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Abstract We discuss subordination of random compact R-trees. We focus on the
case of the Brownian tree, where the subordination function is given by the past
maximum process of Brownian motion indexed by the tree. In that particular case, the
subordinate tree is identified as a stable Lévy tree with index 3/2. As a more precise
alternative formulation, we show that the maximum process of the Brownian snake is
a time change of the height process coding the Lévy tree. We then apply our results
to properties of the Brownian map. In particular, we recover, in a more precise form,
a recent result of Miller and Sheffield identifying the metric net associated with the
Brownian map.

Mathematics Subject Classification 60J80 · 60D05

1 Introduction

Subordination is a powerful tool in the study of random processes, see in particular
Feller [11, Chapter X], and Sato [26, Chapter 6] in the context of Lévy processes. In the
present work, we investigate subordination of random trees, and we apply our results
to properties of the random metric space called the Brownian map, which has been
proved to be the universal scaling limit of many different classes of random planar
maps (see in particular [2,17,20]). These applications have beenmotivated by thework
of Miller and Sheffield [21], which is part of a program aiming at the construction of
a conformal structure on the Brownian map (see [22–24] for recent developments in
this direction).
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Fig. 1 On the left side, the tree T , with segments where g is constant pictured in thin blue lines. On the
right side, the subordinate tree, where each connected component of T made of thin segments has been
glued into a single point (color figure online)

To explain our starting point, let us consider a compact R-tree T . This means that
T is a compact metric space such that, for every a, b ∈ T , there exists a unique
(continuous injective) path from a to b, up to reparameterization, and the range of this
path, which is called the geodesic segment between a and b and denoted by �a, b�, is
isometric to a compact interval of the real line. We assume that T is rooted, so that
there is a distinguished point ρ in T . This allows us to define a generalogical order on
T , by saying that a ≺ b if and only if a ∈ �ρ, b�. Consider then a continuous function
g : T −→ R+, such that g(ρ) = 0 and g is nondecreasing for the genealogical order.
The basic idea of subordination is to identify a and b if g is constant on the geodesic
segment �a, b�. So, for every a ∈ T , the set of all points that are identified with a is
a closed connected subset of T . This gluing operation yields another compact R-tree
˜T , which is equipped with a metric such that the distance between ρ and a is g(a)

and is called the subordinate tree of T with respect to g (see Fig. 1 for an illustration).
Furthermore, if our initial tree T was given as the tree coded by a continuous function
h : [0, σ ] −→ R+ (see [8] or Sect. 2 below), the subordinate tree ˜T is coded by g◦ ph ,
where ph is the canonical projection from [0, σ ] onto T .

Our main interest is in the case where T is random, and more precisely T = Tζ is
the “Brownian tree” coded by a positive Brownian excursion ζ = (ζs)0≤s≤σ under the
Itô excursion measure. One may view Tζ as a variant of Aldous’ Brownian CRT, for
which the total mass is not equal to 1, but is distributed according to an infinitemeasure
on (0,∞). As previously, we write pζ for the canonical projection from [0, σ ] onto
Tζ . Next, to define the subordination function, we let (Za)a∈Tζ

be (linear) Brownian
motion indexed by Tζ , starting from 0 at the root ρ. A simple way to construct this
process is to use the Brownian snake approach, letting Za = ̂Ws if a = pζ (s), where
̂Ws is the “tip” of the random path Ws , which is the value at time s of the Brownian
snake driven by ζ . Since ζ is distributed according to the Itô measure, W follows the
Brownian snake excursion measure away from 0, which we denote by N0 (see [14,
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Subordination of trees and the Brownian map 821

Chapter IV]). We then set Za = max{Zb : b ∈ �ρ, a�}. In terms of the Brownian
snake, we have Za = W s := max{Ws(t) : 0 ≤ t ≤ ζs} whenever a = pζ (s). We also
use the notation W s := min{Ws(t) : 0 ≤ t ≤ ζs}.
Theorem 1 Let ˜Tζ stand for the subordinate tree of Tζ with respect to the (continuous
nondecreasing) function a �→ Za. Under the Brownian snake excursion measure N0,
the tree ˜Tζ is a Lévy tree with branching mechanism

ψ0(r) =
√

8

3
r3/2.

Recall that Lévy trees represent the genealogy of continuous-state branching pro-
cesses [8], and can be characterized by a regenerative property analogous to the
branching property of Galton–Watson trees [27]. Our identification of the distribu-
tion of ˜Tζ is reminiscent of the classical result stating that the right-continuous inverse
of the maximum process of a standard linear Brownian motion is a stable subordinator
with index 1/2.

In view of our applications, it turns out that it is important to have more information
than the mere identification of ˜Tζ as a random compact R-tree. As mentioned above,
˜Tζ can be viewed as the tree coded by the random function s �→ Z pζ (s) = W s .
This coding induces a “lexicographical” order structure on Tζ (see [6] for a thorough
discussion of order structures onR-trees). Somewhat surprisingly, it is not immediately
clear that the order structure on ˜Tζ induced by the coding from the function s �→ W s

coincides with the usual order structure on Lévy trees, corresponding to the uniform
random shuffling at every node in the terminology of [6]. To obtain this property, we
relate the function s �→ W s to the height process of [7,8]. We recall that, from a Lévy
process with Laplace exponent ψ0, we can construct a continuous random process
(Ht )t≥0 called the height process, which codes the ψ0-Lévy tree (here and below we
say ψ0-Lévy tree rather than Lévy tree with branching mechanism ψ0 for simplicity).
See Sect. 3 below for more details.

Theorem 2 There exists a process H, which is distributed under N0 as the height
process of a Lévy tree with branching mechanism ψ0(r) = √

8/3 r3/2, and a contin-
uous random process � with nondecreasing sample paths, such that we have, N0 a.e.
for every s ≥ 0,

W s = H�s .

Both H and � will be constructed in the proof of Theorem 2, and are measurable
functions of (Ws)s≥0. It is possible to identify the random process � as a continuous
additive functional of theBrownian snake, butwedonot need this fact in the subsequent
applications, and we do not discuss this matter in the present work.

Theorem 2 implies that the tree coded by W s is isometric to the tree coded by
Hs , and we recover Theorem 1. But Theorem 2 gives much more, namely that the
order structure induced by the coding via s → W s is the same as the order structure
induced by the usual height function of the Lévy tree. Order structures are crucial for
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822 J.-F. Le Gall

our applications to the Brownian map. Similarly as in [21], we deal with a version of
the Brownian map with randomized volume, which is constructed as a quotient space
of the tree Tζ : Two points a and b of Tζ are identified if Za = Zb and if Zc ≥ Za

for every c ∈ [a, b], where [a, b] is the set of all points that are visited when going
from a to b around the tree in “clockwise” order (for this to make sense, it is essential
that Tζ has been equipped with a lexicographical order structure). We write m for the
resulting quotient space (the Brownian map) and D∗ for the metric on the Brownian
map (see [16,17] for more details). The space m comes with two distinguished points,
namely the root ρ of Tζ and the unique point ρ∗ where Z attains its minimal value—in
a sense that can be made precise, these two points are independent and uniformly
distributed over m. For every r ≥ 0, let B(r) be the closed ball of radius r centered
at ρ∗ in m. For r ∈ [0, D(ρ∗, ρ)), define the hull B•(r) as the complement of the
connected component of the complement of B(r) that contains ρ (informally, B•(r)

is obtained by filling in all holes of B(r) except for the one containing ρ). In particular
B•(0) = {ρ∗}. Following [21], we define the metric net M as the closure of

⋃

0≤r<D(ρ∗,ρ)

∂ B•(r).

(This definition is in fact a little different from [21] which does not take the closure of
the union in the last display.) We can equip the set M with an “intrinsic” metric �∗
derived from the Brownian map metric D∗.

It is not hard to verify that, in the construction of m as a quotient space of Tζ ,
points of M exactly correspond to vertices a of Tζ such that Za = Za := min{Zb :
b ∈ �ρ, a�} (Proposition 10). This suggests that the metric net M is closely related
to the subordinate tree of Tζ with respect to the function a �→ −Za , which is a ψ0-
Lévy tree by the preceding results. To make this relation precise, we need the notion
of the looptree introduced by Curien and Kortchemski [4] in a more general setting.
Informally, the looptree associated with a Lévy tree is constructed by replacing each
point a of infinitemultiplicity by a loop of “length” equal to the “weight” of a, in such a
way that the subtrees that are the connected components of the complement of a branch
along this loop in an order determined by the coding function (see Fig. 3 below for an
illustration). To give amore precise definition, first note that Theorem 2 and an obvious
symmetry argument allow us to find a process (H ′

s)s≥0 distributed as the height process
of a ψ0-Lévy tree, and a continuous random process (�′

s)s≥0 with nondecreasing
sample paths such that −W s = H ′

�′
s
. Then let χ := sup{s ≥ 0 : H ′

s > 0}, and let
∼ be the equivalence relation on [0, χ ] whose graph is the smallest closed symmetric
subset of [0, χ ]2 that contains all pairs (s, t) with s ≤ t , H ′

s = H ′
t and H ′

r > H ′
s for

every r ∈ (s, t). The looptree L is defined as the quotient space [0, χ ]/ ∼ equipped
with an appropriate metric (see [4] for a definition of this metric). Clearly, H ′

α makes
sense for any α ∈ L and is interpreted as the height of α. We observe that this height is
not directly related to the metric of the looptree. The latter metric is in fact not relevant
for us, since we consider instead the pseudo-metric D◦ defined for α, β ∈ L by

D◦(α, β) = 2min

(

max
γ∈[α,β] H ′

γ , max
γ∈[β,α] H ′

γ

)

− H ′
α − H ′

β,
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Subordination of trees and the Brownian map 823

where [α, β] corresponds to the subset of L visited when going from α to β “around”
L in “clockwise order” (see Sect. 7 for a more formal definition). We write α � β

if D◦(α, β) = 0 (informally this means that α and β “face each other” in the tree, in
the sense that they are at the same height, and that points “between” α and β are at a
smaller height). It turns out that this defines an equivalence relation on L. Finally, we
let D∗ be the largest symmetric function on L × L that is bounded above by D◦ and
satisfies the triangle inequality.

Theorem 3 The metric net (M,�∗) is a.s. isometric to the quotient space L/ �
equipped with the metric induced by D∗.

See Theorem 12 in Sect. 7 for a more precise formulation. Theorem 3 is closely
related to Proposition 4.4 in [21], where, however, the metric net is not identified as
a metric space. The description of the metric net is an important ingredient of the
axiomatic characterization of the Brownian map discussed in [21].

Let us briefly comment on the motivations for studying the metric net. Roughly
speaking, the Brownian map m can be recovered from the metric net M by filling
in the “holes”. To make this precise, we observe that the connected components of
m\M are bounded by Jordan curves (Proposition 14) and that these components are
in one-to-one correspondence with connected components of Tζ \, where := {a ∈
Tζ : Za = Za}. Each of the latter components is associated with an excursion of the
Brownian snake above its minimum, in the terminology of [1], and the distribution of
such an excursion only depends on its boundary size as defined in [1] (this boundary
size can be interpreted as a generalized length of the Jordan curve bounding the
corresponding component of m\M). Theorem 40 in [1] shows that, conditionally
on their boundary sizes, these excursions are independent and distributed according
to a certain “excursion measure”. In the Brownian map setting, this means that the
holes in the metric net are filled in independently, conditionally on the lengths of their
boundaries (see [18, Section 11] for a precise statement).

The paper is organized as follows. Section 2gives a brief discussion of subordination
for deterministic trees, and Sect. 3 recalls the basic facts about Lévy trees that we need.
After a short presentation of the Brownian snake, Sect. 4 gives the distribution of the
subordinate tree ˜Tζ (Theorem 1). In view of identifying the order structure of this
subordinate tree, Sect. 5 provides a technical result showing that the height process
coding a Lévy tree is the limit in a strong sense of the discrete height functions coding
embedded Galton–Watson trees. This result is related to the general limit theorems
of [7, Chapter 2] proving that Lévy trees are weak limits of Galton–Watson trees, but
the fact that we get a strong approximation is crucial for our applications. In Sect.
6, we prove that the Brownian snake maximum process s �→ W s is a time change
of the height process associated with a ψ0-Lévy tree (Theorem 2). This result is a
key ingredient of the developments of Sect. 7, where we identify the metric net of
the Brownian map (Theorem 3). Section 8 discusses the connected components of
the complement of the metric net, showing in particular that they are in one-to-one
correspondence with the points of infinite multiplicity of the associated Lévy tree, and
that the boundary of each component is a Jordan curve. Section 9, which is mostly
independent of the preceding sections, discusses more general subordinations of the
Brownian treeTζ , which lead to stable Lévy treeswith an arbirary index. This section is
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824 J.-F. Le Gall

related to our previous article [3], which dealt with subordination for spatial branching
processes, but the latter work did not consider the associated genealogical structures
as we do here, and the subordination method, based on the so-called residual lifetime
process, was also different. Finally, the appendix presents a more general and more
precise version of the specialMarkov property of the Brownian snake (first established
in [13]), which plays an important role in several proofs.

2 Subordination of deterministic trees

In this short section, we present a few elementary considerations about deterministic
R-trees. We refer to [10] for the basic facts about R-trees that we will need, and to [6]
for a thorough study of the coding of compact R-trees by functions.

Let us consider a compact R-tree (T , d). We will always assume that T is rooted,
meaning that there is a distinguished point ρ ∈ T . If a, b ∈ T , the geodesic segment
between a and b (the range of the unique geodesic from a to b) is denoted by �a, b�.
The point a ∧ b is then defined by �ρ, a ∧ b� = �ρ, a� ∩ �ρ, b�. The genealogical
partial order on T is denoted by ≺ : we have a ≺ b if and only if a ∈ �ρ, b�, and we
then say that a is an ancestor of b, or b is a descendant of a. Finally, the height of T
is defined by

H(T ) = max
a∈T

d(ρ, a).

Let g : T −→ R+ be a nonnegative continuous function on T . Assume that
g(ρ) = 0 and that g is nondecreasing with respect to the genealogical order (a ≺ b
implies that g(a) ≤ g(b)). We then define, for every a, b ∈ T ,

d(g)(a, b) = g(a) + g(b) − 2 g(a ∧ b).

Notice that d(g)(a, b) is a symmetric function of a and b and satisfies the triangle
inequality. We can thus consider the equivalence relation

a ≈g b if and only if d(g)(a, b) = 0.

Thus a ≈g b if and only if g(a) = g(b) = g(a ∧ b), and this is also equivalent to
saying that g(c) = g(a) for every c ∈ �a, b�. Write T (g) for the quotient T / ≈g , and
π(g) for the canonical projection from T onto T (g). We equip T (g) with the distance
induced by d(g), for which we keep the same notation d(g).

Proposition 4 The metric space (T (g), d(g)) is again a compact R-tree.

Proof We first note that π(g) is continuous because, if (an)n≥0 is a sequence in T that
converges to a ∈ T , the continuity of g implies that d(g)(an, a) tends to 0. It follows
that the metric space (T (g), d(g)) is compact. Then one easily verifies that, for every
a ∈ T , π(g)(�ρ, a�) is a segment in (T (g), d(g)) with endpoints π(g)(ρ) and π(g)(a).
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Subordination of trees and the Brownian map 825

From Lemma 3.36 in [10], to verify that (T (g), d(g)) is an R-tree, it suffices to check
that the four-point condition

d(g)(a1, a2) + d(g)(a3, a4)

≤ max
(

d(g)(a1, a3) + d(g)(a2, a4), d(g)(a1, a4) + d(g)(a2, a3)
)

holds for every a1, a2, a3, a4 ∈ T . This is straightforward and we omit the details. ��
We call (T (g), d(g)) the subordinate tree of (T , d) with respect to the function g.

By convention, T (g) is rooted at π(g)(ρ). Since d(g)(ρ, a) = g(a) for every a ∈ T ,
we have H(T (g)) = max{g(a) : a ∈ T }.

Consider now a continuous function h : [0, σ ] −→ R+, where σ ≥ 0, such that
h(0) = h(σ ) = 0, and assume that (T , d) is the tree coded by h in the sense of [8] or
[6]. This means that T = Th is the quotient space [0, σ ]/ ∼h , where the equivalence
relation ∼h is defined on [0, σ ] by

s ∼h t if and only if h(s) = h(t) = min
s∧t≤r≤r∨t

h(r),

and d = dh is the distance induced on the quotient space by

dh(s, t) = h(s) + h(t) − 2 min
s∧t≤r≤r∨t

h(r).

Notice that the topology of (Th, dh) coincides with the quotient topology on Th .
The canonical projection from [0, σ ] onto Th is denoted by ph , and Th is rooted

at ρh = ph(0). For s ∈ [0, σ ], the quantity h(s) = dh(0, s) is interpreted as the
height of ph(s) in the tree. One easily verifies that, for every s, t ∈ [0, σ ], the property
ph(s) ≺ ph(t) holds if and only if h(s) = min{h(r) : s ∧ t ≤ r ≤ s ∨ t}.
Remark The function h is not determined by Th . In particular, if φ : [0, σ ′] → [0, σ ]
is continuous and nondecreasing, and such that φ(0) = 0 and φ(σ ′) = σ , the tree
coded by h ◦ φ is isometric to the tree coded by h. This simple observation will be
useful later.

Proposition 5 Under the preceding assumptions, if g is a nonnegative continuous
function on Th such that g(ρh) = 0 and g is nondecreasing with respect to the
genealogical order on Th, the subordinate tree (T (g)

h , d(g)
h ) of (Th, dh) with respect to

the function g is isometric to the tree (TG, dG) coded by the function G = g ◦ ph.

Proof Note that the function G is nonnegative and continuous on [0, σ ], and G(0) =
G(σ ) = 0. We can therefore make sense of the tree (TG, dG) and as above we denote
the canonical projection from [0, σ ] onto TG by pG . We first notice that, for every
s, t ∈ [0, σ ], the property ph(s) = ph(t) implies pG(s) = pG(t). Indeed, if ph(s) =
ph(t), then, for every r ∈ [s ∧ t, s ∨ t], we have ph(s) ≺ ph(r) and therefore
g(ph(s)) ≤ g(ph(r)), so that

G(s) = G(t) = min
r∈[s∧t,s∨t] G(r),
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826 J.-F. Le Gall

and pG(s) = pG(t).We can thuswrite pG = p◦ ph , where the functionp : Th −→ TG

is continuous and onto.
Then, let a, b ∈ Th and write a = ph(s) and b = ph(t), with s, t ∈ [0, σ ].

We note that, for every r ∈ [s ∧ t, s ∨ t], ph(s) ∧ ph(t) ≺ ph(r), and furthermore
ph(s) ∧ ph(t) = ph(r0), if r0 is any element of [s ∧ t, s ∨ t] at which h attains its
minimum over [s ∧ t, s ∨ t]. It follows that

g(ph(s) ∧ ph(t)) = min
r∈[s∧t,s∨t] G(r).

Hence,

d(g)
h (a, b) = g(ph(s)) + g(ph(t)) − 2g(ph(s) ∧ ph(t))

= G(s) + G(t) − 2 min
r∈[s∧t,s∨t] G(r) = dG(s, t).

Ifπ(g) is the projection from Th onto the subordinate tree T (g)
h , we see in particular that

the condition π(g)(a) = π(g)(b) implies pG(s) = pG(t) and therefore p(a) = p(b).
It follows that p = I ◦ π(g), where I : T (g)

h −→ TG is onto. It remains to verify
that I is isometric, but this is immediate from the identities in the last display. ��
Remark It is known that any compactR-tree is isometric toTh for some function h (see
[6, Corollary 1.2]). Thus Proposition 5 provides an alternative proof of Proposition 4.

3 Lévy trees

In the next sections, we will consider the case where T is the (random) tree coded by
a Brownian excursion distributed under the Itô excursion measure n(·), and we will
identify certain subordinate trees as Lévy trees. In this section, we recall the basic
facts about Lévy trees that will be needed later. We refer to [7,8] for more details.

We consider a nonnegative function ψ defined on [0,∞) of the type

ψ(r) = αr + βr2 +
∫

(0,∞)

π(du) (e−ur − 1 + ur), (1)

whereα, β ≥ 0, andπ(du) is aσ -finitemeasure on (0,∞) such that
∫

(u ∧ u2) π(du) <

∞. With any such function ψ , we can associate a continuous-state branching process
(see [12] and references therein), and ψ is then called the branching mechanism func-
tion of this process. Notice that the conditions on ψ are not the most general ones,
because we restrict our attention to the critical or subcritical case. Additionally, we
will assume that

∫ ∞

1

dr

ψ(r)
< ∞. (2)

This condition, which implies that at least one of the two properties β > 0 or
∫

u π(du) = ∞ holds, is equivalent to the a.s. extinction of the continuous-state
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Subordination of trees and the Brownian map 827

branchingprocesswith branchingmechanismψ [12]. Special cases includeψ(r) = rγ

for 1 < γ ≤ 2.
Under the preceding assumptions, one canmake sense of theLévy tree that describes

the genealogy of the continuous-state branching process with branching mechanism
ψ . We consider, under a probability measure P, a spectrally positive Lévy process
X = (Xt )t≥0 with Laplace exponent ψ , meaning that E[exp(−λXt )] = exp(tψ(λ))

for every t ≥ 0 and λ > 0. We define the associated height process by setting, for
every t ≥ 0,

Ht = lim
ε→0

1

ε

∫ t

0
ds 1{Xs<inf{Xr :s≤r≤t}+ε},

where the limit holds in probability under P. Then [7, Theorem 1.4.3] the process
(Ht )t≥0 has a continuous modification, which we consider from now on. We have
Ht = 0 if and only if Xt = It , where It = inf{Xs : 0 ≤ s ≤ t} is the past minimum
process of X .

Let N stand for the (infinite) excursion measure of X − I . Here the normalization
of N is fixed by saying that the local time at 0 of X − I is the process −I . Let χ

stand for the duration of the excursion under N. The height process H is well defined
(and has continuous paths) under N, and we have H0 = Hχ = 0, N a.e. To simplify
notation, we will write max H = max{Hs : 0 ≤ s ≤ χ} under N.

By definition (see [8, Definition 4.1]), the Lévy tree with branching mechanism ψ

(or in short the ψ-Lévy tree) is the random compact R-tree TH coded by the function
(Ht )0≤t≤χ under N, or more generally any random tree with the same distribution—
note that the distribution of the Lévy tree is an infinite measure. We refer to [7,8] for
several results explaining in which sense the Lévy tree codes the genealogy of the
continuous-state branching process with branching mechanism ψ . In the special case
ψ(r) = r2/2, X is just a standard linear Brownian motion, Ht = 2(Xt − It ) is twice
a reflected Brownian motion, and the Lévy tree is the tree coded by (twice) a positive
Brownian excursion under the (suitably normalized) Itô measure. Conditioning on
χ = 1 then yields the Brownian continuum random tree. When ψ(r) = rγ with
1 < γ < 2, one gets the stable tree with index γ .

The distribution of the height of a Lévy tree is given as follows. For every h > 0,

N(H(TH ) > h) = N(max H > h) = v(h),

where the function v : (0,∞) → (0,∞) is determined by

∫ ∞

v(h)

dr

ψ(r)
= h.

Remark In the preceding considerations, the normalization of the infinite measure N
is fixed by our choice of the local time at 0 of X − I , and we can recover ψ from N
by the formulas for the distribution of H(TH ) under N. What happens if we multiply
N by a constant λ > 0? The tree TH under λN is still a Lévy tree in the previous
sense, but the associated branching mechanism is now ˜ψ(r) = λψ(r/λ). To see this,
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828 J.-F. Le Gall

consider the Lévy process X ′
t = 1

λ
Xλt , whose Laplace exponent is ˜ψ(λ). It is not hard

to verify that the height process corresponding to X ′ is H ′
t = Hλt . Furthermore, if

N′ is the excursion measure of X ′ above its past minimum process, one also checks
that the distribution of (H ′

t/λ)t≥0 under N′ is the distribution of (Ht )t≥0 under λN.
However, the tree coded by (H ′

t/λ)t≥0 is the same as the tree coded by (H ′
t )t≥0. This

shows that TH under λN is a Lévy tree with branching mechanism ˜ψ . Note that this
is consistent with the formula for N(H(TH ) > h).

We now state two results that will be important for our purposes. We first mention
that, for every h ≥ 0, one can define under P a local time process of H at level h,
which is denoted by (Lh

t )t≥0 and is such that the following approximation holds for
every t > 0,

lim
ε→0

E
[

sup
s≤t

∣

∣

∣

∣

1

ε

∫ s

0
1{h<Hs≤h+ε}dr − Lh

s

∣

∣

∣

∣

]

= 0, (3)

and the latter convergence is uniform in h (see [7, Proposition 1.3.3]). When h = 0
we have simply L0

t = −It . The definition of (Lh
t )t≥0 also makes sense under N, with

a similar approximation.
We fix h > 0, and let (u j , v j ) j∈J be the collection of all excursion intervals of H

above level h: these are all intervals (u, v), with 0 ≤ u < v, such that Hu = Hv = h
and Hr > h for every r ∈ (u, v). For each such excursion interval (u j , v j ), we define

the corresponding excursion by H ( j)
s = H(u j +s)∧v j − h, for every s ≥ 0. Then H ( j)

is a random element of the space C(R+, R+) of all continuous functions from R+
into R+. We also let N◦ be the σ -finite measure on C(R+, R+) which is the “law” of
(Hs)s≥0 under N.

Proposition 6 (i) Under the probability measure P, the point measure

∑

j∈J

δ(Lh
u j

,H ( j))(d�, dω)

is Poisson with intensity 1[0,∞)(�) d� N◦(dω).
(ii) Under the probability measure N(· | max H > h) and conditionally on Lh

χ , the
point measure

∑

j∈J

δ(Lh
u j

,H ( j))(d�, dω)

is Poisson with intensity 1[0,Lh
χ ](�) d� N◦(dω).

See [8, Proposition 3.1, Corollary 3.2] for a slightly more precise version of this
proposition. It follows from the preceding proposition that Lévy trees satisfy a branch-
ing property analogous to the classical branching property of Galton–Watson trees. To
state this property, we introduce some notation. If (T , d) is a (deterministic) compact
R-tree rooted at ρ, and 0 < h < H(T ), we can consider the subtrees of T above
level h. Here, a subtree above level h is just the closure of a connected component of
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Subordination of trees and the Brownian map 829

{a ∈ T : d(ρ, a) > h}. Such a subtree is itself viewed as a rooted R-tree (the root is
obviously the unique point at height h in the subtree).

Proposition 7 Let T be a random compact R-tree defined under an infinite measure
N , such that N (H(T ) = 0) = 0 and 0 < N (H(T ) > h) < ∞ for every h > 0. For
every h, ε > 0, write M(h, h + ε) for the number of subtrees of T above level h with
height greater than ε.

(i) Suppose that T is a Lévy tree. Then, for every h, ε > 0, for every integer p ≥ 1,
the distribution under N (· | M(h, h+ε) = p) of the unordered collection formed
by the p subtrees of T above level h with height greater than ε is the same as that
of the unordered collection of p independent copies of T underN (· | H(T ) > ε).

(ii) Conversely, if the property stated in (i) holds, then T is a Lévy tree.

The property stated in (i) is called the branching property. The fact that it holds for
Lévy trees is a straightforward consequence of Proposition 6 (ii). For the converse,
we refer to [27, Theorem 1.1]. Note that the branching property remains valid if we
multiply the underlying measure N by a positive constant, which is consistent with
the remark above.

To conclude this section, let us briefly comment on points of infinite multiplicity
of the Lévy tree TH . The multiplicity of a point a of TH is the number of connected
components of TH\{a}, and a is called a leaf if it has multiplicity one. Suppose that
there is no quadratic part in ψ , meaning that the constant β in (1) is 0 (note that
condition (2) then implies that π has infinite mass). Then [8, Theorem 4.6], all points
of TH have multiplicity 1, 2 or ∞. The set of all points of infinite multiplicity is a
countable dense subset of TH , and these points are in one-to-one correspondence with
local minima of H , or with jump times of X . More precisely, let a be a point of infinite
multiplicity of TH . Then, if s1 = min p−1

H (a) and s2 = max p−1
H (a), we have s1 < s2,

Hs1 = Hs2 = min{Hs : s1 ≤ s ≤ s2}, and p−1
H (a) = {s ∈ [s1, s2] : Hs = Hs1} is a

Cantor set contained in [s1, s2]. In terms of the Lévy process X , s1 is a jump time of X
and s2 = inf{s ≥ s1 : Xs ≤ Xs1−}, and p−1

H (a) consists exactly of those s ∈ [s1, s2]
such that inf{Xr : r ∈ [s1, s]} = Xs . Furthermore, if for every r ∈ [0,�Xs1 ] we set
ηr = inf{s ≥ s1 : Xs < Xs1 − r}, the points of p−1

H (a) are all of the form ηr or ηr−.
The quantity �Xs1 is the “weight” of the point of infinite multiplicity a. See [8] for
more details.

4 Subordination by the Brownian snake maximum

In this section, we prove Theorem 1.We start with a brief presentation of the Brownian
snake. We refer to [14, Chapter IV] for more details.

We letW be the space of all finite paths inR. Here afinite path is simply a continuous
mapping w : [0, ζ ] −→ R, where ζ = ζ(w) is a nonnegative real number called the
lifetime of w. The set W is a Polish space when equipped with the distance

dW (w,w′) = |ζ(w) − ζ(w′)| + sup
t≥0

|w(t ∧ ζ(w)) − w′(t ∧ ζ(w′))|.
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830 J.-F. Le Gall

The endpoint (or tip) of the path w is denoted by ŵ = w(ζ(w)). For every x ∈ R, we
set Wx = {w ∈ W : w(0) = x}. We also identify the trivial path of Wx with zero
lifetime with the point x .

The standard (one-dimensional) Brownian snake with initial point x is the continu-
ous Markov process (Ws)s≥0 taking values inWx , whose distribution is characterized
by the following properties:

(a) The process (ζ(Ws ))s≥0 is a reflected Brownian motion in R+ started from 0. To
simplify notation, we write ζs = ζ(Ws ) for every s ≥ 0.

(b) Conditionally on (ζs)s≥0, the process (Ws)s≥0 is time-inhomogeneous Markov,
and its transition kernels are specified as follows. If 0 ≤ s ≤ s′,
• Ws′(t) = Ws(t) for every t ≤ mζ (s, s′) := min{ζr : s ≤ r ≤ s′};
• the random path (Ws′(mζ (s, s′)+ t)− Ws′(mζ (s, s′)))0≤t≤ζs′−mζ (s,s′) is inde-
pendent of Ws and distributed as a real Brownian motion started at 0 and
stopped at time ζs′ − mζ (s, s′).

Informally, the value Ws of the Brownian snake at time s is a one-dimensional
Brownian path started from x , with lifetime ζs . As s varies, the lifetime ζs evolves
like reflected Brownian motion in R+. When ζs decreases, the path is erased from its
tip, and when ζs increases, the path is extended by adding “little pieces” of Brownian
paths at its tip.

For every x ∈ R, we write Px for the probability measure under which W0 = x ,
and Nx for the (infinite) excursion measure of W away from x . Also σ := sup{s >

0 : ζs > 0} stands for the duration of the excursion under Nx . Under Nx , (ζs)s≥0 is
distributed according to the Itô excursion measure n(·), and the normalization is fixed
by the formula

Nx

(

max
0≤s≤σ

ζs > ε

)

= 1

2ε
.

The following property of the Brownian snake will be used in several places below.
Recall that ̂Ws = Ws(ζs) is the tip of the path Ws . We say that r ∈ [0, σ ) is a time
of right increase of s �→ ζs , resp. of s �→ ̂Ws , if there exists ε ∈ (0, σ − r ] such that
ζu ≥ ζr , resp. ̂Wu ≥ ̂Wr , for every u ∈ [r, r + ε]. We can similarly define points of
left increase. Then according to [19, Lemma 3.2], Nx a.e., no time r ∈ (0, σ ) can be
simultaneously a time of (left or right) increase of s �→ ζs and a point of (left or right)
increase of s �→ ̂Ws .

Le us fix x = 0 and argue under N0. As previously, we write Tζ for the (random)
tree coded by the function (ζs)0≤s≤σ , pζ : [0, σ ] −→ Tζ for the canonical projection,
and ρζ = pζ (0) for the root of Tζ . Properties of the Brownian snake show that the
condition pζ (s) = pζ (s′) implies Ws = Ws′ , and thus we can define Wa for every
a ∈ Tζ by setting Wa = Ws if a = pζ (s). We note that, if a = pζ (s) and t ∈ [0, ζs],
Ws(t) coincides with ̂Wb where b is the unique point of �ρζ , a� at distance t from ρζ .
For every w ∈ W , set

w := max
0≤t≤ζ(w)

w(t).
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Subordination of trees and the Brownian map 831

Then, the function a �→ W a is continuous and nondecreasing on Tζ (if a = pζ (s) and
b = pζ (s′), the condition a ≺ b implies that ζs ≤ ζs′ and that Wa is the restriction of
Wb to the interval [0, ζs], so that obviously W a ≤ W b). As in Theorem 1, we write
˜Tζ for the subordinate tree of Tζ with respect to the function a �→ W a .

Proof of Theorem 1 We first verify that the branching property stated in Proposition
7 holds for ˜Tζ under N0, and to this end we rely on the special Markov property of the
Brownian snake.

Let h > 0, and, for every w ∈ W , set τh(w) = inf{t ∈ [0, ζ(w)] : w(t) ≥ h}. Let
(ai , bi )i∈I be the connected components of the open set {s ≥ 0 : τh(Ws) < ζs}. For
every such connected component (ai , bi ), for every s ∈ [ai , bi ], the path Ws coincides
with Wai = Wbi up to time τh(Wai ) = ζai = ζbi = τh(Wbi ) (these assertions are
straightforward consequences of the properties of the Brownian snake, and we omit
the details). We then set, for every s ≥ 0,

W (i)
s (t) := W(ai +s)∧bi (ζai + t), for 0 ≤ t ≤ ζ (i)

s := ζ(ai +s)∧bi − ζai .

We view W (i) as a random element of the space of all continuous functions from R+
into Wh , and the W (i)’s are called the excursions of W outside the domain (−∞, h)

(see the appendix below for further details in a more general setting).
By a compactness argument, only finitely many of the excursions W (i) hit (h +

ε,∞). Let Mh,ε be the number of these excursions. It follows from Corollary 22 in
the appendix that, for every p ≥ 1, conditionally on {Mh,ε = p}, the unordered
collection formed by the excursions of W outside (−∞, h) that hit (h + ε,∞) is
distributed as the unordered collection of p independent copies of W under Nh(· |
sup{̂Ws : s ≥ 0} > h + ε). On the other hand, noting that ˜Tζ is the tree coded by the
function [0, σ ] � s �→ W s (by Proposition 5), we also see that subtrees of ˜Tζ above
level h with height greater than ε are in one-to-one correspondence with excursions
of W outside (−∞, h) that hit (h + ε,∞), and if a subtree ˜T (i) corresponds to an
excursion W (i), ˜T (i) is obtained from the excursion W (i) (shifted so that it starts from
0) by exactly the same procedure that allows us to construct ˜Tζ from W under N0:

To be specific, ˜T (i) is coded by the function s �→ W
(i)
s − h just as ˜Tζ is coded by

s �→ W s . The preceding considerations show that ˜Tζ satisfies the branching property,
and therefore is a Lévy tree.

To get the formula for ψ0, we note that the distribution of the height of ˜Tζ is given
by

N0(H(˜Tζ ) > r) = N0

(

sup
s≥0

̂Ws > r

)

= 3

2r2
,

where the last equality can be found in [14, Section VI.1]. Since we also know that the
function v(r) = N0(H(˜Tζ ) > r) solves v′ = −ψ0(v(r)), the formula for ψ0 follows.

��
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5 Approximating a Lévy tree by embedded Galton–Watson trees

In this section, we come back to the general setting of Sect. 3. Our goal is to prove
that the Lévy tree TH is (under the probability measure N(· | H(TH ) > h) for some
h > 0) the almost sure limit of a sequence of embedded Galton–Watson trees, and that
this limit is consistent with the order structure of the Lévy tree. We refer to [15] for
basic facts about Galton–Watson trees. A key property for us is the fact that Galton–
Watson trees are rooted ordered (discrete) trees, also called plane trees, so that there
is a lexicographical ordering on vertices.

In what follows, we argue under the probability measure P. Recall that X is under P
a Lévy process with Laplace exponent ψ , and that H is the associated height process.
We fix an integer n ≥ 1, and, for every integer j ≥ 0, we consider the sequence of all
excursions of H above level j 2−n that hit level ( j + 1)2−n . We let

0 ≤ αn
0 < αn

1 < αn
2 < · · ·

be the ordered sequence consisting of all the initial times of these excursions, for all
values of the integer j ≥ 0 (so, αn

0 corresponds to the beginning of an excursion of H
above 0 that hits 2−n , αn

1 may be either the beginning of an excursion of H above 0
that hits 2−n or the beginning of an excursion of H above 2−n that hits 2 × 2−n , and
so on). For every j ≥ 0, we also let βn

j be the terminal time of the excursion starting
at time αn

j .
We then set, for every integer k ≥ 0,

Hn
k = 2n Hαn

k
.

Proposition 8 The process (Hn
k )k≥0 is the discrete height process of a sequence of

independent Galton–Watson trees with the same offspring distribution μn.

Recall that the discrete height process of a sequence of Galton–Watson trees gives
the generation of the successive vertices in the trees, assuming that these vertices are
listed in lexicographical order in each tree and one tree after another. See [15] or [7,
Section 0.2]. The (finite) height sequence of a single tree is defined analogously.

Proof By construction, αn
0 is the initial time of the first excursion of H above 0 that

hits 2−n . Notice that this excursion is distributed as H under N(· | max H ≥ 2−n).
Let K ≥ 1 be the (random) integer such that αn

K−1 < βn
0 ≤ αn

K , so that αn
K is the

initial time of the second excursion of H above 0 that hits 2−n .
With the excursion of H during interval [αn

0 , β
n
0 ], we can associate a (plane) tree

T n
0 constructed as follows. The children of the ancestor correspond to the excursions

of H above level 2−n , during the time interval [αn
0 , β

n
0 ], that hit 2 × 2−n and the

order on these children is obviously given by the chronological order. Equivalently,
the children of the ancestor correspond to the indices i ∈ {1, . . . , K − 1} such that
Hn

i = 1. Then, assuming that the ancestor has at least one child (equivalently that
K ≥ 2), the children of the first child of the ancestor correspond to the excursions of
H above level 2× 2−n , during the time interval [αn

1 , β
n
1 ], that hit 3× 2−n , and so on.

See Fig. 2 for an illustration.
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t

Ht

2−n

2.2−n

3.2−n

αn
0 αn

1 αn
2 αn

3 αn
4 αn

5 αn
6βn

0

Fig. 2 The sequence αn
0 , αn

1 , . . . and the tree T n
0 (in thick lines)

Write N n
0 for the number of children of the ancestor in T n

0 . It follows from Propo-
sition 6 (ii) that, conditionally on N n

0 , the successive excursions of H above level 2−n ,
during the time interval [αn

0 , β
n
0 ], that hit 2×2−n are independent and distributed as H

under N(· | max H ≥ 2−n) (recall that our definition shifts excursions above a level h
so that they start from 0). Recalling the construction of the tree T n

0 , we now obtain that,
conditionally on N n

0 , the subtrees of T n
0 originating from the children of the ancestor

are independent and distributed according to T n
0 . This just means that T n

0 is a Galton–
Watson tree, and its offspring distribution μn is the law under N(· | max H ≥ 2−n) of
the number of excursions of H above level 2−n that hit 2 × 2−n .

With the second excursion of H above 0 that hits 2−n , we can similarly associate a
Galton–Watson treeT n

1 with offspring distributionμn , and so on. The treesT n
0 , T n

1 , . . .

are independent as a consequence of the strong Markov property of the Lévy process
X . By construction, the process (Hn

k )k≥0 is the discrete height process of the sequence
T n
0 , T n

1 , . . .. ��
Proposition 9 For every n ≥ 1, set vn := 2nv(2−n) = 2nN(max H ≥ 2−n). Then,
for every A > 0,

sup
t≤A

∣

∣

∣2−n Hn�vn t� − Ht

∣

∣

∣ −→
n→∞ 0

in probability under P.

Proof Recall that, for every h ≥ 0, (Lh
t )t≥0 denotes the local time of H at level h.

It will be convenient to introduce, for every n ≥ 1 and every j ≥ 0, the increasing
process

N n
( j)(t) := #

{

k ≥ 0 : Hn
k = j, L j2−n

αn
k

≤ t
}

.
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As a consequence of Proposition 6(i) applied with h = j2−n , we get thatN n
( j)(t) is a

Poisson process with parameter v(2−n) = N(max H ≥ 2−n).
We claim that, for every A > 0,

lim
n→∞ sup

j≥0

(

E

[

sup
s≤A

|v(2−n)−1 #{k : Hn
k = j, αn

k ≤ s} − L j2−n

s |
])

= 0. (4)

To see this, first observe that, for every s > 0,

N n
( j)

((

L j2−n

s

)

−
)

≤ #
{

k : Hn
k = j, αn

k ≤ s
} ≤ N n

( j)

(

L j2−n

s

)

,

and then write

E

[

sup
s≤A

∣

∣

∣v(2−n)−1 #
{

k : Hn
k = j, αn

k ≤ s
}− L j2−n

s

∣

∣

∣

]

≤
∞
∑

p=1

E
[

1{p−1≤L j2−n

A ≤p} supt≤p
|v(2−n)−1N n

( j)(t) − t |
]

≤
∞
∑

p=1

P
(

p − 1 ≤ L j2−n

A

)1/2
E
[

sup
t≤p

|v(2−n)−1N n
( j)(t) − t |2

]1/2

.

Then, ifN (t) stands for a standard Poisson process, we have by a classical martingale
inequality

E
[

sup
t≤p

∣

∣

∣v(2−n)−1N n
( j)(t) − t

∣

∣

∣

2
]

= v(2−n)−2E

[

sup
t≤v(2−n)p

(N (t) − t)2
]

≤ 4v(2−n)−2 E
[

(N (v(2−n)p) − v(2−n)p)2
]

= 4v(2−n)−1 p.

It follows that, for every j ≥ 0,

E

[

sup
s≤A

∣

∣

∣v(2−n)−1 #
{

k : Hn
k = j, αn

k ≤ s
}− L j2−n

s

∣

∣

∣

]

≤
⎛

⎝

∞
∑

p=1

(

p P
(

p − 1 ≤ L j2−n

A

))1/2

⎞

⎠× 2v(2−n)−1/2,

and the proof of (4) is completed by noting that v(2−n) −→ ∞ as n → ∞, and that

∞
∑

p=1

(

p P
(

p − 1 ≤ L j2−n

A

))1/2 ≤
∞
∑

p=1

(

p P
(

p − 1 ≤ L0
A

))1/2
< ∞,
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because L j2−n

A is bounded above in distribution by L0
A (cf Definition 1.3.1 in [7]), and

we know that L0
A = −IA has exponential moments.

Let � ≥ 1 be an integer. By summing the convergence in (4) over possible choices
of 0 ≤ j < �2n , we also obtain that

lim
n→∞ E

⎡

⎣sup
s≤A

∣

∣

∣

∣

∣

∣

2−nv(2−n)−1 #
{

k : Hαn
k

< �, αn
k ≤ s

}

− 2−n
�2n−1
∑

j=0

L j2−n

s

∣

∣

∣

∣

∣

∣

⎤

⎦ = 0.

(5)
On the other hand, we have, for every s ≥ 0,

∣

∣

∣

∣

∣

∣

∫ s

0
dr 1{Hr ≤�} − 2−n

�2n−1
∑

j=0

L j2−n

s

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

�2n−1
∑

j=0

(∫ s

0
dr 1{ j2−n<Hr ≤( j+1)2−n} − 2−n L j2−n

s

)

∣

∣

∣

∣

∣

∣

≤ 2−n
�2n−1
∑

j=0

∣

∣

∣

∣

2n
∫ s

0
dr 1{ j2−n<Hr ≤( j+1)2−n} − L j2−n

s

∣

∣

∣

∣

,

and it follows from (3) that

lim
n→∞ E

⎡

⎣sup
s≤A

∣

∣

∣

∣

∣

∣

∫ s

0
dr 1{Hr ≤�} − 2−n

�2n−1
∑

j=0

L j2−n

s

∣

∣

∣

∣

∣

∣

⎤

⎦ = 0. (6)

By combining (5) and (6), we get

lim
n→∞ E

[

sup
s≤A

∣

∣

∣

∣

∫ s

0
dr 1{Hr ≤�} − v−1

n #
{

k : Hαn
k

< �, αn
k ≤ s

}

∣

∣

∣

∣

]

= 0,

where vn = 2nv(2−n). Since P(max{Hs : 0 ≤ s ≤ A} ≥ �) can be made arbitrarily
small by choosing � large, we have obtained that

sup
s≤A

∣

∣

∣v
−1
n #{k : αn

k ≤ s} − s
∣

∣

∣ −→
n→∞ 0

in probability. Elementary arguments show that this implies

sup
t≤A

∣

∣

∣α
n�vn t� − t

∣

∣

∣ −→
n→∞ 0 (7)
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in probability, and therefore also

sup
t≤A

∣

∣

∣Hαn�vn t� − Ht

∣

∣

∣ −→
n→∞ 0

in probability. This completes the proof. ��
In what follows, we will need an analog of the preceding two propositions for the

height process under its excursion measure N. Let us fix n ≥ 1. Under the measure
N(· ∩ {max H ≥ 2−n}), we define

0 = ᾱn
0 < ᾱn

1 < ᾱn
2 < · · · < ᾱn

K̄n−1

as the ordered sequence consisting of the initial times of all excursions of H above
level j 2−n that hit level ( j + 1)2−n , for all values of the integer j ≥ 0. The analog of
Proposition 8 says that, under N(· | max H ≥ 2−n), the finite sequence

H̄n
k := 2n Hᾱn

k
, 0 ≤ k ≤ K̄n − 1

is distributed as the height sequence of aGalton–Watson treewith offspring distribution
μn . This is immediate from the fact that an excursionwith distributionN(· | {max H ≥
2−n}) is obtained by taking (under P) the first excursion of H with height greater than
2−n . By convention, we take ᾱn

k = χ and H̄n
k = 0 if k ≥ K̄n .

We next fix a sequence (n p)p≥1 such that both (7) and the convergence of Propo-
sition 9 hold P a.s. along this sequence, for each A > 0. From now on, we consider
only values of n belonging to this sequence. We claim that we have then also

sup
t≥0

∣

∣

∣2−n H̄n�vn t� − Ht

∣

∣

∣ −→
n→∞ 0, N a.e. (8)

To see this, note that it suffices to argue under N(· | max H > δ) for some δ > 0, and
then to consider the first excursion (under P) of H away from 0 with height greater
than δ. We abuse notation by still writing 0 = ᾱn

0 < ᾱn
1 < ᾱn

2 < · · · < ᾱn
K̄n−1

for the
finite sequence of times defined as explained above, now relative to this first excursion
with height greater than δ.

We observe that, provided n is large enough so that 2−n < δ, we have

ᾱn
k = αn

dn+k, 0 ≤ k < K̄n = rn − dn

where dn is the index such that αn
dn

=: d(δ) is the initial time of the first excursion of
H away from 0 with height greater than δ, and rn is the first index k > dn such that αn

k
does not belong to the interval [d(δ), r(δ)] associated with this excursion. Notice that
αn

rn
decreases to r(δ) as n → ∞. Our claim (8) then reduces to verifying that

sup
t≥0

∣

∣

∣Hαn
(dn+�vn t�)∧rn

− H(d(δ)+t)∧r(δ)

∣

∣

∣ −→
n→∞ 0, P a.s.
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which follows from Proposition 9 and (7), recalling that both these convergences hold
a.s. on the sequence of values of n that we consider.

6 The coding function of the subordinate tree as a time-changed height
process

In this section, we prove Theorem 2. We consider the Brownian snake under its excur-
sion measure N0, and we recall the notation W s = max{Ws(t) : 0 ≤ t ≤ ζs}, and
W a = W s if a = pζ (s). As in Theorem 1, we write ˜Tζ for the subordinate tree of the
Brownian tree Tζ with respect to the function a �→ W a .

Proof of Theorem 2 We set W ∗ = max{W s : 0 ≤ s ≤ σ }. Fix n ≥ 1 and argue
under the probability measure N0(· | W ∗ ≥ 2−n). We define a discrete plane tree T (n)

which is constructed from (W s)0≤s≤σ in exactly the same way as T n
0 was constructed

from the excursion of H during [αn
0 , β

n
0 ] in the proof of Proposition 8 (see Fig. 2). In

this construction, the children of the root correspond to the excursions of the process
s → W s above level 2−n that hit 2 × 2−n , or equivalently to the excursions of W
outside (−∞, 2−n) that hit 2× 2−n (recall the definition of these excursions from the
proof of Theorem 1). The point is that, if (u, v) is the time interval associated with an
excursion of W outside (−∞, 2−n), the process s �→ W s remains strictly above 2−n

on the whole interval (u, v)). Similarly as in the previous section, the children of the
root are ordered according to the chronological order of the Brownian snake.

By the special Markov property, in the form given in Corollary 21 in the appendix
below, conditionally on the number of excursions of W outside (−∞, 2−n) that hit
2×2−n , these excursions listed in chronological order are independent and distributed
according to N0(· | W ∗ ≥ 2−n), modulo the obvious translation by−2−n . This shows
that the random plane tree T (n) satisfies the branching property at the first generation
and therefore T (n) is a Galton–Watson tree.

Letμn be the offspring distribution found in Proposition 8 in the casewhereψ(r) =
ψ0(r). We claim that μn is also the offspring distribution of T (n). To see this, observe
that μn is, by definition, the distribution of the number of points of a ψ0-Lévy tree at
height 2−n that have descendants at height 2×2−n (conditionally on the event that the
height of the tree is at least 2−n). Thanks to Theorem 1 and to the fact that ˜Tζ is the
tree coded by the function s �→ W s , we know that this is the same as the conditional
distribution of the number of excursions of s �→ W s above level 2−n that hit 2× 2−n ,
under N0(· | W ∗ ≥ 2−n).

Let

0 ≤ ξn
0 < ξn

1 < ξn
2 < · · · < ξn

Kn−1

be the ordered sequence consisting of the initial times of all excursions of s → W s

above level j 2−n that hit level ( j + 1)2−n , for all values of the integer j ≥ 0. Note
that each such excursion corresponds to a vertex of the tree T (n), and so Kn is just the
total progeny of T (n). By convention, we also define ξn

Kn
= σ . Set

˜Hn
k = 2n W ξn

k
, if 0 ≤ k < Kn,
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and ˜Hn
k = 0 if k ≥ Kn . Then (˜Hn

k , 0 ≤ k < Kn) is the height sequence of T (n) (note
that the lexicographical ordering on vertices of T (n) corrresponds to the chronological
order on the associated excursion initial times). Hence (˜Hn

k )k≥0 has the same distri-
bution as the sequence (H̄n

k )k≥0 which was defined at the end of the preceding section
from the height process H under N(· | max H ≥ 2−n).

But in fact more in true: the whole collection of the discrete sequences (˜Hn
k )k≥0

for all n ≥ 1 has the same distribution under N0 as the similar collection of sequences
(H̄n

k )k≥0 constructed from the height process H under N (the reason is the fact that, in
both constructions, the tree at step n can be obtained from the tree at step n + 1 by the
deterministic operation consisting in keeping only those vertices at even generation
that have at least one child, and viewing that set of vertices as a plane tree in the
obvious manner). The convergence (8) now allows us to set, for every t ≥ 0,

˜Ht = lim
n→∞ 2−n

˜Hn�vnt�,

and the process (˜Ht )t≥0 is distributed as the height process of the Lévy tree with
branching mechanism ψ0(r) = √

8/3 r3/2. The limit in the preceding display holds
uniformly in t , N0 a.e., provided we argue along the subsequence of values of n
introduced at the end of the preceding section. We set χ̃ = sup{s ≥ 0 : ˜Hs > 0}.

We observe that the distribution of (˜H , (˜Hn
k )n≥1,k≥0) under N0 is the same as that

of (H, (H̄n
k )n≥1,k≥0) under N, and so we must have, for every n ≥ 1 and k ≥ 0,

˜Hn
k = 2n

˜Hα̃n
k
,

where α̃n
0 < α̃n

1 < · · · < α̃n
˜Kn−1

are the initial times of the excursions of ˜Hs above

level j 2−n that hit level ( j + 1)2−n , for all values of the integer j ≥ 0, and α̃n
k = χ̃

if k ≥ ˜Kn . Notice that ˜Kn = Kn because the height sequence of the tree T (n) is
(˜Hn

k )0≤k≤Kn−1. Also, if n < m and k ∈ {0, 1, . . . , Kn − 1}, k′ ∈ {0, 1, . . . , Km − 1},
the property α̃n

k = α̃m
k′ holds if and only if ξn

k = ξn
k′ : Indeed these properties hold if

and only if the vertex with index k in the (lexicographical) ordering of T (n) coincides
with the vertex with index k′ in the ordering of T (m), modulo the identification of the
vertex set of T (n) as a subset of the vertex set of T (m), in the way explained above.

We need to verify that W s can be written as a time change of ˜H . As a first step, we
notice that, for every 0 ≤ k < Kn ,

2nW ξn
k

= ˜Hn
k = 2n

˜Hα̃n
k
.

and so W ξn
k

= ˜Hα̃n
k
. This suggests that the process � in the statement of the theorem

should be such that �ξn
k

= α̃n
k , for every k ∈ {0, 1, . . . , Kn − 1} and every n.

At this point, we observe that

max
1≤k≤Kn

(̃αn
k − α̃n

k−1) −→
n→∞ 0, N0 a.e. (9)
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Indeed, if this property fails, a compactness argument gives two times u, v ∈ [0, χ̃ ]
with u < v such that t → ˜Ht is monotone nonincreasing on [u, v]. To see that this
cannot occur, we may replace ˜H by the process H constructed from a Lévy process
excursion X as explained in Sect. 3. We then note that jumps of X are dense in [0, χ ],
and the strong Markov property shows that, for any jump time s of X , for any ε > 0,
we can find s′, s′′ ∈ [s, s + ε], with s′′ > s′, such that Hs′′ > Hs′ (use formula (20) in
[7], or see the comments at the end of Sect. 3).

Let s ∈ [0, σ ) and, for every integer n ≥ 1, let kn(s) ∈ {0, 1, . . . , Kn − 1}
be the unique integer such that ξn

kn(s) ≤ s < ξn
kn(s)+1. We note that the sequence

ξn
kn(s) is monotone nondecreasing (this is obvious since (ξn

0 , . . . , ξn
Kn

) is a subset of

(ξn+1
0 , . . . , ξn+1

Kn+1
)). It follows that the sequence α̃n

kn(s) is alsomonotone nondecreasing:
Indeed, if n < m and k ∈ {0, 1, . . . , Kn − 1}, k′ ∈ {0, 1, . . . , Km − 1} are such that
ξn

k ≤ ξm
k′ , we have automatically α̃n

k ≤ α̃m
k′ since, writing ξn

k = ξm
k∗ , the fact that

k∗ ≤ k′ implies that α̃n
k = α̃m

k∗ ≤ α̃m
k′ .

We can now set
�s = lim

n→∞ α̃n
kn(s). (10)

Note that this limit will exist simultaneously for all s ∈ [0, σ ) outside a set of N0-
measure 0. We also take �s = χ̃ for all s ≥ σ . Clearly s �→ �s is nondecreasing and,
by construction, the property �ξn

k
= α̃n

k holds for every k ∈ {0, 1, . . . , Kn} and every

n, and we have W s = H�s when s is of the form ξn
k . We also note that s −→ �s is

continuous as a consequence of the property (9). To check right-continuity, observe
that, if s ∈ [0, σ ) is fixed, and s′ is such that ξn

kn(s) < s′ < ξn
kn(s)+1 then, for every

m ≥ n, the property ξm
km (s′) ≤ s′ < ξn

kn(s)+1 forces α̃m
km (s′) ≤ α̃n

kn(s)+1, hence (letting
m tend to∞) �s′ ≤ α̃n

kn(s)+1, and use (9) and the definition (10) of �s . Left-continuity
is derived by a similar argument.

For s ∈ [0, σ ), set s′ = lim ↑ ξn
kn(s) and s′′ = lim ↓ ξn

kn(s)+1. Note that s′ ≤ s ≤ s′′.
On one hand, by passing to the limit n → ∞ in the equality

W ξn
kn (s)

= ˜Hαn
kn (s)

,

we obtain that W s′ = ˜H�s . On the other hand, W must be constant on the interval
[s′, s′′]. To see this,wefirst observe thatW must be nonincreasingon [s′, s′′] (otherwise
there would be some n and some k ∈ {0, 1, . . . , Kn − 1} such that ξn

kn(s) < ξn
k <

ξn
kn(s)+1, which is absurd). So we need to verify that there is no nontrivial interval

[s1, s2] such that s �→ W s is both nonincreasing and nonconstant on [s1, s2], and, to
prove this, we may replace nonincreasing by nondecreasing thanks to the invariance
of N0 under time-reversal. Argue by contradiction, and suppose that s1 < s2 are such
that that the event where 0 < s1 < s2 < σ and s �→ W s is both nondecreasing and
nonconstant on [s1, s2] has positive N0-measure. We can then find a stopping time
T such that, with positive N0-measure on the latter event, we have s1 < T < s2,
W T = ̂WT and max{WT (s) : 0 ≤ s ≤ ζT } is attained only at ζT (take T = inf{s >

s1 : ̂Ws ≥ W s1 + δ}, with δ > 0 small enough). Using the strong Markov property of
the Brownian snake, we then find r ∈ (T, s2) such that Wr is the restriction of WT to
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[0, ζT − ε], for some ε > 0, which implies W r < W T and gives a contradiction with
the fact that s �→ W s is nondecreasing on [s1, s2].

Finally, since W is constant on [s′, s′′], we have W s = W s′ = ˜H�s , which was the
desired result. This completes the proof of Theorem 2. ��

7 Applications to the Brownian map

In this section, we discuss applications of the previous results to the Brownian map.
Analogously to [21], we consider a version of the Brownian map with “randomized
volume”, which may be constructed under the Brownian snake excursion measure N0
as follows. Recall that (Tζ , dζ ) stands for the tree coded by (ζs)0≤s≤σ and pζ is the
canonical projection from [0, σ ] onto Tζ . For a, b ∈ Tζ , the “lexicographical interval”
[a, b] stands for the image under pζ of the smallest interval [s, t] (s, t ∈ [0, σ ]) such
that pζ (s) = a and pζ (t) = b (here we make the convention that if s > t the interval
[s, t] is equal to [s, σ ] ∪ [0, t]).

For every a ∈ Tζ , we set Za = ̂Ws , where s is such that pζ (s) = a. In particular
Zρζ = 0. The random mapping Tζ � a �→ Za is interpreted as Brownian motion
indexed by the “Brownian tree” Tζ .

We then define a mapping D◦ : Tζ × Tζ −→ R+ by setting

D◦(a, b) = Za + Zb − 2max

{

min
c∈[a,b] Zc, min

c∈[b,a] Zc

}

.

For a, b ∈ Tζ , we set a ≈ b if and only if D◦(a, b) = 0, or equivalently

Za = Zb = max

{

min
c∈[a,b] Zc, min

c∈[b,a] Zc

}

.

One can verify that if a ≈ a′ then D◦(a, b) = D◦(a′, b) for any b ∈ Tζ (the point is
that, if a ≈ a′ with a �= a′, then necessarily a and a′ are leaves of Tζ , and the reals
t, t ′ ∈ [0, σ ) such that pζ (t) = a and pζ (t ′) = a′ are unique, which implies that
[a, b] ⊂ [a, a′] ∪ [a′, b] and [b, a] ⊂ [b, a′] ∪ [a′, a]).

We also set

D∗(a, b) = inf
a0=a,a1,...,ap=b

p
∑

i=1

D◦(ai−1, ai ),

where the infimum is over all choices of the integer p ≥ 1 and of the points
a1, . . . , ap−1 of Tζ . If a ≈ a′ then D∗(a, b) = D∗(a′, b) for any b ∈ Tζ . Fur-
thermore one can also prove that D∗(a, b) = 0 if and only if a ≈ b. Since D∗ satisfies
the triangle inequality, it follows that≈ is an equivalence relation on Tζ . The Brownian
map (with randomized volume) is the quotient space m := Tζ / ≈, which is equipped
with the distance induced by the function D∗ (with a slight abuse of notation, we still
denote the induced distance by D∗). We write � for the canonical projection from
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Subordination of trees and the Brownian map 841

Tζ onto m, and p = � ◦ pζ . We also write D◦(x, y) = D◦(a, b) if x = �(a) and
y = �(b).

In the usual construction of the Brownian map, one deals with the conditioned
measure N0(· | σ = 1) instead of N0, but otherwise the construction is exactly the
same and we refer to [16,17] for more details.

The Brownian map m comes with two distinguished points. The first one ρ =
p(0) = �(ρζ ) corresponds to the root ρζ of Tζ . The second distinguished point is
ρ∗ = �(a∗), where a∗ is the (unique) point of Tζ at which Z attains its minimum:

Za∗ = min
a∈Tζ

Za .

We will write Z∗ = Za∗ to simplify notation. The reason for considering ρ∗ comes
from the fact that distances from ρ∗ have a simple expression. For any a ∈ Tζ ,

D∗(ρ∗,�(a)) = Za − Z∗. (11)

The following “cactus bound” [16, Proposition 3.1] also plays an important role. Let
a, b ∈ Tζ , and let γ : [0, 1] → m be a continuous path in m such that γ (0) = �(a)

and γ (1) = �(b). Then,

min
0≤t≤1

D∗(ρ∗, γ (t)) ≤ min
c∈�a,b�

D∗(ρ∗,�(c)) = min
c∈�a,b�

(Zc − Z∗), (12)

where we recall that �a, b� is the geodesic segment between a and b in Tζ , not to be
confused with the interval [a, b]. In other words, any continuous path from �(a) to
�(b)must come at least as close to ρ∗ as the (image under� of the) geodesic segment
from a to b in Tζ .

We now introduce the metric net, in the terminology of [21]. For every r ≥ 0, we
consider the ball B(r) defined by

B(r) = {x ∈ m : D∗(ρ∗, x) ≤ r}.

For 0 ≤ r < D∗(ρ∗, ρ) = −Z∗, we define the hull B•(r) as the complement of
the connected component of B(r) that contains ρ. Informally, B•(r) is obtained from
B(r) by “filling in” the holes of B(r) except for the one containing ρ. Write ∂ B•(r)

for the topological boundary of B•(r). We define the metric net M as the closure in
m of the union

⋃

0≤r<−Z∗
∂ B•(r).

Our goal is to investigate the structure ofM.
If a ∈ Tζ and s ∈ [0, σ ] are such that pζ (s) = a, wewrite Wa = Ws (as previously)

and we use the notation

W a = W s = min{Ws(t) : 0 ≤ t ≤ ζs} = min{Zb : b ∈ �ρζ , a�},
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where the last equality holds because, as already mentioned, the quantities Ws(t) for
0 ≤ t ≤ ζs correspond to the values of Zb = ̂Wb along the geodesic segment �ρζ , a�.

We then introduce the closed subset of Tζ defined by

 = {a ∈ Tζ : W a = ̂Wa}.

We note that points of  have multiplicity either 1 or 2 in Tζ . Indeed, there are only
countably many points of multiplicity 3, and it is not hard to see that these points do
not belong to .

Proposition 10 Let x ∈ m. Then x ∈ M if and only if x = �(a) for some a ∈ .

Proof Fix r ∈ [0,−Z∗) and x ∈ m. We claim that x ∈ ∂ B•(r) if and only if we can
write x = �(a) with both ̂Wa = Z∗ + r , and

Wa(t) > Z∗ + r, ∀t ∈ [0, ζ(Wa)).

Indeed, if these conditions hold, we have D∗(ρ∗, x) = r by (11), and the image under
� of the geodesic segment from a to ρζ provides a path from x to ρ that stays outside
B(r) except at the initial point x . It follows that �(a) belongs to ∂ B•(r).

Conversely, if x ∈ ∂ B•(r), then it is obvious that D∗(ρ∗, x) = r giving ̂Wa = Z∗+r
for any a such that �(a) = x . Write x = lim xn , where xn /∈ B•(r), and, for every
n, let an ∈ Tζ such that �(an) = xn . The fact that xn /∈ B•(r) implies that, for
every c belonging to the geodesic segment between an and ρζ , we have Zc > Z∗ + r
(otherwise the cactus bound (12) would imply that any path between xn and ρ visits
B(r), which is a contradiction). By compactness, we may assume that an converges
to a as n → ∞, and we have �(a) = x . We then get that the property Zc > Z∗ + r
holds for c belonging to the geodesic segment between a and ρζ , except possibly for
c = a. This completes the proof of our claim.

It follows from the claim that the property x = �(a) for some a ∈ Tζ such that
̂Wa = W a holds for every x ∈ M (this property holds if x ∈ ∂ B•(r) for some
0 ≤ r < −Z∗ and is preserved under passage to the limit, using the compactness of
Tζ ). Conversely, suppose that this property holds, with a �= ρζ to discard a trivial case.
If the path Wa hits its minimum only at its terminal point, the first part of the proof
shows that x ∈ ∂ B•(r) for r = ̂Wa − Z∗. If the path Wa hits its minimum both at its
terminal time and at another time, then Lemma 16 in [1] shows that a = lim an , where
̂Wan < ̂Wa for every n. Let bn be the first point (i.e. the closest point to ρζ ) on the
ancestral line of an such that ̂Wbn = ̂Wan . Then, by the first part of the proof, �(bn)

belongs to ∂ B•(rn), with rn = ̂Wan − Z∗. Noting that bn must lie on the geodesic
segment between a and an in the tree Tζ , we see that we have also a = lim bn , so that
we get that x = �(a) = lim�(bn) belongs toM. ��
Remark The preceding arguments are closely related to [5, Section 3] (see in particular
formula (16) in [5]), which deals with the slightly different setting of the Brownian
plane.

If x ∈ M and a ∈  is such that x = �(a), the image under � of the geodesic
segment from a to ρζ provides a path in m that stays in the complement of B(r) for
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every 0 ≤ r < D∗(ρ∗, x) = Za − Z∗ (indeed the values of Zb for b belonging to
this segment are the numbers Wa(t) ≥ W a = ̂Wa = Za). It follows that all points
belonging to a geodesic from x to ρ∗ also belong toM.

We note that we can define an “intrinsic” metric onM by setting, for every x, y ∈
M,

�∗(x, y) = inf
x=x0,x1,...,xk=y

x1,...,xk−1∈M

k
∑

i=1

D◦(xi−1, xi ). (13)

It is obvious that�∗(x, y) ≥ D∗(x, y). In particular,�∗(x, y) = 0 implies x = y, and
it follows that�∗ is a metric onM. The quantity�∗(x, y) corresponds to the infimum
of the lengths (computed with respect to D∗) of paths from x to y that are obtained by
the concatenation of pieces of geodesics from points ofM to ρ∗ (we already noticed
that these geodesics stay inM).We have clearly�∗(ρ∗, x) = D∗(ρ∗, x) = D◦(ρ∗, x)

for every x ∈ M, and �∗-geodesics from x to ρ∗ coincide with D∗-geodesics from x
to ρ∗ (if x, y ∈ M and x, y belong to the same D∗-geodesic to ρ∗, the results of [16]
imply that D∗(x, y) = D◦(x, y) = �∗(x, y)).

Remark The topology induced by �∗ on M coincides with the topology induced by
D∗. Since �∗ ≥ D∗ and (M, D∗) is compact, it is enough to prove that (M,�∗) is
also compact. However, if (xn)n≥1 is a sequence in M, we may write xn = �(an),
with an ∈ , and then extract a subsequence (ank ) that converges to a∞ in Tζ . We
have a∞ ∈  because  is closed. Furthermore the fact that ank converges to a∞
implies that D◦(ank , a∞) tends to 0, and therefore �∗(xnk ,�(a∞)) also tends to 0,
showing that (xn)n≥1 has a convergent subsequence in (M,�∗).

The preceding proposition shows that the metric net M has close connections
with the subset  of Tζ . The latter set is itself related to the subordinate tree of Tζ

with respect to the function a �→ −W a . By Theorem 2 (and an obvious symmetry
argument) we can construct a process (Ht )0≤t≤χ distributed as the height process
of the Lévy tree with branching mechanism ψ0(r) = √

8/3 r3/2, and a continuous
random process (�s)s≥0 with nondecreasing sample paths such that �0 = 0, �σ = χ ,
and for every s ∈ [0, σ ],

− W s = H�s . (14)

Formula (14) obviously implies that, if � is constant on some interval, then W is
constant on the same interval. The converse is also true since H is not constant on any
nontrivial interval.

We define a random equivalence relation ∼ on [0, χ ], by requiring that the graph
of ∼ is the smallest closed symmetric subset of [0, χ ]2 that contains all pairs (s, t)
with s ≤ t , Hs = Ht , and Hr > Hs for all r ∈ (s, t). We leave it to the reader to
check that this set is indeed the graph of an equivalence relation (use the comments
at the end of Sect. 3). In addition to the pairs (s, t) satisfying the previous relation,
the graph of∼ contains a countable collection of pairs (u, v), each of them associated
with a point of infinite multiplicity a of the tree TH by the relations u = min p−1

H (a)

and v = max p−1
H (a).

We denote the quotient space [0, χ ]/ ∼ by L. Then L can be identified with the
“looptree” associated with H . Roughly speaking (see [4] for more details) the looptree
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Fig. 3 A simulation of a looptree (simulation by Igor Kortchemski). For technical reasons, some of the
trees branching off a loop are pictured inside this loop, but, from the point of view of the present work, it
is better to think of these trees as growing outside the loop, so that the space inside the loop may be “filled
in” appropriately

is obtained by replacing each point of infinite multiplicity a of the tree TH by a loop of
“length” equal to theweight of a, so that the subtrees that are the connected components
of the complement of a in the tree branch along this loop in an order determined by the
coding function H (see Fig. 3). Note that the looptree associated with H is equipped
in [4] with a particular metric. Here we avoid introducing this metric on L, because
it will be more relevant to our applications to introduce a pseudo-metric that will be
described below.

Let us introduce the right-continuous inverse of �. For every u ∈ [0, χ), we set

τu := inf{s ≥ 0 : �s > u}.

By convention, we also set τχ = σ . The left limit τu− is equal to inf{s ≥ 0 : �s = u}.
Note that � (and therefore also W ) is constant on every interval [τu−, τu]. We also
observe that �τu = u and thus −W τu

= Hu . Furthermore, for every ε > 0, �τu+ε >

�τu , and therefore W is not constant on [τu, τu + ε] [recall (14)], which implies
W τu

= ̂Wτu . We have thus pζ (τu) ∈  and a similar argument gives pζ (τu−) ∈ .
We next consider the subsets ◦ and 1 of  defined as follows. We let S1 be

the countable subset of [0, σ ] that consists of all times τu− for u ∈ (0, χ ] such that
τu− < τu and we set 1 = pζ (S1). By the preceding remarks, 1 ⊂ , and we also
set◦ = \1. We note that s ∈ [0, σ ) belongs to S1 if and only if s is the left end of
a maximal open interval on which W (or equivalently �) is constant. Alternatively, s
belongs to S1 if and only if W s = ̂Ws and W is constant on [s, s + ε] for some ε > 0.
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Indeed, if the latter properties hold then W is not constant on any interval [s − δ, s],
δ > 0 (thus implying that s = τu− with u = �s) because otherwise, using the fact that
s cannot be a time of left increase of ζ , this would mean that Ws attains its minimum
both at ζs and at a time r < ζs , leading to a contradiction with [1, Lemma 16].

Let us explain the motivation for these definitions. Our goal is to identify the metric
net M as a quotient space of the loop tree L = [0, χ ]/ ∼. We will verify (see
Lemma 11 below) that the mapping [0, χ ] � u �→ pζ (τu) induces a bijection from
L onto ◦ (we can already observe that times of the form τu do not belong to S1).
On the other hand, it is not hard to check that, for any point a of , there exists
a′ ∈ ◦ such that �(a) = �(a′). Hence the preceding bijection will allow us to view
M = �() = �(◦) as a quotient space of L, see Theorem 12 below.

We notice that points of1 are leaves of Tζ , meaning that if a ∈ 1, there is exactly
one value s ∈ [0, σ ] such that pζ (s) = a. Indeed suppose that a = pζ (s) = pζ (s′)
with s < s′ and a ∈ . Then both s and s′ are times of (left or right) increase of ζ ,
and, together with the property ̂Wa = W a , this implies that ̂W takes values strictly less
than W a immediately after s, resp. immediately after s′ (see Sect. 4), so that neither
s nor s′ can belong to S1.

It follows from the last observation that pζ (τu) ∈ ◦ for every u ∈ [0, χ ]. Indeed,
we have already seen that pζ (τu) belongs to , and if we had pζ (τu) ∈ 1 this would
imply that τu ∈ S1, which is impossible.

Remark One can describe the elements of S1 in the following way (this description
is not needed for what follows). Let b ∈  such that b has a strict descendant c with
W c = W b (in the terminology of [1], b is an excursion debut above the minimum).
Let [s1, s2] ⊂ [0, σ ] be the interval whose image under pζ gives all descendants of b.
Then the set

{r ∈ [s1, s2] : W r = W s1 and
̂Wr > W s1}

is an open subset of [s1, s2], and the left end of each of its connected components
belongs to S1. Furthermore any element of S1 can be obtained in this way.

Lemma 11 For u, v ∈ [0, χ ], the property u ∼ v holds if and only if pζ (τu) =
pζ (τv). Furthermore, the mapping � : [0, χ ] � u �→ pζ (τu) induces a bijection from
L = [0, χ ]/ ∼ onto ◦, which will be denoted by �.

Proof We already know that pζ (τu) ∈ ◦ for every u ∈ [0, χ ]. We then verify that,
if a ∈ ◦, there exists u ∈ [0, χ) with pζ (τu) = a. We can write a = pζ (s) where
̂Ws = W s and the mapping r �→ W r is not constant on [s, s + ε], for every ε > 0.
Using the formula −W r = H�r , it follows that �s+ε > �s for every ε > 0, and thus
s = τ�s . Finally a = pζ (τu) with u = �s .

Next let us prove that u ∼ v implies pζ (τu) = pζ (τv). Let u ∼ v and without
loss of generality suppose that 0 < u < v < χ . We first assume that Hu = Hv and
Hr > Hu for every r ∈ (u, v). Then, we must have W s < W τu

= W τv− for every
s ∈ (τu, τv−)—recall that, by (14), W is constant over any interval [τr−, τr ]. This
implies that ζs ≥ ζτu = ζτv− for every s ∈ (τu, τv−) (if there exists s ∈ (τu, τv−) such
that ζs < ζτu , then, for every δ > 0 small enough, the properties of the Brownian snake
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allow us to find such an s with the additional property that Ws is the restriction of Wτu

to [0, ζs −δ], which contradicts W s < W τu
—and we can make a symmetric argument

if there exists s ∈ (τu, τv−) such that ζs < ζτv− ). It follows that pζ (τu) = pζ (τv−).
Moreover, since τv− is a point of left increase of ζ , τv− cannot be a point of right
increase of ̂W , so that there are values of s > τv− arbitrarily close to τv− such that
W s < W τv− , and therefore �s > �τv− . It follows that we have τv− = τv giving
pζ (τu) = pζ (τv) as desired.

Suppose then that u ∼ v but the property Hr > Hu for every r ∈ (u, v) does not
hold. Then (u, v) is the limit of a sequence (un, vn) such that, for every n, Hun = Hvn

and Hr > Hun for every r ∈ (un, vn). We must have un < u and vn > v for all n large
enough (otherwise a simple argument shows that Hr > Hu for every r ∈ (u, v), which
contradicts our assumption). By the first part of the argument,we have ζs ≥ ζτun

= ζτvn

for s ∈ [τun , τvn ], and, letting n tend to ∞, we get ζs ≥ ζτu− = ζτv , for every s ∈
[τu−, τv]. Then the fact that τu− is a point of right increase of ζ implies that τu− = τu

(by the same argument as above) and we conclude again that pζ (τu) = pζ (τv).
Finally, it remains to prove that the property pζ (τu) = pζ (τv) implies u ∼ v. Note

that τu = τv is only possible if u = v, so that we may assume that τu < τv . Then
a = pζ (τu) = pζ (τv) is a point of multiplicity 2 of Tζ (since a ∈ , a cannot have
multiplicity 3 in Tζ ), and the points pζ (s) for τu ≤ s ≤ τv are the descendants of a,
so that W s ≤ W a for every τu ≤ s ≤ τv . It follows that Hr ≥ Hu for u ≤ r ≤ v

(write Hr = −W τr
). If Hr > Hu for u < r < v, this means that u ∼ v and we are

done. Otherwise there exists r ∈ (u, v) such that Hr = Hu , and this means that a has
a strict descendant b = pζ (τr ) such that W b = W a . This implies that the path Wa

hits its minimal value only at its terminal time (otherwise Wb would have two equal
local minima). We know that, just before τu , there are values of s such that ζs < ζτu

(otherwise τu would a time of local minimum of ζ , but this is excluded since such
times correspond to points of multiplicity 3 of Tζ and thus never satisfy W s = ̂Ws),
and it follows that there are times s < τu arbitrarily close to τu such that W s > W τu

,

and thus H�s < Hu . Hence, if we set un = sup{r < u : Hr = Hu − 1
n }, we have

un −→ u as n → ∞. Similarly, if vn = inf{r > v : Hr = Hv − 1
n }we have vn −→ v

as n → ∞. Clearly un ∼ vn so that we also get u ∼ v. ��
We write pL for the canonical projection from [0, χ ] onto L = [0, χ ]/ ∼. If α ∈ L

and α = pL(s), we will also write Hα = Hs .
In a way similar to the definition of intervals in Tζ , we can define intervals in L.

If α, β ∈ L, we set [α, β] = pL([s, t]), where s, t ∈ [0, χ ] are such that pL(s) = α

and pL(t) = β and [s, t] is as small as possible (here again we use the convention
[s, t] = [s, χ ] ∪ [0, t] if t < s).

We will identify the metric net (M,�∗) with a quotient space of the looptree L.
Informally, the latter quotient space is obtained by identifying two points α and β if
they face each other at the same height inL: This means that we require that Hα = Hβ ,
and that vertices “between” α and β have a smaller height. To make this more precise,
we define, for every α, β ∈ L,

D◦(α, β) = 2min

(

max
γ∈[α,β] Hγ , max

γ∈[β,α] Hγ

)

− Hα − Hβ,
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and

D∗(α, β) = inf
α0=α,α1,...,αk−1,αk=β

k
∑

i=1

D◦(αi−1, αi ),

where the infimum is over all possible choices of the integer k ≥ 1 and of
α1, . . . , αk−1 ∈ L.

The following statement is a reformulation, in a more precise form, of Theorem 3
stated in the introduction.

Theorem 12 For α, β ∈ L, set α � β if and only if D∗(α, β) = 0. Then the property
α � β holds if and only if D◦(α, β) = 0, or equivalently

Hα = Hβ = min

(

max
γ∈[α,β] Hγ , max

γ∈[β,α] Hγ

)

. (15)

Furthermore, D∗ induces a metric on the quotient space L/ �. If � : L −→ ◦
denotes the bijection of Lemma 11, � ◦ � induces an isometry from (L/ �,D∗) onto
(M,�∗).

Remark It is not a priori obvious that (15) defines an equivalence relation on L. This
property follows from the fact that (15) holds if and only if D∗(α, β) = 0, which we
derive in the following proof from the relations between L and the Brownian map.

Proof We first verify that, if α, β ∈ L and a = �(α), b = �(β), we have

D◦(α, β) = D◦(a, b). (16)

Let s ∈ [0, χ ] be such that α = pL(s). Note that we have then a = pζ (τs) by the
definition of �. Hence,

Hα = Hs = −W τs
= −Zτs = −Za .

Similarly, we have Hβ = −Zb.
So the proof of (16) reduces to checking that

max
γ∈[α,β] Hγ = max

c∈[a,b](−Zc).

To get this equality, we write

max
γ∈[α,β] Hγ = min

pL(s)=α,pL(t)=β

(

max
r∈[s,t] Hr

)

= min
pL(s)=α,pL(t)=β

(

max
r∈[τs ,τt ]

(−Zr )
)

123



848 J.-F. Le Gall

= min
pζ (u)=a,pζ (v)=b

(

max
r∈[u,v](−Zr )

)

= max
c∈[a,b](−Zc).

The second equality holds because Hr = −W τr
= −Zτr , and W stays constant on

intervals [τr−, τr ]. To justify the third equality, we note that the elements u of [0, σ ]
such that pζ (u) = a are exactly the reals u = τs where s is such that pL(s) = α:
Since a ∈ ◦, any u ∈ [0, σ ] such that pζ (u) = a must be of the form u = τs with
s ∈ [0, χ ], and if u is of this form, the property pζ (u) = a is equivalent to pL(s) = α

by Lemma 11. This completes the proof of (16).
We then claim that, for every x ∈ M, there exists a ∈ ◦ such that �(a) = x . Let

x ∈ M. By Proposition 10,we know that x = �(a)where a ∈ . If a ∈ \◦ = 1,
then there exists u ∈ (0, χ ] such that τu− < τu and a = pζ (τu−), and we know that
pζ (τu) ∈ ◦. Our claim will follow from the fact that �(pζ (τr )) = �(pζ (τr−)), for
every r such that τr− < τr . Indeed, we know that W is constant on [τr−, τr ], so that
W s = W τr− = W τr

for every s ∈ [τr−, τr ]. Since both pζ (τr−) and pζ (τr ) belong to

 we have also W τr− = ̂Wτr− and W τr
= ̂Wτr . It follows that ̂Ws ≥ ̂Wτr− = ̂Wτr for

every s ∈ [τr−, τr ], hence Zc ≥ Z pζ (τr−) = Z pζ (τr ) for every c ∈ [pζ (τr−), pζ (τr )],
which exactly means that �(pζ (τr−)) = �(pζ (τr )) as desired.

Let x, y ∈ M, and a, b ∈ ◦ such that �(a) = x and �(b) = y. From (13) and
the preceding claim, we may write

�∗(x, y) = inf
a=a0,a1,...,ak=b

a1,...,ak−1∈◦

k
∑

i=1

D◦(ai−1, ai ),

We then use the bijection � of Lemma 11 to observe that, if α = �−1(a) and β =
�−1(b), we have also, thanks to (16),

�∗(x, y) = inf
α=α0,α1,...,αk=β

α1,...,αk−1∈L

k
∑

i=1

D◦(αi−1, αi ) = D∗(α, β). (17)

In particular, if α, β ∈ L and x = � ◦�(α), y = � ◦�(β), we see that the condition
D∗(α, β) = 0 holds if and only if �∗(x, y) = 0, and (since �∗(x, y) ≥ D∗(x, y))
the latter condition holds if and only if D◦(x, y) = 0, or equivalently D◦(α, β) = 0
(by (16)). This gives the first assertion of the theorem.

Then D∗ is symmetric and satisfies the triangle inequality, hence induces a metric
on the quotient spaceL/ �. From the property�∗(�◦�(α),�◦�(β)) = D∗(α, β),
we see that the relation α � β implies � ◦ �(α) = � ◦ �(β), so that � ◦ � induces
a mapping from L/ � to M. This mapping is onto since �(◦) = M, and is an
isometry by (17). ��
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8 Holes in the metric net

In this section,we continue our applications to theBrownianmap.Wekeep the notation
and assumptions of the preceding section. In particular, the process (Hs)0≤s≤χ , which
is distributed under N0 as the height process of the ψ0-Lévy tree, was introduced so
that the representation formula (14) holds.

Our goal is to discuss the connected components of the complement of the metric
net in the Brownian map (these are called Brownian disks in [21]). We again argue
under the excursion measure N0. For every s > 0, we denote by Ys the (total mass
of the) exit measure of the Brownian snake from (−s,∞), see [14, Chapter V]. Then
(Ys)s>0 has a càdlàg modification that we consider from now on (see the discussion
in Section 2.5 of [1]). For every s > 0, we can also consider the total local time of
H at level s, which we denote by Ls

χ in agreement with Sect. 3. The Ray-Knight
theorem of [7, Theorem 1.4.1] shows that (Ls

χ )s>0 is distributed under N0 according
to the excursion measure of the continuous-state branching process with branching
mechanism ψ0, and therefore has also a càdlàg modification.

Lemma 13 We have Ls
χ = Ys for every s > 0, N0 a.e.

Proof Let s > 0 and, for every ε > 0, let Ns,ε be the number of excursions of the
Brownian snake outside (−s,∞) that hit −s − ε. Then an easy application of the
special Markov property gives

Ys = lim
ε→0

v(ε)−1 Ns,ε , N0 a.e.

where v(ε) = N0(max ̂Ws > ε) = N0(H(TH ) > ε). On the other hand, (14) shows
that Ns,ε is also the number of excursions of H above (s,∞) that hit s + ε. By
comparing the preceding approximation of Ys with [8, Theorem 4.2], we arrive at the
stated result. ��

Following closely [1], we say that a ∈  is an excursion debut if a has a strict
descendant b such that Zc > Za for every c ∈�a, b�. We also say that m ∈ R+ is
a local minimum of H if there exist s ∈ (0, χ) and ε ∈ (0, s ∧ (1 − s)) such that
Hs = m and Hr ≥ m for every r ∈ (s − ε, s + ε).

We now claim that the following sets are in one-to-one correspondence:

(a) The set of all connected components of m\M.
(b) The set of all connected components of Tζ \.
(c) The set of all excursion debuts.
(d) The set of all jump times of the exit measure process Y .
(e) The set of all points of infinite multiplicity of TH .
(f) The set of all local minima of H .

Let us explain these correspondences. First the fact that local minima of H cor-
respond to points of infinite multiplicity of TH was explained at the end of Sect. 3.
Recall that, for every point of infinite multiplicity of TH , there is a Cantor set of local
minimum times corresponding to the associated local minimum (see the end of Sect.
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3). Then, by [8, Theorem 4.7], each branching point b (necessarily of infinite multi-
plicity) of TH corresponds to a discontinuity of s �→ Ls

χ = Ys at time Hb, and the
corresponding jump�Ys is theweight of the branching point b. By [1, Proposition 36],
discontinuity times for Ys are in one-to-one correspondence with excursion debuts,
and a discontinuity time s corresponds to an excursion debut a such that s = −Za .
The fact that excursion debuts are in one-to-one correspondence with connected com-
ponents of Tζ \ is Proposition 20 in [1]: If a is an excursion debut, the associated
connected component C is the collection of all strict descendants b of a such that
Zc > Za for every c ∈�a, b�, and the boundary ∂C consists of all descendants b of
a such that Zb = Za and Zc > Za for every c ∈�a, b� (here we may replace the
strict inequality Zc > Za by a weak one Zc ≥ Za because the local minimima of
a Brownian snake path are distinct). Furthermore, the “boundary size” of C may be
defined as the quantity �Ys , if s is the associated jump time of the process Y (this is
also the weight of the corresponding point of infinite multiplicity of TH ). Finally, the
fact that the sets (a) and (b) are also in one-to-one correspondence is a consequence
of the following lemma.

Lemma 14 Let C be a connected component of Tζ \. Then �(C) is a connected
component of m\M, and ∂�(C) = �(∂C).

Proof Let a ∈ Tζ be the excursion debut such that C is the collection of all strict
descendants b of a such that Zc > Za for every c ∈�a, b�. We first observe that �(C)

is an open subset of m\M. This follows from the fact that the topology of m is the
quotient topology and�−1(�(C)) = C (to derive the latter equality, note that, if b ∈ C
and b′ ∈ Tζ are such that b ≈ b′, we have min{Zc : c ∈ �b, b′�} = Zb = Zb′ > Za ,
and it follows that b′ ∈ C). Since�(C) is connected, in order to get the statement of the
lemma, we need only verify that, if x ∈ m\M is such that there is a continuous path
(γ (t))0≤t≤1 that stays in m\M and connects x to a point y of �(C), then x ∈ �(C).
We argue by contradiction and assume that x /∈ �(C). We then set t0 := inf{t ∈
(0, 1] : γ (t) ∈ �(C)}. Clearly, γ (t0) belongs to the boundary ∂�(C) of �(C). On
the other hand, it is easy to verify that ∂�(C) ⊂ �(∂C) (if z ∈ ∂�(C), we can write
z = lim�(an) where an ∈ C, and, by extracting a subsequence, we can assume that
an −→ a∞ in Tζ , so that we have z = �(a∞), and a∞ ∈ ∂C since a∞ ∈ C would
imply z ∈ �(C), contradicting z ∈ ∂�(C)). So γ (t0) ∈ �(∂C) ⊂ �() = M, which
contradicts our assumption that γ stays in m\M.

For the last assertion, it remains to see that�(∂C) ⊂ ∂�(C). This is straightforward:
If b ∈ ∂C, we have automatically Zb = Za and b ∈ , so that �(b) ∈ M, forcing
�(b) ∈ ∂�(C). ��

It is worth giving a direct interpretation of the correspondence between sets (c)
and (f) above. If a is an excursion debut, we can write a = pζ (s1) = pζ (s2), where
s1 < s2, and the image under pζ of the interval [s1, s2] corresponds to the exploration
of descendants of a in Tζ . It follows that we have W c ≤ W a = Za for every c ∈
pζ ([s1, s2]). There are points b ∈ pζ ([s1, s2]) such that Zb < Za (in fact one can find
such points arbitrarily close to a, as a consequence of the fact that points of increase
for ζ cannot be points of increase for ̂W ). If b is such a point we can consider the
last ancestor c of b such that Zc ≤ Za , noting that the definition of an excursion
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debut implies that c is a strict descendant of a. Then if t1 < t2 are the two times in
(s1, s2) such that pζ (t1) = pζ (t2) = c, one verifies that both �t1 and �t2 are local
minimum times of H corresponding to the local minimum −Za . In fact the set of all
these local minimum times consists of all �r for r ∈ (s1, s2) such that pζ (r) belongs
to the boundary of the connected component of Tζ \ associated with a.

We will now establish that the boundary of any connected component of m\M is
a simple loop. To this end, it is convenient to introduce the Lévy process excursion
(Xt )0≤t≤χ associated with H (see Sect. 3). Note that X can be reconstructed as a
measurable function of H , and that any point of infinitemultiplicity of TH corresponds
to a unique jump time of X , such that the size of the jump is the weight of the branching
point. There is thus also a onto-one correspondence between connected components
of m\M and jump times of X .

Recall the notation � for the mapping introduced in Lemma 11.

Proposition 15 Let C be a connected component of m\M, let a be the associated
excursion debut, and let s ∈ (0, χ) be the associated jump time of X. For every
r ∈ [0,�Xs], set

ηr = inf{t ≥ s : Xt < Xs − r}.

Then the mapping

r �→ γ (r) = � ◦ �(ηr ), 0 ≤ r ≤ �Xs,

defines a simple loop in m, whose initial and end points are equal to �(a). Further-
more, the range of γ is the boundary of C.

Proof To simplify notation, we set h = −Za . By definition, � ◦ �(u) = �(pζ (τu))

for 0 ≤ u ≤ χ . The first step of the proof is is to check that every point of ∂C can be
written in the form �(pζ (τr )) for some r ∈ [s, η�Xs ] such that Hr = h.

Let C stand for the connected component of Tζ \ such that �(C) = C . Recall
that ∂C = �(∂C) by Lemma 14. Let [s1, s2] be the interval corresponding to the
descendants of a in the coding of Tζ . Since s1 and s2 are both (left or right) increase
times of ζ , they cannot be increase times for ̂W , and this implies s1 = τ�s1

and
s2 = τ�s2

. Let b ∈ ∂C ⊂ . We claim that b = pζ (τr ) or b = pζ (τr−) for some
r ∈ [0, χ ] such that s1 ≤ τr ≤ s2. This is true if b = a since a = pζ (s1) = pζ (τ�s1

).
If b ∈ ∂C and b �= a, we can write b = pζ (u) with u ∈ (s1, s2), and Lemma 16 in
[1] implies that there are values of v arbitrarily close to u such that ̂Wv < ̂Wu , which
implies u = τ�u or u = τ�u−, giving our claim. On the other hand, we have seen in
the proof of Theorem 12 that �(pζ (τr−)) = �(pζ (τr )) for any r ∈ (0, χ ]. Since any
point of ∂C can bewritten as�(b) for some b ∈ ∂C, we conclude that any point x ∈ ∂C
is of the form x = �(pζ (τr )) = �◦�(r) for some r ∈ [0, χ ] such that s1 ≤ τr ≤ s2.
Furthermore, we have then Hr = −W τr

= −Z pζ (τr ) = −Za = h, where the second
equality holds because pζ (τr ) ∈  and the third one because Zb = Za for every
b ∈ ∂C (see the comments before Lemma 14).

Next note that the condition s1 ≤ τr ≤ s2 holds if and only if �s1 ≤ r ≤ �s2 , and
that [�s1 , �s2 ] is the interval corresponding to the descendants of the point of infinite
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multiplicity associated with C , in the coding of the tree TH . Using the comments of
the end of Sect. 3, we see that this interval is the same as [s, η�Xs ] with the notation
of the proposition. This completes the first step of the proof.

In the second step, we observe that, conversely, if r is such that r ∈ [s, η�Xs ] and
Hr = h, we have �(pζ (τr )) ∈ ∂C . Indeed, we have then, recalling that pζ (τr ) ∈ ,

Z pζ (τr ) = W τr
= −Hr = −h = Za,

and the fact that pζ (τr ) is a descendant of a, which belongs to and satisfies Z pζ (τr ) =
Za , implies that pζ (τr ) ∈ ∂C (see the comments before Lemma 14, or [1, Lemma 19]).

We next note that themapping r �→ ηr is right-continuous. From the results recalled
at the end of Sect. 3, the times r ∈ [s, η�Xs ] such that Hr = h are exactly all reals of
the form ηu or ηu− for some u ∈ [0,�Xs]. Moreover, for all u such that ηu− < ηu ,
we have Hr > h for every r ∈ (ηu−, ηu), so that ηu− ∼ ηu and (by Lemma 11)
pζ (τηu−) = pζ (τηu ).

By combining the first two steps with the preceding observation, we obtain that the
range of the mapping γ of the proposition coincides with ∂C . We note that γ (0) =
γ (�Xs) = �(a), by the fact that s = η0 ∼ η�Xs (because s = min p−1

H (κ) and
η�Xs = max p−1

H (κ), if κ = pH (s) is the point of infinitemultiplicity ofTH associated
withC). It remains to verify thatγ is continuous and that the restriction ofγ to [0,�Xs)

is one-to-one. To get the latter property, we note that the equivalence classes of ηu ,
u ∈ [0,�Xs), in the quotient spaceL = [0, χ ]/ ∼ are distinct (they correspond to the
points of the loop associated with the point of infinite multiplicity κ), and furthermore,
the equivalence classes of these elements of L in the quotient L/ � are also distinct
(from the fact that Hr > h for every r ∈ (ηu−, ηu) whenever u ∈ [0,�Xs) is such
that ηu− < ηu , it easily follows that property (15) cannot hold when α = pL(ηu)

and β = pL(ηv) with two distinct elements u and v of [0,�Xs)). Theorem 12 then
implies that the quantities �(�(ηu)), u ∈ [0,�Xs), are distinct elements of M.
Finally, to prove that γ is continuous, we note that γ is right-continuous with left
limits by construction, and that the left limit of γ at u ∈ (0,�Xs] is

γ (u−) = �(pζ (τ(ηu−)−)) = �(pζ (τηu−)) = �(pζ (τηu ))

where the last equality holds because pζ (τηu−) = pζ (τηu ) as mentioned above. This
shows that γ (u−) = γ (u) and completes the proof. ��

Let us conclude this section with some comments. Recalling that the Brownian
map m is homeomorphic to the two-dimensional sphere [19], we get from Jordan’s
theorem that all connected components of m\M are homeomorphic to the disk. In
fact these connected components are called Brownian disks in [21]. If C is a given
connected component of m\M, the structure of C—in a sense that we do not make
precise here—is described by the associated component C of Tζ \, and the values of
Z on C (shifted so that the boundary values vanish). The preceding data correspond
to what is called an excursion of the Brownian snake above its minimum in [1]. One
key result of [1] states that conditionally on the exit measure process (Ys)s>0, the
excursions above the minimum are independent, and the distribution of the excursion
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corresponding to a jump �Ys is given by a certain “excursion measure” conditioned
on the boundary size being equal to �Ys . This suggests that one can reconstruct the
Brownian map by first considering the metric netM (which is a measurable function
of H ) and then gluing independently on each “hole” of the metric net (associated with
a point of infinite multiplicity of the tree TH ) a Brownian disk corresponding to a
Brownian snake excursion whose boundary size is the weight of the point of infinite
multiplicity. See [18, Section 11] for further results in this direction.

9 Subordination by the local time

In this section, which is mostly independent of the previous ones, we generalize the
subordination by the maximum discussed in Sect. 4. To this end, we deal with the
Brownian snake associated with a more general spatial motion. Specifically, we con-
sider a strong Markov process ξ with continuous sample paths with values in R+, and
we write Px for a probability measure under which ξ starts from x . We assume that 0
is a regular recurrent point for ξ , and that

E0

[∫ ∞

0
dt 1{ξt=0}

]

= 0. (18)

We can then define the local time process (L(t), t ≥ 0) of ξ at 0 (up to a multiplicative
constant). We make the following continuity assumption: there exist two reals p > 0
and ε > 0, and a constant C such that, for every t ∈ [0, 1] and x ∈ R+,

Ex

[(

sup
r≤t

|ξr − x |
)p]

≤ C t2+ε, (19)

E0[L(t)p] ≤ C t2+ε. (20)

We write N for the excursion measure of ξ away from 0 associated with the local
time process L(·), and η for the duration of the excursion under N .

Under the preceding assumptions, the Brownian snake whose spatial motion is the
pair (ξ, L) is defined by a straightforward adaptation of properties (a) and (b) stated
at the beginning of Sect. 4 (see [14, Chapter IV] for more details), and we denote this
process by (Ws,�s), where for every s ≥ 0,

Ws = (Ws(t))0≤t≤ζs , �s = (�s(t))0≤t≤ζs .

For every (x, r) ∈ R+ ×R+, let N(x,r) denote the excursion measure of (W,�) away
from (x, r). UnderN(x,r), the “lifetime process” (ζs)s≥0 is distributed according to the
Itô measure n(·), and as above we let σ := sup{s ≥ 0 : ζs > 0} stand for the duration
of the excursion (ζs)s≥0. As previously, Tζ denotes the tree coded by (ζs)0≤s≤σ and
pζ : [0, σ ] −→ Tζ is the canonical projection.

We write Y0 for the total mass of the exit measure of (W,�) from (0,∞) × R+
(see [14, Chapter V] or the appendix below for the definition of exit measures). This
makes sense under the excursion measures N(x,r) for x > 0.
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Let ̂�s = �s(ζs) be the total local time at 0 accumulated by the path Ws . If
a = pζ (s), we write ̂�a = ̂�s (this does not depend on the choice of s). Then the
function a �→ ̂�a is nondecreasing with respect to the genealogical order.

Theorem 16 Under N(0,0), the subordinate tree ˜T of Tζ with respect to the function
a �→ ̂�a is a Lévy tree whose branching mechanism ψ can be described as follows:

ψ(r) = 2
∫

m(dx) ur (x)2,

where m is the invariant measure of ξ defined by

∫

m(dx) ϕ(x) = N

(∫ η

0
dt ϕ(ξt )

)

,

and the function (ur (x))r≥0,x>0 is given by

ur (x) = N(x,0)(1 − exp(−rY0)).

Proof As in the proof of Theorem 1, we make use of the special Markov property of
the Brownian snake. Fix r > 0, and consider the domain Dr = R+ × [0, r). Write
ZDr for the exit measure from Dr . The first-moment formula for exit measures [14,
Proposition V.3] shows that ZDr is N(0,0) a.e. supported on {(0, r)}, so that we can
write

ZDr = Yr δ(0,r),

where Yr is a nonnegative random variable. Let EDr stand for the σ -field generated by
the paths (Ws,�s) before they exit Dr . By Corollary 22 in the appendix, under N(0,0)
and conditionally on EDr , the excursions of the Brownian snake (W,�) “outside” Dr

form a Poisson measure with intensity Yr N(0,r). Now notice that, for every h > 0,
subtrees of ˜T above level r that hit r + h correspond to those among these excursions
that exit Dr+h (we again use Proposition 5 to obtain that ˜T is the tree coded by
s → ̂�s). As in the proof of Theorem 1 (we omit a few details here), it follows that
the distribution of ˜T under N(0,0) satisfies the branching property of Proposition 7,
and so ˜T under N(0,0) must be a Lévy tree.

To determine the branching mechanism of this Lévy tree, we fix R > 0, and, for
0 ≤ r < R, we set

Uλ(x, r) = N(x,r)(1 − exp(−λYR)).

By [14, Theorem V.4], Uλ satisfies the integral equation

Uλ(x, r) + 2 E(x,r)

[∫ τR

0
Uλ(ξs, Ls)

2 ds

]

= λ
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where the Markov process (ξ, L) starts from (x, r) under the probability measure
P(x,r), and τR = inf{t ≥ 0 : L(t) ≥ R} is the exit time from DR for the process
(ξ, L). When x = 0, excursion theory for ξ gives

E(0,r)

[∫ τR

0
Uλ(ξs, Ls)

2 ds

]

=
∫ R

r
N

(∫ η

0
Uλ(ξt , �)

2dt

)

d�

=
∫ R

r
d�
∫

m(dy) Uλ(y, �)2.

Set vλ(x, r) = Uλ(x, R − r) for 0 < r ≤ R. By a translation argument, vλ(x, r) does
not depend on our choice of R provided that R ≥ r . It follows from the preceding
considerations that

vλ(0, r) + 2
∫ r

0
d�
∫

m(dy) vλ(y, �)2 = λ.

On the other hand, by applying the special Markov property (Corollary 22) to the
domain (0,∞) × R+, we have, for every y > 0 and r > 0,

vλ(y, r) = N(y,0)(1 − exp(−λYr )) = N(y,0)(1 − exp(−Y0vλ(0, r))) = uvλ(0,r)(y),

with the notation introduced in the theorem. We conclude that

vλ(0, r) +
∫ r

0
d�ψ(vλ(0, �)) = λ, (21)

where ψ is as in the statement of the theorem. Note that the functions r �→ ur (x) are
monotone increasing, and so is ψ . Then (21) also implies that vλ(0, r) is a continuous
nonincreasing function of r , that tends to λ as r → 0. It follows that ψ(r) < ∞ for
every r > 0, and then by dominated convergence that ψ is continuous on [0,∞). The
unique solution of (21) is given by

∫ λ

vλ(0,r)

d�

ψ(�)
= r

(in particular, we must have
∫

0+ ψ(�)−1d� = ∞). As λ → ∞, vλ(0, r) converges to
N(0,0)(Yr �= 0), which coincides with N(0,0)(H(˜T ) > r), where H(˜T ) denotes the
height of ˜T . Hence, the function v(r) = N(0,0)(H(˜T ) > r) is given by

∫ ∞

v(r)

d�

ψ(�)
= r,

and this suffices to establish that the branching mechanism of ˜T is ψ . ��
The formula for ψ that appears in Theorem 16 is not explicit and in general does

not allow the calculation of this function. We will now argue that we can identify ψ ,
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up to a multiplicative constant, if ξ satisfies a scaling property. From now on until the
end of the section, we assume (in addition to the previous hypotheses) that there exists
a constant α > 0 such that, for every x ≥ 0 and λ > 0, the law of

(λαξt/λ)t≥0

under Px coincides with the law of (ξt )t≥0 under Pxλα . In other words, the process ξ

is a self-similar Markov process with values in [0,∞), see the survey [25] for more
information on this class of processes. A particular case (with α = 1/2) is the Bessel
process of dimension d ∈ (0, 2).

The excursion measureN must then satisfy a similar scaling invariance property.
More precisely, for every λ > 0, the law of

(λαξt/λ)t≥0

under N must be equal to λβ times the law of (ξt )t≥0 under N , for some constant
β ∈ (0, 1). The fact that β < 1 is clear since the scaling property implies that
N (η > r) = r−βN (η > 1) and we must have N (η ∧ 1) < ∞. The inverse
local time of ξ at 0 is then a stable subordinator of index β, which is consistent with
assumption (20).

Proposition 17 Under the preceding assumptions, there exists a constant c > 0 such
that ψ(r) = c r1+β .

Proof We first observe that

m(dx) = c′ x−1+ 1−β
α dx,

for some positive constant c′. To see this, we write, for every λ > 0,

∫

m(dx) ϕ(λx) = N

(∫ η

0
dt ϕ(λξt )

)

= λ−1/αN

(

∫ λ1/αη

0
dt ϕ(λξt/λ1/α )

)

= λβ/α−1/αN

(∫ η

0
dt ϕ(ξt )

)

= λ
β−1
α

∫

m(dx) ϕ(x).

It follows that m has the form stated above. We then observe that, for every λ > 0, we
can also consider the following scaling transformation of the Brownian snake:

W ′
s(t) = λ Wλ−2/αs(λ

−1/αt), for 0 ≤ t ≤ ζ ′
s := λ1/αζλ−2/αs,

and the “law” of W ′ under N(x,0) coincides with λ1/α times the “law” of W under
N(λx,0). Furthermore the exit measure Y ′

0 associated with W ′ is equal to λ1/αY0 (we

123



Subordination of trees and the Brownian map 857

leave the details as an exercise for the reader). With the notation of Theorem 16, it
follows that, for every x > 0 and λ > 0,

ur (λx) = N(λx,0)(1 − exp(−rY0)) = λ−1/α
N(x,0)(1 − exp(−rλ1/αY0))

= λ−1/α uλ1/αr (x).

Hence, for every r > 0 and μ > 0,

ψ(μr) = c
∫

dx x−1+ 1−β
α uμr (x)2 = c

∫

dx x−1+ 1−β
α μ2 ur (μ

αx)2 = μ1+β ψ(r),

using the change of variables y = μαx . This completes the proof. ��
Remark If ξ = |B| is the absolute value of a linear Brownian motion B, then a famous
theorem of Lévy asserts that the pair (ξ, L) has the same distribution as (S − B, S),
where St = max{Bs : 0 ≤ s ≤ t} (to be specific, this holds with a particular choice
of the normalization of L). We then see that Theorem 1 is a special case of Theorem
16 and Proposition 17. In that case, α = β = 1/2, and we recover the formula
ψ(r) = c r3/2.

Acknowledgements I thank the referee for a careful reading of the manuscript and for several useful
suggestions.

Appendix: On the special Markov property

In this appendix, we derive a more precise and more general form of the special
Markov property for the Brownian snake, which was first stated in [13]. This result is
closely related to the special Markov property for superprocesses as stated by Dynkin
[9, Theorem 1.6], but the formulation in terms of the Brownian snake, although less
general, gives additional information that is crucial for our purposes.

We consider the setting of [14, Chapter V]. We let ξ be a Markov process with
values in a Polish space (E, d) with continuous sample paths. For every x ∈ E , the
process ξ starts from x under the probability measure Px . Analogously to (19), we
assume that the following strong continuity assumption holds for every x ∈ E and
t ≥ 0,

Ex

[(

sup
r≤t

d(x, ξr )

)p]

≤ C t2+ε, (22)

where C > 0, p > 0 and ε > 0 are constants. According to [14, Section IV.4],
this continuity assumption allows us to construct the Brownian snake (Ws)s≥0 with
continuous sample pathswith values in the spaceWE of all finite continuous paths in E
(the setWE is defined by the obvious generalization of the beginning of Sect. 4, andwe
keep the notation ŵ for the tip of a path w ∈ WE ). The strong Markov property holds
for (Ws)s≥0, even without assuming that it holds for the underlying spatial motion ξ .
We again write Px for the probability measure under which the Brownian snake starts
from (the trivial path equal to) x , and Nx for the excursion measure of the Brownian
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snake away from x . It will also be useful to introduce conditional distributions of the
Brownian snake given its lifetime process. If g : [0,∞) → [0,∞) is a continuous
function such that g(0) = 0 and g is locally Hölder with exponent 1

2 − δ for every

δ > 0, we write Q
(g)
x for the conditional distribution under Px of (Ws)s≥0 knowing

that ζs = g(s) for every s ≥ 0. See [14, Chapter IV], and note that these conditional
distributions are easily defined using the analog in our general setting of property (b)
stated at the beginning of Sect. 4.

We now fix a connected open subset D of E and x ∈ D. We use the notation
τ = inf{t ≥ 0 : ξt /∈ D}, and, for every w ∈ WE , τ(w) = inf{t ≥ 0 : w(t) /∈ D},
where in both cases inf ∅ = ∞. We assume that

Px (τ < ∞) > 0,

and note that this implies that

∫ ∞

0
1{τ(Ws )<ζs } ds = ∞, Px a.s.

We set, for every s ≥ 0,

ηs := inf

{

t ≥ 0 :
∫ t

0
1{ζr ≤τ(Wr )} dr > s

}

, W D
s := Wηs .

This definition makes sense Px a.s. We let FD be the σ -field generated by the process
(W D

s )s≥0 and the collection of all Px -negligible sets. Informally, FD represents the
information provided by the paths Ws before they exit D.

Lemma 18 For every s ≥ 0, set γs = (ζs − τ(Ws))
+, and

σs = inf

{

t ≥ 0 :
∫ t

0
1{γr >0} dr ≥ s

}

.

Under the probability measure Px , we have σs < ∞ for every s ≥ 0, a.s., and
the process �s := γσs is distributed as a reflected Brownian motion in R+ and is
independent of the σ -field FD.

This is essentially Lemma V.2 in [14], except that the independence property is not
stated in that lemma. However a close look at the proof in [14] shows that the process
�s is obtained as the limit of approximating processes (denoted by γσε

s
in [14]) which

are independent of FD thanks to the strong Markov property of the Brownian snake.
We write �D(s) for the local time at 0 of the process �, and define a process with

continuous nondecrasing sample paths by setting

L D
s = �D

(∫ s

0
1{γr >0} dr

)

.
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Then (see [14, Section V.1]),

L D
s = lim

ε→0

∫ s

0
1{τ(Wr )<ζr <τ(Wr )+ε} dr, (23)

for every s ≥ 0, Px a.s. The process (L D
s )s≥0 is called the exit local time process from

D. Notice that the measure dL D
s is supported on {s ≥ 0 : τ(Ws) = ζs}.

We also set, for every s ≥ 0,

˜L D
s =: L D

ηs
.

Lemma 19 The random process (˜L D
s )s≥0 is measurable with respect to the σ -field

FD.

This follows from the proof of [13, Proposition 2.3] in the special case where ξ is
d-dimensional Brownian motion. The argument however can be adapted to our more
general setting and we omit the details.

Before stating the special Markov property, we need some additional notation. For
every r ≥ 0, we set

θr = inf
{

s ≥ 0 : ˜L D
s > r

}

.

We note that the process (θr )r≥0 is FD-measurable by Lemma 19.
We now define the excursions of the Brownian snake outside D. We observe that,

Px a.e., the set

{s ≥ 0 : τ(Ws) < ζs} = {s ≥ 0 : γs > 0}

is a countable union of disjoint open intervals, which we enumerate as (ai , bi ), i ∈ N.
Here we can fix the enumeration by saying that we enumerate first the excursion
intervalswith length atmost 2−1 whose initial time is smaller than 2, then the excursion
intervals with length at most 2−2 whose initial time is smaller than 22 which have
not yet been listed, and so on. If we choose this enumeration procedure, the variables
ai , bi aremeasurablewith respect to the σ -field generated by (γs)s≥0, and the variables
∫ ai
0 1{γr >0} dr and L D

ai
aremeasurable with respect to the σ -field generated by (�s)s≥0.

From the properties of the Brownian snake, one has, Px a.e. for every i ∈ N and
every s ∈ [ai , bi ],

τ(Ws) = τ(Wai ) = ζai ,

and more precisely all paths Ws , s ∈ [ai , bi ] coincide up to their exit time from D. For
every i ∈ N, we then define an element W (i) of the space of all continuous functions
from R+ intoWE by setting, for every s ≥ 0,

W (i)
s (t) := W(ai +s)∧bi (ζai + t), for 0 ≤ t ≤ ζ (i)

s := ζ(ai +s)∧bi − ζai .
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By definition, the random variables W (i), i ∈ N, are the excursions of the Brownian
snake outside D (the word “outside” is a bit misleading here). Notice that, for every
i ∈ N, (ζ (i)

s )s≥0 is a measurable function of (�s)s≥0. Indeed the processes (ζ
(i)
s )s≥0,

i ∈ N are just the excursions of � away from 0 enumerated as explained above.

Theorem 20 Under Px , conditionally on the σ -field FD, the point measure

∑

i∈N
δ(L D

ai
,W (i))(d�, dω)

is Poisson with intensity

1[0,∞)(�) d� N
̂W D

θ�

(dω).

Proof It is convenient to introduce the auxiliaryMarkov process defined by ξ∗
t = ξt∧τ .

We observe that the Brownian snake associatedwith ξ∗ can be obtained by the formula

W ∗
s (t) = Ws(t ∧ τ(Ws)), 0 ≤ t ≤ ζ ∗

s = ζs .

Notice that γs = (ζs −τ(Ws))
+ = (ζ ∗

s −τ(W ∗
s ))+ is ameasurable function of W ∗, and

recall that the intervals (ai , bi ) are just the connected components of the complement
of the zero set of γ . Consider then, independently for every i ∈ N, a process (W̄ (i)

s )s≥0
which conditionally on W ∗ is distributed according to the probability measure

Q
(ζ (i))
̂W ∗

ai

,

where we recall our notationQ
(g)
x for the conditional distribution under Px of (Ws)s≥0

knowing that ζs = g(s) for every s ≥ 0. Define W̄s for every s ≥ 0 by setting
W̄s = W ∗

s if γs = 0 and, for every i ∈ N, for every s ∈ (ai , bi ),

W̄s(t) =
{

W ∗
s (t) if 0 ≤ t ≤ τ(W ∗

s ),

W̄ (i)
s−ai

(t − τ(W ∗
s )) if τ(W ∗

s ) ≤ t ≤ ζs .

A tedious but straightforward verification shows that the finite marginal distributions
of the process (W̄s)s≥0 are the same as those of the process (Ws)s≥0. It follows that,
conditionally on (W ∗

s )s≥0, the “excursions” W (i) are independent and the conditional

distribution of W (i) is Q
(ζ (i))
̂W ∗

ai

.

At this point, we claim that we have a.s. for every i ∈ N,

W ∗
ai

= Wai = W D
θ

L D
ai

. (24)

The first equality in (24) is immediate. To get the second one, set

Aai :=
∫ ai

0
1{ζr ≤τ(Wr )}dr
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to simplify notation. We first note that

Wai = Wbi = W D
Aai

,

because ηAai
= bi (the strong Markov property of the Brownian snake ensures that in

each interval [bi , bi + ε], ε > 0, we can find a set of positive Lebesgue measure of
values of s such that τ(Ws) = ∞) and we know that Wai = Wbi . Thus our claim will
follow if we can verify that

Aai = θL D
ai

.

On one hand the condition s < Aai implies ηs < ai and ˜L D
s = L D

ηs
≤ L D

ai
. It follows

that Aai ≤ θL D
ai
. On the other hand, suppose that θL D

ai
> Aai . We first note that

˜L D
Aai

= L D
ηAai

= L D
bi

= L D
ai

,

where the last equality holds by the support property of dL D
s . Furthermore, the left limit

of r �→ θr at ˜L D
Aai

is smaller than or equal to Aai by construction. So the condition

θL D
ai

> Aai means that L D
ai

= ˜L D
Aai

is a discontinuity point of r �→ θr . However,

we noticed that the random variables L D
ai

are measurable functions of (�s)s≥0 and
therefore independent of FD . Since (θs)s≥0 is measurable with respect to FD , and
since s �→ θr has only countably many discontinuity times, the (easy) fact that the law
of L D

ai
has no atoms implies that, withPx -probability one, L D

ai
cannot be a discontinuity

time of r �→ θr . This contradiction completes the proof of our claim.
Next, let U be a bounded FD-measurable real random variable, and let g and G

be nonnegative random variables defined respectively on R+ and on the space of
continuous functions from R+ intoWE . By conditioning first with respect to W ∗, we
get

Ex

[

U × exp

(

−
∑

i∈N
g(L D

ai
)G(W (i))

)]

= Ex

[

U ×
∏

i∈N
Q

(ζ (i))
̂Wai

(

e−g(L D
ai

)G(·))
]

,

(25)

noting that an FD-measurable real variable coincides Px a.s. with a function of W ∗.
Using (24), we see that, for every i ∈ N,

Q
(ζ (i))
̂Wai

(

e−g(L D
ai

)G(·)) = Q
(ζ (i))

̂W D
θ
L D

ai

(

e−g(L D
ai

)G(·))

is a measurable function (that does not depend on i) of the pair (L D
ai

, (ζ
(i)
s )s≥0) and

of the process (W D
θr

)r≥0, which is FD-measurable. The point measure
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∑

i∈N
δ
(L D

ai
,(ζ

(i)
s )s≥0)

,

which is just the point measure of excursions of the reflected Brownian motion �,
is Poisson with intensity d� n(de), where n(de) is as previously the Itô excursion
measure. Since the latter point measure is independent of FD (by Lemma 18), we
can now condition with respect to FD , applying the exponential formula for Poisson
measures, to get that the quantities in (25) are equal to

Ex

[

U × exp

(

−
∫ ∞

0
d� N

̂W D
θ�

(

1 − e−g(�)G(·))
)]

.

The statement of the theorem follows. ��
In the preceding sections, we use a version of Theorem 20 under the excursion

measure Nx , which we will now state as a corollary. We set

TD = inf{t ≥ 0 : τ(Ws) < ∞},

and observe that

0 < Nx (TD < ∞) < ∞

(if the quantity Nx (TD < ∞) were infinite, excursion theory would give a contradic-
tion with the fact that the Brownian snake has continuous paths under Px ). Then we
note that the conditional probability measure N

D
x := Nx (· | TD < ∞) can be inter-

preted as the law under Px of the first Brownian excursion away from x that exits D.
Thanks to this observation, we can make sense of the exit local time process (L D

s )s≥0
under N

D
x by formula (23). The definition of (ηs)s≥0 and (W D

s )s≥0 remains the same,
and we can set ˜L D

s = L D
ηs

as previously. The difference of course is the fact that
˜L D∞ = L D∞ = L D

σ is now finite N
D
x a.s. So we may define θs = inf{r > 0 : ˜L D

r > s}
only for r < L D

σ .
After these observations, we may state the version of the special Markov property

under N
D
x . We slightly abuse notation by still writing (W (i))i∈N and (ai , bi )i∈N for

the excursions outside D and the associated intervals, which are defined in exactly the
same way as previously. The σ -field FD is again the σ -field generated by (W D

s )s≥0
but should be completed here with the Nx -negligible sets.

Corollary 21 Under N
D
x , conditionally on the σ -field FD, the point measure

∑

i∈N
δ(L D

ai
,W (i))(d�, dω)

is Poisson with intensity

1[0,L D
σ ](�) d� N

̂W D
θ�

(dω).
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Note that L D
σ = ˜L D∞ is FD-measurable. The corollary is a straightforward con-

sequence of Theorem 20, interpreting N
D
x as the law under Px of the first Brownian

excursion away from x that exits D. We omit the details.
If we are only interested in the point measure

∑

i∈I δW (i) , we can state the preceding
corollary in a slightly different form, by introducing the notion of the exit measure:
The exit measure from D is the random measure ZD on ∂ D defined (under Nx or
under N

D
x ) by the formula

〈ZD, g〉 =
∫ ∞

0
dL D

s g(̂Ws).

See [14, Section V.1]. Note that the total mass of ZD is L D
σ . A change of variables

shows that we have as well

〈ZD, g〉 =
∫ ∞

0
d˜L D

s g(̂W D
s ) =

∫ L D
σ

0
d� g(̂W D

θ�
).

In particular, ZD is FD-measurable by Lemma 19. The following result is now an
immediate consequence of Corollary 21.

Corollary 22 Under N
D
x , conditionally on the σ -field FD, the point measure

∑

i∈N
δW (i) (dω)

is Poisson with intensity

∫

ZD(dy) Ny(dω).

This is the form of the special Markov property that appears in [13].
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