣ R1
[
1, T 1

v,ρ

]
∩ � = ∅

]

≥ c1 ·
(
c2 − C3

λ
− C4δ

)
,

where the last inequality follows from (3.7). Finally we make a choice of parameters.
We choose λ so that C3

λ
< c2

4 . Then we choose δ so that C4δ < c2
4 and q = c1c2

2 . The
proof of Claim 3.5 is complete. ��
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To state the next claim, we need more notation. A function γ : {1, . . . , n} → Z
3

is called a discontinuous path of length n. All the definitions that we introduced for
nearest neighbor paths extend without any changes to discontinuous paths. Given two
discontinuous paths γ1 and γ2, we define the discontinuous paths LE1(γ1 ∪ γ2) and
LE2(γ1 ∪ γ2) as follows. Let t∗ = max{t : LE(γ1)[1, t − 1] ∩ γ2 = ∅}. Then

LE1(γ1 ∪ γ2) = LE(γ1 ∪ γ2)[1, t∗],
LE2(γ1 ∪ γ2) = LE(γ1 ∪ γ2)

[
t∗ + 1, len LE(γ1 ∪ γ2)

]
.

The next claim is an analogue of [11, Lemma 4.5].

Claim 3.6 For any ε > 0 and η > 0, there exist δ > 0 and C < ∞ such that the

following holds. For r > 0, let A1 = B(0, 2r)\B(0, r) and A2 = B(0, 4r)\B(0, 1
2r).

Then for any r > C, s ∈ [r(1 + η), 2r ], v ∈ ∂A1, and a discontinuous path γ ⊂ A2
with γ (1) ∈ ∂B(0, 4r) and γ (len γ ) ∼ v,

P
1,v

⎡

⎢
⎣

LE1
(
γ ∪ R1

[
0, T 1(∂A2)

]) ⊂ B(0, s)c,
LE2

(
γ ∪ R1

[
0, T 1(∂A2)

]) ∩ B(0, s − ηr) �= ∅,

P
2,0
[
R2
[
0, T 2

0,4r

]
∩ L ′ �= ∅

]
< δ

⎤

⎥
⎦ < ε, (3.9)

where L ′ = LE(γ∪R1[0, T 1(∂A2)])[1, t]and t = min{i : LE(γ∪R1[0, T 1(∂A2)])(i)
∈ B(0, s − ηr)}.

Proof of Claim 3.6 Fix ε > 0 and η > 0. Take q > 0 from Claim 3.5. Let K =
K (ε) > 2 be an integer such that (1 − q)K < ε. Let ε′ = η

2K and δ′ = δClaim 3.5(ε′)
be the δ from Claim 3.5 corresponding to εClaim 3.5 = ε′. Define si = s − ηi

K+2r
for i ∈ {1, . . . , K + 1}. Let jk be as in the definition of the loop erasure, so that
R1[ jk + 1, T 1(∂A2)] is a random walk conditioned not to hit LE(γ ∪ R1[0, jk]). Let

τi = max
{
jk ≤ T 1(∂A2) : LE

(
γ ∪ R1[0, jk]

)
⊂ B(0, si )

c
}

.

If τi < T 1(∂A2), then define �i = LE(γ ∪ R1[0, τi ]) and vi = R1(τi ). By Claim 3.5,

P

[
Bi | τi , R1[0, τi ]

]
< 1 − q,

where

Bi =
⎧
⎨

⎩

τi < T 1(∂A2), P
2,0
[
R2
[
0, T 2

0,4r

]
∩ �i �= ∅

]
< δ′, and

for some y ∈ B
(
vi , ε

′r
)
, P

2,y
[
cut
(
R1 [τi ,+∞) ; T ∗

i

) ∩ R2
[
0, T 2

0,4r

]
�= ∅
]

≤ q

⎫
⎬

⎭
,
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and T ∗
i = min{t > τi : R1(t) ∈ ∂B(vi , ε

′r)}. Note that the event Bi contains the
following event

B′
i =

⎧
⎨

⎩

τi+1 < T 1(∂A2), P
2,0
[
R2
[
0, T 2

0,4r

]
∩ �i �= ∅

]
< δ′, and

for some y ∈ B(vi , ε
′r), P

2,y
[
cut
(
R1
[
τi , τi+1

] ; T ∗
i

) ∩ R2
[
0, T 2

0,4r

]
�= ∅
]

≤ q

⎫
⎬

⎭
,

which depends only on τi+1 and R1[0, τi+1]. Thus,

P
[B′

i | B′
1, . . . ,B′

i−1

] = E

[
P

[
B′
i | τi , R1[0, τi ]

] ∣∣ B′
1, . . . ,B′

i−1

]
< 1 − q

and P

[⋂K
i=1 B′

i

]
< (1 − q)K < ε. It remains to show that the event in (3.9) implies

⋂K
i=1 B′

i for some choice of δ. It is well known (see, e.g., [11, Lemma 2.5]) that there
exists c∗ = c∗(η) > 0 such that

P
0 [Twi ,ε

′r < T0,4r
] ≥ c∗ for all i andwi ∈ ∂B(0, si ).

Take δ < min(δ′, c∗q). Then the event in (3.9) implies
⋂K

i=1 B′
i . Indeed, if the event

in (3.9) occurs,

• since LE1(γ ∪ R1[0, T 1(∂A2)]) ⊂ B(0, s)c and LE2(γ ∪ R1[0, T 1(∂A2)]) con-
tains a path from ∂B(0, s) to ∂B(0, s − ηr), all τi ’s are strictly smaller than
T 1(∂A2),

• since �i ⊂ L ′, P
2,0
[
R2[0, T 2

0,4r ] ∩ �i �= ∅
]

< δ < δ′, and
• since cut(R1[τi , τi+1]; T ∗

i ) ⊂ L ′,

min
y∈B(vi ,ε

′r)
P
2,y
[
cut
(
R1[τi , τi+1]; T ∗

i

)
∩ R2

[
0, T 2

0,4r

]
�= ∅
]

≤
P
2,0
[
cut
(
R1[τi , τi+1]; T ∗

i

) ∩ R2
[
0, T 2

0,4r

]
�= ∅
]

P2,0
[
T 2

vi ,ε
′r < T 2

0,4r

] <
δ

c∗
< q.

The proof of Claim 3.6 is complete. ��
Proof of Lemma 3.3 Without loss of generality we may assume that s and r/s are big
(possibly depending on K ). Let ρi = r

2i
, for i ∈ {0, . . . , I = �log2 r

s �}, and consider

the stopping times when the random walk R1 jumps between different ∂B(v, ρi )’s,

τ ′
0 = T 1

v,r , i ′(0) = 0,

τ ′
j = min

{
t > τ ′

j−1 : R1(t) ∈ ∂B(v, ρi ′( j)) for some i ′( j) �= i ′( j − 1)
}

.

The process i ′( j) dominates a random walk on {0, . . . , I } with a drift towards 0 and
an absorption at 0. In particular, if n′

i = �{ j : i ′( j) = i}, then there exists λ = λ(K )
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634 A. Sapozhnikov, D. Shiraishi

such that P
1,0[∑I

i=1 n
′
i > λI ] ≤ C( sr )

K . Consider the annuli

A1,i = B(v, 2ρ2i )\B(v, ρ2i ) and A2,i = B(v, 4ρ2i )\B
(

v,
1

2
ρ2i

)
,

for 1 ≤ i ≤ I − 1

2

and the stopping times

τ1 = T 1(∂A1,1), i(0) = 1,

τ j = min
{
t > τ j−1 : R1(t) ∈ ∂A1,i( j) for some i( j) �= i( j − 1)

}
.

Note that the τ j is a subsequence of the τ ′
j . Therefore, if ni = �{ j : i( j) = i}, then

P
1,0[∑� I−1

2 �
i=1 ni > λI ] ≤ C( sr )

K . Let M = �6λ�, then

P
1,0
[
�

{
1 ≤ i ≤ 1

2
I : ni > M

}
>

1

6
I

]
≤ C

( s
r

)K
. (3.10)

For each j and m ∈ {0, . . . , M − 1}, define r j = ρ2i( j) and s j,m = 2r j − m
M r j ,

discontinuous paths γi, j = LE(R1[0, τ j − 1] ∩ A2,i ) and γ j = γi( j), j , the loop
erasures Lk, j = LEk(γ j ∪ R1[τ j , τ j+1]) for k = 1, 2, and the event X j,m that

(a) L1, j ⊂ B(v, s j,m)c,
(b) L2, j ∩ B(v, s j,m+1) �= ∅,
(c) P

2,v
[
R2[0, T 2

v,4r ] ∩ L ′
j,m �= ∅

]
< δClaim 3.6, where L ′

j,m = L1, j ∪ L2, j [1, t]
and t = min{i : L2, j (i) ∈ ∂B(v, s j,m+1)}.

By Claim 3.6, P
1,0[X j,m |τ j < ∞, R1[0, τ j ]] < εClaim 3.6 and

P
1,0
[
M−1∪
m=0

X j,m
∣∣ τ j < ∞, R1 [0, τ j

]]
< M εClaim 3.6.

LetX j = ∪M−1
m=0X j,m . Then the sequence of their indicators is dominated by a sequence

of independent Bernoulli random variables with parameter M εClaim 3.6. In particular,
by choosing εClaim 3.6 small enough,

P
1,0
[
�
{
j ≤ λI : X j

}
>

λI

M

]
≤ C

( s
r

)K
. (3.11)

To finish the proof of Lemma 3.3, it suffices to show that the event in (3.2) implies
one of the events in (3.10) or (3.11). We call an index i good, if ni ≤ M and none
of the X j ’s occur for j’s with i( j) = i . The following claim is essentially [11,
Sublemma 4.6.1].
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Claim 3.7 Let i be a good index. For j > 0, let ni, j = �{k < j : R1(τk) ∈
∂A1,i }, ui, j = 2ρ2i − ni, j

M ρ2i , and Ui, j = B(v, 2ρ2i )\B(v, ui, j ). Let ti, j = inf{t :
γi, j (t) ∩ ∂B(v, ui, j ) �= ∅}, and define γ ∗

i, j = γi, j [1, ti, j ] if ti, j < ∞ and γ ∗
i, j = ∅

otherwise. Then for all j , if γ ∗
i, j �= ∅, then

P
2,v
[
γ ∗
i, j ∩Ui, j ∩ R2

[
0, T 2

v,4ρ2i

]
�= ∅
]

≥ δClaim 3.6. (3.12)

Proof of Claim 3.7 The same as the proof of [11, Lemma 4.6.1]. We use induction
on j . If R1(τ j ) /∈ ∂A1,i , then R1[τ j , τ j+1] does not enter in A1,i and thus can only
change γ ∗

i, j by erasing a piece from its end leading to γi, j+1 ∩ ∂B(v, ui, j ) = ∅. (Note
that in this case ui, j = ui, j+1.) On the other hand, if R1(τ j ) ∈ ∂A1,i , then X j does
not occur, and, in particular, X j,ni, j does not occur, meaning that one of (a), (b), or (c)
fails. If (a) fails, then γ ∗

i, j �= ∅ and hence satisfies (3.12). Also, if γ ∗
i, j+1 �= ∅, then it

contains γ ∗
i, j and hence also satisfies (3.12). If (a) holds but (b) fails, then γ ∗

i, j+1 = ∅.
Finally, if (a) and (b) hold but not (c), then γ ∗

i, j+1 = L ′
j,ni, j

, and (3.12) holds. ��

Assume that the event in (3.2) occurs for some T . Let J be such that τJ ≤ T < τJ+1.
Since R1[τJ , T ] ⊂ A2,i(J ), Claim 3.7 shows that for each good index i �= i(J ), either
LE(R1[0, T ]) does not cross A1,i from outside to inside or the first such crossing is
hittable by R2. Since we assume that the event in (3.2) occurs, LE(R1[0, T ]) crosses
B(v, r)\B(v, s) and, in particular, all A1,i ’s. Thus, for each good i �= i(J ),

P
2,v
[
LE
(
R1[0, T ]

)
[0, σ ] ∩ A1,i ∩ R2

[
0, T 2

v,4ρ2i

]
�= ∅
]

≥ δClaim 3.6.

By the Harnack inequality applied to the harmonic function

P
2,x
[
LE
(
R1[0, T ]

)
[0, σ ] ∩ A1,i ∩ R2

[
0, T 2

v,4ρ2i

]
�= ∅
]
, x ∈ B

(
v,

1

2
ρ2i

)
,

there exists a constant c∗ > 0 (independent of i) such that

P
2,x
[
LE
(
R1[0, T ]

)
[0, σ ] ∩ A1,i ∩ R2

[
0, T 2

v,4ρ2i

]
�= ∅
]

≥ c∗ δClaim 3.6,

for all x ∈ B

(
v,

1

2
ρ2i

)
.

Recall that we aim to show that the event in (3.2) implies one of the events in (3.10)
or (3.11). Thus, assume that the both these events do not occur. This implies that at least
1
6 I indices between 1 and

1
2 I are good. Let n = � I

12� − 2 and i1 > i2 > · · · > in > 1
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636 A. Sapozhnikov, D. Shiraishi

be good indices with ik − ik+1 ≥ 2 and ik �= i(J ), then

P
2,v
[
R2
[
0, T 2

v,r

]
∩ LE

(
R1[0, T ]

)
[0, σ ] ∩

(
B(v, r)\B(v, s)

)
= ∅
]

≤
n−1∏

k=1

P
2,v
[
R2
[
T 2

v, 12ρ2ik
, T 2

v,4ρ2ik

]
∩ LE

(
R1[0, T ]

)
[0, σ ]

= ∅
∣∣∣ R2

[
0, T 2

v,4ρ2ik+1

]
∩ LE

(
R1[0, T ]

)
[0, σ ] = ∅

]

≤
n−1∏

k=1

max
w∈B

(
v, 12ρ2ik

)P
2,w
[
R2
[
0, T 2

v,4ρ2ik

]
∩ LE

(
R1[0, T ]

)
[0, σ ] = ∅

]

≤ (1 − c∗ δClaim 3.6
)n−1 ≤ (1 − c∗ δClaim 3.6

) I
12−4

<
( s
r

)η

,

for η small enough. This contradicts the assumption that the event (3.2) occurs. Thus,
we have shown that if both the events (3.10) and (3.11) do not occur, then the event
(3.2) also does not occur. The proof of Lemma 3.3 is complete. ��

4 Strong coupling of loop soups

In this section we prove Theorem 2.2 by giving an explicit coupling of the random
walk and the Brownian loop soups satisfying the conditions of the theorem. In two
dimensions, such coupling is obtained in [20]. Our construction is an adaptation of
the one from [20] to higher dimensions.

4.1 Preliminaries

In this section we prove two lemmas needed for the proof of Theorem 2.2.

Lemma 4.1 For any d ≥ 2,

p2n(0, 0) = 2

(
d

4πn

) d
2 ·
(
1 − d

8n
+ O

(
1

n2

))
,

as n → ∞.

Proof Using the inverse Fourier transform, one can write

p2n(0, 0) = 1

(2π)d

∫

[−π,π ]d

(
1

d

d∑

k=1

cos(θk)

)2n

dθ.

The result follows by analysing this integral, see, for instance, [1]. ��
Lemma 4.2 Let q = 1

d . For any D > 0 there exists C4.2 < ∞ such that for every
n ≥ 1, there exists a couplingQn of the d-dimensional randomwalk bridge (Xt )t∈[0,2n]
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of length 2n from 0 to 0 and the standard d-dimensional Brownian bridge (Bt )t∈[0,1]
such that

Qn

[

sup
0≤t≤1

∥∥∥∥
X2nt√
2nq

− Bt

∥∥∥∥ > C4.2 · n− 1
4 log n

]

≤ C4.2 · n−D .

Proof The one dimensional case of the lemma follows from [20, Lemma 3.1]. (The
result proved there is much stronger than the statement of Lemma 4.2, the exponent
1
4 in the event of the lemma is replaced by 1

2 in [20, Lemma 3.1].)
Fix d ≥ 1 and n ≥ 1. Let (Xi,m, Bi,m)1≤i≤d,m≥1 be independent copies of pairs

of one-dimensional random walk and Brownian bridges each coupled to satisfy the
requirements of Lemma 4.2 in one dimension, where Xi,m is distributed as a random
walk bridge of length 2m.

We will sample the desired d-dimensional random walk bridge by first specify-
ing the choice of coordinate directions for all 2n steps, and then by choosing the
directions along specified coordinates. Let Ln = (L1

n, . . . , L
d
n) be an independent

multinomial sequence of length 2n with parameter (q, . . . , q) conditioned on all
L1
n(2n), . . . Ld

n(2n) being even. Namely,

P[Ln ∈ ·] = P

[(
k∑

i=1

Zi ; 1 ≤ k ≤ 2n

)

∈ ·
∣∣∣

2n∑

i=1

Zi ∈ (2Z)d

]

,

where Zi = (Zi,1, . . . , Zi,d) are independent and P[Zi = e1] = · · · = P[Zi = ed ] =
q, with e1, . . . , ed being the canonical basis of R

d . Let

M1 = L1
n(2n), . . . , Md = Ld

n(2n)

be the number of jumps of each of the coordinates in Ln . Consider

Xk = X1,M1
L1
n(k)

e1 + · · · + Xd,Md
Ld
n (k)

ed , 1 ≤ k ≤ 2n,

Bt = B1,M1
t e1 + · · · + Bd,Md

t ed , 0 ≤ t ≤ 1.

Then

• (Xt )t∈[0,2n] has the law of the d-dimensional random walk bridge,
• (Bt )t∈[0,1] has the law of the standard d-dimensional Brownian bridge.

It remains to show that this coupling satisfies the bound in the statement of the lemma.
It will be a consequence of the following two claims.

Claim 4.3 For any D > 0 there exists C < ∞ such that

P

[∣∣∣Li
n(k) − qk

∣∣∣ ≤ C(n log n)
1
2 , for all 1 ≤ i ≤ d and 1 ≤ k ≤ 2n

]
≥ 1 − Cn−D.
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Proof of Claim 4.3 First note that

P

[
2n∑

i=1

Zi ∈ (2Z)d

]

≥ P

[
S2n := S1L1

n(2n)
e1 + · · · + SdLd

n (2n)
ed = 0

]

= p2n(0, 0)
L.4.1≥ cn− d

2 ,

where S1, . . . , Sd are independent copies of one dimensional simple random walk on
Z started from the origin (which implies that S is a d-dimensional simple random
walk).

On the other hand, by [17, Corollary 12.2.7], for any D > 0 there exists C < ∞
such that for each 1 ≤ i ≤ d,

P

⎡

⎣ max
1≤k≤2n

∣∣∣∣∣∣

k∑

j=1

Z j,i − qk

∣∣∣∣∣∣
> C(n log n)

1
2

⎤

⎦ ≤ Cn−D− d
2 .

The two above estimates together and the definition of Ln give the claim. ��
Claim 4.4 Let (	(k))0≤k≤2n be an integer sequence with

• 	(0) = 0,
• for all 1 ≤ k ≤ 2n, 0 ≤ 	(k) − 	(k − 1) ≤ 1,
• for some 1 ≤ C	 < ∞, max1≤k≤2n |	(k) − qk| ≤ C	(n log n)

1
2 ,

• m := 	(2n) is even.

Let (Xm, Bm) be a pair of one-dimensional random walk bridge of length m and
a standard one-dimensional Brownian bridge coupled to satisfy the requirements of
Lemma 4.2 in one dimension. Let

X̃k = Xm
	(k), 0 ≤ k ≤ 2n

be the time reparametrization of the bridge Xm induced by the sequence 	, and
(X̃2nt )t∈[0,1] its linear interpolation. Then for any D > 0, there exists C < ∞
(depending on 	 only through C	) such that

P

[

sup
0≤t≤1

∣∣∣∣
X̃2nt√
2nq

− Bm
t

∣∣∣∣ > C · n− 1
4 log n

]

≤ C · n−D .

Proof of Claim 4.4 Let D > 0. By assumption on (Xm, Bm) and the fact that |m −
2nq| = o(n), there exists C < ∞ such that

P

[

sup
0≤t≤1

∣∣∣∣
Xm
mt√
m

− Bm
t

∣∣∣∣ > C · n− 1
4 log n

]

≤ C · n−D.
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Thus, it suffices to show that there exists C < ∞ such that

P

[

sup
0≤t≤1

∣∣∣∣
X̃2nt√
2nq

− Xm
mt√
m

∣∣∣∣ > C · n− 1
4 log n

]

≤ C · n−D .

Since
√
m = √

2nq
(
1 + O

(
(
log n
n )

1
2

))
, there exist C,C ′ < ∞ such that

P

[

sup
0≤t≤1

∣∣∣∣
Xm
mt√
2nq

− Xm
mt√
m

∣∣∣∣ > C · n− 1
4 log n

]

≤ P

[

sup
0≤t≤1

∣∣Xm
mt

∣∣ > C ′ · n 3
4 log

1
2 n

]

=
P

[
max

0≤k≤m
|Sk | > C ′ · n 3

4 log
1
2 n

]

pm(0, 0)

≤ C · n−D,

where S is a one-dimensional simple random walk on Z. The last inequality follows
from Lemma 4.1 and [17, Corollary 12.2.7].

It remains to show that there exists C < ∞ such that

P

[

sup
0≤t≤1

∣∣X̃2nt − Xm
mt

∣∣ > C · n 1
4 log n

]

≤ C · n−D .

By the definition of X̃ , the probability on the left hand side equals

P

[

sup
0≤t≤1

∣∣∣Xm
	(2nt) − Xm

mt

∣∣∣ > C · n 1
4 log n

]

≤
2n · P

[
max

0≤k≤4C	(n log n)
1
2

|Sk | > C · n 1
4 log n

]

pm(0, 0)

≤ C · n−D,

where S is again a one-dimensional simple randomwalk onZ. In the first inequality we

used the fact that |	(�2nt�)−mt | ≤ 3C	(n log n)
1
2 , and in the second the exponential

Markov inequality and Lemma 4.1. By putting all the estimates together we get the
claim. ��

To complete the proof of Lemma 4.2, we call the sequence Ln = (L1
n, . . . , L

d
n) C-

good if each one-dimensional sequence Li
n satisfies the assumptions of Claim 4.4 with

C	 = C . By Claim 4.3, for each D > 0 there existsC1 < ∞ such thatP[Ln is notC1−
good] ≤ C1 · n−D . By Claim 4.4 applied to each of the d projections of X and B,
there exists C < ∞ such that

P

[

sup
0≤t≤1

∥∥∥∥
X2nt√
2nq

− Bt

∥∥∥∥ > C · n− 1
4 log n

∣∣∣ Ln isC1 − good

]

≤ Cn−D

123



640 A. Sapozhnikov, D. Shiraishi

The two estimates together give the result of the lemma. ��

4.2 Proof of Theorem 2.2

The main strategy of the proof is similar to that of [20]. We will pair-up random walk
loops of length 2n ≥ N θ rooted at z ∈ [−r N , r N ]d and Brownian loops of time
duration between 2(n−1)

d + α and 2n
d + α and rooted in z + [− 1

2 ,
1
2 ]d .

Fix λ > 0, r > 0, and N ≥ 1. For n ≥ 1, let

q̃n = 1

2n
· p2n(0, 0) L.4.1= 1

n

(
d

4πn

) d
2 ·
(
1 − d

8n
+ O

(
1

n2

))
,

and

qn =
∫ 2n

d +α

2(n−1)
d +α

ds

s · (2πs)
d
2

= 1

n

(
d

4πn

) d
2 ·
(
1 − d

8n
+ O

(
1

n2

))
.

The main reason to define α as in (2.3) is so that the first two terms in the expansions
of q̃n and qn coincide. In particular,

|qn − q̃n| ≤ C · n− d
2 −3. (4.1)

Let

Ñ (z, n; ·), n ∈ {1, 2, . . .}, z ∈ Z
d ,

be independent Poisson point processes on (0,∞) with intensity parameter q̃n , and

N (z, n; ·), n ∈ {1, 2, . . .}, z ∈ Z
d ,

independent Poisson point processes on (0,∞)with intensity parameter qn .We couple
all these processes so that the pairs of processes

{
Ñ (z, n; ·), N (z, n; ·)} , n ∈ {1, 2, . . .}, z ∈ Z

d ,

are independent and

P
[
Ñ (z, n; t) �= N (z, n; t)] ≤ C · t · n− d

2 −3.

Let

L̃(z, n;m), n ∈ {1, 2, . . .}, z ∈ Z
d ,m ∈ {1, 2, . . .},
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be independent random walk bridges of length 2n rooted at 0, and

L(z, n;m), n ∈ {1, 2, . . .}, z ∈ Z
d ,m ∈ {1, 2, . . .},

independent standard Brownian bridges coupled with the respective L̃(z, n;m) as in
Lemma 4.2. All the L̃’s and L’s are assumed to be independent from all the Ñ ’s and
N ’s.

The randomwalk loop soupRλ of intensity λ is defined as in (2.2) as the collection
(multiset) of loops

{
z + L̃(z, n;m) : n ∈ {1, 2, . . . , }, z ∈ Z

d , m ∈ {1, . . . , Ñ (z, n; λ)
}}

.

In order to define the Brownian loop soup, we introduce more random variables.
Let

Y (z, n;m), n ∈ {1, 2, . . .}, z ∈ Z
d ,m ∈ {1, 2, . . .},

be independent random variables uniformly distributed on [− 1
2 ,

1
2 ]d , and

T (z, n;m), n ∈ {1, 2, . . .}, z ∈ Z
d ,m ∈ {1, 2, . . .},

independent real-valued random variables with density

∝ 1

t · (2π t)
d
2

,
2(n − 1)

d
+ α ≤ t ≤ 2n

d
+ α.

We assume that the Y ’s and T ’s are independent and also independent of all the
previously defined variables.

Finally, consider an independent Brownian loop soup Bα of loops of time duration
≤ α, and the corresponding restriction of Bα to C × (0, λ), Bλ

α (the loops “appearing
before time λ”).

To generate the Brownian loop soup, we first rescale each loop L(z, n;m) so that its
time duration is T (z, n;m) and translate so that its root is at z+Y (z, n;m), obtaining
the loop L∗(z, n;m). The Brownian loop soup Bλ of intensity λ is then the collection
of loops

{
L∗(z, n;m) : n ∈ {1, 2, . . . , }, z ∈ Z

d , m ∈ {1, . . . , N (z, n; λ)}
}

∪ Bλ
α.

It remains to show that the constructed coupling satisfies all the requirements of
the theorem. We would like to pair-up random walk loops from the multiset

{
z + L̃(z, n;m) : m ∈ {1, . . . , Ñ (z, n; λ)

}}

with Brownian loops from the set

{
L∗(z, n;m) : m ∈ {1, . . . , N (z, n; λ)}} ,
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for all n and z such that 2n ≥ N θ and |z| ≤ r N .
First, we estimate the probability that cardinalities are different,

P

[
N (z, n; λ) �= Ñ (z, n; λ) for some n ≥ 1

2
N θ , |z| ≤ r N

]

(4.1)≤ C(r N )d λ
∑

2n≥N θ

n− d
2 −3

≤ C λ rd Nd−θ( d2 +2).

Next, we rule out the existence of big loops,

P

[
Ñ (z, n; λ) > 0 for some n ≥ N 3, |z| ≤ r N

]
≤ C(r N )d λ

∑

n≥N3

n− d
2 −1

≤ C λ rd N− d
2 .

Now, we bound the probability of having too many loops of a given size rooted at
the same vertex,

P

[
Ñ (z, n; λ) ≥ N 5 for some

1

2
N θ ≤n ≤ N 3, |z| ≤ r N

]
≤C(r N )d N 3 λN

−θ
(
d
2 +1

)

N 5

≤ C λ rd N
d−θ

(
d
2 +2

)

,

where in the first inequality we used theMarkov inequality and the fact that Ñ (z, n; λ)

is a Poisson random variable with parameter λq̃n .
By putting all the bounds together and using Lemma 4.2,

P

⎡

⎣
there exist loops L∗(z, n;m) and z + L̃(z, n;m)

for some n ≥ 1
2N

θ , |z| ≤ r N ,m ≤ Ñ (z, n; λ)

such that sup-distance between them is ≥ C4.2N
3
4 log N

⎤

⎦

≤ C λ rd N
−min

(
d
2 , θ
(
d
2 +2

)
−d
)

+ C(r N )d · N 3 · N 5 · N−θD

≤ C (λ + 1) rd N
−min

(
d
2 , θ
(
d
2 +2

)
−d
)

,

by choosing D sufficiently large. The proof is complete. ��

5 LEW scaling limit + Brownian loop soup = Brownian motion

In this section we prove Theorem 1.1 using the Beurling-type estimate of Theorem 3.1
and the strong coupling of loop soups from Theorem 2.2. We will focus here, without
further mentioning, on the three dimensional case. The two dimensional case can be
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treated similarly and often with less effort, so we leave the details to an interested
reader.

5.1 Preliminaries

Recall the notation for random walk loop soups from Sect. 2.2. Let U be a connected
open subset of R

3 with smooth boundary. Let 0 < ε < δ be sufficiently small so that
all the finite connected components ofUc have diameter> δ. For n ≥ 1, letUn = nU
and use the same notation for nU ∩ Z

3. Let λ > 0. The first result states that it is
unlikely that there is a loop inRλ of big diameter which is contained inUn and reaches
very close to the boundary of Un .

Proposition 5.1 There exists α > 0 and C = C(α,U ) < ∞ such that for all λ > 0,
0 < ε < δ as above, and n ≥ 1,

P

[
There exists 	 ∈ Rλ with diameter > δn

such that 	 ⊂ Un and 	 � U−εn
n

]
≤ C λ

εα

δ5
. (5.1)

Proof Let ε < γ < δ. We will prove that for some η > 0 and C = C(U, η) < ∞,

μrwl [	 : diameter of 	 is > δn, 	 ⊂ Un, and 	 � U−εn
n

] ≤ C ·
(

γ η

δη+3 + εη

γ η+3

)
.

(5.2)

Optimizing over γ then gives that the above measure is ≤ C εα δ−5 for α = η2

2η+3 .
Since the probability in (5.1) equals

1 − exp
(
−λ μrwl [	 : diameter of 	 is > δn, 	 ⊂ Un, and 	 � U−εn

n

])
,

the result follows. Thus, it suffices to prove (5.2). Denote by Ln the set of all loops 	

with diameter > δn, 	 ⊂ Un , and 	 � U−εn
n . By the definition of μrwl,

μrwl[Ln] =
∑

z∈Z3∩Un

∑

k≥1

1

2k
P
z [R(2k) = z, R[0, 2k] ∈ Ln]

≤ C(U )n3 · max
z∈Z3∩Un

∑

k≥1

1

2k
P
z [R(2k) = z, R[0, 2k] ∈ Ln] .

Let z ∈ Z
3 ∩Un . We consider separately two cases: k ≤ γ 2n2 and k ≥ γ 2n2.

If k ≤ γ 2n2, then by the time reversibility of the random walk,

P
z [R(2k) = z, R[0, 2k] ∈ Ln] ≤ 2P

z
[
Tz, 12 δn ≤ k, R(2k) = z

]
. (5.3)

By the local central limit theorem, for each y ∈ Z
d and m,

P
y [R(m) = z] ≤ C m− 3

2 e− 3|y−z|2
2m .
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Using the strong Markov property on exiting from B(z, 1
2δn) and the local central

limit theorem, one gets from (5.3) that

P
z [R(2k) = z, R[0, 2k] ∈ Ln] ≤ C k− 3

2 e− 3(δn)2
16k ≤ C e

− 3
32

(
δ
γ

)2

k− 3
2 e− 3(δn)2

32k .

Thus,

n3
�γ 2n2�∑

k=1

1

2k
P
z [R(2k) = z, R[0, 2k] ∈ Ln]

≤ C e
− 3

32

(
δ
γ

)2

n3
∞∑

k=1

k− 5
2 e− 3(δn)2

32k

≤ C ′ e− 3
32

(
δ
γ

)2 1

δ3
.

Note that for any η > 0 there exists C = C(η) < ∞ such that e
− 3

32

(
δ
γ

)2

≤ C
( γ

δ

)η.
Thus, we have the first part of the bound in (5.2).

Next we consider k ≥ γ 2n2. By the time reversibility of the random walk,

P
z [R(2k) = z, R[0, 2k] ∈ Ln]

≤ 2P
z
[
T
((
U−εn
n

)c) ≤ k, T (∂Un) >
3

2
k, R(2k) = z

]
, (5.4)

It iswell known (see, e.g., [11, Lemma2.5]) that there existη > 0 andC = C(U ) < ∞
such that for all y ∈ Un\U−εn

n ,

P
y
[
T (∂Un) >

1

2
γ 2n2

]
≤ C

(
ε

γ

)η

.

By the strong Markov property at time T
((
U−εn
n

)c) and the above inequality, as well
as the Markov property at time 3

2k and the local central limit theorem, one gets from
(5.4) that

P
z [R(2k) = z, R[0, 2k] ∈ Ln] ≤ C

(
ε

γ

)η

k− 3
2 .

Thus,

n3
∑

k≥�γ 2n2�

1

2k
P
z [R(2k) = z, R[0, 2k] ∈ Ln]

≤ C

(
ε

γ

)η

n3
∑

k≥�γ 2n2�
k− 5

2 ≤ C ′
(

ε

γ

)η 1

γ 3 .
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This gives us the second part of the bound in (5.2). The proof of Proposition 5.1 is
complete. ��

Consider a simple random walk R1 from 0 and an independent random walk loop
soup Rλ defined on the same probability space.

Proposition 5.2 There exists α > 0 and C = C(α) < ∞ such that for all λ > 0,
0 < ε < δ, and n ≥ 1,

P

[
There exists 	 ∈ Rλ with diameter > δn such that 	 ⊂ B(0, n),

dist
(
	, LE

(
R1
[
0, T 1

0,n

]))
< εn and 	 ∩ LE

(
R1
[
0, T 1

0,n

])
= ∅

]

≤ C

(√
ε + λ

εα

δ5

)
.

(5.5)

Proof Let η > 0 and define the event

A =

⎧
⎪⎨

⎪⎩

For all x ∈ B(0, n)with dist
(
x,LE

(
R1
[
0, T 1

0,n

]))
≤ εn,

P
2,x
[
R2
[
0, T 2

x,ε
1
4 n

]
∩ LE

(
R1
[
0, T 1

0,n

])
= ∅
]

< εη

⎫
⎪⎬

⎪⎭
.

By Theorem 3.1, there exists η > 0 and C = C(η) < ∞ such that P
1,0[Ac] ≤ C

√
ε.

This gives the first part of the bound in (5.5), and it remains to estimate the probability
of the event in (5.5) intersected with A. By the definition of Poisson point process and
independence of R1 and Rλ, this probability equals

E
1,0

⎡

⎢⎢
⎣1A ·

⎛

⎜⎜
⎝1 − exp

⎛

⎜⎜
⎝−λμrwl

⎡

⎢⎢
⎣	 :

diameter of 	 is > δn, 	 ⊂ B(0, n),

dist
(
	,LE

(
R1
[
0, T 1

0,n

]))
< εn,

and 	 ∩ LE
(
R1
[
0, T 1

0,n

])
= ∅

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

≤ E
1,0

⎡

⎢⎢
⎣1A · λμrwl

⎡

⎢⎢
⎣	 :

diameter of 	 is > δn, 	 ⊂ B(0, n),

dist
(
	,LE

(
R1
[
0, T 1

0,n

]))
< εn,

and 	 ∩ LE
(
R1
[
0, T 1

0,n

])
= ∅

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦

=: E
1,0
[
1A · λμrwl[Ln]

]
,

where we denoted by Ln the set of loops 	 ⊂ B(0, n) with diameter > δn and such
that dist(	,LE(R1[0, T 1

0,n])) < εn and 	 ∩ LE(R1[0, T 1
0,n]) = ∅. It suffices to prove

that for some α > 0 and C = C(α) < ∞,

1A · μrwl[Ln] ≤ C
εα

δ5
.
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By the definition of μrwl,

μrwl[Ln] =
∑

z∈Z3∩B(0,n)

∑

k≥1

1

2k
P
2,z
[
R2(2k) = z, R2[0, 2k] ∈ Ln

]

≤ C n3 max
z∈Z3∩B(0,n)

∑

k≥1

1

2k
P
2,z
[
R2(2k) = z, R2[0, 2k] ∈ Ln

]
.

Let ε < γ < δ be some paramter to be fixed later.We first consider the case k ≤ γ 2n2.
Exactly as in the proof of Proposition 5.1 [see below (5.3)], there exists C < ∞ such
that

n3
�γ 2n2�∑

k=1

1

2k
P
2,z
[
R2(2k) = z, R2[0, 2k] ∈ Ln

]
≤ C

γ

δ
· 1

δ3
.

We consider next the case k ≥ γ 2n2. Define S = LE(R1[0, T 1
0,n]). By the time

reversibility of the random walk,

P
2,z
[
R2(2k)= z, R2[0, 2k]∈Ln

]
≤2P

2,z
[
R2[0, 2k]⊂ B(0, n), dist

(
R2[0, k], S

)

≤ εn, R2
[
0,

3

2
k

]
∩ S = ∅, R2(2k) = z

]
.

Let T ∗ = min{t : dist(R2[0, t], S) ≤ εn} and T ∗∗ = inf{t > T ∗ : R2(t) /∈
B(R2(T ∗), ε 1

4 n)}. By the Markov inequality,

P
2,z
[
T ∗ < ∞, T ∗∗ > T ∗ + 1

2
γ 2n2

]
≤ C

√
ε

γ 2 ,

and by the definition of the event A,

1A · P
z
[
T ∗ < ∞, R2 (T ∗) ∈ B(0, n), R2 [T ∗, T ∗∗] ∩ S = ∅

]
≤ εη.

Combining these bounds with the Markov property at time 3
2k and the local central

limit theorem, we obtain that for each k ≥ γ 2n2,

1A · P
2,z
[
R2(2k) = z, R2[0, 2k] ∈ Ln

]
≤ C

(√
ε

γ 2 + εη

)
k− 3

2 .
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Thus,

1A · n3
∑

k≥�γ 2n2�

1

2k
P
2,z
[
R2(2k) = z, R2[0, 2k] ∈ Ln

]

≤ C

(√
ε

γ 2 + εη

)
n3

∑

k≥�γ 2n2�
k− 5

2 ≤ C ′
(√

ε

γ 2 + εη

)
1

γ 3 .

Putting the two cases together, we get

1A · μrwl[Ln] ≤ C

(
γ

δ4
+
(√

ε

γ 2 + εη

)
1

γ 3

)
.

If γ = ε
η
4 δ1−

η
4 , then the last expression is ≤ C ′ εα

δ5
for α = η

4 . This gives the second
part of the bound in (5.5). The proof of Proposition 5.2 is complete. ��

5.2 Proof of Theorem 1.1

Let BD be the restriction of an independent Brownian loop soup of intensity 1 to the
loops entirely contained in D. Denote by X the random subset of D consisting of K
and all the loops from BD that intersect K. First of all, note that X is closed. Indeed,
for any ε > 0, the set of loops in BD with diameter bigger than ε is almost surely
finite. Thus, the complement of any ε-neighborhood of K in X is closed. Since K is
closed, X is also closed.

Let BM be the trace of the Brownian motion killed on exiting from D viewed as a
compact subset of D. We need to prove that X has the same law as BM in (KD, dH ).
Let (�,F , P) be a probability space large enough to contain all the random variables
used in this proof. It suffices to prove that

P
[
X ⊂ U ∩ D

] = P
[
BM ⊂ U ∩ D

]
, for all openU ⊂ R

3.

Since every bounded open set can be approximated from inside by a finite union of
open balls, which itself can be approximated from inside by an open set with smooth
boundary, it suffices to prove the above identity only for setsU with smooth boundary.

For a (measurable) set S ⊂ R
3 and a (countable) collection of loops L in R

3, let
E(S, L) be the union of S and all the loops from L that intersect S, the enlargement
of S by L . In particular, X = E(K,BD). Also for δ > 0, let L>δ be the subcollection
of all the loops from L with diameter > δ.

Let LSn be the restriction of the randomwalk loop soup of intensity 1 rescaled by 1
n

to D, i.e., LSn = { 1n 	 : 	 ∈ R1, 1
n 	 ⊂ D}. By Proposition 2.1, if LEWn and LSn are

independent, then E(LEWn,LSn) has the same law as the trace of a simple random
walk on 1

nZ
3 killed on exiting from D. In particular, as n → ∞, E(LEWn,LSn)

converges weakly in the space (KD, dH ) to the Brownian motion BM.
Let U be an open subset of R

3 with a smooth boundary and such that 0 ∈ U . Fix
0 < ε < δ. We now define the random objects that will be used in the proof.
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Since the space (KD, dH ) is separable and LEWn converges weakly to K, by
Skorokhod’s representation theorem we can define (LEWn)n≥1 and K on the same
probability space so that dH (LEWn,K) → 0 almost surely. Consider the event

A0 =
{
K ⊆ U−3δ

}
∪ {K � U }

that if K is in U then the distance from K to the complement of U is > 3δ. By
monotonicity, P[A0] → 1 as δ → 0. For each n ≥ 1, consider also the event

A1,n = {dH (LEWn,K) < ε} .

By construction, P[A1,n] → 1 as n → ∞.
For each n ≥ 1, let (R1

n,B1
n) be independent pairs of the rescaled random walk

loop soup of intensity 1 on 1
nZ

3 and the Brownian loop soup of intensity 1 on R
3

coupled so that on an event A2,n of probability > 1 − Cn− 1
2 there is a one-to-one

correspondence between the loops from R1
n of diameter > δ rooted in D2 and those

from B1
n rooted in D2 and so that the Hausdorff distance between the paired loops

is < ε. This coupling is possible by Theorem 2.2. (In Theorem 2.2 we paired loops
of sufficiently large length, but each loop of length s is of diameter of order

√
s.)

We also assume that all the pairs (R1
n,B1

n) are independent from (LEWn)n≥1 and
K.

In addition, for each n ≥ 1, we consider the event A3,n that every loop from R1
n

with diameter > δ which is contained in (U ∩ D)+4ε is also contained in (U ∩ D)−4ε,
and the event A4,n that every loop fromR1

n with diameter > δ at distance < 4ε from
LEWn intersects LEWn . In otherwords, in the event A3,n there are no big loops that are
contained in (U ∩ D)+4ε and get too close to the boundary ofU ∩ D, and in the event
A4,n there are no big loops that get too close to the LEWn without hitting it. It is proved
in Propositions 5.1 and 5.2 that for some α > 0, infn P[A3,n ∩ A4,n] ≥ 1 − C εα

δ5
.

Note that in the event A2,n ∩ A3,n , for every loop from R1
n with diameter > δ

contained in D, its pair from B1
n is contained in D, and vice versa.

We call the restriction ofR1
n to the loops contained in D by LSn , and the restriction

of B1
n to the loops contained in D by BSn .

We prove that for any n ≥ 1, on the event An = A0 ∩ A1,n ∩ A2,n ∩ A3,n ∩ A4,n ,

{
E (LEWn,LSn) ⊂ U−3ε ∩ D

}
⊆
{
E
(
K+2ε,BSn

)
⊂ U ∩ D

}

⊆ {E (LEWn,LSn) ⊂ U+δ ∩ D
}
. (5.6)

We begin with a proof of the first inclusion. Assume that E(LEWn,LSn) ⊂ U−3ε. In
particular, LEWn ⊂ U−3ε. Since A1,n holds, this implies that K ⊂ U−2ε, which is
equivalent to K+2ε ⊂ U .

Let 	 ∈ BS>δ
n be such that 	∩K+2ε �= ∅. Then, since A1,n occurs, 	∩LEW+3ε

n �= ∅.
Since A2,n ∩ A3,n occurs, there is 	̃ ∈ LS>δ

n such that dH (	̃, 	) < ε. In particular,
	̃ ∩ LEW+4ε

n �= ∅. Since A4,n occurs, this implies that 	̃ ∩ LEWn �= ∅. By our
assumption, 	̃ ⊂ U−3ε. Therefore, 	 ⊂ U−2ε ⊂ U . Thus, any 	 ∈ BS>δ

n such that
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	 ∩ K+2ε �= ∅ is contained in U . This implies that E(K+2ε,BS>δ
n ) ⊂ U . Since A0

occurs, the above is true if and only if E(K+2ε,BSn) ⊂ U .
We proceed with the proof of the second inclusion in (5.6). Assume that

E(K+2ε,BSn) ⊂ U . Since A0 occurs, this is equivalent to E(K+2ε,BS>δ
n ) ⊂ U .

Since A1,n occurs and K+2ε ⊂ U , we also have LEWn ⊂ U .
Let 	̃ ∈ LS>δ

n such that 	̃ ∩ LEWn �= ∅. Since A1,n occurs, 	̃ ∩ K+ε �= ∅. Since
A2,n∩A3,n occurs, there is 	 ∈ BS>δ

n such that dH (	̃, 	) < ε. In particular, 	∩K+2ε �=
∅. By assumption, 	 ⊂ U . Therefore, 	̃ ⊂ U+ε. Since A3,n occurs, we actually have
	̃ ⊂ U . Thus, any 	̃ ∈ LS>δ

n such that 	̃ ∩ LEWn �= ∅ is contained in U . This implies
that E(LEWn,LS>δ

n ) ⊂ U . Finally, by adding all the loops of diameter < δ we get
E(LEWn,LSn) ⊂ U+δ . The proof of the inclusion (5.6) is complete.

It follows from (5.6) that for all n ≥ 1, 0 < ε < δ,

P

[
E (LEWn,LSn) ⊂ U−3δ ∩ D

]
− P

[
Ac
n

] ≤ P

[
E
(
K+2ε,BD

)
⊂ U ∩ D

]

≤ P
[
E (LEWn,LSn) ⊂ U+δ ∩ D

]+ P
[
Ac
n

]
.

By monotonicity,

lim
ε→0

P

[
E
(
K+2ε,BD

)
⊂ U ∩ D

]
= P

[
E (K,BD) ⊂ U ∩ D

] = P
[
X ⊂ U ∩ D

]
.

Since lim supδ→0 lim supε→0 lim supn→∞ P[Ac
n] = 0, we have

lim inf
δ→0

P

[
BM ⊂ U−3δ ∩ D

]
≤ P

[
X ⊂ U ∩ D

] ≤ lim sup
δ→0

P
[
BM ⊂ U+δ ∩ D

]
.

Since by monotonicity both left and right hand sides are equal to P
[
BM ⊂ U ∩ D

]
,

we get the desired result. ��

6 Scaling limit is a simple path

6.1 Quasi-loops

We say that a nearest neighbor path γ in Z
3 has a (s, r)-quasi-loop at v ∈ Z

3 if there
exist i ≤ j such that γ (i), γ ( j) ∈ B(v, s) and γ [i, j] � B(v, r). The set of all such
v’s is denoted by QL(s, r; γ ). Note that the set QL(s, r; γ ) is non-increasing in r and
non-decreasing in s.

Theorem 6.1 There exist M < ∞, α > 0, and C < ∞ such that for any ε > 0 and
n ≥ 1,

P
0
[
QL
(
εMn,

√
εn; LE(R[0, T0,n])

)
�= ∅
]

≤ Cεα. (6.1)

Proof It suffices to consider sufficiently small ε. Let M ≥ 1. The proof is subdivided
into three cases: (1) there is a quasi-loop at a vertex of B(0, εn), (2) there is a quasi-
loop at a vertex of B(0, n − εn)c, and (3) there is a quasi-loop at a vertex of B(0, n −
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650 A. Sapozhnikov, D. Shiraishi

εn)\B(0, εn). We will verify the first and the second cases for M = 1 and the last
case for a sufficiently large M .

Consider the first case. If QL
(
εn,

√
εn; LE(R[0, T0,n])

)∩ B(0, εn) �= ∅, then the
random walk R must return to B(0, 2εn) after leaving B(0,

√
εn − εn). Thus,

P
0 [QL

(
εn,

√
εn; LE(R[0, T0,n])

) ∩ B(0, εn) �= ∅]

≤ P
0
[
R
[
T0,√εn−εn, T0,n

]
∩ B(0, 2εn) �= ∅

]
≤ C

√
ε.

This implies (6.1) for quasi-loops at a vertex in B(0, εn).
Consider the second case. If QL

(
εn,

√
εn; LE(R[0, T0,n])

) \B(0, n − εn) �= ∅,
then the randomwalk R will hit ∂B(0, n−2εn) and thenmoves to distance

√
εn−3εn

away from the hitting point before it exits from B(0, n). Thus, there exist α > 0 and
C < ∞ such that

P
0 [QL

(
εn,

√
εn; LE

(
R
[
0, T0,n

])) \B(0, n − εn) �= ∅]

≤ P
0 [R

[
T0,n−2εn, T0,n

] ∩ ∂B
(
R(T0,n−2εn),

√
εn − 3εn

) �= ∅] ≤ Cεα,

where the last inequality follows, for instance, from [11, Lemma 2.5]. This implies
(6.1) for quasi-loops at a vertex outside of B(0, n − εn).

It remains to consider the third case. Let A = B(0, n − εn)\B(0, εn). We will
prove that for some M ≥ 1,

P
0
[
QL
(
εMn, εn; LE(R[0, T0,n])

)
∩ A �= ∅

]
≤ Cε, (6.2)

which implies (6.1) for quasi-loops at a vertex in A. We cover A by s = 10 �ε−6�
balls of radius ε2n with centers at v1, . . . , vs ∈ A. Then, the probability in (6.2) is
bounded from above by

10 ε−6 max
i

P
0
[
QL
(
εMn, εn; LE(R[0, T0,n])

)
∩ B

(
vi , ε

2n
)

�= ∅
]
,

and the inequality (6.2) is immediate from the following lemma. ��
Lemma 6.2 There exist M,C < ∞ such that for all v ∈ A, ε > 0 and n ≥ 1,

P
0
[
QL
(
εMn, εn; LE(R[0, T0,n])

)
∩ B

(
v, ε2n

)
�= ∅
]

≤ Cε7.

The proof of Theorem 6.1 is complete subject to Lemma 6.2, whichwe prove below.

Proof of Lemma 6.2 Fix v ∈ A and assume that M > 2. Consider the stopping times
T0 = 0,

T2k−1 = inf
{
t > T2k−2 : R(t) ∈ B

(
v, 2ε2n

)}
,

T2k = inf

{
t > T2k−1 : R(t) ∈ ∂B

(
v,

1

2
εn

)}
,
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where inf ∅ = ∞.

Claim 6.3 IfQL
(
εMn, εn; LE(R[0, T0,n])

)∩B(v, ε2n) �= ∅, then there exists i such
that

QL
(
εMn, εn; LE(R[0, T2i−1])

)
∩ B

(
v, ε2n

)
= ∅,

QL
(
εMn, εn; LE(R[0, T2i ])

)
∩ B

(
v, ε2n

)
�= ∅. (6.3)

Proof of Claim 6.3 Assume that QL
(
εMn, εn; LE(R[0, T0,n])

)
has a point in

B(v, ε2n). Let I be such that T2I < T0,n < T2I+1.
Note that QL

(
εMn, εn; LE(R[0, T2I ])

)
also has a point in B(v, ε2n), since

R[T2I , T0,n] does not intersect B(v, ε2n+εMn). If QL
(
εMn, εn; LE(R[0, T2I−1])

)∩
B(v, ε2n) = ∅, then we are done, thus assume the contrary.

Let i ≤ I and assume that QL
(
εMn, εn; LE(R[0, T2i−1])

)
has a point in

B(v, ε2n). Since R[T2i−2, T2i−1] does not intersect B(v, ε2n + εMn), the set
QL
(
εMn, εn; LE(R[0, T2i−2])

)
must also have a point in B(v, ε2n). In this case,

if QL
(
εMn, εn; LE(R[0, T2i−3])

)
does not have a point in B(v, ε2n), then we are

done, otherwise, we repeat.
Note that the above procedure eventually succeeds, since QL

(
εMn, εn; LE

(R[0, T1])
)
does not have a point in B(v, ε2n). (In fact, QL

(
εMn, εn; LE(R[0, T3])

)

too.) ��
Weproceed to estimate the probability of event (6.3) for any fixed i . Let i be fixed so

that T2i−1 < ∞ and define L ′ = LE(R[0, T2i−1]) and R′ = R[T2i−1, T2i ]. Consider
the stopping times τ0 = 0,

τ2k−1 = inf
{
t > τ2k−2 : L ′(t) ∈ B

(
v, 2ε2n

)}
,

τ2k = inf

{
t > τ2k−1 : L ′(t) ∈ ∂B

(
v,

1

2
εn

)}
.

Claim 6.4 If the event (6.3) occurs, then there exists k and x ∈ B(v, ε2n) such that

L ′ [0, τ2k] ∩ B
(
x, εMn

)
�= ∅, R′ ∩ B

(
x, εMn

)
�= ∅, R′ ∩ L ′ [0, τ2k] = ∅.

(6.4)

Proof of Claim 6.4 Assume that the event (6.3) occurs. Since LE(R[0, T2i ]) =
LE(L ′ ∪ R′) and R′ ⊂ B(v, 1

2εn), there exist x ∈ B(v, ε2n) such that L ′[0, len L ′] ∩
B(x, εMn) �= ∅ and R′ ∩ B(x, εMn) �= ∅. Otherwise, R′ would not complete any
(εMn, εn)-quasi-loop in B(v, ε2n).

Let k be the smallest index such that for some x ∈ B(v, ε2n), L ′[0, τ2k] ∩
B(x, εMn) �= ∅ and R′ ∩ B(x, εMn) �= ∅. We claim that k satisfies (6.4), i.e.,
R′ ∩ L ′[0, τ2k] = ∅.

Assume that R′ ∩ L ′[0, τ2k] �= ∅. Let s be the smallest number that L ′[0, s]∩ R′ �=
∅. By the assumption, τ2k ≥ s. Thus, L ′[τ2k−1, s] ⊂ B(v, 1

2εn). Since also R′ ⊂
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652 A. Sapozhnikov, D. Shiraishi

B(v, 1
2εn), there must exist x ∈ B(v, ε2n) such that L ′[0, τ2k−1] ∩ B(x, εMn) �= ∅

and R′ ∩ B(x, εMn) �= ∅. Since L ′[τ2k−2, τ2k−1] ∩ B(v, ε2n + εMn) = ∅, the above
conclusion actually gives that for some x ∈ B(v, ε2n), L ′[0, τ2k−2]∩ B(x, εMn) �= ∅
and R′ ∩ B(x, εMn) �= ∅. This contradicts the minimality of k. ��

Next we use Lemma 3.3 to prove that each LE(R[0, T2i−1])[0, τ2k] is hittable by a
random walk starting nearby.

Claim 6.5 There exist M and C such that for each v /∈ B(0, εn), integers i and k,
and ε > 0, if Li,k = LE(R[0, T2i−1])[0, τ2k], then

P
0

⎡

⎢
⎣
T2i−1 < ∞, τ2k < ∞, and there exists x ∈ B

(
v, 2ε2n

)
such that

dist
(
x, Li,k

) ≤ 2εMn andP
2,x
[
R2
[
0, T 2

x, 14 εn

]
∩ Li,k = ∅

]
> ε7

⎤

⎥
⎦ ≤ C ε7.

(6.5)

Proof of Claim 6.5 Assume that ε is small (possibly depending on M). We cover
B(v, 2ε2n) by s = 10 �ε−3M� balls of radius εMn with centers at v1, . . . , vs ∈
B(v, 2ε2n). Then the probabilty in (6.5) is bounded from above by

10 ε−3M max
j

P
0

⎡

⎢
⎣

T2i−1 < ∞, τ2k < ∞, and there exists x ∈ B
(
v j , ε

Mn
)
such that

dist
(
x, Li,k

) ≤ 2εMn andP
2,x
[
R2
[
0, T 2

x, 14 εn

]
∩ Li,k = ∅

]
> ε7

⎤

⎥
⎦ .

For each x ∈ B
(
v j , ε

Mn
)
, B(x, 2εMn) ⊂ B(v j , 3εMn) and B(x, 1

4εn) ⊃
B(v j ,

1
8εn). Thus, the j th probability in the above maximum is at most

P
0

⎡

⎢⎢⎢
⎣

T2i−1 < ∞, τ2k < ∞,

Li,k ∩ B
(
v j , 3εMn

) �= ∅, there exists x ∈ B
(
v j , ε

Mn
)
such that

P
2,x
[
R2
[
0, T 2

v j ,
1
8 εn

]
∩ Li,k ∩

(
B
(
v j ,

1
8εn
) \B (v j , 3εMn

)) = ∅
]

> ε7

⎤

⎥⎥⎥
⎦

.

By the Harnack inequality applied to the harmonic function

P
2,x
[
R2
[
0, T 2

v j ,
1
8 εn

]
∩ Li,k ∩

(
B

(
v j ,

1

8
εn

)
\B (v j , 3εMn

)) = ∅
]

,

x ∈ B
(
v j , 2ε

Mn
)

,

there exists a universal constant c∗ > 0 such that the j th probability is bounded from
above by

P
0

⎡

⎣
T2i−1 < ∞, τ2k < ∞, Li,k ∩ B

(
v j , 3εMn

) �= ∅, and

P
2,v j

[
R2
[
0, T 2

v j ,
1
8 εn

]
∩ Li,k ∩

(
B
(
v j ,

1
8εn
) \B (v j , 3εMn

)) = ∅
]

> c∗ε7

⎤

⎦ .
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We apply Lemma 3.3 to LE(R[0, T2i−1])[0, τ2k] with v = v j , r = 1
8εn, s = 3εMn,

choosing M so that
( s
r

)η = (
24 εM−1

)η
< c∗ε7, and choosing K so that

( s
r

)K =
(
24 εM−1

)K
< ε7+3M . This gives that the above probability is ≤ Cε7+3M . Thus, the

original probability is ≤ (Cε7+3M ) · s ≤ C ′ε7. ��
Let Ei be the event in (6.3) and Ei,k the event in (6.4) with M as in Claim 6.5. By

Claim 6.4, P
0[Ei ] ≤ i maxk P

0[Ei,k]. On the event Ei,k , define the stopping time

σi,k = inf
{
t > T2i−1 : R(t) ∈ B

(
v, 2ε2n

)
, dist

(
R(t), Li,k

) ≤ 2εMn
}

.

By the definition of Ei,k , σi,k < T2i and R[σi,k, T2i ] ∩ Li,k = ∅. By Claim 6.5 and
the strong Markov property, if Fi,k is the event in (6.5), then

P
0[Ei,k] ≤ P

0[Fi,k] + ε7 ≤ (C + 1)ε7.

Thus, there exists C such that for all i , P
0[Ei ] ≤ C i ε7. To conclude the proof, we

notice that for each i ≥ 7,

P
0 [T2i−1 < ∞] ≤ C εi ≤ C ε7.

By Claim 6.3,

P
0
[
QL
(
εMn, εn; LE(R[0, T0,n])

)
∩ B

(
v, ε2n

)
�= ∅
]

≤ P
0 [T13 < ∞] +

7∑

i=1

P
0[Ei ] ≤ C ε7.

The proof of Lemma 6.2 is complete. ��
Exactly the same argument as in the second case in the proof of Theorem 6.1 gives

the following result.

Proposition 6.6 There exist α > 0 and C < ∞ such that for all ε > 0 and n ≥ 1, if
L = LE(R[0, T0,n]) then

P
0
[

There exist i and j such that L(i) /∈ B(0, n − εn),

L( j) /∈ B(0, n − εn), and L[i, j] � B(L(i),
√

εn)

]
≤ C εα.

6.2 Proof of Theorem 1.2

The proof of the theorem follows from Theorem 6.1 and Proposition 6.6 similarly
to [26, Theorem 1.1]. Recall that a compact subset of R

d is a simple path if it is
homeomorphic to [0, 1]. We begin with the following observation, which is analogous
to [26, Theorem 3.5].
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654 A. Sapozhnikov, D. Shiraishi

For a simple path γ and x, y ∈ γ , we denote by D(x, y; γ ) the diameter (with
respect to the Euclidean distance) of the arc of γ joining x and y. For a function
f : (0,∞) → (0,∞), let �( f ) be the set of paths from � such that for all x, y ∈ γ ,

|x − y| ≥ f (D(x, y; γ )),

max (dist(x, ∂D), dist(y, ∂D)) ≥ f (D(x, y; γ )),

and denote by �( f ) the closure of �( f ) in (KD, dH ).

Lemma 6.7 For any monotone increasing and continuous function f : (0,∞) →
(0,∞),

�( f ) ⊂ �.

Proof of Lemma 6.7 Let γ ∈ �( f ). Then γ is a compact, connected subset of D, such
that 0 ∈ γ and γ ∩ ∂D �= ∅.

We first show that |γ ∩ ∂D| = 1. Assume that there exist two different points
p, q ∈ γ ∩ ∂D. Let γn ∈ �( f ) be such that dH (γn, γ ) < 1

n and pn, qn ∈ γn such that
|pn− p| < 1

n and |qn−q| < 1
n . In particular, dist(pn, ∂D) < 1

n and dist(qn, ∂D) < 1
n .

Since γn ∈ �( f ),

1

n
> max (dist(pn, ∂D), dist(qn, ∂D)) ≥ f (D(pn, qn; γn)) ≥ f (|pn − qn|).

By passing to the limit, we conclude that p = q. Thus, |γ ∩ ∂D| = 1. We denote this
point by b.

It remains to show that γ is a simple path with γ e = b. We will use the following
Janiszewski’s topological characterization of arcs (see, e.g., [26, Lemma 3.6]):

Let γ be a compact, connected metric space, a, b ∈ γ.

If γ \{x}is disconnected for all x ∈ γ \{a, b}, then γ is a simple path from a to b.
(6.6)

Let x ∈ γ \{0, b}. Let γn ∈ �( f ) be such that dH (γn, γ ) < 1
n , and xn ∈ γn such

that |xn − x | < 1
n . For each n, let γ 1

n be the closed arc of γn connecting 0 and xn ,
and γ 2

n the closed arc of γn connecting zn and γ e
n . By passing to a subsequence, if

necessary, assume with no loss of generality that γ 1
n converges to γ 1 and γ 2

n converges
to γ 2 in (KD, dH ). Note that γ 1 and γ 2 are compacts with γ 1 ∪ γ 2 = γ . For any
p ∈ γ 1 and q ∈ γ 2, let pn ∈ γ 1

n be a sequence converging to p, and qn ∈ γ 2
n a

sequence converging to q. Since γn ∈ �( f ),

|pn − qn| ≥ f (D(pn, qn; γn)) ≥ f (|xn − qn|).

By passing to the limit, we get that |p − q| ≥ f (|x − q|), for all p ∈ γ 1 and q ∈ γ 2,
which implies that γ 1\{x} and γ 2\{x} are disjoint. Therefore, γ \{x} is disconnected.
By (6.6), γ is a simple path from 0 to b.

We have shown that γ ∈ �. ��
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The main ingredient for the proof of Theorem 1.2 is the following lemma.

Lemma 6.8 The exist C, M < ∞ and α > 0 such that for all m, n ≥ 1,

P [LEWn ∈ �( fm)] ≥ 1 − C 2−αm,

where

fm(s) = min

(
2−Mm,

( s
4

)2M)
.

Proof of Lemma 6.8 Let M be as in Theorem 6.1. Let n ≥ 1. Denote by L =
LE(R[0, T0,n]). For ε > 0, consider the events

Eε = {QL(εMn,
√

εn, L) �= ∅} ,

Fε = {For some i and j, L(i), L( j) /∈ B(0, n − εn), L[i, j] � B(L(i),
√

εn)
}
,

and denote by Ei = E2−i and Fi = F2−i . By Theorem 6.1 and Proposition 6.6, there
exist C < ∞ and α > 0 such that

P

[ ∞⋃

i=m

Ei ∪ Fi

]

≤ C 2−αm .

Therefore, it suffices to show that

{LEWn /∈ �( fm)} ⊆
∞⋃

i=m

Ei ∪ Fi .

Assume that Ei does not occur. Let x, y ∈ LEWn with 2−M(i+1) ≤ |x − y| < 2−Mi .
Then,

D(x, y;LEWn) ≤ 2
√
2−i ≤ 4 |x − y| 1

2M .

Assume that Fi does not occur. Let x, y ∈ LEWn with

2−(i+1) ≤ max (dist(x, ∂D), dist(y, ∂D)) < 2−i .

Then,

D(x, y;LEWn) ≤ 2
√
2−i ≤ 4 max (dist(x, ∂D), dist(y, ∂D))

1
2 .

Thus, if
⋃∞

i=m Ei ∪ Fi does not occur, then for all x, y ∈ LEWn with |x − y| < 2−Mm

or max (dist(x, ∂D), dist(y, ∂D)) < 2−Mm ,

min (|x − y|,max (dist(x, ∂D), dist(y, ∂D))) ≥
(
D(x, y;LEWn)

4

)2M
.
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This implies that if
⋃∞

i=m Ei ∪ Fi does not occur, then for all x, y ∈ LEWn ,

min (|x − y|,max (dist(x, ∂D), dist(y, ∂D))) ≥ fm (D(x, y;LEWn)) .

Since LEWn ∈ �, we have proved that LEWn ∈ �( fm). The proof of Lemma 6.8 is
complete. ��

Theorem 1.2 easily follows from Lemmas 6.7 and 6.8.

Proof of Theorem 1.2 Let fm be as in Lemma 6.8. By Lemma 6.8, there exist C < ∞
and α > 0 such that for all m, n ≥ 1, P [LEWn ∈ �( fm)] ≥ 1 − C 2−αm . By the
Portmanteau theorem (see, e.g., [3, Theorem 2.1]), for each m ≥ 1,

P

[
K ∈ �( fm)

]
≥ lim sup

n→∞
P

[
LEWn ∈ �( fm)

]

≥ lim sup
n→∞

P [LEWn ∈ �( fm)] ≥ 1 − C 2−αm .

Since fm is increasing and continuous, by Lemma 6.7, for all m ≥ 1.

P [K ∈ �] ≥ P

[
K ∈ �( fm)

]
≥ 1 − C 2−αm .

Thus, P [K ∈ �] = 1. ��

7 Hausdorff dimension

7.1 Preliminaries on loop erased walks

In this section we collect some auxiliary results about loop erased random walk. Let

Es(m, n) = P
1,0 ⊗ P

2,0
[
LE
(
R1[0,∞)

)
[sm, tn] ∩ R2

[
1, T 2

0,n

]
= ∅
]
,

where tn is the first time that LE(R1[0,∞)) exits from B(0, n), and sm is its last visit
to B(0,m) before time tn . We define Es(m, n) = 1 for m ≥ n. Let

α = 2 − β ∈
[
1

3
, 1

)
,

where β = limn→∞
logE0,1

[
len LE(R1[0,T 1

0,n ])
]

log n is the growth exponent of the loop erased
random walk. Its existence is shown in [27]. By [27, Lemma 7.2.2], for all ε > 0 there
exist C1,ε,C2,ε ∈ (0,∞) such that for all m, n,

C1,ε

(m
n

)α+ε ≤ Es(m, n) ≤ C2,ε

(m
n

)α−ε

. (7.1)
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The following lemma is the main ingredient in the proof of the upper bound on the
Hausdorff dimension of K. In its proof we will only use the upper bound from (7.1).

Lemma 7.1 For any δ > 0 there exists Cδ < ∞ such that for all ε > 0, n ≥ 1 and
x ∈ B(0, n − 2εn)\B(0, 2εn),

P
1,0
[
LE
(
R1
[
0, T 1

0,n

])
∩ B(x, εn) �= ∅

]
≤ Cδ ·

(
εn

|x |
)1+α−δ

. (7.2)

Proof We write B = B(x, εn) throughout the proof. Let L = sup{i ≤ T 1
0,n : R1(i) ∈

B} be the time of last visit of R1 to B before leaving B(0, n). Wewill use the following
observation,

{
LE
(
R1 [0, T 1

0,n

]) ∩ B �= ∅} = {L < T 1
0,n, R1 [L + 1, T 1

0,n

] ∩ λ
(
LE
(
R1[0, L])) = ∅} ,

where for a path γ , we write λ(γ ) for the piece of γ from the start and until the first
entrance to B. The probability of the event on the right hand side equals

∑

y∈B

∑

t

P
1,0 ⊗ P

2,y
[
T 1
0,n > t, R1(t) = y, λ

(
LE
(
R1[0, t]

))
∩ R2

[
1, T 2

0,n

]
= ∅,

R2
[
1, T 2

0,n

]
∩ B = ∅

]
.

By the time reversibility of loop erasure, see [12, Lemma 7.2.1], the probability in the
sum equals to

P
1,y ⊗ P

2,y
[
T 1
0,n > t, R1(t) = 0, μ

(
LE
(
R1[0, t]

))
∩ R2

[
1, T 2

0,n

]
= ∅,

R2
[
1, T 2

0,n

]
∩ B = ∅

]
,

where for a path γ , we write μ(γ ) for the piece of γ from the last visit to B until the
end. Summation over t gives

P
1,y ⊗ P

2,y
[
T 1
0,n > T 1

0 , μ
(
LE
(
R1
[
0, T 1

0

]))
∩ R2

[
1, T 2

0,n

]
= ∅,

R2
[
1, T 2

0,n

]
∩ B = ∅

]
,
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where T 1
0 = T 1({0}). Let dx = dist(x, ∂B(0, n)) and define Rx = 1

2 min(|x |, dx ).
We first consider the case when R1 returns to B(y, 2εn) after leaving B(y, 1

4 Rx ):

∑

y∈B
P
1,y ⊗ P

2,y
[
R1
[
T 1
y, 14 Rx

, T 1
0,n

]
∩ B(y, 2εn) �= ∅, T 1

0,n > T 1
0 ,

R2
[
1, T 2

0,n

]
∩ B = ∅

]

(∗)≤ C · (εn)2 · εn

Rx
· dx
|x | n · 1

Rx

(∗∗)≤ C ′ ·
(

εn

|x |
)2

≤ C ′ ·
(

εn

|x |
)1+α

,

where (∗) follows from [12, Proposition 1.5.10], (∗∗) by considering separately the
cases Rx = |x | and Rx = dx and using Rx ≥ εn, and the last inequality from α ≤ 1.

Thus, to establish (7.2), it remains to consider the case when R1 does not return to
B(y, 2εn) after leaving B(y, 1

4 Rx ). In this case, we have the inclusion

{
μ
(
LE
(
R1 [0, T 1

0

])) ∩ R2 [1, T 2
0,n

] = ∅} ⊆ {LE (R1 [0, T 1
0

]) [s, t] ∩ R2 [1, T 2
0,n

] = ∅} ,

where t is the first time that LE(R1[0, T 1
0 ]) exits from B(y, 1

4 Rx ), and s is its last visit
time to B(y, 2εn) before t . Therefore, in this case,

P
2,y
[
μ
(
LE
(
R1
[
0, T 1

0

]))
∩ R2

[
1, T 2

0,n

]
= ∅, R2

[
1, T 2

0,n

]
∩ B = ∅

]

≤ P
2,y
[
LE
(
R1
[
0, T 1

0

])
[s, t] ∩ R2

[
1, T 2

0,n

]
= ∅, R2

[
1, T 2

0,n

]
∩ B = ∅

]

(∗)≤ P
2,y
[
R2
[
1, T 2

y,εn

]
∩ B = ∅

]
· max
z∈∂B(y,εn)

P
2,z
[
LE
(
R1
[
0, T 1

0

])
[s, t] ∩ R2

[
0, T 2

0,n

]
= ∅
]

(∗∗)≤ C · 1

εn
· P

2,y
[
LE
(
R1
[
0, T 1

0

])
[s, t] ∩ R2

[
0, T 2

0,n

]
= ∅
]
,

where (∗) follows from the strong Markov property and (∗∗) from [12, Proposi-
tion 1.5.10] and the Harnack inequality. It remains to bound the probability

P
1,y ⊗ P

2,y
[
T 1
0,n > T 1

0 , LE
(
R1
[
0, T 1

0

])
[s, t] ∩ R2

[
0, T 2

0,n

]
= ∅
]
.

By the results of [24, Sect. 4.1], if X is a random walk from y conditioned to hit 0
before ∂B(0, n) and killed upon hitting 0,Y is an infinite random walk from y, and
the laws of their loop erasures until the first exit times from B(y, 1

4 Rx ) are PX and

PY , then the Radon–Nikodym derivative dPX
dPY

is bounded from above and below by
universal positive and finite constants C1 and C2. Therefore, the probability in the
above display is bounded from above by

C2 · P
1,y ⊗ P

2,y
[
LE
(
R1[0,∞)

)
[s, t] ∩ R2

[
0, T 2

0,n

]
= ∅
]

· P
1,y
[
T 1
0,n > T 1

0

]
,
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which is at most

C2 · Es
(
2εn,

1

4
Rx

)
· P

1,y [T 1
0,n > T 1

0

] ≤ Cδ ·
(

εn

Rx

)α−δ

· dx
|x | n ≤ Cδ · 1

εn
·
(

εn

|x |
)1+α−δ

,

where the last inequality again follows by considering cases Rx = |x | and Rx = dx
and using α ≤ 1. Finally, by summing over y on the interior boundary of B, we get
the bound

C · (εn)2 · 1

εn
· Cδ · 1

εn
·
(

εn

|x |
)1+α−δ

,

giving (7.2). The proof of Lemma 7.1 is complete. ��

Remark 7.2 Essentially the same proof gives the complementary lower bound to (7.2)
for x’s away from the boundary of B(0, n). For any δ > 0 there exists cδ > 0 such
that for all ε > 0, n ≥ 1 and x ∈ B(0, 1

2n)\B(0, 2εn),

P
1,0
[
LE
(
R1
[
0, T 1

0,n

])
∩ B (x, εn) �= ∅

]
≥ cδ ·

(
εn

|x |
)1+α+δ

.

7.2 Proof of Theorem 1.4: upper bound

In this section we use Lemma 7.1 to prove that dimH(K) ≤ 2−α almost surely. Recall
that the Hausdorff dimension of a subset S of R

d is defined as

dimH(S) = inf
{
δ : Hδ(S) = 0

}
,

whereHδ(S) is the δ-Hausdorff measure of S,Hδ(S) = limε→0 inf
∑∞

j=1 diam(S j )
δ ,

and the infimum is taken over all countable collections of sets {S j } covering S with
diam(S j ) ≤ ε.

Consider the coupling of K and LEWn such that dH (LEWn,K) → 0 as
n → ∞ almost surely. Let N1(ε) be the number of balls of radius 1

2ε centered
in 1

2εZ
3 ∩ (D1−2ε\D2ε) that have non-empty intersection with K, and N2(ε) the

number of balls of radius 1
2ε centered in 1

2εZ
3 ∩ (D2ε ∪ Dc

1−2ε

)
that have non-

empty intersection with K. Similarly, define N1,n(ε) as the number of balls of radius
εn centered in 1

2εnZ
3 ∩ B(0, n − 2εn)\B(0, 2εn) that have non-empty intersection

with LE(R[0, T0,n]), and N2,n(ε) as the corresponding number of balls centered in
1
2εnZ

3 ∩ (B(0, 2εn) ∪ B(0, n − 2εn)c). Then, for any positive δ and ξ ,

P

[
N1(ε) ≥ δ εα−2−ξ

]
≤ P

[
dH (LEWn,K) ≥ 1

2
ε

]
+ P

[
N1,n(ε) ≥ δ εα−2−ξ

]
.
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By Lemma 7.1,

P

[
N1,n(ε) ≥ δ εα−2−ξ

]
≤ 1

δ
ε2−α+ξ

E
[
N1,n(ε)

] ≤ 1

δ
Cξ ε

1
2 ξ .

By sending n to infinity, we obtain thatP
[
N1(ε) ≥ δ εα−2−ξ

] ≤ 1
δ
Cξ ε

1
2 ξ . To obtain a

bound for N2(ε), we proceed as above, but use Proposition 6.6 instead of Lemma 7.1.

We get P

[
N2(ε) ≥ δ ε− 1

2

]
≤ Cδ ε

1
2 ξ , if ξ is sufficiently small. Since α ≤ 1, this

implies that P
[
N2(ε) ≥ δ εα−2−ξ

] ≤ Cδ ε
1
2 ξ .

For γ ≥ 0, let Hγ
ε (K) = inf

∑∞
j=1 diam(S j )

γ , where the infimum is taken

over all coverings of K by sets S j with diameter at most ε. Then, Hγ
ε (K) ≤

εγ (N1(ε) + N2(ε)), and we obtain from the above estimates that

P

[
H2−α+ξ

ε (K) ≥ 2δ
]

≤ Cξ,δ ε
1
2 ξ .

Note that if ε ↘ 0 then H2−α+ξ
ε (K) ↗ H2−α+ξ (K). Thus, for all δ > 0,

P[H2−α+ξ (K) ≥ 2δ] = 0, i.e., H2−α+ξ (K) = 0 almost surely. Since ξ > 0 is
arbitrary, we get dimH(K) ≤ 2 − α. ��

7.3 Proof of Theorem 1.4: lower bound

Let BM be the Brownian motion in R
3 and τ = inf{t ≥ 0 : |B(t)| = 1} the first exit

time of BM from D. The set of cut points C of BM[0, τ ] is defined as

C = {BM(t) : 0 ≤ t ≤ τ, BM[0, t] ∩ BM(t, τ ] = ∅} .

It is proved in [14] that dimH(C) = 2−ξ almost surely, where ξ is the non-intersection
exponent for 3 dimensional Brownian motion satisfying ξ ∈ ( 12 , 1). Note that every
path in BM[0, τ ] from BM(0) = 0 to BM(τ ) ∈ ∂D goes through all the cut points.
We denote by S(U ) the set of all points of U ⊆ D which disconnect 0 from ∂D in
U . As noticed above, S(BM[0, τ ]) ⊇ C, thus, dimH(S(BM[0, τ ])) ≥ 2 − ξ almost
surely.

Now, recall from Theorem 1.1 that BM[0, τ ] has the same distribution as the union
of the independent scaling limit of the loop erased random walk, K, and all the loops
from the Brownian loop soup of intensity 1 that are contained in D and intersect K.
Denote this union by X . Then S(X) has the same distribution as S(BM[0, τ ]) and,
since K connects 0 and ∂D,S(X) ⊆ K. Thus, dimH(K) ≥ 2 − ξ almost surely. ��
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