
Probab. Theory Relat. Fields (2017) 169:3–62
DOI 10.1007/s00440-017-0793-x

Phase transition in the sample complexity
of likelihood-based phylogeny inference

Sebastien Roch1 · Allan Sly2

Received: 25 September 2015 / Revised: 6 July 2017 / Published online: 3 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract Reconstructing evolutionary trees from molecular sequence data is a fun-
damental problem in computational biology. Stochastic models of sequence evolution
are closely related to spin systems that have been extensively studied in statistical
physics and that connection has led to important insights on the theoretical properties
of phylogenetic reconstruction algorithms as well as the development of new inference
methods. Here, we study maximum likelihood, a classical statistical technique which
is perhaps the most widely used in phylogenetic practice because of its superior empir-
ical accuracy. At the theoretical level, except for its consistency, that is, the guarantee
of eventual correct reconstruction as the size of the input data grows, much remains to
be understood about the statistical properties ofmaximum likelihood in this context. In
particular, the best bounds on the sample complexity or sequence-length requirement
of maximum likelihood, that is, the amount of data required for correct reconstruc-
tion, are exponential in the number, n, of tips—far from known lower bounds based
on information-theoretic arguments. Here we close the gap by proving a new upper
bound on the sequence-length requirement of maximum likelihood that matches up to
constants the known lower bound for some standard models of evolution. More specif-

2016 Wolfgang Doeblin Prize Article.

Sebastien Roch: Work partly done at Microsoft Research, UCLA, IPAM and the Simons Institute for the
Theory of Computing. Work supported by NSF Grants DMS-1007144 and DMS-1149312 (CAREER),
and an Alfred P. Sloan Research Fellowship.
Allan Sly: Work partly done at Microsoft Research. Work supported by NSF Grants DMS-1208339 and
DMS-1352013 and an Alfred P. Sloan Research Fellowship.

B Sebastien Roch
roch@math.wisc.edu

1 Department of Mathematics, UW–Madison, Madison, WI, USA

2 Department of Mathematics, Princeton University, Princeton, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-017-0793-x&domain=pdf

4 S. Roch, A. Sly

ically, for the r -state symmetric model of sequence evolution on a binary phylogeny
with bounded edge lengths, we show that the sequence-length requirement behaves
logarithmically in n when the expected amount of mutation per edge is below what is
known as the Kesten-Stigum threshold. In general, the sequence-length requirement is
polynomial in n. Our results imply moreover that the maximum likelihood estimator
can be computed efficiently on randomly generated data provided sequences are as
above. Our main technical contribution, which may be of independent interest, relates
the total variation distance between the leaf state distributions of two trees with a
notion of combinatorial distance between the trees. In words we show in a precise
quantitative manner that the more different two evolutionary trees are, the easier it is
to distinguish their output.

Keywords Phylogenetic reconstruction · Maximum likelihood · Sequence-length
requirement

Mathematics Subject Classification 60J20 · 92D15

1 Introduction

1.1 Background

Reconstructing evolutionary trees, or phylogenies, from biomolecular data is a fun-
damental problem in computational biology [13,19,51,57,61]. Roughly, in the basic
form of the problem, sequences from a common gene (or other DNA region) are col-
lected from representative individuals of contemporary species of interest. From that
sequence data (which is usually aligned to account for insertions and deletions), a
phylogeny depicting the shared history of the species is inferred.

From a formal statistical point of view, one typically assumes that each site in the
(aligned) data has evolved independently according to a common Markov model of
substitution along the tree of life. The problem then boils down to reconstructing this
generating model from i.i.d. samples at the leaves of the tree. Such models are closely
related to spin systems that have been extensively studied in statistical physics [20,30]
and that connectionhas led to new insights on the amount of data required for accurately
reconstructing phylogenies [56]. More specifically, under broad modeling assump-
tions, algorithmic upper bounds have been obtained on the sample complexity of the
phylogenetic reconstruction problem, together with matching information-theoretic
(i.e., applying to any method) lower bounds [10,32,34,35,42,47]. In particular it was
established that the best achievable sample complexity undergoes a phase transition
as the maximum branch length varies. That phase transition is closely related to the
well-studied problem of reconstructing the root sequence of a Markov model on a tree
given the leaf sequences [36], a tool which plays a key role in the above results.

The algorithmic results in [4,10,32,47] concern ad hoc methods of inference. On
the other hand, little is known about the precise sample complexity of reconstruction
methods used by evolutionary biologists in practice (with some exceptions [29]). Here
we consider maximum likelihood (ML), introduced in phylogenetics in [18], where

123

Phase transition in the sample complexity... 5

one computes (or approximates) the treemost likely to have produced the data among a
class of allowed models. Likelihood-based methods are perhaps the most widely used
andmost trusted methods in current phylogenetic practice [54]. In previous theoretical
work, upper bounds were derived on the sample complexity of ML that were far from
the lower bound [50]—in some regimes, doubly exponentially far in the number of
species.Here we close the gap by proving a new upper bound on the sample complexity
of maximum likelihood that matches up to constants the known information-theoretic
lower bound for some standard models of evolution.

1.2 Overview of main results and techniques

In order to state our main results more precisely, we briefly describe the model of
evolution considered here (See Sect. 2 for more details). The unknown phylogeny
T is a weighted binary tree with n leaves labeled by species names, one leaf for
each species of interest. Without loss of generality, we assume that the leaf labels are
[n] = {1, . . . , n}. The weights on the edges (or branches), {we}e∈E where E is the
set of edges of T , are assumed to be discretized and bounded between two constants
f < g. The quantity we can be interpreted as the expected number of mutations per
site along edge e. We denote by Y

(n)
f,g[1

ϒ
] the set of all such phylogenies, where 1

ϒ
is

the discretization.
Let ρ be the root of the tree, that is, the most recent common ancestor to the species

at the leaves (which formally can be chosen arbitrarily as it turns out not to affect
the distribution of the data). Let R be a state space of size r . A typical choice is
R = {A,G,C,T} and r = 4, but we consider more general spaces as well. Define

δe = 1

r

(
1 − e−we

)
.

In the r -state symmetric model, we start at ρ with a sequence of length k chosen
uniformly in Rk . Moving away from the root, each vertex v in T is assigned the
sequence (si

u)k
i=1 of its parent u randomly “mutated” as follows: letting e be the edge

from u to v, for each i , with probability (r − 1)δe set si
v to a uniform state inR− {si

u}
(corresponding to a substitution), or otherwise set si

v = si
u . Let (si[n])k

i=1 ∈ (R[n])k

be the sequences at the leaves. Those are the sequences that are observed. We let
μT[n](si[n]) be the probability of observing si[n] under T .

In the phylogenetic reconstruction problem, we are given sequences (si[n])k
i=1,

assumed to have been generated under the r -state symmetric model on an unknown
phylogeny T , and our goal is to recover T (without the root) as a leaf-labeled tree (that
is, we care about the locations of the species on the tree). This problem is known to be
well-defined in the sense that, under our assumptions, the phylogeny is uniquely iden-
tifiable from the distribution of the data at the leaves [7]. A useful proxy to assess the
“accuracy” of a reconstruction method is its sample complexity or sequence-length
requirement, roughly, the smallest sequence length k (as a function of n) such that
a perfect reconstruction is guaranteed with probability approaching 1 as n goes to
+∞ (See Sect. 2 for a more precise definition.). A smaller sequence-length require-
ment is an indication of superior statistical performance. We denote by k0(�, n) the
sequence-length requirement of method �.

123

6 S. Roch, A. Sly

Here we analyze the sequence-length requirement of ML which, in our context, we
define as

�ML
n,k

((
si[n]

)k

i=1

)
∈ argmin

T ∈Y(n)
f,g

[
1
ϒ

]LT

[(
si[n]

)k

i=1

]
,

where LT [(si[n])k
i=1] = −∑k

i=1 lnμT[n](si[n]) is the log-likelihood (breaking ties arbi-
trarily). In words ML selects a phylogeny that maximizes the probability of observing
the data. This method is known to be consistent, that is, the reconstructed phy-
logeny is guaranteed to converge on the true tree as k goes to +∞. The previous
best known bound on the sequence-length requirement of ML in this context is
k0(�ML, n) ≤ exp(K n), for a constant K , as proved in [50].

Our first main result is that, for any constant f, g, 1
ϒ
, the ML sequence-length

requirement k0(�ML, n) grows at most polynomially in n, where the degree of the
polynomial depends on g. Such a bound had been previously established for other
reconstruction methods, including certain types of distance-matrix methods [15], and
it was a long-standing open problem to show that a polynomial bound holds for ML
as well. Interestingly, our simple proof in fact uses the result of [15]. (The argument
is detailed in Sect. 2.) Further, it is known that no method in general achieves a better
bound (up to a constant in the degree of the polynomial) [34].

On the other hand, our second—significantly more challenging—result establishes
a phase transition on the sequence-length requirement of ML. We show that when
the maximum branch length of the true phylogeny is constrained to lie below a given
threshold, an improved sequence-length requirement is achieved, namely that

k0(�
ML, n) = O(log n), if g < g∗ := ln

√
2. (1)

The same sequence-length requirement has been obtained previously for other meth-
ods [4,10,32,35,47], but as wementioned above our result is the first one that concerns
an important method in practice and greatly improves previous bound for ML. It is
known further that a sub-logarithmic sequence-length requirement is not possible in
general for any method [34]. That can be seen by the following back-of-the-envelope
calculation: when k = �(log n), the total number of datasets is e�(n log n), which
is asymptotically of the same order as the number of phylogenies in Y

(n)
f,g[1

ϒ
] (see,

e.g., [51]); and, intuitively, we need at least asmany datasets aswe have possible phylo-
genies. Note that not all methods achieve the logarithmic sequence-length requirement
in (1). The popular distance-matrix method Neighbor-Joining [49], for instance, has
been shown to require exponential sequence lengths in general for any g [29].

The question of whether the threshold in (1) is tight, however, is not completely
resolved and we do not address this issue here. The quantity g∗ corresponds to what
is sometimes known as the Kesten-Stigum threshold [28], which is roughly speaking
the threshold at which reconstructing the root state from a “weighted majority” of the
leaf states becomes no better than guessing at random as the depth of the (binary)
tree diverges. See, e.g., [14,36] for some background on this problem. See also [27]
for a different characterization of the threshold. For r = 2, no root state inference
method has a better threshold than weighted majority [25] and the bound in (1) is

123

Phase transition in the sample complexity... 7

known to be tight [35]. In general, the question is not settled [33,42,48]. In the case
r = 4, the most relevant in the biological context, the threshold g∗ translates into
a 22% substitution probability along each edge. In general, many factors affect the
maximum branch length of a phylogeny, including how densely sampled the species
are and which genes (whose mutation rates vary widely) are used.

To understand the connection between root state reconstruction and phylogenetic
reconstruction, a connection which was first articulated by Steel [56], note that the
depth of the phylogeny plays a key role in phylogenetic reconstruction. That is because
we only have access to the sequences at the leaves of the tree. When good estimates
of internal sequences are available, the phylogeny is “shallower” and reconstructing
the deeper parts of the tree is significantly easier, leading to a better sequence-length
requirement for some methods. That the phase transition in root state reconstruction
should translate into a phase transition in the sequence-length requirement of phylo-
genetic reconstruction, namely from logarithmic in n in the “reconstruction phase”
to polynomial in n in the “non-reconstruction phase”, is known as Steel’s Conjec-
ture [56]. It was first established rigorously by Mossel [35] in the case of balanced
binary trees with r = 2.

In [4,10,32,35,47], in order to achieve logarithmic sequence-length requirement
in the Kesten-Stigum regime, new inference methods that explicitly estimate inter-
nal sequences were devised. In ML, by contrast, the internal sequences play a more
implicit role in the definition of the likelihood and our analysis of ML proceeds in a
very different manner. Our main technical contribution, which may be of independent
interest, is a quantitative bound on the total variation distance between the leaf state
distributions of two phylogenies as a function of a notion of combinatorial distance
between them. In words, the more different are the trees, the more different are the
data distributions at their leaves. We prove this new bound by constructing explicit
tests that distinguish between the leaf distributions. For general trees, this turns out
to present serious difficulties, as sketched in Sect. 2. The bound on the total variation
distance in turn gives a bound on the probability that ML returns an incorrect tree and
allows us to perform a union bound over all such trees.

It is worth pointing out that the reconstruction methods of [4,10,32,35,47] have
the advantage of running in polynomial time, while computing the ML phylogeny
is in the worst-case NP-hard [8,45]. So why care about ML? Of course, worst-case
computational complexity results are not necessarily relevant in practice as real data
tend to be more structured. Actually, good heuristics for ML have been developed
that have achieved considerable practical success in large-scale phylogenetic analyses
and are now seen as the standard approach [53,54]. A side consequence of our results
is that, on randomly generated data of sufficient sequence length, using the methods
of [4,10,32,35,47] we are in fact guaranteed to recover what happens to be the ML
phylogeny with high probability in polynomial time. Although this is not per se an
algorithmic result in that we do not directly solve the ML problem, it does show that
computing the ML phylogeny is easier than previously thought in an average sense
and may help explain the success of practical heuristics.

Although the discretization assumption above may not be needed, removing it in
the logarithmic regime appears to present significant technical challenges. Note that
this assumption is also needed for the results of [4,10,32,47].

123

8 S. Roch, A. Sly

1.3 Further related work

There exists a large literature on the sequence-length requirement of phyloge-
netic reconstruction methods, stemming mainly from the seminal work of Erdös
et al. [15] which were the first to highlight the key role of the depth in inferring
phylogenies. Sequence-length requirement results—both upper and lower bounds—
have been derived for more general models of sequence evolution [3,9,16,34,39],
including models of insertions and deletions [2,12], for partial or forest reconstruc-
tion [6,11,22,37,59], and for reconstructing mixtures of phylogenies [40,41]. These
results have in some cases also inspired successful practical heuristics [24].

The connection between root state reconstruction and phylogenetic reconstruction
has also been studied inmore generalmodels of evolutionwheremutation probabilities
are not necessarily symmetric [42,46,47]. A good starting point for the extensive
literature on root state reconstruction is [36,44].

Some bounds on the total variation distance between leaf distributions that are
related to our techniques were previously obtained in the special case of pairs of
random trees, which are essentially at maximum combinatorial distance [52]. Similar
ideas were also used to reconstruct certain mixtures of phylogenies in [40].

The sample complexity of maximum likelihood when all internal vertices are also
observed was studied in [58].

1.4 Organization

The paper is organized as follows. Basic definitions are provided in Sect. 2. In Sect. 2
we also state formally our main results and give a sketch of the proof. The probabilistic
aspects of the proof are sketched in Sect. 3. The combinatorial aspects are illustrated
first in a special case in Sect. 4. The general case is detailed in Sect. 5. A few useful
lemmas can be found in the Appendix for ease of reference.

2 Definitions, results, and proof sketch

In this section, we introduce formal definitions and state our main results.

2.1 Basic definitions

2.1.1 Phylogenies

A phylogeny is a graphical representation of the speciation history of a collection of
organisms. The leaves correspond to current species (i.e., those that are still living).
Each branching indicates a speciation event. Moreover we associate to each edge a
positive weight. As we will see below, this weight corresponds roughly to the amount
of evolutionary change on the edge.More formally, wemake the following definitions.
See e.g. [51] for more background. Fix a set of leaf labels (or species names) X =
[n] = {1, . . . , n}.

123

Phase transition in the sample complexity... 9

Definition 2.1 (Phylogeny) A weighted binary phylogenetic X -tree (or phylogeny for
short) T = (V, E;φ;w) is a tree with vertex set V , edge set E , leaf set L with
|L| = n, edge weights w : E → (0,+∞), and a bijective leaf-labeling φ : X → L
(that assigns “species names” to the leaves). We assume that the degree of all internal
vertices V − L is exactly 3. We let Tl [T] = (V, E;φ) be the leaf-labelled topology of
T . We denote by Tn the set of all leaf-labeled trees on n leaves with internal degrees 3
andwe letT = {Tn}n≥1.We say that two phylogenies are isomorphic if there is a graph
isomorphism between them that preserves the edge weights and the leaf-labeling.

We restrict ourselves to the following setting introduced in [10].

Definition 2.2 (Regular phylogenies) Let 0 < 1
ϒ

≤ f ≤ g < +∞. We denote by

Y
(n)
f,g[1

ϒ
] the set of phylogenies T = (V, E;φ;w)with n leaves such that f ≤ we ≤ g,

∀e ∈ E , wheremoreoverwe is amultiple of 1
ϒ
.We also letY f,g[1

ϒ
] = ⋃

n≥1Y
(n)
f,g[1

ϒ
].

(We assume for simplicity that f and g are themselves multiples of 1
ϒ
.)

To illustrate our techniques, we also occasionally appeal to the special case of homo-
geneous phylogenies. For an integer h ≥ 0 and n = 2h , a homogeneous phylogeny
is an h-level complete binary tree T (h)

φ,w = (V (h), E (h);φ;w) where the edge weight
function w is identically g and φ may be any one-to-one labeling of the leaves.

2.1.2 Substitution model

We use the following standard model of DNA sequence evolution. See e.g. [51] for
generalizations. Fix some integer r > 1.

Definition 2.3 (r -State Symmetric Model of Substitution) Let T = (V, E;φ;w) be
a phylogeny and R = [r]. Let π = (1/r, . . . , 1/r) be the uniform distribution on
[r] and let δe = 1

r

(
1 − e−we

)
. Consider the following stochastic process. Choose an

arbitrary root ρ ∈ V . Denote by E↓ the set E directed away from the root. Pick a state
for the root at random according to π . Moving away from the root toward the leaves,
apply the following Markov transition matrix to each edge e = (u, v) independently:

(M(e))i j = (ewe Q)i j =
{
1 − (r − 1)δe if i = j
δe o.w.

where

Qi j =
{− r−1

r if i = j
1
r o.w.

(Or equivalently run a continuous-time Markov jump process with rate matrix Q
started at the state of u.) Denote the state so obtained by sV = (sv)v∈V . In particular,
sL is the state vector at the leaves, which we also denote by sX . The joint distribution
of sV is given by

μT
V (sV) = π(sρ)

∏

e=(u,v)∈E↓
[M(e)]susv .

123

10 S. Roch, A. Sly

For W ⊆ V , we denote by μT
W the marginal of μT

V at W . We denote by D[T] the
probability distribution of sV . (It can be shown that the choice of the root does not affect
this distribution. See e.g. [55].) We also let Dl [T] denote the probability distribution
of sX := (

sφ(a)

)
a∈X .More generally we take k independent samples (si

V)k
i=1 from the

model above, that is, s1V , . . . , sk
V are i.i.d. D[T]. We think of (si

v)
k
i=1 as the sequence

at node v ∈ V . When considering many samples (si
V)k

i=1, we drop the superscript to
refer to a single sample sV .

The case r = 4, known as the Jukes–Cantor (JC)model [26], is themost natural choice
in the biological context where, typically,R = {A,G,C,T} and the model describes
how DNA sequences stochastically evolve by point mutations along an evolutionary
tree under the assumption that each site in the sequences evolves independently and
identically. For ease of presentation, we restrict ourselves to the case r = 2, known as
the Cavender-Farris-Neyman (CFN) model [5,17,43], but our techniques extend to a
general r in a straightforwardmanner. The CFNmodel is equivalent to a ferromagnetic
Ising model with a free boundary (see e.g. [14]). For now on, we fix r = 2. We denote
by ET ,PT the expectation and probability under the CFN model on a phylogeny T .
We will also use a random cluster representation of the CFN model, which we recall
in Lemma 3. It will be convenient to work on the state space {−1,+1} rather than
{1, 2}. To avoid confusion, we introduce a separate notation. Let ν = (1,−1). Given
samples (si

X)k
i=1, we define σ X = (σ i

X)k
i=1 with σ i

a = νsi
a
for all a, i .

2.1.3 Phylogenetic reconstruction

In the phylogenetic tree reconstruction (PTR) problem, we are given a set of sequences
(σ i

X)k
i=1 and our goal is to recover the unknown generating tree. An important theo-

retical criterion in designing a PTR algorithm is the amount of data required for an
accurate reconstruction. At a minimum, a reconstruction algorithm should be consis-
tent, that is, the output should be guaranteed to converge on the true tree as the sequence
length k goes to +∞. Beyond consistency, the sequence-length requirement (SLR) of
a PTR algorithm is the sequence length required for a guaranteed high-probability
reconstruction. Formally:

Definition 2.4 (Phylogenetic Reconstruction Problem) A phylogenetic reconstruc-
tion algorithm is a collection of maps � = {�n,k}n,k≥1 from sequences (σ i

X)k
i=1 ∈

({−1,+1}X)k to leaf-labeled trees in Tn , where X = [n]. Fix δ > 0 (small) and let
k(n) be an increasing function of n. We say that � solves the phylogenetic recon-
struction problem on Y f,g[1

ϒ
] with sequence length k = k(n) if for all n ≥ 1, and all

T ∈ Y
(n)
f,g[1

ϒ
],

P

[
�n,k(n)

((
σ i

X

)k(n)

i=1

)
= Tl [T]

]
≥ 1 − δ,

where (σ i
X)

k(n)
i=1 are i.i.d. samples fromDl [T]. We let k0(�, n) be the smallest function

k(n) such that the above condition holds (for fixed f, g, 1
ϒ

, δ).

We call the function k0(�, n) the sequence-length requirement (SLR) of �. For sim-
plicity we emphasize the dependence on n. Intuitively the larger the tree, the more data

123

Phase transition in the sample complexity... 11

is required to reconstruct it. One can also consider the dependence of k0 on other struc-
tural parameters. In the mathematical phylogenetic literature, the SLR has emerged
as a key measure to compare the statistical performance of different reconstruction
methods. A lower k0 suggests a better statistical performance. Note that, ideally, one
would like to compute the probability that a method succeeds given a certain amount
of data, but that probability is a complex function of all parameters. Instead the SLR,
which can be bounded analytically, is a proxy that measures how effective a method
is at extracting phylogenetic signal from molecular data.

2.1.4 Maximum likelihood estimation

The maximum likelihood (ML) estimator for phylogenetic reconstruction is given (in
our setting) by

�ML
n,k

((
σ i

X

)k

i=1

)
∈ argmin

T ∈Y(n)
f,g

[
1
ϒ

]LT

[(
σ i

X

)k

i=1

]
, (2)

whereLT [(σ i
X)k

i=1] = −∑k
i=1 lnμT

X (σ i
X) (breaking ties arbitrarily). Inwords theML

selects a phylogeny which maximizes the probability of observing the data. Compu-
tation of the likelihood on a given phylogeny can be performed efficiently, but solving
the maximization problem above over tree space is computationally intractable [8,45].
Fast heuristics have been developed and are widely used [21,54]. Despite the practi-
cal importance of ML, much remains to be understood about its statistical properties.
Consistency, that is, the convergence of the ML estimate T̂ML

k on the true tree as the
number of sites k → ∞, has been established [7]. But obtaining tight bounds on the
SLR of ML has remained an outstanding open problem in mathematical phylogenet-
ics. The best previous known bound, due to [50] was that under the CFN model there
exists K > 0 such that k0(�ML, n) ≤ exp(K n).

2.2 Main results

Our main result is the following.

Theorem 1 (Sequence-length requirement of maximum likelihood) Let 0 < 1
ϒ

<

f < g∗ := ln
√
2. Then the sequence-length requirement of maximum likelihood for

the phylogenetic tree reconstruction problem on Y f,g[1
ϒ

] is

k0(�
ML, n) =

{
O(log n), if g < g∗,
poly(n), if g ≥ g∗.

Combined with the results of [10], this bound implies that the ML estimator can be
computed in polynomial time with high probability as long as k ≥ k0(�ML, n). Note
that our definition of the ML estimator implicitly assumes that we know (or have
bounds on) the parameters f, g, 1

ϒ
as the search is restricted over the space Y(n)

f,g[1
ϒ

].

123

12 S. Roch, A. Sly

In practice it is not unnatural to restrict the space of possible models in this way.
We note finally that our proof in the regime g ≥ g∗ holds under a much weaker
discretization assumption (see below).

2.3 Proof overview

2.3.1 Known results: identifiability, consistency and the Steel-Székely bound

Before sketching the proof of Theorem 1, we first mention previously known facts
about the statistical properties of ML in phylogenetics. Fix f, g, 1

ϒ
, n and let Y =

Y
(n)
f,g[1

ϒ
]. Let T 0 ∈ Y be the generating phylogeny and denote by σ X = (σ i

X)k
i=1 a set

of k samples from the corresponding CFN model. Under our assumptions, the model
is known to be identifiable [7], that is,

T 0 �= T # ∈ Y ⇒ Dl [T 0] �= Dl [T #].

Moreover the ML estimator is known to converge on T 0 almost surely as k → ∞ [7].
That fact follows from the law of large numbers by which

1

k
LT # (σ X) → −ET 0

[
lnμT #

X (σX)
]
,

as k → ∞, identifiability, the positivity of the Kullback-Leibler (KL) divergence, that
is,

T 0 �= T # ⇒ KL(T 0 ‖ T #) := −ET 0

[
lnμT #

X (σX)
]

+ ET 0

[
lnμT 0

X (σX)
]

> 0,

and a compactness argument [60].
Steel and Székely [50] also derived along the same lines a quantitative upper bound

on the SLR. They used Pinsker’s inequality to lower bound the KL divergence with the
total variation distance. And they appealed to concentration inequalities to bound the
probability that any leaf vector state frequency is away from its expectation, thereby
quantifying the speed of convergence of the log-likelihood. The argument ends up
depending inversely on the lowest non-zero state probability, which is exponentially
small in n, leading to an exponential SLR. The Steel-Székely bound does not make use
of the structure of the phylogenetic problem and, in fact, is derived in a more general
setting.

2.3.2 A polynomial bound

In order to make use of the structure of the problem, we propose a different approach.
The basic idea is to design for each incorrect tree T # a statistical test that excludes
it from being selected by ML with high probability. We first illustrate this idea by
sketching a polynomial bound on the SLR of ML. This proves the polynomial regime
of Theorem 1.

123

Phase transition in the sample complexity... 13

In [15], a reconstruction algorithm was provided that, for any g, returns the correct
phylogeny with probability 1 − exp(−nC1) as long as k ≥ nC2 for a large enough
C2 > 0. We refer to this algorithm as the ESSW algorithm. Letting T 0 be the true
phylogeny generating the data and T # �= T 0 be in Y, denote by DT # the event that
the ESSW algorithm reconstructs (incorrectly) T # and by MT # the event that ML
prefers T # over T 0 (including a tie), that is, the set of σ X = (σ i

X)k
i=1 such that

LT # (σ X) ≤ LT 0(σ X) or equivalently

μT #

X (σ X)

μT 0

X (σ X)
≥ 1. (3)

Then, a classical result in hypothesis testing (see e.g. [31, Chapter 13]) is that the sum
of Type-I and Type-II errors is minimized by the likelihood ratio test, which in our
context amounts to

PT 0 [MT #] + PT # [Mc
T #] ≤ PT 0 [A] + PT # [Ac], (4)

for any test (i.e., event) A ⊆ [r]nk . Taking in particular A = DT # , we get from [15]
that

PT 0 [MT #] ≤ PT 0 [DT #] + PT # [Dc
T #] ≤ 2e−nC1

, (5)

whenever k ≥ nC2 . Recall (e.g. [51]) that the number of binary trees on n labeled leaves
is (2n − 5)!! = eO(n log n). For each such tree, our discretization assumption implies
that there are at most ((g − f) 1

ϒ
+1)n choices of branch lengths. Hence, provided we

choose C1 and C2 large enough and taking a union bound over the eO(n log n) possible
trees T # �= T 0 in Y, we obtain: under our assumptions, there exists K > 0 such that
k0(�ML, n) ≤ nK . In fact, note that this argument still works when the discretization
1
ϒ

is of order n−C3 for any C3 > 0.
This new bound on k0(�ML, n) improves significantly over the Steel-Székely

bound. It has interesting computational implications as well. Although ML for phylo-
genetic reconstruction is NP-hard [8,45], our polynomial SLR bound in combination
with the computationally efficient ESSW algorithm indicates that the ML estimator
can be computed efficiently with high probability when data is generated from a CFN
model with polynomial sequence lengths.

2.3.3 A refined union bound

Dealing with logarithmic-length sequences is significantly more challenging. As
the argument below suggests, certain close-by trees cannot be distinguished using
logarithmic-length sequences with exponentially small failure probability. In particu-
lar the naive union bound above cannot work in this regime. Instead we use a more
refined union bound.

We make two observations. We introduce �BL(T #, T 0), the blow-up distance
between the topologies of T # and T 0, that is, roughly the smallest number of edges
that need to be rearranged to produce T # from T 0 (See Definition 5.1 for a formal

123

14 S. Roch, A. Sly

definition). The number of trees at blow-up distance D from T 0 is at most O(n2D) so
that it suffices to prove

PT 0 [MT #] ≤ C1e−C2k�BL(T #,T 0), (6)

in order to apply a union bound over blow-up distances, when k is logarithmic in n.
To prove (6), we need to use an appropriate test A ⊆ [r]nk in (4) and (5)—as we did
before—but now the error probability of the test must depend on the blow-up distance
between T # and T 0. That is, we need a test A ⊆ [r]nk such that

PT 0 [Ac] + PT # [A] ≤ C1e−C2k�BL(T #,T 0). (7)

This is intuitively reasonable as we expect similar trees to be harder to distinguish.
We note in passing that (4) follows from the fact that the likelihood ratio test

achieves the total variation distance between themodels generated by T # and T 0 under
k samples, which we denote by �k

TV(T #, T 0). Thus, our main technical contribution
can be interpreted as relating combinatorial and variational distances between trees.
This claim, which may be of independent interest, is proved along with Theorem 3.

Lemma 1 (Relating combinatorial and variational distances) For T #, T 0 ∈ Y f,g[1
ϒ

]
with g < g∗,

�k
TV(T #, T 0) ≥ 1 − C1e−C2k�BL(T #,T 0).

2.3.4 Phase transition: homogeneous case

We sketch our construction of the test A above in the special case of homogeneous
trees. Fix g, n = 2h and let HY = HY

(h)
g . Let T 0 ∈ HY be the generating phylogeny

and denote by σ X = (σ i
X)k

i=1 a set of k samples from the corresponding CFN model.
In the homogeneous case, it will be more convenient to work with we call the swap
distance�SW(T #, T 0), which is defined, roughly, as the smallest number of same-level
swaps of subtrees of T # in order to obtain T 0 (See Sect. 4 for a formal definition.).

Recall that a cherry is a pair of leaves with a common immediate ancestor. A
result of [40] shows that if T # is obtained from T 0 by applying a uniformly random
permutation of the leaf labels of T 0 then, with high probability, there is a positive
fraction (independent of n) of the cherries in T 0 such that the corresponding leaves in
T # are far (at least a large constant graph distance away) from each other. Let C be such
a collection of cherries. As a result, it was shown that the total pairwise correlation
over C as measured for instance by

Z i = 1

n

∑

(a,b)∈C
σ i

aσ i
b,

is concentrated on two well-separated values under T 0 and T #, and the event

A =
{
1

k

k∑

i=1

Z i > z

}

,

123

Phase transition in the sample complexity... 15

for a well-chosen value of z, satisfies an exponential bound as in (7).
Returning to our context this argument suggests that, if the incorrect tree T # is far

from the generating tree T 0 in swap distance, a powerful enough test can be constructed
from the cherries of T 0. One of our main contributions is to show how to generalize
this idea to trees at an arbitrary combinatorial distance. This is non-trivial because
T # and T 0 may only differ by deep swap moves, in which case cherries cannot be
used in distinguishing tests. Instead, we show how to find deep pairs of test nodes
that are close under T 0, but somewhat far under T # (see Proposition 2). To build a
corresponding test, we reconstruct the ancestral states at the test nodes and estimate
the correlation between the reconstructed values as above (see Proposition 1). Note
that the reconstruction phase transition plays a critical role in this argument.

The main challenge is to find such deep test pairs and relate their number to the
swap distance. For this purpose, we design a procedure that identifies dense subtrees
that are shared by T # and T 0, working recursively from the leaves up (see Claim 4.4)
and we prove that this procedure leads to a number of tests that grows linearly in the
swap distance (see Claim 4.3). A further issue is to guarantee enough independence
between the tests, which we accomplish via a sparsification step (see Claim 4.5). The
full argument for homogeneous trees is in Sect. 4.

2.3.5 General case

In the homogeneous case, we produce a sufficient number of deep test pairs by iden-
tifying subtrees that are matching in T # and T 0. As we mentioned above, that can
be done recursively starting from the leaves. In the case of general trees, the lack of
symmetry makes this task considerably more challenging. One significant new issue
that arises is that the matching subtrees found through the same type of procedure may
in fact “overlap” in T #, that is, have a non-trivial intersection.

Hence, to construct a linear number of tests in blow-up distance, we proceed in two
phases. We first attempt to identify matching subtrees similarly to the homogeneous
case. We show that if the overlap produced is small, then a linear number of tests
(see Claim 5.4) can be constructed in a manner similar to the homogeneous case (see
Proposition 4), although several new difficulties arise. See Sect. 5.5 for details.

On the other hand, if the overlap in T # is too large, then the first phase will fail. In
that case, we show that a sufficient number of deep test pairs can be found around the
“boundary of the overlap” in T # (see Proposition 5). That construction is detailed in
Sect. 5.6.

3 Distinguishing between leaf distributions

In this section, we detail our main tool for distinguishing between the leaf distributions
of different phylogenies. Fix f, g < g∗, 1

ϒ
, n and let Y = Y

(n)
f,g[1

ϒ
]. Let T 0 ∈ Y be

the generating phylogeny and denote by σ X = (σ i
X)k

i=1 a set of k i.i.d. samples from
the corresponding CFN model.

As outlined in Sect. 2.3, our strategy is to construct for each erroneous tree T # �= T 0

a statistical test that distinguishes between the two leaf distributions. The classification

123

16 S. Roch, A. Sly

error of the test will ultimately depend on the combinatorial distance between T # and
T 0. We show in Sects 4 (for homogeneous trees) and 5 (for general trees) how to
construct such tests. Here we define formally the type of test we seek to use and derive
bounds on their classification error.

3.1 Definitions

We first need several definitions. Let T = (V, E;φ;w) be a phylogeny in Y and
denote its leaf set by L . Recall from Definition 2.1 that X = [n] is the set of leaf
labels. We will work with a special type of subtrees defined as follows.

Definition 3.1 (Restricted subtree) A (connected) subtree Y of T is restricted if there
exists VR ⊆ V such that Y is obtained by keeping only those edges of T lying on the
path between two vertices in VR . We typically restrict T to a subset of the leaves (in
which case we denote VR by L R instead). When |VR | = 4, Y is called a quartet. The
topology of a binary quartet on VR = {u, v, x, y} is characterized by the pairs in VR

lying on each side of the internal edge, e.g., we write uv|xy if {u, v} and {x, y} are on
opposite sides. Let Y and Z be restricted subtrees of T . We let Y ∩ Z (respectively
Y ∪ Z) be the intersection (respectively the union) of the edge sets of Y and Z .

We will need to compare restricted subtrees in T # and T 0. For this purpose, we will
use the following metric-based definition. We first recall the notion of a tree metric.

Definition 3.2 (Tree metric) A phylogeny T = (V, E;φ;w) is naturally equipped
with a tree metric dT : X × X → (0,+∞) defined as follows

∀a, b ∈ X, dT (a, b) =
∑

e∈PT (φ(a),φ(b))

we,

where PT (u, v) is the set of edges on the path between u and v in T . We will refer to
dT (a, b) as the evolutionary distance between a and b. In a slight abuse of notation,
we also sometimes use dT (u, v) to denote the evolutionary distance between any two
vertices u, v of T as defined above. We will also let dgT (a, b) denote the graph distance
between a and b in T , that is, the number of edges on the path between a and b in T .

Tree metrics satisfy the following four-point condition: ∀a1, a2, a3, a4 ∈ X ,

dT (a1, a2) + dT (a3, a4) ≤ max{dT (a1, a3) + dT (a2, a4), dT (a1, a4) + dT (a3, a2)}.
(8)

In the non-degenerate case, one of the three sums above is strictly smaller than the
other two, which are equal. From the four-point condition, it can be shown that to
each tree metric corresponds a unique phylogeny (with positive edge weights). See
e.g. [51].

Definition 3.3 (Matching subtrees) Let T = (V, E;φ;w) and T ′ = (V ′, E ′;φ′;w′)
be trees inYwith n leaves L and L ′ respectively (and the same leaf label set X = [n]).
Let Y and Y ′ be subtrees of T and T ′ restricted respectively to leaf sets L R ⊆ L and

123

Phase transition in the sample complexity... 17

L ′
R ⊆ L ′ spanning the same leaf labels, that is, φ(L R) = φ(L ′

R). We say that Y and
Y ′ are metric-matching or simply matching if: the tree metrics corresponding to Y
and Y ′ are identical. Note that, even if Y and Y ′ are metric-matching, their vertex and
edge sets may differ. E.g., an edge in Y may correspond to a (non-trivial) path in Y ′,
and vice versa. However, thinking of Y and Y ′ as continuous objects, for each vertex
v ∈ Y , we can create a corresponding extra vertex v′ in Y ′.

As wementioned above, wewill assign a distinguished vertex to each subtree included
in the tests. We think of these as roots. The following definitions apply to such rooted
subtrees.

Definition 3.4 (Dense subtree) Let � and ℘ ≤ 2� be nonnegative integers. Let Y be a
restricted subtree of T rooted at y. The �-completion �Y �� of Y is obtained by adding
complete binary subtrees with 0-length edges below the leaves of Y so that all leaves
in �Y �� are at the same graph distance from y and the height of �Y �� is the smallest
multiple of � greater than the height of Y . We say that Y is (�, ℘)-dense in T if: the
number of vertices on the (i�)-th level of �Y �� is at least (2� − ℘)i for all i ≥ 0 such
that i� is smaller than the height of �Y ��.

Definition 3.5 (Co-hanging subtrees) Two rooted restricted subtrees Y and Z of a
tree T with empty (edge) intersection are co-hanging if the path between their roots
does not intersect the edges in their union. The linkage Y ⊕ Z of co-hanging rooted
restricted subtrees Y and Z is the (unrooted) restricted subtree obtained by adding to
Y and Z the path joining their roots.

We need one last definition.

Definition 3.6 (Topped subtree) Let T be rooted. Let γ ∈ N and Y be a restricted
subtree of T rooted at y. The γ -topping �Y �γ of Y is obtained from Y by adding the
γ edges immediately above y on the path to the root of T (or the entire path if it is has
fewer than γ edges), which we refer to as the hat of �Y �γ .

3.2 Batteries

In the proof below, we will compare the true phylogeny T 0 = (V 0, E0;φ0;w0) to an
incorrect phylogeny, which will be denoted by T # = (V #, E#;φ#;w#). Assume that
T 0 and T # are rooted at ρ0 and ρ# respectively. The comparison will be based on the
following combinatorial definition and the associated statistical test below. A test pair
in T 0 is a pair of vertices (leaf or internal; possibly extra) (y0, z0) in T 0, which we
will refer to as test roots, as well as a pair of restricted subtrees (Y 0, Z0) of T 0 rooted
at y0, z0 respectively, which we will refer to as test subtrees. Similarly we define a test
pair in T #. We call a test panel two corresponding test pairs in T 0 and T #. See Fig. 1
for an illustration.

At a high level, the idea behind our distinguishing statistic is to consider pairs of
subtrees, the test pairs, that are shared between T # and T 0 in the sense of Definition 3.3
(Condition 2(a) below) and that further have the property that the distance between
their roots differ in T # and T 0 (Condition 2(d) below). The test itself (defined formally

123

18 S. Roch, A. Sly

Fig. 1 A test panel: proximal in T 0 and non-proximal in T #

in Eqs. (12), (13) and (14) below) involves reconstructing the ancestral states at the
roots of the pairs and comparing their correlation on T # and T 0. To ensure a strong
enough signal, we require that the subtrees are dense enough in the senseDefinition 3.4
(Condition 1(a) below) to guarantee accurate reconstruction of ancestral states and that
the roots are close (within a parameter �) in either T 0 or T # (Condition 2(c) below).
Although each test panel contains at least one pair whose roots are close, the other pair
may not be—potentially producing unwanted dependencies between the test panels in
cases where the roots are particularly far from each other (at distance at least γt). Such
dependencies are dealt with in Proposition 1 below. Another requirement of the test
is that the paths connecting the roots of each pair do not intersect the corresponding
subtrees, in the sense of Definition 3.5 (Condition 2(b) below). That last property
ensures that the errors of the ancestral state estimates are conditionally independent
given the root states.

Definition 3.7 (Battery of Tests) Fix nonnegative integers � ≥ 2, 0 ≤ ℘ ≤ 2� − 1,
� ≥ 1 and γt ≥ 1. We say that a collection of test panels

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
in T 0 and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
in T #

form an (�, ℘, �, γt , I)-battery if:

1. Cluster requirements
(a) (Dense subtrees) All test subtrees are (�, ℘)-dense.

2. Pair requirements
(a) (Matching subtrees) The subtrees Y 0

i and Y #
i are matching for all i = 1, . . . , I ,

and similarly for Z0
i and Z#

i .
(b) (Co-hanging) For i = 1, . . . , I , we require that Y 0

i and Z0
i be co-hanging.

Similarly for the pairs in T #.
(c) (Proximity) For i = 1, . . . , I , if the graph distance between y0i and z0i is less

than �, we say that the corresponding pair is proximal. (If y0i or z0i is an extra
vertex we use the graph distance in T 0 to the closest neighbor.) Else, if the

123

Phase transition in the sample complexity... 19

graph distance between y0i and z0i is less than γt , we say that the corresponding
pair is semi-proximal. In both proximal and semi-proximal cases, we let

F0
i = Y 0

i ⊕ Z0
i . (9)

Else, if the graph distance between y0i and z0i is greater than γt , in which case
we say that the corresponding pair is non-proximal, we define (with a slight
abuse of notation)

F0
i =

⌈
Y 0

i

⌉γt ∪
⌈

Z0
i

⌉γt
, (10)

to be the forest with corresponding edge set. We refer to the path between
y0i and z0i in T 0 as the connecting path of the test pair. (In the non-proximal
case, the hats of Y 0

i and Z0
i may not lie entirely on the connecting path.) We

similarly define F#
i s from the pairs in T #.

(d) (Evolutionary distance) For each i = 1, . . . , I , we have

∣∣
∣dT 0

(
y0i , z0i

)
− dT #

(
y#i , z#i

)∣∣
∣ ≥ 1

ϒ
,

and at least one of the corresponding pairs is proximal. Further, we let

αi =
{

+1, i f dT 0
(
y0i , z0i

)
< dT #

(
y#i , z#i

)

−1, o.w.
(11)

3. Global requirements
(a) (Global intersection) The F0

i s have empty pairwise intersection. Similarly for
the F#

i s.

3.2.1 Tests

For a restricted subtree Y rooted at y, we denote by X [Y] the leaf labels of Y and we
let

σ̂
j

y =
{

+1, if PY

[
σy = +1

∣
∣∣ σ j

X [Y]
]

> PY

[
σy = −1

∣
∣∣ σ j

X [Y]
]
,

−1, o.w.
(12)

be the MLE of the state at y on site j , given σ
j

X [Y]. Let

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
in T 0 and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
in T #

form a (�, ℘, �, γt , I)-battery with corresponding αi s (as defined in (11)). The dis-
tinguishing statistics of the battery are defined as

D̂0 =
I∑

i=1

k∑

j=1

αi σ̂
j

y0i
σ̂

j
z0i

, and D̂# =
I∑

i=1

k∑

j=1

αi σ̂
j

y#i
σ̂

j
z#i

. (13)

123

20 S. Roch, A. Sly

We observe that, because the subtrees in T 0 and T # are matching (that is, they are
identical as sub-phylogenies as remarked after Definition 3.2), D̂0 and D̂# are in
fact identical as a function of the leaf states, which we denote by D̂. However their
distributions, in particular their means D0 = ET 0 [D̂] and D# = ET # [D̂] respectively,
differ as we quantify below. The distinguishing event is then defined as

A =
{
D̂ − D0 + D#

2
> 0

}
. (14)

3.2.2 Properties of batteries

We show that the distinguishing event A is likely to occur under T 0, but unlikely to
occur under T #. The proof is in the next section.

Proposition 1 (Batteries are distinguishing) For any positive integers ℘ and �, there
exist constants � = �(g, ℘) ≥ 2 large enough, γt = γt (g, ℘, �, �,ϒ) large enough,
and C = C(g, ℘, �, �,ϒ, γt) > 0 small enough such that the following holds. If

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
in T 0 and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
in T #,

form a (�, ℘, �, γt , I)-battery with corresponding αi s, D̂, D0, D#, and A, then

max
{
PT 0 [Ac],PT # [A]} ≤ exp (−Ck I) ,

for all I and k.

3.3 Proof of Proposition 1

We give a proof of Proposition 1. The proof has several steps:

1. We bound the accuracy of the ancestral state estimator (12) using Lemma 2 from
Appendix A.1.

Claim 3.1 (Accuracy of ancestral reconstruction) There is � ≥ 2 large enough and a
constant 0 < βg,℘ < +∞ depending on g and ℘ such that for any subtree Y in the
battery, it holds that

PY [σ̂y = σy] ≥ 1 + e−βg,℘

2
, (15)

where y is the root of Y .

Crucially βg,℘ does not depend on n, that is, the accuracy of the reconstruction does
not deteriorate as one considers larger, deeper trees.

2. We show that the distinguishing statistics (13) have well-separated expectations.
That follows from the fact that, by the assumption 2(d) in Definition 3.7, the
evolutionary distances between the roots of the corresponding subtrees differ on T #

and T 0. The accuracy of the ancestral state estimation in Claim 3.1 also guarantees
that the signal is strong enough at the leaves.

123

Phase transition in the sample complexity... 21

Claim 3.2 (Separation of expectations) There exists Dδ > 0 depending on g, ℘, �

and ϒ such that
D0 − D# ≥ Dδk I. (16)

3. Finally, in the more delicate step of the argument, we establish that the distinguish-
ing statistics (13) are concentrated around their respective means.

Claim 3.3 (Concentration) There is γt > 0 large enough and C > 0 small enough
such that

max
{
PT 0 [Ac],PT # [A]} ≤ exp (−Ck I) ,

for all I and k, where A is defined in (14).

Proving concentration is complicated by the fact that the terms in the sums (13) are
not independent. That is the result of the non-proximal pairs having connecting paths
that may intersect with other test subtrees. When the number of non-proximal pairs
is not small, we show that the corresponding terms are “almost independent” of the
other terms by bounding the probability that their hat is closed. A related argument is
used in [40].

Proof of Proposition 1 Proposition 1 follows immediately from Claim 3.3.

It remains to prove the claims.

Proof of Claim 3.1 (Accuracy of ancestral reconstruction) LetY be any subtree in the
battery and let y be its root. To obtain a bound on the probability of erroneous ancestral
reconstruction through Lemma 2 (Appendix A.1), it suffices to bound the denominator
in (61) for the �-completion �Y ��. Choose a unit flow � such that the flow through
each vertex on level i� of �Y �� splits evenly among its descendant vertices on level
(i + 1)�. Let E(�Y ��) denote the edges of �Y �� and let Ry(e) = (

1 − θ2e
)
�−2

y,x where

�ρ,y = e−dT (y,x) and θe = e−we (as defined in (60) of Appendix A.1). Note that
0 ≤ (

1 − θ2e
) ≤ 1. Hence we have

∑

e=(x ′,x)∈E(�Y ��)

Ry(e)�(e)2 ≤
∑

e=(x ′,x)∈E(�Y ��)

�−2
y,x�(e)2

≤
+∞∑

i=0

�∑

j=1

2i�+ j
(

e−(�i+ j)g
)−2

×
(

1

(2� − ℘)i max{1, 2�− j − ℘}
)2

≤
+∞∑

i=0

2i�e2�ig
(

1

(2� − ℘)i

)2

×
⎡

⎣
�∑

j=1

2 j e2 jg
(

1

max{1, 2�− j − ℘}
)2

⎤

⎦ ,

123

22 S. Roch, A. Sly

where, in the second inequality, the quantity max{1, 2�− j − ℘} is a lower bound on
the number of descendants on level (i + 1)� of a vertex at graph distance j below
level i�. The term in square bracket on the last line is bounded by a positive constant
0 < K�,℘,g < +∞ depending only on �, ℘, g. Recall that g < g∗ = ln

√
2 and let

g′ = g∗+g
2 . Choose � large enough (depending only on g and ℘) such that

2�

(2� − ℘)2
≤ 1

e2�g′ ,

which is possible because g′ < g∗ and e2g∗ = 2. Then

∑

e=(x ′,x)∈E(�Y ��)

Ry(e)�(e)2 ≤ K�,℘,g

+∞∑

i=0

e2�i(g−g′)

= K�,℘,g

1 − e−2�(g′−g)

= K�,℘,g

1 − e−�(g∗−g)
< +∞.

Hence by Lemma 2 (Appendix A.1) the probability of correct ancestral reconstruction
is bounded away from 1/2 from below. Let βg,℘ , depending on g and℘ (and implicitly
on �), such that

PY [σ̂y = σy] =: 1 + e−βY

2
≥ 1 + e−βg,℘

2
, (17)

where the first equality is a definition.

Proof of Claim 3.2 (Separation of expectations) Let ((y, z); (Y, Z)) be a test pair in
the battery with corresponding tree T (equal to either T 0 or T #). Then, by the co-
hanging requirement of the battery, the Markov property, and (15), we have

− lnET [σ̂y σ̂z] = − ln
[
ET [ET [σ̂y σ̂z | σy, σz]]

]

= − ln
[
ET [ET [σ̂y | σy]ET [σ̂z | σz]]

]

= − ln
[
ET [e−βY σye−βZ σz]

]

= βY + βZ + dT (y, z), (18)

where βY , βZ ≤ βg,℘ , as defined in (17). The last equality follows from

ET [σyσz] = ET [ET [σyσz | σy]]
= ET [σyET [σz | σy]]
= ET [σye−dT (y,z)σy]
= e−dT (y,z)

ET [σ 2
y]

= e−dT (y,z),

123

Phase transition in the sample complexity... 23

where the third equality follows from the fact that PT [σz = σy | σy] = 1+e−dT (y,z)

2 ,
which can be deduced from Definition 2.3. In the proximal case, we have further that

− lnET [σ̂y σ̂z] = βY + βZ + dT (y, z)

≤ 2βg,℘ + g�

=: χg,℘,�. (19)

Recall that the expected difference of D̂ under T 0 and T # is given by

D0 − D# =
I∑

i=1

k∑

j=1

αi

(
ET 0

[
σ̂

j
y0i

σ̂
j

z0i

]
− ET #

[
σ̂

j
y#i

σ̂
j

z#i

]
.

)

Each term in the sum, whether it corresponds to a proximal-proximal, semi-proximal-
proximal, or non-proximal-proximal case, is at least

Dδ := e−χg,℘,� (1 − e− 1
ϒ),

by (11), (18), (19), and the fact that

|dT 0

(
y0i , z0i

)
− dT #

(
y#i , z#i

)
| ≥ 1

ϒ
, (20)

by the evolutionary distance requirement of the battery. Hence,

D0 − D# ≥ Dδk I.

Proof of Claim 3.3 (Concentration) Consider D̂ on T 0. (The argument is the same on
T #.) Let I0

np be the set of non-proximal pairs in T 0 and let I0
p be the set of pairs that

are either semi-proximal or proximal. We also let

J 0
np =

{
(i, j) : i ∈ I0

np, j ∈ {1, . . . , k}
}

,

and

J 0
p =

{
(i, j) : i ∈ I0

p, j ∈ {1, . . . , k}
}

.

Fix 0 < ε < 1 small (to be determined below).
We first illustrate our argument in the easier casewhere the number of non-proximal

pairs is small:

|I0
np| < ε I.

123

24 S. Roch, A. Sly

We define the following sum

D̃ =
∑

(i, j)∈J 0
p

αi σ̂
j

y0i
σ̂

j
z0i

−
∣∣∣J 0

np

∣∣∣ ,

that is, we set the terms in J 0
np to their worst-case value, −1, which implies D̂ ≥ D̃.

We claim that the remaining terms in the sum are independent. To prove this, we first
make an observation. For all (i, j) ∈ J 0

p , the term σ̂
j

y0i
σ̂

j
z0i

is independent of the state

σ
j

x0i
at the root x0i ofF0

i , where the latter is defined in (9). This follows by the symmetry

of the substitution process between the +1 and −1 states. To prove the independence
claim above, we then proceed by generating the substitution process as follows, for
each j = 1, . . . , k independently. Define X to be the set of those roots x0i such that
(i, j) ∈ J 0

p .

1. LetH be the set of those i such that: (i) (i, j) ∈ J 0
p and (ii) the root x0i does not have

an ancestor in T 0 among X . Pick the states σ
j

x0i
, i ∈ H, and the corresponding

quantities σ̂
j

y0i
σ̂

j
z0i
, which depend only on the states within F0

i . By the Markov

property and the condition on H, the quantities σ̂
j

y0i
σ̂

j
z0i
, for i ∈ H, are mutually

independent.
2. Then letH′ be the set of those i /∈ H such that: (i) (i, j) ∈ J 0

p and (ii) the root x0i
does not have an ancestor in X − {x0i : i ∈ H}. Conditioned on the previously

assigned states, pick the states σ
j

x0i
, i ∈ H′, and the corresponding quantities

σ̂
j

y0i
σ̂

j
z0i
, which depend only on the states within F0

i . By the global requirement of

the battery, theF0
i s inH′ have empty edge intersectionwith theF0

i s inH. Together

with the observation above, it follows that the quantities σ̂
j

y0i
σ̂

j
z0i
, for i ∈ H′, are

independent of each other as well as of the quantities σ̂
j

y0i
σ̂

j
z0i
, for i ∈ H.

3. AddH′ toH, and proceed similarly to the previous step until all terms in J 0
p have

been generated.

The event

Ac =
{
D̂ − D0 + D#

2
≤ 0

}
,

implies the event

D̃ ≤ D0 + D#

2
,

or, after rearranging,

D̃ − ET 0 [D̃] ≤ −D0 − D#

2
+

{
D0 − ET 0 [D̃]

}
, (21)

123

Phase transition in the sample complexity... 25

which in turn implies

D̃ − ET 0 [D̃] ≤ −Dδ

2
k I + 2εk I,

where we used the fact that theJ 0
p -terms cancel out in the expression in curly brackets

in (21). Choose ε small enough so that the RHS is less than−Dδ

3 k I . Then, by Lemma 4
(Appendix A.3),

PT 0 [Ac] ≤ 2 exp

⎛

⎜
⎝−

(Dδ

3 k I
)2

2(2)2(k I)

⎞

⎟
⎠

= exp (−�(k I)) . (22)

Consider now the case where

|I0
np| ≥ ε I.

We show how to deal with the extra complication that non-proximal pairs have con-
necting paths that may intersect with other test subtrees, thereby creating unwanted
dependencies.

Let ((y, z); (Y, Z)) be a non-proximal test pair in T 0 and consider the γt -toppings
�Y �γt and �Z�γt . Note that at least one of �Y �γt and �Z�γt has a hat of length γt/2
as otherwise Y and Z would be connected through the root at distance at most γt ,
contradicting the non-proximal assumption. We refer to the corresponding hat as the
hat of the pair. If both toppings have long enough hats, choose the lowest one of the
two so that the hat is necessarily part of the connecting path. The probability that
all edges in this hat are open under the random cluster representation of the model
described in Lemma 3 (Appendix A.2), which we refer to as an open hat, is at most
e− f γt /2. If at least one such edge is closed, in which case we say the hat is closed, σ̂y

and σ̂z are independent. Hence, we have in the non-proximal case

− lnET [σ̂y σ̂z] ≥ − ln
{
(e− f γt /2)(1) + (1)(0)

}
≥ f γt/2, (23)

where the first term in curly brackets accounts for the fact that, under an open hat,
the correlation between the reconstructed states is at most 1, while the second term
accounts for the fact that, under a closed hat, the reconstructed states are independent
and therefore have 0 correlation.

Let [J 0
np]c be the random set corresponding to those pairs in J 0

np with a closed hat
and let [J 0

np]o be the random set corresponding to those pairs in J 0
np with an open hat.

We consider the following sum

D̃ =
∑

(i, j)∈J 0
p ∪

[
J 0

np

]

c

αi σ̂
j

y0i
σ̂

j
z0i

−
∣∣∣
[
J 0

np

]

o

∣∣∣ ,

123

26 S. Roch, A. Sly

that is, we set the terms with open hats to their worst-case value −1 which implies
D̂ ≥ D̃. We claim that the remaining terms in the sum are conditionally independent
given [J 0

np]c.
Indeed, considering only the proximal and semi-proximal test subtrees and their

connecting paths as well as the non-proximal test subtrees whose hat is closed, we
claim that the roots of the former and the hats of the latter form a separating set in the
sense that any path between two of these subtrees must go through one of the roots or
an entire hat. Indeed, a path between any two of these test subtrees must enter one of
them from above. Moreover if one of the two subtrees is non-proximal but the path
does not visit its entire hat, then the other test subtree must also be entered from above
(as the path must deviate downwards from the hat) and its entire hat be visited if non-
proximal (otherwise the two hats would intersect). Arguing as in the small number of
non-proximal pairs, this implies mutual independence.

By the argument above (23),

ET 0 [|[J 0
np]c|] ≥ (1 − e− f γt /2)|J 0

np|. (24)

Hence, by Lemma 4 (AppendixA.3), letting 0 < ε′ < 1−e− f γt /2 (determined below)

PT 0

[
|[J 0

np]c| < ET 0 [|[J 0
np]c|] − ε′|J 0

np|
]

≤ 2 exp

(

− (ε′|J 0
np|)2

2(1)2|J 0
np|

)

= exp
(
−�((ε′)2|J 0

np|)
)

= exp
(
−�((ε′)2εk I)

)
. (25)

On the event

C = {|[J 0
np]c| ≥ ET 0 [|[J 0

np]c|] − ε′|J 0
np|},

we have, using (24),

∣∣∣[J 0
np]o

∣∣∣ =
∣∣∣J 0

np

∣∣∣ −
∣∣∣[J 0

np]c

∣∣∣

≤
∣∣∣J 0

np

∣∣∣ − ET 0 [|[J 0
np]c|] + ε′|J 0

np|
≤ (e− f γt /2 + ε′)|J 0

np|
≤ (e− f γt /2 + ε′)k I

≤ −Dδ

6
k I, (26)

for ε′ small enough and γt large enough. The rest of the argument follows similarly
to the small |I0

np| case by bounding

123

Phase transition in the sample complexity... 27

PT 0 [Ac] = PT 0 [Ac | Cc]PT 0 [Cc] + PT 0 [Ac | C]PT 0 [C] ≤ PT 0 [Cc]
+ET 0 [PT 0 [Ac||[J 0

np]c, C]|C],

using (25) for the first term, and (26) along with Claim 3.2 for the second one. ��

4 Homogeneous trees

We first detail our techniques for constructing batteries of tests on a special case:
homogeneous trees. Formally, we define homogeneous phylogenies as follows.

Definition 4.1 (Homogeneous phylogenies) For an integer h ≥ 0 and n = 2h , we
denote byHY

(h)
g the subset ofY(n)

f,g[1
ϒ

] comprised of all h-level complete binary trees

T (h)
φ,w = (V (h), E (h);φ;w) where the edge weight function w is identically g and φ

may be any one-to-one labeling of the leaves. We denote by ρ(h) the natural root of
T (h)

φ,w. For 0 ≤ h′ ≤ h, we let L(h)

h′ be the vertices on level h − h′ (from the root). In

particular, L(h)
0 = L(h) denotes the leaves of the tree and L(h)

h = {ρ(h)} denotes the
root.

Fix g, n = 2h and let HY = HY
(h)
g be the set of homogeneous phylogenies with h

levels and branch lengths g. Let T 0 ∈ HY be the generating phylogeny and denote
by σ X = (σ i

X)k
i=1 a set of k i.i.d. samples from the corresponding CFN model. We

first need an appropriate notion of distance between homogeneous trees. Note that tree
operations routinely used in phylogenetics, such as subtree-prune-regraft or nearest-
neighbor interchange (see e.g. [51]), may not result in homogeneous trees. It will be
more convenient to work with the following definition. We say that two homogeneous
trees T and T ′ are equivalent, denoted by T ∼ T ′, if∀a, b ∈ [n], dT (a, b) = dT ′(a, b),
that is, if they agree as tree metrics. (Recall that tree metrics are defined in Defini-
tion 3.2.)

Definition 4.2 (Swap distance) We call a swap the operation of choosing two (non-
sibling) vertices u and v on the same level of a homogeneous tree and exchanging the
subtrees rooted at u and v. The swap distance �SW(T, T ′) between T and T ′ in HY

is the smallest number of swaps needed to transform T into T ′ (up to ∼).

Because a swap operation is invertible, we have �SW(T ′, T) = �SW(T, T ′). By
simply re-ordering the leaves, it holds that �SW(T, T ′) ≤ n − 1. We need a bound on
the size of the neighborhood around a tree. Since for each swap operation, we choose
one of 2n − 2 vertices, then choose one of at most n − 2 non-sibling vertices on the
same level, we have:

Claim 4.1 (Neighborhod size: swap distance) Let T be a phylogeny in HY. The num-
ber of phylogenies at swap distance � of T is at most (2n2)�.

In the following subsections, we prove the existence of a sufficiently large battery
of distinguishing tests.

123

28 S. Roch, A. Sly

Proposition 2 (Existence of batteries) Let ℘ = 1, � = �(g, ℘) ≥ 2 as in Proposi-
tion 1, � = 2�, and γt ≥ � and C as in Proposition 1. For all T # �= T 0 ∈ HY, there
exists a (�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #),

with

I ≥ �SW(T 0, T #)

CS(1 + 22γt +2)
,

where CS > 0 is a constant (defined in Claim 4.3 below).

The formal proof of this proposition can be found in Sect. 4.3.
From Propositions 1 and 2 as well as Claim 4.1, we obtain our main theorem in this

special case.

Theorem 2 (Sequence-length requirement ofML: homogeneous trees) For all δ > 0,
there exists κ > 0 depending on δ and g such that the following holds. For all h ≥ 2,
n = 2h and generating phylogeny T 0 ∈ HY

(h)
g , if σ X = (σ i

X)k
i=1 is a set of k = κ log n

i.i.d. samples from the corresponding CFN model, then the probability that MLE fails
to return T 0 is at most δ.

Proof of Theorem 2 For T # �= T 0 in HY
(h)
g , let MT # be the event that the MLE

prefers T # over T 0 (including a tie), that is, the set of σ X = (σ i
X)k

i=1 such that
LT # (σ X) ≤ LT 0(σ X). Combining Propositions 1 and 2, for all T # �= T 0 ∈ HY

(h)
g ,

there exists an event AT # such that

max{PT # [Ac
T #],PT 0 [AT #]} ≤ e−C1k�SW(T 0,T #), (27)

where C1 depends only on g. Then, by a union bound, (4), (27), and Claim 4.1,

PT 0 [∃T # �= T 0, MT #] ≤
∑

T # �=T 0

PT 0 [MT #]

≤
∑

T # �=T 0

[PT 0 [AT #] + PT # [Ac
T #]]

≤
n−2∑

�=1

(2n2)�[2e−C1k�]

≤
+∞∑

�=1

e−(C1κ log n−2 log n−log 2)�

≤ e−(C1κ log n−2 log n−log 2)

1 − e−(C1κ log n−2 log n−log 2)

123

Phase transition in the sample complexity... 29

≤ 1

e(C1κ−2) log n−log 2 − 1
≤ δ,

for κ large enough, depending only on g and δ, for all n ≥ 2.

4.1 Finding matching subtrees

We now describe a procedure to construct a battery of distinguishing tests on homo-
geneous trees. To be clear, the procedure is not carried out on data. It takes as input
the true (unknown) generating phylogeny T 0 and an alternative tree T # �= T 0. It
merely serves to prove the existence of a distinguishing statistic that, in turn, implies
a bound on the failure probability of maximum likelihood as detailed in the proof of
Theorem 2. In essence, the procedure attempts to build maximal matching subtrees
between T 0 and T # and pair them up appropriately to construct distinguishing tests.

Definition 4.3 (�-vertices) For a fixed positive integer �, we call �-vertices those
vertices in T 0 whose graph distance from the root is a multiple of �. The sets of all
�-vertices at the same distance from the root are called �-levels. For an �-vertex x , its
descendant �-vertices on the next �-level (that is, farther from the root) are called the
�-children of x , which we also refer to as a family of �-siblings.

Let ℘ = 1 and � = �(g, ℘) ≥ 2 be as in Proposition 1. Assume for simplicity that the
total number of levels h in T 0 is a multiple of �. Extending the analysis to general h
is straigthforward.

4.1.1 Procedure

Our goal is to color each �-vertex x of T 0 with the following intended meaning:

• Green G: indicating a matching subtree rooted at x that can be used to reconstruct
ancestral states reliably on both T 0 and T # using the same function of the leaf
states.

• Red R: indicating the presence among the �-children of x of a pair of matching
subtrees that can be used in a distinguishing test as their pairwise distance differs
in T 0 and T #.

• Yellow Y: none of the above.

We call G-vertices (respectively G-children) those �-vertices (respectively �-children)
that are colored G, and similarly for the other colors. Before describing the coloring
procedure in details, we need a definition.

Definition 4.4 (G-cluster) Let x be a G-vertex. Assume that each �-vertex below x
in T 0 has been colored G, R, or Y and that the leaves have been colored G. The G-
cluster rooted at x is the restricted subtree of T 0 containing all vertices and edges (not
necessarily �-vertices) lying on a path between x and a leaf below x that traverses only
�-vertices colored G.

123

30 S. Roch, A. Sly

We now describe the coloring procedure.

1. Initialization
(a) All leaves of T 0 are colored G.

2. For each �-vertex x in the �-level furthest from the root that has yet to be colored,
do:
(a) Vertex x is colored G if:

• at most one of its �-children is non-G and;
• the resulting G-cluster rooted at x and the corresponding restricted subtree
in T #, that is, the subtree of T # restricted to the same leaf set, arematching.

(b) Else, vertex x is colored R if:
• at most one of its �-children is non-G;
• but, if x were colored G, the resulting G-cluster rooted at x and the corre-
sponding restricted subtree in T # would not be matching.

(c) Else, vertex x is colored Y.

In particular observe that, if x is colored Y, at least two of its �-children are non-G.
As explained above, we are interested inR-vertices because tests can be constructed

from them.We prove that the number ofR-vertices scales linearly in the swap distance.
More precisely, we show that

#R ≥ 2−�−2 �SW

(
T 0, T #

)
.

4.1.2 Relating combinatorial distance and the number of matching subtrees

We relate the swap distance between T 0 and T # to the number of R-vertices in the
procedure above. Let #G be the number of G-vertices in T 0 in the construction, and
similarly for the other colors. For an �-vertex x in T 0, we let T 0

x be the subtree of T 0

rooted at x and we let V�(T 0
x) be the set of �-vertices in T 0

x . Recall from Definition 3.2
that we denote by dg

T 0 the graph distance on T 0. We first bound the number of Y-
vertices.

Claim 4.2 (Bounding the number of yellow vertices) We have

#Y ≤ #R.

Proof From our construction, each Y-vertex in T 0 has at least two non-G-children.
Hence, intuitively, one can think of the Y-vertices as forming the internal vertices of
a forest of multifurcating trees whose leaves are R-vertices.

The inequality follows.
Formally, if x is a Y-vertex, from the observation above we have

∑

y∈V�(T 0
x)

2− d
g
T 0 (x,y)

� 1{y is a R- vertex} ≥ 1, (28)

by induction on the �-levels startingwith the level farthest away from the root. Similarly
if y is an R-vertex,

123

Phase transition in the sample complexity... 31

we have
∑

x :y∈V�(T 0
x)

2− d
g
T 0 (x,y)

� 1{x is a Y- vertex} < 1, (29)

where the inequality follows from the fact that the sum is over a path from x to the
root of T 0. Summing (28) over Y-vertices x and (29) over R-vertices y gives the same
quantity on the LHS, so that the RHS gives the inequality. ��

We can now relate the swap distance to the output of the procedure.

Claim 4.3 (Relating swaps and #R) We have

�SW

(
T 0, T #

)
≤ CS#R,

where CS = 2�+2.

Proof Pick a lowest non-G-vertex u in T 0. Being lowest, all �-children of u must be
colored G. In fact, all �-vertices on the level below u must be colored G. Make u a G-
vertex by transforming the subtree below u in T # to match the corresponding subtree
in T 0. This takes at most 2�+1 swaps.

Repeat until T 0 and T # match. The inequality then follows from Claim 4.2. ��

4.2 Constructing a battery of tests

We now construct a battery of tests from the R-vertices. The basic idea is that each
R-vertex has two G-children which satisfy many of the requirements of a battery and
therefore can potentially be used as a test pair. In particular, they are the roots of
dense subtrees that are matching with their corresponding restricted subtrees in T #,
but their evolutionary distance differs in T 0 and T #. Note that we also have a number
of R-vertices that scales linearly in the swap distance by Claim 4.3. However one issue
to address is the global requirement of the battery. In words, we need to ensure that
the test pairs do not intersect. We achieve this by sparsifying the battery. A similar
argument was employed in [40].

In this section,T 0 andT # arefixed.To simplify notation,we let� = �SW
(
T 0, T #

)
.

Fix ℘ = 1. Choose � = �(g, ℘) ≥ 2 as in Proposition 1. Then take � = 2�, and
set γt ≥ � and C as in Proposition 1. In the rest of this subsection, we build a
(�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #)

with corresponding αi s. We number the R-vertices i = 1, . . . , I ′ and we build one test
panel for each R-vertex. Here I ′ ≥ I as we will later need to reject some of the test
panels to avoid unwanted correlations.

123

32 S. Roch, A. Sly

4.2.1 Co-hanging pairs in T #

Wefirst construct test panels that satisfy the pair and cluster requirements of the battery.
Let x0i be an R-vertex in T 0 and let x#i be the corresponding vertex in T #. Because
x0i is colored R, by construction it has at least 2� − 1 G-children, but its G-children
are “connected in different ways” in T #. In particular, at least one pair of G-children
(y0i , z0i) must be at a different evolutionary distance in T 0 than the corresponding pair
(y#i , z#i) in T # (see the remark after Definition 3.2). We use these pairs as our test
panel.

Claim 4.4 (Test panels) For each R-vertex x0i we can find a test pair of G-children
(y0i , z0i) of x0i , with corresponding test pair (y#i , z#i) in T #, such that the test panel
satisfy the cluster and pair requirements of a battery.

Proof By construction, the test subtrees, that is, the G-clusters rooted at the test ver-
tices, are (�, 1)-dense. The test subtrees are also matching, co-hanging and their roots
are at different evolutionary distances in T 0 and T #. Finally, the test pair in T 0 is
proximal as

dg
T 0(y0i , z0i) ≤ 2� ≤ �.

��

4.2.2 Sparsification in T #

It remains to satisfy the global requirements of the battery. By construction the test
subtrees are non-intersecting in both T 0 and T # (see the proof of Claim 4.5). However
we must also ensure that proximal/semi-proximal connecting paths and non-proximal
hats do not intersect with each other or with test subtrees from other test panels. By
construction, this is automatically satisfied in T 0 where all test pairs are proximal. To
satisfy this requirement in T #, we make the collection of test pairs sparser by rejecting
a fraction of them.

Claim 4.5 (Sparsification in T #) Assume � ≥ 2. Let H′ = {(y0i , z0i); (y#i , z#i)}I ′
i=1 be

the test panels constructed in Claim 4.4. We can find a subset H ⊆ H′ of size

|H| = I ≥ 1

1 + 22γt +2 I ′ ≥ �

CS(1 + 22γt +2)

such that the test panels in H satisfy all global requirements of a battery.

Proof Let {(Y 0
i , Z0

i); (Y #
i , Z#

i)}I ′
i=1 be the test subtrees corresponding to H′. Let W 0

1
and W 0

2 be two test subtrees in T 0 (not necessarily from the same test pair) and let
W #

1 and W #
2 be their matching subtrees in T #. We argue that these subtrees are non-

intersecting in both T 0 and T #. We start with T 0. By construction (see Claim 4.4), W 0
1

is a maximal G-cluster: its rootw0
1 is a G-vertex whose parent �-vertex is colored R; all

G-children of w0
1 are in W 0

1 , as well as all of their G-children and so forth. The same

123

Phase transition in the sample complexity... 33

goes for W 0
2 , whose root we denote by w0

2. If neither w0
1 nor w0

2 is a descendant of
the other, then W 0

1 and W 0
2 are necessarily non-intersecting. Assume instead, w.l.o.g.,

that w0
2 is a descendant of w0

1. Because the parent �-vertex of w0
2 is colored R, then by

construction w0
2 and all of its decendants (including the subtree W 0

2) cannot be in W 0
1 .

Note in particular that W 0
1 and W 0

2 share no leaf. We move on to T #. Because T # is in
HY, the subtrees W #

1 and W #
2 are isomorphic as graphs to W 0

1 and W 0
2 . In particular,

their structure is the same as the one described above. Let w#
1 and w#

2 be the vertices
corresponding to w0

1 and w0
2 in T #. Again, if neither w#

1 nor w#
2 is a descendant of the

other one, then W #
1 and W #

2 are non-intersecting. Assume instead, w.l.o.g., that w#
2 is

a descendant of w#
1 . If W #

1 and W #
2 share a vertex, say z, then the parent �-vertex of

z, say z̃, is also shared because of the structure of W #
1 and W #

2 . But then W #
1 and W #

2
contain at least 2� − 1 G-children of z̃—so they must have at least one such G-child
in common (recall that � ≥ 2). The same holds for the G-children of these common
G-children, and so on. As a result, W #

1 and W #
2 must share at least one leaf, which

contradicts the fact that W 0
1 and W 0

2 (which have the same leaf sets as W #
1 and W #

2)
share no leaf.

As discussed above, it remains to appropriately sparsify the setH′ of test pairs. We
proceed as follows. Start with test panel ((y01 , z01); (y#1 , z#1)). Remove fromH′ all test
panels i �= 1 such that

min
{
dg

T # (v,w) : v ∈
{

y#1 , z#1

}
, w ∈ V(Y #

i) ∪ V(Z#
i)

}
≤ 2γt . (30)

Because there are at most 2 · 22γt +1 vertices in T # satisfying the above condition and
that the test subtrees are non-overlapping in T #, we remove at most 22γt +2 test panels
fromH′.

Let i be the smallest index remaining inH′. Proceed as above and then repeat until
all indices in H′ have been selected or rejected.

At the end of the procedure, there are at least

1

1 + 22γt +2 I ′

test panels remaining, the set of which we denote by H. Recalling that γt ≥ �, note
that, inH, the connecting paths of proximal/semi-proximal pairs and the hats of non-
proximal pairs cannot intersect with each other or with any of the test subtree rooted
at test vertices inH by (53). ��

4.3 Proof of Proposition 2

It remains to prove Proposition 2. Recall that ℘ = 1, � = �(g, ℘) is chosen as in
Proposition 1, � = 2�, and γt ≥ � and C are also chosen as in Proposition 1.

By Claim 4.3, the number of R-vertices is at least 1
CS �SW

(
T 0, T #

)
. By Claim 4.4,

for each R-vertex, we can construct a test panel satisfying the pair and cluster require-
ments of the battery. By Claim 4.5, we can further choose a fraction 1

1+22γt +2 of these

123

34 S. Roch, A. Sly

test panels that also satisfy the global requirement of the battery. To sum up, we have
built a (�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #)

with

I ≥ �

CS(1 + 22γt +2)
.

That concludes the proof of Proposition 2.

5 General trees

We now prove our main result in the case of general trees. Once again, we use the
tests introduced in Sect. 3. We also use a procedure similar to that in the homogeneous
case to construct dense subtrees shared by T # and T 0. However, as described in the
next subsections, a number of new issues arise, mainly the possibility of overlapping
subtrees and non-co-hanging pairs. Fix f, g < g∗, 1

ϒ
and let Y = Y

(n)
f,g[1

ϒ
].

5.1 Blow-up distance

We first need an appropriate notion of distance between general trees. Although
standard definitions exist [51], the following definition (related to tree bisection and
reconnection [1]) will be particularly convenient for our purposes.

Definition 5.1 (Blow-up distance) A B-blowup operation on a phylogeny consists in
two steps:

• Remove a subset of B edges. The non-leaf, isolated vertices resulting from this
first step are also removed.

• Add B new weigthed edges to form a new phylogeny with the same leaf set.

The blowup distance �BL(T, T ′) between phylogenies T and T ′ is defined as the
smallest B such that there is a B-blowup operation transforming T into T ′ up to
isomorphism.

Because the blowup operation is invertible, we have �BL(T, T ′) = �BL(T ′, T).
Observe that the blow-up distance is a metric. We will need a bound on the size of the
neighborhood around a tree.

Claim 5.1 (Neighborhood size: blowup distance) Let T be a phylogeny in Y. The
number of phylogenies that can be obtained from T by a �-blowup operation is at
most (12gϒn2)�.

Proof There are 2n − 3 edges in T so there are at most (2n − 3)� choices for the first
step of the blowup operation.

123

Phase transition in the sample complexity... 35

For the second step, we add edges one by one. The weight of each edge can take at
most gϒ values. Each new edge must further be incident with a vertex existing at the
end of the first step or adjacent to a newly added edge. Observe that the edge removal
in the first step produces at most 2� vertices which can be used in the second step to
attach a new edge. Moreover, each edge addition produces at most one new vertex to
which subsequent edges can be attached. Since we add a total of � edges, there are at
any stage at most 3� choices for an attachment. That is, there are at most (3�gϒ)�

choices for the second step of the operation.
Since clearly the blowup distance is ≤ 2n − 3, there are overall at most

(2n − 3)�(3�gϒ)� ≤ (3gϒ(2n − 3)2)� ≤ (12gϒn2)�,

phylogenies that can be produced with a �-blowup operation. ��

5.2 Main steps of the proof

In the following subsections, we prove the existence of a sufficientlty large battery of
distinguishing tests.

Proposition 3 (Existence of batteries) Let ℘ = 5, � = �(g, ℘) as in Proposition 1,

� = max

{
(6 + 2ϒg)�, 6gϒ log2

(
8

1 − 1/
√
2

)
+ 2�gϒ + 4

}
,

and γt ≥ �, a multiple of �, and C as in Proposition 1. For all T # �= T 0 ∈ Y, there
exists a (�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #),

with

I ≥ �BL(T 0, T #)

20CO(1 + 26γt +Cw+3gϒ)
,

where

Cw = 3gϒ log2

(
8

1 − 1/
√
2

)
+ �gϒ + 2,

and CO is a constant (defined in Claim 5.4 below).

Proof This follows from Propositions 4 and 5 below. ��
The choice of � above will be justified in Claim 5.6 and in (57).

From Propositions 1 and 3 we obtain of our main bound in the general case.

123

36 S. Roch, A. Sly

Theorem 3 (Sequence-length requirement of ML: general trees) For all δ > 0, there
exists κ > 0 depending on δ, g and ϒ such that the following holds. For all n ≥ 2
and generating phylogeny T 0 ∈ Y

(n)
f,g[1

ϒ
], if σ X = (σ i

X)k
i=1 is a set of k = κ log n

i.i.d. samples from the corresponding CFN model, then the probability that MLE fails
to return T 0 is at most δ.

Proof For T # �= T 0, let MT # be the event that the MLE prefers T # over T 0 (includ-
ing a tie), that is, the set of σ X = (σ i

X)k
i=1 such that LT # (σ X) ≤ LT 0(σ X). By

Propositions 1 and 3, for all T # �= T 0 ∈ Y
(n)
f,g[1

ϒ
], there exists an event AT # such that

max{PT # [Ac
T #],PT 0 [AT #]} ≤ e−C1k�BL(T 0,T #), (31)

where C1 depends only on g and ϒ . Then, by a union bound, (4), (31) and Claim 5.1,
arguing as in the proof of Theorem 2

PT 0 [∃T # �= T 0, MT #] ≤ δ,

for κ large enough, depending only on g, ϒ and δ, for all n ≥ 2. (This also proves
Lemma 1 in Sect. 2.) ��

Finally:

Proof of Theorem 1 Combining Theorem 3 and the polynomial bound from Sect.2.3
immediately gives Theorem 1.

5.3 Finding matching subtrees

Wenowdescribe our procedure to construct a battery of distinguishing tests for general
trees. As in the homogeneous case, the procedure attempts to build dense, maximal
subtrees shared by T 0 and T #. These subtrees are paired up appropriately to construct
distinguishing tests. For general trees, however, care must be taken to deal with pos-
sible “overlaps” in T 0 and T # (see Definition 5.4). Such overlaps produce unwanted
dependencies between the test pairs.

As a result, we proceed in two stages:

1. First, similarly to the homogeneous case, pairs of matching subtrees are con-
structed.

2. Second, if the overlap between the tests is too large, new distinguishing tests are
constructed along the “boundary of the overlap”.

The first stage is described below. Analysis of the size of the overlap is presented in
Sect. 5.4. The more delicate second stage is described in Sects. 5.5 and 5.6.

We root T 0 arbitrarily.

Definition 5.2 (�-vertices) For a fixed positive integer �, we call �-vertices those
vertices in T 0 whose graph distance from the root is a multiple of �. The sets of all
�-vertices at the same distance from the root are called �-levels. For an �-vertex x ,

123

Phase transition in the sample complexity... 37

its descendant �-vertices on the next �-level (that is, farther from the root) are called
the �-children of x . We also refer to the �-children of x as a family of �-siblings.
By convention, the leaves of T 0 are also considered �-vertices irrespective of their
distance from the root. They belong to the �-level immediately below them.

Our goal is to color each �-vertex x with the following interpretation:

• Green G: indicating a matching subtree rooted at x that can be used to reconstruct
ancestral states on T 0 and T # using the same function of the leaf states.

• Red R: indicating the presence among the �-children of x of a pair of matching
subtrees that can be used as a distinguishing test because the distance between
their roots differs in T 0 and T #.

• Yellow Y: none of the above.

As before, we call G-vertices (respectively G-children) those �-vertices (respectively
�-children) that are colored G, and similarly for the other colors. Before describing the
coloring procedure in details, we need a definition.

Definition 5.3 (G-cluster) Let x be a G-vertex. Assume that each �-vertex below x
in T 0 has been colored G, R, or Y and that the leaves have been colored G. The G-
cluster rooted at x is the restricted subtree of T 0 containing all vertices and edges (not
necessarily �-vertices) satisfying the following property: they lie on a path between x
and a leaf below x that traverses only �-vertices colored G.

We now describe the coloring procedure. Below, when counting the �-children of an
�-vertex x with a specified property, each leaf among the �-children of x counts as
2�−d vertices if d is the graph distance between x and that leaf.

1. Initialization
(a) Root T 0 at an arbitrary vertex. (Note that T # remains unrooted for this part of

the proof where we are concerned with metric-matching as defined in Defini-
tion 3.3.)

(b) All leaves of T 0 are colored G.
2. For each �-vertex x in the �-level furthest from the root that is not yet colored, do

the following:
(a) Vertex x is colored G if:

• at most one of its �-children is non-G and;
• the resulting G-cluster rooted at x and the subtree of T # restricted to the
same leaf set are matching.

(b) Else, vertex x is colored R if:
• at most one of its �-children is non-G;
• and the following condition holds: if x were colored G, the resulting G-
cluster rooted at x and the corresponding matching subtree in T # would
not be matching.

(c) Else, vertex x is colored Y.

In particular observe that, if x is colored Y, at least two of its �-children are non-G.

123

38 S. Roch, A. Sly

5.4 Relating combinatorial distance, the number of matching subtrees and the
overlap size

Let #G be the number of G-vertices in T 0 in the construction, and similarly for the
other colors. For an �-vertex x in T 0, we let T 0

x be the subtree of T 0 rooted at x and
we let V�(T 0

x) be the set of �-vertices in T 0
x . Recall from Definition 3.2 that we denote

by dg
T 0 the graph distance on T 0.

Unlike the homogeneous case (see the proof of Claim 4.5), observe that it is possible
for G-clusters to “overlap” in T #, that is, pairwise intersect. We define the overlap
formally as follows. See Figs. 2 and 3 for an illustration.

Definition 5.4 (Overlap) An edge e# in T # is in the overlap if it belongs to the
matching restricted subtrees in T # (the collection of which we denote by {Mi }i) of

Fig. 2 Test subtrees overlap in T #. Matching subtrees are labeled with the same number

Fig. 3 A more detailed view of an overlap. The black solid and dashed subtrees are matching in T 0 and
T #. The edges that are simultaenously solid and dashed in T # are in the overlap. Note that an edge in T 0

may correspond to a path in T #. For instance e0 is matched to the path formed by e0,1 and e0,2. On the
other hand, an edge in the overlap in T # corresponds to several edges in T 0. For instance, e0,1 corresponds
to both e0 and e1. The subtrees in T 0 are rooted at ρs and ρd respectively. This rooting is consistent with
the global rooting of T # at vertex ρ#

123

Phase transition in the sample complexity... 39

at least two distinct maximal G-clusters in T 0 (the collection of which we denote
by {Gi }i , where Gi and Mi are matching). The edge e# is on a path of some Mi

corresponding to an edge e0 in the matching Gi . We also say that e0 is in the overlap.
Let O# (respectively O0) denote the overlap, as a set of edges, in T # (respectively
T 0). We say that a vertex in T 0 is in the overlap if it is adjacent to an edge inO0, and
similarly for T #.

The following bound allows us to work with the overlap in either T 0 or T #, whichever
is more convenient depending on the context. Notice that it is not immediately clear
that O0 and O# are roughly the same size because, by definition, each edge in O#

corresponds to several edges in O0.

Claim 5.2 (Overlaps in T 0 and T #) We have

∣∣∣O0
∣∣∣ = �

(∣∣∣O#
∣∣∣
)

,

where the constants depend on f, g, 1
ϒ

, �.

Proof One direction is straightforward. Let e# be an edge in O#. There is an edge e0

(in fact at least two) in a G-cluster in T 0 whose corresponding path in T # includes e#.
See Fig. 3 for an illustration. Note that e0 has weight at most g and therefore can be
identified in this way with at most gϒ edges inO#. That is, for every edge inO0 there
are at most gϒ edges in O#, or

∣∣
∣O0

∣∣
∣ ≥ 1

gϒ

∣∣
∣O#

∣∣
∣ .

The other direction is trickier because each edge in O# corresponds, by definition,
to several edges in O0. However we claim that, in fact, only a small number of
maximal G-clusters can “overlap on a given edge” in O#. To prove this we note that,
being on a tree, most edges in the overlap are close to the “boundary of the overlap,”
that is, they are close to vertices outside the overlap. But vertices outside the overlap
necessarily belong to a single G-cluster—which leads to a bound on the number of
clusters overlapping on a given edge in O#.

We first formalize what we mean by “being close to the boundary of the overlap.”
Root T # at an arbitrary vertex ρ#. Let G be a maximal G-cluster in T 0 and re-root G
consistently with the rooting in T #, that is, at the vertex corresponding to the root of
the matching subtree in T #. See Fig. 3 for an illustration. (Observe that there is no
global rooting in T 0 that is consistent with the global rooting in T #. Instead, for this
proof, each maximal G-cluster in T 0 is rooted separately as explained above.) Let VG
andWG be the vertices in G and the vertices in the overlap in G respectively. LetWG

x
(respectively VG

x) be the vertices in WG (respectively VG) below vertex x (including
x).

Definition 5.5 (Overlap-shallow vertices) We say that x is overlap-shallow (with
parameter β) if

123

40 S. Roch, A. Sly

∑

y∈WG
x

2− d
g
T 0 (x,y)

2 <
β

1 − 1/
√
2
. (32)

We let SG be the set of overlap-shallow vertices in G.

To see why this condition characterizes shallowness in the overlap, let C > 0 be a
constant and say that y is a witness for x if 1) y ∈ (VG\WG) ∪ (VG ∩ L), that is, y
is in G outside the overlap or is a leaf in G, and if 2) y is at graph distance at most C
below x . Because a G-cluster is (�, 1)-dense (that is, nearly bifurcating), the sum

∑

y∈VG
x

√
1

2d
g

T 0 (x,y)
,

increases unboundedly as y moves away from x—until the leaves are reached. Thus
there is a C depending only on � and β such that, if x is overlap-shallow, a witness is
guaranteed to exist. In other words, x is close to a vertex outside of the overlap or to a
leaf. If y# is the vertex in T # corresponding to witness y, we say that y# is a #-witness
for x .

We proceed in two steps. For the rest of this claim, we let β = 2. (We will need
the same definition with a different value of β in Sect. 5.6.) Our starting point is the
bound ∣∣∣O0

∣∣∣ ≤
∑

G

∣∣∣WG
∣∣∣ , (33)

where the sum runs through all maximal G-clusters G in T 0. Indeed, the overlap forms
a sub-forest of T 0 and, therefore, it has more vertices than edges.

1. A large fraction of vertices in the overlap are shallow. We first relate |WG | and
|SG |. Summing the criterion in (32) over all vertices in a maximal G-cluster G, we
get

∑

x∈WG

⎡

⎣
∑

y∈WG
x

2− d
g
T 0 (x,y)

2

⎤

⎦ =
∑

y∈WG

⎡

⎣
∑

x :y∈WG
x

2− d
g
T 0 (x,y)

2

⎤

⎦ , (34)

by interchanging the sum.Note that the expression in square brackets on the r.h.s. is
a sum over the overlap on the path from y towards the root of G. Because the sum
is geometric, we obtain the bound

∑

y∈WG

⎡

⎣
∑

x :y∈WG
x

2− d
g
T 0 (x,y)

2

⎤

⎦ ≤
∑

y∈WG

[
1

1 − 1/
√
2

]
=

∣
∣WG∣

∣

1 − 1/
√
2
, (35)

where we used that
∑

z≥0(1/
√
2)z = (1− 1/

√
2)−1. It follows, by contradiction,

that

|SG | >
1

2
|WG |. (36)

123

Phase transition in the sample complexity... 41

Indeed, if that were not the case, that is, if |WG\SG | > 1
2 |WG |, then the sum on

the l.h.s. of (34) would be > 1
2 |WG | 2

1−1/
√
2
by (32), contradicting (35). Combin-

ing (33) and (36), we get the bound

∣∣∣O0
∣∣∣ < 2

∑

G

∣∣∣SG
∣∣∣ . (37)

2. Overlap-shallow vertices in T 0 can be mapped to vertices in the overlap in T #with
little duplication. It remains to relate |SG | and |O#|. This step is delicate because
the definition of the overlap (Definition 5.4) differs somewhat in T 0 and T #. Note,
in particular, that a vertex x0 in the overlap in T 0 is matched to a vertex x# in T #

which may not itself be in the overlap. Instead, all we can say is that x0 is incident
with an edge in T 0 whose corresponding path in T # contains a vertex x̃# in the
overlap. To each vertex x0 in ∪GSG , associate a vertex x̃# in the overlap in T # as
we just described, with the following extra condition: two vertices x0 �= z0 in the
same G-cluster G must be associated with distinct vertices x̃0 �= z̃0 in the overlap
in T #. This is always possible because, if x̃0, z̃0 are incident with the same edge,
we can associate to them distinct vertices from the overlap on the corresponding
path in T # (say, the closest in graph distance to the matching vertex). Let S# be
the set of all these x̃#s and observe that

|S#| ≤ 2|O#|. (38)

Note however that we cannot directly bound the size of ∪GSG with the size of
S# because some vertices in S# may be associated with vertices in different G-
clusters in T 0. Let x̃# ∈ S# and let x01 , . . . , x0h be the vertices in ∪GSG to which
it is associated. What we need is to bound h. This will follow from a number of
observations. See Fig. 4
(a) By the construction above, each x0i belongs to a distinct maximal G-cluster Gi .
(b) Let y0i and y#i be a witness and #-witness for x0i respectively. The existence of

such witnesses was established immediately after Definition 5.5.
(c) Each y#i belongs to a single G-cluster, that is, Gi . Indeed, by definition, either

y#i is outside the overlap in Gi , or it is a leaf in Gi . (Because of the way the
G-clusters are constructed in T 0, each leaf belongs to one maximal G-cluster.)

(d) Combining (a) and (c), y#1 , . . . , y#h must be distinct vertices in T #.
(e) Because x0i and y0i are at graph distance C and each edge in T # corresponds

to at most gϒ edges in T 0, the graph distance between x̃# and y#i is at most
(C + 1)gϒ . Here the +1 accounts for the fact that, as explained above, x0i and
x̃# may not be matching.

(f) There are at most 3(2(C+1)gϒ+1 − 1) + 1 vertices in T # at graph distance
(C + 1)gϒ from x̃#. That follows from the fact that an h-level (counting the
root) complete binary tree has 2h+1 − 1 vertices.

(g) Combining (d), (e) and (f), we have established that h ≤ 3(2(C+1)gϒ+1 − 1).

123

42 S. Roch, A. Sly

Fig. 4 Witnesses outside the overlap. Here x0i and x0j are associated to x̃#. Their respective #-witnesses

are y#i and y#j . The dotted lines surround the overlap

Thus, using (38),

∑

G
|SG | ≤ |S#| · 3(2(C+1)gϒ+1 − 1) ≤ 2|O#| · 3(2(C+1)gϒ+1 − 1). (39)

It remains to combine (37) and (39) to obtain

|O0| ≤ 12(2(C+1)gϒ+1 − 1)|O#|.

That concludes the proof. ��
Wenow relate the blow-up distance between T 0 and T # to the number ofR-vertices,

from which tests can potentially be constructed, and the size of the overlap. We first
bound the number of yellow vertices.

Claim 5.3 (Bounding the number of yellow vertices) We have

#Y ≤ #R.

Proof From our construction, each Y-vertex in T 0 has at least two non-G-children.
Hence, intuitively, one can think of the Y-vertices as forming the internal vertices of
a forest of multifurcating trees whose leaves are R-vertices.

The inequality follows.
Formally, if x is a Y-vertex, from the observation above we have

∑

y∈V�(T 0
x)

2− d
g
T 0 (x,y)

� 1{y is a R- vertex} ≥ 1, (40)

by induction on the �-levels startingwith the level farthest away from the root. Similarly
if y is an R-vertex,

123

Phase transition in the sample complexity... 43

we have
∑

x :y∈V�(T 0
x)

2− d
g
T 0 (x,y)

� 1{x is a Y- vertex} < 1, (41)

where the inequality follows from the fact that the sum is over a path from x to the
root of T 0. Summing (40) over Y-vertices x and (41) over R-vertices y gives the same
quantity on the LHS, so that the RHS gives the inequality. ��
Claim 5.4 (Relating blowup, #R, and overlap) There is a constant 0 < CO < +∞,
depending on �, g and ϒ , such that

�BL

(
T 0, T #

)
≤ CO

(
#R +

∣∣
∣O#

∣∣
∣
)

.

Proof Our goal is to display a blowup from T 0 to T # whose number of edges is
bounded by a constant times the number of R-vertices plus the size of the overlap in
T #. We proceed in two steps:

• Edge removals. First we remove all edges in T 0 that are not in a maximal G-
cluster. To count how many such edges there are, we observe that there are at most
2�+1 − 2 edges between a non-G-vertex and its �-children. The edge above each
non-G-vertex is also removed if its parent �-vertex is colored G. Hence, we need
to remove at most (2�+1 − 1)(#R + #Y) edges. We also remove all edges in the
overlap, which adds at most an extra |O0| edges to the total of those removed.
Nextwe remove every edge adjacent to a degree-2 vertex produced by the removals
above. Each edge removed above produces at most 4 such edges, bringing the total
number of edges removed so far to at most

5[(2�+1 − 1)(#R + #Y) + |O0|] ≤ 5 · 2�+1(#R + |O0|), (42)

where we used Claim 5.3.
We call what is left the backbone. Because the backbone is a subset of the G-
clusters, every vertex of the backbone corresponds to a (non-extra) vertex in T #.
(Recall that extra vertices were defined in Definition 3.3.) Every edge in the back-
bone, on the other hand, corresponds to a path in T # with at most gϒ edges.
Because T 0 and T # have the same overall number of edges, the number of edges
in T # that do not lie on the backbone is at most 5 · 2�+1(#R+ |O0|) by (42). Each
such edge may be incident (in T #) to at most 2 edges in the backbone that are a
path of length at least 2 in T #. We also remove all such edges from the backbone,
finally bringing the total of edges removed to at most 15 · 2�+1(#R + |O0|).

• Edge additions. All edges and vertices left after the edge removals above cor-
respond to (non-path) edges and (non-extra) vertices of T #. Because T 0 and T #

have the same overall number of edges, the number of edge additions needed to
obtain T # at this point is at most 15 · 2�+1(#R + |O0|).

From Claim 5.2, the constant CO in the statement can be taken to be a function of �,
g and ϒ . ��

123

44 S. Roch, A. Sly

Our next goal is to construct batteries with a number of tests scaling linearly in the
blowup distance between T 0 and T #. Using Claim 5.4, we first divide the analysis
into two cases depending on the values of #R and |O#|.
• Large overlap. If

|O#| ≥ 1

10

�BL(T 0, T #)

CO
, (43)

we say that we are in the large overlap case. We will show in Sect. 5.6 that a linear
(in the blowup distance) number of tests can be built “around the periphery of the
overlap.” The choice of the factor 1/10 will be justified in Claim 5.5.

• Many R-vertices. If, instead,

|O#| <
1

10

�BL(T 0, T #)

CO
, (44)

we say thatwe are in themany-R case. To justify the namewenote that byClaim5.4,
if (44) holds, then

#R ≥ 9

10

�BL(T 0, T #)

CO
. (45)

In that case, we proceed similarly to the homogeneous case and construct a dis-
tinguishing test for a linear fraction of R-vertices. See Sect. 5.5.

5.5 Constructing a battery of tests: many-R case

We now construct a battery of tests in the many-R case. This case is similar to the
homogeneous case although many new difficulties arise. The basic idea remains the
same: each R-vertex has two G-children which satisfy many of the requirements of a
battery and therefore can potentially be used as a test pair. In particular, they are the
roots of dense subtrees that are matching with their corresponding restricted subtrees
in T # and their evolutionary distance differs in T 0 and T #. Note that, in the many-R
case, we also have a number of R-vertices that scales linearly in the blowup distance.
Compared to the homogeneous case, however, there are new issues to address to
construct a battery of tests, mainly the possibility of overlapping G-clusters and of
non-co-hanging pairs in T #.

In this section, T 0 and T # are fixed. To simplify notation,we let� = �BL
(
T 0, T #

)
.

Fix ℘ = 1. Choose � = �(g, ℘) as in Proposition 1. Then take

� = (6 + 2ϒg)�, (46)

and set γt ≥ �, a multiple of �, and C as in Proposition 1.

Choosing non-overlapping G-clusters. To satisfy the requirements of the battery, the
test subtreesmust be non-intersecting in T #. (By construction, the test subtrees are non-
intersecting in T 0.) We proceed by showing that sufficiently many non-overlapping
G-clusters can be found. For this purpose, we use a re-coloring procedure. Re-color B

123

Phase transition in the sample complexity... 45

(for black) those R-vertices that have at least one G-child who is the root of a G-cluster
that intersects with another G-cluster in T #. (This recoloring procedure is performed
only once.) Intuitively, if too many R-vertices are lost in this recoloring step, then the
overlap must be large. That cannot be the case by (44). Indeed, we prove the following.

Claim 5.5 (Re-coloring) In the many-R case, after re-coloring, we have

#R ≥ �

2CO
,

where CO, which depends on �, g and ϒ , was defined in Claim 5.4.

Proof Assume maximal G-cluster Gi intersects with a distinct maximal G-cluster in
T # and letMi be the matching subtree corresponding to Gi in T #. Consider a shortest
path in graph distance between a leaf inMi and the overlap in T #. Let vi be the vertex
in T # where this path enters the overlap. Because 1) T # is bifurcating, 2) at least one
edge adjacent to vi must be in O#, and 3) at least one edge adjacent to vi must be in
Mi outside the overlap,

it follows that vi can arise as the entrance vertex to the overlap for at most two
maximal G-clusters. Hence, each maximal G-clusters intersecting with another maxi-
mal G-cluster is associated an entrance vertex in the overlap that can be used at most
twice. So the number of such clusters is bounded by

2 · 2
∣
∣∣O#

∣
∣∣ ≤ 4

1

10

�

CO
,

where we used (44) and where we took into account that the number of vertices in the
overlap is at most twice the number of edges in the overlap. Moreover, observe that
each such cluster contributes to the recoloring of at most one R-vertex. That implies
that the number of recolored �-vertices is atmost 4 1

10
�

CO . After recoloringwe therefore
have

#R ≥ 9

10

�

CO
− 4

1

10

�

CO
= �

2CO
,

where we used (45). ��
In the rest of this subsection, we build a (�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #)

with corresponding αi s as defined in Definition 3.7. We number the R-vertices i =
1, . . . , I ′ after recoloring and we build one test panel for each R-vertex. Here it will
turn out that I ′ ≥ I as we will later need to reject some of the test panels to avoid
unwanted correlations. We root T # at an arbitrary vertex ρ#. (The rootings of T 0 and
T # need not be consistent at this point.)

123

46 S. Roch, A. Sly

Fig. 5 Construction of the test in the co-hanging sub-case of the many-R case. The root of the cluster in
T # is denoted by ρ#i . Moving the test pair to the G-children y0i and y#i has the effect of making the new test
subtrees rooted consistently

5.5.1 Constructing co-hanging test panels

Let x0i be an R-vertex (after recoloring) in T 0. Because x0i is colored R, by definition
it has at least 2� − 1 G-children, but its G-children are connected in a different way in
T #. We distinguish between two cases:

1. An appropriate co-hanging pair can be found: All pairs of G-children of x0i are
the roots of co-hanging, non-overlapping matching subtrees in T #. In that case at
least one pair of G-children (y0i , z0i) must be at a different evolutionary distance in
T 0 than the corresponding pair (y#i , z#i) in T #. We use these pairs as our test panel,
modulo the following re-rooting. If a test subtree is not rooted consistently in T 0

and T #, we move the corresponding test vertices to one of their corresponding
G-children where the rooting is consistent. This can always be done as there is at
most one G-child of a G-vertex between itself and the root of T #. All other choices
lead to a consistent rooting. See Fig. 5 for an illustration.

2. There exists a non-co-hanging pair: Otherwise at least one pair (ỹ0i , z̃0i) of G-
children of x0i , with corresponding pair (ỹ#i , z̃#i), has a connecting path in T #

that intersects with the corresponding matching test subtrees, Ỹ #
i or Z̃#

i (or both).
Indeed, although by construction the test subtrees are matching in T 0 and T #, the
path connecting themmay be “positioned differently”. See Fig. 6 for an illustration
of such a case. The main goal of the next claim is to show how to construct an
appropriate co-hanging test panel in this case.

Claim 5.6 (Co-hanging pairs) In the many-R case, after recoloring, for each remain-
ing R-vertex x0i we can find a test pair of G-vertices (y0i , z0i) in the subtree rooted at
x0i in T 0, with corresponding test pair (y#i , z#i) in T #, such that the test panel satisfy
the cluster and pair requirements of a battery.

Proof We consider again the two cases above.

An appropriate co-hanging pair can be found We proceed as we described above
the statement of the claim. By construction the test subtrees, that is, the G-clusters

123

Phase transition in the sample complexity... 47

rooted at the test vertices, are (�, 1)-dense. The test subtrees are also matching, co-
hanging and their roots are at different evolutionary distances in T 0 and T # by (48).
Finally, the test pair in T 0 is proximal as

dg
T 0

(
y0i , z0i

)
≤ 4� ≤ �,

where we note that re-rooting procedure may increase the distance by at most 2�.
There exists a non-co-hanging pair For the second case, we use the notation of

Item 2 above the statement of the claim. Because T # has no cycle, the path between
ỹ#i and z̃#i must be of the following form: there is a vertex v# in Ỹ #

i (possibly equal to
ỹ#i) and a vertex w# in Z̃#

i (possibly equal to z̃#i) such that the path between ỹ#i and z̃#i
1) intersects with Ỹ #

i between ỹ#i and v#, 2) does not intersect with either Ỹ #
i or Z̃#

i
between v# and w#, and 3) intersects with Z̃#

i between w# and z̃#i . See Figs. 6 and 7
for an illustration. We let v0 and w0 be the extra vertices corresponding respectively
to v# and w# in T 0. (Recall that extra vertices were defined in Definition 3.3.) We
consider two subcases:

Fig. 6 Construction of the test in the non-co-hanging sub-case of the many-R case when ỹ#i , z̃#i are “far”.

The root of the cluster in T # is denoted by ρ#i

Fig. 7 Construction of the test in the non-co-hanging sub-case of themany-R case when ỹ#i , z̃#i are “close”.

The root of the cluster in T # is denoted by ρ#i

123

48 S. Roch, A. Sly

1. ỹ#i , z̃#i are “far” in T #. Suppose first that

dT #

(
ỹ#i , z̃#i

)
> 2g�. (47)

That case is illustrated in Fig. 6. We construct a co-hanging test panel by choosing
appropriate G-children as follows. Recall that we must ensure in particular that our
chosen pairs are co-hanging and at different evolutionary distances in T 0 and T #.
If v# = ỹ#i , we simply set y#i = ỹ#i . If v# �= ỹ#i , let y0i be a G-child of ỹ0i which
satisfies the following:
• Observe that one of the two children of ỹ0i is the root of a subtree containing

v0. We choose y0i in the other subtree. This is to guarantee that the path joining
y0i and z0i (below) does not intersect the resulting subtrees. See Fig. 6.

• We also choose y0i so that the test subtree rooted at y0i and the test subtree
rooted at the corresponding vertex y#i in T # are rooted consistently. This can
always be done as there is at most one G-child of G-vertex between itself and
the root of T #. All other choices, of which there are overall at least 2�/2 − 1
satisfying the first property above, lead to a consistent rooting. We pick y0i
arbitrarily among them.

We define z0i and z#i similarly. As a result of this construction, the subtrees rooted
at y#i and z#i are co-hanging in T # by construction.
Moreover, the evolutionary distance between y0i and z0i satisfies

dT 0

(
y0i , z0i

)
= dT 0

(
y0i , ỹ0i

)
+ dT 0

(
ỹ0i , z̃0i

)
+ dT 0

(
z̃0i , z0i

)

≤ dT 0

(
y0i , ỹ0i

)
+ 2g� + dT 0

(
z̃0i , z0i

)

< dT #

(
y#i , ỹ#i

)
+ dT #

(
ỹ#i , z̃#i

)
+ dT #

(
z̃#i , z#i

)

= dT #

(
y#i , z#i

)
, (48)

where, on the second line, we used that ỹ0i , z̃0i were chosen to be G-children of x0i
in T 0 and, on third line, we used (47) and the fact that dT 0(y0i , ỹ0i) = dT # (y#i , ỹ#i)

and dT 0(z̃0i , z0i) = dT # (z̃#i , z#i) by the matching condition. That is, dT 0(y0i , z0i) �=
dT # (y#i , z#i) as required. Hence the pairs (y0i , z0i) and (y#i , z#i) satisfy the cluster
and pair requirements of the battery. Indeed by construction the test subtrees are
(�, 1)-dense. The test subtrees are also matching, co-hanging and their roots are
at different evolutionary distances in T 0 and T # by (48). Finally, the test pair in
T 0 is proximal as

dg
T 0

(
y0i , z0i

)
≤ 4� ≤ �,

because y0i , z0i are G-grandchildren of x0i .

123

Phase transition in the sample complexity... 49

2. ỹ#i , z̃#i are “close” in T #. Assume instead that

dT #

(
ỹ#i , z̃#i

)
≤ 2g�. (49)

That case is illustrated in Fig. 7. We consider two sub-cases:
(a) If

dT 0

(
ỹ0i , z̃0i

)
�= dT #

(
ỹ#i , z̃#i

)
, (50)

we proceed as in the “far” case above. The argument then follows in the same
way with (50) playing the role of (47) in (48).

(b) If instead

dT 0

(
ỹ0i , z̃0i

)
= dT #

(
ỹ#i , z̃#i

)
, (51)

we choose the test pairs below v0 and w0 respectively, as shown in Fig. 7.
Formally, let y0i be the closest G-vertex below v0 resulting in a consistent
rooting. Let z0i be defined similarly. Such vertices exist within graph distance
at most 2� of v0 and w0. (Note that the latter are not in general G-vertices
themselves which, in addition to the (�, 1)-density assumption, explains the
2�.) Let y#i and z#i be the corresponding vertices in T #.
Then, the path connecting y#i and z#i in T # goes through v# and w#, and we
have

dT #

(
y#i , z#i

)
= dT #

(
y#i , v#

)
+ dT #

(
v#, w#

)
+ dT #

(
w#, z#i

)

< dT 0

(
y0i , ỹ0i

)
+ dT 0

(
ỹ0i , z̃0i

)
+ dT 0

(
z̃0i , z0i

)

= dT 0

(
y0i , z0i

)
, (52)

where the inequality holds term by term. For the first term, we note that the
path from y0i to ỹ0i in T 0 goes through v0, and similarly for the third term.
For the second term, we use (51) and the fact that the path connecting v and
w is a sub-path of the path connecting ỹ0i and z̃0i . Hence, we have established
that dT 0(y0i , z0i) �= dT # (y#i , z#i). Moreover note that the subtrees rooted at y#i
and z#i are co-hanging in T #. The resulting test subtrees are also matching and
(�, 1)-dense by construction. It remains to check the proximality condition.
From the choice of y#i , z#i ,

dg
T 0

(
y0i , z0i

)
= dg

T 0

(
y0i , v0

)
+ dg

T 0

(
v0, ỹ0i

)
+ dg

T 0

(
ỹ0i , z̃0i

)

+dg
T 0

(
z̃0i , w

0
)

+ dg
T 0

(
w0, z0i

)

= dg
T 0

(
ỹ0i , z̃0i

)
+ dg

T 0

(
y0i , v0

)
+ dg

T 0

(
w0, z0i

)

+
[
dg

T 0

(
v0, ỹ0i

)
+ dg

T 0

(
z̃0i , w

0
)]

≤ 2� + 2� + 2� + 2ϒg�

123

50 S. Roch, A. Sly

= (6 + 2ϒg) �

≤ �,

where the equality on the second line is a rearrangement of terms and the
inequality on the third line holds term by term: the first term follows from the
fact that ỹ0i and z̃0i are both G-children of x̃0i ; the second and third terms follow
from the choice of y0i and z0i as described above; and the term in square brackets
is an application of (49) and (51) converted into graph distance through a
multiplication by ϒ , together with the observation that the paths from v0 to ỹ0i
and from z̃0i to w0 match the paths from v# to ỹ#i and from z̃#i to w#, which are
themselves sub-paths of the path from ỹ#i to z̃#i . Recall that� is defined in (46).
Hence the pairs (y0i , z0i) and (y#i , z#i) satisfy the cluster and pair requirements
of the battery.

That concludes the proof. ��

5.5.2 Sparsification in T #

It remains to satisfy the global requirements of the battery. By the construction in
Claim 5.6 the test subtrees are non-intersecting in both T 0 and T #. However we
must also ensure that proximal/semi-proximal connecting paths and non-proximal
hats do not intersect with each other or with test subtrees from other test panels. By
construction, this is automatically satisfied in T 0 where all test pairs are proximal.
To satisfy this requirement in T #, we make the collection of test pairs “sparser” by
rejecting an appropriate fraction of them.

Claim 5.7 (Sparsification in T #) Let H′ = {(y0i , z0i); (y#i , z#i)}I ′
i=1 be the test panels

constructed in Claim 5.6. We can find a subset H ⊆ H′ of size

|H| = I ≥ 1

1 + 22γt +2 I ′ ≥ �

2CO(1 + 22γt +2)

such that the test panels in H satisfy all global requirements of a battery.

Proof We sparsify the set H′ of test pairs as follows. Let {(Y 0
i , Z0

i); (Y #
i , Z#

i)}I ′
i=1 be

the test subtrees corresponding toH′. Start with test panel ((y01 , z01); (y#1 , z#1)). Remove
fromH′ all test panels i �= 1 such that

min
{
dg

T # (v,w) : v ∈ {y#1 , z#1}, w ∈ V(Y #
i) ∪ V(Z#

i)
}

≤ 2γt . (53)

Because there are at most 2 · 22γt +1 vertices w in T # satisfying the above condition
and that the test subtrees are non-overlapping in T # (so that any such vertex belongs
to at most one test subtree), we remove at most 22γt +2 test panels fromH′.

Let i be the smallest index remaining inH′. Proceed as above and then repeat until
all indices in H′ have been selected or rejected.

123

Phase transition in the sample complexity... 51

At the end of the procedure, there are at least

1

1 + 22γt +2 I ′

test panels remaining, the set of which we denote by H. Recall that γt ≥ �. Hence
by (53), in H, the connecting paths of proximal/semi-proximal pairs and the hats of
non-proximal pairs cannot intersect with each other or with any of the test subtree
rooted at test vertices in H. ��

5.5.3 Summary of many-R case

We have proved the following in the many-R case. Recall that ℘ = 1, � = �(g, ℘) is
chosen as in Proposition 1, � = (6 + 4ϒg)�, and γt ≥ �, a multiple of �, and C are
chosen as in Proposition 1.

Proposition 4 (Battery in the many-R case) In the many-R case, we can build a
(�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #)

with

I ≥ �

2CO(1 + 22γt +2)
.

Proof The result follows from Claims 5.5, 5.6, and 5.7. ��

5.6 Constructing a battery of tests: large overlap case

We now construct a battery of tests in the large overlap case. By assumption we have,

|O#| ≥ 1

10

�BL(T 0, T #)

CO
.

Moreover, by the proof of Claim 5.2, a significant fraction of the vertices in the overlap
are in fact shallow, that is, they are close to the boundary of the overlap. To build a
battery in this case, we show that a test pair can be found near each shallow vertex. As
in the many-R case, we need to deal with a number of issues, including the overlap of
G-clusters, the possibility of non-co-hanging pairs, and the proximity of the matching
subtrees.

In this section, T 0 and T # are fixed. To simplify notation,we let� = �BL
(
T 0, T #

)
.

Recall that T 0 is rooted. We also root T # arbitrarily. Fix ℘ = 5. Choose � = �(g, ℘)

as in Proposition 1. Then take

123

52 S. Roch, A. Sly

� = 6gϒ log2

(
8

1 − 1/
√
2

)
+ 2�gϒ + 4,

and set γt ≥ �, a multiple of �, and C as in Proposition 1.

5.6.1 Test pairs near the boundary of the overlap

Let v# in T # be in the overlap. Intuitively, vertex v# can be used to construct a test
pair for the following two reasons:

• It corresponds to (at least) two vertices v0i , v0j in T 0 from distinct clusters. The

evolutionary distance between these vertices differs in T 0, where it is > 0, and in
T #, where it is 0.

• The vertex v# is in the matching G-clusters of those including v0i and v0j . Hence

its sequence can be reconstructed using the same estimator on T 0 and T #.

However, to avoid unwanted correlations between the ancestral reconstructions on
T #, one must be careful to construct appropriate co-hanging test subtrees that further
satisfy all requirements of a battery. We proceed instead by identifying pairs of edges
in T 0 that overlap close to its boundary.

1. Bounding the number of overlap-shallow edges in T 0. Recall the definition of an
overlap-shallow vertex from Definition 5.5 (in Claim 5.2). We further say that an
edge e = (x, w) in O0 is overlap-shallow with parameter β if both x and w are
overlap-shallow with parameter β. We call deep those vertices and edges that are
not overlap-shallow. Proceeding as in (35), we see that at most a fraction 1− 1/β
of vertices in the overlap are deep. Each such vertex prevents at most 3 edges inO0

from being overlap-shallow. From the fact there are at most twice as many vertices
in the overlap as there are edges, we get that the number of overlap-shallow edges
in T 0 is at least [

1 − 6

(
1 − 1

β

)]
|O0|. (54)

We will later choose β > 1 close enough to 1 that the above fraction is positive.
2. Bounding the number of intersecting pairs of shallow edges.For reasons thatwill be

explained below, our test construction is based on finding pairs of shallow edges
that intersect. Formally, we say that e1, e2 ∈ O0 intersect if the corresponding
paths in T # share an edge. We say that an edge e1 ∈ O0 is useful if it is overlap-
shallow and if it intersects with at least one other overlap-shallow edge e2 �= e1.
Note that here e1 and e2 must belong to distinct maximal G-clusters (otherwise
the corresponding cluster would not be matching in T #). Let e0 ∈ O0 be deep.
Recall that e0 corresponds to a path of length at most gϒ in T #. Let e1, e2 are
overlap-shallow edges intersecting with e0 but not with each other. Then the paths
corresponding to each of e1 and e2 in T # must intersect with different edges on
the path corresponding to e0. Put differently, any deep edge e0 can prevent at most
gϒ shallow edges from intersecting with any other shallow edge. Combining this
with (54), we get that the number of useful edges in T 0 is at least

123

Phase transition in the sample complexity... 53

Fig. 8 Construction of the test in the large overlap case. The region inside the dotted line is part of the
overlap in T #

[
1 − 6gϒ

(
1 − 1

β

)]
|O0|. (55)

3. Existence of four close witnesses. Let ei = (w+
i , w−

i) be a useful edge in Gi . Let
e j = (w+

j , w−
j) in G j be an overlap-shallow edge intersecting with ei and let e#

be an edge in T # lying on the paths corresponding to both ei and e j . Assume that,
for ι = i, j , w+

ι is the parent of w−
ι . By definition of a useful edge, both w+

i and
w+

j are overlap-shallow. In the proof of Claim 5.2, we argued that (32) implies the
existence of a close witness, that is, a leaf or vertex not in the overlap at a constant
graph distance. By restricting the sum in (32) to those vertices that are on only
one side below w+

ι (that is, below one of its immediate children), we can find in
fact two distinct witnesses ỹ0ι and z̃0ι at constant graph distance C ′ = C ′(g, ϒ)

from w+
ι , one on each side. The four witnesses ỹ0i , z̃0i , ỹ0j , z̃0j jointly satisfy the

following properties:
• They are not in the overlap.
• For ι = i, j , ỹ0ι and z̃0ι are in Gι.
• For x = y, z, the vertices in T # corresponding to x̃0i and x̃0j are on the same

side of e#, that is, the path between them does not cross e#.
Let ỹ#i , ỹ#j , z̃#i , and z̃#j be the corresponding vertices in T #.

4. Key observation: quartet topologies differ on T 0 and T #. We construct a test
pair nearby ei as follows. The key observation is the following: by construc-
tion, the topology of T 0 restricted to the witnesses {ỹ0i , ỹ0j , z̃0i , z̃0j } is ỹ0i z̃0i |ỹ0j z̃0j
while the topology of T # restricted to the corresponding vertices {ỹ#i , ỹ#j , z̃#i , z̃#j } is
ỹ#i ỹ#j |z̃#i z̃#j . Indeed, on T 0, the pairs {ỹ0i , z̃0i }, {ỹ0j , z̃0j } belong to distinct co-hanging
clusters and their most recent common ancestors are therefore separated by the
path joining the roots of those clusters. On T #, on the other hand, by construc-
tion e# separates {ỹ#i , ỹ#j } from {z̃#i , z̃#j }. See Fig. 8 for an illustration and refer to
Definition 3.1 for quartet topology notation.

5. Existence of witnesses at different evolutionary distances on T 0 and T #. The reason
the above observation is significant is that it allows us to find a pair among the

123

54 S. Roch, A. Sly

witnesses whose evolutionary distance differs on T 0 and T #, as we show next.
Note that

dT 0(ỹ0ι , z̃0ι) = dT # (ỹ#ι , z̃#ι) (56)

for ι = i, j by definition of the matching subtree of Gι. Moreover, by the four-point
condition (8) in the non-degenerate case,

dT 0

(
ỹ0i , ỹ0j

)
+ dT 0

(
z̃0i , z̃0j

)
> dT 0

(
ỹ0i , z̃0i

)
+ dT 0

(
ỹ0j , z̃0j

)
,

and

dT #

(
ỹ#i , z̃#i

)
+ dT #

(
ỹ#j , z̃#j

)
> dT #

(
ỹ#i , ỹ#j

)
+ dT #

(
z̃#i , z̃#j

)
,

which, with (56), implies

dT 0

(
ỹ0i , ỹ0j

)
+ dT 0

(
z̃0i , z̃0j

)
> dT #

(
ỹ#i , ỹ#j

)
+ dT #

(
z̃#i , z̃#j

)
.

Hence one of the following must hold

dT 0

(
ỹ0i , ỹ0j

)
> dT #

(
ỹ#i , ỹ#j

)
or dT 0

(
z̃0i , z̃0j

)
> dT #

(
z̃#i , z̃#j

)
.

Without loss of generality, assume that dT 0(ỹ0i , ỹ0j) > dT # (ỹ#i , ỹ#j).

6. Distance to witnesses. Wewill also need to bound dT # (ỹ#i , ỹ#j). It suffices to bound
C ′ above.

Claim 5.8 (Distance to witnesses) We have

C ′ ≤ 3 log2

(
4β

1 − 1/
√
2

)
,

for � large enoug.

Proof We use the notation of Claim 5.2. Assume all vertices in VGi

w−
i
within graph

distance C ′ − 1 are in WGi

w−
i
. Because Gi is (�, 1)-dense, we have that within graph

distance C ′ of w+
i there is at least

1

2
(2� − 1)

C ′
�

123

Phase transition in the sample complexity... 55

vertices in WGi

w+
i
below w−

i , where we counted only the furthest vertices within this

ball. Hence the sum in (32) restricted to vertices below w−
i satisfies

∑

y∈WGi
w

−
i

2− d
g
T 0 (x,y)

2 ≥ 1

2
(2� − 1)

C ′
� 2− C ′

2 ≥ 1

2
2

C ′
3 >

β

1 − 1/
√
2
,

for � large enough, if

C ′ > 3 log2

(
4β

1 − 1/
√
2

)
.

��
We repeat the procedure above for each useful edge and get a collection of pre-test

panels. To satisfy the requirements of the battery we then proceed, similarly to the
many-R case, by re-rooting and sparsification. We describe these steps next.

5.6.2 Co-hanging pairs

Note that the roots of T 0 and T # may not be consistent, in the sense that the G-clusters
and their matching subtrees may not be rooted at corresponding vertices. However we
can make it so that the test subtrees are rooted consistently and ensure that the test
subtrees are co-hanging.

For every pre-test panel constructed above, using the same notation, we proceed as
follows. If ỹ0i is on the path between the root of Gi in T 0 and the (possibly extra) vertex
corresponding to the root of the matching subtree in T #, we move ỹ#i over to one of its
immediate children such that the corresponding vertex ỹ0i is not on this path—unless
ỹ0j is a descendant of that vertex. In that case, we instead move ỹ#i over to the child

of its other immediate child such that the corresponding vertex ỹ0i is not on the path
above. The reason we need these two cases is that we seek to preserve the inequality

dT 0

(
ỹ0i , ỹ0j

)
> dT #

(
ỹ#i , ỹ#j

)
.

In both cases, the two sides of the inequality increase by the same amount, at most 2g.
We do the same on G j .

At this point, 1) the G-cluster of T 0 rooted at ỹ0i and the matching subtree rooted at
ỹ#i are rooted consistently (and similarly for ỹ0j and ỹ#i) and 2) the G-clusters rooted

at ỹ0i and ỹ0j are co-hanging (and similarly for the matching subtrees in T #).

Let y0i be a closestG-vertex below ỹ0i onGi and similarly for y0j . Let y#i and y#j be the

corresponding vertices in T #. Then the test subtrees (that is the G-clusters) Ȳ 0
i , Ȳ 0

j Ȳ #
i

and Ȳ #
j rooted respectively at y0i , y0j y#i and y#j are such that (Ȳ

0
i , Ȳ 0

j) and (Ȳ #
i , Ȳ #

j) are

co-hanging. In particular, they are non-intersecting by construction. Indeed, (Ȳ 0
i , Ȳ 0

j)

123

56 S. Roch, A. Sly

belong to different G-clusters in T 0 and (Ȳ #
i , Ȳ #

j) are on different sides below v# in

T #.
Moreover, by Claim 5.8, we have

dg
T # (y#i , y#j) ≤ 6gϒ log2

(
4β

1 − 1/
√
2

)
+ 2�gϒ + 4 ≤ �, (57)

where the first term corresponds to the distance to the closest witnesses, the second
term corresponds to the distance to the closestG-vertex, and the third term corresponds
to the re-rooting operation above. We also used that each edge in T 0 corresponds to at
most gϒ edges in the matching cluster. Hence the test pair (y#i , y#j) is proximal. We
also have

dT 0(y0i , y0j) > dT # (y#i , y#j),

because dT 0(ỹ0i , ỹ0j) > dT # (ỹ#i , ỹ#j), dT 0(ỹ0ι , y0ι) = dT # (ỹ#ι , y#ι), for ι = i, j , and y∗
ι

is below ỹ∗
ι for ∗ = 0, # and ι = i, j .

5.6.3 Sparsification

It remains to satisfy the global requirements of the battery. Unlike themany-R case, we
need to make the collection of test pairs sparser in both T # and T 0. Indeed, although
there is no overlap between the G-clusters in T 0, in constructing the tests we may have
used the samemaximalG-cluster repeatedly.Hence there is in fact no guarantee that the
test subtrees are not overlapping in T 0. In T #, test subtrees may also be overlapping,
whether or not they belong to the same G-cluster. Moreover, although the test subtrees
are co-hanging and proximal in T #, we must ensure that the connecting paths do not
intersect with other test subtrees or their connecting paths.

Let {(y0i , y0j); (y#i , y#j)}(i, j)∈H′ be the test panels constructed above. By (43), (55),
and Claim 5.2, we have

|H′| ≥
[
1 − 6gϒ

(
1 − 1

β

)]
|O0|

≥
[
1 − 6gϒ

(
1 − 1

β

)]
· 1

gϒ
|O#|

≥
[
1 − 6gϒ

(
1 − 1

β

)]
· 1

gϒ
· 1

10

�

CO
.

We choose

β = 12gϒ

12gϒ − 1
,

so that the expression in square brackets above is 1/2 and we have

∣∣H′∣∣ ≥ �

20gϒCO
.

123

Phase transition in the sample complexity... 57

We note that because gϒ ≥ 1, we have β ≤ 2. Let {(Ȳ 0
i , Ȳ 0

j); (Ȳ #
i , Ȳ #

j)}(i, j)∈H′ be
the test subtrees corresponding toH′.

Claim 5.9 (Sparsification) Let

Cw = 3gϒ log2

(
8

1 − 1/
√
2

)
+ �gϒ + 2.

There is a subset H ⊆ H′ of size

|H| ≥ 1

1 + 26γt +Cw+3gϒ
|H′| ≥ �

20gϒCO(1 + 26γt +Cw+3gϒ)

and (�, 5)-dense modified test subtrees {(Y 0
i , Y 0

j); (Y #
i , Y #

j)}(i, j)∈H such that the test
panels in H satisfy the requirements of a battery.

Proof We proceed in two phases. First we choose a subset of test panels such that the
test vertices in different panels are far away from each other. Then we cleave subtrees
of the G-clusters rooted at the test vertices to ensure that proximal/semi-proximal
connecting paths and non-proximal hats do not intersect with test subtrees.

Start with an arbitrary test panel ((y0i , y0j); (y#i , y#j)) in H′. Remove from H′ all
test panels (i ′, j ′) such that

min
{
dg

T # (v,w) : v ∈
{

y#i , y#j

}
, w ∈

{
y#i ′ , y#j ′

}}
≤ 6γt , (58)

or
min

{
dg

T 0(v,w) : v ∈
{

y0i , y0j

}
, w ∈

{
y0i ′ , y0j ′

}}
≤ 6γt . (59)

There are at most 2 · 26γt +1 vertices within graph distance 2γt of a test pair. Note,
however, that some vertices may be used as a test vertex multiple times. Nevertheless
we claim that each vertex can be used at most a constant number of times. Indeed,
consider a vertex y0i ′ in T 0 with corresponding vertex y#i ′ in T #. Recall that each test
panel is obtained from an overlap-shallow edge within graph distance Cw in T 0 and
that each such overlap-shallow edge produces at most gϒ test panels. Hence y0i ′ can
arise in this way at most 2Cw+1gϒ times. Therefore we remove at most 26γt +Cw+3gϒ

test panels.
Pick a remaining test pair inH′. Proceed as above and then repeat until all pairs in

H′ have been picked or removed. At the end of the procedure, there are at least

1

1 + 26γt +Cw+3gϒ
|H′|

test panels remaining, the set of which we denote by H. Recalling that γt ≥ �, in H,
the connecting paths of proximal/semi-proximal pairs and the hats of non-proximal
pairs cannot intersect with each other by (58) and (59) as it would imply the existence
of test vertices in different panels at graph distance less than 2γt ≤ 6γt .

123

58 S. Roch, A. Sly

For each (i, j) ∈ H, it remains to define the corresponding test subtrees
((Y 0

i , Y 0
j); (Y #

i , Y #
j)). Let ((Ȳ 0

i , Ȳ 0
j); (Ȳ #

i , Ȳ #
j)) be as above and note that, since we

may have re-used the same G-clusters multiple times, these subtrees may not satisfy
the global requirements of a battery as they may intersect with each other or with con-
necting paths and hats. We modify Ȳ 0

i as follows, and proceed similarly for Ȳ 0
j . For

each (i ′, j ′) ∈ H not equal to (i, j) and each subtree Z ∈ {Ȳ 0
i ′ , Ȳ 0

j ′ }, if Z has its root

below the root of Ȳ 0
i , remove from Ȳ 0

i all those nodes in Z as well as all descendants
of the vertices on the upward path of length 2γt starting at the root of Z . Note that the
latter path cannot reach y0i because both y0i ′ and y0j ′ are at graph distance at least 6γt

from y0i from the construction of H.
We let Y 0

i be the remaining subtree in T 0 and Y #
i , its matching subtree in T #.

We claim that the resulting restricted subtrees (Y 0
i , Y 0

j) are (�, 3)-dense. Note first

that the subtrees in (Ȳ 0
i , Ȳ 0

j)(i, j)∈H are (�, 1)-dense as they were obtained from the
procedure in Sect. 5.3. Moreover, because 1) the roots of the removed subtrees are at
graph distance atmost 2γt froma �-vertex in (y0i , y0j)(i, j)∈H, 2) test vertices in different
pairs are at graph distance at least 6γt from each other, and 3) γt is a multiple of �, if we
remove a subtree rooted at a G-child of a G-vertex in (Ȳ 0

i , Ȳ 0
j)we cannot remove more

than one other subtree rooted at another G-child of the same G-vertex as that would
imply the existence of two test vertices in different pairs at graph distance less than

2(2γt) + 2g� < 6γt ,

in T 0, a contradiction.
We then proceed similarly in T #. The resulting restricted subtrees

{(
Y 0

i , Y 0
j

)
;
(

Y #
i , Y #

j

)}

(i, j)∈H ,

are then (�, 5)-dense (in fact, (�, 4)-dense as there are no non-proximal pairs in T #).
��

5.6.4 Summary of the large overlap case

Wehave proved the following in the large overlap case. Recall that℘ = 5, � = �(g, ℘)

is chosen as in Proposition 1,

� = 6gϒ log2

(
8

1 − 1/
√
2

)
+ 2�gϒ + 4,

and γt ≥ �, a multiple of �, and C are chosen as in Proposition 1.

Proposition 5 (Battery in the large overlap case) In the large overlap case, we can
build a (�, ℘, �, γt , I)-battery

{((
y0i , z0i

)
;
(

Y 0
i , Z0

i

))}I

i=1
(in T 0) and

{((
y#i , z#i

)
;
(

Y #
i , Z#

i

))}I

i=1
(in T #)

123

Phase transition in the sample complexity... 59

with

I ≥ �

20gϒCO(1 + 26γt +Cw+3gϒ)
.

Proof The result follows from Claim 5.9. ��
Acknowledgements We thank the anonymous reviewers of a previous version for helpful comments.

A Preliminary lemmas

In this section, we collect a few useful lemmas.

A.1 Ancestral reconstruction

An important part of our construction involves reconstructing ancestral states. We will
use the following lemma from [14] which we typically apply to a rooted subtree. Let
T = (V, E;φ;w) ∈ Y rooted at ρ. Let e = (x, y) ∈ E and assume that x is closest
to ρ (in topological distance). We define P(ρ, e) = P(ρ, y), |e|ρ = |P(ρ, e)|, and

Rρ(e) =
(
1 − θ2e

)
�−2

ρ,y, (60)

where �ρ,y = e−dT (ρ,y) and θe = e−we .

Lemma 2 (Ancestral reconstruction [14]) For any unit flow � from ρ to [n],

ET
∣∣PT [σρ = +1|σX] − PT [σρ = −1|σX]∣∣ ≥ 1

1 + ∑
e∈E Rρ(e)�(e)2

, (61)

where the LHS is the difference between the probability of correct and incorrect recon-
struction using MLE. (See [14, Equation (14), Lemma 5.1 and Theorem 1.2’].)

A.2 Random cluster representation

We use a convenient percolation-based representation of the CFNmodel known as the
random cluster model (see e.g. [23]). Let T = (V, E;φ;w) ∈ Y with corresponding
(δe)e∈E .

Lemma 3 (Random cluster representation) Run a percolation process on T where
edge e is open with probability 1 − 2δe. Then associate to each open connected
component a state according to the uniform distribution on {+1,−1}. The state vector
on the vertices so obtained (σv)v∈V has the same distribution as the corresponding
CFN model.

123

60 S. Roch, A. Sly

A.3 Concentration inequalities

Recall the following standard concentration inequality (see e.g. [38]):

Lemma 4 (Azuma-Hoeffding Inequality) Suppose Z = (Z1, . . . , Zm) are indepen-
dent random variables taking values in a set S, and h : Sm → R is any t-Lipschitz
function: |h(z) − h(z′)| ≤ t whenever z, z′ ∈ Sm differ at just one coordinate. Then,
∀ζ > 0,

P [|h(Z) − E[h(Z)]| ≥ ζ] ≤ 2 exp

(
− ζ 2

2t2m

)
.

References

1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees.
Ann. Comb. 1, 1–15 (2001)

2. Andoni, A., Daskalakis, C., Hassidim, A., Roch, S.: Global alignment of molecular sequences via
ancestral state reconstruction. Stoch. Process. Appl. 122(12), 3852–3874 (2012)

3. Borgs, C., Chayes, J., Mossel, E., Roch, S.: The Kesten-Stigum reconstruction bound is tight for
roughly symmetric binary channels. In: FOCS, pp. 518–530 (2006)

4. Brown, D.G., Truszkowski, J.: Fast phylogenetic tree reconstruction using locality-sensitive hashing.
In: Algorithms in Bioinformatics, pp 14–29. Springer (2012)

5. Cavender, J.A.: Taxonomy with confidence. Math. Biosci. 40(3–4), 271–280 (1978)
6. Cryan, M., Goldberg, L.A., Goldberg, P.W.: Evolutionary trees can be learned in polynomial time.

SIAMJ. Comput. 31(2), 375–397 (2002). Short version In: Proceedings of the 39thAnnual Symposium
on Foundations of Computer Science (FOCS 98), pp. 436–445 (1998)

7. Chang, J.T.: Full reconstruction ofMarkovmodels on evolutionary trees: identifiability and consistency.
Math. Biosci. 137(1), 51–73 (1996)

8. Chor, B., Tuller, T.: Finding a maximum likelihood tree is hard. J. ACM 53(5), 722–744 (2006)
9. Choi, M.J., Tan, V.Y., Anandkumar, A., Willsky, A.S.: Learning latent tree graphical models. J. Mach.

Learn. Res. 12, 1771–1812 (2011)
10. Daskalakis, C., Mossel, E., Roch, S.: Evolutionary trees and the ising model on the Bethe lat-

tice: a proof of Steel’s conjecture. Probab. Theory Relat. Fields 149, 149–189 (2011). doi:10.1007/
s00440-009-0246-2

11. Daskalakis, C.,Mossel, E., Roch, S.: Phylogenieswithout branch bounds: contracting the short, pruning
the deep. SIAM J. Discret. Math. 25(2), 872–893 (2011)

12. Daskalakis, C., Roch, S.: Alignment-free phylogenetic reconstruction: sample complexity via a branch-
ing process analysis. Ann. Appl. Probab. 23(2), 693–721 (2013)

13. Deonier, R.C., Tavaré, S., Waterman, M.S.: Computational Genome Analysis: An Introduction.
Springer, New York (2005)

14. Evans, W.S., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the Ising model. Ann.
Appl. Probab. 10(2), 410–433 (2000)

15. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build (almost) all trees
(part 1). Random Struct. Algorithms 14(2), 153–184 (1999)

16. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build (almost) all trees
(part 2). Theor. Comput. Sci. 221, 77–118 (1999)

17. Farris, J.S.: A probability model for inferring evolutionary trees. Syst. Zool. 22(4), 250–256 (1973)
18. Felsenstein, J.: Evolutionary trees from dna sequences: a maximum likelihood approach. J. Mol. Evol.

17, 368–376 (1981)
19. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)
20. Georgii, H.O.: GibbsMeasures and Phase Transitions, Volume 9 of de Gruyter Studies inMathematics.

Walter de Gruyter & Co., Berlin (1988)
21. Guindon, S., Lethiec, F., Duroux, P., Gascuel, O.: PHYML online web server for fast maximum

likelihood-based phylogenetic inference. Nucl. Acids Res. 33(suppl 2), W557–W559 (2005)

123

http://dx.doi.org/10.1007/s00440-009-0246-2
http://dx.doi.org/10.1007/s00440-009-0246-2

Phase transition in the sample complexity... 61

22. Gronau, I., Moran, S., Snir, S.: Fast and reliable reconstruction of phylogenetic trees with indistin-
guishable edges. Random Struct. Algorithms 40(3), 350–384 (2012)

23. Grimmett, G.: The Random-Cluster Model, Volume 333 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2006)

24. Huson, D.H., Nettles, S.H., Warnow, T.J.: Disk-covering, a fast-converging method for phylogenetic
tree reconstruction. J. Comput. Biol. 6(3–4), 369–386 (1999)

25. Ioffe, D.: On the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math.
Phys. 37(2), 137–143 (1996)

26. Jukes, T.H., Cantor, C.: Mammalian protein metabolism. In: Munro, H.N. (ed.) Evolution of Protein
Molecules, pp. 21–132. Academic Press, Cambridge (1969)

27. Janson, S., Mossel, E.: Robust reconstruction on trees is determined by the second eigenvalue. Ann.
Probab. 32, 2630–2649 (2004)

28. Kesten, H., Stigum, B.P.: Additional limit theorems for indecomposable multidimensional Galton-
Watson processes. Ann. Math. Stat. 37, 1463–1481 (1966)

29. Lacey, M.R., Chang, J.T.: A signal-to-noise analysis of phylogeny estimation by neighbor-joining:
insufficiency of polynomial length sequences. Math. Biosci. 199(2), 188–215 (2006)

30. Liggett, T.M.: Interacting Particle Systems, Volume 276 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1985)

31. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses (Springer Texts in Statistics), 3rd edn.
Springer, New York (2005)

32. Mihaescu, R., Hill, C., Rao, S.: Fast phylogeny reconstruction through learning of ancestral sequences.
Algorithmica 66(2), 419–449 (2013)

33. Mossel, E.: Reconstruction on trees: beating the second eigenvalue. Ann. Appl. Probab. 11(1), 285–300
(2001)

34. Mossel, E.: On the impossibility of reconstructing ancestral data and phylogenies. J. Comput. Biol.
10(5), 669–678 (2003)

35. Mossel, E.: Phase transitions in phylogeny. Trans. Am. Math. Soc. 356(6), 2379–2404 (2004)
36. Mossel, E.: Survey: information flow on trees. In: Nestril, J., Winkler, P. (eds.) Graphs, Morphisms

and Statistical Physics, pp. 155–170. American Mathematical Society, Providence (2004)
37. Mossel, E.: Distorted metrics on trees and phylogenetic forests. IEEE/ACM Trans. Comput. Biol.

Bioinform. 4(1), 108–116 (2007)
38. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
39. Mossel, E., Roch, S.: Learning nonsingular phylogenies and hidden Markov models. Ann. Appl.

Probab. 16(2), 583–614 (2006)
40. Mossel, E., Roch, S.: Phylogenetic mixtures: concentration of measure in the large-tree limit. Ann.

Appl. Probab. 22(6), 2429–2459 (2012)
41. Mossel, E., Roch, S.: Identifiability and inference of non-parametric rates-across-sites models on large-

scale phylogenies. J. Math. Biol. 67(4), 767–797 (2013)
42. Mossel, E., Roch, S., Sly, A.: On the inference of large phylogenies with long branches: How long is

too long? Bull. Math. Biol. 73, 1627–1644 (2011). doi:10.1007/s11538-010-9584-6
43. Neyman, J.: Molecular studies of evolution: a source of novel statistical problems. In: Gupta, S.S.,

Yackel, J. (eds.) Statistical Desicion Theory and Related Topics, pp. 1–27. Academic Press, New York
(1971)

44. Peres, Y.: Probability on trees: an introductory climb. In: Lectures on Probability Theory and Statistics
(Saint-Flour, 1997). Lecture Notes in Math, vol. 1717, pp. 193–280. Springer, Berlin (1999)

45. Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
IEEE/ACM Trans. Comput. Biol. Bioinform. 3(1), 92–94 (2006)

46. Roch, S.: Sequence length requirement of distance-based phylogeny reconstruction: breaking the poly-
nomial barrier. In: FOCS, pp. 729–738 (2008)

47. Roch, S.: Toward extracting all phylogenetic information from matrices of evolutionary distances.
Science 327(5971), 1376–1379 (2010)

48. Sly, A.: Reconstruction for the potts model. In: STOC, pp. 581–590 (2009)
49. Saitou, N., Nei, M.: The neighbor-joining method: a newmethod for reconstructing phylogenetic trees.

Mol. Biol. Evol. 4(4), 406–425 (1987)
50. Steel, M.A., Székely, L.A.: Inverting random functions. II. Explicit bounds for discrete maximum

likelihood estimation, with applications. SIAM J. Discret. Math. 15(4), 562–575 (2002)

123

http://dx.doi.org/10.1007/s11538-010-9584-6

62 S. Roch, A. Sly

51. Semple, C., Steel, M.: Phylogenetics, Volume 22 of Mathematics and Its Applications Series. Oxford
University Press, Oxford (2003)

52. Steel, M.A., Székely, L.A.: On the variational distance of two trees. Ann. Appl. Probab. 16(3), 1563–
1575 (2006)

53. Smith, S.A., Stamatakis, A.: Inferring and postprocessing huge phylogenies. In: Elloumi, M., Zomaya,
A.Y. (eds.) Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing
of Biological Data. Wiley, Hoboken (2013). doi:10.1002/9781118617151.ch46

54. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands
of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

55. Steel, M.: Recovering a tree from the leaf colourations it generates under aMarkovmodel. Appl. Math.
Lett. 7(2), 19–23 (1994)

56. Steel, M.: My Favourite Conjecture (2001) (unpublished)
57. Steel, M.: Phylogeny—Discrete and Random Processes in Evolution, Volume 89 of CBMS-NSF

Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia (2016)

58. Tan, V.Y.F., Anandkumar, A., Tong, L., Willsky, A.S.: A large-deviation analysis of the maximum-
likelihood learning of Markov tree structures. IEEE Trans. Inform. Theory 57(3), 1714–1735 (2011)

59. Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning high-dimensional markov forest distributions.
J. Mach. Learn. Res. 12, 1617–1653 (2011)

60. Wald, A.: Note on the consistency of the maximum likelihood estimate. Ann. Math. Stat. 20, 595–601
(1949)

61. Warnow, T.: Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny
Estimation. To be published by Cambridge University Press, Cambridge (2017)

123

http://dx.doi.org/10.1002/9781118617151.ch46

	Phase transition in the sample complexity of likelihood-based phylogeny inference
	Abstract
	1 Introduction
	1.1 Background
	1.2 Overview of main results and techniques
	1.3 Further related work
	1.4 Organization

	2 Definitions, results, and proof sketch
	2.1 Basic definitions
	2.1.1 Phylogenies
	2.1.2 Substitution model
	2.1.3 Phylogenetic reconstruction
	2.1.4 Maximum likelihood estimation

	2.2 Main results
	2.3 Proof overview
	2.3.1 Known results: identifiability, consistency and the Steel-Székely bound
	2.3.2 A polynomial bound
	2.3.3 A refined union bound
	2.3.4 Phase transition: homogeneous case
	2.3.5 General case

	3 Distinguishing between leaf distributions
	3.1 Definitions
	3.2 Batteries
	3.2.1 Tests
	3.2.2 Properties of batteries

	3.3 Proof of Proposition 1

	4 Homogeneous trees
	4.1 Finding matching subtrees
	4.1.1 Procedure
	4.1.2 Relating combinatorial distance and the number of matching subtrees

	4.2 Constructing a battery of tests
	4.2.1 Co-hanging pairs in T#
	4.2.2 Sparsification in T#

	4.3 Proof of Proposition 2

	5 General trees
	5.1 Blow-up distance
	5.2 Main steps of the proof
	5.3 Finding matching subtrees
	5.4 Relating combinatorial distance, the number of matching subtrees and the overlap size
	5.5 Constructing a battery of tests: many-R case
	5.5.1 Constructing co-hanging test panels
	5.5.2 Sparsification in T#
	5.5.3 Summary of many-R case

	5.6 Constructing a battery of tests: large overlap case
	5.6.1 Test pairs near the boundary of the overlap
	5.6.2 Co-hanging pairs
	5.6.3 Sparsification
	5.6.4 Summary of the large overlap case

	Acknowledgements
	A Preliminary lemmas
	A.1 Ancestral reconstruction
	A.2 Random cluster representation
	A.3 Concentration inequalities

	References

