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Abstract We consider spectral properties and the edge universality of sparse random
matrices, the class of random matrices that includes the adjacency matrices of the
Erdős–Rényi graph model G(N , p). We prove a local law for the eigenvalue density
up to the spectral edges. Under a suitable condition on the sparsity, we also prove
that the rescaled extremal eigenvalues exhibit GOE Tracy–Widom fluctuations if a
deterministic shift of the spectral edge due to the sparsity is included. For the adjacency
matrix of the Erdős–Rényi graph this establishes the Tracy–Widom fluctuations of the
second largest eigenvalue when p is much larger than N−2/3 with a deterministic shift
of order (Np)−1.
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1 Introduction

We consider spectral properties of sparse randommatrices. One of the most prominent
examples in the class of sparse random matrices is the (centered) adjacency matrix of
the Erdős–Rényi graph on N vertices, where an edge is independently included in the
graph with a fixed probability p ≡ p(N ). Introduced in [11,12,24], the Erdős–Rényi
graph model G(N , p) serves as a null model in the theory of random graphs and has
numerous applications in many fields including network theory. Information about a
random graph can be obtained by investigating its adjacency matrix, especially the
properties of its eigenvalues and eigenvectors.

The sparsity of a real symmetric N by N random matrix may be measured by a
sparsity parameter q ≡ q(N ), with 0 ≤ q ≤ N 1/2, such that the expected number of
non-vanishing entries is asymptotically equal to Nq2. For example, for the adjacency
matrices of the Erdős–Rényi graph we have q2 = Np as the expected number of non-
vanishing entries is N (N − 1)p = (N − 1)q2. For the Gaussian orthogonal ensemble
(GOE) we have q = N 1/2 as the expected number of non-vanishing entries is N 2. We
call a random matrix sparse if q is much smaller than N 1/2.

For Wigner matrices, one of the fundamental inputs in the proof of universality
results is the local semicircle law [18–20,23], which provides an estimate of the local
eigenvalue density down to the optimal scale. The framework built on the local law
can also help understanding the spectral properties of sparse random matrices [15].
However, in contrast to Wigner matrices, the local eigenvalue density for a sparse
random matrix depends on its sparsity. For this reason, the universality of the local
eigenvalue statistics for sparse random matrices was proved at first only for q ≥ N 1/3

in [15,16]. Recently, bulk universality was proved in [29] under the much weaker
condition q ≥ Nφ , for any φ > 0. The main obstacle in the proof of the edge
universality is that the local law obtained in [15] deteriorates at the edge of the spec-
trum.

Our first main result is a local law for sparse randommatrices up to the edges. More
precisely, we prove a local law for the eigenvalue density in the regime q ≥ Nφ , for
arbitrarily small φ > 0. The main observation is that, although the empirical spectral
measure of sparse random matrices converges in the large N limit to the semicircle
measure, there exists a deterministic correction term that is not negligible for large
but finite N . As a result, we establish a local law that compares the empirical spec-
tral measure not with the semicircle law but with its refinement. We also explicitly
compute the leading term of the deterministic shift of the spectral edge, which equals
1/(Np) in case of the (centered) adjacency matrix of the Erdős–Rényi graph (N , p).
(See Theorem 2.4 and Corollary 2.5 for more detail.) This information on the shift of
the spectral edge is crucial in understanding the fluctuations of the largest eigenval-
ues.

The largest eigenvalueμ1 of a real symmetric N by N Wignermatrix (whose entries
are centered and have variance 1/N ) converges almost surely to two under the finite
fourth-moment condition, and N 2/3(μ1 − 2) converges in distribution to the GOE
Tracy–Widom law. However, for sparse random matrices with sparsity q ≤ N 1/3−φ ,
φ > 0, the deterministic shift of the edge is far greater than N−2/3, the typical size of
the Tracy–Widom fluctuations.
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Local law and Tracy–Widom limit for sparse random matrices 545

Our second main result is the edge universality that states the limiting law for
the fluctuations of the rescaled largest eigenvalues of a (centered) sparse random
matrices is given by the Tracy–Widom law if the shift is taken into consideration and
if q ≥ N 1/6+φ , whereφ > 0 is arbitrarily small.We expect that the exponent one-sixth
is critical, i.e.we expect a different limiting law for the fluctuations of the rescaled
largest eigenvalues when q ≤ N 1/6−φ . (See Theorem 2.10 and the discussion below
it for more detail.) For the adjacency matrices of the Erdős–Rényi graphs, the sparsity
conditions corresponds to p ≥ N−2/3+φ , for any φ > 0, and our result then assures
that the rescaled second largest eigenvalue has GOE Tracy–Widom fluctuations; see
Corollary 2.13.

In the proof of the local law, we introduce a new method based on a recursive
moment estimate for the normalized trace m of the Green function, i.e.we recursively
control high moments of |P(m)|, for some specifically chosen polynomial P , by using
lowermoments of |P(m)|. This recursivemoment estimate allowsus to track the effects
of the sparsity efficiently and it directly establishes the fluctuation averaging mecha-
nism without fully expanding all powers of m; see Sect. 3 for details. To establish the
recursive moment estimate we use a cumulant expansion of P(m) replacing custom-
ary resolvent expansions of m using Schur’s complement or finite-rank perturbation
formulas.

Our proof of the Tracy–Widom limit of the extremal eigenvalues relies on the Green
function comparison method [21,23]. However, instead of applying the conventional
Lindeberg replacement approach, we use a continuous flow that interpolates between
the sparse random matrix and the Gaussian orthogonal ensemble (GOE). The main
advantage of using a continuous interpolation is that we may estimate the rate of
change of m along the flow even if the moments of the entries in the sparse matrix are
significantly different from those of the entries in the GOE matrix. The change of m
over time is offset by the deterministic shift of the edge. A similar idea was used in
the proof of edge universality of other random matrix models in [37,38].

This paper is organized as follows: In Sect. 2, we define the model, present
the main results and outline applications to adjacency matrices of the Erdős–
Rényi graph ensemble. In Sect. 3, we explain the main strategy of our proofs. In
Sect. 4, we prove several properties of the deterministic refinement of Wigner’s
semicircle law. In Sect. 5, we prove the local law using our technical result on
the recursive moment estimate, Lemma 5.1. In Sect. 6, we prove Lemma 5.1 with
technical detail. In Sect. 7, we prove our second main result on the edge universal-
ity.

Notational conventions We use the symbols O( · ) and o( · ) for the standard big-
O and little-o notation. The notations O , o, ≪, ≫, refer to the limit N → ∞
unless otherwise stated. Here a ≪ b means a = o(b). We use c and C to denote
positive constants that do not depend on N , usually with the convention c ≤ C . Their
value may change from line to line. We write a � b, if there is C ≥ 1 such that
C−1|b| ≤ |a| ≤ C |b|. Throughout the paper we denote for z ∈ C

+ the real part by
E = Re z and the imaginary part by η = Im z. For a ∈ R, we let (a)+ = max(0, a),
and (a)− = −min(a, 0). Finally, we use double brackets to denote index sets, i.e. for
n1, n2 ∈ R, �n1, n2� := [n1, n2] ∩ Z.
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546 J. O. Lee, K. Schnelli

2 Definitions and main results

2.1 Motivating examples

2.1.1 Adjacency matrix of Erdős–Rényi graph

Onemotivation for thiswork is the study of adjacencymatrices of theErdős–Rényi ran-
domgraphmodel G(N , p). The off-diagonal entries of the adjacencymatrix associated
with an Erdős–Rényi graph are independent, up to the symmetry constraint, Bernoulli
random variables with parameter p, i.e. the entries are equal to 1 with probability p
and 0 with probability 1 − p. The diagonal entries are set to zero, corresponding to
the choice that the graph has no self-loops. Rescaling this matrix ensemble so that
the bulk eigenvalues typically lie in an order one interval we are led to the following
randommatrix ensemble. Let A be a real symmetric N ×N matrix whose entries, Ai j ,
are independent random variables (up to the symmetry constraint Ai j = A ji ) with
distributions

P

(
Ai j = 1√

Np(1 − p)

)
= p , P(Ai j = 0) = 1 − p ,

P(Aii = 0) = 1 , (i �= j). (2.1)

Note that thematrix A typically has N (N−1)p non-vanishing entries. For our analysis
it is convenient to extract the mean of the entries of A by considering the matrix Ã
whose entries, Ãi j , have distribution

P

(
Ãi j = 1 − p√

Np(1 − p)

)
= p , P

(
Ãi j = − p√

Np(1 − p)

)
= 1 − p ,

P
(
Ãii = 0

) = 1,

with i �= j . A simple computation then reveals that

E Ãi j = 0, E Ã2
i j = 1

N
, (2.2)

and

E Ãk
i j = (−p)k(1 − p) + (1 − p)k p

(Np(1 − p))k/2
= 1

Nd(k−2)/2
(1 + O(p)), (k ≥ 3),

(2.3)

with i �= j , where d := pN denotes the expected degree of a vertex, which we allow
to depend on N . As already suggested by (2.3), we will assume that p ≪ 1.
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Local law and Tracy–Widom limit for sparse random matrices 547

2.1.2 Diluted Wigner matrices

Another motivation for this work are diluted Wigner matrices. Consider the matrix
ensemble of real symmetric N × N matrices of the form

Di j = Bi j Vi j , (1 ≤ i ≤ j ≤ N ), (2.4)

where (Bi j : i ≤ j) and (Vi j : i ≤ j) are two independent families of independent and
identically distributed randomvariables. The randomvariables (Vi j ) satisfiesEV 2

i j = 1

and EV 2k
i j ≤ (Ck)ck , k ≥ 4, for some constants c and C , and their distribution is, for

simplicity, often assumed to be symmetric. The random variables (Bi j ) are chosen to
have a Bernoulli type distribution given by

P

(
Bi j = 1√

Np

)
= p, P(Bi j = 0) = 1 − p, P(Bii = 0) = 1, (2.5)

with i �= j . We introduce the sparsity parameter q through

p = q2

N
, (2.6)

with 0 < q ≤ N 1/2. We allow q to depend on N . We refer to the random matrix
D = (Di j ) as a diluted Wigner matrix whenever q ≪ N 1/2. For q = N 1/2, we
recover the usual Wigner ensemble.

2.2 Notation

In this subsection we introduce some of the notation and conventions used.

2.2.1 Probability estimates

We first introduce a suitable notion for high-probability estimates.

Definition 2.1 (High probability event) We say that an N -dependent event� ≡ �(N )

holds with high probability if, for any (large) D > 0,

P
(
�(N )

) ≥ 1 − N−D, (2.7)

for sufficiently large N ≥ N0(D).

Definition 2.2 (Stochastic domination) Let X ≡ X (N ), Y ≡ Y (N ) be N -dependent
non-negative random variables. We say that Y stochastically dominates X if, for all
(small) ε > 0 and (large) D > 0,

P
(
X (N ) > N εY (N )

) ≤ N−D, (2.8)
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548 J. O. Lee, K. Schnelli

for sufficiently large N ≥ N0(ε, D), and we write X ≺ Y . When X (N ) and Y (N )

depend on a parameter u ∈ U (typically an index label or a spectral parameter), then
X (u) ≺ Y (u), uniformly in u ∈ U , means that the threshold N0(ε, D) can be chosen
independently of u. A slightly modified version of stochastic domination appeared
first in [14].

In Definition 2.2 and hereinafter we implicitly choose ε > 0 strictly smaller than
φ/10 > 0, where φ > 0 is the fixed parameter appearing in (2.13) below.

The relation≺ is transitive and it satisfies the following arithmetic rules: If X1 ≺ Y1
and X2 ≺ Y2 then X1 + X2 ≺ Y1 +Y2 and X1X2 ≺ Y1Y2. Furthermore, the following
property will be used on many occasions: If�(u) ≥ N−C is deterministic, if Y (u) is a
nonnegative randomvariable satisfyingE[Y (u)2] ≤ NC ′

for all u, and if Y (u) ≺ �(u)

uniformly in u, then, for any ε > 0, we have E[Y (u)] ≤ N ε�(u) for N ≥ N0(ε),
with a threshold independent of u. This can easily be checked since

E[Y (u)1(Y (u) > N ε/2�)] ≤
(
E[Y (u)2]

)1/2 (
P[Y (u) > N ε/2�])1/2 ≤ N−D,

for any (large) D > 0, and E[Y (u)1(Y (u) ≤ N ε/2�(u))] ≤ N ε/2�(u), hence
E[Y (u)] ≤ N ε�(u).

2.2.2 Stieltjes transform

Given a probability measure ν on R, we define its Stieltjes transform as the analytic
function mν : C

+ → C
+, with C+ := {z = E + iη : E ∈ R, η > 0}, defined by

mν(z) :=
∫

R

dν(x)

x − z
. (2.9)

Note that limη↗0 iηmν(iη) = −1 since ν is a probability measure. Conversely, if
an analytic function m : C

+ → C
+ satisfies limη↗0 iηm(iη) = −1, then it is the

Stieltjes transform of a probability measure.
Choosing ν to be the standard semicircle law with density 1

2π

√
4 − x2 on [−2, 2],

on easily shows that mν , for simplicity hereinafter denoted by msc, is explicitly given
by

msc(z) = −z + √
z2 − 4

2
, (z ∈ C

+), (2.10)

where we choose the branch of the square root so thatmsc(z) ∈ C
+, z ∈ C

+. It directly
follows that

1 + zmsc(z) + msc(z)
2 = 0, (z ∈ C

+). (2.11)
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Local law and Tracy–Widom limit for sparse random matrices 549

2.3 Main results

In this section we present our main results. We first generalize the matrix ensem-
bles derived from the Erdős–Rényi graph model and the diluted Wigner matrices in
Section 2.1.

Assumption 2.3 Fix any small φ > 0.We assume that H = (Hi j ) is a real symmetric
N × N matrix whose diagonal entries are almost surely zero and whose off-diagonal
entries are independent, up to the symmetry constraint Hi j = Hji , identically dis-
tributed random variables.We further assume that (Hi j ) satisfy themoment conditions

EHi j = 0 , E(Hi j )
2 = 1 − δi j

N
, E|Hi j |k ≤ (Ck)ck

Nqk−2 , (k ≥ 3) , (2.12)

with sparsity parameter q satisfying

Nφ ≤ q ≤ N 1/2. (2.13)

We assume that the diagonal entries satisfy Hii = 0 a.s., yet this condition can
easily be dropped. For the choice φ = 1/2 we recover the real symmetric Wigner
ensemble (with vanishing diagonal). For the rescaled adjacency matrix of the Erdős–
Rényi graph, the sparsity parameter q, the edge probability p and the expected degree
of a vertex d are linked by q2 = pN = d.

We denote by κ(k) the k-th cumulant of the i.i.d. random variables (Hi j : i < j).
Under Assumption 2.3 we have κ(1) = 0, κ(2) = 1/N , and

|κ(k)| ≤ (2Ck)2(c+1)k

Nqk−2 , (k ≥ 3) . (2.14)

We further introduce the normalized cumulants, s(k), by setting

s(1) := 0 , s(2) := 1 , s(k) := Nqk−2κ(k) , (k ≥ 3) . (2.15)

In case H is given by the centered adjacency matrix Ã introduced in Sect. 2.1.1, we
have that s(k) = 1 + O(d/N ), k ≥ 3, as follows from (2.3).

We start with the local law for the Green function of this matrix ensemble.

2.3.1 Local law up to the edges for sparse random matrices

Given a real symmetricmatrix H wedefine itsGreen function,GH , and the normalized
trace of its Green function, mH , by setting

GH (z) := 1

H − zI
, mH (z) := 1

N
Tr GH (z) , (z ∈ C

+) . (2.16)
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550 J. O. Lee, K. Schnelli

The matrix entries of GH (z) are denoted by GH
i j (z). In the following we often drop

the explicit z-dependence from the notation for GH (z) and mH (z).
Denoting by λ1 ≥ λ2 ≥ · · · ≥ λN the ordered eigenvalues of H , we note that mH

is the Stieltjes transform of the empirical eigenvalue distributions, μH , of H given by

μH := 1

N

N∑
i=1

δλi . (2.17)

We further introduce the following domain of the upper-half plane

E := {
z = E + iη ∈ C

+ : |E | < 3, 0 < η ≤ 3
}

. (2.18)

Our first main result is the local law for mH up to the spectral edges.

Theorem 2.4 Let H satisfyAssumption 2.3withφ > 0. Then, there exists an algebraic
function m̃ : C+ → C

+ and 2 < L < 3 such that the following hold:

(1) The function m̃ is the Stieltjes transform of a deterministic symmetric probability
measure ρ̃, i.e. m̃(z) = mρ̃ (z). Moreover, supp ρ̃ = [−L , L] and ρ̃ is absolutely
continuous with respect to the Lebesgue measure with a strictly positive density
on (−L , L).

(2) The function m̃ ≡ m̃(z) is a solution to the polynomial equation

Pz(m̃) := 1 + zm̃ + m̃2 + s(4)

q2
m̃4 = 0 , (z ∈ C

+) . (2.19)

(3) The normalized trace mH of the Green function of H satisfies

|mH (z) − m̃(z)| ≺ 1

q2
+ 1

Nη
, (2.20)

uniformly on the domain E , z = E + iη.

Some properties of ρ̃ and its Stieltjes transform m̃ are collected in Lemma 4.1 below.
The local law (2.20) implies estimates on the local density of states of H . For

E1 < E2 define

n(E1, E2) := 1

N
|{i : E1 < λi ≤ E2}| , nρ̃ (E1, E2) :=

∫ E2

E1

ρ̃(x) dx . (2.21)

Corollary 2.5 Suppose that H satisfies Assumption 2.3 with φ > 0. Let E1, E2 ∈ R,
E1 < E2. Then,

|n(E1, E2) − nρ̃ (E1, E2)| ≺ E2 − E1

q2
+ 1

N
. (2.22)
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Local law and Tracy–Widom limit for sparse random matrices 551

The proof of Corollary 2.5 from Theorem 2.4 is a standard application of the
Helffer-Sjöstrand calculus; see e.g.Section 7.1 of [17] for a similar argument.

An interesting effect of the sparsity of the entries of H is that its eigenvalues
follow, for large N , the deterministic law ρ̃ that depends on the sparsity parameter q.
While this law approaches the standard semicircle law ρsc in the limit N → ∞, its
deterministic refinement to the standard semicircular law for finite N accounts for the
non-optimality at the edge of results obtained in [15], i.e.when (2.20) is compared
with (2.23) below.

Proposition 2.6 (Local semicircle law, Theorem 2.8 of [15]) Suppose that H satisfies
Assumption 2.3 with φ > 0. Then, the following estimates hold uniformly for z ∈ E:

∣∣∣mH (z) − msc(z)
∣∣∣ ≺ min

{
1

q2
√

 + η
,
1

q

}
+ 1

Nη
, (2.23)

where msc denote the Stieltjes transform of the standard semicircle law, and

max
1≤i, j≤N

∣∣∣GH
i j (z) − δi jmsc(z)

∣∣∣ ≺ 1

q
+

√
Immsc(z)

Nη
+ 1

Nη
, (2.24)

where  ≡ (z) := |E − 2|, z = E + iη.

We remark that the estimate (2.23) is essentially optimal as long as the spectral parame-
ter z stays away from the spectral edges, e.g. for energies in the bulk E ∈ [−2+δ, 2−δ],
δ > 0. For the individual Green function entries, Gi j , we believe that the esti-
mate (2.24) is already essentially optimal (msc therein may be replaced by m̃ without
changing the error bound). A consequence of Proposition 2.6 is that all eigenvectors
of H are completely delocalized.

Proposition 2.7 (Theorem 2.16 and Remark 2.18 in [15]) Suppose that H satis-
fies Assumption 2.3 with φ > 0. Denote by (uH

i ) the �2-normalized eigenvectors
of H. Then,

max
1≤i≤N

‖uH
i ‖∞ ≺ 1√

N
. (2.25)

Using (2.23) as a priori input it was proved in [29] that the local eigenvalue statistics in
the bulk agreewith the local statistics of theGOE, forφ > 0; see also [16] forφ > 1/3.
When combined with a high moment estimates of H (see Lemma 4.3 in [15]), the
estimate in (2.23) implies the following bound on the operator norm of H .

Proposition 2.8 (Lemma 4.4 of [15]) Suppose that H satisfies Assumption 2.3 with
φ > 0. Then,

|‖H‖ − 2| ≺ 1

q2
+ 1

N 2/3 . (2.26)
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The following estimates of the operator norm of H sharpens the estimates of Propo-
sition 2.8 by including the deterministic refinement to the semicircle law as expressed
by Theorem 2.4.

Theorem 2.9 Suppose that H satisfies Assumption 2.3 with φ > 0. Then,

|‖H‖ − L| ≺ 1

q4
+ 1

N 2/3 , (2.27)

where ±L are the endpoints of the support of the measure ρ̃ given by

L = 2 + s(4)

q2
+ O(q−4) . (2.28)

Here and above, we restricted the choice of the sparsity parameter q to the range
Nφ ≤ q ≤ N 1/2 for arbitrary small φ > 0. Yet, pushing our estimates and formalism
we expect also to cover the range (log N )A0 log log N ≤ q ≤ N 1/2, A0 ≥ 30, considered
in [15]. In fact, Khorunzhiy showed for diluted Wigner matrices (cf.Sect. 2.1.2) that
‖H‖ converges almost surely to 2 for q ≫ (log N )1/2, while ‖H‖ diverges for
q ≪ (log N )1/2; see Theorem 2.1 and Theorem 2.2 of [32] for precise statements.

As noted in Theorem 2.9, the local law allows strong statements on the locations
of the extremal eigenvalues of H . We next discuss implications for the fluctuations of
the rescaled extremal eigenvalues.

2.3.2 Tracy–Widom limit of the extremal eigenvalues

Let W be a real symmetric Wigner matrix and denote by λW
1 its largest eigenvalue.

The edge universality for Wigner matrices asserts that

lim
N→∞P

(
N 2/3(λW

1 − 2) ≤ s
)

= F1(s) , (2.29)

where F1 is the Tracy–Widom distribution function [49,50] for the GOE. State-
ment (2.29) holds true for the smallest eigenvalue λW

N as well. We henceforth focus
on the largest eigenvalues, the smallest eigenvalues can be dealt with in exactly the
same way.

The universality of the Tracy–Widom laws for Wigner matrices was first proved
in [45,46] for real symmetric and complexHermitian ensembleswith symmetric distri-
butions. The symmetry assumption on the entries’ distribution was partially removed
in [42,43]. Edge universality without any symmetry assumption was proved in [48]
under the condition that the distribution of the matrix elements has subexponential
decay and its first three moments match those of the Gaussian distribution, i.e. the
thirdmoment of the entries vanish. The vanishing thirdmoment conditionwas removed
in [23]. A necessary and sufficient condition on the entries’ distribution for the edge
universality of Wigner matrices was given in [35].
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Local law and Tracy–Widom limit for sparse random matrices 553

Our secondmain result shows that the fluctuations of the rescaled largest eigenvalue
of the sparse matrix ensemble are governed by the Tracy–Widom law, if the sparsity
parameter q satisfies q ≫ N 1/6.

Theorem 2.10 Suppose that H satisfies Assumption 2.3 with φ > 1/6. Denote by λH
1

the largest eigenvalue of H. Then,

lim
N→∞P

(
N 2/3(λH

1 − L
) ≤ s

)
= F1(s) , (2.30)

where L denotes the upper-edge of the deterministic measure ρ̃ given in (2.28).

The convergence result (2.30) was obtained in Theorem 2.7 of [16] under the
assumption that the sparsity parameter q satisfies q ≫ N 1/3, i.e.φ > 1/3 (and with
2 replacing L).

In the regime N 1/6 ≪ q ≤ N 1/3, the deterministic shift of the upper edge by L −
2 = O(q−2) is essential for (2.30) to hold since then q−2 ≥ N−2/3, the latter being the
scale of the Tracy–Widom fluctuations. In other words, to observe the Tracy–Widom
fluctuations in the regime N 1/6 ≪ q ≤ N 1/3 corrections from the fourth moment of
the matrix entries’ distribution have to be accounted for. This is in accordance with
high order moment computations for diluted Wigner matrices in [33].

It is expected that the order of the fluctuations of the largest eigenvalue exceeds
N−2/3 if q ≪ N 1/6. The heuristic reasoning is that, in this regime, the fluctuations
of the eigenvalues in the bulk of the spectrum are much larger than N−2/3 and hence
affect the fluctuations of the eigenvalues at the edges. Indeed, the linear eigenvalue
statistics of sparse randommatrices were studied in [6,44]. For any sufficiently smooth
function ϕ, it was shown there that

q√
N

N∑
i=1

ϕ(λi ) − E

[
q√
N

N∑
i=1

ϕ(λi )

]

converges to a centered Gaussian random variable with variance of order one. This
suggests that the fluctuations of an individual eigenvalue in the bulk are of order
N−1/2q−1, which is far greater than the Tracy–Widom scale N−2/3 if q ≪ N 1/6.
Moreover, comparing the size of the fluctuations with the estimate in (2.23), this also
suggests that, for large η, EmH (z) is not well approximated by msc(z).

Remark 2.11 Theorem2.10 can be extended to correlation functions of extreme eigen-
values as follows: For any fixed k, the joint distribution function of the first k rescaled
eigenvalues converges to that of the GOE, i.e. if we denote by λGOE1 ≥ λGOE2 ≥ · · · ≥
λGOEN the eigenvalues of a GOE matrix independent of H , then

lim
N→∞P

(
N2/3(λH

1 − L
) ≤ s1 , N2/3(λH

2 − L
) ≤ s2 , . . . , N2/3(λH

k − L
) ≤ sk

)

= lim
N→∞P

(
N2/3(λGOE1 − 2

) ≤ s1 , N2/3(λGOE2 − 2
)≤s2 , . . . , N2/3(λGOEk − 2

)≤sk
)

.

(2.31)
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554 J. O. Lee, K. Schnelli

We further mention that all our results also hold for complex Hermitian sparse
random matrices with the GUE Tracy–Widom law describing the limiting edge fluc-
tuations.

2.3.3 Applications to the adjacency matrix of the Erdős–Rényi graph

We briefly return to the adjacency matrix A of the Erdős–Rényi graph ensemble
introduced in Sect. 2.1.1. Since the entries of A are not centered, the largest eigenvalue
λA
1 is an outlier well-separated from the other eigenvalues. Recalling the definition of

the matrix Ã whose entries are centered, we notice that

A = Ã + f |e〉〈e| − aI , (2.32)

with f := q(1 − q2/N )−1/2, a := f/N and e := N−1/2(1, 1, . . . , 1)T ∈ R
N . (Here,

|e〉〈e| denotes the orthogonal projection onto e.) The expected degree d and the sparsity
parameter q are linked by

d = pN = q2.

Applying a simple rank-one perturbation formula and shifting the spectrum by a we
get from Theorem 2.4 the following corollary whose proof we leave aside.

Corollary 2.12 Fix φ > 0. Let A satisfies (2.2) and (2.3)with expected degree N 2φ ≤
d ≤ N 1−2φ . Then the normalized trace mA of the Green function of A satisfies

|mA(z) − m̃(z + a)| ≺ 1

d
+ 1

Nη
, (2.33)

uniformly on the domain E , where z = E + iη and a = q
N (1 − q2/N )−1/2.

Let λA
1 ≥ λA

2 ≥ · · · ≥ λA
N denote the eigenvalues of A. The behavior of the largest

eigenvalue λA
1 was fully determined in [15], where it was shown that it has Gaussian

fluctuations, i.e.

√
N

2
(λA

1 − EλA
1 ) −→ N (0, 1) , (2.34)

in distribution as N → ∞, with EλA
1 = f − a + 1

f + O(q−3); see Theorem 6.2
in [15].

Combining Theorem 2.10 with the reasoning of Section 6 of [16], we have the fol-
lowing corollary on the behavior of the second largest eigenvalue λA

2 of the adjacency
matrix A.

Corollary 2.13 Fix φ > 1/6 and φ′ > 0. Let A satisfies (2.2) and (2.3) with expected
degree N 2φ ≤ d ≤ N 1−2φ′

. Then,

lim
N→∞P

(
N 2/3(λA

2 − L − a
) ≤ s

)
= F1(s) , (2.35)
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where L = 2 + d−1 + O(d−2) is the upper edge of the measure ρ̃; see (2.28).

We skip the proof of Corollary 2.13 fromTheorem 2.10, since it is essentially the same
as the proof of Theorem 2.7 in [16], where the result was obtained for φ > 1/3, with L
replaced by 2. In analogy with Remark 2.11, the convergence result in (2.35) extends
in an obvious way to the eigenvalues λA

k−1, . . . , λ
A
2 , for any fixed k. The analogous

results apply to the k-smallest eigenvalues of A. We leave the details to the interested
reader.

Remark 2.14 The largest eigenvalues of sparse random matrices, especially the
(shifted and normalized) adjacencymatrices of the Erdős–Rényi graphs, can be used to
determine the number of clusters in automated community detection algorithms [7,40]
in stochastic blockmodels. Corollary 2.13 suggests that the test statistics for such algo-
rithms should reflect the shift of the largest eigenvalues if N−2/3 ≪ p ≪ N−1/3,
or equivalently, N 1/3 ≪ d ≪ N 2/3. If p ≪ N−2/3, the test based on the edge
universality of random matrices may fail as we have discussed after Theorem 2.10.

In applications, the sparsity should be taken into consideration due to small N even
if p is reasonably large. For example, in the Erdős–Rényi graph with N � 103, the
deterministic shift is noticeable if p � 0.1, which is in the vicinity of the parameters
used in numerical experiments in [7,40].

3 Strategy and outline of proofs

In this section, we outline the strategy of our proofs. We begin with the local law of
Theorem 2.4.

3.1 Local laws for the Green function

We start by recalling the approach to the local law for Wigner matrices initiated
in [18–20]. Using Schur’s complement (or the Feshbach formula) and large deviation
estimates for quadratic forms by Hanson and Wright [27], one shows that the normal-
ized trace mW (z) approximately satisfies the equation 1 + zmW (z) + mW (z)2 � 0,
with high probability, for any z in some appropriate subdomain of E . Using that msc
satisfies (2.11), a local stability analysis then yields |mW (z) − msc(z)| ≺ (Nη)−1/2,
z ∈ E . In fact, the same quadratic equation is approximately satisfied by each diagonal
element of the resolvent, GW

ii , and not only by their average mW . This observation
and an extension of the stability analysis to vectors instead of scalars then yields the
entry-wise local law [21–23], |GW

i j (z)− δi jmsc(z)| ≺ (Nη)−1/2, z ∈ E . (See Sect. 3.2
for some details of this argument.) Taking the normalized trace of the Green function,
one expects further cancellations of fluctuations to improve the bound. Exploring the
fluctuation averaging mechanism for mW and refining the local stability analysis, one
obtains the strong local law up to the spectral edges [23], |mW (z)−msc(z)| ≺ (Nη)−1,
z ∈ E . The fluctuation averaging mechanism was first introduced in [22] and substan-
tially extended in [14,17] to generalized Wigner matrices. We refer to [13,17] for
reviews of this general approach. Parallel results were obtained in [47,48]. For fur-
ther improvements of convergence rates we refer to [9] and [25,26]. For other recent
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developments on local laws we refer e.g. to [2,3,10] for Wigner matrices with general
variance profile and Wigner matrices with correlated entries, and to [8] for heavy-
trailed Wigner matrices. Local laws for additive random matrix models were studied
in [4,30,34,36,39]. Entry-wise local laws for random graphs models other than the
Erdős-Rényi graph were obtained in [5] for d-regular graphs and in [1] for random
graphs with given expected degree sequences.

The strategy outlined in the preceding paragraph was applied to sparse random
matrices in [15]. The sparsity of the entries manifests itself in the large deviation
estimate for quadratic forms, e.g. letting (Hi j ) satisfy (2.12) and choosing (Bi j ) to be
any deterministic N × N matrix, Lemma 3.8 of [15] assures that

∣∣∣
∑
k,l

Hik Bkl Hli − 1

N

N∑
k=1

Bkk

∣∣∣ ≺ maxk,l |Bkl |
q

+
( 1

N 2

∑
k,l

|Bkl |2
)1/2

, (3.1)

for all i ∈ �1, N�. Using the above ideas the entry-wise local law in (2.24)was obtained
in [15]. Exploiting the fluctuation averaging mechanism for the normalized trace of
the Green function, an additional power of q−1 can be gained, leading to (2.23) with
the deteriorating factor ( + η)−1/2.

To establish the local law for the normalized trace of the Green function which
does not deteriorate at the edges, we propose in this paper a novel recursive moment
estimate for the Green function. When applied to the proof of the strong local law for
a Wigner matrix, it is estimating E|1 + zmW (z) + mW (z)2|D by the lower moments
E|1 + zmW (z) + mW (z)2|D−l , l ≥ 1. The use of recursive moment estimate has
three main advantages over the previous fluctuation averaging arguments: (1) it is
more convenient in conjunction with the cumulant expansion in Lemma 3.2, (2) it
is easier to track the higher order terms involving the fourth and higher moments if
needed, and (3) it does not require to fully expand the higher power terms and thus
simplifies bookkeeping and combinatorics. The same strategy can also be applied to
individual entries of the Green function by establishing a recursive moment estimate
for E|1+ zGW

ii (z)+msc(z)GW
ii (z)|D and E|Gi j |D leading to the entry-wise local law.

We remark that estimating E|1+ zmW (z)+mW (z)2|D is also a key step for the proof
of the local law in [25,26], where the estimate is obtained by establishing a bound for
the diagonal resolvent entries instead of directly relating it with the lower moments
E|1 + zmW (z) + mW (z)2|D−l .

We illustrate this approach for the simple case of the GOE next.

3.2 Local law for the GOE

Choose W to be a GOE matrix. Since msc ≡ msc(z), the Stieltjes transform of the
semicircle law, satisfies 1 + zmsc + m2

sc = 0, we expect that the moments of the
polynomial 1 + zm(z) + m(z)2, with m ≡ mW (z) the normalized trace of the Green
function G ≡ GW (z), are small. We introduce the subdomain D of E by setting

D := {z = E + iη ∈ C
+ : |E | < 3, N−1 < η < 3} . (3.2)
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We are going to derive the following recursive moment estimate for m. For any
D ≥ 2,

E[|1 + zm + m2|2D] ≤ E

[
Imm

Nη
|1 + zm + m2|2D−1

]

+ (4D − 2)E

[
Imm

(Nη)2
|z + 2m| · |1 + zm + m2|2D−2

]
,

(3.3)

for z ∈ C
+. Fix now z ∈ D. Using Young’s inequality, the second order Taylor

expansion of m(z) around msc(z) and the a priori estimate |m(z) − msc(z)| ≺ 1, we
conclude from (3.3) with Markov’s inequality that

∣∣∣αsc(z)(m(z) − msc(z)) + (m(z) − msc(z))
2
∣∣∣ ≺ |m(z) − msc(z)|

Nη

+ Immsc(z)

Nη
+ 1

(Nη)2
, (3.4)

where αsc(z) := z + 2msc(z); see Sect. 5.1 for a similar computation. An elementary
computation reveals that |αsc(z)| � Immsc(z). Equation (3.4) is a self-consistent
equation for the quantity m(z) − msc(z). Its local stability properties up to the edges
were examined [21,22]. From these stability properties and (3.4) it follows that, for
fixed z ∈ D, |m(z) − msc(z)| ≺ 1 implies |m(z) − msc(z)| ≺ 1

Nη
. To obtain the

local law on all of D one applies a continuity or bootstrapping argument [18,21,22]
by decreasing the imaginary part of the spectral parameter from η � 1 to η ≥ N−1.
Using the monotonicity of the Stieltjes transform, this conclusion is extended to all of
E . This establishes that

|m(z) − msc(z)| ≺ 1

Nη
, (3.5)

uniformly on the domain E , which is the local law for the GOE.
Hence, to obtain the strong local law for the GOE, it suffices to establish (3.3)

for fixed z ∈ D. By the definition of the normalized trace, m ≡ m(z), of the Green
function we have

E[|1 + zm + m2|2D] = E

[(
1

N

N∑
i=1

(1 + zGii ) + m2
)

(1+zm + m2)D−1(1 + zm + m2)D
]

.

(3.6)

We expand the diagonal Green function entry Gii ≡ GW
ii using the following identity:

1 + zGii =
N∑

k=1

WikGki , (3.7)
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which follows directly from the defining relation (W − zI)G = I. To some extent (3.7)
replaces the conventional Schur complement formula. We then obtain from (3.6)
and (3.7) that

E[|1 + zm + m2|2D] = E

[(
1

N

∑
i,k

WikGki + m2
)

(1 + zm + m2)D−1(1 + zm + m2)D
]

.

(3.8)

Using that the matrix entries Wik are Gaussian random variables, integration by parts
shows that

Eik[Wik F(Wik)] = 1 + δik

N
Eik[∂ik F(Wik)] , (3.9)

for differentiable functions F : R → C, where ∂ik ≡ ∂/(∂Wik). Here we used that
EWi j = 0 and EW 2

i j = (1+ δi j )/N for the GOE. Identity (3.9) is often called Stein’s
lemma in the statistics literature. Combining (3.8) and (3.9) we obtain

E[|1 + zm + m2|2D] = 1

N2E

[∑
i,k

(1 + δik)∂ik

(
Gki (1 + zm + m2)D−1(1+zm + m2)D

)]

+ E
[
m2(1 + zm + m2)D−1(1 + zm + m2)D

]
.

(3.10)

We next expand and estimate the first term on the right side of (3.10). It is easy to see
that

(1 + δik)∂ik

(
Gki (1 + zm + m2)D−1(1 + zm + m2)D

)

= −GiiGkk(1 + zm + m2)D−1(1 + zm + m2)D

− GkiGki (1 + zm + m2)D−1(1 + zm + m2)D

− 2(D − 1)

N
Gki (z + 2m)

N∑
j=1

G jkGi j (1 + zm + m2)D−2(1 + zm + m2)D

− 2D

N
Gki (z + 2m)

N∑
j=1

G jkGi j (1 + zm + m2)D−1(1 + zm + m2)D−1 .

(3.11)

After averaging over the indices i and k, the first term on the right side of (3.11)
becomes

− 1

N 2E

[∑
i,k

GiiGkk(1 + zm + m2)D−1(1 + zm + m2)D
]

= −E[m2(1 + zm + m2)D−1(1 + zm + m2)D] ,
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which exactly cancels with the second term on the right side of (3.10). The second
term on the right side of (3.11) can be estimated as
∣∣∣∣E

[
1

N 2

∑
i,k

GkiGki (1 + zm + m2)D−1(1 + zm + m2)D
]∣∣∣∣

≤ E

[
1

N 2

∑
i,k

|Gki |2|1 + zm + m2|2D−1
]

= E

[
Imm

Nη
|1+zm + m2|2D−1

]
,

where we used the identity

1

N

N∑
i=1

|Gik(z)|2 = ImGkk(z)

Nη
, (3.12)

whichwe refer to as theWard identitybelow. It follows from the spectral decomposition
of W .

For the third term on the right side of (3.11) we have that
∣∣∣∣E

[
1

N 3

∑
i, j,k

GkiG jkGi j (z + 2m)(1 + zm + m2)D−2(1 + zm + m2)D
]∣∣∣∣

≤ E

[ |Tr G3|
N 3 |z + 2m| · |1 + zm + m2|2D−2

]

≤ E

[
Imm

(Nη)2
|z + 2m| · |1 + zm + m2|2D−2

]
, (3.13)

where we used that

1

N 3 |Tr G3| ≤ 1

N 3

N∑
α=1

1

|λα − z|3 ≤ 1

N 2η2

1

N

N∑
α=1

η

|λα − z|2 = Imm

N 2η2
. (3.14)

The fourth term on the right side of (3.11) can be estimated in a similar manner since

1

N 3

∣∣∣∣
∑
i, j,k

GkiGi jG jk

∣∣∣∣ = 1

N 3

∣∣∣Tr GG
2
∣∣∣ ≤ 1

N 3

N∑
α=1

1

|λα − z|3 ≤ Imm

N 2η2
. (3.15)

Returning to (3.10), we hence find, for z ∈ C
+, that

E[|1 + zm + m2|2D] ≤ E

[
Imm

Nη
|1 + zm + m2|2D−1

]

+ (4D − 2)E

[
Imm

(Nη)2
|z + 2m| · |1 + zm + m2|2D−2

]
,

which is the recursive moment estimate for the GOE stated in (3.3).
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Remark 3.1 The above presented method can also be used to obtain the entry-wise
local law for the Green function of the GOE. Assuming the local law for mW has
been obtained, one may establish a recursive moment estimate for 1 + zGW

ii (z) +
msc(z)GW

ii (z) to derive that

∣∣GW
ii (z) − msc(z)

∣∣ ≺
√
Immsc(z)

Nη
+ 1

Nη
, (3.16)

uniformly in i ∈ �1, N� and z ∈ E . (One may also consider high moments of 1 +
zGW

ii (z) +mW (z)Wii (z) to arrive at the same conclusion.) We leave the details to the
reader. Yet, for later illustrative purposes in Sects. 6 and 7, we sketch the derivation
of the recursive moment estimate for the off-diagonal Green function entries Gi j ≡
GW

i j (z), i �= j . Let z ∈ D. Using the relation (W − zI)G = I, we get

E

[
z|Gi j |2D

]
= zE

[
Gi jG

D−1
i j GD

i j

]
=

N∑
k=1

E

[
WikGkjG

D−1
i j GD

i j

]

=
N∑

k=1

1 + δik

N
E

[
∂ik

(
GkjG

D−1
i j GD

i j

)]
,

where we used Stein’s lemma in (3.9) in the last step. Upon computing the derivative
we get, for i �= j ,

E

[
z|Gi j |2D

]
= − 1

N

N∑
k=1

E

[
GkkGi jG

D−1
i j GD

i j

]
− 1

N

N∑
k=1

E

[
GkiGkjG

D−1
i j GD

i j

]

− D − 1

N

N∑
k=1

E

[
G2

k jGiiG
D−2
i j GD

i j

]

− D − 1

N

N∑
k=1

E

[
GkjGikG

D−1
i j GD

i j

]

− D

N

N∑
k=1

E

[
|Gkj |2GiiG

D−1
i j GD−1

i j

]

− D

N

N∑
k=1

E

[
GkjGikG

D−1
i j GD

i j

]
.

(3.17)

The first term in the right side of (3.17) equals −E
[
m|Gi j |2D

]
. Using the Ward iden-

tity (3.12) we have

1

N

N∑
k=1

|GkiGkj | ≤ 1

2N

N∑
k=1

|Gki |2 + 1

2N

N∑
k=1

|Gkj |2 = ImGii + ImG j j

2Nη
.

123



Local law and Tracy–Widom limit for sparse random matrices 561

Thus using (3.16), we get the bound

1

N

N∑
k=1

|GkiGkj | ≺ Immsc

Nη
+ 1

(Nη)2
,

uniformly on E . We can now easily bound the right side of (3.17), e.g. for any given
ε > 0,

∣∣∣∣
D

N

N∑
k=1

E

[
|Gkj |2GiiG

D−1
i j GD−1

i j

] ∣∣∣∣ ≤ N ε
E

[(
Immsc

Nη
+ 1

(Nη)2

)∣∣Gi j
∣∣2D−2

]
,

for N sufficiently large. Thus we get from (3.17) that, for i �= j ,

|z + msc|E
[|Gi j |2D

] ≤E

[
|m − msc|

∣∣Gi j
∣∣2D]

+ N ε
E

[(
Immsc

Nη
+ 1

(Nη)2

)
|Gi j |2D−2

]

+ N ε
E

[(
Immsc

Nη
+ 1

(Nη)2

)
|Gi j |2D−1

]
, (3.18)

uniformly on E , for N sufficiently large. Since |z + msc| > c on E , for some N -
independent constant c > 0, we find from (3.18) and (3.5) by Young’s and Markov’s
inequality that

∣∣GW
i j (z)

∣∣ ≺
√
Immsc(z)

Nη
+ 1

Nη
, (i �= j) , (3.19)

for fixed z ∈ D. Using continuity and monotonicity of Gi j (z) the bound can be made
uniform on the domain E . Together with (3.16), this shows the entry-wise local law
for the GOE.

3.3 Local law for sparse matrices

When applying the strategy of Sect. 3.2 to sparse matrices we face two difficulties.
First, since thematrix entries are notGaussian randomvariables, the simple integration
by parts formula (3.9) needs to replaced by a full-fletched cumulant expansion. Second,
since the higher order cumulants are not small (in the sense that the (�+2)-nd cumulant
is only O(N−1q−�)) we need to retain higher orders in the cumulant expansion. The
following result generalizes (3.9).

Lemma 3.2 (Cumulant expansion, generalized Stein lemma) Fix � ∈ N and let F ∈
C�+1(R;C+). Let Y be a centered random variable with finite moments to order �+2.
Then,
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E[Y F(Y )] =
�∑

r=1

κ(r+1)(Y )

r ! E
[
F (r)(Y )

] + E
[
��(Y F(Y ))

]
, (3.20)

where E denotes the expectation with respect to Y , κ(r+1)(Y ) denotes the (r + 1)-
th cumulant of Y and F (r) denotes the r-th derivative of the function F. The error
term ��(Y F(Y )) in (3.20) satisfies

∣∣E[��(Y F(Y ))
]∣∣ ≤ C�E[|Y |�+2] sup

|t |≤Q
|F (�+1)(t)|

+ C�E[|Y |�+21(|Y | > Q)] sup
t∈R

|F (�+1)(t)| , (3.21)

where Q ≥ 0 is an arbitrary fixed cutoff and C� satisfies C� ≤ (C�)�

�! for some
numerical constant C.

In case Y is a standard Gaussian we recover (3.20) and we thus sometimes refer
to Lemma 3.2 as generalized Stein lemma. The cumulant expansion in combination
with the Green function was successfully used to study linear eigenvalue statistics of
Wigner matrices in [31,41] and more recently in [28]. For a proof of Lemma 3.2, we
refer to Proposition 3.1 in [41].

Let H be a sparse matrix satisfying Assumption 2.3 with φ > 0. Recall the poly-
nomial P ≡ Pz and the function m̃ ≡ m̃(z) of Theorem 2.4 which satisfy P(m̃) = 0.
Let m ≡ mH (z) be given by (2.16). Following the ideas of Sect. 3.2, we derive in
Sect. 6 a recursive estimate for E|P(m)|2D , for large D with z ∈ D; see Lemma 5.1
for the precise statement and Sect. 6 for its proof. We start with

E[|P|2D] = E

[(
1 + zm + m2 + s(4)

q2t
m4

)
PD−1PD

]
, (3.22)

for D ≥ 2, and expand zm using the identity

zGi j =
N∑

k=1

HikGkj − δi j , (3.23)

which follows from the definition of the Green function. We then obtain the identity

E
[
(1 + zm)PD−1PD

] = E

[(
1

N

∑
i �=k

HikGki

)
PD−1PD

]
. (3.24)

Using the generalized Stein lemma, Lemma 3.2, we get

E
[
(1 + zm)PD−1PD

] = 1

N

�∑
r=1

κ(r+1)

r ! E

[∑
i �=k

∂rik

(
Gki P

D−1PD
)]

+ E��

(
(1 + zm)PD−1PD

)
, (3.25)

123



Local law and Tracy–Widom limit for sparse random matrices 563

where ∂ik = ∂/(∂Hik) and κ(k) are the cumulants of Hi j , i �= j . The detailed form
of the error E��(·) is discussed in Sect. 6.1. Anticipating the outcome, we mention
that we can truncate the expansion at order � ≥ 8D so that the error term becomes
sufficiently small for our purposes.

In Sect. 6, we prove that the relevant terms in (3.25) cancel with the third and fourth
term on the right side of (3.22). This yields the recursive moment estimate for P(m),
respectively m. The proof is based on the following observations:

• The leading term on the right side of (3.25) comes from the r = 1 term and is
identified to be E[−m2PD−1PD], which cancels with the third term on the right
side of (3.22). See the first part of Lemma 6.4 and Sect. 6.3, where the estimate is
obtained by following the discussion in Sect. 3.2.

• The second largest termon the right side of (3.25) comes from the r = 3 term and is
identified to be s(4)q−2

E[−N−2(
∑

i (Gii )
2)2PD−1PD]. In Lemma 6.12 we prove

that it cancels with the fourth term on the right side of (3.22) after removing some
negligible contributions (see the beginning of Sect. 6 for quantitative statement of
negligible contributions). See the second part of Lemma 6.4 and Sect. 6.7.

• The r = 2 term is negligible. The main ideas in this estimate are the identification
of an unmatched index and the cumulant expansion of the term in the unmatched
index. See Sect. 6.4.

• The negligible contributions, including the terms with r ≥ 4, can be identified by
power counting or further expansions using cumulant series. For this analysis, we
rely on the entry-wise local law (2.24) and ideas inspired by the GOE computation
in Remark 3.1 above.

As we will see in Sect. 4, the inclusion of the fourth moment s(4)/q2 in P(m)

enables us to compute the deterministic shift of edge which is of order q−2. While
it is possible to include a higher order correction term involving the sixth moment,
s(6)/q4, this would not improve the local law in our proof since the largest among the
negligible contributions originates from the r = 3 term in (3.25). (More precisely, it
is I3,2 of (6.6).)

In Sect. 5, we then prove Theorem 2.4 and Theorem 2.9 using the recursive moment
estimate form and a local stability analysis. The local stability analysis relies on some
properties of the Stieltjes transform m̃ of the deterministic distribution ρ̃ obtained in
Sect. 4.

3.4 Tracy–Widom limit and Green function comparison

To establish the edge universality (for φ > 1/6), we first show in Sect. 7.1 that the
distribution of the largest eigenvalue of H may be obtained as the expectation (of
smooth functions) of the imaginary part of m(z), for appropriately chosen spectral
parameters z. Such a relation was the basic structure for proving the edge universality
in [16,23], and the main ingredients in the argument are the local law, the square-
root decay at the edge of the limiting density, and an upper bound on the largest
eigenvalue, which are Theorems 2.4, 2.9 and Lemma 4.1 for the case at hand. For the
sake of completeness, we redo some parts of these estimates in Sect. 7.1.
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In Sect. 7.2, we then use the Green function comparison method [21,23] to com-
pare the edge statistics of H with the edge statistics of a GOE matrix. Together with
the argument of Sect. 7.1, this will yield the Tracy–Widom limit of the largest eigen-
value. However, the conventional discrete Lindeberg type replacement approach to the
Green function comparison does not work due to the slow decaying moments of the
sparse matrix. We therefore use a continuous flow that interpolates between the sparse
matrix ensemble and the GOE. Such an approach has shown to be effective in prov-
ing edge universality for deformed Wigner matrices [37] and for sample covariance
matrices [38].

More concretely, we consider the Dyson matrix flow with initial condition H0
defined by

Ht := e−t/2H0 +
√
1 − e−tWGOE , (t ≥ 0) , (3.26)

where WGOE is a GOE matrix independent of H0. In fact, since we will choose H0
to be a sparse matrix H with vanishing diagonal entries, we assume with some abuse
of terminology that WGOE = (WGOE)∗ has vanishing diagonal, i.e.we assume that
WGOE

i i = 0 and that (WGOE
i j , i < j) are independent centered Gaussian random

variables of variance 1/N . It was shown in Lemma 3.5 of [35] that the local edge
statistics of WGOE is described by the GOE Tracy–Widom statistics.

Letκ(k)
t be the k-th cumulant of (Ht )i j , i �= j . Then, by the linearity of the cumulants

under the addition of independent random variables, we have κ
(1)
t = 0, κ(2)

t = 1/N
and κ

(k)
t = e−kt/2κ(k), k ≥ 3. In particular, we have the bound

∣∣∣κ(k)
t

∣∣∣ ≤ e−t (Ck)ck

Nqk−2
t

, (k ≥ 3) , (3.27)

where we introduced the time-dependent sparsity parameter

qt := q et/2 . (3.28)

Choosing t = 6 log N , a straightforward perturbation argument shows that the local
statistics, at the edges and in the bulk, of Ht and WGOE agree up to negligible error.
It thus suffices to consider t ∈ [0, 6 log N ].

We first establish the local law for the normalized trace of the Green function
of Ht . Let

Gt (z) ≡ GHt (z) = 1

Ht − zI
, mt (z) ≡ mHt (z) = 1

N

N∑
i=1

(Gt )i i (z) , (z ∈ C
+) .

(3.29)

Proposition 3.3 Let H0 satisfy Assumption 2.3 with φ > 0. Then, for any t ≥ 0, there
exists an algebraic function m̃t : C+ → C

+ and 2 ≤ Lt < 3 such that the following
holds:
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(1) m̃t is the Stieltjes transform of a deterministic symmetric probability measure
ρ̃t , i.e. m̃t (z) = mρ̃t (z). Moreover, supp ρ̃t = [−Lt , Lt ] and ρ̃t is absolutely
continuous with respect to the Lebesgue measure with a strictly positive density
on (−Lt , Lt ).

(2) m̃t ≡ m̃t (z) is a solution to the polynomial equation

Pt,z(m̃t ) := 1 + zm̃t + m̃2
t + e−t q−2

t s(4)m̃4
t

= 1 + zm̃t + m̃2
t + e−2t q−2s(4)m̃4

t = 0 .
(3.30)

(3) The normalized trace of the Green function satisfies

|mt (z) − m̃t (z)| ≺ 1

q2t
+ 1

Nη
, (3.31)

uniformly on the domain E and uniformly in t ∈ [0, 6 log N ].
Note that Theorem 2.4 is a special case of Proposition 3.3. Given Proposition 3.3,
Corollary 2.5 extends in the obvious way from H to Ht . Proposition 3.3 is proved in
Sect. 5.1.

The endpoints ±Lt of the support of ρ̃t are given by Lt = 2 + e−t s(4)q−2
t +

O(e−2t q−4
t ) and satisfy

L̇ t = −2e−t s(4)q−2
t + O(e−2t q−4

t ) , (3.32)

where L̇ t denotes the derivative with respect to t of Lt ; cf.Remark 4.2 below.
Choose now q ≥ Nφ with φ > 1/6. In our proof of the Green function comparison

theorem, Proposition 7.2, we estimate the rate of change ofmt along the Dyson matrix
flow over the time interval [0, 6 log N ], where it undergoes a change of o(1). The con-
tinuous changes in mt can be compensated by letting evolve the spectral parameter
z ≡ z(t) according to (3.32). This type of cancellation argument appeared first in [37]
in the context of deformed Wigner matrices. However, one cannot prove the Green
function comparison theorem for sparse randommatrices by directly applying the can-
cellation argument since the error bound for the entry-wise local law in Proposition 2.6
is not sufficiently small. Thus the proof of the Green function comparison theorem
requires some non-trivial estimates on functions of Green functions as is explained in
Sect. 7.2.

4 The measure ρ̃ and its Stieltjes transform

In this section, we prove important properties of m̃t ≡ m̃t (z) introduced in Proposition
3.3. Recall that m̃t is a solution to the polynomial equation Pt,z(m̃t ) = 0 in (3.30) and
that we set qt := et/2q. Recall moreover the domain E defined in (2.18).

Lemma 4.1 For any fixed z = E + iη ∈ E and any t ≥ 0, the polynomial equation
Pt,z(wt ) = 0 has a unique solution wt ≡ wt (z) satisfying Imwt > 0 and |wt | ≤ 5.
Moreover, wt has the following properties:
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(1) There exists a probability measure ρ̃t such that the analytic continuation of wt

coincides with the Stieltjes transform of ρ̃t .
(2) The probability measure ρ̃t is supported on [−Lt , Lt ], for some Lt ≥ 2, it has a

strictly positive density inside its support and it vanishes as a square-root at the
edges, i.e. letting

t ≡ t (E) := min{|E + Lt |, |E − Lt |} , (4.1)

we have

ρ̃t (E) � 
1/2
t (E) , (E ∈ (−Lt , Lt )) . (4.2)

Moreover, Lt = 2 + e−t q−2
t s(4) + O(e−2t q−4

t ).
(3) The solution wt satisfies

Imwt (E + iη) � √
t + η if E ∈ [−Lt , Lt ] ,

Imwt (E + iη) � η√
t + η

if E /∈ [−Lt , Lt ] .
(4.3)

Proof For simplicity, we abbreviate P ≡ Pt,z . Let

Q(w) ≡ Qt,z(wt ) := − 1

wt
− wt − e−t q−2

t s(4)w3
t . (4.4)

By definition, P(w) = 0 if and only if z = Q(w). It is easily checked that the
derivative

Q′(w) = 1

w2 − 1 − 3e−t q−2
t s(4)w2 (4.5)

is monotone increasing on (−∞, 0). Furthermore, we have

Q′(−1) = −3e−t q−2
t s(4) < 0 , Q′(−1 + 2q−2

t s(4))

= (4 − 3e−t )q−2
t s(4) + O(q−4

t ) > 0 .

Hence, Q′(w) = 0 has a unique solution on (−1,−1 + 2q−2
t s(4)), which we will

denote by τt , and Q(w) ≡ Qt (wt ) attains its minimum on (−∞, 0) at wt = τt . We
let Lt := Qt (τt ), or equivalently, wt = τt if z = Lt . A direct calculation shows that

τt = −1 + 3e−t

2
q−2
t s(4) + O(e−2t q−4

t ) , Lt = 2 + e−t q−2
t s(4) + O(e−2t q−4

t ) .

(4.6)
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For simplicity we let L ≡ Lt and τ ≡ τt . Choosing now w = Q−1(z) we have the
expansion

z = Q(τ ) + Q′(τ )(w − τ) + Q′′(τ )

2
(w − τ)2 + O(|w − τ |3)

= L + Q′′(τ )

2
(w − τ)2 + O(|w − τ |3) , (4.7)

in a q−1/2
t -neighborhood of τt . We hence find that

w = τ +
(

2

Q′′(τ )

)1/2 √
z − L + O(|z − L|) , (4.8)

in that neighborhood. In particular, choosing the branch of the square root so that√
z − L ∈ C

+, we find that Imw > 0 since Q′′(τ ) > 0. We note that there exists
another solution with negative imaginary part, which corresponds to the different
branch of the square root.

We can apply the same argument with a solution of the equation Q′(w) = 0 on
(1 − 2q−2

t s(4), 1) leading us to the relation

w = −τ +
(

2

Q′′(τ )

)1/2 √
z + L + O(|z + L|) , (4.9)

in a q1/2t -neighborhood of −τ .
For uniqueness, we consider the disk B5 = {w ∈ C : |w| < 5}. On its boundary

∂B5

|w2 + zw + 1| ≥ |w|2 − |z| · |w| − 1 > 1 >
∣∣q−2

t w4s(4)
∣∣ , (4.10)

for z ∈ E . Hence, by Rouché’s theorem, the equation P(w) = 0 has the same number
of roots as the quadratic equation w2 + zw +1 = 0 in B5. Since w2 + zw +1 = 0 has
two solutions on B5, we find that P(w) = 0 has two solutions on it. For z = L+ iq−1

t ,
we can easily check that one solution of P(w) = 0 has positive imaginary part (from
choosing the branch of the square root as in (4.8)) and the other solution has negative
imaginary part. If both solutions of P(w) = 0 are in C+ ∪R (or in C− ∪R) for some
z = z̃ ∈ C

+, then by continuity, there exists z′ on the line segment joining L + iq−1
t

and z̃ such that Pt,z′(w′) = 0 for some w′ ∈ R. By the definition of P this cannot
happen, hence one solution of P(w) = 0 is in C+ and the other in C−, for any z ∈ E .
This shows the uniqueness statement of the lemma.

Next, we extend w ≡ w(z) to cover z /∈ E . (With slight abuse of notation, the
extension of w will also be denoted by w ≡ w(z).) Repeating the argument of the
previous paragraph, we find that P(w) = 0 has two solutions for z ∈ (−L , L).
Furthermore, we can also check that exactly one of them is in C

+ by considering
z = ±L ∓ q−1

t and using continuity. Thus, w(z) forms a curve on C
+, joining −τ
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and τ , which we will denote by �. We remark that, by the inverse function theorem,
w(z) is analytic for z ∈ (−L , L) since Q′(w) �= 0 for such z.

By symmetry, � intersects the imaginary axis at w(0). On the imaginary axis, we
find that

Q′(w) = 1

w2 − 1 − 3e−t q−2
t s(4)w2 < 0 if |w| < 5 . (4.11)

Thus, we get from Q(w) = z that

dw

dη
= 1

Q′(w)

dz

dη
= i

Q′(w)
, (4.12)

which shows in particular that w(i) is purely imaginary and Imw(i) < Imw(0). By
continuity, this shows that the analytic continuation ofw(z) for z ∈ C

+ is contained in
the domain D� enclosed by � and the interval [−L , L]. We also find that |w(z)| < 5,
for all z ∈ C

+.
To prove thatw(z) is analytic inC+, it suffices to show that Q′(w) �= 0 forw ∈ D� .

If Q′(w) = 0 for w ∈ D� , we have

w2Q′(w) = 1 − w2 − 3e−t q−2
t s(4)w4 = 0 . (4.13)

On the circle {w ∈ C : |w| = 5},

|1 − w2| ≥ 24 >
∣∣3e−t q−2

t w4s(4)
∣∣ . (4.14)

Hence, again by Rouché’s theorem, w2Q′(w) = 0 has two solutions in the disk {w ∈
C : |w| < 5}. We already know that those two solutions are ±τ . Thus, Q′(w) �= 0 for
w ∈ D� and w(z) is analytic.

Let ρ̃ be the measure obtained by the Stieltjes inversion of w ≡ w(z). To show that
ρ̃ is a probability measure, it suffices to show that limy→∞ iy w(iy) = −1. Since w

is bounded, one can easily check from the definition of w that |w| → 0 as |z| → ∞.
Thus, by considering z = iy and letting y → ∞,

0 = lim
y→∞ P(w(iy)) = lim

y→∞(1 + iy w(iy)) , (4.15)

which implies that limy→∞ iy w(iy) = −1. This proves the first property of ρ̃. Other
properties can be easily proved from the first property and Eqs. (4.8) and (4.9). ��
Remark 4.2 Recall that qt = et/2q. As we have seen in (4.6),

Lt = 2 + e−t q−2
t s(4) + O(e−2t q−4

t ) = 2 + e−2t q−2s(4) + O(e−4t q−4) .

Moreover, the time derivative of Lt satisfies

L̇ t = d

dt
Q(τ ) = ∂Q

∂t
(τ ) + Q′(τ )τ̇ = ∂Q

∂t
(τ ) = 2e−2t q−2s(4)τ 3 ,
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hence, referring once more to (4.6),

L̇ t = −2e−t q−2
t s(4) + O(e−2t q−4

t ) = −2e−2t q−2s(4) + O(e−4t q−4) .

Remark 4.3 It can be easily seen from the definition of Pt,z thatwt → msc as N → ∞
or t → ∞. For z ∈ E , we can also check the stability condition |z + wt | > 1/6 since

|z + wt | = |1 + e−2t q−2s(4)|wt |4|
|wt | (4.16)

and |wt | < 5, as we have seen in the proof of Lemma 4.1.

5 Proof of Proposition 3.3 and Theorem 2.9

5.1 Proof of Proposition 3.3

In this section, we prove Proposition 3.3. The main ingredient of the proof is the
recursive moment estimate for P(mt ). Recall the subdomain D of E defined in (3.2)
and the matrix Ht , t ≥ 0, defined in (3.26). We have the following result.

Lemma 5.1 (Recursive moment estimate) Fix φ > 0 and suppose that H0 satisfies
Assumption 2.3. Fix any t ≥ 0. Recall the definition of the polynomial P ≡ Pt,z in
(3.30). Then, for any D > 10 and (small) ε > 0, the normalized trace of the Green
function, mt ≡ mt (z), of the matrix Ht satisfies

E |P(mt )|2D ≤ N ε
E

[(
1

q4t
+ Immt

Nη

)∣∣P(mt )
∣∣2D−1

]

+ N−ε/8q−1
t E

[
|mt − m̃t |2

∣∣P(mt )
∣∣2D−1

]

+ N εq−1
t

2D∑
s=2

s−2∑
s′=0

E

[(
Immt

Nη

)2s−s′−2∣∣P ′(mt )
∣∣s′ ∣∣P(mt )

∣∣2D−s
]

+ N εq−8D
t + N ε

2D∑
s=2

E

[(
1

Nη
+ 1

qt

(
Immt

Nη

)1/2

+ 1

q2t

)(
Immt

Nη

)s−1

× ∣∣P ′(mt )
∣∣s−1∣∣P(mt )

∣∣2D−s
]

, (5.1)

uniformly on the domain D, for N sufficiently large.

The proof of Lemma 5.1 is postponed to Sect. 6. We are now ready to prove
Proposition 3.3.

Proof of Proposition 3.3 and Theorem 2.4 Let m̃t be the solution wt in Lemma 4.1.
Parts (1) and (2) of Proposition 3.3 and Theorem 2.4 were already proved in
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Lemma 4.1, so it suffices to prove the statements (3). For simplicity we omit the
z-dependence from the notation. Fix t ∈ [0, 6 log N ]. Let

�t := |mt − m̃t | . (5.2)

We remark that from the local law in Lemma 2.6, we have �t ≺ 1, z ∈ D. We also
define the following z-dependent deterministic parameters

α1 := Im m̃t , α2 := P ′(m̃t ) , β := 1

q2t
+ 1

Nη
, (5.3)

with z = E + iη. We note that

|α2| ≥ Im P ′(m̃t ) = Im z + 2 Immt + 4e−t s(4)q−2
t

(
3(Re m̃t )

2 Im m̃t − (Im m̃t )
3
)

≥ Im m̃t = α1,

since |m̃t | ≤ 5 as proved in Lemma 4.1. Recall that m̃t (L) = τ in the proof of Lemma
4.1. Recalling the definition of t ≡ t (E) in (4.1) and using (4.8) we have

|m̃t − τ | � √
z − L � √

t + η .

By the definitions of τ and L in the proof of Lemma 4.1, we also have that

L + 2τ + 4e−t q−2
t s(4)τ 3 = −1

τ
− τ − e−t q−2

t τ 3s(4) + 2τ + 4e−t q−2
t τ 3s(4)

= −τ

(
1

τ 2
− 1 − 3e−t q−2

t τ 2s(4)
)

= 0 ,

hence

P ′(m̃t ) = z + 2m̃t + 4e−t q−2
t m̃3

t s
(4) = (z − L) + 2(m̃t − τ)

+ 4e−t q−2
t s(4)(m̃3

t − τ 3) , (5.4)

and we find from (4.8) that

|α2| = |P ′(m̃t )| � √
t + η .

We remark that the parameter α1 is needed only for the proof of Theorem 2.9; the
proof of Proposition 3.3 can be done simply by substituting every α1 below with |α2|.

Recall that, for any a, b ≥ 0 and p,q > 1 with p−1 +q−1 = 1, Young’s inequality
states

ab ≤ ap

p
+ bq

q
. (5.5)
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Let D ≥ 10 and choose any (small) ε > 0. All estimates below hold for N
sufficiently large (depending on D and ε). For brevity, N is henceforth implicitly
assumed to be sufficiently large. Using first that Immt ≤ Im m̃t +|mt −m̃t | = α1+�t

and then applying (5.5) with p = 2D and q = 2D/(2D − 1), we get for the first term
on the right side of (5.1) that

N ε

(
Immt

Nη
+ q−4

t

)
|P(mt )|2D−1 ≤ N ε α1 + �t

Nη
|P(mt )|2D−1 + N εq−4

t |P(mt )|2D−1

≤ N (2D+1)ε

2D

(
α1 + �t

Nη

)2D
+ N (2D+1)ε

2D
q−8D
t + 2(2D − 1)

2D
· N− ε

2D−1 |P(mt )|2D .

(5.6)

Similarly, for the second term on the right side of (5.1), we have

N−ε/8q−1
t �2

t |P(mt )|2D−1 ≤ N−(D/4−1)ε

2D
q−2D
t �4D

t + 2D − 1

2D
N− ε

2D−1 |P(mt )|2D .

(5.7)

From the Taylor expansion of P ′(mt ) around m̃t , we have

|P ′(mt ) − P ′(m̃t ) − P ′′(m̃t )(mt − m̃t )| ≤ Cq−2
t �2

t , (5.8)

and |P ′(mt )| ≤ |α2| + 3�t , for all z ∈ D, with high probability since P ′′(m̃t ) =
2 + O(q−2

t ) and �t ≺ 1 by assumption. We note that, for any fixed s ≥ 2,

(α1 + �t )
2s−s′−2(|α2| + 3�t )

s′ ≤ N ε/2(α1 + �t )
s−1(|α2| + 3�t )

s−1

≤ N ε(α1 + �t )
s/2(|α2| + 3�t )

s/2

with high probability, uniformly on D, since α1 ≤ |α2| ≤ C and �t ≺ 1. In the third
term on the right side of (5.1), note that 2s − s′ − 2 ≥ s since s′ ≤ s − 2. Hence, for
2 ≤ s ≤ 2D,

N εq−1
t

(
Immt

Nη

)2s−s′−2 ∣∣P ′(mt )
∣∣s′ |P(mt )|2D−s

≤ N εq−1
t βs(α1 + �t )

2s−s′−2(|α2| + 3�t )
s′ |P(mt )|2D−s

≤ N 2εq−1
t βs(α1 + �t )

s/2(|α2| + 3�t )
s/2 |P(mt )|2D−s

≤ N 2εq−1
t

s

2D
β2D(α1+�t )

D(|α2| + 3�t )
D + N 2εq−1

t
2D − s

2D
|P(mt )|2D

(5.9)

uniformly on D with high probability. For the last term on the right side of (5.1), we
note that

1

Nη
+ q−1

t

(
Immt

Nη

)1/2

+ q−2
t ≺ β , (5.10)

123



572 J. O. Lee, K. Schnelli

uniformly on D. Thus, similar to (5.9) we find that, for 2 ≤ s ≤ 2D,

N ε

(
1

Nη
+ q−1

t

(
Immt

Nη

)1/2

+ q−2
t

)(
Immt

Nη

)s−1 ∣∣P ′(mt )
∣∣s−1 |P(mt )|2D−s

≤ N 2εβ · βs−1(α1 + �t )
s/2(|α2| + 3�t )

s/2 |P(mt )|2D−s

≤ s

2D

(
N 2εN

(2D−s)ε
4D2

) 2D
s

β2D(α1 + �t )
D(|α2| + 3�t )

D

+ 2D − s

2D

(
N− (2D−s)ε

4D2

) 2D
2D−s |P(mt )|2D

≤ N (2D+1)εβ2D(α1 + �t )
D(|α2| + 3�t )

D + N− ε
2D |P(mt )|2D , (5.11)

for all z ∈ D, with high probability. We hence have from (5.1), (5.6), (5.7), (5.9) and
(5.11) that

E

[
|P(mt )|2D

]
≤ N (2D+1)ε

E

[
β2D(α1 + �t )

D(|α2| + 3�t )
D
]

+ N (2D+1)ε

2D
q−8D
t

+ N−(D/4−1)ε

2D
q−2D
t E

[
�4D

t

]
+ CN− ε

2DE

[
|P(mt )|2D

]
,

(5.12)

for all z ∈ D. Note that the last term on the right side can be absorbed into the left
side. Thence

E

[
|P(mt )|2D

]

≤ CN (2D+1)ε
E

[
β2D(α1 + �t )

D(|α2| + 3�t )
D
]

+ N (2D+1)ε

D
q−8D
t

+ N−(D/4−1)ε

D
q−2D
t E

[
�4D

t

]

≤ N 3Dεβ2D|α2|2D+N 3Dεβ2D
E

[
�2D

t

]
+N 3Dεq−8D

t +N−Dε/8q−2D
t E

[
�4D

t

]
,

(5.13)

uniformly on D, where we used that D > 10 and the inequality

(a + b)p ≤ 2p−1(ap + bp) , (5.14)

for any a, b ≥ 0 and p ≥ 1, to get the second line.
Next, from the third order Taylor expansion of P(mt ) around m̃t , we have

∣∣∣∣P(mt ) − α2(mt − m̃t ) − P ′′(m̃t )

2
(mt − m̃t )

2
∣∣∣∣ ≤ Cq−2

t �3
t (5.15)
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since P(m̃t ) = 0 and P ′′′(m̃t ) = 4!e−t q−2
t s(4)m̃t . Thus, using �t ≺ 1 and P ′′(m̃t ) =

2 + O(q−2
t ) we get

�2
t ≺ 2|α2|�t + 2|P(mt )| , (z ∈ D) . (5.16)

Taking the 2D-power of the inequality and using once more (5.14), we get after taking
the expectation

E

[
�4D

t

]
≤ 42DN ε/2|α2|2DE

[
�2D

t

]
+ 42DN ε/2

E

[
|P(mt )|2D

]
, (z ∈ D) .

(5.17)

Replacing from (5.13) for E[|P(mt )|2D] we obtain, using that 42D ≤ N ε/2, for N
sufficiently large,

E[�4D
t ] ≤ N ε |α2|2DE[�2D

t ] + N (3D+1)εβ2D|α2|2D

+ N (3D+1)εβ2D
E

[
�2D

t

]
+ N (3D+1)εq−8D

t

+ N−Dε/8+εq−2D
t E

[
�4D

t

]
, (5.18)

uniformly on D. Applying the Schwarz inequality to the first term and the third term
on the right, absorbing the terms o(1)E[�4D

t ] into the left side and using q−2
t ≤ β in

the fourth term, we get

E[�4D
t ] ≤ N 2ε |α2|4D + N (3D+2)εβ2D|α2|2D + N (3D+2)εβ4D , (5.19)

uniformly on D. Feeding (5.19) back into (5.13) we get, for any D ≥ 10 and (small)
ε > 0,

E

[
|P(mt )|2D

]
≤ N 3Dεβ2D|α2|2D + N 3Dεβ2D

E

[
�2D

t

]

+ N (3D+1)εβ4D + q−2D
t |α2|4D

≤ N 5Dεβ2D|α2|2D + N 5Dεβ4D + q−2D
t |α2|4D, (5.20)

uniformly on D, for N sufficiently large, where we used the Schwarz inequality and
once more (5.19) to get the second line.

By Markov’s inequality, we therefore obtain from (5.20) that for fixed z ∈ D,
|P(mt )| ≺ |α2|β + β2 + q−1

t |α2|2. It then follows from the Taylor expansion of
P(mt ) around m̃t in (5.15) that

|α2(mt − m̃t ) + (mt − m̃t )
2| ≺ β�2

t + |α2|β + β2 + q−1
t |α2|2, (5.21)

for each fixed z ∈ D, where we used that q−2
t ≤ β. To get a uniform bound on D,

we choose 18N 8 lattice points z1, z2, . . . , z18N8 in D such that, for any z̃ ∈ D, there
exists zn satisfying |̃z − zn| ≤ N−4. Since
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|mt (̃z) − mt (zn)| ≤ |̃z − zn| sup
z∈D

∣∣∣∣
∂mt (z)

∂z

∣∣∣∣ ≤ |̃z − zn| sup
z∈D

1

(Im z)2
≤ N−2

and since a similar estimate holds for |m̃t (̃z)−m̃t (z)|, a union bound yields that (5.21)
holds uniformly on D with high probability. In particular, for any (small) ε > 0 and
(large) D there is an event �̃ with P(�̃) ≥ 1 − ND such that, for all z ∈ D,

|α2(mt − m̃t ) + (m − mt )
2| ≤ N εβ�2

t + N ε |α2|β + N εβ2 + N εq−1
t |α2|2,

(5.22)

on �̃, for N sufficiently large.
Recall next that there is a constant C0 > 1 such that C−1

0

√
t (E) + η ≤ |α2| ≤

C0
√

t (E) + η, where we can choose C0 uniform in z ∈ E . Note further that β =
β(E + iη) is for fixed E a decreasing function of η while

√
κt (E) + η is increasing.

Thus, there exists η̃0 ≡ η̃0(E) such that
√

(E) + η̃0 = C0qtβ(E + ĩη0). We then
consider the subdomain D̃ ⊂ D defined by

D̃ := {z = E + iη ∈ D : η > η̃0(E)} . (5.23)

On D̃, β ≤ q−1
t |α2|, hence we obtain from the estimate (5.22) that

|α2(mt − m̃t ) + (m − mt )
2| ≤ N εβ�2

t + 3N εq−1
t |α2|2

and thus

|α2|�t ≤ (1 + N εβ)�2
t + 3N εq−1

t |α2|2 ,

uniformly on D̃ on �̃. Hence, we get on �̃ that either

|α2| ≤ 4�t or �t ≤ 6N εq−1
t |α2| , (z ∈ D̃) . (5.24)

Note that any z ∈ E with η = Im z = 3 is in D̃. When η = 3, we easily see that

|α2| ≥ |z + 2m̃t | − Cq−2
t ≥ η = 3 ≫ 6N εq−1

t |α2| ,

for sufficiently large N . In particular we have that either 3/4 ≤ �t or �t ≤
6N εq−1

t |α2| on �̃ for η = 3. Moreover, since mt and m̃t are Stieltjes transforms,
we have

�t ≤ 2

η
= 2

3
.

We conclude that, for η = 3, the second possibility, �t ≤ 6N εq−1
t |α2| holds on �̃.

Since 6N εq−1
t ≪ 1 on D̃, in particular 6N εq−1

t |α2| < |α2|/8, we find from (5.24)
by continuity that
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�t ≤ 6N εq−1
t |α2| , (z ∈ D̃) , (5.25)

holds on the event �̃. Putting the estimate (5.25) back into (5.13), we find that

E

[
|P(mt )|2D

]
≤ N 4Dεβ2D|α2|2D + N 3Dεq−8D

t + q−6D
t |α2|4D

≤ N 6Dεβ2D|α2|2D + N 6Dεβ4D , (5.26)

for any (small) ε > 0 and (large) D, uniformly on D̃. Note that, for z ∈ D\D̃, the
estimate E[|P(mt )|2D] ≤ N 6Dεβ2D|α2|2D + N 6Dεβ4D can be directly checked from
(5.20). Considering lattice points {zi } ⊂ D again, a union bound yields for any (small)
ε > 0 and (large) D there is an event � with P(�) ≥ 1 − ND such that

|α2(mt − m̃t ) + (m − mt )
2| ≤ N εβ�2

t + N ε |α2|β + N εβ2, (5.27)

on �, uniformly on D for N sufficiently large.
Next, recall that β = β(E + iη) is for fixed E a decreasing function of η while√
t (E) + η is increasing. Thus there is η0 ≡ η0(E) such that

√
(E) + η0 =

10C0N εβ(E + iη0). Further notice that η0(E) is a continuous function. We consider
the three subdomains of E defined by

E1 := {
z = E + iη ∈ E : η ≤ η0(E), 10N ε ≤ Nη

}
,

E2 := {
z = E + iη ∈ E : η > η0(E), 10N ε ≤ Nη

}
,

E3 := {
z = E + iη ∈ E : 10N ε > Nη

}
.

Note thatE1∪E2 ⊂ D.We split the stability analysis of (5.27) according towhether z ∈
E1,E2 orE3.Case 1 If z ∈ E1,we note that |α2| ≤ C0

√
(E) + η ≤ 10C2

0N
εβ(E+iη).

We then obtain from (5.27) that

�2
t ≤ |α2|�t + N εβ�2

t + N ε |α2|β + N εβ2

≤ 10C2
0N

εβ�t + N εβ�2
t + (10C2

0N
ε + 1)N εβ2 ,

on �. Thus,

�t ≤ CN εβ , (z ∈ E1) , (5.28)

on �, for some finite constant C .
Case 2 If z ∈ E2, we obtain from (5.27) that

|α2|�t ≤ (1 + N εβ)�2
t + |α2|N εβ + N εβ2 , (5.29)

on �. We then note that C0|α2| ≥ √
t (E) + η ≥ 10C0N εβ, i.e. N εβ ≤ |α2|/10, so

that

|α2|�t ≤ 2�2
t + (1 + N−ε)|α2|N εβ , (5.30)
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on �, where we used that N εβ ≤ 1. Hence, we get on � that either

|α2| ≤ 4�t or �t ≤ 3N εβ, (z ∈ E2). (5.31)

We follow the dichotomy argument and the continuity argument that were used to
obtain (5.25). Since 3N εβ ≤ |α2|/8 on E2, we find by continuity that

�t ≤ 3N εβ , (z ∈ E2) , (5.32)

holds on the event �. Case 3 For z ∈ E3 = E\(E1 ∪ E2) we use that |m′
t (z)| ≤

Immt (z)/ Im z, z ∈ C
+, sincemt is a Stieltjes transform. Set now η̃ := 10N−1+ε . By

the fundamental theorem of calculus we can estimate

|mt (E + iη)| ≤
∫ η̃

η

Immt (E + is)

s
ds + |mt (E + ĩη)|

≤
∫ η̃

η

s Immt (E + is)

s2
ds + �t (E + ĩη) + |m̃t (E + ĩη)| .

Using that s → s Immt (E+is) is a monotone increasing function as is easily checked
from the definition of the Stieltjes transform, we find that

|mt (E + iη)| ≤ 2η̃

η
Immt (E + ĩη) + �t (E + ĩη) + |m̃t (E + ĩη)|

≤ C
N ε

Nη

(
Im m̃t (E + ĩη) + �t (E + ĩη)

) + |m̃t (E + ĩη)| ,
(5.33)

for some C where we used η̃ := 10N−1+ε to get the second line. Noticing that
z = E + ĩη ∈ E1 ∪E2, we have on the event� that�t (E + ĩη) ≤ CN εβ(E + ĩη) ≤ C
as follows from (5.28) and (5.32). Using moreover that m̃t is uniformly bounded by a
constant on E , we then get that, on the event �,

�t ≤ CN εβ , (z ∈ E3) . (5.34)

Combining (5.28), (5.32) and (5.34), and recalling the definition of the event �,
we get �t ≺ β, uniformly on E for fixed t ∈ [0, 6 log N ]. Choosing t = 0, we have
completed the proof of Theorem 2.4. To extend this bound to all t ∈ [0, 6 log N ], we
use the continuity of the Dyson matrix flow. Choosing a lattice L ⊂ [0, 6 log N ] with
spacings of order N−3, we get�t ≺ β, uniformly on E and onL, by a union bound. By
continuity we extend the conclusion to all of [0, 6 log N ]. This proves Proposition 3.3.

5.2 Proof of Theorem 2.9

We start with an upper bound on the largest eigenvalue λ
Ht
1 of Ht .
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Lemma 5.2 Let H0 satisfy Assumption 2.3withφ > 0. Let Lt be deterministic number
defined in Lemma 4.1. Then,

λ
Ht
1 − Lt ≺ 1

q4t
+ 1

N 2/3 , (5.35)

uniformly in t ∈ [0, 6 log N ].
Proof To prove Lemma 5.2 we follow the strategy of the proof of Lemma 4.4 in [15].
Fix t ∈ [0, 6 log N ]. Recall first from (5.3) the deterministic z-dependent parameters

α1 := Im m̃t , α2 := P ′(m̃t ) , β := 1

q2t
+ 1

Nη
. (5.36)

We mostly drop the z-dependence for brevity. We further introduce the z-independent
quantity

β̃ :=
(

1

q4t
+ 1

N 2/3

)1/2

. (5.37)

Fix a small ε > 0 and define the domain Dε by

Dε :=
{
z = E + iη : N 4εβ̃2 ≤ t ≤ q−1/3

t , η = N ε

N
√

t

}
, (5.38)

where t ≡ t (E) = E − Lt . Note that on Dε ,

N−1+ε ≪ η ≤ N−ε

N β̃
,  ≥ N 5εη .

In particular we have N εβ̃ ≤ (Nη)−1, hence N εq−2
t ≤ C(Nη)−1 so that q−2

t is
negligible when compared to (Nη)−1 and β on Dε . Note moreover that

|α2| � √
t + η � √

t = N ε

Nη
� N εβ ,

α1 = Im m̃t � η√
t + η

� η√
t

≤ N−5ε√t � N−5ε |α2| � N−4εβ . (5.39)

In particular we have α1 ≪ |α2| on Dε .
We next claim that

�t := |mt − m̃t | ≪ 1

Nη

with high probability on the domain Dε .
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Since Dε ⊂ E , we find from Proposition 3.3 that �t ≤ N ε′
β for any ε′ > 0 with

high probability. Fix 0 < ε′ < ε/7. From (5.13), we get

E

[
|P(mt )|2D

]
≤ CN (4D−1)ε′

E

[
β2D(α1 + �t )

D(|α2| + 3�t )
D
]

+ N (2D+1)ε′

D
q−8D
t + N−(D/4−1)ε′

D
q−2D
t E

[
�4D

t

]

≤ C2DN 6Dε′
β4D + N (2D+1)ε′

D
q−8D
t + N 4Dε′

D
q−2D
t β4D

≤ C2DN 6Dε′
β4D ,

for N sufficiently large, where we used that �t ≤ N ε′
β ≪ N εβ with high prob-

ability and, by (5.39), α1 ≪ |α2|, |α2| ≤ CN εβ on Dε . Applying (2D)-th order
Markov inequality and a simple lattice argument combined with a union bound, we
get |P(mt )| ≤ CN 3ε′

β2 uniformly on Dε with high probability. From the Taylor
expansion of P(mt ) around m̃t in (5.15), we then get that

|α2|�t ≤ 2�2
t + CN 3ε′

β2 , (5.40)

uniformly on Dε with high probability, where we also used that �t ≪ 1 on Dε with
high probability.

Since �t ≤ N ε′
β ≤ CN ε′−ε |α2| with high probability on Dε , we have |α2|�t ≥

CN ε−ε′
�2

t ≫ 2�2
t . Thus the first term on the right side of (5.40) can be absorbed

into the left side and we conclude that

�t ≤ CN 3ε′ β

|α2|β ≤ CN 3ε′−εβ ,

must hold with high probability on Dε . Hence, using that 0 < ε′ < ε/7, we obtain
that

�t ≤ N−ε/2β ≤ 2
N−ε/2

Nη
,

with high probability on Dε . This proves the claim that �t ≪ (Nη)−1 on Dε with
high probability. Moreover, this also shows that

Immt ≤ Im m̃t + �t = α1 + �t ≪ 1

Nη
, (5.41)

on Dε with high probability, where we used (5.39).
Now we prove the estimate (5.35). If λ

Ht
1 ∈ [E − η, E + η] for some E ∈ [Lt +

N ε(q−4
t + N−2/3), Lt + q−1/3] with z = E + iη ∈ Dε ,

Immt (z) ≥ 1

N
Im

1

λ
Ht
1 − E − iη

= 1

N

η

(λ
Ht
1 − E)2 + η2

≥ 1

5Nη
, (5.42)
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which contradicts the high probability bound Immt ≪ (Nη)−1 in (5.41). The size
of each interval [E − η, E + η] is at least N−1+εq1/6t . Thus, considering O(N )

such intervals, we can conclude that λ1 /∈ [L + N ε(q−4
t + N−2/3), L + q−1/3

t ] with
high probability. From Proposition 2.8, we find that λ

Ht
1 − Lt ≺ q−1/3

t with high
probability, hence we conclude that (5.35) holds, for fixed t ∈ [0, 6 log N ]. Using a
lattice argument and the continuity of the Dyson matrix flow, we easily obtain (5.35)
uniformly in t ∈ [0, 6 log N ]. ��

We are now well-prepared for the proof of Theorem 2.9. It follows immediately
from the next result.

Lemma 5.3 Let H0 satisfy Assumption (2.3) with φ > 0. Then, uniformly in t ∈
[0, 6 log N ],

|‖Ht‖ − Lt | ≺ 1

q4t
+ 1

N 2/3 . (5.43)

Proof of Lemma 5.3 and Theorem 2.9 Fix t ∈ [0, log N ]. Consider the largest eigen-
value λ

Ht
1 . In Proposition 5.2, we already showed that (Lt − λ

Ht
1 )− ≺ q−4

t + N−2/3.

It thus suffices to consider (Lt − λ
Ht
1 )+. By Lemma 4.1 there is c > 0 such that

c(Lt −λ
Ht
1 )

3/2
+ ≤ nρ̃t (λ

Ht
1 , Lt ), with nρ̃t as in (2.21). Hence, by Corollary 2.5 (and its

obvious generalization to Ht ), we have the estimate

(
Lt − λ

Ht
1

)3/2
+ ≺

(
Lt − λ

Ht
1

)
+

q2t
+ 1

N
, (5.44)

so that (Lt −λ
Ht
1 )+ ≺ q−4

t + N−2/3. Thus |λHt
1 − Lt | ≺ q−4

t + N−2/3. Similarly, one

shows the estimate |λHt
N + Lt | ≺ q−4

t + N−2/3 for the smallest eigenvalue λ
Ht
N . This

proves (5.43) for fixed t ∈ [0, 6 log N ]. Uniformity follows easily from the continuity
of the Dyson matrix flow. ��

6 Recursive moment estimate: Proof of Lemma 5.1

In this section, we prove Lemma 5.1. Recall the definitions of the Green functions Gt

and mt in (3.29). We fix t ∈ [0, 6 log N ] throughout this section, and we will omit t
from the notation in the matrix Ht , its matrix elements and its Green functions. Given
a (small) ε > 0, we introduce the z-dependent control parameter �ε ≡ �ε(z) by
setting

�ε(z) := N ε
E

[(
1

q4t
+ Immt

Nη

)∣∣P(mt )
∣∣2D−1

]

+ N−ε/4q−1
t E

[
|mt − m̃t |2

∣∣P(mt )
∣∣2D−1

]
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+ N εqt
−1

2D∑
s=2

s−2∑
s′=0

E

[(
Immt

Nη

)2s−s′−2∣∣P ′(mt )
∣∣s′ ∣∣P(mt )

∣∣2D−s
]

+ N εq−8D
t

+ N ε
2D∑
s=2

E

[(
1

Nη
+ 1

qt

(
Immt

Nη

)1/2

+ 1

q2t

)(
Immt

Nη

)s−1

× ∣∣P ′(mt )
∣∣s−1∣∣P(mt )

∣∣2D−s
]

. (6.1)

Recall the domainD defined in (3.2). Lemma 5.1 states that, for any (small) ε > 0,

E[|P|2D(z)] ≤ �ε(z) , (z ∈ D) , (6.2)

for N sufficiently large.We say that a random variable Z is negligible if |E[Z ]| ≤ C�ε

for some N -independent constant C .
To prove the recursive moment estimate of Lemma 5.1, we return to (3.25) which

reads

E
[
(1 + zm)PD−1PD

] = 1

N

�∑
r=1

κ
(r+1)
t

r ! E

[∑
i �=k

∂rik

(
Gki P

D−1PD
)]

+ E��

(
(1 + zm)PD−1PD

)
,

(6.3)

where ∂ik = ∂/(∂Hik) and κ
(k)
t are the cumulants of (Ht )i j , i �= j . The detailed form

of the error E��(·) is discussed in Sect. 6.1.
It is convenient to condense the notation a bit. Abbreviate

I ≡ I (z,m, D) := (1 + zm)P(m)D−1P(m)D . (6.4)

We rewrite the cumulant expansion (6.3) as

EI =
�∑

r=1

r∑
s=0

wIr,sEIr,s + E��(I ) , (6.5)

where we set

Ir,s := Nκ
(r+1)
t

1

N 2

∑
i �=k

(
∂r−s
ik Gki

)(
∂sik

(
PD−1PD

))
. (6.6)

(By convention ∂0ikGki = Gki .) The weights wIr,s are combinatoric coefficient given
by

wIr,s := 1

r !
(
r

s

)
= 1

(r − s)!s! . (6.7)

123



Local law and Tracy–Widom limit for sparse random matrices 581

Returning to (3.22), we have in this condensed form the expansion

E[|P|2D] =
�∑

r=1

r∑
s=0

wIr,sEIr,s + E

[(
m2 + s(4)

q2t
m4

)
PD−1PD

]
+ E��(I ) .

(6.8)

6.1 Truncation of the cumulant expansion

In this subsection, we bound the error term E��(I ) in (6.8) for large �. We need some
more notation. Let E [ik] denote the N × N matrix determined by

(E [ik])ab =
{

δiaδkb + δibδka if i �= k ,

δiaδib if i = k ,
(i, k, a, b ∈ �1, N�) . (6.9)

For each pair of indices (i, k), we define the matrix H (ik) from H through the decom-
position

H = H (ik) + Hik E
[ik] . (6.10)

With this notation we have the following estimate.

Lemma 6.1 Suppose that H satisfies Assumption 2.3 with φ > 0. Let i, k ∈ �1, N�,
D ∈ N and z ∈ D. Define the function Fki by

Fki (H) := Gki P
D−1P

D
, (6.11)

where G ≡ GH (z) and P ≡ P(mH (z)). Choose an arbitrary � ∈ N. Then, for any
(small) ε > 0,

E

[
sup

x∈R, |x |≤q−1/2
t

|∂�
ik Fki (H

(ik) + xE [ik])|
]

≤ N ε , (6.12)

uniformly z ∈ D, for N sufficiently large. Here ∂�
ik denotes the partial derivative

∂�

∂H�
ik
.

Proof Fix two pairs of indices (a, b) and (i, k). From the definition of the Green
function and (6.10) we easily get

GH (ik)

ab = GH
ab + Hik

(
GH (ik)

E [ik]GH )
ab = GH

ab + HikG
H (ik)

ai GH
kb + HikG

H (ik)

ak GH
ib ,

where we omit the z-dependence. Letting �H (ik)

o := max
a,b

|GH (ik)

ab | and �H
o :=

max
a,b

|GH
ab|, we get
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�H (ik)

o ≺ �H
o + 1

qt
�H

o �H (ik)

o ,

since |Hik | ≺ q−1
t by (2.12). Moreover by (2.24) we have �H

o ≺ 1, uniformly in

z ∈ D. It thus follows that �H (ik)

o ≺ �H
o ≺ 1, uniformly in z ∈ D, where we

used (2.24). Similarly, for x ∈ R, we have

GH (ik)+xE [ik]
ab = GH (ik)

ab − x
(
GH (ik)

E [ik]GH (ik)+xE [ik])
ab ,

and we get

sup
|x |≤q−1/2

t

max
a,b

|GH (ik)+xE [ik]
ab | ≺ �H (ik)

o ≺ 1 , (6.13)

uniformly in z ∈ D, where we used once more (2.24).
Recall that P is a polynomial of degree 4 inm. Then Fki is amultivariate polynomial

of degree 4(2D − 1) + 1 in the Green function entries and the normalized trace m
whose number of member terms is bounded by 42D−1. Hence ∂�

ik Fki is a multivariate
polynomial of degree 4(2D − 1) + 1 + � whose number of member terms is roughly
bounded by 42D−1× (4(2D−1)+1+2l)l . Next, to control the individual monomials
in ∂�

ik Fki , we apply (6.13) to each factor of Green function entries (at most 4(2D −
1) + 1 + � times). Thus, altogether we obtain

E

[
sup

|x |≤q−1/2
t

|(∂�
ik Fki )(H

(ik) + xE [ik])|
]

≤ 42D(8D + �)N (8D+�)ε′
, (6.14)

for any small ε′ > 0 and sufficiently large N . Choosing ε′ = ε/(2(8D + �)) with
get (6.12). ��

Recall that we set I = (1 + zm)P(m)D−1P(m)D in (6.4). To control the error term
E��(I ) in (6.8), we use the following result.

Corollary 6.2 Let E��(I ) be as in (6.8). With the assumptions and notation of
Lemma 6.1, we have, for any (small) ε > 0,

|E��

(
I
)∣∣ ≤ N ε

(
1

qt

)�

, (6.15)

uniformly in z ∈ D, for N sufficiently large. In particular, the error E��(I ) is negli-
gible for � ≥ 8D.

Proof First, fix a pair of indices (k, i), k �= i . Recall the definition of Fik in (6.11).
Denoting Eik the partial expectation with respect to Hik , we have from Lemma 3.2,
with Q = q−1/2

t , that
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|Eik��(Hik Fki )| ≤ C�Eik

[
|Hik |�+2

]
sup

|x |≤q−1/2
t

∣∣∣∂�+1
ik Fki

(
H (ik) + xE [ik])∣∣∣

+ C�Eik

[
|Hik |�+21

(
|Hik | > q−1/2

t

)]

× sup
x∈R

∣∣∣∂�+1
ik Fki

(
H (ik) + xE [ik])∣∣∣ , (6.16)

with C� ≤ (C�)�/�!, for some numeral constant C . To control the full expectation of
the first term on the right side, we use the moment assumption (2.12) and Lemma 6.1
to conclude that, for any ε > 0,

C�E

[
Eik

[
|Hki |�+2

]
sup

|x |≤q−1/2
t

∣∣∂�+1
ik Fki

(
H (ik)+xE [ik])∣∣

]
≤C�

(C(� + 2))c(�+2)

Nq�
t

N ε

≤ N 2ε

Nq�
t

,

for N sufficiently large. To control the second term on the right side of (6.16), we use
the operator norm of G(z) is deterministically bounded by η−1, i.e.‖G(z)‖ ≤ η−1, to
conclude that

sup
x∈R

∣∣∂�+1
ik Fki

(
H (ik) + xE [ik])∣∣ ≤ 42D(8D + �)

(
C

η

)(8D+�)

, (z ∈ C
+) ;

cf. the paragraph above (6.14). On the other hand, we have from Hölder’s inequality
and the moment assumptions in (2.12) that, for any D′ ∈ N,

Eik

[
|Hik |�+21

(
|Hik | > q−1/2

t

)]
≤

(
C

qt

)D′

,

for N sufficiently large. Using that qt ≥ Nφ by (2.3), we hence obtain, for any D′ ∈ N,

C�Eik

[
|Hik |�+21

(
|Hik | > q−1/2

t

)]
sup
x∈R

∣∣∣∂�+1
ik Fki

(
H (ik) + xE [ik])∣∣∣ ≤

(
C

qt

)D′

,

(6.17)

uniformly on C
+, for N sufficiently large.

Next, summing over i , k and choosing D′ ≥ � sufficiently large in (6.17) we obtain,
for any ε > 0

∣∣∣∣E
[
��

(
(1 + zm)PD−1PD

)]∣∣∣∣ =
∣∣∣∣E

[
��

( 1

N

∑
i �=k

Hik Fki
)]∣∣∣∣ ≤ N ε

q�
t

,

uniformly on D, for N sufficiently large. This proves (6.15). ��
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Remark 6.3 We will also consider slight generalizations of the cumulant expansion
in (6.3). Let i, j, k ∈ �1, N�. Let n ∈ N0 and choose indices a1, . . . , an, b1, . . . , bn ∈
�1, N�. Let D ∈ N and choose s1, s2, s3, s4 ∈ �0, D�. Fix z ∈ D. Define the function
Fki by setting

Fki (H) := Gki

n∏
l=1

Galbl P
D−s1 PD−s2

(
P ′)s3 (P ′

)s4
. (6.18)

It is then straightforward to check that we have the cumulant expansion

E

[
1

N

∑
i �=k

Hik Fki

]
=

�∑
r=1

κ
(r+1)
t

r ! E

[
1

N

∑
i �=k

∂rik Fki

]
+ E��

(
1

N

∑
i �=k

Hik Fki

)
,

(6.19)

where the error E��(·) satisfies the same bound as in (6.15). This follows easily by
extending Lemma 6.1 and Corollary 6.2.

6.2 Truncated cumulant expansion

Armed with the estimates on E��(·) of the previous subsection, we now turn to the
main terms on the right side of (6.8). In the remainder of this section we derive the
following result from which Lemma 5.1 follows directly. Recall the definition of �ε

in (6.1).

Lemma 6.4 Fix D ≥ 2 and � ≥ 8D. Let Ir,s be given by (6.6). Then we have, for any
(small) ε > 0,

wI1,0E[I1,0] = −E
[
m2P(m)D−1P(m)D

] + O(�ε) , wI2,0E[I2,0] = O(�ε) ,

wI3,0E[I3,0] = − s(4)

q2t
E
[
m4P(m)D−1P(m)D

] + O(�ε) , wIr,0E[Ir,0] = O(�ε) , (4 ≤ r ≤ �) ,

(6.20)

uniformly in z ∈ D, for N sufficiently large. Moreover, we have, for any (small) ε > 0,

wIr,s |E[Ir,s]| ≤ �ε , (1 ≤ s ≤ r ≤ �) , (6.21)

uniformly in z ∈ D, for N sufficiently large.

Proof of Lemma 5.1 By the definition of �ε in (6.1) (with a sufficiently large (small)
ε > 0), it suffices to show that E[|P|2D(z)] ≤ �ε(z), for all z ∈ D, for N sufficiently
large. Choosing � ≥ 8D, Corollary 6.2 asserts that E��(I ) in (6.8) is negligible. By
Lemma 6.4 the only non-negligible terms in the expansion of the first term on the
right side of (6.8) are wI1,0EI1,0 and wI3,0EI3,0, yet these two terms cancel with the

123



Local law and Tracy–Widom limit for sparse random matrices 585

middle term on the right side of (6.8), up to negligible terms. Thus the whole right
side of (6.8) is negligible. This proves Lemma 5.1. ��

We now choose an initial (small) ε > 0. Below we use the factor N ε to absorb
numerical constants in the estimates by allowing ε to increase by a tiny amount from
line to line. We often drop z from the notation; it is always understood that z ∈ D
and all estimates are uniform onD. The proof of Lemma 6.4 is done in the remaining
Sects. 6.3–6.7 where (EIr,s) are controlled.

6.3 Estimate on I1,s

Starting from the definition of I1,0 in (6.5), a direct computation yields

EI1,0 = κ
(2)
t

N
E

[ ∑
i1 �=i2

(
∂i1i2Gi2i1

)
PD−1PD

]

= − E

[
1

N 2

∑
i1 �=i2

(Gi2i2Gi1i1 + Gi1i2Gi2i1)P
D−1PD

]

= − E

[
m2PD−1PD

]
+ E

[
1

N 2

N∑
i1=1

(Gi1i1)
2PD−1PD

]

− E

[
1

N 2

∑
i1 �=i2

(Gi2i1)
2PD−1PD

]
. (6.22)

The middle term on the last line is negligible since

∣∣∣∣
1

N 2E

[ N∑
i1=1

(Gi1i1)
2PD−1PD

]∣∣∣∣ ≤ N ε

N
E

[
PD−1PD

]
,

where we used |Gi1i1 | ≺ 1, and so is the third term since

1

N 2

∣∣∣∣E
[ ∑
i1 �=i2

(Gi2i1)
2PD−1PD

]∣∣∣∣ ≤ N ε
E

[
Imm

Nη
|P|2D−1

]
,

where we used Lemma 6.5. We thus obtain from (6.22) that

∣∣∣I1,0 + E
[
m2PD−1PD

]∣∣∣ ≤ �ε , (6.23)

for N sufficiently large. This proves the first estimate in (6.20).
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Consider next I1,1. Similar to (3.11), we have

EI1,1 = 1

N 2

∑
i1 �=i2

E

[
Gi2i1∂i1i2(P

D−1PD)

]

= − 2(D − 1)

N 3 E

[ ∑
i1 �=i2

N∑
i3=1

Gi2i1Gi2i3Gi3i2 P
′(m)PD−2PD

]

− 2D

N 3

∑
i1 �=i2

N∑
i3=1

E

[
Gi2i1Gi3i2Gi2i3 P

′(m)PD−1PD−1

]
.

Here the fresh summation index i3 originated from ∂i1i2 P(m) = P ′(m) 1
N

∑N
i3=1∂i1i2

Gi3i3 . Note that we can add the terms with i1 = i2 at the expense of a negligible error,
so that

EI1,1 = −2(D − 1)E

[
1

N 3 Tr G
3P ′(m)PD−2PD

]

− 2D E

[
1

N 3G(G∗)2P ′(m)PD−1PD−1

]
+ O(�ε) . (6.24)

In the remainder of this section, we will freely include or exclude negligible terms
with coinciding indices. Using (3.14) and (3.15) we obtain from (6.24) the estimate

|EI1,1| =
∣∣∣∣E

[
1

N 2

∑
i1 �=i2

Gi2i1∂i1i2(P
D−1PD)

]∣∣∣∣

≤ (4D − 2)E

[
Imm

(Nη)2
|P ′||P|2D−2

]
+ �ε , (6.25)

for N sufficiently large. This proves (6.21) for r = s = 1.

6.4 Estimate on I2,0

We start with a lemma that is used in the power counting arguments below.

Lemma 6.5 For any i, k ∈ �1, N�,

1

N

N∑
j=1

|Gi j (z)G jk(z)| ≺ Imm(z)

Nη
,

1

N

N∑
j=1

|Gi j (z)| ≺
(
Imm(z)

Nη

)1/2

, (z ∈ C
+). (6.26)
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Moreover, for fixed n ∈ N,

1

Nn

N∑
j1, j2,..., jn=1

|Gi j1(z)G j1 j2 (z)G j2 j3(z) · · ·G jnk(z)| ≺
(
Imm(z)

Nη

)n/2
, (z∈C

+) .

(6.27)

Proof Let λHt
1 ≥ λ

Ht
2 ≥ · · · ≥ λ

Ht
N be the eigenvalues of Ht , and let u1, . . . , uN , uα ≡

uHt
α , denoted the associated normalized eigenvectors. Then, by spectral decomposition,

we get

N∑
j=1

|Gi j |2 =
N∑
j=1

∑
α,β

uα(i)uα( j)

λα − z

uβ(i)uβ( j)

λβ − z
=

∑
α,β

uα(i)〈uα, uβ〉uβ(i)

(λα − z)(λβ − z)

=
N∑

α=1

|uα(i)|2
|λα − z|2 .

Since the eigenvectors are delocalized by Proposition 2.7, we find that

1

N

N∑
j=1

|Gi j |2 ≺ 1

N 2

N∑
α=1

1

|λα − z|2 = Imm

Nη
.

This proves the first inequality in (6.26) for i = k. The inequality for i �= k, the second
inequality in (6.26) and (6.27) then follow directly from the Schwarz inequality. ��

Recalling the definition of Ir,s in (6.6) we have

I2,0 := Nκ
(3)
t

1

N 2

∑
i1 �=i2

(
∂2i1i2Gi2i1

)
PD−1PD .

We then notice that I2,0 contains terms with one or three off-diagonal Green function
entries Gi1i2 . We split accordingly

wI2,0 I2,0 = w
I (1)
2,0

I (1)
2,0 + w

I (3)
2,0

I (3)
2,0 , (6.28)

where I (1)
2,0 contains all terms with one off-diagonal Green function entries (and, nec-

essarily, two diagonal Green function entries) and where I (3)
2,0 contains all terms with

three off-diagonal Green function entries (and zero diagonal Green function entries),
and w

I (1)
2,0
, w

I (3)
2,0

denote the respective weights. Explicitly,

123



588 J. O. Lee, K. Schnelli

EI (1)
2,0 = Nκ

(3)
t E

[
1

N 2

∑
i1 �=i2

Gi2i1Gi2i2Gi1i1 P
D−1PD

]
,

EI (3)
2,0 = Nκ

(3)
t E

[
1

N 2

∑
i1 �=i2

(Gi2i1)
3PD−1PD

]
,

(6.29)

and wI2,0 = 1, w
I (1)
2,0

= 3, w
I (3)
2,0

= 1.

We first note that I (3)
2,0 satisfies, for N sufficiently large,

|EI (3)
2,0 | ≤ N εs(3)

qt
E

[
1

N 2

∑
i1 �=i2

|Gi1i2 |2|P|2D−1
]

≤ N ε

qt
E

[
Imm

Nη
|P|2D−1

]
≤ �ε .

(6.30)

Remark 6.6 (Power counting I) Consider the terms Ir,0, r ≥ 1. For n ≥ 1, we then
split

wI2n I2n,0 =
n∑

l=0

w
I (2l+1)
2n,0

I (2l+1)
2n,0 ,

wI2n−1 I2n−1,0 =
n∑

l=0

w
I (2l)
2n−1,0

I (2l)
2n−1,0 , (6.31)

according to the parity of r . For example, for r = 1, I1,0 = I (0)
1,0 + I (2)

1,0 , with

EI (0)
1,0 = − E

[
1

N 2

∑
i �=k

GkkGii P
D−1PD

]
,

EI (2)
1,0 = − E

[
1

N 2

∑
i �=k

GikGki P
D−1PD

]
;

cf. (6.22). Now, using a simple power counting, we bound the summands in (6.31) as
follows. First, we note that each term in Ir,0 contains a factor of q

(r−2)+
t . Second, for

EI (2l+1)
2n,0 and EI (2l)

2n−1,0, with n ≥ 1, l ≥ 1, we can by Lemma 6.5 extract one factor

of Imm
Nη

(other Green function entries are bounded using |Gik | ≺ 1). Thus, for n ≥ 1,
l ≥ 1,

∣∣∣EI (2l+1)
2n,0

∣∣∣ ≤ N ε

q2n−2
t

E

[(
Imm

Nη

)
|P|2D−1

]
,

∣∣∣EI (2l)
2n−1,0

∣∣∣ ≤ N ε

q(2n−3)+
t

E

[(
Imm

Nη

)
|P|2D−1

]
, (6.32)

for N sufficiently large, and we conclude that all these terms are negligible.

We next consider EI (1)
2,0 which is not covered by (6.32). Using |Gii | ≺ 1 and

Lemma 6.5 we get
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∣∣∣EI (1)
2,0

∣∣∣ ≤ N εs(3)

qt
E

[
1

N 2

∑
i1 �=i2

|Gi1i2 ||P|2D−1
]

≤ N εs(3)

qt
E

[(
Imm

Nη

)1/2

|P|2D−1
]

,

(6.33)

for N sufficiently large. Yet, this bound is not negligible.We need to gain an additional
factor of q−1

t with which it will become negligible. We have the following result.

Lemma 6.7 For any (small) ε > 0, we have, for all z ∈ D,

∣∣∣EI (1)
2,0

∣∣∣ ≤ N ε

q2t
E

[(
Imm

Nη

)1/2

|P|2D−1
]

+ �ε

≤ N ε
E

[(
1

q4t
+ Imm

Nη

)∣∣P(m)
∣∣2D−1

]
+ �ε , (6.34)

for N sufficiently large. In particular, the term EI2,0 is negligible.

Proof Fix a (small) ε > 0. Recalling (6.29), we have

EI (1)
2,0 = Nκ

(3)
t E

[
1

N 2

∑
i1 �=i2

Gi2i1Gi1i1Gi2i2 P
D−1PD

]
. (6.35)

The key feature here is that the Green function entries are Gi2i1Gi1i1Gi2i2 , where at
least one index, say i2, appears an odd number of times. We say that the index i2 is
unmatched. Using the resolvent formula (3.23) we expand in the unmatched index i2
to get

zEI (1)
2,0 = Nκ

(3)
t E

[
1

N 2

∑
i1 �=i2 �=i3

Hi2i3Gi3i1Gi2i2Gi1i1 P
D−1PD

]
. (6.36)

We now proceed in a similar way as in Remark 3.1 where we estimated |GW
i1i2

|, i1 �= i2,
for theGOE.Applying the cumulant expansion to the right side of (6.36), wewill show
that the leading term is −E[mI (1)

2,0 ]. Then, upon substituting m(z) by the deterministic
quantity m̃(z) and showing that all other terms in the cumulant expansion of the right
side of (6.36) are negligible, we will get that

|z + m̃(z)| ∣∣EI (1)
2,0

∣∣ ≤ N ε

q2t
E

[(
Imm

Nη

)1/2

|P|2D−1
]

+ �ε ≤ 2�ε , (6.37)

for N sufficiently large. Since |z + m̃(z)| ≥ 1/6 uniformly on E ⊃ D, as shown in
Remark 4.3, the lemma directly follows. The main efforts in the proof go into showing
that the sub-leading terms in the cumulant expansion of the right side of (6.36) are
indeed negligible.
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For simplicity we abbreviate Î ≡ I (1)
2,0 . Then using Lemma 3.2 and Remark 6.3, we

have, for arbitrary �′ ∈ N, the cumulant expansion

zEI (1)
2,0 = zE Î =

�′∑
r ′=1

r ′∑
s′=0

w Îr ′,s′E Îr ′,s′ + O

(
N ε

q�′
t

)
, (6.38)

with

Îr ′,s′ := Nκ
(r ′+1)
t Nκ

(3)
t

1

N 3

∑
i1 �=i2 �=i3

(
∂r

′−s′
i2i3

(Gi3i1Gi2i2Gi1i1)
)(

∂s
′

i2i3

(
PD−1PD

))

(6.39)

and w Îr ′,s′ = 1
r ′!

(r ′
s′
)
. Here, we used Corollary 6.2 to truncate the series in (6.38) at

order �′. Choosing �′ ≥ 8D the remainder is indeed negligible.
We first focus on Îr ′,0. For r ′ = 1, we compute

E Î1,0 = − s(3)

qt
E

[
1

N 3

∑
i1 �=i2 �=i3

Gi2i1Gi3i3Gi2i2Gi1i1 P
D−1PD

]

− 3
s(3)

qt
E

[
1

N 3

∑
i1 �=i2 �=i3

Gi2i3Gi3i1Gi2i2Gi1i1 P
D−1PD

]

− 2
s(3)

qt
E

[
1

N 3

∑
i1 �=i2 �=i3

Gi1i2Gi2i3Gi3i1Gi2i2 P
D−1PD

]

=: E Î (1)
1,0 + 3E Î (2)

1,0 + 2E Î (3)
1,0 , (6.40)

where we organized the terms according to the off-diagonal Green functions entries.
By Lemma 6.5,

∣∣∣E Î (2)
1,0

∣∣∣ ≤N ε

qt
E

[
Imm

Nη
|P|2D−1

]
≤ �ε ,

∣∣∣E Î (3)
1,0

∣∣∣ ≤N ε

qt
E

[(
Imm

Nη

)3/2

|P|2D−1
]

≤ �ε . (6.41)

Recall m̃ ≡ m̃t (z) defined in Proposition 3.3. We rewrite Î (1)
1,0 with m̃ as

E Î (1)
1,0 = −E

s(3)

qt

[
1

N 2

∑
i1 �=i2

m̃Gi2i1Gi2i2Gi1i1 P
D−1PD

]

− E
s(3)

qt

[
1

N 2

∑
i1 �=i2

(m − m̃)Gi2i1Gi2i2Gi1i1 P
D−1PD

]
+ O(�ε) .

(6.42)
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By the Schwarz inequality and the high probability bounds |Gkk |, |Gii | ≤ N ε/8, for
N sufficiently large, the second term in (6.42) is bounded as

|s(3)|
qt

∣∣∣∣E
[

1

N 2

∑
i1 �=i2

(m − m̃)Gi2i1Gi2i2Gi1i1 P
D−1PD

]∣∣∣∣

≤ N ε/4 |s(3)|
qt

E

[
1

N 2

∑
i1 �=i2

|m − m̃||Gi1i2 ||P|2D−1
]

≤ N−ε/4 |s(3)|
qt

E

[
1

N 2

∑
i1 �=i2

|m − m̃|2|P|2D−1
]

+ N 3ε/4 |s(3)|
qt

E

[
1

N 2

∑
i1 �=i2

|Gi1i2 |2|P|2D−1
]

= N−ε/4 |s(3)|
qt

E

[
|m − m̃|2|P|2D−1

]
+ N 3ε/4 |s(3)|

qt
E

[
Imm

Nη
|P|2D−1

]
.

(6.43)

We thus get from (6.40), (6.41), (6.42) and (6.43) that

E Î1,0 = −m̃E

[
1

N 2

∑
i1 �=i2

Gi2i1Gi2i2Gi1i1 P
D−1PD

]
+O(�ε)=−Em̃ I (1)

2,0 + O(�ε) ,

(6.44)

where we used (6.35). We remark that in the expansion of E Î = EI (1)
2,0 the only

term with one off-diagonal entry is E Î (1)
2,0 . All the other terms contain at least two

off-diagonal entries.

Remark 6.8 (Power counting II) Comparing (6.5) and (6.38), we have Îr ′,s′ =
(I (1)

2,0)r ′,s′ . Consider now the terms with s′ = 0. As in (6.31) we organize the terms
according to the number of off-diagonal Green function entries. For r ′ ≥ 2,

w Îr ′,0 Îr ′,0 =
n∑

l=0

w
Î (l+1)
r ′,0

Î (l+1)
r ′,0 =

n∑
l=0

w
Î (l+1)
r ′,0

(I (1)
2,0)

(l+1)
r ′,0 . (6.45)

A simple power counting as in Remark 6.6 then directly yields

∣∣∣E Î (1)
r ′,0

∣∣∣ ≤ N ε

qr
′

t

E

[(
Imm

Nη

)1/2

|P|2D−1
]

,

∣∣∣E Î (l+1)
r ′,0

∣∣∣ ≤ N ε

qr
′

t

E

[(
Imm

Nη

)
|P|2D−1

]
, (l ≥ 1) , (6.46)
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for N sufficiently large. Here, we used that each term contains a factor κ
(3)
t κ

(r ′+1)
t ≤

CN−2q−r ′
t . We conclude that all terms in (6.46) with r ′ ≥ 2 are negligible. Yet we

remark that |E Î (1)
2,0 | is the leading error term in |EI (1)

2,0 |, which is explicitly listed on
the right side of (6.34).

Remark 6.9 (Power counting III) Consider the terms Îr ′,s′ , with 1 ≤ s′ ≤ r ′. For
s′ = 1, note that ∂i2i3

(
PD−1PD

)
contains two off-diagonal Green function entries.

Explicitly,

Îr ′,1 = − 2(D − 1)
Nκ

(r ′+1)
t Nκ

(3)
t

N 3

×
∑

i1 �=i2 �=i3

(
∂r

′−1
i2i3

(Gi3i1Gi2i2Gi1i1)
)( 1

N

N∑
i4=1

Gi4i2Gi3i4

)
P ′PD−2PD

− 2D
Nκ

(r ′+1)
t Nκ

(3)
t

N 3

×
∑

i1 �=i2 �=i3

(
∂r

′−1
i2i3

(Gi3i1Gi2i2Gi1i1)
)( 1

N

N∑
i4=1

Gi4i2Gi3i4

)
P ′PD−1PD−1 ,

where the fresh summation index i4 is generated from ∂i2i3 P . Using Lemma 6.5 we
get, for r ′ ≥ 1,

∣∣E Îr ′,1
∣∣ ≤ N ε

qr
′

t

E

[(
Imm

Nη

)3/2

|P ′||P|2D−2 +
(
Imm

Nη

)3/2

|P ′||P|2D−2
]

≤ 2�ε ,

(6.47)

for N sufficiently large, where we used that ∂r
′−1

i2i3
(Gi3i1Gi2i2Gi1i1), r

′ ≥ 1, contains
at least one off-diagonal Green function entry.

For 2 ≤ s′ ≤ r ′, we first note that, for N sufficiently large,

∣∣E Îr ′,s′
∣∣ ≤ N ε

qr
′

t

∣∣∣∣E
[

1

N 3

∑
i1 �=i2 �=i3

(
∂r

′−s′
i2i3

Gi3i1Gi2i2Gi1i1

)(
∂s

′
i2i3

(
PD−1PD

))]∣∣∣∣

≤ N ε

qr
′

t

E

[(
Imm

Nη

)1/2 1

N 2

∑
i2 �=i3

∣∣∂s′i2i3
(
PD−1PD

)∣∣
]

. (6.48)

Next, since s′ ≥ 2, the partial derivative in ∂s
′

i2i3

(
PD−1PD

)
acts on P and P (and on

their derivatives) more than once. For example, for s′ = 2,
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∂2i1i2 P
D−1 = 4(D − 1)(D − 2)

N 2

( N∑
i3=1

Gi3i2Gi1i3

)2

(P ′)2PD−3

+ 2(D − 1)

N 2

( N∑
i3=1

Gi2i3Gi3i1

)2

P ′′PD−2

− 2(D − 1)

N

N∑
i3=1

∂i1i2
(
Gi3i2Gi1i3

)
P ′PD−2 ,

where ∂i1i2 acted twice on P , respectively P ′, to produce the first two terms. More
generally, for s′ ≥ 2, consider a resulting term containing

PD−s′1 PD−s′2
(
P ′)s′3 (P ′

)s′4 (
P ′′)s′5 (P ′′

)s′6 (
P ′′′)s′7 (P ′′′

)s′8
, (6.49)

with 1 ≤ s′
1 ≤ D, 0 ≤ s′

2 ≤ D and
∑8

n=1 s
′
n ≤ s′. Since P(4) is constant we did

not list it. We see that such a term above was generated from PD−1PD by letting the
partial derivative ∂i2i3 act (s

′
1 − 1)-times on P and s′

2-times on P , which implies that
s′
1 − 1 ≥ s′

3 and s′
2 ≥ s′

4. If s
′
1 − 1 > s′

3, then ∂i2i3 acted on the derivatives of P, P
directly (s′

1−1− s′
3)-times, and a similar argument holds for P ′. Whenever ∂i2i3 acted

on P , P or their derivatives, it generated a term 2N−1 ∑
il Gi2il Gil i3 , with il , l ≥ 3, a

fresh summation index. For each fresh summation index we apply Lemma 6.5 to gain
a factor Imm

Nη
. The total number of fresh summation indices in a term corresponding

to (6.49) is

s′
1 − 1 + s′

2 + (s′
1 − 1 − s′

3) + (s′
2 − s′

4) = 2s′
1 + 2s′

2 − s′
3 − s′

4 − 2 = 2s̃0 − s̃ − 2 ,

with s̃0 := s′
1 + s′

2 and s̃ := s3 + s4, and we note this number does not decrease when
∂i2i3 acts on off-diagonal Green functions entries later. Thus, from (6.48) we conclude,
upon using |Gi1i2 |, |P ′′(m)|, |P ′′′(m)|, |P(4)(m)| ≺ 1 that, for 2 ≤ s′ ≤ r ′,

|E Îr ′,s′ | ≤ N ε

qr
′

t

E

[(
Imm

Nη

)1/2 1

N 2

∑
i2 �=i3

∣∣∂s′i2i3
(
PD−1PD

)∣∣
]

≤ N 2ε

qr
′

t

2D∑
s̃0=2

s̃0−2∑
s̃=1

E

[(
Imm

Nη

)1/2+2s̃0−s̃−2

|P ′|s̃ |P|2D−s̃0

]

+ N 2ε

qr
′

t

2D∑
s̃0=2

E

[(
Imm

Nη

)1/2+2s̃0−1

|P ′|s̃0−1|P|2D−s̃0

]
, (6.50)

for N sufficiently large. Here the last term on the right corresponds to s̃ = s̃0−1. Thus,
we conclude from (6.50) and the definition of �ε in (6.1) that E[ Îr ′,s′ ], 2 ≤ s′ ≤ r ′,
is negligible.
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To sumupandconclude this remark,we established that allE[ Ĩr ′,s′ ]with1 ≤ s′ ≤ r ′
are negligible.

From (6.35), (6.38), (6.44), (6.46), (6.47) and (6.50) we find that

|z + m̃|
∣∣∣EI (1)

2,0

∣∣∣ ≤ N ε

q2t
E

[(
Imm

Nη

)1/2

|P|2D−1
]

+ �ε ,

for N sufficiently large. Since (z+m̃) is deterministic and |z+m̃| > 1/6, aswe showed
in Remark 4.3, we obtain that |EI (1)

2,0 | ≤ �ε . This concludes the proof of (6.34). ��
Combining (6.28), (6.30) and (6.34) we showed that

|EI2,0| ≤ �ε , (6.51)

for N sufficiently large, i.e.all terms in EI2,0 are negligible and the second estimate
in (6.20) is proved.

6.5 Estimate on Ir,0, r ≥ 4

For r ≥ 5 we use the bounds |Gi1i1 |, |Gi1i2 | ≺ 1 to get

|EIr,0| =
∣∣∣∣Nκ

(r+1)
t E

[
1

N 2

∑
i1 �=i2

(
∂ri1i2Gi2i1

)
PD−1PD

]∣∣∣∣

≤ N ε

q4t
E

[
1

N 2

∑
i1 �=i2

|P|2D−1
]

≤ N ε

q4t
E[|P|2D−1] ≤ �ε , (6.52)

for N sufficiently large. For r = 4, ∂ri1i2Gi2i1 contains at least one off-diagonal term
Gi1i2 . Thus

∣∣∣∣Nκ
(5)
t E

[
1

N 2

∑
i1 �=i2

(
∂4i1i2Gi2i1

)
PD−1PD

]∣∣∣∣ ≤ N ε

q3t
E

[
1

N 2

∑
i1 �=i2

|Gi2i1 ||P|2D−1
]

≤ N ε

q3t
E

[(
Imm

Nη

)1/2

|P|2D−1
]

≤ �ε ,

(6.53)

for N sufficiently large, where we used Lemma 6.5 to get the last line. We conclude
that all termsEIr,0 with r ≥ 4 are negligible. This proves the fourth estimate in (6.20).
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6.6 Estimate on Ir,s, r ≥ 2, s ≥ 1

For r ≥ 2 and s = 1, we have

EIr,1 = Nκ
(r+1)
t E

[
1

N 2

∑
i1 �=i2

(∂r−1
i1i2

Gi2i1)∂i1i2(P
D−1PD)

]
.

Note that each term in EIr,1, r ≥ 2, contains at least two off-diagonal Green function
entries. For the terms with at least three off-diagonal Green function entries, we use
the bound |Gi1i2 |, |Gi1i1 | ≺ 1 and

Nκ
(r+1)
t E

[
1

N 3

∑
i1,i2,i3

|Gi2i1Gi1i3Gi3i2 ||P ′||P|2D−2
]

≤ N ε s
(r+1)

qt
E

[(
Imm

Nη

)3/2

|P ′||P|2D−2
]

≤ N εs(r+1)
E

[√
Imm

(
Imm

Nη

)(
1

Nη
+ q−2

t

)
|P ′||P|2D−2

]
, (6.54)

for N sufficiently large,wherewe usedLemma6.5.Note that the right side is negligible
since Imm ≺ 1.

Denoting the terms with two off-diagonal Green function entries in EIr,1 by EI
(2)
r,1 ,

we have

EI (2)
r,1 = Nκ(r+1)

E

[
2(D − 1)

N 2

∑
i1 �=i2

Gr/2
i2i2

Gr/2
i1i1

( 1

N

N∑
i3=1

Gi2i3Gi3i1

)
P ′PD−2PD

]

+ Nκ(r+1)
E

[
2D

N 2

∑
i1 �=i2

Gr/2
i2i2

Gr/2
i1i1

( 1

N

N∑
i3=1

Gi2i3Gi3i1

)
P ′PD−1PD−1

]
,

(6.55)

where i3 is a fresh summation index and where we noted that r is necessarily even in
this case. Lemma 6.5 then give us the upper bound

∣∣EI (2)
r,1

∣∣ ≤ N ε

qr−1
t

E

[
Imm

Nη
|P ′||P|2D−2

]
,

which is negligible for r > 2. However, for r = 2, we need to gain an additional
factor q−1

t . This can be done as in the proof of Lemma 6.7 by considering the off-
diagonal entries Gi2i3Gi3i1 , generated from ∂i1i2 P(m), since the index i2 appears an
odd number of times.

Lemma 6.10 For any (small) ε > 0, we have

∣∣∣EI (2)
2,1

∣∣∣ ≤ N ε

q2t
E

[
Imm

Nη
|P ′||P|2D−2

]
+ �ε , (6.56)
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uniformly on D, for N sufficiently large. In particular, the term EI2,1 is negligible.

Proof We start with the first term on the right side of (6.55). Using (3.23), we write

zNκ
(3)
t E

[
1

N 3

∑
i1 �=i2 �=i3

Gi2i3Gi2i2Gi1i1Gi1i3 P
′PD−2PD

]

= Nκ
(3)
t E

[
1

N 3

∑
i1 �=i2 �=i3 �=i4

Hi2i4Gi4i3Gi2i2Gi1i1Gi1i3 P
′PD−2PD

]
.

As in the proof of Lemma 6.7, we now apply the cumulant expansion to the right side.
The leading terms of the expansion is

Nκ
(3)
t E

[
1

N 3

∑
i1 �=i2 �=i3

mGi2i3Gi2i2Gi1i1Gi1i3 P
′PD−2PD

]
, (6.57)

and, thanks to the additional factor of q−1
t from the cumulant κ

(3)
t , all other terms in

the cumulant expansion are negligible, as can be checked by power counting as in the
proof of Lemma 6.7. Replacing in (6.57) m by m̃, we then get

|z + m̃|
∣∣∣Nκ

(3)
t

∣∣∣
∣∣∣∣E

[
1

N 3

∑
i1 �=i2 �=i3

Gi2i3Gi2i2Gi1i1Gi1i3 P
′PD−2PD

]∣∣∣∣ ≤ C�ε ,

for N sufficiently large; cf. (6.37). Since |z + m̃(z)| ≥ 1/6, z ∈ D by Remark 4.3, we
conclude that the first term on the right side of (6.55) is negligible. In the same way
one shows that the second term is negligible, too. We leave the details to the reader. ��
We hence conclude from (6.54) and (6.56) that EIr,1 is negligible for all r ≥ 2.

Consider next the terms

EIr,s = Nκ
(r+1)
t E

[
1

N 2

∑
i1 �=i2

(∂r−s
i1i2

Gi2i1)∂
s
i1i2(P

D−1PD)

]
,

with 2 ≤ s ≤ r . We proceed in a similar way as in Remark 6.8. We note that each term
in ∂r−s

i1i2
Gi2i1 contains at least one off-diagonal Green function when r − s is even, yet

when r − s is odd there is a term with no off-diagonal Green function entries. Since
s ≥ 2, the partial derivative ∂si1i2 acts on P or P (or their derivatives) more than once
in total; cf.Remark 6.8. Consider such a term with

PD−s1 PD−s2
(
P ′)s3 (P ′

)s4
,

for 1 ≤ s1 ≤ D and 0 ≤ s2 ≤ D. Since P ′′(m), P ′′′(m), P(4)(m) ≺ 1 and P(5) = 0,
we do not include derivatives of order two and higher here. We see that such a term
was generated from PD−1PD by letting the partial derivative ∂i1i2 act (s1 − 1)-times
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on P and s2-times on P , which implies that s3 ≤ s1 − 1 and s4 ≤ s2. If s3 < s1 − 1,
then ∂i1i2 acted on P ′ as well [(s1 − 1) − s3]-times, and a similar argument holds for
P ′. Whenever ∂i1i2 acts on P or P (or their derivatives), it generates a fresh summation
index il , l ≥ 3, with a term 2N−1 ∑

il Gi2il Gil i1 . The total number of fresh summation
indices in this case is

(s1 − 1) + s2 + [(s1 − 1) − s3] + [s2 − s4] = 2s1 + 2s2 − s3 − s4 − 2 .

Assume first that r = s so that ∂r−s
i1i2

Gi2i1 = Gi2i1 . Then applying Lemma 6.5
(2s1 + 2s2 − s3 − s4 − 2)-times and letting s0 := s1 + s2 and s′ := s3 + s4, we obtain
the upper bound, r = s ≥ 2,

|EIr,r | ≤ N ε

qr−1
t

2D∑
s0=2

s0−1∑
s′=1

E

[(
Imm

Nη

)1/2( Imm

Nη

)2s0−s′−2

|P ′|s′ |P|2D−s0

]
≤ �ε ,

(6.58)

for N sufficiently large, i.e.EIr,r , r ≥ 2, is negligible.
Second, assume that 2 ≤ s < r . Then applying Lemma 6.5 (2s1+2s2−s3−s4−2)-

times, we get

|EIr,s | ≤ N ε

qr−1
t

2D∑
s0=2

s0−2∑
s′=1

E

[(
Imm

Nη

)2s0−s′−2

|P ′|s′ |P|2D−s0

]

+ N ε

qr−1
t

2D∑
s0=2

E

[(
Imm

Nη

)s0−1

|P ′|s0−1|P|2D−s0

]
, (6.59)

for N sufficiently large with 2 ≤ s < r . In particular, |EIr,s | ≤ �ε , 2 ≤ s < r .
In (6.59) the second term bounds the terms corresponding to s0 − 1 = s′ obtained
by acting on ∂i1i2 exactly (s1 − 1)-times on P and s2-times on P but never on their
derivatives.

To sum up, we showed that EIr,s is negligible, for 1 ≤ s < r . This proves (6.21)
for 1 ≤ s < r .

6.7 Estimate on I3,0

We first notice that I3,0 contains terms with zero, two or four off-diagonal Green
function entries and we split accordingly

wI3,0 I3,0 = w
I (0)
3,0

I (0)
3,0 + w

I (2)
3,0

I (2)
3,0 + w

I (4)
3,0

I (4)
3,0 .
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When there are two off-diagonal entries, we can use Lemma 6.5 to get the bound

∣∣EI (2)
3,0

∣∣ =
∣∣∣∣Nκ

(4)
t E

[
1

N 2

∑
i1 �=i2

Gi2i2Gi1i1(Gi2i1)
2PD−1PD

]∣∣∣∣

≤ N ε

q2t
E

[
Imm

Nη
|P|2D−1

]
≤ �ε , (6.60)

for N sufficiently large. A similar estimate holds for |EI (2)
3,0 |. The only non-negligible

term is I (0)
3,0 .

For n ∈ N, set

Sn ≡ Sn(z) := 1

N

N∑
i=1

(Gii (z))
n, (z ∈ C

+). (6.61)

By definition S1 = m. We remark that |Sn| ≺ 1 on D, for any fixed n, by Proposi-
tion 2.6.

Lemma 6.11 We have

w
I (0)
3,0
EI (0)

3,0 = −Nκ
(4)
t E

[
S22 P

D−1PD
]
. (6.62)

Proof Recalling the definition of Ir,s in (6.5), we have

wI3,0 I3,0 = Nκ
(4)
t

3! E

[
1

N 2

∑
i1 �=i2

(
∂3i1i2Gi2i1

)
PD−1PD

]
.

We then easily see that the terms with no off-diagonal entries in ∂3i1i2Gi2i1 are of the
form

−Gi2i2Gi1i1Gi2i2Gi1i1 .

We only need to determine the weightw
I (0)
3,0
.With regard to the indices, taking the third

derivative corresponds to putting the indices i2i1 or i1i2 three times. In that sense, the
very first i2 and the very last i1 are from the original Gi2i1 . The choice of i2i1 or i1i2
must be exact in the sense that the connected indices in the following diagram must
have been put at the same time:

i2 i2 i1︸ ︷︷ ︸ i1 i2︸ ︷︷ ︸ i2 i1︸ ︷︷ ︸ i1 .

Thus, the only combinatorial factor we have to count is the order of putting the indices.
In this case, we have three connected indices, so the number of terms must be 3! = 6.
Thus, w

I (0)
3,0

= 1 and (6.62) indeed holds. ��
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Lemma 6.12 For any (small) ε > 0, we have, for all z ∈ D,

Nκ
(4)
t E

[
S22 P

D−1PD
]

= Nκ
(4)
t E

[
m4PD−1PD

]
+ O(�ε) . (6.63)

Proof Fix ε > 0. We first claim that

Nκ
(4)
t E

[
S22 P

D−1PD
]

= Nκ
(4)
t E

[
m2S2P

D−1PD
]

+ O(�ε) . (6.64)

The idea is to expand the term E[zmS22 P
D−1PD] in two different ways and compare

the results. Using the resolvent identity (3.23) and Lemma 3.2, we get

E
[
zmS22 P

D−1PD
] = − E

[
S22 P

D−1PD
] + E

[
1

N

∑
i1 �=i2

Hi1i2Gi2i1 S
2
2 P

D−1PD

]

= − E
[
S22 P

D−1PD
]

+
�′∑

r=1

Nκ
(r+1)
t

r ! E

[
1

N 2

∑
i1 �=i2

∂ri1i2

(
Gi2i1 S

2
2 P

D−1PD
)]

+ E

[
��′

(
1

N

∑
i1 �=i2

Hi1i2Gi2i1 S
2
2 P

D−1PD

)]
,

(6.65)

for arbitrary �′ ∈ N. Using the resolvent identity (3.23) once more, we write

zS2 = 1

N

N∑
i1=1

zGi1i1Gi1i1 = − 1

N

N∑
i1=1

Gi1i1 + 1

N

∑
i1 �=i2

Hi1i2Gi2i1Gi1i1 .

Thus, using Lemma 3.2, we also have

E

[
zmS22 P

D−1PD
]

= − E

[
m2S2P

D−1PD
]

+ E

[
1

N

∑
i1 �=i2

Hi1i2Gi2i1Gi1i1mS2P
D−1PD

]

= − E[m2S2P
D−1PD]

+
�′∑

r=1

Nκ
(r+1)
t

r ! E

[
1

N 2

∑
i1 �=i2

∂ri1i2

(
Gi2i1Gi1i1mS2P

D−1PD
)]

+ E

[
��′

(
1

N

∑
i1 �=i2

Hi1i2Gi2i1Gi1i1mS2P
D−1PD

)]
, (6.66)

for arbitrary �′ ∈ N. By Corollary 6.2 and Remark 6.3, the two error terms E[��′(·)]
in (6.65) and (6.66) are negligible for �′ ≥ 8D.
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With the extra factor Nκ
(4)
t , we then write

Nκ
(4)
t E

[
zmS22 P

D−1PD
]

= −Nκ
(4)
t E

[
S22 P

D−1PD
]

+
�′∑

r=1

r∑
s=0

w
I
∼

r,s
EI

∼

r,s + O(�ε) ,

Nκ
(4)
t E

[
zmS22 P

D−1PD
]

= −Nκ
(4)
t E

[
m2S2P

D−1PD
]

+
�′∑

r=1

r∑
s=0

w
I
∼
∼

r,s
EI

∼
∼

r,s + O(�ε) ,

(6.67)

with

I
∼

r,s := Nκ
(4)
t Nκ

(r+1)
t

1

N 2

∑
i1 �=i2

(
∂r−s
i1i2

(
Gi2i1S

2
2

))(
∂si1i2

(
PD−1PD

))
,

I
∼
∼

r,s := Nκ
(4)
t Nκ

(r+1)
t

1

N 2

∑
i1 �=i2

(
∂r−s
i1i2

(
Gi2i1Gi1i1mS2

))(
∂si1i2

(
PD−1PD

)) (6.68)

and w
I
∼

r,s
= w

I
∼
∼

r,s
= (r !)−1((r − s)!)−1.

For r = 1, s = 0, we find that

EI
∼

1,0 = −Nκ
(4)
t E

[
1

N 2

∑
i1 �=i2

Gi1i1Gi2i2 S
2
2 P

D−1PD

]
+ O(�ε)

= −Nκ
(4)
t E

[
m2S22 P

D−1PD
]

+ O(�ε) , (6.69)

and similarly

EI
∼
∼

1,0 = −Nκ
(4)
t E

[
1

N 2

∑
i1 �=i2

G2
i1i1Gi2i2mS2P

D−1PD

]
+ O(�ε)

= −Nκ
(4)
t E

[
m2S22 P

D−1PD

]
+ O(�ε) , (6.70)

where we used (6.61). We hence conclude that EI
∼

1,0 equals EI
∼
∼

1,0 up to negligible
error.

Following the ideas in Sect. 6.4, we can bound

∣∣EI∼1,1
∣∣ ≤N ε

q2t

∣∣∣∣E
[

1

N 2

∑
i1 �=i2

Gi1i2 S
2
2 (∂i1i2 P

D−1PD)

]∣∣∣∣

≤N ε

q2t
E

[(
Imm

Nη

)3/2

|P ′||P|2D−2
]

≤ �ε ,

and similarly |EI∼
∼

1,1| ≤ �ε , for N sufficiently large. In fact, for r ≥ 2, s ≥ 0 we can
use, with small notational modifications the power counting outlined in Remark 6.8
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and Remark 6.9 to conclude that

EI
∼

r,s = O(�ε), EI
∼
∼

r,s = O(�ε), (r ≥ 2 , s ≥ 0) .

Therefore the only non-negligible terms on the right hand side of (6.67) are

Nκ
(4)
t E[S22 PD−1PD], Nκ

(4)
t E[m2S2PD−1PD] as well as I

∼

1,0 and I
∼
∼

1,0. Since,
by (6.69) and (6.70), the latter agree up to negligible error terms, we conclude that the
former two must be equal up do negligible error terms. Thus (6.64) holds.

Next, expanding the termE[zm3S2PD−1PD] in twodifferentways similar to above,
we further get

Nκ
(4)
t E

[
m2S2P

D−1PD
]

= Nκ
(4)
t E

[
m4PD−1PD

]
+ O(�ε) . (6.71)

Together with (6.64) this shows (6.63) and concludes the proof of the lemma. ��
Finally, from Lemmas 6.11 and 6.12, we conclude that

wI3,0E[I3,0] = − s(4)
t

q2t
E

[
m4PD−1PD

]
+ O(�ε) . (6.72)

This proves the third estimate in (6.20).

Proof of Lemma 6.4 The estimates in (6.20) were obtained in (6.23), (6.51), (6.52),
(6.53) and (6.72). Estimate (6.21) follows from (6.25), (6.54), (6.58) and (6.59). ��

7 Tracy–Widom limit: Proof of Theorem 2.10

In this section, we prove the Tracy–Widom limit of the extremal eigenvalues,
Theorem 2.10, by following the strategy outlined in Sect. 3.4. In the first step, Propo-
sition 7.1, we introduce a smooth cutoff to express the distribution of the largest
eigenvalue of H as a functional of the imaginary part of the normalized trace of the
Green functionm of H . Then in Proposition 7.2, we compare the expectations of such
functionals with respect to H and GOE, respectively.

To make the first step more precise in Proposition 7.1 below, we need some more
notation. For η > 0, we set

θη(y) := η

π(y2 + η2)
, (y ∈ R) . (7.1)

Using the functional calculus and the definition of the Green function, we then get

Imm(E + iη) = π

N
Tr θη(H − E), (z = E + iη ∈ C

+) . (7.2)

We have the following proposition, which corresponds to Corollary 6.2 in [23], respec-
tively to Lemma 6.5 in [16]. Recall the definition of L in (2.28).
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Proposition 7.1 Suppose that H satisfiesAssumption 2.3withφ > 1/6. Denote byλH
1

the largest eigenvalue of H. Fix ε > 0. Let E ∈ R be such that |E − L| ≤ N−2/3+ε .
Let E+ := L + 2N−2/3+ε and define χE := 1[E,E+]. Set η1 := N−2/3−3ε and
η2 := N−2/3−9ε . Let moreover K : R → [0,∞) be a smooth function satisfying

K (x) =
{
1 if |x | < 1/3

0 if |x | > 2/3
, (7.3)

which is monotone decreasing on [0,∞). Then, for any D > 0,

E
[
K

(
Tr(χE ∗ θη2)(H)

)]
> P(λH

1 ≤ E − η1) − N−D (7.4)

and

E
[
K

(
Tr(χE ∗ θη2)(H)

)]
< P(λH

1 ≤ E + η1) + N−D , (7.5)

for N sufficiently large, with θη2 as in (7.1).

We postpone the proof of Proposition 7.1 to Sect. 7.1 and move on to the Green
function comparison theorem. Let WGOE be a GOE matrix independent of H with
vanishing diagonal entries as introduced in Sect. 3.4 and denote by mGOE ≡ mWGOE

the normalized trace of its Green function.

Proposition 7.2 (Green function comparison) Let ε > 0 and set η0 := N−2/3−ε .
Let E1, E2 ∈ R satisfy |E1|, |E2| ≤ N−2/3+ε . Let F : R → R be a smooth function
satisfying

max
x∈R

|F (l)(x)|(|x | + 1)−C ≤ C , (l ∈ �1, 11�) . (7.6)

Then, for any sufficiently small ε > 0, there exists δ > 0 such that

∣∣∣∣EF
(
N

∫ E2

E1

Imm(x + L + iη0) dx

)
− EF

(
N

∫ E2

E1

ImmGOE(x + 2 + iη0) dx

)∣∣∣∣ ≤ N−δ ,

(7.7)

for sufficiently large N, where L is given in (2.28).

Proposition 7.2 is proved in Sect. 7.2. We are ready to prove Theorem 2.10.

Proof of Theorem 2.10 Fix ε > 0 and set η1 := N−2/3−3ε and η2 := N−2/3−9ε .
Consider E = L + sN−2/3 with s ∈ (−N−2/3+ε, N−2/3+ε). For any D > 0, we find
from Proposition 7.1 that

P(λH
1 ≤ E) < EK

(
Tr(χE+η1 ∗ θη2)(H)

) + N−D ,
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for N sufficiently large. Applying Proposition 7.2 with 9ε instead of ε and setting
E1 := E − L + η1, E2 := E+ − L , we find that there is δ > 0 such that

EK

(
Tr(χE+η1 ∗ θη2)(H)

)
= EK

(
N

π

∫ E2

E1

Imm(x + L + iη2) dx

)

≤ EK

(
N

π

∫ E2

E1

ImmGOE(x + 2 + iη2) dx

)
+ N−δ

= EK

(
Tr(χ[E1+2,E2+2] ∗ θη2)(W

GOE)

)
+ N−δ ,

for N sufficiently large. Hence, applying Proposition 7.1 to the matrix WGOE, we get

P

(
N 2/3(λH

1 − L) ≤ s
)

= P

(
λH
1 ≤ E

)

< P

(
λGOE1 ≤ E1 + 2 + η1

)
+ N−D + N−δ

= P

(
N 2/3(λGOE1 − 2) ≤ s + 2N−3ε

)
+ N−D + N−δ . (7.8)

Similarly, we can also check that

P

(
N 2/3(λH

1 − L) ≤ s
)

> P

(
N 2/3(λGOE1 − 2) ≤ s − 2N−3ε

)
− N−D − N−δ.

(7.9)

Since the right sides of Eqs. (7.8) and (7.9) converge both to F1(s), the GOE Tracy–
Widom distribution, as N tends to infinity we conclude that

lim
N→∞P

(
N 2/3(λH

1 − L) ≤ s
) = F1(s) . (7.10)

This proves Theorem 2.10.

In the rest of this section, we prove Propositions 7.1 and 7.2

7.1 Proof of Proposition 7.1

In principle, we could adopt the strategy in the proof of Corollary 6.2 of [23] after
proving the optimal rigidity estimate at the edge with the assumption q ≫ N 1/6

and checking that such an optimal bound is required only for the eigenvalues at the
edge. However, we introduce a slightly different approach that directly compares
Tr(χE ∗ θη2)(H) and Tr χE−η1(H) by using the local law.

Proof of Proposition 7.1 For an interval I ⊂ R, let NI be the number of the eigen-
values in I , i.e.

NI := |{λi : λi ∈ I }| . (7.11)
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We compare Tr(χE ∗ θη2)(H) and Tr χE−η1(H) by considering the following four
cases:

Case 1 If x ∈ [E + η1, E+ − η1), then χE−η1(x) = 1 and

(χE ∗ θη2)(x) − 1 = 1

π

∫ E+

E

η2

(x − y)2 + η22
dy − 1

= 1

π

(
tan−1 E+ − x

η2
− tan−1 E − x

η2

)
− 1

= − 1

π

(
tan−1 η2

E+−x
+ tan−1 η2

x − E

)
=O

(
η2

η1

)
=O(N−6ε) .

(7.12)

For any E ′ ∈ [E + η1, E+ − η1), with the local law, Proposition 3.3, we can easily
see that

N[E ′−η1,E ′+η1)

5Nη1
≤ 1

N

N∑
i=1

η1

|λi − E ′|2 + η21
= Imm(E ′ + iη1) ≤ N ε/2

Nη1
+ N ε/2

q2
,

(7.13)

with high probability, where we used Im m̃(E ′ + iη1) ≤ C
√

(E ′) + η1 ≪
N ε/2/(Nη1). Thus, considering at most [E+ − (L − N−2/3+ε)]/η1 = 3N 4ε intervals,
we find that

N[E+η1,E+−η1) ≤ CN 9ε/2 (7.14)

and

∑
i :E+η1<λi<E+−η1

(
(χE ∗ θη2)(λi ) − χE−η1(λi )

) ≤ N−ε , (7.15)

with high probability.

Case 2 For x < E − η1, choose k ≥ 0 such that 3kη1 ≤ E − x < 3k+1η1. Then,
χE−η1(x) = 0 and

(χE ∗ θη2)(x) = 1

π

(
tan−1 E+ − x

η2
− tan−1 E − x

η2

)

= 1

π

(
tan−1 η2

E − x
− tan−1 η2

E+ − x

)

<
1

2

(
η2

E − x
− η2

E+ − x

)

= 1

2

η2(E+ − E)

(E − x)(E+ − x)
< 2N−4/3−8ε · 3−2kη−2

1 . (7.16)
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Abbreviate Nk = N(E−3k+1η1,E−3kη1]. Consider

Imm(E − 2 · 3kη1 + i · 3kη1) = 1

N

N∑
i=1

3kη1
|λi − (E − 2 · 3kη1)|2 + (3kη1)2

>
1

N

Nk

2 · 3kη1
.

(7.17)

With the local law, Proposition 3.3, and the estimate Im m̃(x + iy) � √|x − L| + y,
we find that

Imm(E − 2 · 3kη1 + i · 3kη1) ≤ C
√
3kη1 + N ε/2

N · 3kη1 ≤ N 5ε
√
3kη1 (7.18)

and hence

1

N

Nk

2 · 3kη1 < N 5ε
√
3kη1 , (7.19)

with high probability. Thus, with high probability,

∑
i :λi<E−η1

(
(χE ∗ θη2)(λi ) − χE−η1(λi )

) ≤ 2
2 log N∑
k=0

N−4/3−8ε · 3−2kη−2
1 Nk

≤ 4N−1/3−3εη
−1/2
1

∞∑
k=0

3−k/2 ≤ 10N−3ε/2 .

(7.20)

Case 3 By Proposition 2.9 there are with high probability no eigenvalues in [E+ −
η1,∞).

Case 4 For x ∈ [E − η1, E + η1), we use the trivial estimate

(χE ∗ θη2)(x) < 1 = χE−η1(x) . (7.21)

Combining the four cases above, we find that

Tr(χE ∗ θη2)(H) ≤ Tr χE−η1(H) + N−ε , (7.22)

with high probability. From the definition of the cutoff K and the fact that Tr χE−η1(H)

is an integer,

K (Tr χE−η1(H) + N−ε) = K (N[E−η1,E+]) .

Thus, since K is monotone decreasing on [0,∞), (7.22) implies that

K (Tr(χE ∗ θη2)(H)) ≥ K (Tr χE−η1(H)) ,
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with high probability. Taking the expectation, we get for any fixed D > 0 that

E
[
K

(
Tr(χE ∗ θη2)(H)

)]
> P(λ1 ≤ E − η1) − N−D ,

for N sufficiently large. This proves the first part of Proposition 7.1. The second part
can also be proved in a similar manner by showing that

Tr(χE ∗ θη2)(H) ≥ Tr χE+η1(H) − N−ε , (7.23)

with high probability, applying the cutoff K and taking the expectation. In this argu-
ment (7.21) gets replaced by

χE+η1(x) = 0 < (χE ∗ θη2)(x) , (7.24)

for x ∈ [E − η1, E + η1). This proves Proposition 7.1. ��

7.2 Green function comparison: Proof of Proposition 7.2

Recall the definition of the matrix Ht in (3.26). We first state a lemma that has the
analogue role of Lemma 3.2 in calculations involving H ≡ Ht and Ḣ ≡ dHt/dt .

Lemma 7.3 Fix � ∈ N and let F ∈ C�+1(R;C+). Let Y ≡ Y0 be a random vari-
able with finite moments to order � + 2 and let W be a Gaussian random variable
independent of Y . Assume that E[Y ] = E[W ] = 0 and E[Y 2] = E[W 2]. Define

Yt := e−t/2Y0 +
√
1 − e−tW , (7.25)

and abbreviate Ẏt ≡ dYt
dt . Then,

E
[
Ẏt F(Yt )

] = −1

2

�∑
r=2

κ(r+1)(Y0)

r ! e− (r+1)t
2 E

[
F (r)(Yt )

] + E
[
��(Ẏt F(Yt ))

]
, (7.26)

where E denotes the expectation with respect to Y and W, κ(r+1)(Y ) denotes the
(r + 1)-th cumulant of Y and F (r) denotes the r-th derivative of the function F. The
error term �� in (7.26) satisfies

∣∣E[��(Ẏ F(Yt ))
]∣∣ ≤ C�E[|Yt |�+2] sup

|x |≤Q
|F (�+1)(x)|

+ C�E

[
|Yt |�+21(|Yt | > Q)

]
sup
x∈R

|F (�+1)(x)| , (7.27)

where Q ≥ 0 is an arbitrary fixed cutoff and C� satisfies C� ≤ (C�)�

�! for some
numerical constant C.
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Proof We follow the proof of Corollary 3.1 in [41]. First, note that

Ẏt = −e−t/2

2
Y + e−t

2
√
1 − e−t

W . (7.28)

Thus,

E
[
Ẏt F(Yt )

] = − e−t/2

2
E

[
Y F

(
e−t/2Y +

√
1 − e−tW

)]

+ e−t

2
√
1 − e−t

E

[
WF

(
e−t/2Y +

√
1 − e−tW

)]
.

Applying Lemma 3.2 and (3.9), we get (7.26) since the first two moments of W and
Y agree. ��
Proof of Proposition 7.2 Fix a (small) ε > 0. Consider x ∈ [E1, E2]. Recall the
definition of Ht in (3.26). For simplicity, let

G ≡ Gt (x + Lt + iη0) , m ≡ mt (x + Lt + iη0) , (7.29)

with η0 = N−2/3−ε , and define

X ≡ Xt := N
∫ E2

E1

Imm(x + Lt + iη0) dx . (7.30)

Note that X ≺ N ε and |F (l)(X)| ≺ NCε , for l ∈ �1, 11�. Recall from (3.32) that

L = 2 + e−t q−2
t s(4) + O(e−2t q−4

t ) , L̇ = −2e−t q−2
t s(4) + O(e−2t q−4

t ) ,

(7.31)

where qt = et/2q0. Let z := x + L + iη0 and G ≡ G(z). Differentiating F(X) with
respect to t , we get

d

dt
EF(X) = E

[
F ′(X)

dX

dt

]
= E

[
F ′(X) Im

∫ E2

E1

N∑
i1=1

dGi1i1

dt
dx

]

= E

[
F ′(X) Im

∫ E2

E1

( N∑
i1=1

∑
i2≤i3

Ḣi2i3
∂Gi1i1

∂Hi2i3
+ L̇

∑
i1,i2

Gi1i2Gi2i1

)
dx

]
,

(7.32)

where by definition

Ḣi2i3 ≡ ˙(Ht )i2i3 = −1

2
e−t/2(H0)i2i3 + e−t

2
√
1 − e−t

WGOE
i2i3 . (7.33)
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Thus, from Lemma 7.3, we find that

N∑
i1=1

∑
i2≤i3

E

[
Ḣi2i3F

′(X)
∂Gi1i1

∂Hi2i3

]
= −

∑
i1,i2,i3

E
[
Ḣi2i3F

′(X)Gi1i2Gi3i1

]

= e−t

2N

�∑
r=2

q−(r−1)
t s(r+1)

r !
∑

i1,i2,i3

E
[
∂ri2i3

(
F ′(X)Gi1i2Gi3i1

)]+O(N 1/3+Cε) ,

(7.34)

for � = 10, where we abbreviate ∂i2i3 ≡ ∂/(∂Hi2i3). Note that the O(N 1/3+Cε) error
term in (7.34) originates from �� in (7.26), which is O(NCεN 2q−10

t ) for the choice
Y = Hi2i3 .

We claim the following lemma.

Lemma 7.4 Let z := x + L + iη0 and G ≡ G(z). For any integer r ≥ 2, set

Jr := e−t

2N

q−(r−1)
t s(r+1)

r !
∑

i1,i2,i3

∂ri2i3

(
F ′(X)Gi1i2Gi3i1

)
. (7.35)

Then,

EJ3 = 2e−t s(4)q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i1

] + O(N 2/3−ε′
) (7.36)

and, for r = 2 and for r ≥ 4,

EJr = O(N 2/3−ε′
) . (7.37)

Assuming that Lemma 7.4 holds, we obtain that there exists ε′ > 2ε such that, for
all t ∈ [0, 6 log N ],
∑
i1

∑
i2≤i3

E

[
Ḣi2i3F

′(X)
∂Gi1i1

∂Hi2i3

]
= −L̇

∑
i1,i2

E
[
Gi1i2Gi2i1F

′(X)
] + O(N 2/3−ε′

) ,

(7.38)

which implies that the right side of (7.32) is O(N−ε′/2). Integrating from t = 0 to
t = 6 log N , we get

∣∣∣∣EF
(
N

∫ E2

E1

Imm(x + L + iη0) dx

)

t=0

− EF

(
N

∫ E2

E1

Imm(x + L + iη0) dx

)

t=6 log N

∣∣∣∣ ≤ N−ε′/4 .
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Comparing Imm|t=6 log N and ImmGOE is trivial; if we let λk(6 log N ) be the k-th
largest eigenvalue of H6 log N and λGOEk the k-th largest eigenvalue of WGOE, then
|λk(6 log N ) − λGOEk | ≺ N−3, hence

∣∣∣Imm|t=6 log N − ImmGOE
∣∣∣ ≺ N−5/3 . (7.39)

This proves Proposition 7.2. ��
It remains to prove Lemma 7.4. The proof uses quite similar ideas as used in Sect. 6.

We thus sometimes omit some details and refer to the corresponding paragraph in
Sect. 6.

Proof of Lemma 7.4 First, we note that in the definition of Jr we may freely include
or exclude terms with i1 = i2 or i1 = i3 in the summation

∑
i1,i2,i3 , since they contain

at least one off-diagonal Green function entry, Gi1i3 or Gi1i2 , and the sizes of these
terms are, in expectation, at most of order

q−1
t q−1

t N 2N−1 ≪ N 2/3−ε′
e−t ,

for any sufficiently small ε′ > 0. (When i2 = i3 the summand is zero by construction.)
For r ≥ 5, it is easy to see that EJr = O(N 2/3−ε′

), since it contains at least two
off-diagonal entries in ∂ri2i3

(
F ′(X)Gi1i2Gi3i1

)
and |EJr | is bounded by

q−4
t N 3N−1N−2/3+2ε ≪ N 2/3−ε′

e−2t ,

which can be checked using Lemma 6.5 and a simple power counting.
Therefore, we only need to consider the cases r = 2, 3, 4. In the following sub-

sections, we check each case and complete the proof of Lemma 7.4. See Eqs. (7.48),
(7.52) and (7.53) below.

7.2.1 Proof of Lemma 7.4 for r = 2

We proceed as in Lemma 6.7 of Sect. 6.4 and apply the idea of an unmatched index.
Observe that

∂2i2i3

(
F ′(X)Gi1i2Gi2i1

) = F ′(X)∂2i2i3(Gi1i2Gi3i1) + 2∂i2i3F
′(X)∂i2i3(Gi1i2Gi3i1)

+ (∂2i2i3F
′(X))Gi1i2Gi3i1 .

(7.40)

We first consider the expansion of F ′(X) ∂2i2i3(Gi1i2Gi3i1). We can easily estimate
the terms with four off-diagonal Green function entries, since, for example,

∑
i1,i2,i3

∣∣E [
F ′(X)Gi1i2Gi3i2Gi3i2Gi2i1

]∣∣ ≤ NCε
∑

i1,i2,i3

E|Gi1i2Gi3i2Gi3i2Gi3i1 |

≤ NCεN 3
(
Imm

Nη0

)2

≤ N 3−4/3+Cε ,

123



610 J. O. Lee, K. Schnelli

where we used Lemma 6.5. Thus, for sufficiently small ε and ε′,

e−t q−1
t

N

∑
i1,i2,i3

∣∣E[F ′(X)Gi1i2Gi3i2Gi3i2Gi3i1

]∣∣ ≪ N 2/3−ε′
. (7.41)

For the terms with three off-diagonal Green function entries, the bound we get from
Lemma 6.5 is

q−1
t N−1N 3NCε

(
Imm

Nη0

)3/2

� q−1
t N 1+Cε ,

which is not sufficiently small. To gain an additional factor of q−1
t , making the above

bound q−2
t N 1+Cε ≪ N 2/3−ε′

, we use Lemma 3.2 to expand in an unmatched index.
For example, such a term is of the form

Gi1i2Gi3i2Gi3i3Gi2i1

andwe focus on the unmatched index i3 inGi3i2 . Then,multiplying by z and expanding,
we get

q−1
t

N

∑
i1,i2,i3

E
[
zF ′(X)Gi1i2Gi3i2Gi3i3Gi2i1

]

= q−1
t

N

∑
i1,i2,i3,i4

E
[
F ′(X)Gi1i2Hi3i4Gi4i2Gi3i3Gi2i1

]

= q−1
t

N

�∑
r ′=1

κ(r ′+1)

r ′!
∑

i1,i2,i3,i4

E

[
∂r

′
i3i4

(
F ′(X)Gi1i2Gi4i2Gi3i3Gi2i1

)] + O(N 2/3−ε′
) ,

for � = 10.
For r ′ = 1, we need to consider ∂i3i4(F

′(X)Gi1i2Gi4i2Gi3i3Gi2i1). When ∂i3i4 acts
on F ′(X) it creates a fresh summation index i5 and we get a term

q−1
t

N 2

∑
i1,i2,i3,i4

E
[(

∂i3i4F
′(X)

)
Gi1i2Gi4i2Gi3i3Gi2i1

]

= −2q−1
t

N 2

∫ E2

E1

∑
i1,i2,i3,i4,i5

E
[
Gi1i2Gi4i2Gi3i3Gi2i1F

′′(X) Im
(
G̃i3i5 G̃i5i4

)]
dy ,

(7.42)

where we abbreviate G̃ ≡ G(y + L + iη0). Applying Lemma 6.5 to the index a and
G̃, we get,

1

N

N∑
i5=1

∣∣G̃i3i5 G̃i5i4

∣∣ ≺ N−2/3+2ε ,
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for any i3 and i4, which also shows that

|∂i3i4F ′(X)| ≺ N−1/3+Cε . (7.43)

Applying Lemma 6.5 to the remaining off-diagonal Green function entries, we obtain
from (7.42) that

q−1
t

N 2

∑
i1,i2,i3,i4

∣∣E[(∂i3i4F ′(X))Gi1i2Gi4i2Gi3i3Gi2i1 ]
∣∣

≤ q−1
t N 2N−1/3+CεN−1+3ε = q−1

t N 2/3+Cε . (7.44)

When ∂i3i4 acts on Gi1i2Gi4i2Gi3i3Gi2i1 , then we always get four or more off-
diagonal Green function entries with the only exception being

−Gi1i2Gi4i4Gi3i2Gi3i3Gi2i1 .

To the terms with four or more off-diagonal Green function entries, we apply Lemma
6.5 and obtain a bound similar to (7.44) by power counting. For the term of the
exception, we rewrite it as

− q−1
t

N 2

∑
i1,i2,i3,i4

E
[
F ′(X)Gi1i2Gi4i4Gi3i2Gi3i3Gi2i1

]

= −q−1
t

N

∑
i1,i2,i3

E
[
mF ′(X)Gi1i2Gi3i2Gi3i3Gi2i1

]

= −m̃
q−1
t

N

∑
i1,i2,i3

E
[
F ′(X)Gi1i2Gi3i2Gi3i3Gi2i1

]

+ q−1
t

N

∑
i1,i2,i3

E
[
(m̃ − m)F ′(X)Gi1i2Gi3i2Gi3i3Gi2i1

]
.

Here, the last term is again bounded by q−1
t N 2/3+Cε as we can easily check with

Proposition 3.3 and Lemma 6.5. We thus arrive at

q−1
t

N
(z + m̃)

∑
i1,i2,i3

E
[
F ′(X)Gi1i2Gi3i2Gi3i3Gi2i1

]

= q−1
t

N

�∑
r ′=2

κ(r ′+1)

r ′!
∑

i1,i2,i3,i4

E

[
∂r

′
i3i4

(
F ′(X)Gi1i2Gi4i2Gi3i3Gi2i1

)] + O(N 2/3−ε′
) .

(7.45)

On the right side, the summation starts from r ′ = 2, hence we have gained a factor
(Nqt )−1 from κ(r ′+1) and added the fresh summation index i4, so the net gain is q

−1
t .

Since |z + m̃| � 1, this shows that
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q−1
t

N

∑
i1,i2,i3

E
[
F ′(X)Gi1i2Gi3i2Gi3i3Gi2i1

] = O(N 2/3−ε′
) . (7.46)

Together with (7.41), this takes care of the first term on the right side of (7.40).
For the second term on the right side of (7.40), we focus on

∂i2i3F
′(X) = −

∫ E2

E1

N∑
i4=1

[
F ′′(X) Im

(
G̃i2i4 G̃i4i3

)]
dy (7.47)

and apply the same argument to the unmatched index i3 in G̃i3i4 .
For the third term, we focus on the factor Gi1i2Gi3i1 and apply the same argument

once more with the unmatched index i3 in Gi3i1 . We omit the detail.
Estimating all terms in this way, we eventually get the desired estimate

q−1
t

N

∑
i1,i2,i3

∣∣∣E
[
∂2i2i3

(
F ′(X)∂i2i3Gi1i1

)]∣∣∣ = O(N 2/3−ε′
) . (7.48)

7.2.2 Proof of Lemma 7.4 for r = 3

We proceed as in Sect. 6.7. Note that there will be no unmatched indices in the Green
function entries for this case. If ∂i2i3 acts on F ′(X) at least once, then that term is
bounded by

q−2
t N εN−1N 3N−1/3+CεN−2/3+2ε = q−2

t N 1+Cε ≪ N 2/3−ε′
,

where we used (7.43) and the fact that Gi1i2Gi3i1 or ∂i2i3(Gi1i2Gi3i1) contains at least
two off-diagonal entries. Moreover, in the expansion of ∂2i2i3(Gi1i2Gi3i1), the terms
with three or more off-diagonal Green function entries entries can be bounded by

q−2
t N εN−1N 3NCεN−1+3ε = q−2

t N 1+Cε ≪ N 2/3−ε′
.

Thus,

EJ3 = e−t

2N

q−2
t s(4)

3!
∑

i1,i2,i3

E

[
∂3i2i3

(
F ′(X)Gi1i2Gi3i1

)]

= −4!
2

e−t q−2
t s(4)

3!
∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i2Gi2i1 S2

] + O(N 2/3−ε′
) ,

(7.49)

where the combinatorial factor 4! is computed as in Lemma 6.11 and S2 is as in (6.61).
As in Lemma 6.12 of Sect. 6.7, the first term on right side of (7.49) is computed by
expanding
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q−2
t

∑
i1,i2

E
[
zmS2F

′(X)Gi1i2Gi2i2Gi2i1

]

in two different ways. We then obtain that

q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i2Gi2i1 S2

] = q−2
t

∑
i1,i2

E
[
m2F ′(X)Gi1i2Gi2i2Gi2i1

] + O(N 2/3−ε′
)

= q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i2Gi2i1

] + O(N 2/3−ε′
) ,

(7.50)

where we used that m ≡ m(z) = −1 + O(N−1/3+ε) with high probability. Indeed,
since m̃(L), which was denoted by τ in the proof of Lemma 4.1, satisfies m̃(L) =
−1+O(e−t q−2

t ) by (4.6), and since |m̃(z)− m̃(L)| � √
 + η0 ≤ N−1/3+ε by (4.8),

we have from Proposition 3.3 that m(z) = −1 + O(N−1/3+ε) with high probability.
Consider next the first term on the very right of (7.50). Since |z − 2| ≤ CN−1/3,

we get

q−2
t

∑
i1,i2

E
[
zF ′(X)Gi1i2Gi2i2Gi2i1

]=2q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i2Gi2i1

]+O(N 2/3−ε′
) ,

(7.51)

where we used (7.43). Expanding on left hand side the factor Gi2i2 using (3.23), we
obtain

q−2
t

∑
i1,i2

E[zF ′(X)Gi1i2Gi2i2Gi2i1 ] = − q−2
t

∑
i1,i2

E[F ′(X)Gi1i2Gi2i1 ]

+ q−2
t

∑
i1,i2,i3

E[F ′(X)Hi2i3Gi3i2Gi1i2Gi2i1 ] .

Applying Lemma 3.2 to the second term on the right side, we find that most of the
terms are O(N 2/3−ε′

) either due to three (or more) off-diagonal entries, the partial
derivative ∂i2i3 acting on F ′(X), or higher cumulants. The only term that does not fall
into one these categories is

−q−2
t

N

∑
i1,i2,i3

E
[
F ′(X)Gi1i2Gi3i3Gi2i2Gi2i1

]
,

which is generated when ∂i2i3 acts on Gi3i2 . From this argument, we find that

q−2
t

∑
i1,i2

E
[
zF ′(X)Gi1i2Gi2i2Gi2i1

]

= −q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i1

]−q−2
t

∑
i1,i2

E
[
mF ′(X)Gi1i2Gi2i2Gi2i1

]+O(N2/3−ε′
) .
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Hence, combining it with (7.51) and the fact that m = −1 + O(N−1/3+ε) with high
probability, we get

q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i2Gi2i1

] = −q−2
t

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i1

] + O(N 2/3−ε′
) .

In combination with (7.49) and (7.50), we conclude that

EJ3 = e−t

2N

q−2
t s(4)

3!
∑

i1,i2,i3

E

[
∂3i2i3

(
F ′(X)Gi1i2Gi3i1

)]

= 2e−t q−2
t s(4)

∑
i1,i2

E
[
F ′(X)Gi1i2Gi2i1

] + O(N 2/3−ε′
) . (7.52)

7.2.3 Proof of Lemma 7.4 for r = 4

In this case, we estimate the term as in the case r = 2 and get

q−3
t

N

∑
i1,i2,i3

∣∣∣E
[
∂4i2i3

(
F ′(X)Gi1i2Gi3i1

)]∣∣∣ = O(N 2/3−ε′
) . (7.53)

We leave the details to the interested reader.
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3. Ajanki, O., Erdős, L., Krüger, T.: Local eigenvalue statistics for random matrices with general short
range correlations. arXiv:1604.08188 (2016)
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23. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized wigner matrices. Adv. Math. 229,
1435–1515 (2012)

24. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)
25. Götze, F., Naumov, A., Tikhomirov, A.: Local semicircle law under moment conditions. Part I: the

stieltjes transform. arXiv:1510.07350 (2015)
26. Götze, F., Naumov, A., Timushev, D., Tikhomirov, A.: On the local semicircular law for Wigner

ensembles. arXiv:1602.03073 (2016)
27. Hanson, D.L., Wright, E.T.: A bound on tail probabilities for quadratic forms in independent random

variables. Ann. Math. Stat. 42, 1079–1083 (1971)
28. He, Y., Knowles, A.: Mesoscopic eigenvalue statistics of wigner matrices. arXiv:1603.01499 (2016)
29. Huang, J., Landon, B., Yau, H.-T.: Bulk universality of sparse randommatrices. J. Math. Phys. 56(12),

123301 (2015)
30. Kargin, V.: Subordination for the sum of two randommatrices. Ann. Probab. 43(4), 2119–2150 (2015)
31. Khorunzhy, A., Khoruzhenko, B., Pastur, L.: Asymptotic properties of large random matrices with

independent entries. J. Math. Phys. 37(10), 5033–5060 (1996)
32. Khorunzhy, A.: Sparse randommatrices: spectral edge and statistics of rooted trees. Adv. Appl. Probab.

33(1), 124–140 (2001)
33. Khorunzhiy, O.: On high moments and the spectral norm of large dilute Wigner random matrices. Zh.

Mat. Fiz. Anal. Geom. 10(1), 64–125 (2014)
34. Knowles, A., Yin, J.: Anisotropic local laws for random matrices. arXiv:1410.3516 (2014)
35. Lee, J.O., Yin, J.: A necessary and sufficient condition for edge universality of Wigner matrices. Duke

Math. J. 163(1), 117–173 (2014)
36. Lee, J.O., Schnelli, K.: Local deformed semicircle law and complete delocalization forWignermatrices

with random potential. J. Math. Phys. 54, 103504 (2013)
37. Lee, J.O., Schnelli, K.: Edge universality for deformed Wigner matrices. Rev. Math. Phys. 27(8),

1550018 (2015)
38. Lee, J.O., Schnelli, K.: Tracy-widom distribution for the largest eigenvalue of real sample covariance

matrices with general population. Ann. Appl. Probab. 26(6), 3786–3839 (2016)
39. Lee, J.O., Schnelli, K., Stetler, B., Yau, H.-T.: Bulk universality for deformed Wigner matrices. Ann.

Probab. 44(3), 2349–2425 (2016)
40. Lei, J.: A goodness-of-fit test for stochastic block models. Ann. Stat. 44, 401–424 (2016)
41. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with

independent entries. Ann. Probab. 37, 1778–1840 (2009)
42. Péché, S., Soshnikov, A.: On the Lower bound of the spectral norm of symmetric random matrices

with independent entries. Electron. Commun. Probab. 13, 280290 (2008)

123

http://arxiv.org/abs/1510.07350
http://arxiv.org/abs/1602.03073
http://arxiv.org/abs/1603.01499
http://arxiv.org/abs/1410.3516


616 J. O. Lee, K. Schnelli

43. Péché, S., Soshnikov, A.: Wigner random matrices with non-symmetrically distributed entries. J. Stat.
Phys. 129, 857884 (2007)

44. Shcherbina, M., Tirozzi, B.: Central limit theorem for fluctuations of linear eigenvalue statistics of
large random graphs: diluted regime. J. Math. Phys. 53, 043501 (2012)

45. Sinai, Y., Soshnikov, A.: A refinement of wigners semicircle law in a neighborhood of the spectrum
edge. Funct. Anal. Appl. 32, 114131 (1998)

46. Soshnikov, A.: Universality at the edge of the spectrum in wigner random matrices. Commun. Math.
Phys. 207, 697–733 (1999)

47. Tao, T., Vu, V.: Random matrices: universality of the local eigenvalue statistics. Acta Math. 206,
127–204 (2011)

48. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun.
Math. Phys. 298, 549–572 (2010)

49. Tracy, C., Widom, H.: Level-spacing distributions and the airy kernel. Commun. Math. Phys. 159,
151–174 (1994)

50. Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177,
727–754 (1996)

123


	Local law and Tracy–Widom limit for sparse random matrices
	Abstract
	1 Introduction
	2 Definitions and main results
	2.1 Motivating examples
	2.1.1 Adjacency matrix of Erdős–Rényi graph
	2.1.2 Diluted Wigner matrices

	2.2 Notation
	2.2.1 Probability estimates
	2.2.2 Stieltjes transform

	2.3 Main results
	2.3.1 Local law up to the edges for sparse random matrices
	2.3.2 Tracy–Widom limit of the extremal eigenvalues
	2.3.3 Applications to the adjacency matrix of the Erdős–Rényi graph


	3 Strategy and outline of proofs
	3.1 Local laws for the Green function
	3.2 Local law for the GOE
	3.3 Local law for sparse matrices
	3.4 Tracy–Widom limit and Green function comparison

	4 The measure widetildeρ and its Stieltjes transform
	5 Proof of Proposition 3.3 and Theorem 2.9
	5.1 Proof of Proposition 3.3
	5.2 Proof of Theorem 2.9

	6 Recursive moment estimate: Proof of Lemma 5.1
	6.1 Truncation of the cumulant expansion
	6.2 Truncated cumulant expansion
	6.3 Estimate on I1, s
	6.4 Estimate on I2,0
	6.5 Estimate on Ir,0, r 4
	6.6 Estimate on Ir,s, rge2, sge1
	6.7 Estimate on I3,0

	7 Tracy–Widom limit: Proof of Theorem 2.10
	7.1 Proof of Proposition 7.1
	7.2 Green function comparison: Proof of Proposition 7.2
	7.2.1 Proof of Lemma 7.4 for r=2
	7.2.2 Proof of Lemma 7.4 for r=3
	7.2.3 Proof of Lemma 7.4 for r=4


	Acknowledgements
	References




