
Probab. Theory Relat. Fields (2018) 171:685–708
https://doi.org/10.1007/s00440-017-0790-0

The box-crossing property for critical two-dimensional
oriented percolation

H. Duminil-Copin1,2 · V. Tassion2 · A. Teixeira3

Received: 1 November 2016 / Revised: 19 June 2017 / Published online: 29 June 2017
© Springer-Verlag GmbH Germany 2017

Abstract We consider critical oriented Bernoulli percolation on the square latticeZ
2.

We prove a Russo–Seymour–Welsh type result which allows us to derive several new
results concerning the critical behavior:

• We establish that the probability that the origin is connected to distance n decays
polynomially fast in n.

• We prove that the critical cluster of 0 conditioned to survive to distance n has a
typical width wn satisfying εn2/5 ≤ wn ≤ n1−ε for some ε > 0.

The sub-linear polynomial fluctuations contrast with the supercritical regime where
wn is known to behave linearly in n. It is also different from the critical picture obtained
for non-oriented Bernoulli percolation, in which the scaling limit is non-degenerate
in both directions. All our results extend to the graphical representation of the one-
dimensional contact process.
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1 Introduction

1.1 Motivation

Oriented percolation, which is a directed version of classical Bernoulli percolation
(introduced by Broadbent and Hammersley [3] to understand percolation of a liquid
in a porous medium), provides a model for a variety of physical systems in chemistry,
solid state physics, and astrophysics. At a theoretical level, it is one of the simplest
system exhibiting a phase transition, and has been as such an object of intensive
study in the last 50 years. It is also related to the geometric representation of the one-
dimensional contact process introduced by Harris [15,16] and is therefore interesting
from the point of view of particles systems as well. We refer to [11] for a review on
the subject and for further references.

The model is defined as follows. Consider the rotated (and rescaled) square lattice
L := {(x1, x2) ∈ Z

2 : x1 + x2 even}. Each vertex x ∈ L is connected to the vertices
x + (−1, 1) and x + (1, 1) by two oriented edges, see Fig. 1. Let p ∈ [0, 1]. Each
oriented edge is said to be open with probability p, and closed with probability 1− p,
independently of the state of the other edges. The law of the set of open edges is
denoted by Pp.

In oriented percolation, we study the connectivity properties of the random graph
with vertex set L, and edge set given by the open oriented edges. These open oriented
edges should be understood as the set of edges allowing us to go upwards in the
system. An open path is a collection of vertices x0, x1, . . . , xk such that the oriented
edge (xi , xi+1) is open for every 0 ≤ i < k. Two vertices x and y are said to be
connected (denoted x → y) if there exists an open path starting at x and ending at y.
Let C0 be the connected component of the origin, i.e. the set of vertices x such that
0 → x . In what follows, 0 → ∞ denotes the event that C0 is infinite.

(0, 0)

Fig. 1 The lattice L with the oriented edges
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The box-crossing property for critical two-... 687

One of the main interest of the model lies in the existence of a phase transition
at a value pc ∈ (0, 1) such that Pp(0 → ∞) = 0 if p < pc, and above which
Pp(0 → ∞) > 0 if p > pc (see [1,4] for non-trivial lower and upper bounds on
pc). For p < pc, connectivity properties are known to decay exponentially fast (see
[13] for the original proof, and [11] for more details), while for p > pc, the global
shape of C0 converges to a cone of opening α(p) > 0 and Gaussian fluctuations on
the boundary of C0, as proved in [12,17]. An alternative proof of exponential decay
for p < pc together with a proof of the mean-field bound Pp(0 → ∞) ≥ c(p − pc)

was provided recently in [5]. These results are just a few examples illustrating the
more general motto that the subcritical and supercritical phases p < pc and p > pc

are now well understood.
In [7] and in [2] respectively, the authors proved thatα(pc) = 0 andPpc [0 → ∞] =

0. These results naturally raise the question of quantitative bounds on the probability
of being connected to distance n and the typical width of large connected components
at criticality. In this paper, we provide polynomial upper bounds on these quantities
(some lower bounds were proved previously in [8]).

1.2 Main results

The main results of this paper deal with the critical phase p = pc. The first theorem
states that the probability that 0 is connected to distance n decays polynomially fast.
For n ≥ 0, define �n := Z × {n}.
Theorem 1.1 There exists ε > 0 such that for every n ≥ 1,

ε

n1/2−ε
≤ Ppc (0 → �n) ≤ 1

nε
.

It was already known that limn→∞
√

nPpc (0 → �n) = +∞ (see e.g. Eq. (1.9) in [8])
and limn→∞ Ppc (0 → �n) = 0 (see [2]). The novelty of this paper is the polynomial
nε improvement in these estimates.

The second theorem deals with the typical width of the set of vertices connected to
the origin. More precisely, let

Rn := max{x ∈ Z : ∃y ≤ 0 even such that (y, 0) → (x, n)}.

Note that when 0 → �n , then Rn is the first coordinate of the right-most point of C0.
In some sense, the quantity Rn can be understood as the width of a typical cluster that
reaches distance n. The next theorem provides non-trivial polynomial bounds on Rn .

Theorem 1.2 There exists ε > 0 such that for every n ≥ 1,

εn2/5 ≤ Epc (Rn | 0 → �n) ≤ n1−ε. (1.1)

The lower boundEpc (Rn | 0 → �n) ≥ εn1/4 for all n (and εn2/5 for infinitely many
scales) was proved in [8]. The novelty of the paper lies in the upper bound. We wish
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to highlight the fact that the existence of ε > 0 in the n1−ε upper bound is maybe
the most important feature of the previous theorem. It implies that large connected
components are rather thin. We should mention that it was shown that α(p) ↘ 0 as
p ↘ pc, thus suggesting that the scaling limit indeed needs to be rescaled differently
in the x and y coordinates (contrarily to the non-oriented cases where both directions
play symmetric roles). The quantitative polynomial bound seems to be new.

We believe that the techniques developed to prove the two previous theorems should
be very useful to study more delicate properties of the critical phase. In order to
emphasize the technique, we isolate one important technical statement, called the
box-crossing property, which we consider as one of the main new inputs of the paper.

The statement of the box-crossing property involves crossing probabilities. A ver-
tical crossing of a box B = [a, b] × [c, d] is an open path of vertices in B from the
bottom [a, b] × {c} to the top [a, b] × {d} of B. A left–right crossing is an open path
of vertices from the left {a}×[c, d] to the right {b}×[c, d] of B. Similarly, one define
a right-left crossing of B.

Note that a left–right crossing does not imply a right-left crossing (nor the other
way around), as it is the case for non-oriented percolation. If such a vertical (resp. left–
right, right-left) crossing exists, we say that B is crossed vertically (resp. from left to
right, from right to left). Define

Vp(m, n) := Pp([0, m] × [0, n] is crossed vertically),

Hp(m, n) := Pp([0, m] × [0, n] is crossed from left to right).

By symmetry, Hp(m, n) is also the probability that [0, m] × [0, n] is crossed from
right to left. We are now ready to state our main technical statement.

Theorem 1.3 (The box-crossing property) There exist a sequence of integers (wn)n≥1
and a constant c1 > 0 such that

c1 ≤ Hpc (3wn, n) ≤ Hpc (wn, 3n) ≤ 1 − c1. (1.2)

c1 ≤ Vpc (wn, 3n) ≤ Vpc (3wn, n) ≤ 1 − c1. (1.3)

We wish to highlight that similar statements are also available in the context of critical
non-oriented percolation, with wn = n in this case. We will see that wn is of the same
order as Epc (Rn | 0 → �n) and can therefore be intuitively understood as the typical
width of a connected component of height n. As opposed to the non-oriented case, we
will show that wn is not growing linearly but is in fact smaller than n1−ε.

The different rectangles involved in the previous statement will be the “elementary
bricks” for all the constructions made in this article. The quantities on the right cor-
respond to “crossings in the easy direction”, while those on the left corresponds to
“crossings in the hard direction”, meaning that compared to a “square box” of size wn

times n, the events on the left involve rectangles which are three times longer in the
direction of crossing, while the events on the right involve rectangles which are three
times larger orthogonally to the direction of crossing. The proof of the box-crossing
property is based on an analog in the oriented case of the Russo–Seymour–Welsh
(RSW) result for two-dimensional non-oriented Bernoulli percolation (see [6] for a
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The box-crossing property for critical two-... 689

Fig. 2 On the left, C0 conditioned on 0 → �8000 and 0 � �10000. Above, the process obtained by taking
the right-most particle of C0 conditioned on 0 → �200 000

recent survey on this subject). This RSW result is stated as Theorem 2.1 in Sect. 2. The
reader should be careful that the specificities of the oriented case make the proof of
the RSW result very different from the non-oriented case, and that the denomination
simply refer to the fact that crossings of rectangles in the hard direction are expressed
in terms of crossing of rectangles in the easy direction.

Generalization to other two-dimensional models We work with a specific choice of
model but we believe that the proof extends mutatis mutandis to oriented percolation
on Z

2 where edges are oriented from x to x + (0, 1), x + (−1, 0) and x + (1, 0), and
to the geometric representation of the one-dimensional contact process.

Applications and open problems For non-oriented percolation, non-trivial bounds on
crossing probabilities is the key step towards the understanding of the critical and
near-critical phases. We believe that the box-crossing property established in this
paper should lead to similar applications in the oriented case. For instance, scaling
relations can be studied using [9,10].

Let us mention that studying the limit ofC0 conditioned on 0 → �n and computing
the exact value of critical exponents is a major open question. In particular, two objects
of special interest in the oriented case are the set of “renewal points” (i.e. heights that
intersect C0 only once), and the process of the “right-most particle” n 
→ Rn , see
Fig. 2.

Note that the process n 
→ Rn presents macroscopic jumps, as it becomes clear
from Fig. 2 and the box-crossing properties of Theorem 1.3. In particular, one should
consider the Skorokhod topology when attempting to understand the scaling limit of
this process.
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1.3 Preliminaries

Further notation We will always work with intersections of sets with L. For instance,
[a, b]×[c, d]will mean the intersection ofLwith the corresponding part of the plane.
We write A → B for the event that there exist x ∈ A and y ∈ B with x → y. Below,
we will drop the subscript pc in the notation and write for instance P, H(m, n) and
V (m, n) for Ppc , Hpc (m, n) and Vpc (m, n). Importantly, we will keep the subscript p
when p is not a priori equal to pc.

One input from percolation theory: the square root trick We will use repeatedly
(see [14]) the classical Harris–Fortuin–Kasteleyn–Ginibre (FKG) inequality: for two
increasing events1 E and F ,

Pp(E ∩ F) ≥ Pp(E)Pp(F). (FKG)

Let us also mention the following trivial application of the FKG inequality, called the
square-root trick: for any increasing events A1, . . . , AN ,

max{Pp(An) : 1 ≤ n ≤ N } ≥ 1 − (
1 − Pp(A1 ∪ · · · ∪ AN )

)1/N
. (SRT)

Organization of the paper Section 2 is devoted to the proof of the Russo–Seymour–
Welsh type result. This result is then used in Sect. 3 to derive the box-crossing property.
Section 4 is devoted to the proofs of Theorems 1.1 and 1.2.

2 Russo–Seymour–Welsh type result

This section is dedicated to the proof of a Russo–Seymour–Welsh theorem for oriented
percolation. It enables us to express crossing probabilities of rectangles with different
aspect ratios. We include also a technical (and easy) result at the end of this section.
In this section it will be convenient to use crossing probabilities for rectangle which
may have non integer dimensions. If r, s are two real numbers, we set

Hp(r, s) = Hp(
r�, 
s�) and Vp(r, s) = Vp(
r�, 
s�), (2.1)

where 
r� denotes the upper integer part of r .

Theorem 2.1 (RSW type result) For any α ∈ ( 34 , 1), there exist ε ∈ (0, 1) and an
increasing homeomorphism g0 : [0, 1] → [0, 1] such that for any m, n ≥ 1,

min
{

Vp(m, 3n), Hp(3m, n)
} ≥ g0

(
min

{
Vp(m, αεn), Hp(αm, εn)

})
.

On the left, if a rectangle of sizem times n is our reference, the crossing probabilities
involve rectangles which are three times longer in the direction of crossing. On the
right, if a rectangle of sizem times εn is our reference, the crossing probabilities involve

1 An event E is increasing if it is stable with respect to opening edges.
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The box-crossing property for critical two-... 691

rectangles which are slightly shorter in the direction of crossing. This is reminiscent
of the classical RSW theory for non-oriented percolation: crossing probabilities in
the hard direction can be bounded from below by expressions involving crossing
probabilities in the easy direction.

The heights of the rectangles are very different on the left and the right (there is a
factor roughly ε between the two),which is amajor difference between the oriented and
the non-oriented cases. Said differently, in order to obtain estimations on probabilities
of crossings of rectangles in the hard direction, one needs to pay a cost on the height
of the rectangle. The following example illustrates perfectly why changing the height
is necessary in the oriented case: think of the extremal case of the horizontal crossing
from left to right of a rectangle of size n times n. In this case, it is simply impossible
to cross horizontally a rectangle of size 2n times n due to the direction of the edges.
Note moreover that for non-oriented percolation, there is no need to increase the hight
of the box in Russo–Seymour–Welsh’s theorem.

We start the proof of the theorem by a key lemma allowing us to increase the width
of rectangles which are crossed horizontally.

Lemma 2.2 For any α ∈ ( 34 , 1), there exists an increasing homeomorphism g1 :
[0, 1] → [0, 1] such that for any k, � ≥ 1,

Hp(k, �) ≥ g1

(
min

{
Vp(k, �), Hp(αk, �/2)

})
.

Note that in the statement above, we allow the variables k and � to take non-integer
values.

Proof Let us first assume that k/2, �/2 and αk are integers (this is purely for conve-
nience as can be seen at the end of the proof). Introduce the boxes

B = [−k/2, k/2] × [0, �] and Br = [0, αk] × [�/2, �].
illustrated on Fig. 3. Let E be the event that there exists an open path in B ∪ Br starting
from the bottom of B and ending on the right side of Br . Let us prove that

Pp[E] ≥ Hp(αk, �/2)
(
1 −

√
1 − Vp(k, �)

)
. (2.2)

In order to get this inequality,weuse a “conditioningon the top-most left–right crossing
of Br” argument, as illustrated on Fig. 3. This type of reasoning is now classical in
percolation.

For a configuration ω containing a left–right crossing of Br , define � to be the
top-most left–right crossing2 of Br . When there is no such crossing, set � = ∅. Since
the box Br is crossed from left to right with probability H(αk, �/2), we have

H(αk, �/2) =
∑

γ �=∅
Pp(� = γ ), (2.3)

2 Formally, this can be seen as the largest left–right crossing of Br for the natural lexicographical order on
path induced by the lexicographical order on vertices and the order that the edge going left from a vertex is
smaller than the edge going right.

123
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Fig. 3 Construction of the event
E . First, we require that the box
Br be crossed from left to right,
and we explore the top-most
left–right crossing � in Br .
After this exploration, the edges
in the hatched region have been
discovered. Then we ask that in
the unexplored region there
exists an open path (in grey)
connecting the bottom side of B
to �

where the sum is over all the possible left to right paths in Br . Fix for a moment such
a path γ . Introduce the orthogonal symmetry σ with respect to the axis x = 0. Define
Sγ to be the set of vertices of B which are reachable from a vertex of the bottom of
B by an oriented path of edges not crossing γ ∪ σ(γ ). Let Jγ be the event that there
exists a path in Sγ connecting the bottom side of B to γ inside Sγ . Using symmetry
and the square root trick, together with the fact that any path crossing B vertically
must contain a path reaching γ or σ(γ ) in Sγ , we find

Pp(Jγ ) ≥ 1 −
√
1 − Vp(k, �). (2.4)

Now, if � = γ and Jγ occurs then the event E occurs. Therefore, summing over all
the possible paths γ , we obtain

Pp(E) ≥
∑

γ �=∅
Pp({� = γ } ∩ Jγ )

=
∑

γ �=∅
Pp(� = γ )Pp(Jγ ). (2.5)

In the second line, we used that the event � = γ is measurable with respect to the
edges with both ends in B\Sγ while Jγ is measurable with respect to the edges in Sγ ,
therefore these two events are independent. We finally obtain Eq. (2.2) by combining
the equation above together with (2.3) and (2.4).
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k
2 αk−k

2

B�

B′

k
2−αk k

2 αk−k
2

B�

B′

k
2−αk

Fig. 4 Two possible cases when the event E ∩ C� occurs: on the left picture, the left–right crossing of B�

intersect the path realizing E , and on the the right picture the two paths do not intersect. In both cases, the
box B′ is crossed from left to right

We now conclude the proof. Consider the boxes

B� = [k/2 − αk, k/2] × [0, �/2],
B ′ = [k/2 − αk, αk] × [0, �].

Let C� be the event that B� is crossed from left to right. On the event E ∩ C�, there
must exist a path from left to right in the box B ′. Indeed, we are in one of the two
following cases (illustrated on Fig. 4):

• A crossing from left to right in B� intersects a crossing from the bottom of B to
the right of Br , thus creating a left–right crossing in B ′.

• No crossing from left to right in B� intersects a crossing from the bottom of B to
the right of Br , in such case any of the latter paths contains a left–right crossing
B ′.

Since 2α − 1
2 > 1, we deduce that

Hp(k, �) ≥ Pp(B ′ is crossed from left to right)

≥ Pp(E ∩ C�)

(FKG)≥ Pp(C�)Pp(E)

(2.2)≥ Hp(αk, �/2)2
(
1 −

√
1 − Vp(k, �)

)
.
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Fig. 5 Diagrammatic
representation of the event
G(k, �)

3�

2�

�

0

This finishes the proof of the case where k and � are two even integers. For
general real values k large enough and � ≥ 1, one may do the same proof with
B = [−
k/2�, 
k/2�] × [0, 
��] and Br = [0, 
k/2�] × [
�� − 
�/2�, 
��] provided
that 2
αk� − 
k/2� ≥ k. Finally, note that by choosing g1 properly, we may cover the
case of small values of k. ��

The next trivial lemma will be useful in the proof. For k, � ≥ 1 integers, let G(k, �)

be the event that {0}×[0, �] is connected to {k}×[2�, 3�] or [0, k]×{3�} (see Fig. 5).

Lemma 2.3 For any integer C > 0 and any integers k, � ≥ 1,

Vp(k, C�) ≥ Pp
(
G(k, �)

)2C
.

Proof For an integer i ≥ 0, let Fi be the event that {0}× [i�, (i + 1)�] is connected to
{0} × [(i + 2)�, (i + 3)�] inside the strip [0, k] × Z. First, by translation invariance,
the probability of Fi is equal to the probability of F0.

Observe that the model features a symmetry with respect to vertical reflections
(with respect to the axis y = 0). Moreover, the event F0 occurs as soon G(k, �) occurs
together with a symmetric version of it (see Fig. 6). Therefore, by the FKG inequality,
we have for every i ≥ 0

Pp(Fi ) = Pp(F0) ≥ Pp(G(k, �))2.

Finally, if all the events Fi occur for 0 ≤ i < C , the box [0, k]×[�, �+C�] is crossed
vertically. The lemma thus follows from the FKG inequality. ��
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Fig. 6 The event F0 obtained
by intersecting G(k, �) and a
symmetric version of it

3�

2�

�

0

Proof of Theorem 2.1 Without loss of generality, wemay assume thatαm is an integer.
We start by proving the bound on Hp(3m, n) assuming the bound on Vp(m, 3n). For
k ≥ m and � ≤ 3n, Lemma 2.2 implies

Hp(k, �) ≥ g1

(
min

{
Vp(m, 3n), Hp(αk, �/2)

})
.

By iterating the statement above s times, we get for every s ≥ 1

Hp(α
1−sm, n) ≥ g(s)

1

(
min

{
Vp(m, 3n), Hp(αm, n/2s)

})
.

Fix s = s(α) such α1−s ≥ 3 and set ε = ε(α) = 2−s . Then the equation above implies
the desired inequality. Note that this is the only place where the constant ε is used: it
guarantees that the height of the rectangles obtained via the iteration of Lemma 2.2 is
always smaller than n (and hence a fortiori 3n).

Let us now focus on the lower bound on Vp(m, 3n). Let � = αεn/12 and let g2 be
an homeomorphism defined through:

g∗(x) = 1 − (1 − x)1/12, g#(x) = 1 − (1 − x)1/2 and g2(x) = g# ◦ g∗(x). (2.6)

We may assume without loss of generality that � is an integer. We divide the proof
in two cases.

Case 1 Hp(αm, 2�) < g2(Hp(αm, εn)).

For i = 0, . . . , 11, let Ai be the event that there exists an open path from {0} ×
[i�, (i + 1)�] to {αm}× [0, 12�] in the strip [0, αm]×Z. Since for every i , Pp(A0) ≥
Pp(Ai ), the square-root trick implies that there exists some i with

Pp(A0) ≥ 1 − (1 − Hp(αm, εn))1/12 = g∗
(
Hp(αm, εn)

)
.

123



696 H. Duminil-Copin et al.

Now, if A0 occurs, then either [0, αm] × [0, 2�] is crossed horizontally, or the event
G(αm, �) occurs. As a consequence, the square-root trick used one more time implies
that

max{Hp(αm, 2�), Pp(G(αm, �))} ≥ g2(Hp(αm, εn)).

(This is the definition of g2 used above). The assumption on Hp(αm, εn) implies that

Pp(G(αm, �)) ≥ g2(Hp(αm, εn)),

so that Lemma 2.3 applied to k = αm, � and C > 16/αε gives

Vp(m, 3n) ≥ g3(Hp(αm, εn)).

Case 2 Hp(αm, 2�) ≥ g2(Hp(αm, εn)).
In such case, Lemma 2.2 implies that

Hp(m, 4�) ≥ g1(min
{

Vp(m, 4�), g2(Hp(αm, 2�))
}
)

≥ g1(min
{

Vp(m, αεn), g2(Hp(αm, εn))
}
). (2.7)

Since G(m, 4�) occurs as soon as there exists a left–right crossing of [0, m] × [0, 4�]
and a vertical crossing of [0, m] × [0, 12�], the FKG inequality implies immediately
that

Pp(G(m, 4�)) ≥ Hp(m, 4�)Vp(m, 12�). (2.8)

Since 12� ≤ αεn, (2.7) and (2.8) can be combined to obtain

Pp(G(m, 4�)) ≥ g4(min{Vp(m, αεn), Hp(αm, εn)
}
).

Lemma 2.3 applied with k = m, � and C > 8/αε gives

Vp(m, 3n) ≥ g5(min{Vp(m, αεn), Hp(αm, εn)
}
), (2.9)

thus concluding the proof in this case as well. ��
Let us mention the following technical statement, which will be useful in the next

sections.

Lemma 2.4 For any 	 > δ > 1, there exists C > 0 such that for any n, m ≥ 1,

max{Vp(	m, n), Hp(m,	n)} ≤ g6

(
max

{
Vp(δm, n), Hp(m, δn)

})
,

where g6(x) = 1 − (1 − x)C for any x ∈ [0, 1].
Proof Let us present the proof forVp(	m, n) (the proof for Hp(m,	n) canbe adapted
easily). Set ε < (δ − 1) and an integer K > 	/ε. We may assume without loss of
generality that εm and δm are two integers.
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The box-crossing property for critical two-... 697

Define the two collections of boxes

F = {[kεm, (kε + δ)m] × [0, n], 0 ≤ k < K
}
,

E = {[kεm, (kε + 1)m] × [0, n], 0 ≤ k < K
}
.

For [0,	m] × [0, n] to be crossed vertically, then one of the boxes in F must be
crossed vertically, or one of the boxes in E must be crossed from left to right, or
one of the boxes in E must be crossed from right to left. In other words, the event
that [0,	m] × [0, n] is crossed vertically is contained in the union of 3K events of
probability smaller or equal to Vp(δm, n) and Hp(m, n)(≤ Hp(m, δn)). The square-
root trick implies that

Vp(	m, n) ≤ 1 − (1 − x)3K ,

where x := max
{

Vp(δm, n), Hp(m, δn)
}
. The proof follows by setting C = 3K . ��

Remark 2.5 CombinedwithTheorem1.3 below,Lemma2.4 shows that for any	 > 1,
H(wn,	n) and V (	wn, n) are bounded by 1 − c(	) < 1 uniformly in n ≥ 1.

3 The box-crossing property

This section is devoted to the proof of Theorem 1.3. With the help of the RSW result
from the previous section, the proof of the theorem is not more than a proper defi-
nition for wn . Theorem 2.1 does the work for us, since it enables us to invoke two
classical results on crossing probabilities (see the lemma below), which are somehow
not specific to oriented percolation.

Lemma 3.1 (Finite size criteria for p < pc and p > pc) There exists η > 0 such
that for p ∈ (0, 1) and m, n ≥ 1,

• If max{Vp(2m, n), Hp(m, 2n)} < η, then p < pc and there exists c > 0 such that
for any N ≥ 1,

Pp
(
0 → �N

) ≤ exp(−cN ).

• If min{Vp(m, 2n), Hp(2m, n)} > 1− η, then p > pc and there exists c > 0 such
that for any N ≥ 1,

Pp
(
0 → �N , 0 � ∞) ≤ exp(−cN ). (3.1)

Before proving this lemma, let us show the theorem. Recall that we omit the sub-
script pc.

Proof of Theorem 1.3 Let n ≥ 1 large enough. Set η to be the constant in the previous
lemma. Fix any α and α′ with 3/4 < α′ < α < 1. Then use Theorem 2.1 to obtain
ε = ε(α′) > 0 such that the conclusion of the theorem holdswithα′ (and consequently
also for α). Introduce now

wn := inf
{
m ≥ 0 : H(αm, εn) ≤ V (m, αεn)

}
. (3.2)
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Note that wn diverges with n. Introduce the following notation:

H− := H(α(wn − 1), εn) H+ := H(αwn, εn)

V− := V (wn − 1, αεn) V+ := V (wn, αεn).

The definition of wn implies that H+ ≤ V+ and H− > V−.

Proof of the lower boundUsingmonotonicity, and thenLemma2.4 applied to	 = 2/α
and some δ ∈ (1, 1/α), we obtain

max{V (2wn, εn), H(wn, 2εn)} ≤ max{V (2wn, αεn), H(αwn, 2εn)}
≤ g6

(
max{V (δαwn, αεn), H(αwn, δαεn)})

≤ g6(max{V−, H+}).

The first item of Lemma 3.1 thus implies that max{V−, H+} ≥ g−1
6 (η). This gives

that either H− > V− ≥ g−1
6 (η) or V+ ≥ H+ ≥ g−1

6 (η). In either case, Theorem 2.1
may be applied to get

min{V (wn, 3n), H(3wn, n)} ≥ g0(g
−1
6 (η)).

Proof of the upper bound We use Theorem 2.1 with our chosen α′ ∈ (3/4, α) to
conclude that

min{V (wn, 3n), H(3wn, n)} ≥ g0

(
V (wn, α

′εn) ∧ H(α′wn, εn)
)

≥ g0(min{V+, H−}).

The second item of Lemma 3.1 thus implies that min{V+, H−} ≤ g−1
0 (1 − η). This

gives that either H+ ≤ V+ ≤ g−1
0 (1− η), or V− < H− ≤ g−1

0 (1− η). In either case,
Lemma 2.4 may be applied with δ = 1/α and 	 = 3/(αε) to get

max{V (3wn, n), H(wn, 3n)} ≤ g6(g
−1
0 (1 − η)), (3.3)

concluding the proof of the theorem. ��
Proof of Lemma 3.1 Proof of the first item Introduce the sequence of scalesmk = 2km
and nk = 2kn for k ≥ 0 and set

uk = max
{

Hp(mk, 2nk), Vp(2mk, nk)
}
.

A vertical crossing of the box [0, 4mk] × [0, 2nk] must contain vertical crossings of
the boxes [0, 4mk] × [0, nk] and [0, 4mk] × [nk, 2nk]. Lemma 2.4 (and the trivial
bound g6(x) := 1 − (1 − x)C ≤ Cx) thus implies that Vp(2mk+1, nk+1) ≤ (Cuk)

2.

Doing the same with Hp(mk+1, 2nk+1), we deduce that

uk+1 ≤ (Cuk)
2.
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By choosingη < 1
eC2 small enough, u0 < η implies that uk ≤ exp(−2k) for any k ≥ 0.

To conclude, fix N ≥ 1 and let K be the unique integer such that nK ≤ N < 2nK .
The event 0 → �N implies that one of the three rectangles [−mK , mK ] × [0, nK ],
[0, mK ] × [2nK ] or [−mK , 0] × [0, 2nK ] must be crossed “in the easy direction”, we
deduce that

Pp
(
0 → �N

) ≤ 3uK ≤ exp{−cN },
for a constant c > 0 small enough. This finishes the proof of exponential decay.

The fact that p < pc follows from the observation that the condition
max{Vp(2m, n), Hp(m, 2n)} < η is satisfied for some p′ > p, and that therefore
p < p′ ≤ pc.

Proof of the second item For this proof, we consider a dependent percolation defined
on a renormalized lattice. More precisely, given integers m, n ≥ 1, associate to every
x = (i, j) ∈ L the boxes

Bx := [0, m] × [0, 2n] + (im, jn),

B+
x := [0, 2m] × [0, n] + (

im, ( j + 1)n
)
,

B−
x := [0, 2m] × [0, n] + (

(i − 1)m, ( j + 1)n
)
.

Say that the edge (x, x + (1, 1)) is open if Bx is crossed vertically and B+
x is

crossed from left to right. Analogously, say that the edge (x, x + (−1, 1)) is open
if Bx is crossed vertically and B−

x is crossed from right to left. Denote the induced
percolation measure P

m,n
p .

On the event that there is an infinite path of open edges starting from the origin
(using the above definition), then there is also an infinite open path on the original
lattice, starting from [0, m] × [0, n].

Note that the above percolation measure is 3-dependent, as defined below (7.60)
of [14], p. 178. Therefore, using a result by Liggett, Schonmann and Stacey (see
Theorem (7.65) of [14]), we conclude that there exists an ε > 0 such that if

P
n,m
p

((
(0, 0), (1, 1)

)
is open

)
> 1 − ε, (3.4)

then there exists c > 0 such that for every N ≥ 1,

min{Vp(N , 2N ), Hp(2N , N )} ≥ 1 − exp(−cN ),

(see for instance the contour counting argument presented in Section 10 of [11] for
additional details). The claim follows since (3.4) is directly implied by the assumption
in the statement.

The above implies that p > pc since min{Vp(m, 3n), Hp(3m, n)} > 1 − η is
satisfied for some p′ < p.

Note that the above argument is very particular of two dimensional percolation.
First, in higher dimensions there is no guarantee that vertical and horizontal crossings
intersect. Moreover, for large enough dimensions it is expected that crossings between
macroscopic objects occur with high probability even at criticality.
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4 Proofs of the main theorems

4.1 Relation between Rn and wn

In this section we use the box-crossing property to show thatwn is equal up to constant
to several quantities related to Rn . The two first items below will be useful to obtain
polynomial bounds on wn . The last two items are useful to get the main theorems.
Below, x+ = max{x, 0}.
Proposition 4.1 There exist constants c3, c4, c5, c6 > 0 such that for every n ≥ 1,

(i) c3wn ≤ E(R+
n ) ≤ 1

c3
wn,

(ii) c4wn ≤ √
Var(Rn) ≤ 1

c4
wn,

(iii) c5wn ≤ E(Rn | 0 → �n) ≤ 1
c5

wn,

(iv) c6wn ≤ √
Var(Rn | 0 → �n) ≤ 1

c6
wn.

The proof of this proposition is heavily based on the box-crossing property. In par-
ticular, we will use several times the following event E , whose probability is bounded
frombelowusing the box-crossing property. Let B = [− 1

2wn,
5
2wn]×[0, n] and define

E (see Fig. 7) to be the event that there exists an open path from [− 1
2wn, 0] × {0} to

[2wn,
5
2wn] × {n} in B. The event E occurs if there exist

• a vertical crossing from [− 1
2wn, 0] × {0} to the top side of B,

• a vertical crossing from the bottom side of B to [2wn,
5
2wn] × {n},

• a left–right crossing of B.

By the box-crossing property and symmetry, the two first paths exist with probability
larger than c1/2, and the third with probability larger than c1. The FKG inequality
implies that

B

B̃

0− 1
2wn

5
2wn

0

n

2n

2wn

Fig. 7 The crossing in black illustrates the occurrence of the event E . The red picture illustrates the bound

P(0 → �n) ≥ c21
4 P(0 → ∂ B̃): paths combine to obtain a path from 0 to �n : if 0 → ∂ B̃ implies the existence

of a path from 0 to ∂ B̃\�n , then the paths from [− 1
2wn , 0] × {0} or [0, 1

2wn ] × {0} would cross it to create
a path from 0 to �n in B̃. The dotted blue lines denoted dual path (which are not necessarily oriented)
preventing the existence of oriented crossings (color figure online)
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P(E) ≥ 1
4c31 . (4.1)

We are now in a position to attack the proof of Proposition 4.1.

Proof We prove each item one after the other.
(i) The lower bound is immediate since

E(R+
n ) ≥ 2wnP[R+

n ≥ 2wn] ≥ 2wnP(E)
(4.1)≥ 2wn · 1

4c31 . (4.2)

The upper bound follows directly from the following exponential bound on the tail of
Rn : for every k ∈ N,

P(Rn ≥ kwn) ≤ (1 − c1)
k, (4.3)

which is obtained as follows. If Rn ≥ kwn , then there must exist an open path from
left to right inside the rectangle [0, kwn] × [0, n]. In particular k disjoint rectangles
of size wn by n must be crossed from left to right by an open path. This observation
and independence imply that

P(Rn ≥ kwn) ≤ H(kwn, n) ≤ H(wn, n)k ≤ H(wn, 3n)k .

The box-crossing property implies (4.3). By summing over k, we find that

E(R+
n ) ≤ wn

∞∑

k=0

P(Rn ≥ kwn) ≤ 1

c1

wn,

which gives the desired upper bound.

(ii) By (4.2), we already know that P(Rn ≥ 2wn) ≥ c31
4 . Since Rn ≤ wn on the event

that [0, wn]×[0, n] is not crossed from left to right, we deduce that P(Rn ≤ wn) ≥ c1.
This directly implies that the lower bound on the standard deviation.

The upper bound follows once again from the following exponential bound on the
tail of |Rn|: for every k ∈ N,

P(|Rn| ≥ kwn) ≤ 2(1 − c1)
k . (4.4)

The contribution of Rn ≥ 0 is controlled by (4.3). For the contribution of Rn ≤ 0,
observe that Rn ≤ −kwn implies that the rectangle [−kwn, 0] × [0, n] is not crossed
vertically. In particular, k disjoint rectangles of sizewn by n fail to be crossed vertically.
Using independence, the box crossing property implies

P(Rn ≤ −kwn) ≤ 1 − V (kwn, n) ≤ (1 − V (wn, n))k ≤ (1 − c1)
k .

(iii) We use a technique similar to the proof of (i). The lower bound is slightly more
delicate here because we do not take the positive part of Rn and we therefore have to
show that the negative part does not counterbalance the positive part. To achieve this,
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we use that the law of the cluster of 0 is invariant by the orthogonal reflection σ with
respect to the vertical axis y = 0.

Let F be the intersection of the event E and its image by σ . The FKG inequality
together with (4.1) implies that the event F occurs with probability larger than c61 /16.

Now, if 0 is connected to �n and F occurs, then Rn must be larger than 2wn .
Therefore,

E(Rn1F∩{0→�n}) ≥ 2wnP(F ∩ {0 → �n}) (FKG)≥ c61
8 wnP(0 → �n).

Furthermore, by invariance of F under symmetry,

E(Rn1Fc∩{0→�n}) = 1
2E(Rn1Fc∩{0→�n}) − 1

2E(Ln1Fc∩{0→�n}) ≥ 0,

where Ln is the left-most point of �n connected to 0.
Summing the two displayed equations above and dividing by P(0 → �n) gives

E(Rn | 0 → �n) ≥ c61
8 wn . (4.5)

For the upper bound, we use an exponential domination as in (4.1). The only difference
is that herewe have to take care of the conditioning. Let k ≥ 1. If (Rn ≥ kwn, 0 → �n),
then there must exist an open path from 0 to the boundary ∂ B of the box B =
[−wn, wn]×[0, n], and a left–right crossing of [wn, kwn]×[0, n]. Using independence
and the box-crossing property, we obtain

P(Rn ≥ kwn, 0 → �n) ≤ H(wn, n)k−1
P(0 → ∂ B)

≤ (1 − c1)
k−1

P(0 → ∂ B). (4.6)

To conclude the proof, we need to compare the probability of an open path from 0 to
∂ B with the probability of an open path from 0 to �n .We use the following observation.
If 0 is connected to ∂ B and the two rectangles [−wn, 0] × [0, n] and [0, wn] × [0, n]
are crossed vertically by open paths, then 0 is connected to �n . The FKG inequality
and the box crossing property imply

P(0 → �n)
(FKG)≥ V (wn, n)2P(0 → ∂ B) ≥ c21 P(0 → ∂ B). (4.7)

Plugging the inequality in (4.6) and dividing by P(0 → ∂ B) gives

P(Rn ≥ kwn | 0 → ∂�n) ≤ (1 − c1)
k−1/c21 , (4.8)

which gives the claim after summing over k.

(iv) Lower bound - We already know from the previous part that Rn ≥ 2wn with
(conditional) probability larger than constant, so that we only need to prove that
P(Rn ≤ 3

2wn|0 → �n) ≥ c. In order to see that, let B̃ = [− 1
2wn,

1
2wn] × [0, n]

(see Fig. 7) and the event that
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(i) [0, 1
2wn] × {0} and [− 1

2wn, 0] × {0} are both connected to �n by a path in B̃, and
0 is connected to the boundary of B̃,

(ii) [ 12wn, 3
2wn] × [0, n] is not crossed from left to right.

By symmetry and the box-crossing property, each of the two first paths are occurring
with probability 1

2c1, therefore, the FKG inequality implies that the events in (i) occur
with probability larger or equal to

P((i) occurs) ≥ 1
4c21 P[0 → B̃] ≥ 1

4c21 P[0 → �n].

Since the event in (ii) does not depend on edges in B̃, the box-crossing property implies

P(Rn ≤ 3
2wn|0 → �n) ≥ P((i) occurs)P((i i) occurs)

P[0 → �n] ≥ 1
4c31 .

The upper bound is a consequence of the following exponential domination. Recall
that Ln was defined in the proof of (ii) as the left-most point of �n connected to 0 by an
open path. Using Rn ≥ Ln and the fact that−Ln has the same law as Rn (conditionally
on the existence of an open path from 0 to distance n), we obtain for every k ≥ 1

P(|Rn| ≥ kwn|0 → �n) ≤ P(Rn ≥ kwn|0 → �n) + P(−Ln ≤ −kwn|0 → �n)

≤ 2P(Rn ≥ kwn|0 → �n)
(4.8)≤ 2(1 − c1)

k−1/c21 .

4.2 Polynomial bounds on wn

We start by proving a polynomial lower bound on wn using the equivalence with√
Var(Rn).

Proposition 4.2 Fix n ≥ 1. There exists a constant c7 > 0 such that for every n ≥ 1,

wn ≥ c7n
2/5. (4.9)

Proof The starting point of the proof is given by (1.8) in [8], which shows that there
exists a constant c8 > 0 such that

Var(Rn) ≥ c8 n P[0 → �n]. (4.10)

We refer the reader to the original paper for the argument. Let us simply say that it
exploits a renewal structure of the right-most open path from Z− × {0} to �n (this
path ends at (Rn, n)) by showing that between two consecutive renewal heights, the
horizontal increment of the path has variance larger than 1

4 , and then showing that the
expected number of renewal heights is at least c8 n P[0 → �n].

For x ∈ {0, . . . , wn}, let E(x) be the event that there exists a vertical crossing in
B(wn, 2n) that goes through the point (x, n). Note that our choice of the lattice implies
that the event E(x) is empty when x has a different parity from n. On the event E(x),
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there exists an open path starting from �0 and ending at (x, n), and a path starting from
(x, n) and ending on �2n . Hence we have, by independence and symmetry,

P(E(x)) ≤ P[0 → �n]2.

Furthermore, the box-crossing property and the union bound imply

c1 ≤ V (wn, 2n) ≤
∑

0≤x≤wn

P(E(x)).

The combination of the two equations above finally gives

P[0 → �n] ≥ c1√
wn

. (4.11)

Inserting the bound on the variance of Rn obtained via (ii) of Proposition 4.1 in (4.10)
gives (

wn

c4

)2

≥ Var(Rn) ≥ c8 n P[0 → �n] ≥ c8 n
c1√
wn

, (4.12)

which concludes the proof. ��
We now show a polynomial upper bound onwn using the equivalence with E(R+

n ).
Theproof is basedon sub-additivity properties ofE(R+

n ) (see e.g. [11] for background).

Proposition 4.3 There exists a constant ε > 0 such that for every n ≥ 1,

E(R+
n ) ≤ n1−ε . (4.13)

Remark 4.4 This proposition, combined with (i) of Proposition 4.1, immediately
implies that

c3wn ≤ n1−ε. (4.14)

Proof The main step in the proof is to show that there exists a constant c9 > 0 such
that for every n ≥ 1,

E(R+
2n) ≤ (2 − c9)E(R+

n ). (4.15)

In order to compare E(R+
n ) with E(R+

2n), it will be convenient to introduce the fol-
lowing more general variables. For 0 ≤ m ≤ n, define

R+
m,n := max

{
0, sup{x ≥ 0 s.t. (−∞, R+

m ] × {m} → (x + R+
m , n)}}. (4.16)

Note that R+
0,n = R+

n for every n ≥ 0. Before moving further, let us mention two other
useful properties of these variables that follow from the definition. First, translation
invariance and independence imply that

E(R+
m,n) = E(R+

n−m). (4.17)
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Furthermore, for every percolation configuration ω, we have the following sub-
additivity property

R+
0,n(ω) ≤ R+

0,m(ω) + R+
m,n(ω). (4.18)

Note that (4.17) and (4.18) already imply that for every n,

E(R+
2n) ≤ E(R+

0,n) + E(R+
n,2n) = 2E(R+

n ). (4.19)

Hence, in order to prove (4.15), we need to show that the inequality above is not
sharp. We do this by constructing an event on which R+

2n is significantly smaller than
R+
0,n + R+

n,2n .
Fix n ≥ 1. Recall the definition of the event E and let F be the event (see Fig. 7)

that

• [ 12wn, 3
2wn]× [n, 2n] and [ 52wn, 7

2wn]× [0, 2n] are not crossed from left to right,
• [ 12wn, 7

2wn] × [n, 2n] is not crossed vertically.

The box-crossing property and the FKG inequality imply that P(F) ≥ c31 . Since E
and F depend on different sets of edges, independence and (4.1) give

P(E ∩ F) ≥ 1
4c61 .

Now, observe that when the event E ∩ F occurs, we have R+
n ≥ 2wn , R+

n,2n = 0 and

R+
2n ≤ 3

2wn . Hence,

1E∩F R+
2n ≤ 1E∩F (R+

n + R+
n,2n − 1

2wn).

On the event (E ∩ F)c, the trivial bound provided by (4.18) gives

1(E∩F)c R+
2n ≤ 1(E∩F)c(R+

n + R+
n,2n).

Summing the two equations above and taking the expectation, we find

E(R+
2n) ≤ 2E(R+

n ) − 1
2wnP(E ∩ F) ≤ (2 − 1

8c61 c3)E(R+
n ).

In the second inequality, we used the bound wn ≥ c3E(R+
n ) provided by Propo-

sition 4.1. This finishes the proof of (4.15), which implies the statement of the
proposition along the geometric sequence n = 2k . The general statement of (4.13)
follows by sub-additivity. ��

4.3 Proof of the main theorems

Proof of Theorem 1.2 By Proposition 4.1, it is sufficient to get the similar bound for
wn . The bounds then follows from Propositions 4.2 and 4.3.
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1
2wn

3
2wn−1

2wn−3
2wn

n

2n

R1

R2

R3

Rs−1

Rs

Fig. 8 On the left, an illustration of the event En . Again, the blue dotted line denotes a dual path preventing
the existence of an oriented path from [− 1

2wn , 1
2wn ] × [0, n] to the outside of [− 3

2wn , 3
2wn ] × [0, 2n].

On the right, if a box of width 3wn and height sn is crossed vertically, then s rectangles of width 3wn and
height n are crossed vertically (color figure online)

Proof of Theorem 1.1 The lower bound follows from (4.11) and Proposition 4.2. We
now focus on the upper bound.

First, the box-crossing property and the FKG inequality imply that the event En

defined (see Fig. 8) by

• [ 12wn, 3
2wn] × [0, 2n] is not crossed from left to right,

• [− 3
2wn,− 1

2wn] × [0, 2n] is not crossed from right to left,
• [− 3

2wn,
3
2wn] × [0, 2n] is not crossed vertically,

satisfies

P(En)
(FKG)≥ H(3wn, n)V (wn, 3n)2 ≥ c31 . (4.20)

Let r ≥ 2 be a large enough integer that we fix later and set K := �logr (n/2)�. For
the event 0 → �n to occur, none of the events Erk , 1 ≤ k ≤ K , should occur. Imagine
for a moment that wrn > 3wn for each n, then the events Erk , 1 ≤ k ≤ K , depend on
different sets of edges, so that (4.20) implies

P(0 → �n) ≤ P

(
K⋂

k=1

Ec
rk

)

=
K∏

k=1

(1 − P(Erk )) ≤ (1 − c31 )
K ≤ n−c10 .

To conclude the proof, we therefore need to show that wrn ≥ 3wn , or equivalently, by
definition (3.2) of wrn , that

H(α3wn, εrn) > V (3wn, αεrn).

On the one hand, provided r > 1/ε, monotonicity and the box-crossing property
implies
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H(α3wn, εrn) ≥ H(3wn, n) ≥ c1.

On the other hand, if the box [0, 3wn]×[0, αεrn] is crossed vertically, then s = �rαε�
disjoint boxes of width 3wn and height n must be crossed vertically (see Fig. 8).
Therefore,

V (3wn, αεrn) ≤ V (3wn, n)s ≤ (1 − c1)
s .

Providing r large enough, we may guarantee that (1− c1)
s < c1, and therefore wrn ≥

3wn for every n ≥ 1.

Remark 4.5 In order to obtain the slightly weaker bound

P(0 → �n) ≥ 1

n(1−ε)/2
,

one may avoid the use of (1.8) in [8] by simply combining the bound wn ≤ n1−ε with
(4.11).
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